

This thesis has been submitted in fulfilment of the requirements for a

postgraduate degree (e. g. PhD, MPhil, DClinPsychol) at the University of

Edinburgh. Please note the following terms and conditions of use:

• This work is protected by copyright and other intellectual property rights,

which are retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or

study, without prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without

first obtaining permission in writing from the author.

• The content must not be changed in any way or sold commercially in

any format or medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the

author, title, awarding institution and date of the thesis must be given.

Modular Lifelong Machine Learning

Lazar Ignatov Valkov
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute for Adaptive and Neural Computation

School of Informatics

University of Edinburgh

2022

Abstract
Deep learning has drastically improved the state-of-the-art in many important fields,

including computer vision and natural language processing (LeCun et al., 2015). How-

ever, it is expensive to train a deep neural network on a machine learning problem. The

overall training cost further increases when one wants to solve additional problems.

Lifelong machine learning (LML) develops algorithms that aim to efficiently learn to

solve a sequence of problems, which become available one at a time. New problems

are solved with less resources by transferring previously learned knowledge. At the

same time, an LML algorithm needs to retain good performance on all encountered

problems, thus avoiding catastrophic forgetting. Current approaches do not possess all

the desired properties of an LML algorithm. First, they primarily focus on preventing

catastrophic forgetting (Dı́az-Rodrı́guez et al., 2018; Delange et al., 2021). As a result,

they neglect some knowledge transfer properties. Furthermore, they assume that all

problems in a sequence share the same input space. Finally, scaling these methods to

a large sequence of problems remains a challenge.

Modular approaches to deep learning decompose a deep neural network into sub-

networks, referred to as modules. Each module can then be trained to perform an

atomic transformation, specialised in processing a distinct subset of inputs. This mod-

ular approach to storing knowledge makes it easy to only reuse the subset of modules

which are useful for the task at hand.

This thesis introduces a line of research which demonstrates the merits of a modular

approach to lifelong machine learning, and its ability to address the aforementioned

shortcomings of other methods. Compared to previous work, we show that a modular

approach can be used to achieve more LML properties than previously demonstrated.

Furthermore, we develop tools which allow modular LML algorithms to scale in order

to retain said properties on longer sequences of problems.

First, we introduce HOUDINI, a neurosymbolic framework for modular LML. HOU-

DINI represents modular deep neural networks as functional programs and accumulates

a library of pre-trained modules over a sequence of problems. Given a new problem,

we use program synthesis to select a suitable neural architecture, as well as a high-

performing combination of pre-trained and new modules. We show that our approach

has most of the properties desired from an LML algorithm. Notably, it can perform for-

ward transfer, avoid negative transfer and prevent catastrophic forgetting, even across

problems with disparate input domains and problems which require different neural

architectures.

iii

Second, we produce a modular LML algorithm which retains the properties of

HOUDINI but can also scale to longer sequences of problems. To this end, we fix the

choice of a neural architecture and introduce a probabilistic search framework, PICLE,

for searching through different module combinations. To apply PICLE, we introduce

two probabilistic models over neural modules which allows us to efficiently identify

promising module combinations.

Third, we phrase the search over module combinations in modular LML as black-

box optimisation, which allows one to make use of methods from the setting of hyper-

parameter optimisation (HPO). We then develop a new HPO method which marries a

multi-fidelity approach with model-based optimisation. We demonstrate that this leads

to improvement in anytime performance in the HPO setting and discuss how this can

in turn be used to augment modular LML methods.

Overall, this thesis identifies a number of important LML properties, which have

not all been attained in past methods, and presents an LML algorithm which can

achieve all of them, apart from backward transfer.

iv

Lay Summary
Computers have been used to automate and augment many aspects of our life. Tradi-
tionally, people would write programs, which instruct the computer on how to perform
a task. In contrast, machine learning allows the computer to learn from experience.
For instance, it can learn from examples that show how a task should be performed.
A computer usually learns how to perform each task from scratch, which can require
considerable resources and a large number of examples. Instead, lifelong machine
learning methods allow computers to build up knowledge over time and reuse it when
learning how to perform a new task. This allows new tasks to be learned more quickly,
requiring less resources.

This thesis presents a new method for lifelong machine learning. We introduce a
more structured approach to storing and reusing the accumulated knowledge. We then
improve our method by further reducing the amount of resources it requires.

Overall, our work makes three contributions. First, we reduce the number of exam-
ples a computer needs. Second, we extend the number of problems which our approach
can learn to solve. Third, we make it easier to understand how the knowledge is being
reused.

v

Acknowledgements

I would like to thank my supervisor, Dr. Charles Sutton, for giving me the opportunity

to learn from him as well as for his valuable advice. I am grateful to my friend Akash

SrivastaZa for all the time we have spent discussing exciting research ideas. I also

thank my other collaborators: Cédric Archambeau, Dipak Chaudhari, Fela Winkel-

molen, Rodolphe Jenatton and Swarat Chaudhuri.

I am indebted to my family, Maria, Ignat and Pepi, for their support throughout my

studies. Finally, I thank Stefanie Speichert for her support as well as for her detailed

feedback on my thesis.

vii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Lazar Ignatov Valkov)

viii

To my grandmother, Penka Valkova.

ix

Table of Contents

1 Introduction 1

1.1 Machine Learning - Benefits and Costs 1

1.2 Lifelong Machine Learning - Reducing the Costs 4

1.2.1 Knowledge Transfer to a Single Problem 4

1.2.2 Knowledge Transfer Between Multiple Tasks 5

1.2.3 Lifelong Knowledge Accumulation and Transfer 6

1.3 Neurosymbolic Systems . 8

1.4 Thesis Overview . 8

1.5 Thesis Outline . 11

2 Background: Lifelong Learning 15

2.1 Supervised Learning . 15

2.2 Deep Learning . 18

2.2.1 Motivation . 18

2.2.2 Overview . 19

2.3 Transfer Learning . 21

2.3.1 Deep Transfer Learning . 24

2.4 Multi-Task Learning . 27

2.5 Lifelong Learning . 29

2.5.1 Common Experiments and Measurements 33

2.5.2 Approaches . 35

3 Background - Related Areas 45

3.1 Modular Deep Learning . 45

3.1.1 Mixture of Experts . 46

3.1.2 Routing Networks . 47

3.1.3 Modular Deep Learning for Visual Question Answering . . . 48

xi

3.2 Neurosymbolic Methods . 50

3.3 Neural Programming . 52

3.4 Neural Architecture Search . 53

3.4.1 Search Space . 54

3.4.2 Search Strategy . 55

3.4.3 Performance Estimation Strategy 56

3.5 Black-box Optimisation . 57

3.5.1 Sequential Model-based Optimisaition 57

3.5.2 Bayesian Optimisation . 58

4 HOUDINI: Lifelong Learning as Program Synthesis 61

4.1 Related Work . 88

4.2 Discussion . 91

5 PICLE: A Probabilistic Framework for Modular Lifelong Learning 93

5.1 Introduction . 94

5.2 Background . 96

5.3 PICLE: A Probabilistic Search Framework 100

5.4 Scalable Perceptual and Few-shot Transfer 101

5.4.1 Probabilistic model . 102

5.4.2 Search Strategy . 107

5.5 Scalable Non-Perceptual Transfer 107

5.5.1 Probabilistic Model . 108

5.5.2 Search Strategy . 109

5.6 Combining The Two Search Strategies 110

5.7 BELL: Benchmark suite for Lifelong Learning 111

5.7.1 Compositional Problems . 114

5.7.2 Realising the sequences . 116

5.8 Experiments . 117

5.8.1 BELL benchmarks . 119

5.8.2 CTrL benchmarks . 124

5.8.3 Ablation Experiments . 126

5.8.4 Discussion . 131

5.9 Related Work . 132

5.10 Conclusion . 136

xii

6 A Transfer-Learning Extension of Hyperband 137
6.1 Introduction . 138

6.1.1 Black-Box Optimisation for Deep Learning 138

6.1.2 Hyperparameter Optimisation 140

6.2 Background . 142

6.2.1 Adaptive Bayesian Linear Regression (ABLR) 144

6.2.2 Hyperband . 146

6.3 Augmenting Hyperband with ABLR 148

6.4 Related Work on Hyperparameter Optimization 152

6.5 Experimental Evaluation . 156

6.5.1 Tuning Stochastic Gradient Descent 158

6.5.2 Tuning XGBoost binary classifiers 159

6.5.3 Predictive Uncertainty with ABLR 162

6.6 HB-ABLR for Modular Lifelong Learning 163

6.7 Conclusion . 165

7 Conclusion 167
7.1 Future Work . 168

Bibliography 171

xiii

Chapter 1

Introduction

1.1 Machine Learning - Benefits and Costs

Machine Learning is the study of computer algorithms that improve automatically

through experience (Mitchell, 1997). This experience is acquired by processing task-

specific data. Of particular interest to this thesis are machine learning algorithms which

define a parametric model of the data. These algorithms learn by selecting suitable

values for the parameters, referred to as ”training the model”. A machine learning

problem can roughly be defined by said task as well as by its input distribution. It is

possible for two different problems to have the same task. For example, classifying an

animal from an image or from a textual description are two separate machine learning

problems with the same task.

