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Transfer Learning for Classification of 
Alzheimer’s Disease Based on Genome Wide 

Data 
Abbas Saad Alatrany, Wasiq Khan, Abir J. Hussain, Jamila Mustafina, Dhiya Al-Jumeily 

and for the Alzheimer’s Disease Neuroimaging Initiative* 

Abstract— Alzheimer's disease (AD) is a type of brain disorder that is regarded as a degenerative disease because the 

corresponding symptoms aggravate with the time progression. Single nucleotide polymorphisms (SNPs) have been identified as 

relevant biomarkers for this condition. This study aims to identify SNPs biomarkers associated with the AD in order to perform a 

reliable classification of AD. In contrast to existing related works, we utilize deep transfer learning with varying experimental 

analysis for reliable classification of AD. For this purpose, the convolutional neural networks (CNN) are firstly trained over the 

genome-wide association studies (GWAS) dataset requested from the AD neuroimaging initiative. We then employ the deep 

transfer learning for further training of our CNN (as base model) over a different AD GWAS dataset, to extract the final set of 

features.  The extracted features are then fed into Support Vector Machine for classification of AD. Detailed experiments are 

performed using multiple datasets and varying experimental configurations. The statistical outcomes indicate an accuracy of 89% 

which is a significant improvement when benchmarked with existing related works.   

Index Terms— Alzheminer’s Disease, GWAS, SNPs, Machine Learning, Transfer Learning, Genome Wide Data 

 

——————————   ◆   —————————— 

1 INTRODUCTION

lzheimer’s disease (AD) is the most common type of 
dementia with ever increasing prevalence within peo-

ple over 65 years of age. Despite of significant attempts to 
study the disease biology and create therapeutic drugs, the 
cause and course of the disease remain unknown, and 
there is no treatment available to stop or reverse the dis-
ease other than symptomatic treatments [1]. In order to as-
sess efficacy in the development of AD treatments, it is crit-
ical to enrol relevant individuals using accurate disease di-
agnosis techniques. However, clinical diagnosis of AD is 
based on a physician's assessment of specific neurological 
and cognitive symptoms, which can be subjective [2]. 
     Generally, the AD can be categorised as Early-onset AD 
(EOAD) and late-onset AD (LOAD)  [3]. An EOAD has 

been found in about 5% of AD patients with onset ranging 
from the age of 30s to the mid-60s. Studies have identified 
the presenilin 1, presenilin 2, and amyloid precursor pro-
tein which are the genes involved in EOAD [4]. A LOAD, 
on the other hand is common one which appears after the 
age of mid-60s and affects 90–95 percent of total AD pa-
tients. Literature indicates Apolipoprotein E (APOE e4) as 
the frequently confirmed gene being affected in LOAD [5]. 
     The LOAD has been appearing as a complicated condi-
tion caused by both hereditary and environmental factors 
[6]. Because AD has no definitive cure, studying the genes 
associated in its progression serves as a guide for an early 
identification of LOAD, close monitoring at risk patients, 
early treatment and prevention of the disease.  
     Genome-Wide Association Studies (GWAS) are a fre-
quent study strategy for determining association between 
common DNA sequence variants and a phonotype. The 
GWAS studies are large-scale studies that collect genetic 
diversity in form of SNPs across the human genome. Each 
of the variations is statistically assessed to find links to a 
well-defined trait being under investigation [7]. The case-
control design is the most prevalent strategy in GWAS, 
where cases refer to a cohort that has been affected by the 
disease under study while controls refer to healthy (i.e., 
normal) subjects. The odds ratio (OR) is the first statistical 
measure considered in a traditional case-control GWAS, 
with an OR value greater than 1 indicates the association 
of an allele is a risk for disease whereas an OR less than 1 
indicates the association of an allele as a protective associ-
ation against the disease [8]. 
     Literature have also reported that the genetic factors 
play a significant role in AD. In 2013, one of the largest AD 
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GWASs study reported 19 risk loci related to AD [9]. Re-
cent works also identified additional risk loci (risen to 40) 
[10-12] which clearly shows the significant contribution of 
GWAS towards the understanding the genetic components 
associated with the AD. 
     Despite the success of classical machine learning (ML) 
approaches within a wide range of practical applications, 
it has certain limitations in some real-world dynamics. A 
typical supervised ML approach require substantial 
amount of labelled training instances with the same distri-
bution as the test data. However, in many cases, gathering 
sufficient labelled training data is prohibitively expensive, 
time-consuming, or even impractical [13]. One of the most 
commonly used ML approaches to address the aforemen-
tioned problem is Transfer Learning (TR), which learns the 
underlying knowledge required to solve one problem us-
ing large amount of data and applies it to subsequent prob-
lems with comparatively small datasets. The base network 
is firstly trained over larger dataset for a certain task which 
is then used to be fine-tuned over comparatively small da-
taset in the target domain [13]. Although there are many 
studies  [14-19] using machine learning in the area of 
GWAS. However, there are some limitations to these stud-
ies. In terms of accuracy, results show low predictive per-
formance or a biased performance (i.e., the model's sensi-
tivity is higher than its specificity). While other methods 
involve only a simple universal test to select relevant fea-
tures. 

