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Abstract 

The reliable and rapid identification of the COVID-19 has become crucial to prevent the rapid spread of the disease, 
ease lockdown restrictions and reduce pressure on public health infrastructures. Recently, several methods and tech-
niques have been proposed to detect the SARS-CoV-2 virus using different images and data. However, this is the first 
study that will explore the possibility of using deep convolutional neural network (CNN) models to detect COVID-19 
from electrocardiogram (ECG) trace images. In this work, COVID-19 and other cardiovascular diseases (CVDs) were 
detected using deep-learning techniques. A public dataset of ECG images consisting of 1937 images from five distinct 
categories, such as normal, COVID-19, myocardial infarction (MI), abnormal heartbeat (AHB), and recovered myocar-
dial infarction (RMI) were used in this study. Six different deep CNN models (ResNet18, ResNet50, ResNet101, Incep-
tionV3, DenseNet201, and MobileNetv2) were used to investigate three different classification schemes: (i) two-class 
classification (normal vs COVID-19); (ii) three-class classification (normal, COVID-19, and other CVDs), and finally, (iii) 
five-class classification (normal, COVID-19, MI, AHB, and RMI). For two-class and three-class classification, Densenet201 
outperforms other networks with an accuracy of 99.1%, and 97.36%, respectively; while for the five-class classification, 
InceptionV3 outperforms others with an accuracy of 97.83%. ScoreCAM visualization confirms that the networks are 
learning from the relevant area of the trace images. Since the proposed method uses ECG trace images which can be 
captured by smartphones and are readily available facilities in low-resources countries, this study will help in faster 
computer-aided diagnosis of COVID-19 and other cardiac abnormalities.

Keywords:  Electrocardiogram (ECG), COVID-19, Deep learning, Convolutional neural networks, Cardiovascular 
diseases (CVDs)

Introduction
Coronavirus disease 2019 (COVID-19) has rapidly spread 
with increased fatalities across the world leading to a 
long-lasting global pandemic. Over 166 million cases 
have been recorded as of May 21, 2021, with over 3.4 
million fatalities documented worldwide [1]. The Severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
virus mostly affects the respiratory system, but it can also 
lead to multi-organ failure. It has a severe impact on the 

cardiovascular system [2–6]. The advancement of artifi-
cial intelligence in biomedical applications has helped in 
developing trained networks for reliable computer-aided 
diagnostic decisions and thus reducing the pressure from 
the healthcare facilities (such as medical doctors, health-
care staff, etc.) [7]. Several deep learning models have 
been proposed in recent studies to identify abnormali-
ties from medical images, including chest X-ray images 
and computerized tomography (CT) scans [8]. Degerli 
et  al. in [9], introduced a novel approach for the com-
bined localization, severity grading, and detection of 
COVID-19 from 15,495 CXR pictures by constructing 
so-called infection maps, which can accurately local-
ize and grade the severity of COVID-19 infection with 
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98.69% accuracy. For chest X-ray image classification, 
Kesim et  al. proposed a novel convolutional neural net-
work (CNN) model [10]. Since pre-trained CNN mod-
els have difficulty in practical applications, the authors 
designed a small-sized CNN architecture that showed 
very promising performance in classifying 12 different 
abnormalities from chest X-ray images (Atelectasis, Car-
diomegaly, Consolidation, Edema, Effusion, Emphysema, 
Fibrosis, Infiltration, Mass, Nodule, Pleural Thickening, 
Pneumothorax) and reported an accuracy score of 86%. 
Liu et al. proposed tuberculosis (TB) detection technique 
using chest X-ray and deep learning models [11]. The 
authors proposed a new CNN model and utilized shuf-
fle sampling to deal with the imbalanced dataset issue 
and yielded an accuracy score of 85.68%. Rahman et  al. 
[12] applied various pre-trained CNNs to categorize CXR 
pictures as having pulmonary tuberculosis (TB) symp-
toms or as being healthy. A dataset of 3500 infected and 
3500 normal CXR pictures were used to train the sug-
gested model. DenseNet201, the best-performing model, 
achieved a high detection performance of 98.57% sensi-
tivity and 98.56% specificity. Chowdhury et al. [13] have 
created a public dataset consisting of normal, viral pneu-
monia and COVID-19 chest X-ray images and used deep 
CNN models for binary and three class classifications. On 
the created dataset, transfer learning using pre-trained 
Squeezenet, Mobilenetv2, Inceptionv3, Chexnet, ResNet, 
and Densenet201 models were examined. While binary 
classification had an accuracy score of 99.7%, three-class 
classification tasks showed an accuracy of 97.9%. Xu et al. 
in [14] devised a method for detecting abnormalities in 
the chest X-ray images. To avoid the over-fitting prob-
lem in transfer learning, the authors suggested a hier-
archical-CNN model called CXNet-m1. The proposed 
CNN models were shallower than the pre-trained CNN 
models. Moreover, a novel loss function and CNN kernel 
improvement were introduced with an overall accuracy 
of 67.6%. In the study by Rahman et al. [15], the authors 
reported three schemes of classifications: normal vs. 
pneumonia, bacterial vs. viral pneumonia, and normal, 
bacterial, and viral pneumonia. Normal and pneumonia 
images, bacterial and viral pneumonia images, and nor-
mal, bacterial, and viral pneumonia images had classifica-
tion accuracy of 98%, 95%, and 93.3%, respectively.