A solution to a machine learning problem has two important considerations: gen-

eralisation performance, which reflects on how well it solves the target problem, and

resources required. In general, there are three types of resources used in the devel-

opment of a machine learning solution: computational resources, storage space and

expert effort. An expert can be a machine learning expert, who understands the chosen

machine learning algorithm, or a domain expert, who understands the target problem.

Usually, computation and storage are more readily accessible, while experts are harder

to access and expert effort is more costly in terms of finances and time required to

complete a task. To further understand the benefits and the cost of developing a ma-

chine learning solution, one can consider supervised learning, which is one of the most

commonly used types of machine learning.

Supervised learning is suitable for automating tasks, where one needs to make

a prediction, given an input. For example, determining what object is displayed in

1

2 Chapter 1. Introduction

an image, or predicting the price of a house, given some of its characteristics. To

automate such a task using supervised learning, an expert needs to first create a training

dataset, consisting of examples of inputs and their corresponding correct predictions

(labels). Such a dataset is usually created by acquiring training inputs and manually

labelling them. A supervised learning algorithm learns how to perform a task using

the training dataset. It automatically selects a solution (hypothesis), consistent with the

training dataset, from an expert-defined set of potential solutions (hypothesis space).

For example, for a machine learning algorithm, based on training a parametric model,

the set of all possible value assignments for the parameters constitutes the hypothesis

space. Each value assignment is a hypothesis. Once a suitable hypothesis is found, it

is used for predicting the labels of new inputs. Supervised learning has been applied to

solve numerous problems, including spam filtering, online advertising and assessing

loan applications.

Even though machine learning can and has been used to automate important tasks,

using machine learning algorithms has multiple costs associated with it. A part of these

costs increase with the size of the training dataset. This includes storage, computation

and expert costs. Storage is needed in order to store the training dataset and the se-

lected hypothesis. Computational resources are used to search for a well-performing

hypothesis by processing the training dataset. Domain experts are needed in order to

label example inputs when creating a training dataset for supervised learning. Fur-

thermore, machine learning experts are necessary to select the hyperparameters of a

machine learning algorithm. This is usually an iterative process that also depends on

the size of the training dataset. Since all these costs increase with the size of the train-

ing dataset, one might consider simply reducing it. However, this is problematic for the

following reason: if the hypothesis space is big and the training dataset is small, there

can be multiple hypotheses which are consistent with the training dataset, but do not

correctly predict the labels of new previously unobserved inputs (do not generalise).

To address this, one needs to reduce the number of hypotheses that are consistent with

the training dataset. This can be achieved by increasing the size of the training dataset.

However, this in turn increases the aforementioned costs. Alternatively, one can reduce

the hypothesis space or express a preference for some hypotheses over others. This is

known as introducing inductive bias and can be used to express assumptions about the

target solution (Battaglia et al., 2018). One way to introduce inductive bias is to have

an expert analyse the target task, which could dramatically increase the expert cost and

might still prove ineffective. As I’ll discuss in the next section, there is another way to

1.1. Machine Learning - Benefits and Costs 3

introduce inductive bias.

Most machine learning algorithms are limited in their ability to process raw natural

data, such as images (LeCun et al., 2015). For these algorithms, an expert has to write

a solution which pre-processes the data and transforms it into a lower-dimensional

representation. This is referred to as feature engineering and requires an expert to

invest a considerable amount of time in studying the input domain and the target task.

Deep learning refers to a subset of machine learning which aims to alleviate the

need for feature engineering. The field trains parametric models, referred to as deep

neural networks (DNNs), which stack learned nonlinear transformations of the data.

This allows DNNs to learn a more abstract representation of the inputs from data.

However, this also increases the hypothesis space and as a result, DNNs require large

amounts of data to train. This can be seen as replacing expert cost spent on feature

engineering with the costs associated with increasing the training dataset. However,

note that the expert cost can be significantly higher than the cost of obtaining more

training data. For instance, while it can be costly to pay an expert to develop a relevant

image processing algorithm, it can be cheaper (in terms of both time and money) to

use a tool such as Amazon Mechanical Turk where many people can be asked to label

a few images each. Compared to other approaches, deep learning has demonstrated

superior performance in multiple settings and has allowed machine learning to be used

to automate a wider range of tasks (LeCun et al., 2015). Among other fields, deep

learning has greatly advanced image processing (Jiao and Zhao, 2019), autonomous

driving (Badue et al., 2020) and natural language processing (Deng and Liu, 2018).

However, successful applications require a large number of parameters and a large

training dataset, which in turn increases the computational, storage and expert costs

associated with automating a task.

Typically, DNNs rely on all of their parameters for processing inputs and making

predictions. Instead, modular deep learning (Chen, 2015) approaches deconstruct a

DNN into a set of modules, in which each module is a parameterised non-linear func-

tion. This approach has been found useful for conditional computation (Bengio et al.,

2013) where an input is processed by an input-specific composition of modules. It

allows modules to specialise in performing a distinct atomic transformation which is

useful for processing only some of the inputs. As a result, only a subset of the mod-

ules need to be used for a given input, leading to the reduction of the computational

cost of a forward pass. Moreover, by composing the modules in novel ways a model

can achieve better generalisation on the same problem (Andreas et al., 2016) and even

4 Chapter 1. Introduction

solve related but previously unseen problems (Chang et al., 2018).

1.2 Lifelong Machine Learning - Reducing the Costs

Solving difficult problems with machine learning usually requires considerable re-

sources. Deep learning allows one to reduce the expert time spent on feature engi-

neering in exchange for requiring more data. In turn, increasing the training dataset

increases the associated computational, storage and expert costs. As discussed above,

it is possible to reduce the amount of training data required by introducing inductive

bias into the learning algorithm. However, having an expert introduce such bias would

significantly increase the expert cost. Alternatively, a machine learning algorithm can

learn inductive bias from a related problem.

1.2.1 Knowledge Transfer to a Single Problem

Imagine having two related machine learning problems, S and T , which have similar

input distributions or have similar tasks. It is then possible that their solutions share

similarities. For example, the two problems can be spam detection and sentiment anal-

ysis of online user reviews. The solutions to both might involve the same latent rep-

resentation of English sentences. Suppose further that a machine learning algorithm

has been trained on problem S which resulted in a generalisable hypothesis hS. One

can then use this hypothesis to bias the machine learning algorithm when selecting a

hypothesis hT to solve problem T . For parametric models, order over the hypothesis

space can be imposed by forcing the values of the parameters of hT to be close to the

values of the parameters of hS, in terms of the Euclidean distance between them. More-

over, the size of the hypothesis space can be reduced by fixing some of the parameters

of hT to have values from hS. This reduces the number of values that need to be learned

and, thus, the number of possible hypotheses. This way of using a previously selected

hypothesis to introduce inductive bias on a new problem can be seen as knowledge

transfer and has been used in the field of transfer learning. There are other related

fields such as meta-learning (Hospedales et al., 2021), self-supervised learning (Liu

et al., 2021) and semi-supervised learning (Van Engelen and Hoos, 2020). They dif-

fer from transfer learning by the type of knowledge transferred or by the assumptions

made about the involved problems.

In deep learning, one can differentiate between perceptual transfer and non-perceptual

1.2. Lifelong Machine Learning - Reducing the Costs 5

transfer. Perceptual transfer occurs when the transferred knowledge describes how to

process the input domain. For instance, transferring the knowledge of processing En-

glish sentences between the problems of spam detection and sentiment analysis of En-

glish online user reviews. Non-perceptual transfer can occur between problems with

disparate input domains but similar tasks. In this case, the transferred knowledge can

describe how to predict the label, given a latent embedding of the input. For example,

transferring the knowledge of performing sentiment analysis between two problems

which involve online reviews of two different languages (Kanclerz et al., 2020).