In this study, we employ multiple types of transfer 
learning for the reliable classification of AD using GWAS 
data. In contrast other existing literature, the proposed 
study comprises  following novelties:   

a) To the best of our knowledge, this is the first study to 
use deep transfer learning to address the data size chal-
lenges associated with the GWAS. 

b) A comprehensive analysis of multiple types of the 
transfer learning models has been proposed.  

c) Varying configurations of transfer learning applied to 
GWAS data. 

d) A robust feature selection approach to identify the 
most promising SNPs contributing to the AD classification.  

 
The reminder of this paper is organised as follows. Sec-

tion 2 represents the related works while Section 3 presents 
the materials and proposed approach for the AD classifica-
tion. Results and discussions on statistical outcomes are 
detailed in Section 4. Finally, Section 5 concludes the find-
ings of proposed study.   

2 RLEATED WORK 

Modern ML methodologies employing well-planned AD 
research can be used to investigate the complexity of 
LOAD [20]. The major goal has been set to identify and un-
derstand various factors that contributes the development 
of AD. In study [14], the authors investigated three ML 
claiming as powerful predictive models (i.e., least absolute 
shrinkage and selection operator (LASSO), step-wise, and 
genetic algorithm) and suggest that the misclassified data 
can be used to increase an overall prediction accuracy. The 

results reveal that adding misclassified sample attributes 
to the initial model enhanced Area Under the receiver op-
erating characteristic Curve (AUC) by about 5%, reaching 
to 84%.  
     To forecast the major depressive illness responses and 
remissions, different ML models has been proposed using 
GWAS data [15]; a database comprising 186 patients 
classed as Major Depressive Disorder (MMD) responders 
or remitters. LASSO regression was used to extract the 
most promising variables from a genome-wide association 
test to discover the possible important variations related to 
the duloxetine response/remission. Subsequently, support 
vector machines (SVM) and classification-regression trees 
were applied to construct the classification models. In rela-
tion to duloxetine response, none of the models indicated 
satisfactory outcomes. The SVM performed comparatively 
better in terms of remission, producing 52%, 58% and 46% 
accuracy, sensitivity, and specificity, respectively. 
The work presented in study [16] compared different ML 
models for predicting LOAD from genetic data supplied 
by the Alzheimer's Disease Neuroimaging Initiative 
(ADNI) cohort in a systematic manner. According to the 
outcomes, the top performing models generated 72% of 
AUC towards the classification of LOAD and healthy indi-
viduals.  
    In study [18] utilised DL using convolutional neural net-
works (CNNs), separated the genome into nonoverlapping 
fragments and then selected the fragments associated with 
phenotypes. By significant SNP from the identified frag-
ments build a CNN classification model for AD.   
     Maj et. al [19] assess the applicability of multiple ML al-
gorithms using omics data from ADNI, which is based on 
matrices of tissue-specific predicted transcriptome profiles 
in AD as a case study. Variational autoencoder pre-pro-
cessing of input data was discovered to be an effective for 
feature selection prior to the development of classification 
models using deep learning. The outcomes reported that 
the Random Forest (RF), Logistic Regression (LR) and SVM 
were unable to learn to classify cases and controls, because 
the samples were only assigned to the majority class. The 
findings also suggest that integration of unsupervised and 
supervised ML methods can provide complementary 
knowledge, leading to better performance.  
     In addition to aforementioned literature, it should also 
be noted that the AD is largely occur due to genetic causes. 
As a result, one of the ADNI's main goals is to provide re-
searchers the ability to associate genetics with imaging and 
clinical data, in order to better understand the disease 
causes. In this regard, GenADA is a multi-site collaborative 
effort that aims to create a dataset of 1000 AD patients and 
1000 ethnically matched controls in order to analyse the 
DNA sequence changes in candidate genes with respect to 
symptoms of AD. 
     In relation to genetic aspect in AD, study [21] focuses on 
identifying AD biomarkers using ML techniques. On mul-
tiple AD genetic data, the learning algorithms used include 
Nave Bayes (NB), SVM, LR, and RF. The results show that 
the overall accuracy of the NB, RF, SVM, and LR learning 
algorithms is 98%, 97.9%, 95.8%, and 83%, respectively. The 
findings also indicate that the classifications techniques are 
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beneficial to aid in the early detection of Alzheimer's ill-
ness. A similar work is presented in study [22] to predict 
the AD using  SVM model trained over gene-coding pro-
tein sequence data. The work used frequency of two suc-
cessive amino acids to characterise the sequence infor-
mation. According to the experimental results, the pro-
posed approach for identifying AD indicated an accuracy 
of 85.7%. The study outcomes also revealed that the se-
quence information of gene-coding proteins can be used to 
forecast the AD. 
     In addition to the ML models employed in above litera-
ture, various levels of success have been achieved by kernel 
functions used in the prediction model to capture nonlin-
ear effects [23, 24]. Nevertheless, kernel-based methods are 
often sensitive to the underlying aetiology of diseases be-
cause their performance is largely determined by pre-se-
lected kernels [25]. 
2.1 Review of Transfer Learning in Bioinformatics 