Chouhan et al. [16] used deep learning models to detect 
pneumonia in chest X-ray images using five deep trans-
fer learning models and their ensemble. The accuracy of 
the ensemble deep learning model was 96.4%. Rajpurkar 
et al. created ChexNet, a 121-layer CNN architecture for 
stratifying fourteen distinct lung diseases using chest 
X-ray images [17]. The authors used the chest X-ray data-
set to train the 121-layered DenseNet-121 CNN model. 
This is the first pre-trained ImageNet model which has 

been made public re-trained on chest X-ray images. The 
proposed model produces an area under the curve (AUC) 
values ranging from 0.704 to 0.944. Li et  al. proposed a 
multi-resolution CNN (MR-CNN) for lung nodule iden-
tification [18]. To extract the features, a patch-based MR-
CNN model was utilized, and multiple fusion approaches 
were applied for classification. Free Response Receiver 
Operating Characteristics (FROC) curve was used for 
performance evaluation with AUC and Refined Competi-
tion Performance Metric (R-CPM) measures of 0.982 and 
0.987, respectively.

Bhandary et  al. tweaked the AlexNet model to detect 
lung anomalies using chest X-ray images [19]. A new 
threshold filter and feature ensemble technique were 
deployed to achieve a classification accuracy of 96%. 
Ucar et  al. [20] employed Laplacian Gaussian filters to 
improve the classification performance of the CNN mod-
els in chest X-ray image classification, which achieved 
a classification accuracy of 82.43%. Ismael and Şengür 
[21] demonstrated different deep learning approaches 
to detect COVID-19 from chest X-ray images using a 
Kaggle dataset and obtained the highest accuracy score 
92.63%, which was produced by the ResNet50 model. 
Their COVID-19 detection was carried out using a vari-
ety of multiresolution techniques (Contourlet transform 
and Wavelet and Shearlet). Extreme Learning Machine 
(ELM) was applied in the classification stage and the 
experiment results showed that Wavelet and Shearlet can 
obtain higher accuracy of 92%.

COVID-19 infection can cause acute myocarditis in 
apparently healthy people [22]. Up to 27.8% of COVID-
19 patients had an increased troponin level beyond the 
99th percentile of the upper reference limit, indicating 
acute myocardial injury in an early case reported from 
China [23, 24]. This is about ten times greater than the 
influenza rate (2.9%) [25]. Most COVID-19 patients, even 
those who have biochemical evidence of acute myocar-
dial damage, have a moderate illness history and recover 
without overt cardiac problems. It is unclear if COVID-
19 survivors with no overt cardiac signs have any subclin-
ical or hidden cardiac injury that might impair long-term 
results. As the pandemic slows, it is critical to figure out 
if cardiac monitoring in COVID-19 survivors is necessary 
or not. The potential to screen the general population and 
give an extra opinion for health care practitioners is the 
benefit of automated 12-lead electrocardiogram (ECG) 
diagnostic techniques. Since 1957, attempts have been 
made to automate the interpretation of ECG recordings, 
with a focus on findings linked to atrial fibrillation (AF). 
However, the performance of currently available auto-
mated methods has been mediocre [26]. Subsequently, 
despite current technological advancements, notably in 
the fields of sophisticated machine learning and artificial 
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intelligence (AI) methodologies, the clinical value of 
automated ECG interpretations remains very limited [27, 
28], and cardiologists continue to analyze and interpret 
12-lead ECG recordings using traditional methods. In 
recent works, Angeli et  al. [29] evaluated ECG features 
from 50 hospitalized patients (96% of our patients were 
Caucasians) infected with COVID-19 pneumonia. They 
discovered that during COVID-19 in older patients, the 
ECG signal produces abnormalities that can be treated 
in the early stages. However, the study was carried out 
using standard laboratory techniques and results could 
not be extended to other ethnic groups. Du et al. in [30], 
used the approach of deep learning on ECG trace images 
using a Fine-grained Multi-label ECG (FM-ECG) frame-
work to effectively detect the abnormalities using recur-
rent neural network (RNN) from the real clinical ECG 
was proposed. Ozdemir et  al. [31] proposed hexaxial 
feature mapping for detecting COVID-19 to represent 
12-lead ECG to 2D colourful images, also the Gray-Level 
Co-Occurrence Matrix was applied in feature extrac-
tion. In this examination, they obtained 93.20% of testing 
accuracy.