Transfer learning has been successfully applied to multiple domains to significantly

reduce the cost of solving a new problem. For instance, Devlin et al. (2018) use a deep

learning model with 340 million parameters which is trained on the source problem for

4 days using 16 TPUs. Afterwards, they use transfer learning to solve a related problem

with a small datatest using at most 1 hour for training and 1 TPU. This way, the authors

achieved state-of-the-art on multiple natural language processing target problems.

1.2.2 Knowledge Transfer Between Multiple Tasks

Transfer learning focuses on performing well on a single problem - the target problem.

However, one could be interested in automating multiple related tasks. For example,

a social media service may want to automate sentiment analysis, the detection of hate

speech and spam detection. Instead of tackling these problems individually, a machine

learning algorithm can learn to simultaneously solve them. Knowledge transfer could

then occur between the problems, thus, providing an inductive bias and selecting a

more generalisable hypothesis (Caruana, 1997). This approach is studied by the field

of multi-task learning, which develops algorithms that can decrease the training data

required per task. In effect, this can reduce the combined cost, compared to training

separate solutions for each problem. Multi-task learning has been applied to multi-

ple areas, including computer vision, health informatics, speech and natural language

processing (Zhang and Yang, 2017). However, one current limitation is that most

multi-task learning methods assume that the input spaces of all problems are the same

and that the input distributions are similar (Yang and Hospedales, 2014; Zhang and

Yang, 2021).

6 Chapter 1. Introduction

1.2.3 Lifelong Knowledge Accumulation and Transfer

Both transfer learning and multi-task learning are concerned with solving a preset num-

ber of problems. However, there is a need for a machine learning algorithm which can

continuously learn to solve new problems. This would allow each new problem to ben-

efit from knowledge transfer from previously learned problems. For example, remem-

ber the social media service which has automated sentiment analysis, the detection of

hate speech and spam detection. Given a pandemic caused by a virus, said service

might want to also automate the problem of detecting misinformation about said virus.

In such a time-critical setting with training data being scarce, it is necessary to transfer

knowledge from the previously solved natural language processing problems.

Such settings are addressed by the field of Lifelong Machine Learning (LML) (or

Lifelong Learning) (Silver et al., 2013). LML aims to build systems that can learn

many tasks over a lifetime from one or more domains. Its goal is to retain learned

knowledge and to selectively transfer that knowledge when learning a new task, in or-

der to develop more accurate hypotheses. LML aims to significantly reduce the cost

of learning to solve a new problem, similarly to transfer learning. As an LML method

learns to solve more problems, it should acquire more knowledge which can be trans-

ferred, thus, further reducing the cost of learning to solve future problems. Moreover,

the knowledge acquired from solving a new problem could be employed to improve

the model’s performance on a previous problem. LML can also be used to reduce

the storage space required, compared to storing separate solutions for each problem

of interest. In addition to reducing the costs, LML is necessary for developing agents

that can efficiently accumulate knowledge in a continually changing environment. For

example, LML appears to be necessary for developing more useful physical robots or

chatbots that interact and assist humans in their daily lives (Chen and Liu, 2018). LML

can also be applied to medical diagnosis, where more diseases need to be recognised

as patient data becomes available (Li et al., 2020).

One could consider applying a multi-task learning method to the LML setting. This

is problematic since such methods typically assume that the data for all problems of

interest is available and that their model is trained offline over all of this data. How-

ever, the training datasets of past problems could become unavailable after training.

One possible reason is the high storage cost, associated with storing all previous data,

as the number of problems increases. Another possible reason is that storing past

datasets would violate privacy-related restrictions. Even if previous data was avail-

1.2. Lifelong Machine Learning - Reducing the Costs 7

able, re-training on all previous datasets every time a new problem is encountered

could become prohibitively computationally expensive as the algorithm is applied to a

long sequence of problems. To address these shortcomings, a subset of LML methods

(rehearsal-based) adapt ideas from multi-task learning by relaxing the aforementioned

constraints.

This thesis identifies a list of properties which an LML algorithm should have. Our

list differs from the desiderata defined in related work (Schwarz et al., 2018b; Hadsell

et al., 2020; Veniat et al., 2020; Delange et al., 2021) primarily by distinguishing be-

tween different capabilities of performing knowledge transfer to new problems. First,

plasticity refers to an algorithm’s ability to continuously learn to solve new problems.

Ideally, the algorithm’s generalisation performance on each problem should be at least

as good as when said problem is solved in isolation. Transferring irrelevant knowledge

on a new problem can introduce harmful inductive bias which hinders the algorithm’s

performance. This is referred to as negative transfer and should be avoided in order to

improve plasticity. Second, stability refers to the ability to retain previously acquired

knowledge. It is required in order to prevent catastrophic forgetting which can oc-

cur when an algorithm’s performance on a past problem decreases drastically. Third,

forward transfer refers to an algorithm’s ability to transfer knowledge to a newly en-

countered problem. We identify three types of forward transfer: between problems

with similar input distributions (perceptual), between problems with disparate input

distributions or different input spaces (non-perceptual) and to problems with a few

training examples (few-shot). For a diverse sequence of problems, LML algorithms

which use DNNs should be able to transfer knowledge across similar problems but

different neural architectures. For example, this is necessary in order to perform trans-

fer across different input spaces. Fourth, an LML algorithm should be capable of

backward transfer, allowing it to improve its performance of previously encountered

problems after solving new ones. Finally, an LML algorithm should be applicable to

large sequences of problems, with its resource demands scaling sub-linearly with the

number of solved problems (scalability).

Current deep learning approaches to LML do not possess all of the aforementioned

properties. Most focus on limiting catastrophic forgetting, while allowing for percep-

tual transfer (Dı́az-Rodrı́guez et al., 2018; Delange et al., 2021). As a result, non-

perceptual transfer, negative transfer and backward transfer are largely unaddressed.

Moreover, current approaches use the same or a set of very similar neural architectures

for each problem. This makes them unsuitable for solving a diverse set of problems,

8 Chapter 1. Introduction

which can require different neural architectures. Finally, current approaches do not

scale to large problem sequences.

1.3 Neurosymbolic Systems

While deep learning has been used to advance multiple fields (LeCun et al., 2015), it

has a number of shortcomings (Garcez and Lamb, 2020). For instance, these methods

require a large number of data points. Furthermore, it is difficult to interpret the predic-

tions of a deep model. Another shortcoming is that deep models do not generalise well

to inputs that are sampled from a different distribution than the one used for training

(Nagarajan et al., 2020).

Symbolic methods are another approach to task automation. They involve manipu-

lating human-readable symbols using pre-defined rules (Garnelo and Shanahan, 2019).

These methods are data-efficient, interpretable and can generalise to new input distri-

butions. However, symbolic methods operate on handcrafted symbols, which are not

learned from sensory input (Harnad, 1990).

Neurosymbolic approaches combine deep learning and symbolic methods in or-

der to take advantage of their complementary strengths (Garnelo and Shanahan, 2019;

Garcez and Lamb, 2020). Among other potential benefits, this allows experts to intro-

duce further structure into a deep learning system. For instance, Silver et al. (2016)

combine learned heuristics, implemented by neural networks, with a Monte Carlo tree

search.

1.4 Thesis Overview

This thesis presents a number of advancements towards developing a deep lifelong

machine learning algorithm which can achieve all of the desiderata outlined above.

We adopt a modular approach as it makes it possible the decompose the accumulated

knowledge into disjoint groups of parameters which can then be flexibly reused when

necessary.

Chapter 4 introduces HOUDINI, a neurosymbolic framework for supervised learn-

ing. We describe modular deep neural networks (mDNNs) as typed functional pro-

grams. The functions are parameterised and implemented as stacks of hidden layers,

referred to as neural modules. Furthermore, the functions can have different types,

which indicates that their inputs and outputs can be of different dimensionality and

1.4. Thesis Overview 9

contain different sets of values. The functions can be composed in different ways

to form different functional programs. Therefore, a functional program can describe

an mDNN in terms of its neural architecture as well as its selection of neural mod-

ules. Given a new problem, we search for the program with the best generalisation

performance. This process evaluates multiple programs, which involves training their

randomly initialised parameters. We cast solving a new problem as program synthesis

and employ a symbolic program synthesizer, which performs an exhaustive search over

type-compatible programs. The program with the best generalisation performance is

used to solve the given problem.