In transfer learning, a pre-trained model can be used as 
base model allowing knowledge transmission for given 
task which is particularly useful to avoid repetitive train-
ing [26]. As part of the TL process, knowledge is gained 
from a dataset (source domain) and transferred to a new 
dataset (target domain), thereby improving learning in the 
target domain. 
     Generally, TL can be categorised into three subcatego-
ries that include inductive, transductive, and unsupervised 
TL. These categories are based on difference in context be-
tween the source and the target domains and tasks [27]. 
The TL has been widely used in various bioinformatic ap-
plications [28-30]. Zhao et. al., [31] use TL to propose a pol-
ygenic risk score (PRS) method called TL-PRS. The ML 
model from an ancestry group with large GWAS samples 
is fine-tuned to fit the target dataset. The model was ap-
plied to South Asian and African ancestry individuals 
from the UK Biobank for seven quantitative and two di-
chotomous traits. In comparison to the standard PRS 
method, the TL-PRS method achieved an average relative 
improvement based on predicted R squared of 25% for 
South Asian samples and 29% for African samples. An-
other example of a multi-modal deep learning method in 
genomics is the DeePathology [32], which uses multi-task 
and TL to simultaneously infer multiple properties of the 
biological samples. Using the fine-tuned model, the work 
reported accurate prediction of tissue and disease types 
based on the whole transcription profile. 
     There has been a demonstration of the utility of TL for 
chromatin accessibility prediction models based on se-
quences. An analysis of 149 cell types was carried out using 
the multitask Basset model [33] to predict binary chroma-
tin accessibility profiles. Following this, single-task models 
of chromatin accessibility were trained using parameters 
derived from the multitask model. Compared to the mod-
els with randomly generated parameters, models with 
transferred parameters indicated better performance in 
terms of prediction. However, there are yet  several un-
knowns regarding how many parameters should be 
shared and which models should be used for which tasks 
[34]. 
     A recent study [25] presents an explainable ML model 

for the analysis of high-dimensional genomic data using 
deep TL. By using the proposed group-wise feature im-
portance score, the study proposes a method for detecting 
predictive genes harboring both linear and non-linear ge-
netic variants. Using the proposed TL based network archi-
tecture, disease risk can also be predicted based on the de-
tected predictive genes. This method was built at the gene 
level, so it is much easier to interpret the model biologically 
[25].  
     In relation to the use of TL in GWAS, a novel statistical 
method called TL-Multi seeks to improve the polygenic 
risk prediction across diverse populations, by using sum-
mary statistics from GWAS from different ancestries and 
incorporating the concept of TL [35]. Likewise, Muneeb et. 
al. [36] proposed prediction of genotype-phenotype with 
deep learning models through TL while utilising a simu-
lated data.   
     In contrast to aforementioned literature particularly, the 
use of TL in GWAS, which either use simulated data or 
classify AD at gene level, the proposed approach in this 
study is utilises TL in GWAS analysis on real data. We 
firstly train a deep CNN model over a GWAS dataset 
which is then used to extract features from another GWAS 
AD dataset. The selected features are then fed into a SVM 
model for the classification of healthy and unhealthy indi-
viduals at SNPs level.   

3 MATERIALS AND METHODS 

The proposed approach exploits TL where multiple da-
tasets are used to train a deep ML model and transfer the 
learned knowledge efficiently to target domain (to predict 
the AD class). We conducted detailed experiments to ana-
lyse the effectiveness of varying types of TL and to investi-
gate the impact of knowledge transfer from one dataset to 
another in GWAS analysis. The proposed approach is com-
posed of several components that include quality control, 
association test, feature selection and classification. A de-
tailed description of each task is provided in the following 
sections. 
 
3.1 Datasets  

The following three datasets comprise the GWAS data sets 
used in this study: 

Dataset A: ADNI GWAS dataset 
GWAS dataset requested from the ADNI database 
(http://adni.loni.usc.edu). The ADNI was founded in 2003 
as a public-private cooperation with primary purpose to 
investigate if magnetic resonance imaging, positron emis-
sion tomography, and other biological markers and clinical 
and cognitive assessments could be used to track MCI and 
early AD progression.  

    The ADNI dataset continues collecting participants 
information that is classified into three classes: Cognitively 
Normal (CN), Mild Cognitive Impairment (MCI) or Alz-
heimer’s Disease (AD). In our study, only CN and AD clas-
sified participants were selected with 216 controls and 183 
cases divided into 215 males and 184 females. Participant 
were genotypes using Illumina Human610-Quad Bead-
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Chip Genotyping Platform comprising  620,901 SNPs in to-
tal which are stored in a PLINK [37] format file. 

Dataset B: AD GWAS Dataset 
The second dataset we use in this study is GWAS case-con-
trol dataset obtained from [38]. The inclusion criteria for 
participants is a) who reported themselves to be from Eu-
ropean ethnicity, b) according to the National Alzheimer's 
Coordinating Centre standards, and c) board-certified neu-
ropathologists confirmed late-onset AD in cases and no 
neuropathology in controls. Furthermore, participants 
with death age of over 65 years is selected. Plaque and tan-
gle assessment (unique structures that effect cells in the 
brain which could contribute to the pathophysiology of the 
disease) conducted on all cases and controls. Samples with 
a history of stroke, Lewy bodies, or any other neurological 
disorder were excluded. The final dataset includes 191 
males and 173 females partitioned into 176 cases and 188 
controls, each with genotyping information for 502,627 
SNPs. The DNA of participants were genotyped via Affy-
metrix GeneChip Human Mapping 500K Array Set. De-
tailed information regarding the dataset can be found in 
primary study [38].  
     Dataset C: AdaptMap goat GWAS dataset 
In contrast to above two dataset (containing human rec-
ords), the third dataset we use in this study is AdaptMap 
[39] which contains 4653 animals representing 169 popula-
tions from 35 countries spread across 6 continents. To gen-
otype the animals, an Illumina GoatSNP50 BeadChip with 
53,347 SNPs was used [40]. This dataset has been used to 
investigate transductive type of transfer learning.  
 
