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Abstract

The task of finding the incident particles from the sensor deposits they

leave on particle detectors is called event or particle reconstruction. The sen-

sor deposits can be represented generically as a point cloud, with each point

corresponding to three spatial dimensions of the sensor location, the energy

deposit, and occasionally, also the time of the deposit. As particle detectors

become increasingly more complex, ever-more sophisticated methods are

needed to perform particle reconstruction. An example is the ongoing High

Luminosity (HL) upgrade of the Large Hadron Collider (HL-LHC). The HL-

HLC is the most significant milestone in experimental particle physics and

aims to deliver an order of magnitude more data rate compared to the cur-

rent LHC. As part of the upgrade, the endcap calorimeters of the Compact

Muon Solenoid (CMS) experiment – one of the two largest and general-

purpose detectors at the LHC – will be replaced by the radiation-hard High

Granularity Calorimeter (HGCAL).

The HGCAL will contain ∼ 6 million sensors to achieve the spatial

resolution required for reconstructing individual particles in HL-LHC con-

ditions. It has an irregular geometry due to its hexagonal sensors, with sizes

varying across the longitudinal and transverse axes. Further, it generates

sparse data as less than 10% of the sensors register positive energy. Recon-

struction in this environment, where highly irregular patterns of hits are left

by the particles, is an unprecedentedly intractable and compute-intensive

pattern recognition problem. This motivates the use of parallelisation-

friendly deep learning approaches. More traditional deep learning meth-

ods, however, are not feasible for the HGCAL because a regular grid-like

structure is assumed in those approaches.

In this thesis, a reconstruction algorithm based on a dynamic graph

neural network called GravNet is presented. The network is paired with a

segmentation technique, Object Condensation, to first perform point-cloud

segmentation on the detector hits. The property-prediction capability of

the Object Condensation approach is then used for energy regression of the
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reconstructed particles. A range of experiments are conducted to show that

this method works well in conditions expected in the HGCAL i.e., with

200 simultaneous proton-proton collisions. Parallel algorithms based on

Nvidia CUDA are also presented to address the computational challenges

of the graph neural network discussed in this thesis. With the optimisations,

reconstruction can be performed by this method in approximately 2 seconds

which is suitable considering the computational constraints at the LHC.

The presented method is the first-ever example of deep learning based

end-to-end calorimetric reconstruction in high occupancy environments. This

sets the stage for the next era of particle reconstruction, which is expected

to be end-to-end. While this thesis is focused on the HGCAL, the method

discussed is general and can be extended not only to other calorimeters but

also to other tasks such as track reconstruction.
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Chapter 1

Thesis Introduction

Humans have been pondering about how the universe works and what it

is made of for thousands of years. One way to do so is by studying the

most fundamental constituents of matter. This endeavour is called particle

physics. While philosophers and theists have been proposing a variety of

theories for eons, most of the progress was made over the course of the last

few centuries. Many theories were developed, disproven, and reiterated,

and finally, in the 1970s, scientists developed the Standard Model (SM)

that very accurately describes the most fundamental particles the universe

is made of and the laws governing their interactions. Even though the SM

has demonstrated remarkable accuracy and predictive power, there are still

some anomalies left to be explained, e.g. lack of integration of general theory

and matter-antimatter asymmetry. Gigantic particle physics experiments

have been setup around the world to test the SM rigorously and find further

evidence that explains our current theories.

While the initial experiments were conducted completely manually, com-

puting has slowly evolved into a crucial component of particle physics. Cur-

rently, automated algorithms are used everywhere, from detector physics

and event selection to reconstruction. Even more recently, machine learning-

based adaptive algorithms have replaced some of the more traditional meth-

ods to a large extent and their usage is only expected to increase in the

coming years.
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1.1. Thesis structure

Among many computational challenges in particle physics, one of the

hardest is event reconstruction. So far, classical methods have been em-

ployed for this task. Although the ever increasing complexity of this calls

for adoption of machine learning based approaches. Even in cases where

classical algorithms work well, e.g. track reconstruction, machine learn-

ing based approaches will profit from the parallelisation offered by modern

GPUs. These optimisations are crucial to meet the computational demands.

In some cases, especially for calorimetric reconstruction, often the pattern

recognition task in itself is very complex and poses challenges to traditional

approaches. The most significant example of this is the future HGCAL at

the CMS experiment. Reconstruction in the HGCAL will be studied in this

thesis. It poses unique computational challenges and is one of the most

complex particle reconstruction problems.

1.1 Thesis structure

Figure 1.1 shows the structure of this thesis. It begins with an introduction

of required physics concepts in Chapter 2. It gives a brief account of the his-

tory of particle physics and the Standard Model. A higher level overview of

the LHC and the CMS experiment is also given in this chapter highlighting

the significance of the research that will be presented in the later chapters.

As discussed in Chapter 2, there are many sub-detectors at the CMS.

Owing to their significance in their thesis, calorimeters and their physics

is discussed in detail in Chapter 3. The HGCAL is also presented in this

chapter.

Chapter 4 presents a literature review of the classical reconstruction al-

gorithms used at the LHC. It discusses reconstruction in trackers introduced

in Chapter 2 and calorimeters introduced in Chapter 3. Classical approach

to reconstruction in the HGCAL is also discussed in this chapter.

Chapter 5 presents an introduction to machine learning and reviews vari-

ous approaches. Their applications in high energy physics are also presented

for a comprehensive literature review.
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1.1. Thesis structure

Chapter 2: Physics Introduction
Standard Model | LHC | CMS experiment | CMS sub detectors | Trigger | Luminosity

Chapter 3: Calorimetry
Physics of calorimeters | HGCAL | Jets 

Chapter 4: Classical Reconstruction Algorithms
Track reconstruction | Calorimetric reconstruction | Particle Flow 

| TICL

Chapter 5: Machine Learning Background
ML Introduction | ML in High Energy Physics | ML for multi-object 

prediction

Chapter 6: Graph Neural Networks for Particle Reconstruction
The GravNet GNN | Object condensation clustering method

Chapter 7: Physics Performance
Reconstruction performance of jets and single- and multi-particles

Chapter 8: Computational Performance
Time consumption | Memory requirements | KNN optimisation | 

Inference clustering optimisation

Figure 1.1: A diagram showing the flow of all except this and the last
chapter.

The graph neural network and the clustering approach presented in this

thesis are then discussed in Chapter 6. A detailed physics performance of

the presented method is then conducted in Chapter 7 via a range of exper-

iments. A comparison is also performed to the classical approach presented

in Chapter 4. Similarly, Chapter 8 discusses the computational performance

and requirements of the presented method in different complexities.

Finally, the summary and conclusion of this thesis are presented in Chap-

ter 9.

1.1.1 Note on publication

Some parts of this thesis have been published in a journal article (Qasim,

Chernyavskaya, et al., 2022). Most notably, this includes some parts of
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1.2. Research problem

Chapter 6 and Section 7.1 in Chapter 7.

1.2 Research problem

There can be as many as 0.2M sensors that register a positive energy and

over a thousand particles in each endcap of the HGCAL, making the prob-

lem very complex. A sophisticated reconstruction algorithm is needed that

can perform particle reconstruction in these challenging conditions. Be-

cause of the intractable nature of the HGCAL data, it is also important

to use machine learning based approaches. However, the HGCAL has a

non-uniform geometry, which makes it challenging to use traditional deep

learning approaches like convolutional neural networks. In addition, most of

the sensors do not register any signal, which makes the data sparse and adds

to the complexity of the problem. It is important to note that reconstruc-

tion in the HGCAL signifies one of the two most complex reconstruction

tasks in particle physics currently, where the other one is track reconstruc-

tion. Prior to the research presented in this thesis, only one reconstruction

algorithm for the HGCAL exists. It is a classical approach and is presented

in Chapter 4, in Section 4.5.

1.2.1 Research contributions presented in this thesis

With the contributions listed below, the need for a reconstruction algorithm

that works in harsh conditions of the HGCAL is addressed in the research

presented in this thesis:

1. A novel reconstruction algorithm based on graph neural networks and

point cloud segmentation is presented in Chapter 6, the first algorithm

to do single-shot calorimetric reconstruction in the high-luminosity

conditions.

2. The method is shown to work in 200 pileup1 on a toy calorimeter

1Pileup refers to the number of primary proton-proton collisions. This is further
explained in Chapter 2, in Section 2.3.

12



1.2. Research problem

based on the HGCAL, as well as in a multi-particle environment in

the HGCAL directly in Chapter 7.

3. A framework of truth-prediction matching to study the reconstruction

performance is presented in Chapter 7, in Section 7.2.2.

4. A detailed reconstruction performance analysis of the new method is

conducted in Chapter 7.

5. The reconstruction performance is also compared to the only other

reconstruction algorithm that exists for the HGCAL in Chapter 7, in

Section 7.2.3.

6. Optimisations are presented that improve the computational perfor-

mance of the method to make it compatible with the offline computing

requirements of the CMS experiment in Chapter 8, in Section 8.2.2

and Section 8.2.3.

7. Computational performance is studied in detail in different pileup con-

ditions in Chapter 8 in Section 8.1.

The following works were published as a direct result of this thesis:

1. Qasim, S. R., Chernyavskaya, N., Kieseler, J., Long, K., Viazlo, O.,

Pierini, M., and Nawaz, R. End-to-end multi-particle reconstruction

in high occupancy imaging calorimeters with graph neural networks.

European Physical Journal C 82, 753 (2022).2

2. Bhattacharya S, et al. GNN-based end-to-end reconstruction in the

CMS Phase 2 High-Granularity Calorimeter. 20th International Work-

shop on Advanced Computing and Analysis Techniques in Physics

Research (2021).3

2Qasim, Chernyavskaya, et al. (2022)
3Bhattacharya et al. (2022)
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1.2. Research problem

3. Qasim, S. R., Long, K., Kieseler, J., Pierini, M., and Nawaz, R. Multi-

particle reconstruction in the High Granularity Calorimeter using ob-

ject condensation and graph neural networks. 25th International Con-

ference on Computing in High Energy and Nuclear Physics (2021).4

4Qasim, Long, et al. (2021)
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Chapter 2

Physics Introduction

This chapter will present an introduction to physics. First, an overview of

the recent history of particle physics and the adoption of computing algo-

rithms is given in Section 2.1, followed by a brief description of the Standard

Model in Section 2.2. The Large Hadron Collider and the CMS experi-

ments are described in Section 2.3 and Section 2.4, respectively. The High

Luminosity upgrade of the LHC is then discussed in Section 2.5. Finally,

Section 2.6 summarises the chapter.

2.1 A historical perspective

One of the earliest particle detection apparatuses was developed by J. J.

Thomson in the early 20th century. It was based on a cathode ray tube

and led to the discovery of the electron (e−). The gold foil experiment, con-

ducted by Rutherford, is another example of a very early particle detection

apparatus. The nucleus was discovered this way, marking one of the first

significant milestones in the development of particle physics (Rutherford,

1911).

Around 1920, cloud chambers were first used as particle detectors and

they dominated particle physics experiments for the next 30 years. Sat-

urated water vapours are employed in cloud chambers; and whenever a

charged particle passes through, condensation occurs, leaving behind a vis-
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2.1. A historical perspective

Figure 2.1: Top: Discovery of the positron in 1933 in a cloud chamber
(Anderson, 1933). Bottom: Discovery of the pion in 1947 with photographic
emulsion (Lattes et al., 1947).

ible ion trail. The discovery of positrons (e+) was the first major physics

discovery that employed cloud chambers, and it was done by Carl Ander-

son. Cloud chambers later evolved into bubble chambers. They also work

on a similar principle, but instead of condensation, bubbles are formed by

the charged particles. Photographic emulsions were another type of early

detectors that were placed at high altitudes where charged particles make

ionisation tracks directly on photographic plates. Many more particles,

muons, pions, kaons, etc were also discovered by these photographic tech-

niques. Fig. 2.1 depicts the tracks left by particles in these photographs

that led to the discoveries of positrons and pions. In all these detectors,

photographs of the ionisation tracks were taken, developed, and the par-
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2.1. A historical perspective

ticle tracks were manually identified. After doing so, the momenta of the

particles was estimated by studying the curvature of the tracks. Cameras

were placed at different angles and the track identification was done only

in 2D. Theoretically, two cameras are required to find the tracks and their

parameters; however, a third one was usually added for robustness and

cross-checking. In the prior days, the process was completely manual, i.e.

tracks were spotted by eye on photographic films, and then rulers were

used for finding the associated parameters. Later, film measuring machines

were invented that allowed an operator to slide a marker along on the xy

plane and mark various vertices using electronic controls. Pattern recogni-

tion programs were then added to these machines that made them, at least

partially, automated.

However, in 1968, Georges Charpak developed the multi-wire propor-

tional chamber (Charpak et al., 1968). It was the first wire chamber con-

sisting of an array of wires. This allows for a very fast electronic readout of

particle tracks, increasing the detection frequency by three orders of mag-

nitude. UA1 detector built at CERN used this technology, allowing 3D

reconstruction of the events.

At the same time, computers were also scaling up in power, enabling au-

tomation of many tasks, including track reconstruction. Algorithms based

on Kalman filters (Kalman, 1960) started taking the stage in the 80s.

Apart from detection, the second major part of particle physics exper-

iments is the production of particles, also called the beam. On this front,

until 1930s, physicists were using natural phenomena, such as radioactiv-

ity or cosmic rays, to study particles, but these methods didn’t offer a fine

control over the production of the particles. This started to become a limi-

tation in the discovery of new physics. To overcome this, Ernest Lawrence

invented the cyclotron. In cyclotrons, charged particles go in a curved tra-

jectory and are accelerated with the help of an electric field, increasing the

kinetic energy in each cycle. Pions were first synthetically produced in a

cyclotron. An improved version of cyclotron, called the synchrotron, was

proposed in 1944 by Vladimir Veksler; and one of the earliest synchrotron

based physics experiment was constructed at Lawrence Berkeley National

17



2.2. The Standard Model

Laboratory called Bevatron. Bevatron was able to perform collisions at a

center-of-mass energy of around 6 GeV. This led to the discovery of antipro-

tons and antineutrons.

The modern particle accelerators and colliders are descendants of the

cyclotron. They are paired with much improved particle detectors, com-

puting devices, and reconstruction algorithms. This enables us to reach

much higher energy and frequency. Some of the famous experiments in-

clude Tevatron, SLAC, and the Large Hadron Collider.

2.2 The Standard Model

Except for gravity, three fundamental forces of nature (electromagnetic,

weak, and strong interactions) are unified under a theory called the Stan-

dard Model (Oerter, 2006). The Standard Model comprises quantum theo-

ries and special relativity, and is a very accurate description of the nature of

the universe and the laws governing them. Under standard model, the uni-

verse is comprised of six quarks and six leptons that together make up the

fermions. All the known matter in the universe is comprised of the fermions.

While the leptons exist independently, the quarks can only be found as part

of composite particles. The proton, for example, is a composite particle con-

sisting of two up quarks and one down quark. The interactions between the

fermions are governed by five force-carrying particles. Photons (γ) medi-

ate the electromagnetic interactions and gluons (g), the strong interaction.

The other three bosons (W , H, Z) govern the weak interactions. Exam-

ples of particle interactions include particle decay, annihilation, and pair

production.

Except for g and γ, all other particles in the Standard Model have a mass.

Another property of a particle is its electric charge. The electrons (e−) and

the positron (e+) are examples of charged particles, while the neutrino (ν)

and γ are examples of neutral particles. The elementary particles of the

Standard Model are illustrated in Fig. 2.2, along with their mass, charge,

and spin. Spin is another property of a particle that describes an intrinsic

18



2.2. The Standard Model

Figure 2.2: The Standard Model particles and their properties (Wikimedia
Commons, 2019).

angular momentum.

Hadrons are the particles that are made up of quarks. Two hadrons, the

neutron (n) and the proton (p), make up most of the mass of the universe.

Other examples of long-lived hadrons are pions (π+, π+).

Under special relativity, the speed of light (c) and the laws of physics

remain the same anywhere in the universe and at any speed. This leads

to the concept of frame of reference, i.e. measurements of quantities, such

as speed, energy, and length of an object, depend on the observer. Special

relativity also defines mass (m) and energy as equivalent quantities under

the following relationship:

E = mc2 = m . (2.1)

Here, as common in high energy physics, the constant c is set to 1 under

19



2.3. The Large Hadron Collider (LHC)

“natural units”. This relationship holds for a frame of reference under which

an object is at rest. Therefore, m and E are called the rest mass and the rest

energy, respectively. E and m are generally measured in prefix multipliers

of electronvolts. An electronvolt is the kinetic energy gained by an electron

as it travels through a potential difference of 1 V and it is used as a unit of

energy and mass.

2.3 The Large Hadron Collider (LHC)

Most of the Standard Model particles do not exist independently and need

to be created in high-energy collisions for physics studies, as permitted

by Equation 2.1. The total energy of a system depends on the frame of

reference. For a particle travelling with momentum p relative to a certain

frame of reference, the total energy of the system in that frame of reference

can be evaluated as:

E =
√

(mc2)2 + p2c2 =
√
m2 + p2 . (2.2)

Here, natural units, i.e. c = ℏ = 1, have been used. A quantity called

center-of-mass energy or invariant mass (
√
s) can be used to describe the

energy of a system that remains the same in all frames of reference. In a

two-particle system,
√
s can be calculated as:

√
s =

√
m2

1 +m2
2 + 2(E1E2 − p1 · p2) . (2.3)

Here, m1 describes the rest energy of the first particle and m2, the second

particle. In a low-energy interaction, the velocity of the two particles with

respect to each other is very low (p2 ≈ 0), resulting in E2 = m1. Equa-

tion 2.3 reduces to:

√
s =

√
m2

1 +m2
2 + 2m1m2 = m1 +m2 . (2.4)
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2.3. The Large Hadron Collider (LHC)

However, if one of the particles has a high kinetic energy (E2 >> m1 = m2),√
s takes the following form, describing the total energy of the system in

fixed-target particle accelerators:

√
s ≈

√
2m1E2 . (2.5)

In particle accelerators where the colliding particles have both been ac-

celerated in opposite directions with approximately the same momentum,

p1.p2 = p1p1cos(180◦) ≈ −E2
1 , and therefore

√
s can be defined as follows:

√
s ≈ 2E1 . (2.6)

A Standard Model particle called the Higgs boson (H0) was theorised in

1964 (Englert and Brout, 1964; Guralnik et al., 1964; Higgs, 1964) and

by the start of the 21st century, it was the last missing piece of the Stan-

dard Model yet to be confirmed. Many experiments, including the Large

Electron-Positron (LEP) collider (Djouadi, 1995), sought its discovery; how-

ever, they could not reach the required
√
s to produce the boson. It was

the one of the main goals of construction of the LHC that began in 1993 in

the same tunnels where the LEP was hosted. The construction took over

15 years to finish and the initial tests were run in 2008 (Myers, 2012).

The LHC is a proton-proton collider, where two beams of protons are

accelerated in opposite directions. Fig. 2.3 shows a picture of the LHC and

its two beams. The total energy of the collision can hence be defined by

Equation .2.6. As of 2022, the highest energy we have reached at the LHC is

6.8 TeV per beam, resulting in total center-of-mass energy of 13.6 TeV and

it is expected to further increase to 14 TeV. This energy is used in creating

new particles that are observed in the detectors. Unlike an electron-positron

annihilation, these high-energy collision events at the LHC are significantly

more complex, and create hundreds of particles in every collision.

In 2012, the Higgs boson was discovered at CERN when the LHC reached
√
s = 8 TeV (ATLAS Collaboration, 2012; CMS Collaboration, 2012). With
√
s > 13 TeV, at which the LHC is currently operating, it is the world’s
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2.3. The Large Hadron Collider (LHC)

Figure 2.3: A picture of the LHC (Mobs, 2019) showing a cut of the dipole
and the two beam pipes in which two sets of protons are accelerated in
opposite directions (Dominguez, 2014).

largest particle accelerator, and is widely thought of as the most complex

machine ever built. For a small fraction of the time, lead ions (Pb+) are also

accelerated instead of protons to study quark-gluon plasma (Müller et al.,

2012).

Figure 2.4 schematically shows the entire journey of the protons as they

pass through various accelerators before finally getting injected into the

LHC. The acceleration of protons begins with hydrogen gas at an acceler-

ator called LINAC4 (Linear Accelerator 4). When these protons enter the

LHC, their energy is 450 GeV where it is further pushed to > 6.5 TeV.

The two beams of protons are collided with
√
s > 13 TeV at the centre of

different detectors, called experiments. The center of the detector where

the collisions occur is called the interaction point. Some experiments at the

LHC accelerator complex are CMS (Compact Muon Solenoid)1, ATLAS (A

1CMS Collaboration (2008)
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2.3. The Large Hadron Collider (LHC)

Figure 2.4: The accelerator complex of the LHC. First, hydrogen ions
(H + e− → H−) are accelerated at the Linear Accelerator 4 (Arnaudon
et al., 2006). They are stripped of their two electrons at the booster to
form protons (H− → H+ + 2e−). These protons (H−) then make their way
through two accelerators, the Proton Synchrotron and the Super Proton
Synchrotron, before entering the LHC.

Toroidal LHC Apparatus) 2, LHCb (LHC beauty) 3, and ALICE (A Large

Ion Collider Experiment)4. LHCb and ALICE are specialised experiments

focusing on the beauty quark and heavy ion collisions, respectively. CMS

and ATLAS are general-purpose experiments, and the largest ones in size.

The goal of a detector is to perform event reconstruction, i.e. find all the

particles that were formed in a collision event. For every particle, the fol-

lowing quantities are reconstructed:

2ATLAS Collaboration (2008)
3LHCb Collaboration (2008)
4Alice Collaboration (2006)
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CMS
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ATLAS

Large Hadron Colliderxz
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Figure 2.5: Schematic representation of the coordinate system (Qasim,
Chernyavskaya, et al., 2022)

1. The type – identification or ID,

2. Direction,

3. Energy,

and if it is possible, also the time when the particle leaves its signature in

the detector. This is called 5D reconstruction (3D position, energy, and

time).

The protons at the LHC travel in groups, called bunches. Each bunch

is ∼ 30 cm in length and the gap between two bunches is ∼ 7.5 m. In each

bunch, there are approximately 1011 protons. As these particles travel at

approximately the speed of light, we get a collision frequency of 40 MHz. A

set of collisions in one bunch crossings can also be referred to as an event.

Out of 1011 protons pairs, only ∼ 40 proton-proton (pp) collisions currently

occur in an event. This is often referred to as pileup (NPU) i.e. 40 pileup

event means an event with 40 proton-proton interactions. The number of

pp collisions per bunch is a random process following a Poisson distribution

with λ = NPU.

2.3.1 Collider kinematics

A right-handed Cartesian coordinate system is used at the LHC as a basis

and it is shown in Fig. 2.5 with the interaction point at the centre (0, 0, 0).

z-axis is placed along the beam pipe, while x and y axes are oriented towards
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2.3. The Large Hadron Collider (LHC)

the centre of the LHC and upwards, respectively. The Cartesian coordinate

system is then extended to include three detector coordinates, θ, ϕ and η.

θ is the angle from the beam axis. ϕ is the polar angle on the (x, y) plane.

Pseudorapidity (η) (Wong, 1994) is another measure of the angle relative

to the beam axis and can be calculated as a function of θ. These quantities

can be evaluated as follows:

r =
√
x2 + y2 + z2 , (2.7)

θ = arccos(z/r) , (2.8)

η = log(tan
θ

2
) , (2.9)

ϕ = arctan2(y, x) . (2.10)

Fig. 2.6 shows energy scattering and number of particles as a function

of θ and η in 14 TeV pp collisions. From the interaction point, 0 < θ < π/2

and η < 0 in one direction of the beam pipe and in the other direction,

π/2 < θ < π and η > 0. It can be observed that most of the energy is

scattered very parallel to the beam pipe, and is hard to notice on the θ

spectrum. However, as η scales exponentially with θ close to the beam pipe

(Equation 2.9), the energy scattered and the number of particles is within

an order of magnitude across the η spectrum. Therefore, η is the preferred

way to measure the angle from the beam pipe. Almost all the particles that

ought to be observed in the detectors are coming directly from the collision

point. Thus, it is generally enough to express a particle’s direction in only

two degrees of freedom, using η and ϕ. The distance between two particles

is generally described as the Euclidean distance in the (η, ϕ) space.

Many of the primary particles are unstable and quickly decay into even

more particles, increasing the complexity of the event. A detector is gen-

erally designed as symmetric because, in expectation, the same amount of

energy is scattered on both sides of the beam pipe. Similarly, the energy

scattering and the particle production are uniform across the ϕ spectrum

as well.
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Figure 2.6: Expected number of primary particles and their energy in a
14 TeV pp collision distributed as a function of η and θ.