This modular approach is readily applicable to the LML setting. After finding the

optimal program for a given problem, its newly trained neural modules are frozen and

added to a library of functions. These functions can be reused on a new problem,

which allows knowledge transfer. As more problems are solved, HOUDINI accumu-

lates more transferable knowledge, stored as pre-trained modules in its library. As a

result, it attains most of the properties, required from an LML algorithm. Our frame-

work operates on problems from different input spaces. Furthermore, we demonstrate

that HOUDINI achieves perceptual transfer, non-perceptual transfer, few-shot transfer,

avoids negative transfer and prevents catastrophic forgetting on sequences of disparate

problems. Moreover, it is capable of few-shot learning.

However, HOUDINI searches through the set of all possible combinations of pre-

trained and new modules, for each of the possible neural architectures. At the same

time, evaluating each item in this set is expensive as it involves training the new param-

eters of an mDNN. As a result, HOUDINI’s main shortcoming is that its type-guided

exhaustive search does not scale to large search spaces. This prevents it from being

applicable to problems which require large modular neural architectures or to long

sequences of problems, as both settings lead to enormous search spaces.

Chapter 5 introduces a scalable modular LML algorithm which maintains the LML

properties of HOUDINI by also accumulating a library of pre-trained modules and

reusing them on new problems as necessary. In contrast, the algorithm assumes that

a problem-specific neural architecture is provided by an expert. As a result, for a

new problem it searches through the set of all possible combinations of pre-trained

and new modules. This search space is still rapidly expanding making a naive ap-

proach to search inapplicable. We address this challenge by introducing a probabilis-

tic search framework called PICLE. PICLE divides the search space into subsets of

similar module combinations and defines subset-specific probabilistic models which

10 Chapter 1. Introduction

specify a distribution over the choice of pre-trained modules. PICLE then searches

over the whole search space by using its probabilistic models to efficiently prioritise

module combinations that have a high probability of success. We identify two large

subsets of promising module combinations, which enable perceptual, few-shot and

non-perceptual transfer, and define two distinct probabilistic models over them. We

then use these models within PICLE and show that the resulting search method leads

to a scalable LML algorithm which fulfils all of the outlined LML desiderata, apart

from backward transfer. To verify these claims, we introduce a new benchmark suite

for evaluating the properties of an LML algorithm. Our extensive experiments demon-

strate that our method can outperform competitive baselines.

The modular LML algorithm which we present in Chapter 5 considers two large

subsets of module compositions. However, this leaves another big subset, which con-

tains the rest of the possible module compositions, unexplored. The items in this sub-

set can enable useful knowledge transfer properties, such as simultaneously performing

perceptual and non-perceptual transfer. Therefore, there is a need for an efficient search

strategy that can be used to explore this subset. To address this, Chapter 6 phrases

the discrete search over module combinations in a modular LML algorithm as black-

box optimisation, which makes it possible for ideas from hyperparameter optimisation

(HPO) to be applied to LML. However, we identify 3 shortcomings of previous HPO

methods which make it difficult for them to be directly applied to modular LML. These

shortcomings include the necessity for a manually-designed special input featurisation,

the cold-start problem and the inefficiency incurred by evaluating every considered el-

ement using the same constant number of resources. In response to this, we develop a

new method, HB-ABLR, which addresses all of these challenges. We arrive at it by

augmenting a multi-fidelity approach to HPO (Li and Hoiem, 2017) with model-based

adaptive sampling which uses a neural network (Perrone et al., 2018). Our choice

of a surrogate model allows us to take advantage of data from similar optimisation

problems and learn a suitable transformation of the input. Overall, we demonstrate

that this allows HB-ABLR to achieve superior anytime performance in the setting of

hyperparameter optimisation, compared to competitive benchmarks. This means that

our method is capable of finding solutions which lead to better performance using a

limited number of computational resources. Finally, we provide a discussion on how

HB-ABLR can be applied to augment modular LML algorithms in order to enhance

their transfer learning properties when applied to long sequences of problems.

Overall, this thesis presents a modular LML algorithm which can achieve all of

1.5. Thesis Outline 11

the important LML properties which we had identified, apart from backward transfer.

Furthermore, we demonstrate that a neurosymbolic approach can be used to automate

lifelong machine learning across problems which have structured inputs, such as lists

and graphs, and problems which require different neural architectures.

This thesis also paves the way for numerous research directions. Currently, we

have demonstrated that HOUDINI can achieve most of the properties expected from an

LML algorithm. An open question is whether we can augment our framework to allow

backward transfer, thus, creating the first method with all of the desired properties.

Moreover, we allowed HOUDINI to scale by fixing its choice of neural architecture.

Therefore, allowing it to efficiently search through both neural architectures and mod-

ule combinations is an exciting future research direction.

1.5 Thesis Outline

The rest of this thesis has the following structure:

– Chapter 2 provides the background necessary to understand current LML meth-

ods. This includes supervised machine learning, deep learning, transfer learning,

multi-task learning and lifelong learning.

– Chapter 3 provides the background for all other fields, which are relevant to the

presented research. This includes modular deep learning, neurosymbolic meth-

ods, neural programming, neural architecture search and Bayesian optimisation.

– Chapter 4 introduces HOUDINI- a neurosymbolic framework, suitable for life-

long learning. Solving a new problem is posed as program synthesis. A type-

directed exhaustive search is used to find the optimal program. We demonstrate

that this approach contains most of the properties that an LML algorithm should

have.

The content of this chapter is based on a collaborative project. I led the project

and was responsible for identifying relevant LML properties, helping design the

modular approach to be applicable to LML, designing the experiments and im-

plementing everything except for the program synthesis algorithm and the evo-

lutionary search baseline.

Our work was published as the following.

12 Chapter 1. Introduction

Lazar Valkov, Dipak Chaudhari, Akash Srivastava, Charles Sutton and Swarat

Chaudhuri. HOUDINI: Lifelong Learning as Program Synthesis.

In International Conference on Neural Information Processing Systems, 2018

– Chapter 5, to the best of my knowledge, introduces the first scalable modu-

lar LML algorithm which can achieve perceptual, non-perceptual and few-shot

transfer. The algorithm achieves these properties by searching through a set of

module combinations. We introduce PICLE, a probabilistic search framework

which uses probabilistic models over pre-trained modules in order to efficiently

explore the rapidly expanding search space. We define two probabilistic models

over two disjoint subsets of module combinations for which we, respectively,

introduce an efficient way of approximating a pre-trained module’s input distri-

bution, and a kernel between module combinations.

Moreover, we list our lifelong learning desiderata and provide a discussion on

how it differs from the lists of properties found in previous work. Finally, we

introduce a new benchmark suite which can be used to diagnose the identified

LML properties.

I am mainly responsible for the content of this chapter. The following collab-

orators were involved in preliminary discussions, provided feedback on differ-

ent iterations of the work, and provided assistance with the presentation of the

method: Akash Srivastava, Dipak Chaudhari, Swarat Chaudhuri and Charles

Sutton.

– Chapter 6 presents HB-ABLR, a new hyperparameter optimisation method

which augments Hyperband (Li and Hoiem, 2017) by replacing its random sam-

pling procedure with model-based adaptive sampling using ABLR (Perrone et al.,

2018). This leads to a multi-fidelity approach with a scalable surrogate model

which can transfer knowledge from similar optimisation problems. We present

experimental evidence that our method achieves better anytime performance

than previous state-of-the-art approaches, in the setting of hyperparameter op-

timisation. Finally, we argue that modular LML algorithms can be phrased as

black-box optimisation and provide a discussion on how HB-ABLR can benefit

current modular LML approaches.

The content of this chapter was based on a collaborative effort. As the first

author, I was responsible for investigating how to best combine Hyperband and

1.5. Thesis Outline 13

ABLR and identifying the strengths and shortcomings of the resulting approach.

I was also in charge of designing and implementing the experimental setup. I

held frequent discussions with Rodolphe Jenatton who used my code to produce

the final experimental results, after my internship had ended.

The work in this chapter was presented as the following.

Lazar Valkov, Rodolphe Jenatton, Fela Winkelmolen, Cédric Archambeau. A

simple transfer-learning extension of Hyperband.

In NeurIPS Workshop on Meta-Learning, 2018

– Chapter 7 presents a summary of the thesis and proposes future directions.