3.2 Quality Control 

     In the proposed study, individuals and SNPs were sub-
jected to quality control (QC) and filtering procedures in 
accordance with conventional QC protocols and guide-
lines as shown in [41] using PLINK software. 
     For Dataset A, there are 620901 SNPs before genotyping 
trimming. Based on the Hardy-Weinberg equilibrium 
(HWE) test, 72490 markers were excluded (with p = 0.1); 
61065 markers failed the HWE test in cases, whereas 72490 
markers failed the HWE test in controls. The missingness 
test failed 31368 SNPs (GENO > 0.1). A total of 154598 SNPs 
failed the frequency test (MAF 0.1). in total, there are 
411077 SNPs remained after frequency and genotyping 
trimming. One individual is removed for low genotyping 
(MIND > 0.1). After all quality control stages, a total of 398 
individuals and 411077 SNPs are left for subsequent anal-
ysis.  
     For Dataset B, the following QC methods were carried 
out to filter out the genetic markers. SNPs with the geno-
type missing rate over 5% are eliminated. Likewise, SNPs 
are filtered for Hardy-Weinberg with a p-value less than 
0.001, and the minor allele frequency was less than 0.05. 
Furthermore, each individual was subjected to QC pro-
cesses, which consist of a missing genotyping data rate of 
0.05, related people, and sex-homozygosity. For subse-
quent analysis, 356499 SNPs were retained in the samples. 
     For Dataset C, SNPs and samples are filtered out for 
missing genotype data (0.1) and the minor allele frequency 
was less than 0.05. a total of 51117 SNPs and 2765 samples 

pass filters and QC. 
3.3 Association Analysis 
 

Because the resulting information from association analy-
sis varies, it is critical to select the appropriate method for 
the given context. The association of all SNPs (in Dataset A 
and Dataset B) within the study with disease status of bi-
nary variables (0/1) for case and control patients was as-
sessed using logistic regression under an additive genetic 
model. The genomic control of logistic regression associa-
tion test is adjusted to control the population structure. An 
association test between SNPs and the AD was carried out 
to decrease the computationally enormous number of ge-
netic variants. The SNPs are sorted in ascending order by 
p-value, and only the first 5000 SNPs are retrieved for fur-
ther analysis. Figure 1 depicts the p-values obtained from 
the association analysis of the AD GWAS dataset using the 
standard case-control method in a Manhattan plot. The 
graphic demonstrates that there are two SNPs that have 
met the GWAS association threshold. 

3.4 Feature selection 

 The GWAS uses high dimensional data where it is ex-
tremely difficult to interpret the data directly, and the ma-
jority of the SNPs are irrelevant or uninformative. As a re-
sult, identifying the most crucial SNPs is critical. This has 
three main advantages. Firstly, to simplify the ML model's 
interpretation. Secondly, it can lower the model's variance 
and hence overfitting. Finally, reduced number of features 
can lower the computational cost required to train the ML 
model. The results of the association analysis are used in 
this stage to generate a selected features that are signifi-
cantly associated with the specified phenotype. 
     The RF is a ML model that has been frequently used for 
the feature selection [42]. To rank the purity of nodes, RF 
employs tree-based decision techniques where each deci-
sion tree is made up of internal nodes and leaves. The se-
lected features are utilised in the internal node to decide 
how to partition the data set into two different sets with 
similar responses. The feature importance is measured as 
the average of all trees in the forest. The Gini measure, one 
of the RF methods for measuring feature relevance, used 
as a feature selector in the current study. Substantial num-
ber of SNPs are identified as irrelevant with extremely low 
significance values. As a result, any SNPs with a Gini value 

Fig. 1. Manhattan plot of standard case-control shows 
association of between genotypes and AD. 
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of 0.0009 or higher are included in the feature set for clas-
sifications. The significance criterion of 0.0009 was chosen 
by trial-and-error approach because it can catch the right 
SNPs that reflect favourable results in the classification 
task. A total of 60 SNPs were selected by RF as important 
features which are then used for the classification task for 
both Dataset A and Dataset B. On the other hand, for Da-
taset C, only 57 SNPs are used as significant following the 
Bertolini et. al. [43] analysis of the same dataset. Table 1 
shows the top 10 SNPs chosen by RF during the feature se-
lection stage. The SNPs rs429358 and rs4420638 were cho-
sen by RF as two of the top ten features, indicating that the 
model is effective in identifying the most promising fea-
tures that are relevant to the disease. 
 