For the high-energy particles, E = p according to Equation 2.2. How-

ever, only the momentum perpendicular to the beam pipe, called the trans-

verse momentum (pT ), can be constrained in the hadronic collisions:

pT =
E

cosh(η)
, (2.11)

∑
x∈P

pT (x) = 0 . (2.12)

Here, P represents the set of particles that are produced in an event.
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2.4 CMS (Compact Muon Solenoid)

The CMS detector is one of the two general-purpose experiments setup at

the LHC. The detector is located 100 m underground in Cessy, France. In

2012, alongside the ATLAS experiment, it confirmed the existence of the

Higgs boson. It is a giant detector with a weight of 14 · 106 kg and spans

21 m, 15 m, and 15 m along the length, width, and height, respectively.

As shown in Fig. 2.7, the detector is wrapped around the beam pipe where

bunch crossings occur exactly in the centre.

Based on η, the detector can be divided into two distinct regions, the

barrel and the endcap region. The barrel region is the region of the detector

that wraps around the beam pipe with |η| < 1.5. The particles with mo-

mentum direction perpendicular to the beam pipe go into the barrel region.

The endcap region captures the particles with direction parallel to the beam

pipe with |η| > 1.5.

In Fig 2.8, the path of different particles is shown as they progress

through different parts of the CMS detector. There is a 4 tesla super-

conducting magnet that comes after the calorimeters and before the muon

chambers. The trajectory of the muons is inverted in the muon chambers

as the direction of the magnetic field lines is inverted.

2.4.1 Tracker

Closest to the interaction point is the silicon tracker (Hartmann, 2007). It

runs 0.28 m in length along the beam pipe. Only the charged particles

leave traces on the sensors of the tracker. A single charged particle leaves

many hits that are arranged in a curve, called a track. In a high-pileup

event, thousands of tracks (representing charged particles) are present. An

algorithm based on the Kalman Filter is used to separate out all the tracks

from each other. This process is called track reconstruction. The tracker

also makes use of the strong magnetic field that is present in the CMS

detector. As charged particles interact with magnetic fields, their path is

bent into a curve. The lower the momentum a particle has, the more it is
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2.4. CMS (Compact Muon Solenoid)

Figure 2.7: An architecture diagram of the CMS detector, adapted from
(Sakuma and McCauley, 2014). The endcap region is marked by + in blue
colour while the barrel region is marked by × in red colour.

curved and vice versa. This property is used to estimate the momentum of

the particles. The relative momentum resolution decreases with an increase

in momentum almost linearly.

2.4.2 Calorimeters

Most of the particles, with muons as the most notable exception, shower in

the calorimeter. A clustering algorithm is used to reconstruct all the showers

in an event. The energy of a particle is then estimated based on the shower

and the deposited energy on the sensors. Calorimetry is discussed in detail

in Chapter 3, owing to its significance to this thesis. A brief account of the

calorimeters at the CMS experiment is also presented.
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Figure 2.8: Longitudinal cross-sectional view of different particles in the
CMS detector Barney, 2015. The interaction point is on the left side of the
figure where the particles are originating. The trajectory of the charged
particles is curved, while the neutral particle (neutral hadron) travels in a
straight line. The muon interacts minimally with the matter and has the
longest path, as it travels into the muon chambers, the detectors placed the
farthest from the interaction point.

2.4.3 Muon chambers

Muons are charged particles and as so, they leave tracks in the tracker, but

they interact minimally with the matter. On a typical day, about 10k/m2,

mostly originating from the sun, pass through the Earth’s surface, and the

majority of them continue straight through to the other side. The CMS

detector has muon chambers that are specifically used for the detection of

muons. The detector also gets its name, Compact Muon Solenoid, because

of these chambers. Muons reconstruction is done in combination with track

reconstruction. All the high pT tracks from the tracker are considered as

muon candidates that are picked from the muon chambers.
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2.4.4 Trigger mechanism

There are 40M collision events occurring every second at the interaction

point, and it is not possible to store all of them. A system called trigger is

employed, which selects a fraction of these events for storage. The selection

is based on maximising the likelihood of finding interesting events, such

as those not explained by the current physics models. The CMS detector

employs a two-tier trigger system: the first tier is called L1 trigger and the

second tier, high-level trigger (HLT).

The L1 trigger brings down the collision rate to 100 kHz, which is fur-

ther decreased to 400 Hz by the HLT. The L1 trigger is deployed online

where the system has to make a decision within a few microseconds. There-

fore, an embedded system comprising custom processor boards is used for

this purpose. The algorithms employed at the L1 trigger are also very sim-

plified. The HL trigger employs much more sophisticated algorithms that

run on a computing farm comprising tens of thousands of standard CPU

cores. While this is currently done using classical algorithms, GPUs have

recently been added to the computational farm to profit from highly parallel

machine learning algorithms for the future. Although a simplified form of

reconstruction is already done at the HLT stage, the events that are output

of the HLT are stored on disks for long-term usage and full event recon-

struction. The magnitude of the stored data for offline computing is on the

scale of tens of petabytes per year.

The trigger mechanism introduces a selection bias into the data recorded

by the detectors. An event that does not have this bias is called a minimum

bias event (Field, 2011).

2.5 The High Luminosity LHC (HL-LHC)

Luminosity in particle colliders refers to collision rate, and is defined as:

L =
1

σ

dN

dt
. (2.13)
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Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

Figure 2.9: LHC projected time table where the long shutdowns (LS)
and runs are highlighted. Instantaneous and integrated luminosity is also
shown (Schmidt, 2016).

Here, σ is the cross section of the beam pipe at the interaction point, and

N is the number of collisions. Luminosity is measured in m−2s−1 in the

System International (SI) units.

A term called integrated luminosity (Lint), measured in fb−1 (m−2 in SI

units), and defined as

Lint =

∫
t

L · dt , (2.14)

directly measures the amount of data that has been collected over a certain

period of time. Fig. 2.9 shows both the instantaneous and integrated lumi-

nosity of the LHC. Both the ATLAS and the CMS experiment will together

generate around 300 fb−1 of data by the end of Run 3. The HL-LHC is

the next milestone in particle physics. The aim of the HL-LHC is to ac-

cumulate 3000 fb−1 of luminosity by the 2030s by increasing the pileup to

200. The detectors at the LHC are receiving major upgrades to compensate

for the high radiation and to increase the spatial resolution. At the CMS

detector, the barrel calorimeters and the muon systems will receive major

electronic upgrades while the tracker will be completely replaced. The end-

cap calorimeters are also getting replaced by a new calorimeter called the

HGCAL.
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2.6 Summary

This chapter provides a high-level overview of the physics and the LHC

to highlight the significance of the research that will be presented in later

chapters. Owing to a wide body of research conducted over the 20th century,

we now have the Standard Model of particle physics which describes the laws

of nature very precisely. Particle accelerators such as the LHC probe the

universe at the smallest scale to test the Standard Model rigorously and

to find explanation for anomalies that are yet to be explained such as the

existence of dark matter.

There are many experiments at the LHC and the CMS experiment is

one of the two large and general-purpose experiments. It is composed of

many sub detectors and readout from all of them is combined for full event

description. Most of the particles are radiated into the endcap regions and

get absorbed in the endcap calorimeters. This highlights the significance of

reconstruction algorithms in the endcap region.

Although the collisions at the LHC occur at a frequency of 40 MHz, it is

not possible to store all of them. A trigger mechanism selects the important

events and data is stored at a rate of 1 kHz. The stored events are fully

reconstructed offline. Physics analysis is performed on the reconstructed

events to search for new physics and to find new particles. The research

presented in this thesis is focused on offline computing.

The particles that are collided at the LHC are protons. Currently, ap-

proximately 40 proton-proton collisions occur simultaneously. This is re-

ferred to as 40 pileup. To observe more rare phenomena, under the High-

Luminosity LHC (HL-LHC) project, the experiments at the LHC are re-

ceiving major upgrades and will increase the pileup to 200. The CMS

experiment plans to install a new High-Granularity Calorimeter (HGCAL)

at its endcaps to enable reconstruction in a highly dense 200-pileup envi-

ronment. The HGCAL, and calorimeters in general, will be discussed in

detail in Chapter 3.

32



Chapter 3

Calorimetry

As this thesis is dedicated to calorimetric reconstruction, the physics of

calorimeters is discussed in detail in this chapter. Calorimeters can be

divided into two types: electromagnetic and hadronic. After Section 3.1

introduces the concepts common to both both types, the physics of elec-

tromagnetic and hadronic calorimeters is then discussed separately in Sec-

tion 3.2 and Section 3.3, respectively. Afterwards, the HGCAL is discussed

in Section 3.4 that contains both electromagnetic and the hadronic parts.

Section 3.5 is dedicated to the discussion of jets. Finally, Section 3.6 sum-

marises the chapter.

3.1 Introduction

Apart from embedding particles in a magnetic field, like in the tracker,

another way to measure their energy is by a detector called the calorimeter.

Unlike the tracker where the particles interact minimally, when a particle

enters a calorimeter, it is generally fully absorbed in the material and a

cascade of secondary particles, called a shower, is produced. A readout

of its interaction with the material gives an estimate of the energy of the

particle. The science of measuring energy in this way is called calorimetry.

Calorimeters offer two advantages:

1. Unlike the tracker where only charged particles leave tracks, calorime-
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ters measure the energy of all the particles, including neutral ones.

2. The energy reconstruction performance improves following a
√
E re-

lationship, where E is the energy of the incident particle. This is in

contrast to the tracker, where the energy reconstruction performance

degrades linearly with an increase in momentum.

Calorimeters can be divided into two distinct types: electromagnetic

and hadronic. Electromagnetic calorimeters measure the energy of pho-

tons, electrons and positrons, whereas energy of the hadronic particles is

measured by hadronic calorimeters. The hadronic showers are much longer

than the electromagnetic showers and the physics of electromagnetic and

hadronic showers, and therefore of the respective calorimeters is different.

Calorimeters can be classified as either homogeneous calorimeters or sam-

pling calorimeters. In homogeneous calorimeters, all the material is used

for the readout and in sampling calorimeters, the material is divided into a

series of active and passive layers. The passive layers have no readout capa-

bility. The sampling fraction (fsample) of a sampling calorimeter is defined

as the fraction of the energy that a particle deposits in the active part of

the calorimeter.

Factors, such as the electronic noise and fluctuations in the cascade of

particles in a shower and the fraction particles produced in the active vs pas-

sive region of the calorimeters, introduce an uncertainty in the reading. The

resulting quality of the energy measurements is defined by two quantities,

mean response and resolution. A response is defined as Epred/Etrue. Here,

Etrue is the energy of the incident particle and Epred, the energy recorded

by a calorimeter. The response of a series of events is then averaged to

compute the mean response µ (Epred/Etrue). The response can be corrected

a posteriori by applying an energy-dependent scaling. However, the energy

resolution, measured as the standard deviation of the response distribution

σ (Epred/Etrue), cannot be improved in such a simple manner and is there-

fore more important for measuring the final physics performance. The mean

response and resolution are shortened to µ and σ, respectively. It is typical

to divide resolution by the mean response to get a mean-corrected resolu-
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tion (σ/µ), which is often expressed as a percentage (%) quantity. A lower

value of resolution signifies better performance.

3.2 Electromagnetic calorimeters

When travelling through material, an electron loses energy by two processes:

bremsstrahlung and ionisation. Bremsstrahlung, German for braking radi-

ation, is the dominant factor above a certain energy threshold (ϵ), and

ionisation dominates below it. The threshold is called critical energy and

is ∼ 7 MeV for electrons travelling through lead. This is also shown in

Fig. 3.1. ϵ for solids can be approximated as follows:

ϵ =
610

Z + 1.24
MeV . (3.1)

Here Z is the atomic number of the material.

High-energy electrons produce photons via bremsstrahlung, which po-

tentially decay into e−e+ through pair production (Motz et al., 1969). At

low energy ranges, ionisation occurs when electrons interact with molecules

and atoms in the material. Photons lose their energy mainly through pair

production at high energy ranges. At low energy ranges, photoelectric effect

and Compton scattering are the causes of the energy loss. While the phe-

nomenology of shower development is very complex, the main features of

electromagnetic showers can be described via simple parametric functions

that depend on a single parameter called the radiation length (X0). It can

be approximated as follows and is a characteristic of the material, expressed

in g.cm−2:

X0 =
716 · A

Z(Z + 1) · log(287/
√
Z)

g.cm−2 . (3.2)

Here, A refers to the mass number of the nucleus and Z is defined above.

An electron’s energy is reduced by 1/e after travelling a distance of X0

through a material and a photon’s energy is reduced by the same amount af-

ter travelling a distance of 7
9
X0. Therefore, the depth of an electromagnetic

shower, expressed in radiation length, can be approximated as follows:

35



3.2. Electromagnetic calorimeters

Figure 3.1: Fractional energy lost in lead by electrons and positrons as
a function of incident energy (Hagiwara et al., 2002). After ∼ 7 MeV,
bremsstrahlung is the dominating factor.

tmax ≈ ln
E

ϵ
+ t0 . (3.3)

This is called the longitudinal length of the particle shower. It scales log-

arithmically with the incident energy of the particle (E). This is a useful

feature because it restricts the depth of the material required to construct

an electromagnetic calorimeter. t0 takes the value of 0.5 for electrons and

positrons, and −0.5 for photons. Electromagnetic calorimeters are typically

very compact devices, e.g. the crystal ECAL at the CMS detector is only

23 cm, corresponding to 26 ·X0.

The spread of a particle shower transverse to its longitudinal axis is
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measured by the Molière radius (RM), defined as:

RM ≈
21X0

ϵ
g · cm−2. (3.4)

The radius ϵ is measured in MeV here. RM represents the average lateral

spread of electrons at critical energy after travelling a distance of X0. About

90% of an electromagnetic shower is contained in a cylinder centered around

the longitudinal axis with a radius of RM , and is only a few centimetres in

most calorimeters. It can be observed that the Molière radius is energy

independent.

The length of a particle produced in the shower cascade before it inter-

acts is called its track length. The sum of track lengths of all the charged

particles, T0, is proportional to the energy of the incident particle, as given

below. T0 can be measured, for example, by detecting the light in a scintil-

lating material. This principle is used to approximate the incident energy,

as follows:

T0 ∝ X0
E

ϵ
. (3.5)

The resolution of an ideal calorimeter, in which T0 can be perfectly

measured, only depends on the fluctuations in T0. These fluctuations are a

stochastic process and therefore:

σ

µ
∝ 1√

T0
∝ 1√

E
. (3.6)

In a realistic calorimeter, many other factors that degrade the performance

are also present. There, the resolution can be summarised as:

σ

µ
=

a√
E
⊕ b

E
⊕ c. (3.7)

The three terms in this equation are the above-defined stochastic term, a

noise term and a constant term, respectively. Here, ⊕ is the quadratic sum,

i.e. x⊕ y =
√
x2 + y2.

The stochastic term is very small in homogeneous calorimeters because

it is mainly defined by fluctuations in the approximation of T0. The term is
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much higher in sampling calorimeters, where the energy that is deposited

in the active part of the detector fluctuates on an event-by-event basis.

Increasing fsample will decrease the contributions of the stochastic term.

The following relationship holds in the sampling calorimeters:

σ

µ
∝ 1√

Nactive

∝
√

t

E
. (3.8)

Here, t is the thickness of the absorber material, expressed in radiation

lengths and therefore, the larger the absorber fraction, the higher is the

stochastic term.

The noise term defines electronic fluctuations in the readout equipment.

Like the stochastic term, the noise term also has an inverse relationship

with the energy of the incident particle and is inversely proportional to

the sampling fraction. Calorimeters that use photo detection to collect the

readout signal have a lower noise term than the calorimeters, where charge

is used for signal generation.

The constant term is the noise contribution that is independent of the

energy of the incident particle. It is mainly a function of the construction

of the calorimeter. An irregularly shaped detector can have a high constant

term, for instance, as the non-uniformity introduces channel-to-channel cal-

ibration errors. The constant term can also increase in an environment with

a presence of nearby particle. The constant term is the dominating factor

at high energies as the other two terms substantially decrease at higher

energies because of their inverse relationship with the incident energy.

After combining all the terms, typically, the resolution can be approxi-

mated with the following relation:

σ

µ
=

d√
E/GeV

%. (3.9)

The factor d typically varies between 5 and 20, depending on the calorimeter.
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3.2.1 Types of electromagnetic calorimeters

One class of electromagnetic calorimeters is semiconductor calorimeters,

where detectable electrical signals are generated by electron-hole pairs pro-

duced by charged particle. Both silicon and germanium can be used as

the semiconductor material. Semiconductor calorimeters are radiation hard

and are a good choice for high occupancy environments. However, diode-

depletion of thick material to build readout material is both challenging

and expensive, and thus, most semiconductor calorimeters are designed as

sampling calorimeters with thin active layers.

The second class of electromagnetic calorimeters is called Cherenkov

calorimeters. Cherenkov light is produced when an electron or a positron

traverses a transparent material at a speed greater than c/n, where c is

the speed of light and n is the refractive index of the material. Photo

detectors are used for the signal readout. Cherenkov calorimeters are only

made as homogeneous calorimeters and have generally worse resolution com-

pared to other homogeneous calorimeters. Common materials for Cherenkov

calorimeters are lead glass (PbO) and lead fluoride (PbF2).

Scintillation calorimeters are another class of calorimeters that also op-

erate by detecting light produced as a result of radiation. Charged par-

ticles produce electron-hole pairs in the conduction and valence bands of

the material. When the electrons return to the valence bands, detectable

photons are produced. The threshold for this to occur is smaller in Scintil-

lation calorimeters compared to Cherenkov calorimeters and thus, a large

amount of light is produced. Therefore, Scintillation calorimeters have a

better resolution. Scintillation is used in both sampling and homogeneous

calorimeters. Examples of materials used in Scintillation calorimeters are

PbWO4, CsI and BGO.

Another class of calorimeters is Noble-liquid calorimeters. Here, a noble

gas, such as Ar, Kr and Xe is cooled to cryogenic temperatures. Both

scintillation and ionisation occur in these calorimeters. Excellent energy

resolution can be achieved by only collecting charge in these calorimeters.

Ar is most commonly used in sampling calorimeters. It has the advantage
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Figure 3.2: A visual layout of the CMS ECAL (CMS collaboration, 2010a).

of being intrinsically radiation hard and allows easier segmentation.

3.2.2 CMS Electromagnetic Calorimeter

The electromagnetic calorimeter of the CMS detector (ECAL) is a homoge-

neous calorimeter. It is a scintillation calorimeter and uses PbWO4 crystals.

A visualisation of the ECAL is shown in Fig. 3.2. The cylindrical part that

wraps around the beam pipe (|η| < 1.479) is the barrel section (EB) whereas

the two circular parts at the edges (1.653 < |η| < 3) form the endcap section

(EE). The EE section also has two sampling pre-shower layers in front of

it. There, silicon and lead are used as active and passive materials, respec-

tively. The resolution of the ECAL (Equation 3.7) can be defined as follows

(CMS collaboration, 2014):

σ

µ
=

2.8%√
E
⊕ 12%

E
⊕ 0.3% . (3.10)

3.3 Hadronic calorimeters

The physics of the hadronic showers is significantly more complex than

electromagnetic showers. Fig 3.3 shows the spectra of particles produced

40



3.3. Hadronic calorimeters

when 100 GeV protons travel through lead. It illustrates the complexity of

the physics processes that occur in hadronic showers. While the energetic

component is dominated by pions, a large amount of electrons, positrons

and photons are also produced. Approximately 1/3rd of the pions will be

neutral (π0). Neutral pions are unstable and decay into two photons (π0 →
γγ) before interacting hadronically with the material. Therefore, neutral

pions are absent in Fig 3.3, and are shown as electromagnetic particles.

The resulting cascade is only an electromagnetic sub-shower; and shows the

behaviour described in Section 3.2. As the number of hadronic interactions

increases with an increase in the energy of the incident particle, increasingly

more interactions will lead to the production of neutral pions (and hence

photons). This implies that the fraction of the electromagnetic component

(Fπ0) of the hadronic shower increases with an increase in the energy of the

incident particle. At 100 GeV, Fπ0 is around 0.5 and increases to 0.7 at

1000 GeV.

In Fig. 3.3, the hadronic particles form the hadronic component of the

shower. Some of the positrons and electrons produced here are also con-

sidered as part of the hadronic component, as their production occurs with

a considerable delay. The hadronic component partially results in what’s

called invisible energy. The invisible energy can only be detected with a

reduced efficiency. If the efficiency of observing an electromagnetic shower

is ηe and that of observing a hadronic cascade is ηh, the following fraction

of energy induced by a charged pion is visible:

Eπ
vis = ηeFπ0E + ηhFhE . (3.11)

Fh is the hadronic fraction of the energy i.e. 1 − Fπ0 . This can be used to

evaluate the relative response, e/π = (
Eπ

vis

Ee
vis

)−1 as follows:

Eπ
vis

Ee
vis

= (1− ηπ
ηe

)Fh . (3.12)

The relative response is a characteristic of the material and turns out to

be the most important metric for measuring the performance of a hadronic
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3.3. Hadronic calorimeters

Figure 3.3: The richness of physics produced in the hadronic cascade when
100 GeV protons travel through lead. At low energies, photons, neutrons,
electrons and positrons dominate the spectrum. The high energy spectrum
is dominated by pions. Figure by (Fabjan and Gianotti, 2003).
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calorimeter. The hadron fraction Fh is a random variable with fluctuations

occurring on an event-by-event basis. Given the fact that ηπ ̸= ηe, the

average response for the hadronic calorimeter cannot be 1 for both electro-

magnetic and hadronic showers with a linear calibration.

By analogy with electromagnetic calorimeters, where the radiation length

(X0) determines the longitudinal length of the showers, in hadronic calorime-

ters, nuclear interaction length (λI) is the determining factor. It can be

approximated as follows:

λI = 35 · A1/3 g · cm−2 . (3.13)

The length of hadronic showers, expressed in nuclear interaction lengths,

can be approximated as follows:

tmax = 0.2 · log(E/GeV) + 0.7 . (3.14)

The longitudinal size of a hadronic calorimeter should be around 10 · λI
to ensure adequate containment of the hadronic radiation. This corresponds

to a longitudinal length that is over a factor of ten higher than that of the

electromagnetic calorimeters. For this reason, the electromagnetic calorime-

ters are placed in front of the hadronic calorimeters. The lateral profile of

the hadronic showers is also larger than the electromagnetic showers. For a

95% containment, a lateral dimension of 1 · λI is required.

The resolution of the hadronic showers is worse than electromagnetic

showers and does not scale as 1/
√
E. A constant term can be added to

approximate the hadronic resolution:

σ

µ
=

a1√
E
⊕ a2 . (3.15)

Fluctuations in Fπ0 on an event-by-event basis are a major part of the

hadronic resolution. Furthermore, Fπ0 is energy dependent, which leads to

non-uniform response as the function of incident particle’s energy. Addi-

tionally, the factors affecting the electromagnetic shower resolution are also
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present in electromagnetic parts of the hadronic showers.

3.3.1 Types of hadronic calorimeters

Hadronic calorimeters are almost always sampling calorimeters. Their fsample

is also very low. Iron (Fe) and lead (Pb) are commonly used passive mate-

rials in hadronic calorimeters. In the active part, semiconductors are more

commonly used. Liquid-noble gases or scintillators can also be used for the

active part.

3.3.2 CMS Hadronic Calorimeter

The hadronic calorimeter at the CMS detector (HCAL) is a sampling calorime-

ter where brass and plastic scintillators are used as active and passive mate-

rials, respectively. Looking from the interaction point, the HCAL is installed

behind the ECAL. In Fig. 3.4, its layout is shown.
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Figure 3.4: A schematic diagram of the CMS HCAL (CMS collaboration,
2010b). The interaction point is at the bottom right side of the figure.
Across one η segment, all the cells with the same colour are summed up for
the readout.

3.4 HGCAL

The endcap calorimeters of the CMS experiment will be replaced with the

HGCAL to sustain the high radiation environment expected at the HL-LHC.

Both the HCAL and ECAL will be replaced (CMS collaboration, 2015b).

The HGCAL will achieve the following objectives:

• It will be tolerant to increased radiation and suffer minimal degrada-

tion in physics performance at 3000 fb−1.

• It will be highly granular, offering fine lateral and longitudinal granu-

larity for adequate separation of showers in 200 pileup environments.

• Add a precise timing signal that was not present in the HCAL and

ECAL. This will improve pileup separation performance, and will also

aid in the identification of vertex for individual showers.
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• Contribute to the L1 trigger.

The HGCAL is the first high granular imaging calorimeter to be ever

built. The high granularity will offer the ability to separate showers that

are very close to each other. This feature will substantially improve the

event reconstruction performance and offer immense physics benefits.