Chapter 2

Background: Lifelong Learning

This chapter describes the current work in lifelong learning and related areas. It aims

to provide the necessary background knowledge to understand the desired properties

of a lifelong learning algorithm, as well as the shortcomings of current approaches.

The focus of this thesis is on approaches which make use of deep learning, as moti-

vated in the introduction. The chapter begins by outlining supervised learning in order

to establish terminology and notation. Afterwards, I describe deep learning and list

the properties that make it suitable for lifelong learning. Next, I describe and review

work in transfer learning and multi-task learning, as these are closely related areas.

Thereafter, lifelong learning is defined and an overview of the literature is presented.

2.1 Supervised Learning

Supervised learning algorithms learn from a labelled training dataset - a set of input-

output pairs. For instance, if one needs to automate the classification of an object,

portrayed in an image, one would gather different images and manually assign each of

them with a class. The resulting dataset is used by a supervised learning algorithm to

yield a hypothesis, which is able to predict the labels of unseen images. The amount

of inferred labels that match the true labels on new inputs characterise the predictor’s

generalisation performance. A higher number of training images usually result in

better generalisation performance. The labels can be discrete, as in the example of

object classification, which leads to a classification problem. Alternatively, one might

want to predict a continuous quantity, such as the price of a house, which leads to

a regression problem. The rest of this section provides a more precise definition of

supervised learning.

15

16 Chapter 2. Background: Lifelong Learning

A supervised learning problem requires an algorithm A to learn how to make

a prediction ŷ about the label y of a given input x. The problem is specified by an

input domain D and a task T . The input domain D = (X , p(X)) is characterised by a

feature space X and a marginal probability distribution p(X) where X ∈ X . The labels

are defined by the given task T , specified by a label space Y and a predictive function

f ∗ : X −→ Y , denoted T = (Y , f ∗(·)). While f ∗ is typically unknown it is assumed to

be the underlying function, used to assign a label to each input: y = f ∗(x).

Definition 1. (Supervised Learning) Let D = {(x(i),y(i))}N
i=1 be a training dataset of

N examples where the inputs {x(i)}N
i=1 are distributed according to some distribution

p(X). Let each label y(i) be generated by an unknown function f ∗ : X −→ Y , so that

y(i) = f ∗(x(i)). Given the training dataset D, discover a function ĥ : X −→ Y that ap-

proximates the true function f ∗. (Russell and Norvig, 2009)

It is usually assumed that the inputs are independent and identically distributed

according to p(X). The function ĥ is a hypothesis, which is selected from a hypothesis

space H - the set of all functions being considered. For example, the hypothesis

space can consist of all linear combinations of the input’s dimensions, where each

linear combination is a hypothesis. As stated above, the goal of the chosen hypothesis

is to approximate the true function f ∗. This would allow it to successfully predict

unseen inputs, sampled from the same distribution p(X) used to sample the inputs in

the training dataset. The difference between the predicted and actual label is measured

by a loss function L . The expected loss is called risk. Ideally, the algorithm A should

find the hypothesis ĥ∗ which achieves the lowest risk R (h):

ĥ∗ = argmin
h∈H

R (h) = argmin
h∈H

Ex∼p(X)[L(h(x), f ∗(x))] .

However, as one only has access to N labelled data points, it is not possible to evaluate

the risk. Instead, an algorithm A can use the training data to minimise the empirical

risk R̂ (h):

ĥ = A(D) = argmin
h∈H

R̂ (h) = argmin
h∈H

1
N

N

∑
i=1

L(h(x(i)),y(i)) .

Thus, supervised learning algorithms select a hypothesis with low loss on the training

dataset (low training loss). This method of selection can be problematic, as it can

choose a hypothesis which fits the training dataset but generalises poorly to unseen

inputs. This problem is referred to as overfitting and occurs when the empirical risk of

2.1. Supervised Learning 17

the selected hypothesis is much smaller than its true risk, i.e. when R (ĥ)− R̂ (ĥ) is

large (Shalev-Shwartz and Ben-David, 2014).

To combat this problem, one can either increase the size of the training dataset

or introduce inductive bias in the hypothesis selection process. Inductive bias is in-

troduced either by restricting the hypothesis space or by imposing an order over the

hypotheses. First, restricting the hypothesis space removes a subspace from consid-

eration. An example of this is restricting the hypothesis space to contain only linear

combinations of the input’s dimensions. Second, one can introduce inductive bias by

imposing an order on the hypotheses. This way, if multiple hypotheses have similar

performance on the training dataset, the algorithm will use the imposed order to choose

between them. A commonly imposed ordering follows a principle named Occam’s Ra-

zor and gives priority to simpler hypotheses. In the linear combinations example, this

could be implemented by giving preference to hypotheses with lower parameter values.

An algorithm A can introduce such a bias by performing structural risk minimisation

(SRM):

ĥ = A(D) = argmin
h∈H

R̂ (h)+βJ(h) = argmin
h∈H

1
N

N

∑
i=1

L(h(x(i)),y(i))+βJ(h) .

Here, the function J(h) is called a regularisation function and it evaluates the complex-

ity of a model, and β is a weighting constant. The idea of biasing hypotheses spaces is

used in the next sections to explain transfer learning.

After training a model on a training dataset, it is useful to understand how well

the model will generalise to unseen data. The model’s generalisation can be measured

by the risk of the selected hypothesis, R (ĥ). This can be approximated by evaluating

the model’s performance on a number of held-out data points, referred to as the test

dataset. The test dataset can be used to approximate the risk by calculating:

R (ĥ)≈ 1
Ntest

Ntest

∑
i=1

L(h(x(i),test),y(i),test) .

For a classifier, another common measure of the generalisation performance is the its

average accuracy across the input distribution, which can be approximated using the

test dataset.

18 Chapter 2. Background: Lifelong Learning

2.2 Deep Learning

This section first motivates the need for deep learning. Afterwards, I describe core

concepts and properties, which make deep neural networks suitable for lifelong learn-

ing.

2.2.1 Motivation

In order for machine learning algorithms to generalise to unseen inputs, they need to

make assumptions about the data (Wolpert, 1996). One common assumption is that

the underlying labelling function is smooth, i.e. f ∗(x)≈ f ∗(x+ ε) (Goodfellow et al.,

2016). However, machine learning methods which only rely on this assumption are

affected by the curse of dimensionality, requiring the size of the training dataset to

grow exponentially with the input dimensionality. This problem can be addressed by

making additional assumptions about the data. Such assumptions are often present in-

side parametric models, which are statistical models with a fixed number of parameters

(Murphy, 2012).

Logistic regression is a parametric model, which makes predictions based on a lin-

ear combination of the input features. To allow this model to represent a nonlinear

function, one can augment the input with nonlinear transformations of its features, re-

ferred to as basis functions. One issue with this approach is that the number of basis

functions is required to grow, often exponentially, with the number of input dimen-

sions, in order to obtain good performance (Bishop, 2006). Furthermore, there are

many basis functions to choose from, e.g. spline functions, Fourier basis and wavelets.

Instead, one can represent each input using a pre-determined number of parameterised

basis functions, each of which consists of a linear combination of the input, followed

by a nonlinear function (a non-linearity), e.g. tanh. Then the parameters of each ba-

sis function can be trained along with those of the logistic regression on the training

dataset. The resulting model is an example of a neural network (NN), where the param-

eterised basis functions are called hidden units and a group of hidden units is referred

to as a hidden layer. By learning a predetermined number of parameterised basis func-

tions, NNs can attain the desired accuracy using fewer units of computation compared

to the alternative of using fixed basis functions (Gnecco, 2012; Kawaguchi, 2016; Du

et al., 2018).

It is possible to increase the number of hidden layers, which leads to a deep neu-

ral network (DNN). It has been empirically demonstrated that DNNs outperform NNs

2.2. Deep Learning 19

with a single layer in many settings of interest. For instance, deep learning has been

successfully used to obtain state-of-the-art performance across many fields, including

image processing (Jiao and Zhao, 2019), autonomous driving (Badue et al., 2020) and

natural language processing (Deng and Liu, 2018). DNNs’ success can be partially

attributed to their inductive bias, expressivity and effect on the optimisation process

(Berner et al., 2021). First, by composing different types of layers (e.g. convolu-

tional and fully connected), the model can be biased towards compositional hypothe-

ses which exploit pre-known properties of the data. Second, it has been shown that

there are functions which can be efficiently represented by a DNN with L layers, but

would require an exponentially higher number of hidden units for a smaller number of

layers (Gühring et al., 2020). Third, there are results which suggest that deep models

have properties which facilitate non-convex optimization, which is used for selecting

a hypothesis (Choromanska et al., 2015).