TABLE 1 

Characteristics of the top 10 SNPs being selected as im-
portant features 

 
SNP Location Function Gene  
rs2937774 5:74124992   
rs26642 5:62488562 Intron Variant  IPO11 
rs153864 5:62425115 Intron Variant IPO11 
rs7718940 5:86207592   
rs862245 5:82289918 Intron Variant ATP6A

P1L 
rs429358 19:44908684 Coding Se-

quence Variant 
APOE 

rs4420638 19:44919689 Downstream 
Transcript Vari-
ant 

APOC
1 

rs12374530 5:63761206   
rs37032 5:62388203 Genic Down-

stream Tran-
script Variant 

KIF2A 

rs16890651 5:62333712 Intron Variant KIF2A 
 

3.5 Convolution Neural Network (CNN) and 
Transfer Learning  

Abstract high-level representation features can be gener-
ated using deep learning by combining low-level features, 
resulting in the finding of data's hidden features. The 
CNN, one of commonly used deep learning model, can re-
duce the number of learning parameters by leveraging spa-
tial correlations. As a result, training performance can be 
improved and data characteristics can be extracted more 
efficiently [44, 45]. 
     In CNN, the convolution operation extracts the high-
level properties such as edges from the input image. The 
first layer is traditionally in charge of capturing low-level 
features such as edges, colour, gradient direction, and so 
on. The architecture adapts to the high-level features as it 
progresses through the hidden layers, producing a neural 
network with in-depth understanding of the data [46]. 
     The size of the convolved feature is recued even further 
in the pooling layer. This is performed to decrease the com-
putational cost required to analyse the data by reducing its 
dimensionality. Full connection layer is used to learn and 
merge the non-linear features captured by the preceding 

layers. The CNN frequently optimises its parameters dur-
ing the training phase by employing optimisation algo-
rithm (e.g., gradient descent) and modulating the intensity 
of back-propagation with the learning rate [45]. 
     In order to improve learning in the target domain, TL 
involves gaining knowledge from a dataset (source do-
main), and then transferring that knowledge (the pre-
trained model) to a new dataset (target domain). The TL is 
heterogeneous when the source dataset and target dataset 
come from different domains, with different marginal dis-
tributions, predictive distributions, and feature spaces. 
Homogeneous TL is defined, on the other hand, when the 
source and target datasets are less different from one an-
other. 
     In this study, we first time employed both heterogeneous and 

homogeneous TL to the datasets described earlier. Homogeneous 

TL was used due to the fact that the human GWAS dataset had 

the same feature space and domain characteristics from both 

source and target domains. Source and target datasets of human 

GWAS used in this study vary in terms of genotyping platforms. 

Since genotyping platforms tend to generate markers based on a 

selection strategy and number of markers, the data is influenced 

by these factors [47]. On the other hand, as the feature space and 

domain of the animal and human GWAS datasets are different, 

heterogeneous TL is employed 

3.6 Support Vector Machine 

Support vector machine (SVM) is a supervised ML algo-
rithm that finds a hyperplane in an N-dimensional space 
which clearly classifies the input data points. Hyperplane's 
position and the direction is determined by data points 
that fall near the hyperplane. Using these support vectors, 
the classifier's margin is maximised. The position of the hy-
perplane changes if the support vectors are removed. 
These are the points that assist in developing the SVM. The 
bigger the margin of the hyperplane, the more confident 
algorithm is in classifying new data points [48]. 

3.7 Experiment Design  

The outline of the proposed model is depicted in Figure 2. 
The GWAS data is pre-processed and filtered to contain 
only high-quality samples and markers by employing ap-
propriate quality control processes on all datasets. A lo-
gistic regression-based association test is performed to 
identify the SNPs that are strongly associated to the dis-
ease. Furthermore, RF algorithm is used for the selection of 
important features and to reduce the dimensionality, mak-
ing the number of features appropriate to the number of 
available observations.  
     As a result of trial-and-error testing, we chose convolu-
tion layers between 2-4 because using excessive layers may 
overfit the model, while very few layers may limit its capa-
bilities [49]. According to best practices in the literature 
and similar related work [18, 50, 51], we selected the num-
ber of convolutional layers in this study, as well as the other 
hyperparameters for the deep learning models [52-54]. 
Where as for SVM and RF classifiers, a grid search is con-
ducted on user defined hyper-parameters values. The deep 
learning models’ structures are demonstrated in Table 2. 
Customization of Transfer Learning:  
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• Prediction: use the pre-trained model to immedi-

ately classify new observations 

• Fine-tuning: unfreeze the classifier, or a portion of 

it, and retrain it on new dataset. 

• Feature extraction: The output of the layer preced-

ing the final layer is fed into a new model as input. 

The goal is to pre-process the inputs and extract 

essential features using the pre-trained model, or 

a subset of it. 

     Following the completion of the necessary data pro-
cessing and filtering, multiple experiments are conducted 
to examine the effectiveness of TL in GWAS domain: 
      Experiment 1 (EXP1): Implementation of transductive 
TL, to train the model using source and target dataset from 
similar domain and a similar task in both source and target 
models. Therefore, a CNN is trained on Dataset A as a Base 
CNN where Dataset A is partitioned as 80 percent for train-
ing and 20 percent for testing (pre-trained). A number of 
architectures are built, and the one with the best perfor-
mance is kept as the base CNN model; the architecture of 
the base CNN is displayed in (Table 2.A). Then the base 
CNN is used in three approaches for prediction, fine-tun-
ing, and as a feature extractor for Dataset B.  
     Experiment 2 (EXP2): Implementation of inductive TL 
to train the model on source and target datasets from sim-
ilar domain but different tasks (in our case, we train the 
model on GWAS data Dataset C of animal to classify goat 
into 11 subcontinental breeds; the architecture of the base 
CNN is displayed in Table 2.B) then use the TL over the 
pretrained model to classify the individuals in Dataset B. 
Experiment 3 (EXP3): Implementation of inductive TL to 
use the pretrained model from EXP2 to classify individuals 
in Dataset A. 
     Experiment 4 (EXP4): Implementation of inductive TL 
to use the pretrained model from EXP2 to classify individ-
uals in an aggregated dataset comprising both Dataset A 
and Dataset B.  
In all of the above experiments, ML algorithms are built 
using the Scikit-learn Python library [55]. The PyPlink li-
brary [56] is used to read the genotype data in Python. 
Deep learning models are built utilizing Keras and Tensor-
Flow as backend [57]. 
      