A schematic diagram of the HGCAL is shown in Fig. 3.5. The electro-

magnetic section of the HGCAL is called CE-E and the hadronic section,

CE-H. CE-E corresponds to 26·X0 and 1.7·λI . The rest of the HGCAL along

the z axis makes up the CE-H which corresponds to 9λI . CE-E consists of

28 sampling layers constituting 0.34 m along the z axis. CE-H is divided

into two sections. The second section has thicker absorbers compared to

the first. In total, there are 24 active layers in the CE-H.

Silicon makes up all the active elements in the CE-E section, while WCu,

Cu and Pb act as the absorbers. Stainless steel makes up the majority of the

absorber, taking ∼ 35 mm between layers in the first stage and ∼ 70 mm

at the far end of the calorimeter. More detailed description of the layout

can be found in CMS Collaboration (2017). The active part of the CE-H

consists of silicon as well, except in the low radiation part (low |η|) where

scintillators are used as a cost saving measure.

Laterally, the HGCAL covers the pseudorapidity range 1.5 < |η| < 3.

The transverse view of the HGCAL is shown in Fig. 3.6. To maximise

the area coverage on circular silicon wafers, the modules are hexagonal

in shape. Furthermore, multiple modules are grouped into wedges called

cassettes that span either 30◦ or 60◦ along the ϕ axis. Thickness along the

z axis of the sensors is either 300, 200 or 120 µm. The scintillator section

of the CE-H is segmented in the rϕ plane, and is therefore not hexagonal.

A module is comprised of either 432 or 192 channels in high and low |η|
region, respectively. The sizes of the cassettes also shrink with an increase

in |η|, leading to high granularity close to the beam pipe. High spatial

resolution is required at high |η| due to the presence of a high number of

particles. In total, there are 3.9m channels in CE-E, 1.9m and 0.4 in silicon

and scintillator parts of the CE-H, respectively. This adds to a total of
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3.4. HGCAL

Figure 3.5: A schematic diagram of the HGCAL showing its longitudinal
cross section (Martelli, 2017).

about 6 million readout channels (sensors) in both endcaps combined.

In a collisions’ event, two values are recorded for each channel: total

deposited energy (draw) and time (t). Deposited energy is the sum of all the

charge deposited in one cell by all the particles. If draw exceeds a certain

threshold, the time is recorded with a high resolution for that cell. This

implies a certain loss of information in rare cases, i.e., if a higher energy

particle hits an already triggered time latch, the recorded time signal will

incorrectly correspond to the lower energy particle. The time signal is very

useful for disentangling the origin vertices associated with the particles.

The deposited energy is then linearly calibrated using the root mean
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3.5. Jets

Figure 3.6: Transverse cross section view of the HGCAL (CMS Collabo-
ration, 2017). Left: 9th layer of the CE-E. The sensors are grouped into
hexagonal shaped wedges of 60◦ wedges. Right: 22nd layer of the CE-H.
Hexagonal cassettes of silicon are shown in the high |η| region whereas uni-
formly cut wedges across r and ϕ axes are shown in the low |η| region.

square (RMS) method as:

Ŵ = argmin
W

1

|T |
∑
t∈T

(∑
s∈S

wl(s)draw(s,t) − E(t)

)2

. (3.16)

T is the ensemble of particles that are used for the calibration. S labels all

the sensors in the calorimeter and l(s), the layer number associated with

the sensor s. The calibration vector (W ) is an m-dimensional vector where

m is the number of layers in the calorimeter. wl(s) refers to the element in

the vector W that is associated to layer corresponding with the sensor s.

E(t) refers to the kinetic energy of the particle t. Therefore, Ŵ is the best

estimated calibration vector.

3.5 Jets

In high energy hadronic collisions, such as those at the LHC, a cascade

of quarks and gluons, called a parton shower, is radiated from the initial

particle. The force between quarks increases with an increase in distance
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3.5. Jets

and if a pair of quarks is taken sufficiently far from each other, the potential

energy becomes large enough that new particles get created from the vacuum

via a process called hadronisation. As the name implies, these particles are

generally hadrons and some of them quickly decay into even more particles.

Therefore, one quark or one gluon produced in a primary collision creates

a spray of high-energy particles that are very close to each other in the

(η, ϕ) space. This spray is called a jet. Jets are an integral ingredient

for the analysis of particle collisions. Particularly in the forward region,

well-resolved individual jet constituents are crucial for a successful pileup

removal and for identifying e.g. quark jets over gluon jets in vector-boson-

scattering or fusion processes.

Even though jets are created by quarks or gluons, jets are defined only

by a clustering algorithm. This implies that the jet clustering algorithm

will also label a set of particles as jets that did not originate as a result

of hadronisation. The most commonly used jet clustering algorithm is the

sequential anti-kt algorithm (Cacciari et al., 2008).

If there are N particles, a matrix J ∈ RN×N is computed as:

Jij = min(pT
a
i , pT

a
i )×

R2
ij

R
, (3.17)

with N as the total number of particles and ij, a pair of particles. The

particle pair with the minimum J , îĵ, is evaluated:

îĵ = argmin(J) . (3.18)

If Jîĵ is less than pT
a
i′

, with

i
′

= argmin({pT a
i ∀i ∈ {0, 1, 2, ...N}}) , (3.19)

the îth and the ĵth particles are merged; otherwise, the i
′
th cluster is con-

sidered as a final jet and is subtracted from the list of particles.

R is a hyperparameter, commonly set to a value of 4. Rij is the Euclidean

distance in (η, ϕ) space between the ith and the jth particles. a is another
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hyperparameter and it should be less than 01, and is commonly set to −2.

It being negative favours high-energy particles. This process continues until

either all particles are merged together or until min(Rij) is less than R.

Modern jet clustering algorithms are designed to be infrared and collinear

safe. If a jet clustering algorithm is infrared safe, it implies that introduc-

tion of soft radiation (i.e. low energy particles) will not impact the set of

jets that were produced. Collinear safe jet algorithms are those in which a

collinear splitting does not change the jet definition. These properties make

jets very useful for studying reconstruction performance of algorithms and

compensate for ambiguities in the truth definition.

Hadronisation is a rare process in minimum bias events. To increase the

odds of finding high energy hadrons in the forward region, in this thesis,

qq → tt are also simulated, where a significant activity in the forward region

can be found more commonly. Fig. 3.7 shows two examples of jets clustering

algorithm when applied to qq → tt interactions. It can be seen that particles

that are close to each other are part of a single jet. This can be compared

to Fig. 7.6 in Chapter 7, where an 40 pileup event is shown. A lot more

high-energy activity can be observed in only one qq → tt event.

3.6 Summary

There are two ways to detect particles and measure their energy: using

trackers and using calorimeters. Minimal material is present in trackers

and most particles traverse uninterrupted. Only the charged particles can

be observed in trackers. The trajectories of the charged particles get bent

due to the presence of a magnetic field and the magnitude of the bend-

ing measures their momentum. On the other hand, all particles – whether

charged or not – can be observed in calorimeters. The performance of

momentum measurement in trackers decreases with an increase in the mo-

mentum of the particles whereas, in calorimeters, the energy measurement

performance improves with an increase in energy. Therefore, trackers and

1< 0 for the anti-kt algorithm and > 0 for the kt algorithm
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Figure 3.7: Anti-kt jet clustering algorithm applied to particles produced in
two qq → tt interactions. Different colours correspond to different jets.
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calorimeters add complementary information and are often used together.

In this chapter, the physics of calorimeters is discussed in detail.

Particles are fully absorbed in calorimeters as dense material is present.

The signature the particles leave in calorimeters is called particle shower.

Calorimeters are divided into many layers and some of them don’t have any

read-out capability. Such layers are called absorbers. Some layers are made

up of active elements, such as silicon, and record the energy of the particles

traversing through them. These layers are called active layers.

Photons, electrons and positrons shower very quickly and don’t require

thick absorbers. These particles are classified as electromagnetic particles

and the type of calorimeter used to detect them is called the electromagnetic

calorimeter. Other particles, called hadrons, penetrate much more deeply

into the material and require thick absorbers. The type of calorimeter used

to detect such particles is called the hadronic calorimeter. In large physics

experiments, both are used and the electromagnetic calorimeter precedes

the hadronic calorimeter.

The HGCAL will consist of both electromagnetic and hadronic sections.

It will replace the endcap calorimeters on both sides at the CMS experiment,

covering the eta range 1.5 < |η| < 3. It has non-regular geometry as

its sensors are of varying sizes and are hexagonal in shape. To enable

reconstruction in a highly dense environment with 200 pileup, the HGCAL

is highly granular and has 3 million sensors in each endcap.

Jets in particle physics refer to collimated sprays of particles that are pro-

duced in high-energy particle collisions via a process called hadronisation.

They are also discussed in this chapter as they are detected in calorimeters.

Jets are defined by a clustering algorithm and the most commonly used

algorithm for clustering is called anti-kt. It sequentially groups particles

together based on their (η, ϕ) distance and favours higher energy particles.
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Chapter 4

Classical Reconstruction

Algorithms

When electronic readout instruments were introduced in the 70s in particle

physics experiments, automated algorithms slowly replaced the human ele-

ment in tasks such as reconstruction. These algorithms that work without

employing modern deep learning techniques are referred to as classical algo-

rithms in this thesis. Even though many tasks are now achieved by modern

machine learning based approaches, classical algorithms are still widely used

for their simplicity and performance. In this chapter, various classical al-

gorithms used for a number of reconstruction tasks are presented with a

two-fold aim: 1) presenting a literature review 2) discussing how full event

reconstruction is done at the LHC, setting the stage for the application of

the method presented in this thesis. Classical algorithms at both the CMS

and the ATLAS experiments are discussed for a comprehensive overview.

Track reconstruction and vertex reconstruction are discussed in Sec-

tion 4.1 and Section 4.2, respectively. Calorimetric reconstruction is then

discussed in Section 4.3. These reconstructed elements from the individual

sub-detectors are joined by a linking algorithm that is discussed in Sec-

tion 4.4. The classical reconstruction algorithm for the HGCAL, TICL, is

discussed in Section 4.5. Finally, Section 4.6 summarises the discussions

conducted in this chapter.
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4.1 Track reconstruction

In 40 pileup, O(103) charged particles travel through the tracker and this

will increase to O(104) for the HL-LHC in 200 pileup. Track reconstruc-

tion in these high occupancy settings requires highly granular detectors. A

tracker has two orders (an order) of magnitude times more readout chan-

nels than a typical calorimeter (HGCAL). However, the tracker data is much

more sparse owing to the fact that the average number of hits per particle

track is only ∼ 10. It can be expected that in 200 pileup, O(10, 000) hits will

be registered in the tracker. Therefore, the nature of track reconstruction

is very different from calorimetric reconstruction.

The CMS tracker consists of two parts: the inner pixel tracker and the

outer strip tracker. The inner pixel tracker consists of 66 million pixels over

an area of 1 m2 of silicon, whereas the outstrip detector has 10 million pixels

over an area of 200 m2. The inner pixel tracker at the ATLAS experiment

has 80 million pixels over an area of 1.8 m2 and the strip tracker has 6 million

pixels covering an area of 60 m2. Additionally, the ATLAS experiment has

a third layer of the tracker, called the Transition Radiation Tracker (TRT)

with 0.3 million readout channels.

At the CMS detector, the track reconstruction begins with local recon-

struction, where zero-suppressed signals above certain thresholds are clus-

tered into 3D hits. These hits are then clustered into tracks. An algorithm

based on Combinatorial Kalman Filter is used, which is an extension of

the Kalman filter (Kalman, 1960). The algorithm is called Combinatorial

Track Finder (CTF) (CMS Collaboration, 2014). It is an iterative algorithm

where the tracks that are easiest to reconstruct are discovered and masked

for the next iterations. There are typically six iterations.

In every iteration, there are multiple steps. The first step is called

seeding, and it involves finding a rough estimate of a particle track. A track

is defined by five parameters. Three 3D hits are needed for estimation of

these parameters. It is also possible to use two hits if a constraint on the

origin of the particle is known, e.g. if the particle is originating from the

interaction point. With that in mind, seeding is done using highly granular
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4.1. Track reconstruction

Figure 4.1: Schematic diagram of Kalman filter method (Regler et al., 1996).
It is applied at every detector layer iteratively. In this figure, the track has
been extrapolated from the (k − 1)th layer to kth layer with z = zk. The
track parameters are then filtered to adapt the prediction pk−1

k according to
the measurement mk. The filtered track parameters produce the state pk
which will be extrapolated at the (k + 1)th layer in the next iteration.

pixel hits or matched strip hits. A fraction of the strip layers have silicon

sensors on the both sides, which are very close to each other. The hits

obtained from these layers are called matched strip hits. The second step

is called track finding. In the track finding stage, seeds are used to build

track candidates. Using the coarse parameters already known by the seeds,

the track is propagated in the subsequent layers (generally inside-out), and

the new hits are added to each track. The track parameters are updated

at each step using a Kalman filter, as visually shown in Fig. 4.1. The third

step is called track fitting. At this stage, information from all the hits is

combined to get the final estimate of the tracking parameters. A Kalman

filter is used again, now in both directions, inside-out and outside-in, and a
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Figure 4.2: Single muon reconstruction performance at the CMS tracker
as a function pT (CMS Collaboration, 2014). Left figure shows efficiency
and the right figure shows the pT resolution. Monte Carlo data with Run 1
settings.

weighted average is used to get the final values of the tracking parameters.

The matched strip hits are separated into individual hits to improve the

performance at this stage. The last step is called track selection to filter

out fake tracks. This is done either by a χ2 test or by checking compatibility

of whether they originated from the interaction point.

The track reconstruction algorithm at the ATLAS experiment is similar

to the one used in the CMS experiment and is also based on the combina-

torial Kalman filter (Aaboud, Aad, Abbott, Abdallah, Abeloos, S. Abidi,

et al., 2017). Instead of one step local reconstruction, local clustering is also

part of the iterative process in the ATLAS track reconstruction. A neural

network is used to get cluster positions and to identify merged clusters (see

Chapter 6).

In Fig. 4.2, single muon track reconstruction performance at the CMS

detector is shown. High pT tracks are easier to reconstruct. The efficiency

decreases with an increase in η and is therefore low in the endcap region.

The pT resolution is also shown, which follows the inverse trend and worsens

with resolution.

A very similar track finding algorithm, based on Kalman filters, is also
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used for track reconstruction in the muon chambers. Seeds are built using

cathode strip and drift chambers, which are then projected to perform full

track reconstruction (CMS collaboration, 2018).

4.2 Vertex reconstruction

The primary vertex refers to the 3D coordinates of the location where a

proton-proton collisions occurred. A set of decay products originate from

this location as the result of the collision. The direction/position of a par-

ticle can be measured with a high precision (O(µm)) in the tracker. This

fact is important for the reconstruction of the primary vertices. Clustering

is performed on the reconstructed tracks to associate them with their pri-

mary vertices. The number of primary vertices is a random variable and

is not known. At the CMS detector, deterministic annealing (DA) algo-

rithm (Chabanat and Estre, 2005; Rose, 1998) is used for this task. In

the DA algorithm, z coordinates of the extrapolated interaction point (also

called the point of closest approach) for every track based on the tracking

parameters are assigned to a set of assumed vertices. Initially, only one

vertex is assumed but is increased iteratively. At the ATLAS experiment,

an algorithm called adaptive multi-vertex finder and fitter is paired with de-

terministic annealing (ATLAS collaboration, 2019; Piacquadio et al., 2008).

Here, the tracks not assigned to a vertex are analysed to find the most likely

interaction point to build a candidate vertex. Close-by tracks are then as-

signed to the candidate vertex. It is possible that a track can be assigned

to more than one vertex. Once this is done, the tracking parameters of all

the tracks assigned to the new candidate vertex are fitted using a Kalman

filter and outliers are progressively de-weighted via deterministic annealing.

4.3 Calorimeter clustering

At the CMS detector, a traditional clustering algorithm runs independently

on all the calorimeters (i.e. EE, EB, two ECAL preshower layers, HE, HB).
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Therefore, for each run, the clusters are only two dimensional. These are

much simpler detectors when compared to the HGCAL and hence, use of

such algorithms is easier.

As the first step, N seeds are identified as all the cells where 1) the energy

deposit is higher than a threshold 2) the energy deposit is higher than on

the neighbouring cells. Once the seeds are identified, it is assumed that each

of the seeds corresponds to a Gaussian cluster. An iterative expectation-

maximisation algorithm based on Gaussian-mixture models re-evaluates the

parameters of the associated Gaussian functions. In each iteration, in the

first step, the fraction of energy deposit on jth cell by ith cluster is computed

as follows (CMS collaboration, 2017):

fji =
Ai · exp(−(c⃗j − µ⃗i)/(2σ

2))∑N
i Ak · exp(−(c⃗j − µ⃗k)/(2σ2))

. (4.1)

Here, cj and µi refer to the position of jth cell and ith seed, respectively,

in the (η, ϕ) plane. The initial value of the seed’s position (µi) and the

amplitude (Ai) are simply the position of the cell and the energy deposit

on that cell. These are re-evaluated in the second step as follows:

Ai =
M∑
j

fjiEj , (4.2)

µ⃗i =
M∑
j

fjiEj c⃗j . (4.3)

Here, M refers to the number of cells.

Once the algorithm converges, the amplitude and position are taken as

the energy and position of the built clusters.

At the ATLAS experiment, a slightly different method is used (Aad et

al., 2017). Seeds are identified as follows:

|EEM
cell | > S · σEM

noise,cell . (4.4)

EEM
cell and σEM

noise,cell refers to the energy deposited and the average noise on
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a cell, respectively. Both of these values are taken on the electromagnetic

scale. S is a hyperparameter and generally takes the value 4. The seeds are

then grown to the neighbouring cells if the following condition is satisfied

sequentially in the decreasing order of |EEM
cell |/σEM

noise,cell:

|EEM
cell | > N · σEM

noise,cell . (4.5)

N is another hyper parameter that generally takes the value 2. If a neigh-

bouring cell passing the threshold is another seed or belongs to another

cluster, the two corresponding clusters are merged. The procedure repeats

iteratively until all the neighbouring cells satisfying the condition,

|EEM
cell | > P · σEM

noise,cell (4.6)

are collected. P is generally set to 0, collecting all the cells with a non-

negative energy signal; however, it can be increased to increase the purity

of the algorithm. The rule S > N ≥ P applies while selecting the hyperpa-

rameters.

It is important to note that the absolute value of the energy deposit

(|EEM
cell |) is taken. This is because negative signals can also be generated

in the calorimeters and they can also contribute to the growth and forma-

tion of clusters. These negative signals correspond to out-of-time particles

and electronic noise and can provide insight into these effects. While recon-

structing physics objects, such as jets, only the clusters with positive energy

are considered.

4.4 Particle flow algorithm

The tracker and the calorimeters can both measure the energy of parti-

cles. At low pT, the tracker provides a better energy resolution than the

calorimeters, and vice versa at high pT. Additionally, only the calorime-

ters can measure the energy of neutral particles. Hence, an improved event

description can be obtained after combining information from the tracker
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and the calorimeters. This holistic approach is called particle flow. The

reconstructed muons add further information to improve the global event

reconstruction performance.

The particle flow paradigm used in the CMS experiment is detailed by

CMS collaboration (2017). The clusters and tracks obtained from various

sub-detectors are called particle flow elements and they are joined via a link

algorithm. Any pair of particle flow elements can be checked for compati-

bility. The condition to allow a link depends on the type of sub-detectors.

To improve computational time of O(N2), only the elements that are close

to each other in (η,ϕ) plane are tested, obtained via a k-dimensional tree

(Bentley, 1975).

To link a track to a cluster, the last hit of the track is extrapolated to two

layers of the pre-shower and to ECAL and HCAL to depths corresponding to

the expected longitudinal electron shower profile and one nuclear interaction

length, respectively. The track is then linked if the projected position is

within an area defined by the union of associated cells of a cluster. The

area is enlarged to account for the gaps between the cells and modules of

the calorimeters. A link distance is computed in (η, ϕ) plane that defines

the quality of the link. If multiple particle flow elements are linked, only the

link with the smallest distance is retained. In a similar way, muon tracks

from muon chambers are linked to tracks formed in the central tracker.

Fig. 4.3 visualises a set of linked particle flow elements.

Dedicated algorithms are also created for specialised processes such as

bremsstrahlung photons (CMS collaboration, 2015a), which have a high

probability of converting to an e+e− pair already in the tracker. If a pair

of electron and positron are very close in the η space and a compatibility is

found, they are linked. Similarly, a set of tracks can also be linked to each

other if they form a secondary vertex comprising at least 3 tracks, one of

which is the incoming track.

For electrons and single charged hadrons, the energy measurement from

the calorimeter (E) and the momentum measured from the tracker (p) can

60



4.4. Particle flow algorithm

be combined as follows:

Ecorr =
σ−1
p p+ σ−1

E E

σ−1
p + σ−1

E

. (4.7)

Here, σE and σp refer to the expected resolution of the calorimeter and the

tracker. This only occurs if both measurements are compatible i.e. if the

positions and the momentum/energy do not significantly different.

If the calorimetric energy measurement is significantly higher than the

track momentum, a neutral particle is created, which could either be a

photon or a neutral hadron, depending on how much energy is in the HCAL

compared to the ECAL.

A similar linking algorithm is also employed at the ATLAS experiment

(Aaboud, Aad, Abbott, Abdallah, Abeloos, S. H. Abidi, et al., 2017). The

metric used for track-cluster linking is defined as follows:

∆R‘ =

√(
∆η

ση

)2

+

(
∆ϕ

σϕ

)2

. (4.8)

ση and σϕ are widths of the clusters in η and ϕ spaces, respectively, computed

as the standard deviation of the constituent cells of the associated clusters.

The cluster that is closest in ∆R‘ is linked to a track.

61



4.5. The iterative clustering framework (TICL)

0

x (cm)
-250 -200 -150 -100 -50

y 
(c

m
)

-200

-150

-100

-50

0

50

100

π0

π+ π−

K0
LH2

H1

γ γ
T2

T1

E1

E4

E2,3

CMS 
Simulation

Figure 4.3: A visualisation of particle flow algorithm at the CMS experiment
(CMS collaboration, 2017). The two circular surfaces correspond to ECAL
and HCAL surfaces. Tracks T1 and T2 correspond to two hadronic particles
that created showers H1 and H2 in the HCAL. In addition, there are also
four tracks (shown in blue) that correspond to four electromagnetic showers
in the ECAL (E1,...,E4).

4.5 The iterative clustering framework (TICL)

In parallel to research conducted in this thesis, a more traditional method,

called The Iterative CLustering framework (TICL), uniquely for the HG-

CAL reconstruction, is also being developed (Cristella, 2021; Pantaleo and

Rovere, 2022). It is closely related to the iterative tracking method dis-

cussed in Section 4.1. The architecture diagram of the TICL framework is

shown in Fig. 4.4.

The first step is clustering, performed independently at different layers
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4.5. The iterative clustering framework (TICL)

Figure 4.4: An architecture diagram of the TICL framework (Cristella,
2021).

of the HGCAL. This is done via the CLUE algorithm (Rovere et al., 2020).

Local energy density (ρ) is computed for each rechit as:

ρi =
∑
h∈H

χ(i, h)Ej . (4.9)

Here, χ refers to a convolutional kernel which that operates on all the neigh-

bours of a rechit:

χ(i, h) =


1 if ∆(i, h) = 0

0.5 if ∆(i, h) ≤ dc

0 otherwise

(4.10)

∆ is the distance in the (η, ϕ) space.

The CLUE algorithm also computes a quantity (δ) that is defined as

distance to the closest neighbour with a higher ρ. Based on these quantities,

the algorithm picks the rechits with locally maximum ρ as seeds and labels

the ones surrounding as their followers. The rest of the rechits are labelled

as noise.

The layer clusters are then linked to form tracksters. This is done by

a pattern recognition module that can either be CLUE3D, an extension to
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the CLUE algorithm, FastJet (Cacciari et al., 2012) or Cellular Automaton.

Once the tracksters are established, they are also linked to reconstructed

elements from other sub-detectors in a particle-flow like fashion to improve

the performance. Finally, the reconstructed clusters are masked and the

next iteration is executed.

4.6 Summary

Computation is fundamental to the operation of the LHC and its experi-

ments. In this chapter, some of the classical reconstruction algorithms are

discussed.

Charged particles traverse through a tracker in a helical curve. Track

reconstruction involves fitting a curve on the sensor hits. It begins with

seeds which are collected in the initial highly-dense layers of the tracker.