Thus, our main contribution includes a comprehensive 
study on the detection of COVID-19 and other cardiac 
abnormalities using deep convolutional neural networks 
(CNN) techniques on ECG images. We applied six differ-
ent CNN models for two-class, three-class and five-class 
classifications respectively to determine which model 
provides a higher detection accuracy of COVID-19 from 
ECG images. Several machine learning approaches have 
been applied for diagnosing covid-19 using medical 
images [32–34].

The remainder of this paper is organized as follows. 
‘Methodology’ discusses the material and methods of 
the study, while ‘Experiments’ outlined the experimental 
pipeline and evaluation metrics. Results are presented in 

‘Results’ and discussed in ‘Discussion’. Finally, ‘Conclu-
sion’ concludes the paper.

Deep convolutional neural networks‑based transfer 
learning
Six popular deep learning pre-trained CNN models have 
been used for COVID-19 detection using ECG trace 
images. These are ResNet18, ResNet50, ResNet101 [6], 
DenseNet201 [35], InceptionV3 [36], and MobileNetV2 
[37], which are initially trained on ImageNet database. 
The Residual Network (also known as ResNet) was cre-
ated to overcome the vanishing gradient and degrada-
tion problem [6]. ResNet has different variants based on 
the number of layers in the residual network: ResNet18, 
ResNet50, ResNet101, and ResNet152. ResNet is widely 
utilized for transfer learning in biomedical image clas-
sification. During training, deep neural network layers 
typically learn low or high-level features, whereas ResNet 
learns residuals rather than features [22]. Figure 1 shows 
the architecture of a convolutional neural network.

A Dense Convolutional Network (or DenseNet) [35] 
requires fewer parameters than a traditional CNN as this 
does not require training on redundant feature maps. 
The DenseNet has very narrow layers, hence it only adds 
a small number of new feature maps. DenseNet has four 
different known variants: DenseNet264, DenseNet169, 
DenseNet121 and DenseNet20. DenseNet provides 
straight access to the original input image as well as gra-
dients from the loss function in each layer. As a result, 
the computational cost of DenseNet has been signifi-
cantly lowered, making it a superior choice for image 
classification.

Alternatively, MobileNetv2 [37] is not comparable 
to other networks in-depth, rather this is a compact 
network. Except for the first layer, which is a full con-
volution, the rest of the layers are non-convolutional. 
Except for the last fully connected layer, which has no 

Fig. 1  Architecture of a convolutional neural network
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nonlinearity and feeds into a Softmax layer for classifica-
tion, the MobileNet structure is constructed on depth-
wise separable convolutions. Batch normalization and 
Rectified Linear Units (ReLU) nonlinearity are applied to 
all layers. Before the fully connected layer, a final average 
pooling reduces the spatial resolution to 1. MobileNet 
has 28 layers when depth-wise and pointwise convolu-
tions are counted separately. Inception Networks use 
inception blocks to allow for deeper networks and more 
efficient computation by reducing dimensionality with 
layered convolutions.

Visualization Techniques
There is an increased interest in the internal mechanics 
of CNNs and the rationale for the models’ judgments for 
classification. The visualization techniques aid the inter-
pretation of CNN decision-making processes by provid-
ing a more visual representation. These also improve the 
model’s transparency by presenting the reason behind 
the inference in a way that is easily understandable by 
humans, hence enhancing confidence in the neural net-
work’s conclusions. SmoothGrad [23], Grad-CAM [24], 
Grad-CAM++ [25], and Score-CAM [38] are examples 
of visualization approaches. Because of its promising per-
formance, Score-CAM was used in this study. The out-
come is formed by a linear combination of weights and 
activation maps, with each activation map’s weight deter-
mined by its forward passing score on the target class 
and eliminating the dependency of gradients. A sample 
image visualization with Score-CAM is shown in Fig. 2, 
where the heat map indicates that the region dominantly 
contributed to the decision making in CNN. This can be 
useful for understanding how the network makes deci-
sions and for enhancing end-user confidence when it can 
be confirmed that the network makes decisions using the 
important segment of ECG trace image all the time.