TABLE 2 

ARCHITECTURES OF THE PROPOSED CNNS; (A) FOR EXP1 AND 

(B) FOR EXP2, 3 AND 4 

 
CNN Model A  CNN Model B 
Layer 
Type  

Description  Layer 
Type  

Description  

Conv1D F = 16, K = 
(5,), ReLu 

Conv1D F = 16, K = (5,), 
ReLu 

Conv1D  F = 16, K = 
(3,), ReLu 

Conv1D  F = 32, K = (3,), 
ReLu 

Pool1D Max Pooling 
(2,) 

Pool1D Max Pooling (2,) 

Dropout 10% Dropout 10% 

Reshape  Flatten  Conv1D  F = 32, K = (3,), 
ReLu 

Dense F = 64, Sig-
moid 

Pool1D Max Pooling (2,) 

Dropout 10% Dropout 10% 
Dense F=2, softmax Conv1D  F = 32, K = (3,), 

ReLu 
  Pool1D Max Pooling (2,) 
  Dropout 10% 
  Reshape  Flatten  
  Dense F = 64, Sigmoid 
  Dropout 10% 
  Dense F=2, softmax 

4 RESULTS AND DISCUSSIONS 

4.1 Evaluation Criteria 

In this study, we use GWAS data to train a deep TL model 
to distinguish the healthy and LOAD-infected subjects. To 
assess the performance of proposed approach, we use 
AUC which is one of the commonly used  ML evaluation 
metric [58-61]. Along with the AUC, we employ standard 
evaluation metrics [62, 63] including accuracy, precision, 
recall, and F1 score. 

Fig. 2. The proposed Transfer Learning Framework. On 
left side, quality control and feature selection are con-
ducted on Dataset C, then a CNN is trained on animal data 
as a base model to be transferred to both Dataset A and 
Dataset B for EXP 2,3 and 4. In the middle, a CNN model 
is trained on human data as a base model to be transfer to 
Dataset B for EXP 1.   
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4.2 Transductive Transfer Learning Based AD clas-
sification (EXP1)  

A CNN model is trained and tested over Dataset A in 
EXP1. The pre-trained model was saved for TL so that it 
could be reused in the target domain, Dataset B. The pre-
trained model firstly used after training only the fully con-
nected layers, to predict the samples in Dataset B. Sec-
ondly, we then unfreeze the frozen pre-trained model's lay-
ers, then trained the transfer model on 80% of the observa-
tions in Dataset B and tested on the remaining observations 
in Dataset B. Finally, the fine-tined model is used as a fea-
ture extractor and serves as an input to ML classifiers (i.e.,  
SVM and RF in this case). 
     The results attained during this experiment are listed in 
Table 3 which shows that the highest accuracy (89.04%) 
and F1 score (88.57%) are achieved by customizing the pre-
trained model as a feature extractor and fed into an SVM 
with rbf kernel. Whereas, utilizing the pre-trained model 
for the prediction task did not generalize well on target da-
taset and showed a significant decrease in accuracy to 39%. 
Although the drop in accuracy, but model achieved high 
score in terms of recall, in comparison to other models in 
EXP1. This suggest that accuracy metric is not enough to 
examine the true performance and any biasedness towards 
a specific class in a model.  
     It can be noted that the change in kernel type also influ-
ence the model’s performance, an improvement of around 
2% in terms of both accuracy and f1-score when utilizing 
rbf kernel compared to liner kernel. Likewise, more bal-
anced performance is achieved using FE+SVM with rbf 
kernel in terms of precision and recall which is not the case 
otherwise.  

TABLE 3 

Results of EXP1 Transductive Transfer Learning (Transfer 
from Dataset A to Dataset B) 

Model Use Accu-
racy  

Preci-
sion 

Recall F1-
score 

Prediction 0.3972 0.4354 0.75 0.551 
Fine-tuning 0.7671 0.8064 0.6944 0.7462 
FE+RF 0.8904 0.966 0.8055 0.8787 
FE+SVM 
with linear 
Kernel  

0.8767 0.9354 0.8055 0.8656 

FE+SVM 
with rbf Ker-
nel  

0.8904 0.9117 0.8611 0.8857 

 
4.3 Inductive Transfer learning Based AD Classifi-
cation (EXP 2, 3 and 4) 

In EXP2, the source dataset used is GWAS data of ani-
mals to train a CNN model to classify the goat into 11 sub-
continental breeds. The pretrained model, as in EXP1, 
adapted to classify the samples of target dataset (Dataset 
B) by a) only changing and training the top layer, b) fine-
tune the model to make them relevant for the target task, 
c) as a feature extractor. The detailed statistical outcomes 
of this experiment are shown in Table 4. Similar to EXP1 
results, the pre-trained model generalized well when fine-
tuned and used as feature extractor followed by an SVM 

with rbf kernel. However, the model shows maximum ac-
curacy of 60.27% when used directly (without fine-tuning 
the pre-trained model’s layers) to predict the class in the 
target dataset. This is a significant drop in model’s perfor-
mance which clearly indicates the usefulness of fine-tuning 
of TL for the task of AD classification. Even though a high 
accuracy of 84% achieved after fine-tuning and utilizing 
the pre-trained model to classify samples in Dataset B, 
there is clearly a biased performance in terms of precision 
(93%) and recall (75%) metrics which shows biasedness to-
wards one class. In construct, balanced performance of 
87% and 80% for precision and recall achieved when cus-
tomizing the pre-trained model as feature extractor fol-
lowed by an SVM.   