2.2.2 Overview

The field of deep learning (DL) studies deep neural networks. This includes under-

standing a DNN’s properties, investigating new neural architectures, studying how to

train DNNs and applying it to solve challenging problems. Advances in the field have

led to breakthroughs in processing images, text, video, speech and audio (LeCun et al.,

2015).

Deep neural networks (DNNs) are parametric models which represent a hypothe-

sis as a composition of nonlinear functions, referred to as hidden layers. DNNs are

characterised by their architecture, which describes the type of each hidden layer and

how these hidden layers are connected. Common types of hidden layers are fully con-

nected, convolutional and recurrent layers. The choice of hidden layers reflects further

assumptions made about the data. For instance, convolutional layers apply the same

parameterised function to all local regions of the input of a specified size. This makes

convolutional layers suitable for applications like image processing since an object of

interest can appear in any part of an image. Moreover, recurrent layers are used to pro-

cess a sequence of items. Each item is processed with the same parameterised function,

conditioned on information acquired from processing all of the previous items in the

sequence. This makes recurrent layers suitable for applications such as natural lan-

guage processing, where each word can be interpreted differently, depending on its

context. A deep architecture which primarily relies on convolutional layers is called a

20 Chapter 2. Background: Lifelong Learning

convolutional neural network. An architecture that mainly relies on recurrent layers is

referred to as a recurrent neural network. For further information about neural archi-

tectures and their implementation details, the reader is referred to Goodfellow et al.

(2016).

At the time of writing, the most successful approach to train a DNN is by itera-

tively adjusting its parameters, using the gradient of the training loss with respect to

the parameters. This involves repeating three steps: computing the loss, calculating

the gradient and updating the parameters. First, in order to compute the loss, the DNN

is used to process a different random subset of the training dataset. This can be used

to provide an unbiased estimate of the gradient. Second, the gradient is computed

efficiently using backpropagation (Rumelhart et al., 1986). Backpropagation is an al-

gorithm based on dynamic programming, which takes advantage of the compositional

structure of a deep neural network in order to avoid redundant computations. Third,

the parameters are updated by an optimiser which uses the gradient to adjust their val-

ues in order to reduce the loss. Stochastic gradient descent (SGD) is a basic optimiser

which can be used, but there are extensions, e.g. Adam (Kingma and Ba, 2014). In

the literature, SGD is sometimes used to refer to an SGD-based optimiser, which can

be replaced by its extensions.

The compositional nature of deep neural networks makes them suitable for the pur-

poses of transfer learning and thus for lifelong learning. This is because it has been

shown that neural networks represent the input data with a level of abstraction that

increases with the index of the hidden layer (Kozma et al., 2018). It is possible to gain

insight into this by looking at the inputs which increase the activation value of a hidden

unit. This can provide intuition on what features from the training dataset does a unit

react to. For example, Zeiler and Fergus (2014) visualise the features learned by every

layer of a CNN, trained on an image dataset. Their results provide an insight into what

each layer may have learned to detect. It could be interpreted that the first layer detects

edges and colour blobs. Moreover, the second layer detects different combinations of

edges and colours, while the third layer learns to detect textures. The fourth detects

parts of the objects of interest, e.g. a dog’s face. Finally, the fifth layer is shown to de-

tect whole objects, e.g. dogs, with significant variation in their pose. This tendency has

been observed in different papers. For instance, Nguyen et al. (2016) demonstrate an

abstract hidden unit in the later layers of a CNN, which activates whenever the image

depicts a store. This includes images of different sections of the store and images of the

storefront. Overall, this suggests that lower hidden layers compute task-independent

2.3. Transfer Learning 21

features which process the input domain, while higher layers perform more abstract

and domain-invariant computation, which is more task-specific. Therefore, one could

reuse or repurpose either the lower or the higher layers of a DNN, depending on the

similarity between problems.

2.3 Transfer Learning

Deep learning’s success can be partly attributed to its highly expressive hypothesis

space. However, deep models require large datasets to train in order to find a general-

isable hypothesis. For instance, consider the convolutional neural network, proposed

by Krizhevsky et al. (2012), which won the ImageNet large-scale visual recognition

challenge in 2012 (Russakovsky et al., 2015). It has 60 million parameters, which were

trained on 1.2 million high-resolution images from the ImageNet dataset (Russakovsky

et al., 2015). The training was done on two GPUs and took 5 days. This illustrates that

training a deep neural network has great computational and storage costs involved.

Moreover, there is a high expert cost for obtaining a large training dataset because,

for most problems, labelling inputs requires manual labour by domain experts. There-

fore, it is necessary to be able to apply deep learning to smaller datasets, as this would

significantly reduce the associated costs and make it more widely applicable.

As discussed in Section 1.1, when the number of training data points is low, one

can improve the generalisability of a learning algorithm by introducing additional in-

ductive bias. One way to do this is to study the data and inject expert knowledge by

providing a different featurisation of the inputs, which is more suitable for the target

task. This would alleviate the need for a deep model to learn this featurisation and thus

the number of parameters of the model could be reduced, which in turn should reduce

the number of training datapoints required. For example, for an image processing prob-

lem, one can try pre-processing the training images with an edge-detection algorithm.

This type of investigation requires expert knowledge and is very time-consuming. Al-

ternatively, one can introduce inductive bias into the learning algorithm by using data

from a similar machine learning problem. Transfer learning (TL) constitutes one class

of such approaches and is motivated by the insight that similar problems should have

similar hypotheses. TL can be used to obtain better generalisation performance with a

limited amount of data or a limited amount of computation.

It is worth noting that there are other sub-fields which can be used improve the

generalisability of a machine learning algorithm when the number of available training

22 Chapter 2. Background: Lifelong Learning

data is low. Meta-learning (Hospedales et al., 2021) introduces a meta-level objective

which is used to optimise some properties of the learning algorithm, which in turn can

allow said algorithm to better generalise on new tasks. For instance, MAML (Finn

et al., 2017) uses data from related tasks in order to learn suitable initial parameters for

a deep neural network, so that for a new problem the resulting algorithm can achieve

good generalisation performance using only a few gradient updates on a small number

of data points. In contrast, TL methods typically do not involve a meta-level objective

and differ in the type of knowledge being transferred. Self-supervised learning (Liu

et al., 2021) can be used to train a model on a large amount of unlabelled data in or-

der to extract knowledge that can be transferred to supervised learning problems. For

instance, auto-regressive models are trained to sequentially predict each of the input’s

dimensions, based on the previously observed ones. Among other areas, these have led

to significant improvements in performance in natural language processing (Radford

et al., 2018, 2019). In contrast, in TL, the data which knowledge is transferred from

is typically assumed to be labelled (Yang et al., 2020). Semi-supervised learning con-

siders the setting where both a small labelled dataset and unlabelled data is available

for a problem of interest (Van Engelen and Hoos, 2020). For example, self-training

methods iteratively use a model fit on the labelled dataset for labelling inputs from

the unlabelled dataset, after which the model is further updated using all labelled data

points (Ouali et al., 2020). Semi-supervised learning makes the assumption that the

data comes from the same distribution which is not made in TL. This section focuses

on transfer learning since it is the most relevant to the work described in this thesis.

Among other domains, transfer learning has been applied to computer vision, in

order to achieve higher prediction accuracy on problems with small training datasets.

For example, Donahue et al. (2014) apply transfer learning to image classification.

They demonstrate that it is possible to reuse the hidden layers of a convolutional neural

network, trained on a large set of natural images. They use the hidden layers to process

images from related problems with a small training dataset. This way they obtain

latent image representations of each of the processed images. The related problems

include images of objects commonly found in the office (Saenko et al., 2010) and

images of birds (Welinder et al., 2010). Further, they train a logistic regression to

perform the new tasks, given the extracted latent image representations. In effect, they

solve new problems using a deep neural network with fixed, pre-trained hidden layers

and a trainable task-specific output layer. Therefore, inductive bias is introduced by

fixing most parameter values and thus reducing the hypothesis space. The results show

2.3. Transfer Learning 23

that this way of transfer learning achieves significantly higher performance than the

baseline when the training dataset is small.