Different abnormalities in ECG images
In this study, five distinct types of ECG trace images were 
used in this study, where four out of five are abnormal 
(COVID-19, myocardial infarction, abnormal heartbeat, 
and recovered myocardial infarction) and the other one 
is normal ECG trace images. In clinical terms, a normal 
ECG trace image represents the ECG of the normal per-
son, who has no abnormality in the ECG trace. Myocar-
dial infarction (MI), often known as a heart attack, is a 
form of acute coronary syndrome that defines a sudden 
or short-term reduction or disruption of blood flow to 
the heart, causing significant damage to the heart and 
can be detected by ECG sensing for correct patient diag-
nosis [39]. Chest pain or discomfort is the most preva-
lent symptom, which might spread to the shoulder, arm, 
back, neck, or jaw. Other than the MI ECG trace images 
of individuals, the dataset includes ECG traces images 
of the patients who have just recovered from COVID-19 
and are experiencing symptoms of shortness of breath or 
respiratory sickness and the patients who are suffering 
from other abnormal heartbeats. Moreover, ECG trace 
images of the patients who are recently recovered from 
myocardial infarction were also available.

Most types of cardiac abnormalities have slight vari-
ances in ECG signals, nonetheless, these tiny distinctions 
(e.g., a peak–peak interval or a particular wave) are fre-
quently used for defining the variables in abnormalities 
classification, such as ST-segmentation change, P wave 
height, and T wave abnormality. Figure  3 shows two 
examples of aberrant kinds that may be recognized by 
important components. Due to its inability to efficiently 
gather important and discriminative aspects, deep CNN 
models’ effectiveness is restricted when dealing with pic-
ture data challenges.

Methodology
Figure  4 summarizes the methodology of this study. As 
explained earlier, this work has presented three different 
experimental schemes: (i) binary or two-class classifica-
tion (normal vs COVID-19); (ii) three-class classifica-
tion (normal, COVID-19, and cardiac abnormalities) and 
finally, (iii) five-class classification (normal, COVID-19, 
MI, AHB, and RMI). Six state-of-the-art CNN models 
were trained, validated, and tested to detect abnormal-
ity from ECG trace images for each of the classification 
schemes.

The methodology of this research work is described in 
the following subsections.

Dataset description
In this study, an ECG image dataset [40] of cardiac 
and COVID-19 patients is used, which consists of 

Fig. 2  Score-CAM heat map on ECG trace images to show the 
important region for making the decision by the CNN
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1937 distinct patient records with five distinct catego-
ries (normal, COVID-19, myocardial infarction (MI), 
abnormal heartbeat (AHB), and recovered myocardial 
infarction (RMI). All the data were collected using the 
ECG device ‘EDAN SERIES-3’ installed in Cardiac Care 
and Isolation Units of different health care institutes 
across Pakistan. Twelve lead ECG trace images were 
collected and were manually reviewed by medical pro-
fessors using a telehealth ECG diagnostic system, under 
the supervision of senior medical professionals with 

experience in ECG interpretation. Table  1 shows the 
number of images for different categories in the dataset 
and some sample images are shown in Fig. 5.

Preprocessing
To improve the ECG image quality, the files are pre-
processed using a gamma correction enhancement 
technique [41]. In image normalization, linear opera-
tions, individual pixels are frequently subjected to 
operations such as scalar multiplication, addition, and 
subtraction. Gamma correction is a non-linear pro-
cedure that is applied to the pixels of a source image. 
To improve the image, gamma correction employs the 
projection relationship between the pixel value and the 
gamma value according to the internal map, as shown 
in Fig. 6. If A represents the pixel value within a range 
of 0–255, which represents an angle value. If X repre-
sents the grayscale value of the pixel (A), then Eqs. (1)–
(5) is correct. Let Xm be the midpoint of the range [0, 
255]. P is the linear map from a group consisting of the 
following elements:

Fig. 3  Illustration of two examples of ECG classes: abnormal ECG trace image for the a COVID-19 and b myocardial Infarction patients. The subtle 
signs identified (highlighted in red and pointing via arrows) as key parts to detect the abnormalities

Normal

COVID-19

Cardiac Abnormality

Three-class

Normal

COVID-19

Myocardial Infarction (MI)

Abnormal Heartbeat

Recovered MI

Five-class

Two-class
Normal

COVID-19

Data preprocessing &
Data augmentation

Deep
Pre-trained Model

Mobilenetv2
Resnet18
Resnet50
Resnet101
DenseNet201
Inceptionv3

Input ECG trace image

Fig. 4  Overview of the methodology

Table 1  Dataset description

Category Number of 
images

Sample rate (Hz) Leads

Normal 859 500 12

COVID-19 250

Myocardial infarction 77

Abnormal heartbeat 548

Recovered MI 203
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The mapping from Ω to Ґ is defined as:

(1)ϕ : A → �, � = {ω|ω = ϕ(x)}, ϕ(x) =
πx

2Xm

(2)

(3){h(X) = 1+ f1(X)