TABLE 4 

Results of EXP2 (Transfer from Dataset C to Dataset B) 

 
In Experiment 3, the same pre-trained model from Exp 2, 
is used for the TL over Dataset A. The main objective is to 
investigate if the pre-trained model is able to well general-
ize for different datasets. Following the same TL strategies, 
Table 5 lists the statistical results from EXP3. Unlike the 
outcomes from EXP2, the pre-trained model did not per-
form well in general, however, indicates better recall scores 
than precision. After fine-tune the model to make it more 
relevant to Dataset A, we achieved 67.5% and 59.37% accu-
racy and f1-score, respectively. These statistical outcomes 
clearly indicate that employing the pre-trained model as a 
feature extractor could not help in improving the model 
performance in this experiment.       
     Similar to outcomes from EXP1 and EXP2, the rbf kernel 
outperforms linear kernel which may be due to the non-
linear nature of the dataset.  
 

TABLE 5 

Results of EXP3 (Transfer from Dataset C to Dataset A) 

     In EXP2 and EXP3, the pre-trained model is reused in 
target domains of Dataset A and Dataset B individually, to 
examine the generalization of pre-trained model on both 
datasets. Furthermore, the pre-trained model utilized in 
both EXP2 and EXP3, is employed as base model to be fine-

Model Use Accu-
racy  

Preci-
sion 

Recall F1-
score 

Prediction 0.6027 0.6060 0.5555 0.5797 
Fine-tuning 0.8493 0.9310 0.75 0.8307 
FE+RF 0.8082 0.8437 0.75 0.7941 
FE+SVM with 
linear Kernel  

0.7671 0.7878 0.7222 0.7536 

FE+SVM with 
rbf Kernel  

0.8493 0.8787 0.8055 0.8405 

Model Use Accu-
racy  

Preci-
sion 

Recall F1-
score 

Prediction 0.5875 0.4193 0.4642 0.4406 
Fine-tuning 0.6750 0.5277 0.6785 0.5937 
FE+RF 0.6375 0.4827 0.5 0.4912 
FE+SVM with 
linear Kernel  

0.625 0.4705 0.5714 0.5161 

FE+SVM with 
rbf Kernel  

0.65 0.5 0.5357 0.5172 
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tuned over aggregated dataset of A and B. the main inten-
tion is to investigate how the pre-trained model will be-
have in varying settings. Table 6 demonstrate the results 
achieved through this experiment (EXP4). The statistical 
outcomes show that the accuracy dropped to 58% when 
customizing the pre-trained model over the aggregated da-
taset. This might be because of the effect of Dataset A, as 
the model in EPX3 did not perform very well. Similar to 
EXP2, the model achieved highest performance of 69.28% 
and 64.66% of accuracy and f1-score, respectively, when 
fine-tuned over the aggregated dataset and used as a fea-
ture extractor followed by an SVM.  
 

TABLE 6 

Results of EXP3 (Transfer from Dataset C to aggregated 
dataset of Dataset A and dataset B) 

 
In Fig. 3, we present a comparison of receiver operating 
characteristic curves (ROC) for each model within each of 
the four experiments. The best performance was achieved 
by using transductive transfer learning utilized in EXP1 
(Fig. 3a). The second-best results were obtained with in-
ductive transfer learning (i.e. transfer from Dataset C to 
Dataset B) as demonstrated in Fig. 3b. However, this high 
performance did not hold when the pre-trained model was 
transferred to Dataset A (Fig. 3c). Figure 3 also shows that 
using pre-trained models as feature extractors provides 
better results than other TL approaches. It was fine-tuning 
the pre-trained model that resulted in a better AUC in ex-
periment 3. 
4.4 Comparison with Related Work   
Table 7 presents performance comparison between the pro-
posed TL based AD classification approach and related 

works from the literature. It can be noticed that our ap-
proach outperforms the existing methods in terms of al-
most all performance metrics with an increase of 5% of ac-
curacy and AUC, and 8% increase in f1-sore. In addition, it 
is very important to note that the proposed approach uses 
only 60 features as input to ML model as compared to state 
of the art [14] which uses over 500 features. This results the 
proposed model less noisy, light weight, and efficient 
model. Furthermore, identification of fewer most contrib-
uting feature to AD might be useful to set a baseline for 
further analysis and future research direction. Our pro-
posed model not only show high accuracies, but also 
shows well balanced performance in terms all metrics. In 
contrast, gradient boosted decision tress [64] showed an in-
crease of 11% in terms of AUC comparing to other metrics.        
      