Using Kalman Filters, the track is then progressively extrapolated to the

outer layers. Thousands of charged particles traverse through the tracker in

modern physics experiments which makes track reconstruction a challenging

task. Another pattern recognition task that needs to be performed in the

tracker is called vertex finding i.e. estimating the 3D coordinates of the

primary proton-proton collisions. Deterministic annealing is generally used

for this purpose.

Classical calorimetric reconstruction algorithms generally make use of

the grid-like structure of the existing calorimeters and are generally applied

independently on different layers. Local maxima of energy deposits on the

grid elements are used as seeds which are then grown to find all the clusters.

The classical approach to reconstruction in the HGCAL is called TICL. It

doesn’t rely on a grid-like structure but uses local neighbours to find the

seeds independently on different layers which are then linked.

Calorimeters and the tracker add complementary information to perform

full event reconstruction. The holistic approach which combines information

from different sub-detectors is called particle flow. At the CMS and the AT-

LAS experiments, track and calorimetric reconstruction are first performed
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independently. A particle flow algorithm then links the reconstructed tracks

to their clusters based on their (η, ϕ) proximity and compatibility in energy.

Owing to the intractability of the data, classical algorithms pose com-

putational challenges. They have to be carefully tuned to account for a

wide range of cases that can occur. For example, two calorimetric clus-

ters sometimes have to be linked, and specialisations have to be made for

particle decays in the tracker. In some cases, such as for track reconstruc-

tion, the classical algorithms work well but are too compute-intensive. The

use of machine learning based approaches will alleviate this issue as such

approaches can naturally profit from modern parallelisable hardware.
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Chapter 5

Machine Learning Background

In this chapter, basic concepts of machine learning are discussed. The

discussion is divided into a general overview of artificial neural networks

in Section 5.1, followed by convolutional neural networks and graph neural

networks in Section 5.2 and Section 5.3, respectively. A literature review of

the application of artificial neural networks in high energy physics is also

presented in each section. A brief overview of methods used to predict a

variable number of objects using neural networks is presented in Section 5.4.

Finally, Section 5.5 summarises the chapter and discusses the research gap

addressed in this thesis from a broader perspective after concluding the

literature review.

5.1 Artificial neural networks

Artificial neural networks (ANNs), or simply neural networks (NNs), are

computing systems – loosely inspired by biological neural circuits – that can

be trained to learn various properties. While the history of artificial neural

network dates back to the 50s (Rosenblatt, 1958), the computers of that

time were too slow for wide adoption of the ANNs. With the advancements

in computers and the introduction of parallel processors, their usage has

skyrocketed in the past two decades. Availability of large-scale datasets has

also aided this trend.
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Figure 5.1: An example of three-layer MLP that takes three inputs and
produces a single output. One of the neurons is highlighted in red and it
is shown how it is taking inputs from four neurons in the preceding layer
and multiplying it with a set of learned weights (w◦). The output of this
neuron is then forwarded to three neurons in the subsequent layer.

ANN is a general term used to describe a wide range of trainable comput-

ing systems. The simplest form of ANN is called the Multi-Layer Perceptron

(MLP). It comprises a set of neurons that are grouped into different layers.

The output of a neuron at a certain layer is defined as follows:

l◦ =
N∑
i=1

w◦
i xi + w0 =

N∑
i=0

w◦
i xi = w◦ · x . (5.1)

Here, x0 is always 1 and xi represents the ith input to the neuron, which is

either an input signal or output of another neuron. w◦ is the weight vector

of the neuron. w◦
i corresponds to the contribution of the ith input and w0

is called the bias term.

At the first layer, every neuron is connected to the input signals, repre-

sented as a vector. At the second and the subsequent layers, these neurons

are connected to all the neurons in the preceding layer. The layers which

are not at the output or the input are often referred to as hidden layers.

An example of an MLP is visualised in Fig. 5.1. An MLP is frequently also

referred to as a dense neural network, especially if the layers are part of a

bigger network.
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5.1. Artificial neural networks

The weights of all the neurons in a layer can be summarised in a matrix

(let’s say W ) in which the nth row corresponds to the weights of the nth

neuron. In a two-layer MLP, the output can be written as y = W2(W1x).

By the associative property, W2(W1x) = (W2W1)x = W3x. This defeats

the purpose of having multiple layers. A non-linear activation function ϕ

is added to prevent this, y = W2(ϕ(W1x)). Two-layer MLPs with a non-

linear activation function are universal function approximators (Hornik et

al., 1989).

Some of the widely used activation functions are given below. These

activation functions are applied independently to every output of the neural

network (l).

1. Rectified linear unit (ReLU)

ϕ(l) = max(0, l) (5.2)

2. Exponential linear unit (ELU)

ϕ(l) =

α(exp(l)− 1) if l ≤ 0

l otherwise
(5.3)

Here, α is a hyperparameter.

3. Hyperbolic tangent

ϕ(l) = tanh(l) (5.4)

4. Sigmoid

ϕ(l) =
1

1 + exp(−l)
(5.5)

5.1.1 Training an ANN

The weights of the neural network are initialised with random values. In the

modern approaches, it is common to scale the weights by a factor of 1/M ,

where M is the number of weights in a layer. This is done via a method

called Xavier initialisation (Glorot and Bengio, 2010). A series of examples,
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called a training dataset, are then processed by a learning algorithm with

the goal of finding a set of weights that achieve the best performance on

those examples. This process is called training the neural network.

Training is done iteratively. At every iteration, a cost function (also

known as loss function – floss) is evaluated that quantifies the quality of

the predictions of the neural network. A lower value indicates better per-

formance. This is generally done by comparing the output of the neural

network to a defined truth in the training dataset. The weights of the neu-

ral network are then updated to decrease the cost function. If the quantity

to be learned is a scalar, the mean squared error (MSE) is a commonly used

cost function:

MSE =
1

N

N∑
i=1

(yi − ŷi)2 . (5.6)

y is the output of the neural network and ŷ represents the target. The

cost is then averaged over all the training examples.

Gradient descent (Cauchy et al., 1847) is used as the standard learning

algorithm. Gradient descent updates the weights as follows per iteration:

wi = wi−1 − η
∂floss
∂w

(5.7)

w is the vector representing the weights of all the layers in a neural network.

The −∂floss
∂w

term evaluates the direction in which to update the weights in

order to decrease the cost function. The surface representing the values of

the cost function on all the possible weight values is called the cost surface.

The cost surface is almost never convex and therefore has local minima

and inflection points. The gradient of the cost function at a minimum is 0

and is very close to 0 around it. Therefore, it can occur that the gradient

descent cannot get out of a minimum, halting the training process. η in

Equation 5.7 is called the step length, which defines the scale by which to

update the weights. If η is too low, the learning process is slower and the

risk of getting into a local minimum is also higher. If η is too high, the

learning might not occur at all. Even though η can be set to a fixed value,

generally an algorithm called the optimiser is used that deduces the step
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length in a more sophisticated way to increase the time of convergence. One

such algorithm is the momentum optimiser, which takes the following form.

m and α are momentum and learning rates, respectively, and are taken as

hyper-parameters of an ANN. vi is velocity, which is evaluated for every

parameter at every time step as follows:

vi = mvi−1 − α ∗
∂floss
∂w

, (5.8)

wi = wi−1 + vi . (5.9)

The most widely used optimiser in modern approaches is the Adam

optimiser (Kingma and Ba, 2014), and it follows the update process given

below:

mi = β1 ∗mi−1 + (1− β1)
∂floss
∂w

, (5.10)

vi = β2 ∗ vi−1 + (1− β2)
(
∂floss
∂w

)2

, (5.11)

m̂i =
mi

1− β1i
, (5.12)

v̂i =
vi

1− β2i
, (5.13)

ŵi = wi−1 − α ∗
(

m̂i√
v̂i

+ ϵ

)
. (5.14)

Here, β1, β2, and ϵ are taken as hyper parameters and are commonly set to

0.9, 0.999 and 10−7, respectively. α is the learning rate, again, commonly

set to 10−4 or 10−3.

It is not possible to use all the training examples in an iteration if

the training dataset is too large. The gradients can be approximated via

stochastic gradient descent (SGD) (Bottou and Bousquet, 2007) in that

case. In SGD, a randomly sampled subset is sampled from the training

dataset without replacement in every iteration. The sampled subset of the

training dataset is called the mini-batch. If the training dataset is exhausted

during the iterative process, it is referred to as an epoch. The whole dataset

is refilled after every epoch. n epochs indicate that a learning algorithm has
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used every example in the training dataset n times. The SGD approach has

an added advantage that it is less likely to getting stuck in a local minimum

as fluctuations in the mini-batches yield slightly different gradients.

The process of evaluating the output and the loss of a neural net-

work is called the forward pass. If all the operations performed during

the forward pass are differentiable, ∂floss
∂w

can be evaluated through an al-

gorithm called backpropagation (Rumelhart et al., 1986), an application of

the gradient chain rule. A matrix multiplication, for instance, is a differ-

entiable operation, and even though the ReLU activation function is not,

its gradient can be evaluated through sub-derivatives (Clarke, 1990). The

cost function should also be differentiable. In a N -layers neural network,
∂c
∂w

= ⌊ ∂c
∂W1
⌋ ⊕ ⌊ ∂c

∂W2
⌋ ⊕ ⌊ ∂c

∂W3
⌋ · · · ⌊ ∂c

∂WN
⌋, with ⌊X⌋ representing the matrix

flattening operation and ⊕, vector concatenation.

∂c

∂Wm

=
∂om

∂Wm

∂Wm+1

∂om

∂om+1

∂Wm+1

· · · ∂WN−1

oN−2

∂oN−1

∂WN−1

∂∂WN

∂oN−1

∂oN

∂WN

∂c

∂oN

=
∂om

∂Wm

∂Wm+1

∂om

∂c

∂Wm+1

(5.15)

on is the output of the mth layer of the neural network and Wm, the weights.

It can be observed that the gradient calculations at the mth layer can be

condensed to use the gradient of the (m+1)th layer, by evaluating gradients

backwards. This process is called the backward pass. Software libraries such

as Tensorflow (Mart́ın Abadi et al., 2015), PyTorch (Paszke et al., 2019)

and Jax (Bradbury et al., 2018) can automatically compute the aforemen-

tioned gradients and therefore, generally, only the forward pass needs to be

programmed.

In summary, the weights of the neural network are updated iteratively

via the forward and backward passes until the cost function becomes stable,

at which point the neural network is considered as trained. The training

dataset is expected to be drawn from a stationary distribution that ade-

quately represents the problem. However, it is possible that the learning

process will over analyse the training distribution, and when tested on an-

other dataset sampled from the same distribution, it will not yield equally
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good performance as on the training dataset. This is called overfitting. On

the other hand, if a neural network is unable to sufficiently learn even the

sampled training distribution, it is referred to as underfitting. The extent to

which a neural network achieves the same performance on various datasets

drawn from the problem distribution measures its generalisation capability.

A subset of the available data, called the testing dataset, is withheld to

measure the generalisation performance of the neural network. The gener-

alisation performance on a testing dataset can only be measured so many

times as otherwise, the selection on the basis of testing dataset performance

is in itself a training process. This often referred to as data contamination.

5.1.2 Applications in high energy physics (HEP)

The earliest use of ANNs in high energy physics dates back to the 80s.

Denby (1988) investigated track and cluster finding with neural networks.

The neurons in their neural network were only connected to their neigh-

bouring cells. The tracks were discovered by applying a neural network

iteratively until convergence. In every iteration, the nearby track hits were

connected by the neural network. This is shown in Fig. 5.2. Application

of neural networks for cluster finding and trigger were also studied in the

same work. Another work, Peterson (1989), was published at the same time

where the authors used a very similar method for the task of track recon-

struction. Another early example of the application of neural networks in

HEP is by P. Abreu et al. (1992) where the classification of hadronic de-

cays of the Z0 boson into b and c quark pairs at the DELPHI detector at

CERN’s LEP (DELPHI collaboration, 1991) using a set of 17 jet features

was investigated. The authors used a three-layer MLP with 25 nodes in the

hidden layer and employed the MSE loss for the classification task, and the

target was either 0 or 1 for the two classes 1. A more comprehensive review

of the usage of ANNs in HEP in the 90s was conducted by Denby (1999).

In a more recent work, the discrimination of jets originating from the

1An interesting choice looking from the modern perspective when the cross-entropy
loss is the most popular choice for classification tasks
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top quark and the other partons was investigated by Almeida et al. (2015)

using CMS HCAL data. This was achieved by using a four-layer MLP

and the cross-entropy loss. At the ATLAS experiment, MLPs are used

for local clustering in the tracker (ATLAS Collaboration, 2014) 2. The

approach is similar to Denby (1988), albeit the neural network being more

powerful here. In another interesting application of neural networks, Baldi,

Sadowski, et al. (2014) used neural networks to search for exotic particles by

training a neural network for signal and background classification. Another

recent example of an application of neural networks is for jet substructure

classification (Baldi, Bauer, et al., 2016).

It is evident from the above-mentioned studies that dense neural net-

works have been shown to work for a variety of tasks and are an integral

component of high energy physics. Similarly, gradient boosted decision

trees have also been shown to yield the state-of-the-art results on many

applications. They were first utilised by Yang et al. (2005) for particle iden-

tification at the MiniBooNE detector (MiniBooNE collaboration, 2009) and

were later crucial to the discovery of the Higgs Boson at both the CMS and

the ATLAS experiments (ATLAS Collaboration, 2012; Chen and He, 2015;

CMS Collaboration, 2012).

2also see Section 4.1
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Figure 5.2: Track finding using neural networks in the 80s (Denby, 1988).
For a certain track hit, the neural network decides whether to connect to
all the other points in its near vicinity defined by a threshold in an iterative
fashion. In this example, the neural network has perfectly reconstructed
four tracks.

5.2 Convolutional neural networks

The use of MLPs in grid-like data with large dimensions requires an ex-

tremely large number of weights. E.g. for a 1000 × 1000 pixel image, a

74



5.2. Convolutional neural networks

w1,1

w2,1
w3,1
w1,2
w2,2
w3,2

w1,3
w2,3
w3,3

+

Figure 5.3: A CNN filter: dot product of the feature vector at a certain loca-
tion is taken with various weights vectors. The resulting scalar numbers are
added together and placed in the output grid at the location corresponding
to the centre of the filter.

billion parameters are required in just one layer. Convolutional Neural Net-

works solve this by sharing the weights for neighbouring pixels and exploit

the translation equivariance found in most image data. Like an MLP, a

CNN is also divided into a set of layers, and within each layer, there are N

filters. Each of the filter slides through the grid and produces an output at

every grid point, resulting in another grid with N features:

lx,y = ϕ

(
M−1∑
i=0

M−1∑
y=0

wi,j · zx−⌊M/2⌋,y−⌊M/2⌋

)
. (5.16)

Here, the vector zk,l refers to input features at location (k,l) of the input

grid. The filter weights are also arranged in an MxM grid and the weight

vector at location (m,n) is wm,n. M is an odd number. This is also visualised

in Fig. 5.3. Zero padding is often applied at the edges to keep the total

number of pixels constant at the output of a CNN layer.

In CNN architectures, it is common to reduce the number of pixels with

each layer and, at the same time, increase the number of features. This is

either done by a pooling operation where every group of neighbouring c× c
pixels are reduced to one pixel by either taking the maximum value of all
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Figure 5.4: AlexNet: The first CNN that achieved ground-breaking results
on the ImageNet challenge (Krizhevsky et al., 2012). The number of pixels
is decreased with progressive application of CNN filters. At the end, the
features are concatenated and passed through a set of dense layers. A 1000-
dimensional output signifies 1000 output classes in the ImageNet dataset.

the filters or the average. It is also possible to reduce the dimensionality

by applying a strided convolutional filter. In strided convolution, the filters

are applied only every nth row and nth column. In a typical classification

task, at the end of the last convolutional layer, all the features are flattened

into a single vector. An MLP is then applied to this feature vector.

While the CNNs date back to the 50s (Hubel and Wiesel, 1959), their use

was mainstreamed in 2012 when AlexNet (Krizhevsky et al., 2012) achieved

state-of-the results on the ImageNet challenge (Deng et al., 2009), hence-

forth beginning the deep learning revolution. The CNN architecture used

by Krizhevsky et al. (2012) is shown in Fig. 5.4. In recent years, CNNs have

since been applied to medical imaging (Suzuki, 2017), document processing

(Gilani et al., 2017), agriculture (Kamilaris and Prenafeta-Boldú, 2018),

and many other fields.

5.2.1 Applications in high energy physics

One of the earliest study on application of CNNs in high energy physics was

done by (Aurisano et al., 2016) at the NOvA detector at Fermilab (Ayres

et al., 2007). A deep CNN was used to classify neutrino events without

full reconstruction and improved the efficiency νe classification by 40%.
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While the neutrino detector produces 3D data, in the study, only X and

Y views were taken as input to the CNN. Another earliest study was done

by Oliveira, Kagan, et al. (2016) where jet images from calorimeters were

taken as input to a CNN to classify QCD jets. The authors also studied

correlations of per-pixel input to the output of the network to investigate

how the neural network learns the jet substructure.

Komiske, Metodiev, and Schwartz (2017) also used calorimeter images

for classification of quark and gluon jets. The input jet image was con-

structed by summing up calorimeter deposits in the nearby (η, ϕ) region.

The architecture is visualised in Fig. 5.5. Many other studies have since been

done using CNNs in high energy physics for various classification tasks (Ac-

ciarri et al., 2017; Ai et al., 2018; ATLAS Collaboration, 2017; Choi et al.,

2019; De Oliveira et al., 2020; Fraser and Schwartz, 2018; Guo et al., 2018;

Kasieczka et al., 2017; Komiske, Metodiev, Nachman, et al., 2018; Macaluso

and Shih, 2018; Racah et al., 2016; Renner et al., 2017).

Full simulation of physics data using, for instance, GEANT4 (Agostinelli

et al., 2003), is a time and computationally intense process. In a very

interesting and novel application, Oliveira, Paganini, et al. (2017) showed

that generative adversarial networks (GANs) (Goodfellow et al., 2014) can

be paired with CNNs to generate jet images much faster than running full

GEANT4 simulations. Similarly, it has also been shown that calorimetric

data can be generated using GANs (Paganini et al., 2018). Variational

autoencoders (Kingma and Welling, 2013) can also be paired with CNNs

for the task of fast simulation (Touranakou et al., 2022). Numerous studies

have since been done on pairing CNNs with generator networks for fast

simulation (Belayneh et al., 2020; Buhmann et al., 2021; Di Sipio et al.,

2019; Erdmann et al., 2019; Musella and Pandolfi, 2018; Salamani et al.,

2018).

In applications more related to this thesis, CMS Collaboration (2017)

used CNNs to improve energy reconstruction performance and for identi-

fication of single-particles in the HGCAL. A coarse regular grid was su-

perimposed on the non-uniform data of the HGCAL to get an an input

compatible with CNNs. Similar work was also done for the Future Circular
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Figure 5.5: The CNN used by Komiske, Metodiev, and Schwartz (2017) to
classify jet images into quarks and gluons.

Collider3 (FCC collaboration, 2019a). In a more recent work, Akchurin et al.

(2021) also used CNNs to improve the energy reconstruction performance

in standalone calorimeters for single-particles. This is shown in Fig. 5.6.

These works relate to the discussion in Section 3.3 and show that software

compensation using neural networks can significantly improve reconstruc-

tion performance.

In an interesting application, Neubüser et al. (2022) employed CNNs to

improve the longitudinal design of calorimeters while taking the software

compensation into account.

3FCC collaboration (2019b)
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Figure 5.6: A CNN is used to improve the response (left) and resolution
(right) of hadron energy reconstruction (Akchurin et al., 2021).

5.3 Graph neural networks

While CNNs are powerful neural networks, not all the data can be repre-

sented in a grid-like structure. Examples of such data include molecular

data, social networks, or documents. This data can, however, be repre-

sented as a graph. A graph is a very generic datastructure, i.e. images,

audio clips, sets, can all be represented as graphs. A graph is composed of

a set of objects called vertices or nodes. Any pair of nodes can be linked

via an edge to signify, for instance, a real-world connection between the

connected nodes. The link can either be directional or non-directional. All

the nodes that a certain node has an edge with are called neighbours of that

node. Mathematically, a graph G is a tuple, comprising a set of vertices V

and a set of directed edges E and undirected edges U :

G = (V,D, U) , (5.17)

D = {(x, y) ∋ x ∈ V, y ∈ V } , (5.18)

U = {{x, y} ∋ x ∈ V, y ∈ V } . (5.19)
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Figure 5.7: A very simple directed graph. Nodes are shown as circles and
edges as arrows, representing the direction of the edge. The edges are also
weighted.

The graph is called a directed graph if |U | = 0 and similarly, an undirected

graph if |D| = 0.

One or more labelling functions can also be defined on either the edges

or nodes to label various properties. It is common to assign a number to all

the edges via a labelling function, w(v) ∈ R, ∀ v ∈ V , making the graph a

weighted graph. An example of a weighted graph is shown in Fig. 5.7. The

graph connectivity can also be expressed in the form of an N×N adjacency

matrix A. The diagonal is always 1 and Aij element of the matrix is 1 if

ith node is connected to jth node. It can also be any other number in the

case of a weighted graph. For undirected graphs, AT = A.

A Graph Neural Network (GNN) is an artificial neural network that

operates on graph data. For example, a GNN can take as input a set of

molecules in a drug, represented as a graph, and produce the probability
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that the drug is safe for human consumption at the output. The graph

neural network model was introduced in (Scarselli et al., 2008) as an exten-

sion of recursive neural networks. The model includes an iterative diffusion

algorithm. A processing neural unit is associated with each node of the

graph, and information via this unit is propagated according to the graph

connectivity. This continues iteratively until the graph reaches the state of

equilibrium, at which point, the output of the graph is taken as the output

of the neural network. This work was extended by Li et al. (2015) using

gated recurrent units (GRUs) (Cho et al., 2014) for propagation of infor-

mation between the nodes. GRUs are a neural technique commonly used

in recurrent neural networks for learning sequences. One class of GNNs is

called the spectral graph neural networks, where the spectrum of the adja-

cency matrix is analysed. In graph convolutional neural networks (Bruna

et al., 2013), the convolutional operation is done on the Fourier domain by

Eigen decomposition of the Laplacian of the graph. A lot of research has

since been done on spectral GNNs (Defferrard et al., 2016; Henaff et al.,

2015; Kipf and Welling, 2016).

In non-spectral approaches, operations such as convolution operations

are defined directly on the graph (Duvenaud et al., 2015), i.e. on the neigh-

bourhood of nodes. Atwood and Towsley (2016) defined a diffusion opera-

tion, i.e. by taking powers of the transition matrix. A more recent GNN

architecture is called GraphSAGE (Hamilton et al., 2017). For forward

propagation, GraphSAGE samples a fixed number of neighbours for each

of the nodes and information is aggregated over these sampled neighbours.

The aggregator functions are order invariant. In the study, mean and max

were used for aggregation. Other examples of non-spectral approaches are

graph attention networks (Veličković et al., 2017) and message passing neu-

ral networks (Gilmer et al., 2017).

The data produced by the HGCAL is only composed of a set of points,

i.e. all the hits with energy above a threshold. In this data like this, the

graph structure is defined a-priori and has to be dynamically learned. One

of the earlier work extending GNNs to such point clouds is the Dynamic

Graph Convolutional Neural Network (DGCNN) (Y. Wang et al., 2019). In
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the DGCNN, the points are transformed to a learned space and neighbours

are defined as the K nearest neighbours for each of the node in this learned

space. The information is then aggregated on the neighbourhood of graph

nodes using the edge convolution operation. In the edge convolution, the

convolution operation is performed on edges defined by difference of features

of the associated nodes.

Another recent work on points cloud was done by Qasim, Kieseler, et al.

(2019). Two GNNs, GravNet and GarNet, were introduced. In GarNet, N

virtual nodes (called aggregators) are added to the graph and are connected

to all the non-virtual nodes. The information is then aggregated over these

nodes by permutation-invariant aggregation functions. The GravNet is sim-

ilar to the DGCNN. It is used in this thesis and is therefore described in

Chapter 7 in more detail.

5.3.1 Applications in high energy physics

Henrion et al. (2017) used Message Passing Neural Networks (MPNNs)

(Gilmer et al., 2017) to classify whether the origin of a jet was a W boson

or QCD. It was shown that this method outperforms the previously pro-

posed recursive neural networks for the application (Louppe et al., 2019).

Abdughani, J. Ren, et al. (2019) searched for stop pair production (i.e. clas-

sifying signal from background) using the fully connected MPNN approach.

They show that this method outperforms MLPs. The MPNN is also used

for event classification by the same authors to study Higgs coupling (Ab-

dughani, D. Wang, et al., 2021; J. Ren et al., 2020).