(4){f1(X) = a cos(ϕ(X))

Based on this map, group A can be related to Ґ group 
pixel values. The arbitrary pixel value is calculated with a 
given Gamma number. Let γ (X) = h(X), and the Gamma 
correction function is as follows:

where s(X) represents the output pixel correction value 
in grayscale. After gamma correction, the dataset is pro-
cessed to resize the ECG images to fit the input image-
size requirements of CNN networks (e.g., 224 by 224 for 

(5)s(X) = 255

(

X

255

)1/γ (X)

Fig. 5  Sample ECG trace images from the dataset. The horizontal axis represents time, and each time step is represented by a vertical line that lasts 
0.04 s. Signal magnitudes in millivolts (mV), are represented on the vertical axis

Fig. 6  Preprocessing the input image: original ECG trace image (A) and Gamma corrected image (B)
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residual and dense networks, and 299 by 299 for incep-
tion network). Using the mean and standard deviation of 
the images, Z-score normalization of the image was car-
ried out [42].

Augmentation
Since the dataset is not balanced and the dataset does not 
have a similar number of images for the different catego-
ries, training with an imbalanced dataset can produce a 
biased model. Thus, data augmentation for the train-
ing set can help in having a similar number of images 
in the various classes, which can provide reliable results 
as stated in many recent publications [12, 13, 15, 41, 43, 
44]. In this study, three augmentation strategies (rota-
tion, scaling, and translation) were utilized to balance the 
training images. The rotation operation used for image 
augmentation was done by rotating the images in the 
clockwise and counterclockwise direction with an angle 
between 5° and 10°. The scaling operation is the magni-
fication or reduction of the frame size of the image and 
2.5% to 10% image magnifications were used in this work. 
Image translation was done54 by translating images hori-
zontally and vertically by 5% to 20%.

Experiments
As discussed in ‘Methodology’, three different clas-
sification schemes were carried out in this study: two 
classes (normal vs COVID-19), three classes (normal, 
COVID-19, and cardiac abnormality), and five classes 
(normal, COVID-19, myocardial infarction, abnormal 
heartbeat, and recovered myocardial infarction) clas-
sification using different deep learning algorithms. 
Five-fold cross-validation was used and therefore, 80% 
of data were used for training and 20% for testing. Out 
of the training dataset subset, 10% were utilized for 

validation to avoid overfitting issues [45]. Finally, the 
results were a weighted average of five folds. Table  2 
shows the details of the number of training, validation, 
and test ECG images used.

The networks were built with the PyTorch library 
and Python 3.7 on an Intel® Xeon® CPU E5-2697 v4 
@ 2.30  GHz with 64  GB RAM and a 16  GB NVIDIA 
GeForce GTX 1080 GPU. All networks were trained 
using the Adam optimizer with a learning rate of 10−3, 
a dropout rate of 0.2, a momentum update of 0.9, a 
mini-batch size of 16 images with 15 backpropagation 
epochs, and an early stopping threshold of 8 maximum 
epochs when no improvement in validation loss was 
seen. Table 3 summarizes the training settings used in 
the categorization studies.

Table 2  Details of training, validation, and test set for different classification problem

Classification Types Total no. of images/
class

Train set count/fold Validation set count/
fold

Test set 
count/
fold

Two-class Normal 859 619 × 4 = 2476 68 172

COVID-19 250 180 × 14 = 2520 20 50

Three-class Normal 859 619 × 4 = 2476 68 172

COVID-19 250 180 × 14 = 2520 20 50

Abnormal 828 597 × 4 = 2388 66 165

Five-class Normal 859 619 × 4 = 2476 68 172

COVID-19 250 180 × 14 = 2520 20 50

Myocardial infarction 77 56 × 43 = 2408 6 15

Abnormal HB 548 395 × 6 = 2370 44 109

Recovered MI 203 147 × 17 = 2499 16 40

Table 3  Summary of training parameters for classification 
experiments

Training parameter

Learning 
rate

Batch size Epochs Epoch 
patience

Stopping 
criteria

Optimizer

0.001 16 15 8 8 ADAM

Table 4  The architectures of the pre-trained CNN models

Network Depth Parameters 
(millions)

Input image size

MobienetV2 53 3.5 224 × 224

Resnet18 18 11.7 224 × 224

Resnet50 50 25.6 224 × 224

Resnet101 101 44.6 224 × 224

Densenet201 201 20 224 × 224

InceptionV3 48 23.9 224 × 224
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In Table 3, the depths, number of learnable parameters 
and the input image sizes of the considered pre-trained 
deep CNN networks are given. In Table 4, we show used 
pre-trained network architecture. The Densenet201 has 
the deeper architecture and the Resnet101 has 44.6 mil-
lion parameters. All considered pre-trained networks 
have identical input image sizes.