Transfer learning techniques are also applicable to other domains. For example,

sentiment classification is a task within natural language processing, which involves

classifying an online product review as positive or negative. Reviews of different types

of products (e.g. cameras and ovens), can share the same vocabulary but will have

a different word distribution, since a review is likely to use product-specific terms.

Despite this difference, the same adjectives, e.g. “good”, can be indicative of a positive

review. Therefore, instead of producing large amounts of labeled data for each product

type, a model could be trained on a single product type, and then adapted to other

product types, which would reduce the required training dataset size (Pan and Yang,

2009).

In this section, I will further examine transfer learning for supervised deep learning

algorithms. For a different taxonomy of transfer learning, as well as an overview on

how it is applied to different machine learning algorithms, the reader is directed to

survey papers available online (Pan and Yang, 2009; Weiss et al., 2016; Taylor and

Stone, 2009; Tan et al., 2018; Zhuang et al., 2020).

In transfer learning, one aims to make use of knowledge from a related supervised

learning problem. The problem with a low amount of data that we are trying to solve

is referred to as the target problem (denoted ΨT), while the related problem with more

training data is known as the source problem (ΨS). Unless stated otherwise, I assume

there is only one source problem. As defined in Section 2.1, the source problem is

given by a dataset DS, generated from a domain DS and a task TS. The target problem

is similarly defined.

Definition 2. (Transfer Learning) Given a source problem ΨS = (DS,TS,DS), a target

problem ΨT = DS,TS,DS and a fixed number of computational resources, transfer

learning aims to develop an algorithm A , s.t.

RT (A(DS,DT))< RT (A(/0,DT)) ,

where RT is the risk of a hypothesis on the target problem.

The definition states that the expected loss of a hypothesis, obtained using transfer

learning, should be lower than a hypothesis, obtained only using the target training

dataset. Compared to a standalone model, trained only on the training dataset of the

target problem, a transfer learning approach can potentially result in three benefits: a

24 Chapter 2. Background: Lifelong Learning

higher start, a higher slope and/or a higher asymptote (Olivas et al., 2009). In other

words, the performance could be higher at the start of training, during training or at

the end of training. To capture this, some have also assessed knowledge transfer by

comparing the learning curve area (LCA) (Chaudhry et al., 2018b). For example, this

can be the area under the test accuracy curve, and captures how quickly a ML algorithm

reaches good generalisation performance.

Approaches to transfer learning differ in the setting they assume. Firstly, they differ

in the number of labelled examples available in the source and the target problem. Un-

less stated otherwise, this thesis assumes that the source problems have a large amount

of labelled data, while a small amount of labelled data is available for the target prob-

lem. Secondly, approaches differ in the assumed difference between the source and

target problems. For a target problem ΨT = {DT ,TT} to be different from the source

problem ΨS = {DS,TS}, it is assumed that DS ̸= DT and/or TS ̸= TT . Domain adapta-

tion is a subfield of transfer learning, which operates in the setting where inputs from

both problems have the same feature space but have different marginal distributions,

while the tasks are the same (XS = XT , PS(XS) ̸= PT (XT), TS = TT). This is similar to

the setting of covariate shift, which assumes a single problem, but a change in the input

distribution in the test set (Storkey, 2009). One example is sentiment classification for

reviews of books and electronics. Another common setting is when problems have the

same inputs, but different label spaces (DS = DT , YS ̸= YT). An example of this is

doing part-of-speech tagging and sentiment classification on the same type of reviews.

It is also possible to have different input marginal distributions and tasks (XS = XT ,

PS(XS) ̸= PT (XT), YS ̸= YT). For instance, this is the case when the source problem is

given by the ImageNet dataset and the target problem by Caltech-UCSD Birds, as in

the motivating example explored earlier (Donahue et al., 2014).

Approaches to transfer learning can be divided into shallow and deep, depending

on whether they use classical machine learning or deep learning models, respectively.

Shallow methods have been described in surveys (Tan et al., 2018; Weiss et al., 2016;

Csurka, 2017) and a detailed description of them is out of the scope of this thesis.

2.3.1 Deep Transfer Learning

Deep transfer learning encompasses a number of techniques which are surveyed in

Tan et al. (2018) and Csurka (2017). This section focuses on a large portion of deep

approaches to transfer learning which are based on reusing or repurposing pre-trained

2.3. Transfer Learning 25

parameters. First, one trains a deep neural network, referred to as the source model,

on the source problem. Second, one creates a target model for the target problem us-

ing usually the same neural architecture as the source model. A subset of the target

model’s parameters are initialised with the values of the corresponding source model’s

parameters. These are referred to as the transferred parameters. The rest of the target

model’s parameters are randomly initialised. Third, an important decision is how to

train the target model. The transferred parameters can either be unchanged (frozen)

(Donahue et al., 2014; Sharif Razavian et al., 2014; Oquab et al., 2014) or optimised

on the target problem (fine-tuned) (Girshick et al., 2014; Raffel et al., 2019; Agrawal

et al., 2014). Freezing the transferred parameters provides inductive bias by restricting

the hypothesis space of the target model. This is because the target model has fewer pa-

rameters to optimise. Fine-tuning the transferred parameters provides inductive bias by

re-ordering the hypothesis space. This is because stochastic gradient descent updates

parameters by slightly changing their current value. Therefore, an implicit preference

is given to the optimal parameter values near the initial ones. It is also possible to

freeze some of the transferred parameters and finetune the rest. To better understand

the benefits and considerations involved in making this decision, one needs to consider

the related work.

One common approach to deep transfer learning is deep feature extraction. It trans-

fers the hidden layers from the source model and freezes their parameters. In effect,

the source model is used to provide a latent representation of the inputs from the target

problem. An example of deep feature extraction was given at the beginning of the sec-

tion (Donahue et al., 2014), where the hidden layers of a convolutional neural network,

pre-trained on the ImageNet dataset are used to extract features from Caltech-UCSD

Birds. A logistic regression is trained to perform classification, based on the extracted

features.

Alternatively, one can transfer layers from the source model and choose to fine-

tune the transferred parameters. Since the source and target problems are different,

the weights of a deep model should ideally also be trained on the target problem.

However, if the target training dataset is small, fine-tuning all of the transferred pa-

rameters can lead to overfitting and thus poor generalisation performance. This can

be addressed by only fine-tuning a subset of the transferred parameters while freezing

the rest. Therefore, one needs to decide which layers to freeze. It has been observed

that the hidden layers of a trained deep neural network compute an increasingly more

abstract representation of the input (Kozma et al., 2018). The lower hidden layers are

26 Chapter 2. Background: Lifelong Learning

specialised towards processing the input, while the higher hidden layers perform more

task-specific computations. Therefore, one could try freezing different transferred lay-

ers, depending on how the source and target problems are related. If the two problems

have similar input domains, then the parameters of the lower hidden layers could be

frozen. Otherwise, if the two problems have the same task but different input domains,

one could try freezing the higher layers, while fine-tuning the lower hidden layers.

For a hidden layer with frozen parameters to be useful, it needs to be reusable across

problems. Yosinski et al. (2014) explore the reusability of different hidden layers of

a convolutional neural network. The authors create a source and a target problem by

splitting the ImageNet dataset into two disjoint subsets, containing different objects. In

this setting, the source and target input domains are similar, but the tasks are different.

Each dataset contains about 645,000 examples, therefore training a model from ran-

dom initialisation achieves a high generalisation performance. The reusability of the

first n hidden layers of the source model is evaluated as follows: the first n hidden lay-

ers are transferred and frozen, while the rest of the parameters are randomly initialised

and trained on the target dataset. If this does not decrease the performance, compared

to a randomly initialised model, trained on this big dataset, the first n layers are said

to be reusable. The results show that the first two layers of the eight-layered model

are reusable, with the performance deteriorating increasingly, as more layers are trans-

ferred and frozen. This supports the idea that when applying transfer learning in this

setting, one should freeze the lower layers, as higher layers are less readily reusable

and might need to be fine-tuned. However, as pointed out in Guo et al. (2019), it is not

clear whether this trend holds for multi-path architectures such as Residual Networks

(He et al., 2016), because their skip connection could result in some later layers being

more reusable than earlier ones. Overall, one should decide which layers to freeze

and which to fine-tune by considering the difference between the source and the target

problems as well as the properties of the particular neural architecture.