A GNN architecture called ParticleNet was proposed by Qu and Gouskos

(2020). It is based on DGCNN (Y. Wang et al., 2019) hence it operates

on points cloud. The authors used it for quark/gluon classification and top

tagging. Bernreuther et al. (2021) used the same architecture, ParticleNet,

for semi-visible and top boosted top jet classification.

Moreno, Cerri, et al. (2020) and Moreno, Nguyen, et al. (2020) used in-

teraction networks (Battaglia et al., 2016) for multi-class classification of jet,

gluons and hadronic decays. Mikuni and Canelli (2020) used Graph Atten-
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Figure 5.8: Pileup subtraction in 20 PU event an architecture based on
Gated Graph Neural Networks (top). The ground truth is shown on the
left and the prediction of the GNN is shown on the right (Mart́ınez et al.,
2019).

tion Networks (Selvan and Arutchelvan, 2021) for quark-gluon classification

and pileup mitigation. Pileup mitigation has also been studied using Gated

Graph Neural Networks (Mart́ınez et al., 2019), achieving state-of-the-art

performance (Fig. 5.8).

5.4 Neural inference of variable number of

entities

For tasks such as classification or regression, a neural network can be de-

signed in a straightforward fashion. For classification, an N -dimensional

vector is the output of the neural network, where N is the number of classes.

However, many problems require an inference of the variable number of en-

tities. An example of such a task is optical character recognition (OCR)

where the number of characters it not known in an image. Specialised

techniques need to be developed in order to achieve this task. For OCR,
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5.4. Neural inference of variable number of entities

recurrent neural networks are used to generate a sequence (Breuel et al.,

2013) until a specific token is generated (Graves et al., 2006).

Another example is object detection or instance segmentation in com-

puter vision. Object detection refers to the prediction of bounding boxes

of various objects of interest (e.g. cars and people) in an image. Research

on object detection has been going on for decades, starting from feature-

extraction methods (Dalal and Triggs, 2005; Lowe, 1999; Zou et al., 2019).

Faster R-CNN (S. Ren et al., 2015), proposed in 2014, was the first time

an end-to-end deep learning based algorithm was used for this task. A

region proposal network generates a set of bounding boxes proposals. Non-

maximum suppression (Neubeck and Van Gool, 2006) is used to resolve

duplicates by filtering out the redundant bounding boxes. Another exam-

ple of an object detection network is Single Shot Detection (SSD) (W. Liu

et al., 2016), where the need for a proposal network is eliminated.

Instance segmentation is similar to object detection, but instead of pre-

dicting bounding boxes, individual pixels are assigned to a set of predicted

objects. A recent work on instance segmentation uses SSD to first build

bounding boxes; and then assign every pixel to the object associated with

each box (Uhrig et al., 2018). Kendall et al. (2018) performed instance

segmentation by pointing to the object centre at each pixel; and the ob-

ject centres are later clustered. In a more recent work (Neven et al.,

2019), intersection-over-union is directly optimised. Another recent work

on instance segmentation was performed by Zhang and Wonka (2021). An-

other segmentation technique called Object Condensation was proposed by

Kieseler (2020). Object Condensation is more general is also suited for

graph data that is not grid-like, and is therefore, used in this thesis. As it

is the basis of the GNN method presented in this thesis, it is described in

more detail in Chapter 6.
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5.5 Summary

In this chapter, introduction to machine learning is presented as well as

its various applications in high energy physics. For reconstruction, it was

evidenced in Chapter 4 that classical methods are very complex in nature.

They have to be carefully tuned to account for a wide range of cases that

can occur. For example, two calorimetric clusters sometimes have to be

linked, and specialisations have to be made for particle decays in the tracker.

The LHC data is also becoming increasingly more intractable in nature,

which makes it challenging to use classical algorithms, and motivates the

use of more data-driven approaches. The applicability of various data-driven

machine learning approaches for a variety of tasks in particle physics was

established in this chapter. Further, sub-optimal choices for parameters

over multiple steps of classical reconstruction algorithms can have significant

impacts on the overall performance, hinting at need for end-to-end neural

network based reconstruction. The discussion in Section 5.4 showed that

substantial research has been done on similar tasks, such as object detection,

in the field of computer vision.

In high energy physics, however, while there is some research on using

CNNs for lightweight reconstruction (Pol et al., 2022), no work has been

done on neural network based end-to-end reconstruction in complex modern

detectors such as the HGCAL prior to the research presented in this thesis.

In tasks such as object detection, however, a grid-like structure is assumed.

Graphs are a generic data structure and are are well suited for complex data

that, for example, cannot be represented in a grid-like format. Therefore,

the research presented in this thesis is a novel application of neural inference

of a variable number of entities on graph-like data.
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Chapter 6

Graph Neural Networks for

Particle Reconstruction

The HGCAL data cannot be easily represented in a grid-like format due

to non uniformity and sparsity. This motivates the use of graphs. How-

ever, the HGCAL data is only a point cloud corresponding to the sensors

activated by the particles. The data format is further discussed in Chap-

ter 7, in Section 7.1.2 and Section 7.2. Therefore, the graph structure –

through which the information is propagated – need to be learned via a

dynamic approach. The state-of-the-art neural network applicable to this

type of problem is called the Dynamic Graph Convolutional Neural Network

(DGCNN) (Y. Wang et al., 2019). However, given the resource constraints

even for offline reconstruction, and the large number of input input that

are expected in 200 pileup events, the DGCNN approach is not feasible for

the task of HGCAL reconstruction. Another dynamic GNN, GravNet, is

faster and has been shown to work very well for calorimetric problems out-

performing the DGCNN (Qasim, Kieseler, et al., 2019). Therefore, in this

thesis, GravNet is investigated for the reconstruction problem, as described

in Section 6.1. Every hit is taken as a graph node as an input in GravNet.

These nodes remain the same throughout the execution of the neural net-

work while the graph structure is re-defined using KNN in a learned latent

space in every application of the GravNet layer. This graph structure is
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Figure 6.1: Architecture diagram of the graph neural network used for
reconstruction

used for the propagation of information.

At the output of the neural network, the objective is to generate the

particles which produced the hits that were given as input. In the truth

definition, every hit is associated to either a true particle or noise.1 There-

fore, one way to define this problem is as a hit clustering problem. Object

Condensation (Kieseler, 2020) is used as the loss function to achieve super-

vised clustering. This is discussed in Section 6.2.

The training process is presented in Section 6.3. The clusters predicted

by the neural network don’t need to be evaluated during the training phase.

This is required only at the inference time and the method to do so in

Section 6.4.

Finally, the summary of the chapter is presented in Section 6.5.
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6.1 Neural network

The architecture diagram of the neural network is visualised in Fig. 6.1.

It consists of three GravNet blocks, each of which has multiple message

passing and dense layers. The output of all the GravNet blocks are con-

catenated together, and it is followed by more dense layers. To describe

the neural computation graph precisely, the input and output features at

a layer n are represented as Xn and Xn+1, respectively. The vertices are

always represented as a set H, and hence Xnh
indexes the input feature

vector corresponding to node h at the nth layer.

The input to the neural network is a set of detector hits X0, and each

hit is comprised of a column vector. r, η, ϕ (x, y, z) are the boost-invariant

cylindrical coordinates (Cartesian coordinates) of the sensor, A is its area,

and e is the deposited energy. The input features are not all independent,

i.e. x and y, for instance, can be inferred from η, ϕ and z; however, adding

them to the input has near-zero impact on the computational cost and can

help train the neural network faster. The variable t representing the time

when the sensor registered the energy is only present in the HGCAL data

(it is set to 0 in the toy calorimeter2):

X0 = {[r, η, ϕ, x, y, z,A, e, t]h∀h ∈ H} . (6.1)

At the output of the neural network, six values are produced for each

hit:

XN = {[x, β ′
, ψ, ϕ]h∀h ∈ H} . (6.2)

Here, x corresponds to three-dimensional clustering space coordinates, β
′

is

used to evaluate the confidence score, ψ is energy correction factor and ϕ is

the local distance scaling factor.

Global exchange is a normalisation layer and does not have any trainable

parameters. Mean, maximum, and minimum values are computed indepen-

dently for all the features across the input set, and concatenated (⊕) with

1Procedure 2 discusses this in more detail in Chapter 7.
2The toy calorimeter is described later in Section 7.1.1
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features of each node, as a form of message passing:

Xn+1 =
{(
Xnh
⊕ mean(Xn)⊕ min(Xn)⊕ max(Xn)

)
∀h ∈ H

}
. (6.3)

The number of features increases by 4× for each node with every application

of the global exchange layer.

The dense layer (D∗) is independently applied to all the vertices multiple

times in the neural network (as shown in Fig. 6.1). D∗ has not been indexed

and refers to a unique dense layer every time it is used. ReLU is used as

the activation layer (ϕ) in all the dense layer, except the last layer where

there is no activation. Dense layer is also used as a part of the GravNet

layer. Wn and bn are the trainable weights of the dense layer. The number

of columns of Wn is equal to the dimensions of the input vector (x) and

the number of rows corresponds to the number of output features. bn is the

bias term with the same cardinality as the output features.

Xn+1 = D∗(Xn)

=
{(
ϕ(WnXnh

+ bn)
)
∀h ∈ H

} (6.4)

The distribution of the features at a certain neural network layer changes

as the neural network learns and updates its weights. This phenomenon is

called the internal covariance shift. It slows down the learning process

because intermediate neural network layers have to learn to accord with

the shifted distribution. A batch normalisation layer (Ioffe and Szegedy,

2015) reduces the internal covariance shift by normalising using mini-batch

statistics. E(Xn) and var(Xn) represent the expected value and variance

of the features. During the training phase, these are computed over the

mini-batch. In the neural network presented in this thesis, the vertices are

flattened across multiple inputs and are used independently for the compu-

tation of the mini-batch. Moving statistics are used for the computation of
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E(Xnh
) and var(Xnh

) during inference:

Xn+1 =

{(
Xnh
− E(Xn)√
var(Xn)

)
∀h ∈ H

}
. (6.5)

6.1.1 GravNet layer

To dynamically learn the graph structure, in GravNet, the feature space of

the input vertices is transformed into two distinct spaces: coordinate space

(S) and feature space (F ), via dense layers (D∗):

S = D∗(Xn) , (6.6)

F = D∗(Xn) . (6.7)

The transformation into the coordinate space (S) is linear, i.e. the dense

layer does not have an activation function, and the dense layer used in the

feature space transformation uses the ReLU activation. The dimension-

ality of S is chosen to be lower compared the dimensionality of F . This

improves the computational performance by defining neighbours in low-

dimensional coordinate space; while the feature information is carried in a

high-dimensional space. In the neural network presented in this thesis, the

feature space has 64 dimensions and the coordinate space, 6.

A graph is dynamically defined using KNNs, i.e. for a node h, its neigh-

bours are the K nearest node in S.

D = {∪{(x, h, d(x, y))∀x ∈ KNN(h)}} . (6.8)

The resulting graph is directed, and the neighbours of a node are pointed

towards the said node. The edge weight, defined by labelling function d, is

the exponentially decayed Euclidean distance from the node h:

d(x, h) = exp
(
−∥Sx − Sh∥2

)
. (6.9)

For every node h, the feature space information is then aggregated by
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taking mean and max over all its neighbours (N (h)). These functions are

called aggregation functions; and any perturbation-invariant function can

be used. The aggregated information is weighed by the edge weight as

a form of attention mechanism. It is followed by a subtraction from the

features of the node h:

Gh = Fh − mean({d(x, h)Fx ∀x ∈ N (h)}) , (6.10)

Ih = Fh − max({d(x, h)Fx ∀x ∈ N (h)}) . (6.11)

The weighing operation is necessary for the learning algorithm, as otherwise,

the gradients for the computation of S would not exist. Therefore, the gra-

dient descent learning algorithm changes S to reduce the distance between

two nodes that require strong information exchange in every iteration. This

is called graph topology learning.

Features in G and I are concatenated with the input features to get

another feature set O; and finally, O is transformed to the output space

Xn+1 via another dense layer. The activation function for the dense layer

at the output is also ReLU.

Oh = Fh ⊕Gh ⊕Hh (6.12)

Xn+1 = D∗(O) (6.13)

6.1.2 Distance-weighted message passing

The information aggregation process in a GravNet layer can also be sep-

arated into a series of message passing layers, which can be stacked into

L layers. This increases the depth of the neural network and, therefore,

increases its expressive power. In these message passing layers, the same

graph, as defined in the GravNet layer, is used.

Beginning with:

O0 = D∗(Xn) , (6.14)
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and for i ̸= 0:

Gih = O(i−1)
h
− mean({d(x, h)O(i−1)

x
∀x ∈ N (h)}) , (6.15)

Iih = O(i−1)
h
− max({d(x, h)O(i−1)

x
∀x ∈ N (h)}) , (6.16)

Oih = Gih ⊕ Iih ⊕O(i−1)
h

. (6.17)

At the last iteration, the O becomes the output of the distance-weighted

message layers set:

Xn+1 = IL . (6.18)

6.2 Loss function

The object condensation method is extended in this thesis to account for the

complexity of the calorimetric data by softening various loss terms. These

modifications make the method more robust to stochasticity in the truth

definition and when its not clear whether two showers are the same or not.

Such problems occur especially more in the presence of pileup where a high

number of very low energy particles are presence. The object condensation

paradigm embeds all the associated hits into a clustering space (xh). It

must have at least two dimensions to guarantee a monotonous path in the

clustering space towards a minimum. Over three dimensions are compli-

cated to visualise. In this thesis, a three dimensional clustering space is

used.

For each particle shower, a representative hit, referred to as the con-

densation point, is learned. The condensation point is determined by the

condensation confidence score that is produced for each of the hit (βh). The

condensation confidence score is sigmoid activated and is hence restricted

between 0 and 1:

βh =
1

1 + exp(−β ′
h)

. (6.19)

Here, β
′

h is the raw value produced by the neural network for every hit.
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All the properties of the shower are aggregated into this condensation

point through a payload loss. In the neural network presented in this thesis,

the payload loss only consists of an energy correction factor ψh ≈ 1, which

is further described below. Finally, a dynamic distance measure φh is also

introduced, that scales with the distance from other showers and noise hits

in the clustering space. This addition allows to keep the cluster coordinate

space low dimensional, and therefore interpretable, while introducing an-

other degree of freedom to adopt distances to locally dense environments.

The distance is also sigmoid activated and is restricted between 0 and 1.

Therefore, in total, the neural network has a 6-dimensional output per hit.

The loss consists of three terms: the potential loss LV is responsible for

creating the clustering space and embedding hits into it, the condensation

score loss Lβ trains the network to identify the condensation points, and

the payload loss LP creates gradients for the other object properties, in our

case the energy correction factor. The relative contribution of the two loss

terms is set by a factor sC , which is taken as sC = 1 in this thesis.

L = LV + sC(Lβ + LP ) (6.20)

Especially for the hadronic showers, hits that are significantly displaced

in position from the shower core are challenging to assign to their inci-

dent particle. The mis-assignment of these hits to showers that are closer

in space, but initiated by another incident particle, is relatively common

and difficult to avoid. Typically, such hits are low energy, so their correct

shower association is less critical to estimating the total shower properties.

With this in mind, the original object condensation method is adapted to

reduce the impact of the mis-association of this class of hits in the network.

Mathematically, this also serves to reduce the maximum fluctuations in the

gradients. In comparison to Kieseler (2020), the calculation of the clustering

charge qh has also been adapted, and the potential terms are smoothened.

The clustering charge is calculated based on βh with 0 ≤ βh ≤ 1. The

calculation of qh is slightly rescaled to avoid strong gradients for βh → 1 by
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Figure 6.2: How calculation of qh is affected (qmin = 0 is affected with and
without a safeguard over full β range (left) and zoomed in (right).

Figure 6.3: Two examples of the concept of spectators. The hits that are
marked as spectators are shown in red and the rest of the hits are shown in
grey.

adding a safeguard:

qh = arctanh2(βh/1.002) + qminνh . (6.21)

This is also shown in Fig. 6.2. arctanh2 approaches ∞ when β approaches

1 without the safeguard.

In addition, a new parameter νh that describes a spectator weight is in-
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troduced for each hit. Hits that are scattered far away from the shower core

receive a smaller weight of νh = 0.1, while all other hits receive a weight

of νh = 1. To define whether a given hit should be considered a specta-

tor, a principal component analysis (PCA) is applied on the truth-assigned

energy-weighted hit coordinates of the shower to identify the two principal

components which act as the proxies for the shower axes. For this task, the

shower axes are defined in two dimensions only, where the dimensionality is

reduced by one because of the shower symmetry. The hits belonging to the

shower are then projected onto the defined shower axes. Using the projected

coordinates, the Mahalanobis distance (Mahalanobis, 1936) is computed for

each hit. A hit is considered a spectator if its Mahalanobis distance is larger

than 3. This is visually shown in Fig. 6.3. It can be easily observed there

are some hits that are very far from the core of the shower and are hence

marked as spectators (red). The spectator hits are assigned as such during

the dataset preparation stage.

For the attractive and repulsive potential losses, the hit αt with the high-

est β score for each truth shower t, also taking into account the spectator

weights, plays a special role. It is defined as:

αt = argmax
h∈Ht

(βhνh), (6.22)

where Ht is the set of hits belonging to truth shower t. Furthermore,

the β-weighted average learned distance scale φt for a truth shower t is

calculated as:

φt =

∑
h∈Ht

βh ∗ φh∑
h∈Ht

βh
. (6.23)

Here, ϕh is produced at the output of the neural network for every hit.

Taking the weighted average over the shower as opposed to considering

only the hit αt has the advantage that it creates a more consistent gradient

for φh to be learned for every hit. A similar approach is taken for the

reference point in the clustering space of the potentials that attracts or

repulses other hits. Here, the reference point for each truth shower t is
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calculated as

x(t) =
1

2

(
xαt +

∑
h∈Ht

(βhqhxh)∑
h∈Ht

βhqh

)
. (6.24)

This represents another modification of the original object condensation

loss, which takes xαt only. The new term in the sum serves to remove noise

from the training, while keeping a large impact of the hit αt, which helps

to resolve the degeneracy at the beginning of the training. Based on these

ingredients, the attractive potential loss, V̆h, is then re-defined as follows:

V̆t(h) = qαtwt ln

(
e ·
(
∥xh − x(t)∥2

2φ2
t + ϵ

)
+ 1

)
, (6.25)

where wt is the shower weight. For Etrue > 10, wt = 1. From 10 to 0.5

GeV, it linearly decreases from 1 to 0. ϵ is a small number that is added

for numerical stability. The repulsive loss is modified accordingly, as

V̂t(h) = qαtwt · exp

(
−∥xh − x(t)∥2

2φ2
t + ϵ

)
. (6.26)

The full potential loss function takes the form:

LV =
1

|T |
∑
t∈T

 1

|Ht|
∑
h∈Ht

qhV̆t(h) +
1

|H −Ht|
∑

h∈(H−Ht)

qhV̂t(h)

 . (6.27)

Here, H−Ht represents the set difference, i.e., all hits that are not assigned

to shower t. The payload loss LP is also weighed by the object weight wt

to reduce the impact of low energy showers, that is

LP =
∑
t∈T

wt∑
h∈Ht

ξ(h)

∑
h∈Ht

ξ(h)LE, (6.28)

with ξ(h) = arctanh2(βh/1.002). The energy loss contribution LE is calcu-

lated as

LE = log

(Etrue,t − ψhEdep,t√
Etrue,t + 0.003

)2

+ 1

 , (6.29)
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where Edep is the total energy collected in the calibrated calorimeter cells

associated with the truth shower t.

The beta loss term consists of two parts and is identical to Kieseler

(2020),

Lβ =
1

|T |
∑
t∈T

(1− βαt) + sB
1

|H◦|
∑
h∈H◦

βh. (6.30)

The first term ensures that at least one hit per truth shower is promoted to

a condensation point. The second term suppresses noise. H◦ represents the

set of all noise hits. The scaling factor sB = 1 is chosen to be 1.

6.3 Training

Standard stochastic gradient descent and Adam optimiser (Kingma and

Ba, 2014) were used for training the neural network only one event is used

per training iteration. A learning rate of 10−4 was used. The training is

continued until the loss function converges to a stable value in expectation.

This occurs in O(104) iterations and approximately takes a week on a high-

end GPU.

Two models were trained for the results presented in this thesis. First, 60

multi-particle events are overlapped with 200 pileup. Due to computational

constraints, it is impractical to train with full 200 pileup. To overcome

this, for each pileup event, a point is randomly sampled in ϕ0 ∼ U(0, 2π)

and afterwards Psecondary with impact directions between ϕ0 and ϕ0+30◦ are

selected. This is labelled the phase cut trick. This ensures that highly dense

local conditions are present in the training set but reduces the computational

complexity for training. The non-pileup particles are left intact. This is also

visualised in Fig. 6.4.

The model is first trained for 68 epochs on a toy dataset using 5, 000

training samples. The toy dataset is described in Chapter 7, in Section 7.1.2.

The same model is then copied and fine tuned on a multi-particle dataset

without pileup for 3 epochs. This dataset is composed of HGCAL events

and contains 33, 000 training samples (further described in Chapter 7, in
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Figure 6.4: An example of a training event. Pileup particles are only present
in a randomly selected ϕ region (on the right side in this figure).

Section 7.2). During the fine-tuning process, νh is set to 1 ∀h ∈ H; and

therefore, the spectators have not been used for the multi-particle model.

Since no pileup is present here, the training can be easily done over the full

event without the need of the phase cut technique.

6.4 Inference

Once the training has finished, the predicted clusters are evaluated, using

an inference clustering algorithm. The inference algorithm from Kieseler

(2020) has also been extended to reflect the introduction of the local distance

scale ϕh. The algorithm is outlined in Procedure 1 and is applied to the
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learned clustering space. The algorithm starts with the hit with the highest

β-score βα and assigns all hits within a certain radius td · ϕα to it, with

td = 1.0 (Step 7). These hits are removed for the next iteration (Step 9 and

Step 10). This procedure is repeated until the highest β-score is lower than

the threshold tβ, set to 0.3 for the toy calorimeter and 0.5 for the HGCAL.

The remaining unassigned hits are considered as noise.

To choose the td and tβ values, a parameter scan was performed. At

every value pair, the efficiency and resolution curves were manually studied

to find the best combination.3 A lower value of tβ results in production of

more showers and hence, more fakes. A lower value of td results also results

in more showers as it would potentially over split the showers due to the

lower radius.

To determine the energy of the reconstructed cluster, the energy is

summed over all the hits assigned to the cluster collected around hit α

and multiplied by the learned energy correction factor ψα (Step 8).

Procedure 1 Clustering Inference

Input H, β, x, ψ, φ, td, tβ
Output P

1: P← {}
2: Hcand ← {h ∋ βh > tβ∀h ∈ H}
3: Hfree ← H
4: while |Hcand| > 0 do
5: α← argmaxh(βh∀h ∈ Hcand)
6: p← NEW PARTICLE
7: Hp ← {h ∈ Hfree, ∥xh − xα∥ < tdφα}
8: Epred(p)← ψα

∑
h∈Hp

eh
9: Hfree ← Hfree −Hp

10: Hcand ← Hcand −Hp

11: P ← P ∪ {p}
12: end while

3This is same in spirit – albeit much more complex – to how the classification threshold
is chosen by plotting the ROC curve.
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6.5 Summary

In this chapter, the reconstruction method that is the main contribution of

this thesis is presented. The data produced in complex detectors can be

generically represented as a point cloud. Dynamic graph neural networks

are then employed which learn the graph structure. These methods are

based on k nearest neighbours in a learned latent space. Message passing

is then performed on these nearest neighbours.

One such method is called GravNet where the hit features are trans-

formed to independent spaces, the feature space and the coordinate space.

The graph is defined in a lower dimensional coordinate space for perfor-

mance reasons and feature information is carried in a higher dimensional

space. Distance based attention is then applied on the coordinate to learn

the coordinate space.

A generic clustering loss function – called object condensation – is paired

with GravNet. In object condensation all the hits are mapped from the

input space to a learned clustering space such that all the hits that belong

to one shower are very close to each other and those that belong to different

showers are far away. A simple clustering approach can then be used to find

the desired particle showers. In object condensation, object properties can

also be jointly inferred using a payload loss function. This capability is then

employed to regress energy of the reconstructed particles. The adaptions

to the original object condensation method – which allowed reconstruction

in highly stochastic environment of the HGCAL – are also presented in this

chapter.
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Chapter 7

Physics Performance

Physics or reconstruction performance refers to the accuracy of the recon-

structed events, i.e., both the clustering performance and the accuracy of

the reconstructed particles. The accuracy of the reconstructed particles

is defined by both identification (ID) accuracy and the energy resolution.