Performance matrices for classification
In this study, six CNN models were trained and assessed 
using fivefold cross-validation. After the training phase, 
the performance of multiple networks for the testing 
dataset was assessed and compared using six perfor-
mance indicators, such as accuracy, sensitivity or recall, 
specificity, precision (PPV), and F1 score. Equations (6)–
(10) [41] indicate the different matrices for performance 
evaluation:

Here, for two-class, true positive (TP) is the number 
of correctly classified COVID-19 ECG images and true 
negative (TN) is the number of correctly classified nor-
mal images. False-positive (FP) and false-negative (FN) 
are the misclassified normal and COVID-19 ECG images, 
respectively. For the three-class, true positive (TP) is the 
number of correctly classified COVID-19 ECG images 
and true negative (TN) is the number of correctly clas-
sified other two classes (normal and abnormal images). 
False-positive (FP) and false-negative (FN) are the mis-
classified other two classes (normal and abnormal 
images) and COVID-19 ECG images, respectively. For the 
five-class, true positive (TP) is the number of correctly 
classified COVID-19 ECG images and true negative (TN) 
is the number of correctly classified other four classes 
(normal, myocardial infarction, abnormal heartbeat, and 
recovered myocardial infarction images). False-positive 
(FP) and false-negative (FN) are the misclassified other 
four classes (normal, myocardial infarction, abnormal 

(6)Accuracy =
TP + TN

(TP + FN )+ (FP + TN )

(7)Sensitivity =
(TP)

(TP + FN )

(8)Specificity =
(TN )

(TN + FP)

(9)Precision =
(TP)

(TP + FP)

(10)F1_score =
(2× TP)

(2× TP + FN + FP)

heartbeat, and recovered myocardial infarction images) 
and COVID-19 ECG images, respectively.

The performance of deep CNNs was assessed using dif-
ferent evaluation metrics with 95% confidence intervals 
(CIs). Accordingly, CI for each evaluation metric was 
computed, as shown in Eq. (11):

where N is the number of test samples, and z is the level 
of significance that is 1.96 for 95% CI.

In addition to the above metrics, the various classifica-
tion networks were compared in terms of elapsed time 
per image, or the time it took each network to classify an 
input image, as shown in Eq. (12).

In this equation, T1 is the starting time for a network 
to classify an image, I, and T2 is the end time when the 
network has classified the same image, I.

Results
This section describes the performance of the different 
classification networks’ performance on ECG trace image 
classification. The comparative performance of different 
CNNs for two-class, three-class, five-class classification 
schemes was shown in Table 5. It can be noted that for 
two and three class classification schemes DenseNet201 
is outperforming while for the five-class classification 
InceptionV3 is showing the best performance.

For two-class (normal vs COVID-19) classification, 
overall test accuracy was 99.1% using Densenet201, 
while for three-class (normal, COVID-19 and other car-
diac abnormality) classification, it was 97.36% using 
Densenet201, and for five-class (normal, COVID-19, 
myocardial infarction, abnormal heartbeat, and recov-
ered MI) classification, it was found to be 97.83% with 
InceptionV3. Figure  7 depicts the area under the curve 
(AUC)/receiver-operating characteristics (ROC) curve 
(also known as AUROC (area under the receiver oper-
ating characteristics) for various classification schemes, 
which is one of the most essential assessment metrics 
for determining the success of any classification model. 
In two-class and three-class classification, DenseNet201 
shows better performance than the other techniques, 
as shown in Fig.  8, where InceptionV3 outperforms the 
other algorithms for five-class classification.

Figure  9 illustrates the confusion matrix for the out-
performing model for ECG trace image classifica-
tion schemes: two classes (Densenet201), three classes 
(Densenet201), and five classes (Inceptionv3). It is worth 
noting that with the top-performing network, 10 out of 
250 COVID-19 ECG images were incorrectly categorized 
as normal for two-class classification, however, none of 

(11)r = x
√
(metric(1−metric)/N )

(12)�T = T2− T1
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the COVID-19 ECG images was incorrectly categorized 
as normal or other classes for three-class or five-class 
classification. This is an outstanding performance from 
any computer-aided classifier, and this can significantly 
help in the fast diagnosis of COVID-19 by clinicians 
immediately after acquiring the ECG images.

Figure  10 shows the comparison of accuracy versus 
the elapsed time per image for different CNN models for 
two-class, three-class, and five-class classification. While 
Densenet201 outperforms other networks for two-class, 
and three-class classification and Inceptionv3 outperform 
other networks for five-class classification, these are the 
slowest networks; however, these networks took approxi-
mately a second to take the decision. For two-class and 
five-class classification, all network performances are 
comparable, whereas, for three-class, Densenet201 out-
performs other networks by 4–7%.