4.5 Discussions  
      The genetics of phenotypes such as AD is of complex 
nature. Multiple genetic markers play a role in the emer-
gence of complicated human disease. Despite the fact that  
GWAS were successful in identifying SNPs associated with 
complex features, this strategy lacks the identification of 
variants with low influence that might play a significant 
role when combined with other variants [65]. Additionally, 
traditional GWAS have only discovered SNPs that can only 
account for 33% of the estimated 79% [66] of genetic risk 
related with AD. 
      Although this value is insufficient for a reliable clinical 
prediction, ML algorithms have been shown to be more ef-
fective in discovering candidate SNPs and predicting com-
plicated genetic diseases [67-69]. In the last decade, the ap-
plication of ML-based techniques for genetic-based preci-
sion medicine has expanded and is expected to continue 
[70]. 
     The results shown in Table 3 that the TL can be an effec-
tive tool for GWAS data classification. This is owing to the 
fact that the deep learning models must be trained on a 
large amount of data. Because the high dimensionality of 
GWAS data makes the training of deep learning models 
more challenging, transfer learning from one dataset to an 
other can help to resolve this issue. However, carful selec-
tion of source dataset for the pre-trained model plays a ma-
jor role towards the model performance when the model is 
transferred to another dataset.  

Model Use Accu-
racy  

Preci-
sion 

Recall F1-
score 

Prediction 0.5882 0.5744 0.3857 0.4615 
Fine-tuning 0.6601 0.6551 0.5428 0.5937 
FE+RF 0.6405 0.6315 0.5142 0.5669 
FE+SVM with 
linear Kernel  

0.6666 0.6727 0.5285 0.5920 

FE+SVM with 
rbf Kernel  

0.6928 0.6825 0.6142 0.6466 

Fig 3. ROC Curves: a) ROC for EXP1, b) ROC for EXP2, c) ROC for EXP3 and d) ROC for EXP4. 
 

a) b) c) d) 
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     As shown in EXP1 (Table 3), the TL in a similar domain 
and task, in source and target datasets settings (from Da-
taset A to Dataset B) indicated the best performance. Alt-
hough there was a slight difference in the type of popula-
tion in two data sets (Dataset A from European population, 
whereas Dataset B contains non-Hispanic participants), 
still the pre-trained model generalize very well on the tar-
get dataset. As majority of the GWAS data comprises Eu-
ropean participants [71], this will pave the road for re-
search of minor population. Particularly, where limited 
GWAS data exists, proposed approach might be effective 
to use. When using a GWAS data from animal population 
in light of the similarities in biological function among spe-
cies [72], TL the pre-trained model was effective in classi-
fying participants in Dataset B, but did not perform well 
on Dataset A (Table 5). This may be because of the selection 
of genotyping platform, as the data is known to be influ-
enced by the selection strategy and number of markers 
generated by genotyping platforms [47]. This requires 
more investigation to clarify why the model was able to 
perform well on one dataset but not on another similar one. 
Results shows that the classification accuracy was reduced 
when the pre-trained model used for aggregated dataset. 
This suggests that the pre-trained model may have failed 
to learn GWAS-specific features, and instead, relying on 
dataset-specific features.  
     Three TL customizations are used for the classification of 
AD. Except one experiment (EXP3), the other three experi-
ments demonstrated the pre-trained model utilized as fea-
ture extractor followed by a ML model outperform other 
customizations. In only one experiment 3, fine-tuning the 
pre-trained model had better accuracy than other two 
strategies. This implies that repurpose the previously 
learned feature maps (from source domain) for the target 
dataset can help in achieving better performance with TL.   
     It is also noticed that the RF found to be capable of se-
lecting SNPs that have previously been linked to AD. As a 
result, SNP selection based on RF could be a useful tool for 
identifying clinically important risk factors. The current 
findings backed with previous SNP findings showing the 
APOE 4 gene is the primary risk factor for LOAD [73]. 
     For highly accurate clinical diagnostic, the genetic com-
ponent alone forms a barrier. Complementing the genetic-
based approaches with imaging or clinical data could be 
one of the possible answers to this challenge. The genetic 
study might be used to identify subjects who are at a 
higher risk of acquiring AD and therefore, such subjects 
can be tracked with imaging technology on regular basis 
to detect the disease's onset as soon as feasible [16]. 

     Alongside the proposed study’s contributions, small 
sample size of dataset limits this study; we expecting that 
increasing the sample size will increase the forecasting per-
formance of the deep TL models. As a result, we are pre-
dicting that these models have a lot of potential for diag-
nosing LOAD and other complex diseases. 

5 CONCLUSION 

The outcomes of utilising TL followed by the support vec-
tor machine, to estimate the risk of acquiring Late-Onset 
Alzheimer's Disease entirely from genetic variation data, 
were presented in this research work. Comparing the clas-
sification performance of machine learning models is a crit-
ical component of the validation process for the proposed 
model. The feature selection methodology utilized to de-
crease the large number of SNPs has the potential to lead 
to the discovery of new disease-related genetic markers. 
We expect that the proposed methodology could be a 
strong tool for classification of AD, based on the prelimi-
nary results. This article also shows that transfer learning 
is an effective method for analyzing and leveraging a large 
number of genetic markers that might be utilized to a vari-
ety of complicated disorders like Alzheimer's. Transduc-
tive transfer learning is utilized as a feature extractor, 
which is found to result in the highest classification perfor-
mance in this study when compared with other types and 
customizations of transfer learning.  
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Comparison of related work in the literature 
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racy 
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score 
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Propsed  
Model 
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