Although, ID – which encompasses finding the type of the particle (i.e.,

whether it was an electron, proton etc) – is beyond the scope of this thesis,

the clustering and energy/momentum reconstruction performance is studied

in this chapter.

The events produced at the LHC are complex in nature and are defined

by a range of effects that affect the reconstruction performance. The perfor-

mance is a function of energy and also depends on the type of particles, i.e.

hadronic particles are harder to reconstruct compared to the electromag-

netic particles. Therefore, depending on the event type, the reconstruction

performance analysis has to be carefully conducted.

First, reconstruction performance in pileup environments is studied in

Section 7.1. A stand-alone calorimeter, with properties sufficiently close

to the HGCAL but without the computational complexity of simulating

the other detector components of CMS that are of no or little effect, is

used for this purpose. It is presented in Section 7.1.1. The reconstruction

performance is then studied independently for single particles and for jets

in Section 7.1.3 and Section 7.1.4, respectively.
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7.1. Reconstruction performance in the toy calorimeter

The HGCAL data does not contain one probe particle per event, unlike

the toy calorimeter. This fact makes it harder to study reconstruction per-

formance as now it has to be studied over all the particles in an event. This

is done in a number of ways. First, in Section 7.2.1, the performance analy-

sis is done on all the particles by one-to-one truth-predicted matching. It is

then extended to a case where multiple matches are allowed in Section 7.2.2

to study over splitting and over merging. Like in the toy calorimeter, jets

are also used to study the reconstruction performance in the HGCAL, in

Section 7.2.3. Here, the performance of the neural network is compared

to the classical reconstruction algorithm for the HGCAL. Finally, results

are extrapolated to pileup conditions in Section 7.2.4 based on local energy

density.

In all the cases, the reconstruction performance is presented as a function

of pT . While the neural network is regressing only the particles’ energy,

for the pT computation, energy-weighted mean hit positions are used to

estimate the particles’ direction. For consistency, the same methodology

has also been employed to compute the truth-level pT .

Finally, Section 7.3 summarises the Chapter.

7.1 Reconstruction performance in the toy

calorimeter

7.1.1 Calorimeter description

For studying the reconstruction performance in high pileup environments

expected at the HL-LHC, a simplified model of the CMS HGCAL1 in

GEANT4 (Agostinelli et al., 2003) is presented in this thesis. While this

toy calorimeter does not simulate electronics and has simpler geometry com-

pared to the HGCAL, the average occupancy is approximately the same as

in the HGCAL. Therefore, reconstruction studies done on the toy calorime-

1Use of CMSSW requires years in approval before the results can be published. This
is not compatible with the timeline of this thesis.
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Figure 7.1: On the left, the longitudinal cross section of the detector is
shown where different colours correspond to different materials - copper
(orange), stainless steel and lead (gray), air (white) and silicon (black).
Right: Transverse cross section of the last active layer of the detector,
showing how the sensors are formed by slicing across r and ϕ.

ter are expected to fully generalise to the HGCAL.

A cross-sectional view of the detector is shown in Fig. 7.1. The detector

is positioned 3.2 m away from the interaction point and covers the endcap

region (1.5 < |η| < 3). Longitudinally, the detector is divided into three

sections:

1. Electromagnetic part consisting of 14 layers

2. Hadronic Section 1 consisting of 12 layers

3. Hadronic Section 2 consisting of 16 layers

The thickness of the simulated silicon sensors is always 200 µm and

there are two sensor segments in each of the electromagnetic layers. Cop-

per, lead and steel are used as the absorber materials. The hadronic part

is divided into two sections, and the first section has relatively thinner ab-

sorbers. There is always one active silicon segment in each of the hadronic

layers. The materials and their thickness can be observed in Fig. 7.2. The

electromagnetic section corresponds to 17·X0 and 1.3·λI while the hadronic

section is 10 · λI .
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7.1. Reconstruction performance in the toy calorimeter

Instead of hexagonal shaped sensors, which will increase the complexity

of the simulation, square shaped sensors in (η,ϕ) plane were used in the

toy calorimeter. This is achieved by segmenting the silicon layers uniformly

first across η and then ϕ. The number of segments across the ϕ axis is

always 4× the number of segments across the η axis. This ensures that the

sensors are approximately square shaped in the (η,ϕ) plane. The size of a

cell decreases with the number of the active layer it is part of. In the first

layer, 0.02× 0.02 size sensors were used, and it drops to 0.07× 0.07 in the

last layer. Fig. 7.3 shows the number of segments and number of sensors as

a function of z. The high slope on the left of the Fig. 7.3b represents the

high number of sensors in the electromagnetic section of the calorimeter. In

total, there are approximately 0.8 million sensors.

A calibration is performed on the raw energy deposits by re-scaling the

hit energies. For this purpose, only one parameter (g, the global scaling

factor) is learned. The thickness of the absorber preceding an active layer

is then used to infer the calibration factor of that layer. ws and wa(s)

represent the width of the sensor s and the absorber preceding it.

cs = 1 +
wa(s)

ws(s)
, (7.1)

g is evaluated using only photons as the calibration set (T ) via the RMS

method, as follows:

ĝ = argmin
g

∑
t∈T

(E(t)−
∑
s∈S

gcs draw(s, t))2. (7.2)

The quality of the calibration can be observed in Fig. 7.4.

Fig. 7.5 visualises examples of single-particle showers in the toy detector.

As expected, the photon fully showers out in the electromagnetic section of

the calorimeter whereas the π+ crosses into the hadronic section. Laterally,

the hadronic shower is also wider, as noted in Section 3.3.
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Figure 7.2: Block diagram showing different materials that form the detec-
tor. The arrows on the right of the diagram divide into three sections (one
electromagnetic and two hadronic).

7.1.2 Dataset

For event generation in the toy calorimeter, first independent simulations

are generated, which can either be the cascade resulting from proton-proton

interactions or single particles. These are later joined to form events of

desired complexity. The pileup collisions are independent random processes,

as the probability of particle-particle interactions is close to zero. Therefore,
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Figure 7.3: Fig 7.3a: ∆(η, ϕ) as a function of z, spanning the length of the
detector along the longitudinal axis (left axis) and the number of segments
needed across η and ϕ (right axis). Fig 7.3b: Cumulative number of sensors
as a function of z. The vertical line represents the location where the
electromagnetic section ends.
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Figure 7.4: A scatter plot showing calibrated deposited energy versus true
energy of photons shot between 1.8 < η < 2.8. Edep = Eimpact line is
highlighted.

a set of pp collisions can be simulated and stored in a pileup library. Pythia

(Sjöstrand et al., 2015), the most common software used for the production

of primary particles, is employed for the production of primary particles in

proton-proton interactions.

The location of a pp interaction at the LHC is called the vertex. The

z coordinates of the vertex are randomly distributed (z ∼ N(0, 5 cm) in a

realistic collider; however, the interaction point is considerably far away that

it can be taken as (0, 0, 0) for the purposes of calorimetric reconstruction. A

magnetic field is also present in the CMS detector that bends the particles

along the ϕ axis. This does not impact the distribution of particles in the

calorimeters and it can also be safely omitted without loss of complexity.

Four types of simulations are generated:

1. Type A: Single-particle simulations for training. The particles are

randomly chosen as e−, γ, π+, π0 or τ , with momentum coordinates

uniformly distributed in E ∈ [0.1, 200] GeV, η ∈ [1.4, 3.1], and ϕ ∈
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7.1. Reconstruction performance in the toy calorimeter

Figure 7.5: Top: 100 GeV γ shower. Bottom: 110 GeV π+ shower.

[0, 2π]. 3.1·105 simulations are generated that are all used for training.
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7.1. Reconstruction performance in the toy calorimeter

2. Type B: Stable single-particle simulations generated 1 mm away from

the detector, as if they were coming from the interaction point in a

straight line for testing performance of the models. The particles

are randomly chosen as e−, γ, or π+, with momentum coordinates

uniformly distributed in E ∈ [0.1, 200] GeV, η ∈ [1.6, 2.9], and ϕ ∈
[0, 2π]. 80, 000 simulations are generated which are all used for testing.

3. Minimum Bias: Minimum bias proton-proton interactions gener-

ated at a center-of-mass energy of
√
s = 13 TeV. 3.1 · 105 and 2 · 105

simulations are generated for training and testing, respectively. These

are stored as a pileup library.

4. tt̄: Synthetic qq → tt events generated at
√
s = 13 TeV using

PYTHIA8. This sample is used to study the jet reconstruction ac-

curacy (see Section 3.5). 40, 000 simulations are generated, which are

all used for testing.

Procedure 2 Event Generation
Input S
Output H,T

1: T ←
⋃

S∈S Psecondary(S)
2: Gclose ← (T, {fclose(p1, p2)∀(p1, p2) ∈ T × T})2
3: T ← merge (connected components (Gclose))
4: for each i ∈ S do
5: t(i)← undef
6: e← sample(N(0, 5× 10−6))
7: emax ← maxT (draw(i, p)∀p ∈ T )
8: if emax > e then
9: t(i)← argmaxT (draw(i, p)∀p ∈ T )
10: end if
11: e← e+

∑
p∈T draw(i, p)

12: ei ← ĝciei
13: end for
14: H ← {i∀i ∈ S ∋ ei/Ai > ρ}
15: T ← {p∀p ∈ T ∋ |h∀h ∈ H ∋ t(h) = p| > 0}

2Defines a graph as (nodes, edges)
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To produce a 200 pileup event, for example, 200 minimum bias simula-

tions (S) are joined together with Procedure 2. The raw deposits on the

sensors from different simulations are added together. In order to emulate

realistic detector conditions, detector noise is added to the deposited energy

at generator-level, as specified in Step 6. The detector noise model consists

of a generation of spurious energy measurements in the detector sensors, dis-

tributed according to a Gaussian probability density function centred at 0

and with a variance of 5 · 10−6. All the sensors with uncalibrated deposited

energy per sensor area (e/A) greater than ρ are considered as the recon-

structed hits (rechits) in the event (Step 14). The value of the constant

is taken as ρ = 1.3 · 10−7 GeV/mm2, which corresponds to an uncalibrated

energy ranging from 5.5 · 10−3 MeV to 3 MeV between the smallest and the

largest sensor.

The fclose(p1, p2) in Step 2 evaluates if two particles are too close. This is

done based on the sensor size in η and ϕ space (wη and wϕ), allowing more

merging to occur in low η region where the sensors are thicker. Two showers

are defined as too close if three conditions are satisfied: their ∆η is less than

1.5wη, ∆ϕ is less than 1.5wϕ, and if the difference in their showering angles

is less than 0.09, an angle taken from GEANT4 when particles start to

shower.

As truth is defined on hit-level, i.e. every hit is assigned a truth shower,

only the clusters have at least one hit assigned to them are taken as the re-

construction target (T ). An example of 40 pileup event is shown in Fig. 7.6.

In total, six datasets are created:

1. Training set: 5,000 events, where each event is created from 200 Min-

imum Bias simulations and 60 Type B simulations.

2. Single-particle testing set: 20,000 events, where each event is created

from Type B simulation only.

3. PU40+1 testing set: 6,800 events, where each event is created from

40 Minimum Bias simulations and 1 Type B simulation.
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7.1. Reconstruction performance in the toy calorimeter

4. PU200+1 testing set: 6,800 events, where each event is created from

200 Minimum Bias simulations and 1 Type B simulation.

5. PU40+tt testing set: 6,800 events, where each event is created from

40 Minimum Bias simulations and 1 tt simulation.

6. PU200+tt testing set: 6,800 events, where each event is created from

200 Minimum Bias simulations and 1 qq → tt simulation.

The training set with 5,000 events would, for instance, require 106 min-

imum bias simulations, there are only 3.1 × 105. Therefore, these events

are randomly sampled from the simulations set without replacement. This

strategy ensures a minimum overlap of pileup between consecutive events

and is used for generating all training and testing datasets.

In Fig. 7.7, various properties of the dataset in 200 pileup are shown. The

number of hits can be as high as 200, 000. This is approximately the same

as what is expected in 200 pileup in the HGCAL. There can be upwards of

3000 showers in an event. The distribution of the number of hits per shower

is slightly, but not significantly, different from what is found in the multi-

particle dataset in the HGCAL (Section 7.2). The difference arises from

domination of low-energy pileup particles. Fig. 7.8 shows the properties

of showers in the endcaps. Most of the showers have low energy, evident

from the logarithmic y axis. The distribution is uniform on the η spectrum,

signifying presence of a large number of particles close to the beam pipe.

7.1.3 Single particle reconstruction

Pileup events are dominated by low energy particles; and at higher energy

levels, exponentially lower number of particles are present. This is shown in

Fig. 7.8. It should be noted that while the number of low energy particles

is on an exponentially higher scale, they are much less important from

a physics point of view when compared to the high-energy particles. To

compensate for the complex distribution, a controlled dataset was created

where a probe particle, sampled from a uniform energy distribution, is added

to the pileup. This is discussed in Section 7.1.2. While the neural network
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7.1. Reconstruction performance in the toy calorimeter

Figure 7.6: An example of a 40 PU event where different colours correspond
to different true particles.

reconstructs all the particles, the reconstruction performance of only the

probe particle is studied.

A hit-based matching procedure is first used to match the probe true

particle to one of the predicted showers. The matching procedure is based

on the metric called Jaccard Index or intersection over union (IOU) (Jac-

card, 1901), commonly used in computer vision. The IOU is defined as the

number of pixels in the intersection of two objects and divided by the num-

ber of pixels in the union. This definition assumes that all the pixels are of

equal importance. This is not true for hits in, for instance, a calorimeter, as

higher energy deposits carry greater importance. Therefore, this metric is

extended to energy-weighted intersection-over-union (EIOU) (Qasim, Long,
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Figure 7.7: All figures are based on 200 PU events in the toy detector. Top
left: distribution of number of rechits in an endcap. Top right: distribution
of number of showers in an endcap. Bottom: Distribution of number of
rechits in a shower.

et al., 2021), defined as:

EIOU(t, p) =

∑
h∈(Ht∩Hp)

eh∑
h∈(Ht∪Hp)

eh
. (7.3)

An EIOU value of 1 implies a perfect match, whereas a value of 0 refers to no

match at all, typically resulting from trying to match completely different

true and predicted showers. Ht represents all the hits associated with the

truth shower t and Hp represents all the hits associated with a predicted

shower p.

The predicted shower that has the highest EIOU overlap with the probe

particle is taken as the matched predicted shower (p̂):

113



7.1. Reconstruction performance in the toy calorimeter

0 20 40 60 80 100
Energy [GeV]

10 5

10 4

10 3

10 2

10 1
Pr

ob
ab

ilit
y 

(a
.u

.)

0 5 10 15 20
pT [GeV]

10 5

10 4

10 3

10 2

10 1

Pr
ob

ab
ilit

y 
(a

.u
.)

1.5 2.0 2.5 3.0
| |

0.0

0.2

0.4

0.6

Pr
ob

ab
ilit

y 
(a

.u
.)

Figure 7.8: Properties of minimum bias showers in the endcap calorimeters.
Top left: Distribution of energy of the particles. Top right: Distribution
of pT of the particles. Bottom: Distribution of η of the particles. These
numbers are extracted from 200 PU events.

p̂ = argmax
p∈P

(EIOU(t̂, p)). (7.4)

A threshold of 0.5 is applied and hence particles which have less overlap

than this are considered not well reconstructed. Efficiency is computed

based on this.

Fig. 7.16 shows an example where a true electromagnetic shower was

matched to a corresponding reconstructed predicted shower in 200 pileup.

Similarly, in Fig. 7.17, a hadron is demonstrated.

The reconstruction efficiency for electromagnetic particles in different

pileup conditions is shown in Fig. 7.9a. In 0 pileup, the efficiency is 100%,

except if pT < 1 GeV where it is approximately 80%. The lower efficiency

is because the low energy particles are indistinguishable from the electronic
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Figure 7.9: Reconstruction efficiency of single particles in different pileup
conditions. Fig. 7.9a: efficiency as a function of the true pT for electromag-
netic particles (photons and electrons). Fig. 7.9b: efficiency as a function
of the true pT for hadronic particles (charged pions)
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Figure 7.10: Unmatched rate as a function of predicted pT .

noise and are considered as such by the neural network. In 40 and 200 pileup,

the efficiency significantly drops at pT < 1 GeV. This differs from 0 pileup

because now, the reconstruction algorithm is likely unable to separate low

energy showers from nearby high energy ones instead of considering them

as noise. In 1 < pT [GeV] < 20, the efficiency in 40 PU is similar to that in

0 PU, whereas it drops slightly more to ∼ 90% in 200 PU. At higher energy

ranges, the difference is only minute in both 40 and 200 pileup.

The reconstruction efficiency for hadronic particles in different pileup

conditions is shown in Fig. 7.9b. In 0 pileup, the reconstruction efficiency is

only slightly lower than for the electromagnetic particles. In 1 < pT [GeV] <

20, the efficiency is not 100% anymore. The efficiency sharply drops when

pileup is increased, resulting in ∼ 70% in 1−20 GeV in 40 pileup and ∼ 60%

in 1− 20 GeV range. This is because of the inherent nature of the hadronic

particles: they tend to create showers that are split from each other. Energy-

Weighted Intersection Over Minimum (EIOM), defined below, can be used
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to study the over-splitting effect.

EIOM(t, p) =

∑
h∈(Ht∩Hp)

eh

min(
∑

h∈Ht
eh,
∑

h∈Hp
eh)

(7.5)

Unmatched showers can be defined as all the predicted clusters with

EIOM > 0.9 with the truth-level probe particle but with EIOU less than

0.5, and these are shown in Fig. 7.10. The unmatched rate decreases steeply

with the predicted pT . This indicates that low pT clusters are split off from

higher-pT showers, while most of the energy is reconstructed properly. By

adding tracking information and employing a suitable particle flow algo-

rithm, these splits could be re-merged, increasing the efficiency. In addition

to over splitting, the neural network can also create fake showers from the

noise hits only. However, the fake rate was observed to be close to zero

for pT above 1 GeV. Additionally, only 0.5% of the total noise energy on

average is assigned to a predicted cluster.

The quality of the reconstructed showers can be studied by comparing

the truth pT with the predicted pT. Response for a single particle is defined

as pT pred/pT true. It is averaged over all the events to compute the mean

response µ
(
pT pred/pT true

)
. The response can be corrected a posteriori, but it

serves as an important metric to understand an algorithm’s behaviour. The

sum of calibrated energy deposits that the particle leave on the sensors is

taken as the baseline. It is therefore truth assisted and sets an approximate

upper limit for the resolution.

Response as a function of pT is shown in Fig. 7.11a and Fig. 7.11b for

electromagnetic and hadronic particles, respectively. Due to the nature of

hadronic showers and because the cell energies are calibrated on electromag-

netic showers, the baseline response for charged pions is below one while it

is compatible with one for electromagnetic showers, in particular at high

energies. The reconstructed pT response provided by the network only dif-

fers mildly from the baseline response. The difference to unity response

increases by about a factor of two for charged pions if the energy correction

factor is not applied (not shown), indicating that the network is capable of
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Figure 7.11: The response and the resolution of reconstructed single-
particles in different pileup conditions as a function of true pT. Fig. 7.11a
shows the electromagnetic particles and Fig. 7.11b, the hadronic particles.
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distinguishing different shower types.

The resolution is also defined according to pT and is mean-corrected

as σ
(
pT pred/pT true

)
/µ
(
pT pred/pT true

)
. It is also shown in Fig. 7.11a and

Fig. 7.11b as a function of pT for electromagnetic and hadronic particles,

respectively. As expected, the resolution improves with an increase in the

true pT and degrades with an increase in pileup. Even the reconstructed

hadronic shower resolution is close to the baseline reconstruction and con-

verges to ∼ 15% above 60 GeV, even in high pileup. The reconstructed

energy resolution in 0 pileup for electromagnetic showers is almost indistin-

guishable from the baseline and, therefore, close to the detector limitations.

In 40 pileup, the electromagnetic resolution deviates from the baseline only

at low pT but approximates the baseline at high pT ; and in 200 pileup, it

deviates slightly more.

The resolution and mean response can also be computed by fitting a

Gaussian function on the response distribution. This method is more ro-

bust to outliers and is more commonly used in particle physics. In every pT

bin, a histogram is computed and a Gaussian function is fitted on the his-

togram values by the χ2 method. The number of bins is heuristically chosen

as
√
N , where N is the total number of particles in the corresponding pT bin.

The optimal fit parameters (µ, σ and A) can be discovered using the Leven-

berg–Marquardt algorithm (Levenberg, 1944). The initial estimates of µ, σ

and A are µ
(
pT pred/pT true

)
and σ

(
pT pred/pT true

)
and max({g(b) ∀b ∈ B})

for the corresponding pT bin. After the fit is complete, the centre (µ) and

the width (σ) of the fitted Gaussian function are taken as the response and

resolution, respectively. The resolution is then mean-corrected, i.e. σ/µ.

Computed through the Gaussian fit method, Fig. 7.12 shows the re-

sponse and the resolution for the electromagnetic particles, and Fig. 7.13

shows the same for the hadronic particles. The quality of the fit can be

observed in Fig. 7.12b and Fig. 7.13b for electromagnetic and hadronic par-

ticles, respectively, where the fitted Gaussian functions are overlaid on the

corresponding histograms. The values are comparable to those computed

without fitting the Gaussian function. They also converge to 5% and 15% at

high pT range for the electromagnetic and hadronic particles, respectively.
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Figure 7.12: Fig. 7.12a: The response and resolution of electromagnetic
particles computed as the mean and mean-corrected standard deviation
of the Gaussian fit to the pT pred/pT true distribution in individual pT bins.
Fig. 7.12b: The distribution of pT response in different pT ranges corre-
sponding to the first four bins in Fig. 7.12a in 0 pileup environment.
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Figure 7.13: Fig. 7.13a: The response and resolution of hadronic particles
computed as the mean and mean-corrected standard deviation of the Gaus-
sian fit to the pT pred/pT true distribution in individual pT bins. Fig. 7.13b:
The distribution of pT response in different pT ranges corresponding to the
first four bins in Fig. 7.13a in 0 pileup environment.
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At low pT ranges, the values are slightly different, a result of asymmetry in

the response distribution.

7.1.4 Jet reconstruction performance

As modern jet clustering algorithms are infrared and collinear safe, as ob-

served in Section 3.5, jets also offer a way to gauge the performance of

calorimeter clustering algorithms without strong dependencies of subtleties

in the definition of the single-particle truth. Moreover, over splitting and

over merging due to the reconstruction process have a less impact on the cu-

mulative jet quantities. At the CMS experiment, a pileup removal algorithm

is applied before jet clustering to remove contributions from particles not

associated with the primary collision. As discussed in Section 3.5, qq → tt

events are generated and added to 40 or 200 pileup. After reconstruction

is performed, a pileup removal algorithm is simulated aided by truth infor-

mation: all the showers that originate from pileup interactions are removed

unless they share more than 10% of their energy-weighted hits with a re-

constructed non-pileup shower. All remaining reconstructed showers are

considered for clustering the reconstructed jets. To form the truth jets,

only truth showers are considered that stem from the non-pileup interac-

tion. The baseline is defined according to the deposited energy. Jets are then

clustered using the anti-kt algorithm (Cacciari et al., 2008) with a distance

parameter of R = 0.4. Reconstructed and truth jets are matched based on a

∆R =
√

∆η2 + ∆ϕ2 matching. Among all jets with |∆pT |/pT true < 0.5 and

∆R < 0.3, the best match by minimum ∆R is selected. An event display

of jet reconstruction is shown in Fig. 7.18.

Following the procedure performed for individual particle reconstruc-

tion, Gaussian functions are fitted to the pT response distribution in each

pT bin. The mean (µ) and the mean-corrected standard deviation (σ/µ) of

the Gaussian function are taken as jet response and resolution. The distri-

butions and the fitted functions are shown in Fig. 7.14a, and the response

and resolution are shown in Fig. 7.14a and Fig. 7.15a for 40 and 200 pileup,

respectively.
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Figure 7.14: Jet reconstruction performance. Fig. 7.14a: Mean jet response
(top) and resolution (bottom) in 40 pileup as functions of the true pT .
Fig. 7.14b: Response distributions and the fitted Gaussian functions in
different pT ranges corresponding to Fig. 7.14a. The response and resolution
are computed as the mean and mean-corrected standard deviation of the
Gaussian fit to the pT pred/pT true distribution in individual pT bins.
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Figure 7.15: Fig. 7.15a: Mean jet response (top) and resolution (bottom) in
200 pileup as functions of the true pT . Fig. 7.15b: Response distributions
and the fitted Gaussian functions in different pT ranges corresponding to
Fig. 7.15a. The response and resolution are computed as the mean and
mean-corrected standard deviation of the Gaussian fit to the pT pred/pT true

distribution in individual pT bins.
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Figure 7.16: An example of a well-reconstructed electromagnetic shower in
200 pileup. The top figure shows the truth hits and the bottom figure shows
the reconstructed hits. Grey represents the pileup and coloured points show
hits associated with the test shower and the predicted shower matched to
it.