Figure 11 shows the training and validation loss versus 
epochs for the three best-performing networks for two-
class (DenseNet201), three-class (DenseNet201), and 
five-class (InceptionV3) classification. It can also be seen 
that the networks reach and stabilize with the lowest loss 
earlier after a few epochs.

As mentioned previously, it is critical to determine 
if the network is learning from the relevant area of the 
ECG trace images or from somewhere else and any non-
related data for taking the decision. Heat maps based 
on the Score-CAM technique were created for distinct 
classes of the ECG trace images. Figure 12 depicts sam-
ples ECG trace images for three-class classification as 
well as heat maps created using the best-performing 

Table 5  Comparison of the performances of the different CNN models for different classification schemes (best result is 
presented as bold)

Classification Model Result with 95% CI Inference time

Overall
Weighted

Accuracy Precision Sensitivity F1-score Specificity

2 class MobieneV2 98.74 ± 0.52 98.74 ± 0.52 98.74 ± 0.52 98.73 ± 0.52 96.23 ± 0.88 0.18

Resnet18 98.62 ± 0.45 98.56 ± 0.35 98.6 ± 0.4 98.8 ± 0.44 96.21 ± 0.78 0.26

Resnet50 98.92 ± 0.48 98.93 ± 0.48 98.92 ± 0.48 98.91 ± 0.48 96.28 ± 0.87 0.44

Resnet101 99.01 ± 0.46 99.02 ± 0.46 99.01 ± 0.46 99 ± 0.46 96.59 ± 0.84 0.85

Densenet201 99.1 ± 0.44 99.11 ± 0.43 99.1 ± 0.44 99.09 ± 0.44 96.9 ± 0.8 1.34
InceptionV3 98.78 ± 0.52 98.62 ± 0.54 100 ± 0 99.31 ± 0.38 95.2 ± 0.99 1.26

3 class MobieneV2 90.79 ± 1.34 91.26 ± 1.3 90.79 ± 1.34 90.76 ± 1.34 92.75 ± 1.2 0.22

Resnet18 92.81 ± 1.19 92.83 ± 1.19 92.81 ± 1.19 92.8 ± 1.19 94.44 ± 1.06 0.31

Resnet50 93.01 ± 1.18 93.09 ± 1.17 93.01 ± 1.18 93.01 ± 1.18 94.59 ± 1.05 0.48

Resnet101 93.02 ± 1.18 93.23 ± 1.16 93.01 ± 1.18 92.99 ± 1.18 94.54 ± 1.05 0.88

Densenet201 97.36 ± 0.74 97.4 ± 0.74 97.36 ± 0.74 97.36 ± 0.74 97.93 ± 0.66 1.4
InceptionV3 96.89 ± 0.8 96.9 ± 0.8 96.9 ± 0.8 96.89 ± 0.8 97.6 ± 0.71 1.36

5 class MobieneV2 96.22 ± 0.88 96.29 ± 0.87 96.22 ± 0.88 96.2 ± 0.88 97.73 ± 0.69 0.25

Resnet18 95.34 ± 0.97 95.44 ± 0.96 95.34 ± 0.97 95.28 ± 0.98 97.02 ± 0.79 0.33

Resnet50 96.43 ± 0.86 96.43 ± 0.86 96.43 ± 0.86 96.4 ± 0.86 97.93 ± 0.66 0.52

Resnet101 97 ± 0.79 97.07 ± 0.78 97 ± 0.79 96.95 ± 0.79 97.97 ± 0.65 0.92

Densenet201 97.2 ± 0.76 97.2 ± 0.76 97.21 ± 0.76 97.2 ± 0.76 98.63 ± 0.54 1.61

InceptionV3 97.83 ± 0.67 97.82 ± 0.67 97.83 ± 0.67 97.82 ± 0.67 98.86 ± 0.49 1.68

Fig. 7  ROC curves for the deep CNN approaches
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DenseNet201 model. CNN learns from the regions where 
various waves change for various classes and the areas 
that are most important in determining abnormal ECG 
images in each of the ECG trace images. In Fig. 12A–C, 
we can see that ST-segment and J-point elevation, and 
abnormal heartbeat occurred for COVID-19, myocardial 
infarction, and abnormal heartbeat. Reliability of how the 
network is taking decisions for classification is important 
to increase the confidence of the end-user in the AI per-
formance. It is easily noticeable that the network learned 

from the area where ECG waves are changing compared 
to normal ECG images rather than the outside area of the 
ECG waves.

Discussion
Furthermore, numerous deep learning-based studies 
have employed radiographic images to detect COVID-
19, with many of them achieving excellent classification 
results. As an example, consider the following studies: 
Al-Waisy et  al. [46] achieved 99.99% accuracy, Dhiman 

Fig. 8  ROC curves for two-class, three-class, and five-class classifications for ECG images
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et  al. [47] achieved 98.54% accuracy, Ozturk et  al. [48] 
achieved 98.08% accuracy, and Ahuja et al. [49] achieved 
99.4% accuracy. The effectiveness of the research is 
because lung involvement is the most common symptom 
of COVID-19 disease [50], and the symptoms may be 
seen clearly on radiographic lung imaging [51].

Despite this, several studies employing CT and X-ray 
to diagnose COVID-19 have found that our technique 
is less accurate. As an example, consider the following 
studies: Ismael and Sengur [21] achieved 94.7% accuracy, 
Pathak et  al. [52] achieved 93.02% accuracy, Song et  al. 
[53] achieved 86% accuracy, Amyar et  al. [54] achieved 

94.67% accuracy, and Wang et  al. [55] achieved 82.9% 
accuracy. Furthermore, given the drawbacks of radiologi-
cal imaging discussed in the Background section, the sug-
gested ECG-based COVID-19 diagnosis approach could 
be more useful than radiological image-based detection 
methods. It should be mentioned that the ECG is more 
easily accessible.

Furthermore, several research studies using multi-lead 
ECG to classify cardiac arrhythmias are described [56, 
57]. Arrhythmias may not be present in all ECG channels, 
or they may be prevalent in only a few. All channel infor-
mation should be protected, especially in multi-lead ECG 

Fig. 9  Confusion matrix for A normal and COVID-19, B normal, COVID-19, and abnormal classification for Densenet201 model, and C normal, 
COVID-19, myocardial infarction, abnormal heartbeat, and recovered MI classification for Inceptionv3 model
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and AI-based categorization research. If the prediction 
is made through the ECG channel when no abnormali-
ties are visible, an abnormal ECG may be misclassified. 
Because the suggested hexaxial mapping method incor-
porates full 12-lead channel data, no channel with 
arrhythmias has been overlooked.

In this investigation, COVID-19 ECG images and 
other cardiovascular diseases (CVDs) were detected 
using deep-learning techniques. A public dataset of ECG 
images consisting of 1937 images from five distinct cat-
egories, such as Normal, COVID-19, myocardial infarc-
tion (MI), abnormal heartbeat (AHB), and recovered 
myocardial infarction (RMI) were used in this study. 
Six different deep CNN models (ResNet18, ResNet50, 

ResNet101, InceptionV3, DenseNet201, and Mobile-
Netv2) were used to investigate three different classifica-
tion schemes.

Limitations
Despite having low-resolution images and a limited data-
set from our study and experiments, a significant differ-
ence was identified between images of COVID-19 ECGs 
and the others in all statistical analyses of GLCM char-
acteristics; MI, aberrant, and no cardiac abnormalities. 
However, we emphasize that a wide range of ECG data-
sets, particularly ECGs of moderate or asymptomatic 
COVID-19 patients, is required to support our results 
and findings.

Fig. 10  Accuracy vs inference time plot for two-class (A), three-class (B), and five-class (C) classifications
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Conclusion
This paper provides a deep convolutional neural net-
works-based transfer learning strategy for the automated 
diagnosis of COVID-19 and other cardiac disorders using 
ECG trace images. The performance of the six different 
CNN models was evaluated for the classification of three 
different schemes: two-class classification (normal and 
COVID-19), three-class classification (normal, COVID-
19, and cardiac abnormality) and five-class classification 
(normal, COVID-19, myocardial infarction (MI), abnor-
mal heartbeat (HB), and recovered MI). Densnet201 
model outperforms other deep CNN models for two-
class, and three-class classifications whereas Inceptionv3 
outperform other networks for five-class classification. 
The best classification accuracy, precision, and recall for 

the two-class, and three-class classifications were found 
to be 99.1%, 99.11%, 99.1%, and 97.36%, 97.4%, 97.36%, 
respectively. For five-class classification, the best clas-
sification accuracy, precision, and recall were 97.82%, 
97.83%, and 97.82%, respectively. The Score-CAM visu-
alization output demonstrates that the important signal 
changes in the ECG trace contribute to the decision-
making of the network. Automatic abnormality detec-
tion from ECG images has a very crucial application in 
computer-aided diagnosis for critical healthcare prob-
lems like this one. This state-of-the-art performance can 
be a very useful and fast diagnostic tool, which can save 
a significant number of people who died every year due 
to delayed or improper diagnosis of COVID-19 and other 
comorbidities.

Fig. 11  Training and validation losses versus Epoch for A two-class, B three-class, and C five-class classification
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