Figure 7.17: An example of a well-reconstructed hadronic shower in 200
pileup. The top figure shows the truth hits and the bottom figure shows
the reconstructed hits. Grey represents the pileup and coloured points show
hits associated with the test shower and the predicted shower matched to
it.



Figure 7.18: An example of jet reconstruction. The top figure shows the
truth and the bottom figure shows the predicted jets. Only the matched
jets are shown.
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The response falling below one is a direct consequence of the single-

particle responses shown in Fig. 7.11b. At higher energies, the resolution

starts to approximate the baseline and converges to ∼ 10%. At lower en-

ergies, the presence of pileup degrades the performance slightly, however

much less than in the case of single particles. As jets are less affected by

truth matching and splitting effects, the assumption that the single-particle

performance depends on the matching procedure and the splitting of show-

ers is therefore verified. As shown in Fig. 7.15a, the performance degrades

slightly in 200 pileup when compared to 40 pileup. The better resolution

in the first pT bin with the respect to the second bin is an artifact of the

biased Gaussian fit due to the asymmetry of the response distribution, as

shown in the top-left subplots of Fig. 7.14b and Fig. 7.15b.

7.1.5 Generalisation

The neural network was trained on events with hundreds of true showers.

However, it offers an excellent generalisation performance on a variety of

problems. There are no fakes observed in 0 pileup and pT reconstruction

performance does not suffer. It also works for jet reconstruction, where

the energy of showers can be much higher than the showers found in the

training set. This increases confidence in the extrapolation capabilities of

the network and training method beyond training conditions in general, and

is an excellent result on its own.

7.2 Reconstruction performance in the HG-

CAL

The HGCAL simulation is implemented as part of of the CMS Software

(CMSSW) (CMS collaboration, 2022) and is based on GEANT4 (Agostinelli

et al., 2003). The simulation software includes the complex geometry of the

HGCAL and also simulates the electronics, including the addition of Gaus-

sian noise. The CMSSW also simulates the other sub-detectors, including
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the tracker and the magnetic field. The detector response can be very ac-

curately simulated using the simulation software, and the studies done on

the simulation, including reconstruction, generalise to the real-world data.

The ground truth is defined at calorimeter level, i.e. all the particles that

reach the endcap calorimeters Psecondary are taken for the definition of truth.

The ground truth is then defined as a realistic target for the reconstruction

algorithm. When two particles (p1 and p2) are maximally overlapping, they

are merged into one reconstruction target, as their separation will be a

hopeless task. Once the truth merging has been done, every hit is assigned

to one true particle. It is possible that multiple particles left an energy

deposit on a single sensor. However, only the particle that left the most

deposit is considered as the true particle associated with that hit.

The dataset that is produced for the studies that follow contains 40

primary particles that were generated at the interaction point with energy

uniformly distributed between 5 and 200 GeV. The direction of the parti-

cles is also chosen such that the particles have ϕ uniformly distributed in

[0, 2π] and |η| uniformly distributed in [1.5, 3.0]. The distributions of vari-

ous properties of the true particles in this dataset are shown in Fig. 7.20. It

can be observed, for instance, that there can be up to 200 true particles in

these events. This is because some of the 20 primary particles are unstable

and will decay into lower energy particles before they reach the HGCAL.

Some of the particles also interact with the tracker material and, therefore,

cross the HGCAL boundary as multiple particles. These particles are close

to each other in (η, ϕ) space, and will frequently create locally dense con-

ditions that are similar to those found in a high pileup environment. It can

also be observed that in an event, there can be up to 40, 000 hits. In 200

pileup, up to 200, 000 hits are expected in the HGCAL. While it may seem

that this environment is much simpler than the HGCAL, this is only strictly

true when the computational time is considered. From the reconstruction

performance point of view, the locally dense conditions can likely result in

equally challenging conditions as those found in high pileup environment.

A larger presence of high energy showers in this dataset when compared

with pileup environments offers an added advantage as these high energy
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showers are much less common in pileup but are more important for physics

studies. There can be as low as 10 hits associated with a particle shower

but also as many as 103. This exponentially wide range represents of many

challenges encountered while performing HGCAL reconstruction.

33, 000 training samples and 2, 000 testing samples were generated in to-

tal for reconstruction studies conducted in this thesis. There are no method-

ological differences between the training and the test sets.

7.2.1 Multi-particle performance analysis

To study the reconstruction performance in a multi-particle environment,

first, all the true particles in an event need to be associated with corre-

sponding particles predicted by the neural network. A hit-based matching

method is also employed here (Qasim, Long, et al., 2021). The matching is

done as follows:

M = argmax(
∑

EIOU(p, t))∀(p, t) ∈ C(P({P × T})) (7.6)

P is the set of particles that were predicted by the neural network and

T is the set of true particles. P × T takes the Cartesian products of two

sets. P refers to the power set and C is a filter that defines two constraints:

a) one true particle can only be matched to one predicted particle and

vice versa, and b) each matching cluster should have a minimum EIOU of

0.5 (Equation 7.3) corresponding to a 50% hit overlap. M will therefore

contain a set of truth-prediction matches. This defines a bipartite graph

matching problem and can be solved in polynomial time by the Hungarian

algorithm (Kuhn, 1955). The cost matrix for the Hungarian algorithm can

be constructed in O(N), with N as the number of hits.

Fig. 7.24 visualises an excellently reconstructed event where predicted

and true clusters are colour matched.

Once the particles are matched, the rate of true particles that haven’t

been matched is taken as efficiency and it is shown in Fig. 7.21. As ex-

pected, it increases with an increase in pT . It reaches over 80% for elec-
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Figure 7.19: Two examples of HGCAL events resulting from 20 primary
particles at the interaction point. Different colours correspond to different
truth level particles.
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Figure 7.20: HGCAL dataset distributions. Top left: distribution of number
of rechits in an endcap. Top right: distribution of number of showers in an
endcap. Bottom: Distribution of number of rechits in a shower.
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Figure 7.21: Efficiency as a function of the true pT . Electromagnetic parti-
cles and hadrons are separated.
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Figure 7.22: Unmatched rate as a function of the predicted pT .
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Figure 7.23: Fig. 7.23a shows resolution as a function of the true pT for the
CMS HGCAL data. The resolution is computed as mean corrected standard
deviation and not by fitting a Gaussian function as the data is not Gaussian,
evident in Fig. 7.23b and Fig. 7.23c, where Gaussian functions are fitted on
the response distributions for the electromagnetic and hadronic particles,
respectively.
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Figure 7.24: An example of event reconstruction in the CMS HGCAL. The
top figure shows true showers and the bottom figure shows the predicted
showers. The colours are the same if a predicted and a true shower is
matched together.
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tromagnetic particles at just over 10 GeV. Hadronic efficiency is slightly

worse and crosses 80% at 15 GeV. The predicted particles that haven’t been

matched to corresponding true particles can be studied by observing their

unmatched rate, shown in Fig. 7.22. This is different from how it is done

in Section 7.1.3 for the toy calorimeter. Like the efficiency, the unmatched

rate also improves with an increase in pT .

The pT reconstruction performance of the true particles that were matched

to predicted particles is shown in Fig. 7.23. Electromagnetic and hadronic

particles are separately studied. Unlike in the toy calorimeter, here, the re-

sponse distribution is not Gaussian, as shown by Fig. 7.23b and Fig. 7.23c,

where the fitted Gaussian functions do not approximate the data well.

Therefore, the mean response and the mean response corrected standard

deviation is used to approximate the resolution. The mean pT response in

the HGCAL follows a trend similar to that in the toy calorimeter (Fig. 7.11).

The electromagnetic response is slightly over unity and hadronic response,

below. However, the response deviates less from unity compared to the

toy calorimeter. This is because the calibration for the HGCAL is more

sophisticated and uses both electromagnetic and hadronic particles. The

resolution can also be observed, and as expected, is better for the electro-

magnetic particles. When compared to the baseline, the electromagnetic

resolution is only slightly off and falls below 10% at pT > 50 GeV. The

hadronic resolution is approximately 20% at pT > 50 GeV.

7.2.2 Multi-matching

Over splitting and over merging can often occur because of ambiguities in

the truth definition and isn’t necessarily a weakness of the reconstruction

algorithm. Furthermore, physics studies are often done on jets which are

much less sensitive to these effects. Over splitting and over merging can be

studied by a matching algorithm that allows matching of multiple predicted

particles to a true particle or multiple true particles to a predicted particle.

Here, either one predicted particle gets matched to multiple predicted par-

ticles or multiple predicted particles get matched to one true particle. It

136



7.2. Reconstruction performance in the HGCAL

0 10 20 30 40 50 60 70
True pT [GeV]

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

e ,
+

Figure 7.25: Efficiency as a function of predicted pT with multi-matching
allowed in the CMS HGCAL data.
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Figure 7.26: Unmatched rate as a function of predicted pT with multi-
matching allowed in the CMS HGCAL data.
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cannot occur that multiple predicted particles are matched to multiple true

particles, as that would defeat the purpose of clustering. The matching al-

gorithm is iterative and the first step is the same as defined in Equation 7.6

i.e. matching is done on the basis of EIOU scores with a minimum threshold

of 0.5. A graph is defined based on the resulting matching (Equation 7.7).

The nodes of this graph are all the predicted and the true particles and the

edges indicate if a predicted shower and a true shower are matched. In the

second and the next iterations, the free nodes are matched to the connected

nodes of the opposite types using the EIOM score:

G← (T ∪ P,M) , (7.7)

FT ← {t ∈ T ∋ |NG(t)| = 0} , (7.8)

FP ← {p ∈ P ∋ |NG(t)| = 0} , (7.9)

CT ← {t ∈ T ∋ |NG(v)| ̸= 0} , (7.10)

CP ← {p ∈ P ∋ |NG(v)| ̸= 0} , (7.11)

M ←M ∪ argmax(
∑

EIOM(p, t))∀(p, t)

∈ C′
(P({CP × FT} ∪ {FP × CT})) .

(7.12)

FT represents the unmatched truth nodes in an iteration and FP , the un-

matched predicted nodes. CT and CP represent connected truth nodes and

connected predicted nodes. C′
once again defines two constraints: a) one

true particle can only be matched to one predicted particle and vice versa,

and b) Each matching pair should have a minimum EIOM of 0.9. The

EIOM threshold of 0.9 is strict and only allows for splits to be merged. The

graph is then updated to add newly the connected nodes. This is repeated

for a few iterations until no more nodes are linked. The algorithm con-

verges in less than five iterations. After it has converged, a true particle

might have been matched to multiple predicted particles, and a predicted

particle might have been matched to multiple true particles. Fig. 7.25 shows

the resulting efficiency. All the electromagnetic particles are matched and
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7.2. Reconstruction performance in the HGCAL

hadronic efficiency significantly increases. Similarly, the unmatched rate

also substantially goes down, as shown in Fig. 7.26.

7.2.3 Jet reconstruction performance

Following the discussion in Section 7.1.4, as jet clustering is useful to study

reconstruction performance in a fashion robust to over splitting, over merg-

ing and ambiguities in the truth definition, they have also been used to

study the reconstruction performance on the HGCAL data. Clustering

data on this data does not have strong physics meaning because jets are

only defined on specific type of interactions. However, a significant number

of high pT particles are present in the forward region to allow studying of

jet reconstruction performance.

There is no pileup present in this dataset that can be filtered out by

a pileup mitigation algorithm. Therefore, all the truth level particles are

considered for truth-level jet clustering and all the predicted particles are

considered for reco-level jet clustering. After the jets are defined, the same

methodology is then used for matching the two sets of jets as the one used

in Section 7.1.4. Fig. 7.29 shows an event and the corresponding true and

predicted jets.

The jet resolution and response is shown in Fig. 7.27. The response

is close to unity, unlike in the toy calorimeter. This results from better

calibration and is also observed in single-particle reconstruction in Sec-

tion 7.2.1. The resolution is approximately 12% and does not change sig-

nificantly across the pT spectrum. This shows an excellent reconstruction

performance.

Comparison to TICL

In Fig. 7.28, the jet reconstruction performance of the graph neural net-

work presented in this thesis is compared to the traditional reconstruction

algorithm, TICL (Section 4.5)3. It can be observed that the neural network

3Here, a different dataset is used, as the TICL data was not present in the HGCAL
test set used in the other sections. In this dataset the η is more restricted.
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Figure 7.27: Fig. 7.27a shows mean response (top) and resolution (bottom)
of the jets clustered on the HGCAL data. The resolution is computed as the
mean corrected standard deviation, as the data is not Gaussian, as shown
in Fig. 7.27b where the fitted Gaussian functions are visualised.
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Figure 7.28: Jet reconstruction performance comparison of the graph neural
network presented in this thesis with TICL in different pT true ranges in the
CMS HGCAL data. The µ and σ estimates are those of the data, not of
Gaussian functions, as the data is not Gaussian, as evident by the fitted
Gaussian functions.
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Figure 7.29: Examples of jets clustered on the HGCAL data. Top figure
shows jets clustered on true particles and the bottom figure shows jet clus-
tered on predicted particles. Jets that are matched together have the same
colours.
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substantially outperforms TICL across the ptrue spectrum, yielding between

up to 60% better resolution. Further, the response distribution of only the

neural network is centred around 1, highlighting the challenges the classical

approach faces in fully reconstructing jets. In particular, it is also notewor-

thy that the response of the GNN reconstruction shows a more Gaussian

behaviour with fewer contributions from tails, making uncertainty estimates

in the future more reliable.

7.2.4 Extrapolation to 200 pileup

There is no pileup in the HGCAL data; however, based on particles’ local

energy density, the reconstruction performance can be extrapolated, em-

ploying the technique from Iiyama et al. (2021). Multiple non-overlapping

test points in ϕ are sampled in 200 pileup events at η = 2. The local energy

density i.e. energy of all the particles in a cone of ∆(η, ϕ) = 0.3 around the

samples test points is then calculated. The pileup simulations used here are

lightweight because detector responses do not need to be considered. A Lan-

dau distribution (Landau, 1944; Zolotarev, 1986) is fitted on the resulting

distribution. The probability density function of the Landau distribution is

given below:

p(x;µ, c) =
1

πc

∫ ∞

0

exp(−t)cos

(
t

(
x− µ
c

)
+

2t

π
log

(
t

c

))
dt . (7.13)

The fitted µ = 109.15 and c = 57.22. The original and the fitted distribution

are shown Fig. 7.30.

The fitted distribution is used to infer the weight of every shower by eval-

uating Equation 7.13 with a shower’s local energy density, i.e. energy sum

of all the particles in a cone of ∆(η, ϕ) = 0.3 around it. The performance

metrics are then redistributed according to this weight. The efficiency is

shown in Fig. 7.31. It approximates the reconstruction efficiency for the

toy calorimeter (Fig. 7.9a and Fig. 7.9b). The efficiency reaches 70% at

10 GeV for the electromagnetic particles and 15 GeV for hadronic particles

and does not significantly worsen compared to a multi-particle environment.
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Figure 7.30: Expected local energy density in 200 PU at η = 2.

The resolution is shown in Fig. 7.32. It does not significantly decrease in the

pileup environment and reaches as low as 10% at high pT for electromagnetic

particles and 20% for the hadronic particles.
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Figure 7.31: Efficiency as a function of truth pT in the HGCAL. The data
is redistributed to mimic 200 PU based on local energy density.
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Figure 7.32: Resolution as a function of truth pT in the HGCAL. The data is
redistributed to mimic 200 PU based on the local energy density of particles.
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7.3 Summary

In this chapter, the reconstruction results of the method discussed in this

thesis are presented. First, the results are presented in LHC-like conditions

in a toy calorimeter as major developments are still needed to generate

truth for such events in the CMS Software. Although the toy calorimeter is

based on the HGCAL and its events match the reconstruction complexity of

the HGCAL. The physics performance is presented in different complexity

conditions. Reconstruction efficiency is studied as well the energy recon-

struction performance of the predicted particles. This is done in different

complexity conditions, in 0 pileup i.e. presence of only the test shower, in

40 pileup – which corresponds to event complexity at the LHC currently –

and in 200 pileup, which is expected in the HL-LHC conditions. Jet recon-

struction performance is also presented on the toy calorimeter in different

pileup conditions.

A synthetic multi-particle dataset is generated to study physics perfor-

mance in the HGCAL itself as well. Multi-particle reconstruction perfor-

mance is then presented. Over merging and over splitting is often a result

of stochasticity in the truth definition and is not necessarily a weakness of

the reconstruction method. A multi-matching algorithm is also presented

to study the performance in a way which is less sensitive to such stochastici-

ties. Jet reconstruction performance is also discussed and is used to compare

to the traditional approach, TICL. Finally, the reconstruction results are

extrapolated to 200 pileup conditions using local energy density.
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Chapter 8

Computational Performance

While getting a good reconstruction performance is the ultimate goal, it

is also important to perform reconstruction within the computational and

memory specifications. Therefore, in this chapter, the computational per-

formance of the model is studied. Section 8.1 explores the computational

performance of the model as a whole and Section 8.2 explores the optimi-

sations that were needed to get the aforementioned performance.

Finally, Section 8.3 concludes the chapter by presenting a summary.

8.1 Computational performance

Machine learning based approaches, such as the one proposed in this thesis,

are mostly composed of code that is often referred to as “embarrassingly

parallel”. Such pieces of code require little to no effort to parallelise from the

algorithmic point of view, and involve a set of instructions that are repeated

for a large set of inputs. An example of this is a matrix-multiplication,

which is the basis of all modern machine learning techniques. Modern GPUs

have thousands of cores which can all run in parallel and, hence, massive

performance gains can be harvested.

In Fig. 8.1, the compute specifications of the neural network presented

in this thesis are shown for different GPUs. To achieve the presented perfor-

mance, two optimisations were made, and they are presented in Section 8.2.
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8.1. Computational performance

Table 8.1: Event complexity in different pileup conditions

Pileup |H| |T |
0 2, 600± 240 1.0± 0.0
40 43, 000± 8, 000 1, 000± 160
80 78, 000± 18, 000 1, 800± 190
140 124, 000± 12, 000 2, 600± 180
200 160, 000± 12, 000 3, 200± 130

On a Nvidia A100, the algorithm takes approximately 0.6 and 2 seconds

in 40 and 200 pileup, respectively. Nvidia V100 and RTX 2080 Ti perform

roughly the same and there, it takes 1.3 and 7 seconds in 40 and 200 pileup,

respectively. The superior performance in the A100 GPU is likely because

of the higher memory bandwidth of the Nvidia Ampere architecture. The

number of vertices (hits) is the most important property when considering

the computational complexity. This is shown in Table 8.1 and the num-

bers correspond to the testing pileup dataset used in Chapter 7. The time

complexity of the neural network linearly scales with the number of hits.

The memory requirements can be judged by studying the peak memory

allocated during inference. This is also depicted in Fig. 8.1. It takes less

than 250 MiB in 40 pileup and less than 1400 MiB in 200 pileup. This shows

that the algorithm does not need a high-end GPU to operate and can be

deployed on machines with low-end devices. It is to be noted that memory

requirements during the training phase are much higher.
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Figure 8.1: Compute specifications of the model as a function of the amount
of pileup to run inference with one event. The left axis (blue) shows average
execution time on different GPUs, and the right (orange) shows the average
peak memory allocated on the GPU. The error bars highlight the standard
deviation instead of the standard error to demonstrate event-by-event vari-
ance in resource consumption.
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8.2 Similarity search

As noted in Section 6.1.1, GravNet layer involves a KNN computation dur-

ing its execution. This step was optimised for the performance reported in

the previous section. With the optimisation, approximately 40% execution

time of the neural network in 200 pileup is elapsed in the computation of

the KNNs. The optimisation is achieved by binning the search space. The

inference clustering step (Section 6.4) has also been optimised using the

same methodology. With the optimisation, around 15% of the time is taken

in the inference clustering step.

8.2.1 Binning

Let the search space be d dimensional, and, therefore, vertices to be searched

can be represented as a matrix S ∈ RN×d. R refers to the set of real numbers.

The bin number is first individually computed for every dimension for every

vertex. The bins are then flattened in a row-major format to get a global

bin number. The binning process is summarised as follows:

B,R, I = bin(S,w) . (8.1)

Here, w is the bin width, which is the same for all dimensions. The global

bin number (B ∈ WN) serves as an ordering function to sort the vertices

into their associated bins. W refers to the set of whole numbers. However,

instead of sorting all the vertex data, it is easier to store row indices pointing

to S in every bin (I ∈ WN). It is possible that there will be a variable

number of entities in each bin. Therefore, the indices where the bins are

split are stored separately in another array, R, called bin splits. The bin

splits R ∈WM+1, with M as the number of bins. In a zero-indexed scheme,

(i− 1)th and ith element in R represent the index of the first and the last

vertices in the ith bin, respectively. The 0th element is always 0.

The bin assignment operation is an embarrassingly parallel operation

with a time complexity of O(N/T ). T here is the number of parallel proces-

sors. T = O(1000) on the modern GPUs. Sorting can also be parallelised to
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Figure 8.2: Visual representation of how bin search works. In the first step,
the bin number are computed for all the bins. In the second step, the data
is sorted and the bin splits are computed. In the third step, bin splits (R)
can be used to search for data in a specific bin. The search in the second
bin is highlighted.
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get a time complexity of O(N log2(N)/T ) using parallel merge sort (Cole,

1988) and bitonic sort (Nassimi and Sahni, 1979).

However, if, for instance, there are 10 dimensions and 8 bins are used in

every dimension, the number of bins will equate to over a million. Therefore,

the binning is only done in the first m dimensions. Generally, m = 3.

Because binning is done in only a few dimensions, it is possible that, in a

bin, there are some points that are very far from each other and a secondary

condition will be required to filter undesired vertices during the search. A

visual representation of the binning process is shown in Fig. 8.2.

8.2.2 Binned K Nearest Neighbours (KNN)

The adapted binned KNN algorithm’s performance is shown in Fig. 8.4. The

performance of the state-of-the-art approach, FAISS (Johnson et al., 2019),

is also shown. For the searches required for operation of the neural net-

work presented in this thesis, the binned algorithm significantly outperforms

FAISS, as shown, yielding 2x performance improvement. Furthermore, the

memory overhead of the binned KNN is close to zero, while FAISS takes

O(GB) GPU memory. The computational complexity of the algorithm is

O(N2M−1T−1), where N and M are the number of vertices and the number

of bins, respectively.

Algorithm 3 shows its operation. As the input, it takes a number k,

representing how many neighbours to find for each vertex, w, the suggested

bin width to use, and the set of vertices (S ∈ RN×f ), represented as a matrix.

The variable d represents the dimensionality of the clustering space. As the

output, the nearest neighbours indexes (K) are computed for every vertex

as well as squared distance to every nearest neighbour (D).

In the first step, the vertices are divided into bins (Step 1) using the

method discussed in Section 8.2.1. The computation is then parallelised

over all the vertices.

For every bin, the search is first performed in the bin where a vertex is

present (B(v)). Second, another layer of surrounding bins is added until and

the search is repeated. The addition of one more layer continues until all the
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Figure 8.3: A visual representation of the binned KNN algorithm. The red
vertex is in the center and the orange vertices are its six nearest neighbours.
The nearest neighbours can be discovered by first looking in the bin the red
vertex is in. In the second step, the next layer of bins is searched. Three
bin layers are highlighted in different shades of grey. In the example shown
here, all the 6 nearest neighbours can be discovered already in the second
layer.
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Algorithm 3 Parallel binned KNN

Input S, k, w
Output K,D

1: B,R, I ← bin(S,w)
2: D ← 0N×k

3: K ← 0N×k

4: for v = 0 to |S| do in parallel
5: i← 0
6: n← 0
7: d

′
max ← 0

8: m
′
max ← 0

9: while true do
10: L← stepper(B[v], i)
11: i← i+ 1
12: for all l ∈ L do
13: for j = R[l − 1] to R[l] do
14: d′ ← ∥S[I[j]]− S[I[v]]∥2
15: if n < k then
16: D[v, n]← d′

17: K[v, n]← I[j]
18: n← n+ 1
19: if d

′
> d

′
max then

20: d
′
max ← d′

21: m
′
max ← I[j]

22: end if
23: end if
24: if d

′
< d

′
max then

25: D[m
′
max, n]← d′

26: K[m
′
max, n]← I[j]

27: m
′
max ← argmax(K[v])

28: end if
29: end for
30: end for
31: if n = k, iw2 > d

′
max then

32: break
33: end if
34: end while
35: end for
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neighbours are gathered. This is also visually shown in Fig. 8.3. The index

of bins layer being currently iterated is labeled as i. The stepper function

defined in Step 10 gives as output a set of bins, L by stepping through all

the bins in the ith layer. The stepper function can be parameterised and is

fast to compute. In Step 13, the elements present in the lth bin are iterated.

I can index to the original matrix S, as done in Step 14, where the distance

from the vth vertex is computed. If there are less than k nodes yet gathered,

the vertex is stored as one of the nearest neighbours and the number of the

nearest neighbours gathered (n) is incremented (Step 15). The farthest

neighbour (m
′
maxth) and distance to it (d

′
max) is also re-calculated (Step 15),

if needed. If the nearest neighbours’ list is full, it is possible that a nearer

neighbour was discovered. If that happens, the neighbour that is the farthest

(m
′
maxth) is replaced (Step 24). The search ends for a vertex if k neighbours

are gathered and if w2 > d
′
max∗i2, which ensures that the boundary condition

is satisfied.

8.2.3 Inference clustering

In Fig. 8.5, the binned version of the inference clustering algorithm1 is com-

pared to the näıve version. In the näıve version, the high β hits are separated

(Step 2) and iterated through until each one of them is assigned to a shower.

Distance is computed from each not-separated vertex in a vectorised fash-

ion and the assignment is done accordingly (Step 7). The näıve version

is faster in 0 pileup because of the vectorisation. This step can, however,

be optimised by limiting the search in the close-by bins. Here, instead of

iterating through nearest bins layer-by-layer, the bins to be searched can be

computed directly and can also be parameterised. This algorithm is imple-

mented serially because one vertex can be in the radius of more than one

high-β vertices; and has a time complexity of O(N2M−1). A parallel ver-

sion (not shown) was studied, but the overhead to run the parallel kernels

is far too high to yield any benefits. The inference clustering step consumes

only a fraction of the neural network’s execution time and hence, further

1Presented in Section 6.4

157



8.2. Similarity search

0 40 80 140 200
Pileup

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

KN
N 

ex
ec

ut
io

n 
tim

e 
(s

)

Binned KNN
FAISS

Figure 8.4: Total time taken by the binned KNN algorithm and FAISS
(Johnson et al., 2019) to execute all the KNN graph-building operations
during execution of the neural network as a function of pileup. The er-
ror bars highlight the standard deviation instead of the standard error to
demonstrate event-by-event variance in the KNN execution.
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Figure 8.5: Inference clustering time in different pileup conditions. The
optimised binned algorithm is compared to the näıve implementation. The
error bars highlight the standard deviation instead of the standard error to
demonstrate event-by-event variance in inference clustering time.

optimisations only yield diminishing returns.

8.3 Summary

The computational performance of the method presented in this thesis is

discussed in this chapter. Both time requirements for inference and peak

memory allocated on the GPU are discussed in different pileup conditions

and on different GPUs. In 200 pileup, the presented method takes ∼ 2

seconds on a high-end A100 GPU and ∼ 7 seconds on a lower-end RTX
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2080 Ti GPU.

In order to obtain the presented computational performance, two op-

timisations were performed. First, the KNN computation – which lies at

the heart of dynamic GNNs including GravNet – was optimised by binning

the search space. The presented KNN algorithm outperforms the state-

of-the-art approach FAISS for the HGCAL data, giving up to 50% better

performance. Second, the inference clustering algorithm was also optimised

using a similar approach. This algorithm is employed at inference time (i.e.

is not used during training) to build the final clusters. The naive algorithm

takes over 15 seconds in 200 pileup while the optimised version consumes

near-zero time.
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Chapter 9

Summary and Conclusions

The CMS experiment will replace both the HCAL and the ECAL at the

endcaps with the HGCAL for the High Luminosity upgrade of the LHC

(HL-LHC). In this thesis, the need for a deep learning based event recon-

struction algorithm for high-granularity calorimeters such as the HGCAL

was addressed. A novel reconstruction algorithm based on GravNet, a dy-

namic GNN, was presented. The presented neural network eliminates the

need for seeding and only takes as input a set of reconstructed calorimetric

hits. As the output, the set of reconstructed particles, their associated hits

and the energy are produced in an end-to-end fashion.

Several experiments were presented to study the reconstruction per-

formance. The lack of a good truth-definition algorithm that works in a

high pileup environment at the HGCAL was addressed by building a toy

calorimeter based on the HGCAL in GEANT4. Single-particle reconstruc-

tion performance was studied on the toy calorimeter, first in Run 3 con-

ditions with 40 pileup and then in 200 pileup expected at the HL-LHC.

Electromagnetic and hadronic particles were separately studied as they ex-

hibit different responses in the calorimeters. Jet reconstruction performance

was also studied by enriching pileup data with qq → tt interactions.

An analysis framework, based on Energy-weighted Intersection Over

Union (EIOU), was also presented in this thesis. This framework defines

truth-prediction matching as an assignment problem. The EIOU was also
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extended to an algorithm that performs K − 1 and 1 −K matching using

Energy-weighted Intersection over Minimum (EIOM), allowing analyses of

over merging and over splitting of showers.

The presented analysis framework was used to study the multi-particle

reconstruction performance directly on the HGCAL data. This data does

not include pileup interactions explicitly, but provides sufficient local parti-

cle densities to approximate conditions similar to 200 PU around individual

particles. Exploiting this property of the dataset, the results were also ex-

trapolated to 200 PU by re-weighting the contribution of each particle to

the evaluation metrics according to their local energy density. Based on

this and the experiments conducted on the toy calorimeter, it can be con-

cluded that this method will perform well in the HL-LHC conditions at the

HGCAL.

The reconstruction performance of the neural network was compared

to the classical approach, TICL. The neural network significantly outper-

forms the classical approach and yields up to 60% better jet reconstruction

performance.

The method also offers excellent generalisation performance. It was

shown that the same neural network can perform reconstruction in a wide

range of environments, including single particles in presence of only noise,

pileup with thousands of particles and pileup enriched with qq → tt inter-

actions where highly energetic hadrons, with energy range never seen in the

training set, are present.

The computational performance of the method was also optimised using

a binned search for fast KNN computation. The algorithm was implemented

using Nvidia CUDA. The same method was also used to optimise the infer-

ence clustering step significantly. These optimisations enabled fast inference

in high pileup environments and it was shown that the neural network takes

less than 3 seconds in 200 pileup on a high-end GPU. This is within compu-

tational constraints for offline computing. Furthermore, the GPU memory

required for inference is reasonably low, which enables the method to work

on low-end GPUs.

For future research, the neural network can be easily extended to perform
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particle ID. Moreover, currently, the algorithm does not use tracker infor-

mation. The addition of track information is expected to yield significant

performance improvements. One way to do so is by matching reconstructed

particles to tracks and performing post-processing to improve the recon-

struction performance, although it will require another matching algorithm

that has the ability to re-split and re-merge showers. However, benefiting

from the generalisability of the GNNs, the tracks can be naturally added

to the input hits as another vertex type without the need for a dedicated

matching algorithm a posteriori.

Both the computational and reconstruction performance of the model

can be likely improved by adding a pre-clustering layer. A significant frac-

tion of hits that belong to the same shower are very easy to identify and can

be grouped together by a lightweight neural network. This will also increase

the receptive field, resulting in a possible improvement in the reconstruction

performance.

Another way to improve reconstruction performance is by building a

graph at the output of the neural network. In this graph, each recon-

structed shower will be taken as a node of type A, connected to its asso-

ciated hits, represented as type B nodes. Once this is done, graph neural

network approaches that are more expressive compared to dynamic graph

neural networks can be used. It will result in a substantial improvement in

the receptive field of the neural network and might improve reconstruction

performance.

In summary, the work presented in this thesis resulted in the first-ever

example of single-shot calorimetric reconstruction of O(1000) particles in

HL conditions with 200 pileup, showing very promising physics and com-

putational performance. Furthermore, the techniques presented here open

up a large variety of applications beyond calorimetry, as well as paths for

future research.

163





List of Figures

1.1 A diagram showing the flow of all except this and the last

chapter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Top: Discovery of the positron in 1933 in a cloud chamber

(Anderson, 1933). Bottom: Discovery of the pion in 1947

with photographic emulsion (Lattes et al., 1947). . . . . . . 16

2.2 The Standard Model particles and their properties (Wikime-

dia Commons, 2019). . . . . . . . . . . . . . . . . . . . . . . 19

2.3 A picture of the LHC (Mobs, 2019) showing a cut of the

dipole and the two beam pipes in which two sets of protons

are accelerated in opposite directions (Dominguez, 2014). . . 22

2.4 The accelerator complex of the LHC. First, hydrogen ions

(H + e− → H−) are accelerated at the Linear Accelerator 4

(Arnaudon et al., 2006). They are stripped of their two elec-

trons at the booster to form protons (H− → H++2e−). These

protons (H−) then make their way through two accelerators,

the Proton Synchrotron and the Super Proton Synchrotron,

before entering the LHC. . . . . . . . . . . . . . . . . . . . 23

2.5 Schematic representation of the coordinate system (Qasim,

Chernyavskaya, et al., 2022) . . . . . . . . . . . . . . . . . . 24

2.6 Expected number of primary particles and their energy in a

14 TeV pp collision distributed as a function of η and θ. . . . 26

165



List of Figures

2.7 An architecture diagram of the CMS detector, adapted from

(Sakuma and McCauley, 2014). The endcap region is marked

by + in blue colour while the barrel region is marked by ×
in red colour. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8 Longitudinal cross-sectional view of different particles in the

CMS detector Barney, 2015. The interaction point is on the

left side of the figure where the particles are originating. The

trajectory of the charged particles is curved, while the neutral

particle (neutral hadron) travels in a straight line. The muon

interacts minimally with the matter and has the longest path,

as it travels into the muon chambers, the detectors placed the

farthest from the interaction point. . . . . . . . . . . . . . . 29

2.9 LHC projected time table where the long shutdowns (LS)

and runs are highlighted. Instantaneous and integrated lu-

minosity is also shown (Schmidt, 2016). . . . . . . . . . . . . 31

3.1 Fractional energy lost in lead by electrons and positrons as

a function of incident energy (Hagiwara et al., 2002). After

∼ 7 MeV, bremsstrahlung is the dominating factor. . . . . . 36

3.2 A visual layout of the CMS ECAL (CMS collaboration, 2010a). 40

3.3 The richness of physics produced in the hadronic cascade

when 100 GeV protons travel through lead. At low ener-

gies, photons, neutrons, electrons and positrons dominate the

spectrum. The high energy spectrum is dominated by pions.

Figure by (Fabjan and Gianotti, 2003). . . . . . . . . . . . . 42

3.4 A schematic diagram of the CMS HCAL (CMS collaboration,

2010b). The interaction point is at the bottom right side of

the figure. Across one η segment, all the cells with the same

colour are summed up for the readout. . . . . . . . . . . . . 45

3.5 A schematic diagram of the HGCAL showing its longitudinal

cross section (Martelli, 2017). . . . . . . . . . . . . . . . . . 47

166



List of Figures

3.6 Transverse cross section view of the HGCAL (CMS Collab-

oration, 2017). Left: 9th layer of the CE-E. The sensors are

grouped into hexagonal shaped wedges of 60◦ wedges. Right:

22nd layer of the CE-H. Hexagonal cassettes of silicon are

shown in the high |η| region whereas uniformly cut wedges

across r and ϕ axes are shown in the low |η| region. . . . . . 48

3.7 Anti-kt jet clustering algorithm applied to particles produced

in two qq → tt interactions. Different colours correspond to

different jets. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Schematic diagram of Kalman filter method (Regler et al.,

1996). It is applied at every detector layer iteratively. In this

figure, the track has been extrapolated from the (k − 1)th

layer to kth layer with z = zk. The track parameters are

then filtered to adapt the prediction pk−1
k according to the

measurement mk. The filtered track parameters produce the

state pk which will be extrapolated at the (k + 1)th layer in

the next iteration. . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Single muon reconstruction performance at the CMS tracker

as a function pT (CMS Collaboration, 2014). Left figure

shows efficiency and the right figure shows the pT resolution.

Monte Carlo data with Run 1 settings. . . . . . . . . . . . . 56

4.3 A visualisation of particle flow algorithm at the CMS exper-

iment (CMS collaboration, 2017). The two circular surfaces

correspond to ECAL and HCAL surfaces. Tracks T1 and T2

correspond to two hadronic particles that created showers

H1 and H2 in the HCAL. In addition, there are also four

tracks (shown in blue) that correspond to four electromag-

netic showers in the ECAL (E1,...,E4). . . . . . . . . . . . . 62

4.4 An architecture diagram of the TICL framework (Cristella,

2021). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

167



List of Figures

5.1 An example of three-layer MLP that takes three inputs and

produces a single output. One of the neurons is highlighted in

red and it is shown how it is taking inputs from four neurons

in the preceding layer and multiplying it with a set of learned

weights (w◦). The output of this neuron is then forwarded

to three neurons in the subsequent layer. . . . . . . . . . . . 67

5.2 Track finding using neural networks in the 80s (Denby, 1988).

For a certain track hit, the neural network decides whether

to connect to all the other points in its near vicinity defined

by a threshold in an iterative fashion. In this example, the

neural network has perfectly reconstructed four tracks. . . . 74

5.3 A CNN filter: dot product of the feature vector at a certain

location is taken with various weights vectors. The resulting

scalar numbers are added together and placed in the output

grid at the location corresponding to the centre of the filter. 75

5.4 AlexNet: The first CNN that achieved ground-breaking re-

sults on the ImageNet challenge (Krizhevsky et al., 2012).

The number of pixels is decreased with progressive applica-

tion of CNN filters. At the end, the features are concatenated

and passed through a set of dense layers. A 1000-dimensional

output signifies 1000 output classes in the ImageNet dataset. 76

5.5 The CNN used by Komiske, Metodiev, and Schwartz (2017)

to classify jet images into quarks and gluons. . . . . . . . . . 78

5.6 A CNN is used to improve the response (left) and resolution

(right) of hadron energy reconstruction (Akchurin et al., 2021). 79

5.7 A very simple directed graph. Nodes are shown as circles and

edges as arrows, representing the direction of the edge. The

edges are also weighted. . . . . . . . . . . . . . . . . . . . . 80

5.8 Pileup subtraction in 20 PU event an architecture based on

Gated Graph Neural Networks (top). The ground truth is

shown on the left and the prediction of the GNN is shown on

the right (Mart́ınez et al., 2019). . . . . . . . . . . . . . . . . 83

168



List of Figures

6.1 Architecture diagram of the graph neural network used for

reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 How calculation of qh is affected (qmin = 0 is affected with

and without a safeguard over full β range (left) and zoomed

in (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3 Two examples of the concept of spectators. The hits that

are marked as spectators are shown in red and the rest of the

hits are shown in grey. . . . . . . . . . . . . . . . . . . . . . 94

6.4 An example of a training event. Pileup particles are only

present in a randomly selected ϕ region (on the right side in

this figure). . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.1 On the left, the longitudinal cross section of the detector is

shown where different colours correspond to different mate-

rials - copper (orange), stainless steel and lead (gray), air

(white) and silicon (black). Right: Transverse cross section

of the last active layer of the detector, showing how the sen-

sors are formed by slicing across r and ϕ. . . . . . . . . . . 103

7.2 Block diagram showing different materials that form the de-

tector. The arrows on the right of the diagram divide into

three sections (one electromagnetic and two hadronic). . . . 105

7.3 Fig 7.3a: ∆(η, ϕ) as a function of z, spanning the length of the

detector along the longitudinal axis (left axis) and the num-

ber of segments needed across η and ϕ (right axis). Fig 7.3b:

Cumulative number of sensors as a function of z. The ver-

tical line represents the location where the electromagnetic

section ends. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.4 A scatter plot showing calibrated deposited energy versus

true energy of photons shot between 1.8 < η < 2.8. Edep =

Eimpact line is highlighted. . . . . . . . . . . . . . . . . . . . 107

7.5 Top: 100 GeV γ shower. Bottom: 110 GeV π+ shower. . . . 108

7.6 An example of a 40 PU event where different colours corre-

spond to different true particles. . . . . . . . . . . . . . . . . 112

169



List of Figures

7.7 All figures are based on 200 PU events in the toy detector.

Top left: distribution of number of rechits in an endcap. Top

right: distribution of number of showers in an endcap. Bot-

tom: Distribution of number of rechits in a shower. . . . . . 113

7.8 Properties of minimum bias showers in the endcap calorime-

ters. Top left: Distribution of energy of the particles. Top

right: Distribution of pT of the particles. Bottom: Distribu-

tion of η of the particles. These numbers are extracted from

200 PU events. . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.9 Reconstruction efficiency of single particles in different pileup

conditions. Fig. 7.9a: efficiency as a function of the true pT

for electromagnetic particles (photons and electrons). Fig. 7.9b:

efficiency as a function of the true pT for hadronic particles

(charged pions) . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.10 Unmatched rate as a function of predicted pT . . . . . . . . . 116

7.11 The response and the resolution of reconstructed single-particles

in different pileup conditions as a function of true pT. Fig. 7.11a

shows the electromagnetic particles and Fig. 7.11b, the hadronic

particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.12 Fig. 7.12a: The response and resolution of electromagnetic

particles computed as the mean and mean-corrected standard

deviation of the Gaussian fit to the pT pred/pT true distribution

in individual pT bins. Fig. 7.12b: The distribution of pT

response in different pT ranges corresponding to the first four

bins in Fig. 7.12a in 0 pileup environment. . . . . . . . . . . 120

7.13 Fig. 7.13a: The response and resolution of hadronic particles

computed as the mean and mean-corrected standard devia-

tion of the Gaussian fit to the pT pred/pT true distribution in

individual pT bins. Fig. 7.13b: The distribution of pT re-

sponse in different pT ranges corresponding to the first four

bins in Fig. 7.13a in 0 pileup environment. . . . . . . . . . . 121

170



List of Figures

7.14 Jet reconstruction performance. Fig. 7.14a: Mean jet re-

sponse (top) and resolution (bottom) in 40 pileup as functions

of the true pT . Fig. 7.14b: Response distributions and the

fitted Gaussian functions in different pT ranges correspond-

ing to Fig. 7.14a. The response and resolution are computed

as the mean and mean-corrected standard deviation of the

Gaussian fit to the pT pred/pT true distribution in individual pT

bins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.15 Fig. 7.15a: Mean jet response (top) and resolution (bottom)

in 200 pileup as functions of the true pT . Fig. 7.15b: Re-

sponse distributions and the fitted Gaussian functions in dif-

ferent pT ranges corresponding to Fig. 7.15a. The response

and resolution are computed as the mean and mean-corrected

standard deviation of the Gaussian fit to the pT pred/pT true

distribution in individual pT bins. . . . . . . . . . . . . . . . 124

7.16 An example of a well-reconstructed electromagnetic shower

in 200 pileup. The top figure shows the truth hits and the

bottom figure shows the reconstructed hits. Grey represents

the pileup and coloured points show hits associated with the

test shower and the predicted shower matched to it. . . . . . 125

7.17 An example of a well-reconstructed hadronic shower in 200

pileup. The top figure shows the truth hits and the bot-

tom figure shows the reconstructed hits. Grey represents the

pileup and coloured points show hits associated with the test

shower and the predicted shower matched to it. . . . . . . . 126

7.18 An example of jet reconstruction. The top figure shows the

truth and the bottom figure shows the predicted jets. Only

the matched jets are shown. . . . . . . . . . . . . . . . . . . 127

7.19 Two examples of HGCAL events resulting from 20 primary

particles at the interaction point. Different colours corre-

spond to different truth level particles. . . . . . . . . . . . . 131

171



List of Figures

7.20 HGCAL dataset distributions. Top left: distribution of num-

ber of rechits in an endcap. Top right: distribution of number

of showers in an endcap. Bottom: Distribution of number of

rechits in a shower. . . . . . . . . . . . . . . . . . . . . . . . 132

7.21 Efficiency as a function of the true pT . Electromagnetic par-

ticles and hadrons are separated. . . . . . . . . . . . . . . . 133

7.22 Unmatched rate as a function of the predicted pT . . . . . . . 133

7.23 Fig. 7.23a shows resolution as a function of the true pT for

the CMS HGCAL data. The resolution is computed as mean

corrected standard deviation and not by fitting a Gaussian

function as the data is not Gaussian, evident in Fig. 7.23b

and Fig. 7.23c, where Gaussian functions are fitted on the

response distributions for the electromagnetic and hadronic

particles, respectively. . . . . . . . . . . . . . . . . . . . . . 134

7.24 An example of event reconstruction in the CMS HGCAL.

The top figure shows true showers and the bottom figure

shows the predicted showers. The colours are the same if a

predicted and a true shower is matched together. . . . . . . 135

7.25 Efficiency as a function of predicted pT with multi-matching

allowed in the CMS HGCAL data. . . . . . . . . . . . . . . 137

7.26 Unmatched rate as a function of predicted pT with multi-

matching allowed in the CMS HGCAL data. . . . . . . . . . 138

7.27 Fig. 7.27a shows mean response (top) and resolution (bot-

tom) of the jets clustered on the HGCAL data. The resolu-

tion is computed as the mean corrected standard deviation,

as the data is not Gaussian, as shown in Fig. 7.27b where the

fitted Gaussian functions are visualised. . . . . . . . . . . . 141

7.28 Jet reconstruction performance comparison of the graph neu-

ral network presented in this thesis with TICL in different

pT true ranges in the CMS HGCAL data. The µ and σ esti-

mates are those of the data, not of Gaussian functions, as

the data is not Gaussian, as evident by the fitted Gaussian

functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

172



List of Figures

7.29 Examples of jets clustered on the HGCAL data. Top figure

shows jets clustered on true particles and the bottom fig-

ure shows jet clustered on predicted particles. Jets that are

matched together have the same colours. . . . . . . . . . . . 143

7.30 Expected local energy density in 200 PU at η = 2. . . . . . . 145

7.31 Efficiency as a function of truth pT in the HGCAL. The data

is redistributed to mimic 200 PU based on local energy density.146

7.32 Resolution as a function of truth pT in the HGCAL. The data

is redistributed to mimic 200 PU based on the local energy

density of particles. . . . . . . . . . . . . . . . . . . . . . . . 147

8.1 Compute specifications of the model as a function of the

amount of pileup to run inference with one event. The left

axis (blue) shows average execution time on different GPUs,

and the right (orange) shows the average peak memory al-

located on the GPU. The error bars highlight the standard

deviation instead of the standard error to demonstrate event-

by-event variance in resource consumption. . . . . . . . . . . 151

8.2 Visual representation of how bin search works. In the first

step, the bin number are computed for all the bins. In the

second step, the data is sorted and the bin splits are com-

puted. In the third step, bin splits (R) can be used to search

for data in a specific bin. The search in the second bin is

highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.3 A visual representation of the binned KNN algorithm. The

red vertex is in the center and the orange vertices are its six

nearest neighbours. The nearest neighbours can be discov-

ered by first looking in the bin the red vertex is in. In the

second step, the next layer of bins is searched. Three bin lay-

ers are highlighted in different shades of grey. In the example

shown here, all the 6 nearest neighbours can be discovered

already in the second layer. . . . . . . . . . . . . . . . . . . 155

173



List of Figures

8.4 Total time taken by the binned KNN algorithm and FAISS

(Johnson et al., 2019) to execute all the KNN graph-building

operations during execution of the neural network as a func-

tion of pileup. The error bars highlight the standard devia-

tion instead of the standard error to demonstrate event-by-

event variance in the KNN execution. . . . . . . . . . . . . . 158

8.5 Inference clustering time in different pileup conditions. The

optimised binned algorithm is compared to the näıve imple-
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Sjöstrand, T. et al. (2015). ‘An introduction to PYTHIA 8.2’. Comput.

Phys. Commun. 191, pp. 159–177. doi: 10.1016/j.cpc.2015.01.024.

arXiv: 1410.3012 [hep-ph].

Suzuki, K. (2017). ‘Overview of deep learning in medical imaging’. Radio-

logical physics and technology 10 (3), pp. 257–273.

Touranakou, M., Chernyavskaya, N., Duarte, J., Gunopulos, D., Kansal, R.,

Orzari, B., Pierini, M., Tomei, T., and Vlimant, J.-R. (July 2022). ‘Particle-

based fast jet simulation at the LHC with variational autoencoders’. Ma-

chine Learning: Science and Technology 3 (3), p. 035003. doi: 10.1088/

2632-2153/ac7c56. url: https://doi.org/10.1088/2632-2153/ac7c56.

195

https://doi.org/10.1016/j.cpc.2015.01.024
https://arxiv.org/abs/1410.3012
https://doi.org/10.1088/2632-2153/ac7c56
https://doi.org/10.1088/2632-2153/ac7c56
https://doi.org/10.1088/2632-2153/ac7c56


List of Figures
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