There are different ways of combining freezing and fine-tuning. In different set-

tings, authors have fine-tuned all network parameters (Girshick et al., 2014) or only

the parameters of the last few layers (Long et al., 2015). It is also possible to per-

form discriminative fine-tuning, assigning different learning rates to different layers,

as suggested in Howard and Ruder (2018). The same paper also proposes “gradual un-

freezing”, in which they first unfreeze the last layer, train it for one epoch, and proceed

to unfreeze the layer before it, until the whole network is finetuned. To train pretrained

and new parameters, Wang et al. (2019) perform a two-stage training approach, where

2.4. Multi-Task Learning 27

they first freeze the pretrained weights and train the new parameters. Secondly, they

unfreeze the pre-trained weights and fine-tune the whole model together on the new

task.

It is worth considering how one could make the source parameters more transfer-

able. More transferable would mean that the parameters learned on the source problem

are more likely to increase the model’s performance on a target problem, compared to

a standalone baseline. It is possible that improving the source model’s performance on

the source problem would make the parameters more transferable. One way to achieve

this is to increase the number of datapoints in the source training dataset. Huh et al.

(2016) report that, if the source dataset is ImageNet, adding more training datapoints

to the source dataset, unsurprisingly improves the source model’s performance on the

source problem. However, the improved source model only resulted in a marginal im-

provement when transferred to the target problem. Another way to improve a model’s

performance on the source problem is to change the architecture of the deep neural net-

work. Kornblith et al. (2019) show evidence that architectures which perform better

on the source problem lead to a better transfer performance on the target problem. The

authors reached this conclusion after examining 16 different neural architectures, using

ImageNet as the source dataset and 12 different image classification target problems.

Finally, one could try training the source parameters to be robust to adversarial attacks.

Salman et al. (2020) found that adversarially robust models trained on ImageNet are

more transferrable to target classification tasks.

2.4 Multi-Task Learning

Multi-task learning (MTL) addresses the scenario where one is given two or more

problems and the goal is to learn to solve all of them simultaneously (Caruana, 1997;

Zhang and Yang, 2021). Typically, the input space is assumed to be the same, while the

input distributions might be different (Yang and Hospedales, 2014; Zhang and Yang,

2021). On the other hand, the tasks are assumed to be different. They are usually

of equal importance, but one might be only interested in performing a main task, in

which case the rest of the tasks being learned are considered auxiliary. MTL is similar

to the transfer learning (TL) case with TS ̸= TD, where the source task is considered

auxiliary. However, while multi-task learning requires access to the source dataset,

deep approaches to transfer learning do not. Approaches to MTL and TL can both

make use of parameter sharing (Zhuang et al., 2020).

28 Chapter 2. Background: Lifelong Learning

Definition 3. (Multi-Task Learning) Given V problems {Ψi = ((X , pi(x)),Ti,Di)}V
i=1,

which share an input space X , multi-task learning aims to develop an algorithm A , s.t.

∀i ∈ 1, ...,V : Ri(A({D j}V
j=1))< Ri(A({Di})) ,

where Ri is the risk of a hypothesis on the ith problem.

The definition states that an MTL algorithm should improve the expected loss of

all of each of the tasks it learns (Zhang and Yang, 2021). Alternatively, one might be

interested in improving the average loss across all tasks. MTL’s idea is that by training

on multiple related tasks simultaneously, the algorithm will select a more generalisable

hypothesis, as it works across multiple tasks. Similarly to TL, if the tasks are not

related, the algorithm might select a hypothesis which achieves lower performance on

the problems than if the model was trained in a single-task setting. This is known as

negative transfer, task interference or catastrophic interference. In deep MTL, negative

transfer is mainly addressed by altering the way parameters are shared. Therefore, I

outline different parameter sharing strategies next. Other research problems in MTL,

e.g. task scheduling, are less relevant to the topic of this thesis and are not covered

here. For an overview of issues and approaches with deep MTL, the reader is referred

to Crawshaw (2020).

The most popular group of approaches to MTL is hard parameter sharing, in which

all tasks share a subset of the parameters. In particular, a commonly used neural archi-

tecture is a DNN with L layers, in which the first H hidden layers are shared between

the tasks and the rest L−H layers have separate task-specific parameters. Each task

is then trained using an individual loss function and dataset. Keeping this as a work-

ing example, there are several potential benefits of using MTL, as described in Caruana

(1998). First, for tasks T1, T2 and a shared feature F , learning a common representation

would mean that F can be learned using data samples from both tasks, which could im-

prove its generalisability (statistical data amplification). Second, given tasks T1, T2 and

a shared feature F , if F can be learned through T2, but cannot be learned from labels

of T1, sharing representation layers with MTL would mean that F would be accessible

to T1, thus improving its performance (eavesdropping). Third, when training on mul-

tiple tasks simultaneously, the back-propagated gradients could destructively interfere

and prevent the weights from going to a task-specific local minimum, increasing the

chances of converging to a mutually beneficial minimum (representation bias). Im-

portantly, in deep MTL, a hidden unit can be specialised for one task, while a task

can choose to ignore a certain feature by assigning a small weight to it. As practical

2.5. Lifelong Learning 29

advice, the paper also suggests that one could try introducing a task-specific learning

rate in order to make certain that all tasks reach the best performance around the same

time and, therefore, are able to take advantage of each other’s representations.

One important disadvantage of hard parameter sharing is that it can suffer from

negative transfer, if the tasks learnt simultaneously are too different. Alternatively, soft

parameter sharing approaches use completely separate parameters for solving each

task. Instead, they encourage corresponding parameters for each task to be similar

(Ruder, 2017). One way to achieve this is to penalise the difference between parame-

ters using the l2 distance (Duong et al., 2015).

Another group of approaches aim to learn which parameters to share between tasks.

For example, Misra et al. (2016) first shows empirically for two pairs of computer

vision tasks that MTL is beneficial for the performance on each task and that the best

DNN architecture for MTL depends on the given tasks. The paper proposes to learn a

sharing structure between tasks using cross-stitch units. Initially, two separate models

are trained on the two tasks. Afterwards, cross-stitch units are used to replace the task-

specific hidden activation of each layer by a parameterised linear combination of the

corresponding hidden activations for both tasks. A different approach to task-specific

weight sharing is presented by (Rosenbaum et al., 2017). The paper introduces routing

networks, in which the parameters of each hidden layer are selected based on its input.

This selection is made by a separate parameterised model, called a routed. Routing

networks are described in more detail in Section 3.1.

2.5 Lifelong Learning

In transfer learning and multi-task learning, the algorithm operates on a preset number

of tasks. However, it is possible that after the initial model is trained on a number

of tasks, one would want the model to also learn to solve a new problem, for which

data had not been previously available. For example, having trained a model capable

of accurate part-of-speech tagging and sentiment analysis, one can become interested

in natural language inference (NLI). Instead of training solely on the NLI dataset, it

could be better to adjust the previously trained model to the new problem, in order to

benefit from the shared knowledge between the related tasks. As new problems arrive,

it would be useful to be able to continue adapting the model to them, while benefiting

from previous knowledge whenever possible. Furthermore, it is assumed that there

is still interest in performing the previous tasks. Therefore, it is important to at least

30 Chapter 2. Background: Lifelong Learning

maintain the model’s generalisation performance on previously solved problems. This

would also preserve the previously obtained knowledge, allowing it to be reused on

new problems that could arise at a later time.

Multi-task learning provides a possible solution. Whenever a new problem is avail-

able, a MTL algorithm can be used to train a new model on all problems. This approach

requires the datasets for problems to be stored, which is problematic as it could require

a lot of storage space, or datasets might need to be deleted for privacy reasons. More-

over, having to retrain on all tasks with every new dataset, could make the approach

prohibitively computationally expensive (Zhang and Yang, 2017). These issues exac-

erbate as the number of problems and the sizes of the datasets increase, e.g. imagine

a sequence of a thousand problems. Another issue is that MTL assumes that all of

the problems have the same input space (Yang and Hospedales, 2014), which does not

need to be the case in a general setting. In the example above, a new problem could

involve performing sentiment analysis on audio, instead of text. Therefore, a new class

of algorithms is needed to address this setting. The area which aims to develop them is

known as Lifelong Machine Learning (LML) (or Lifelong Learning), Continual Learn-

ing and Incremental Learning.

Definition 4. (Lifelong Machine Learning) “Lifelong Machine Learning (LML), con-

siders systems that can learn many tasks over a lifetime from one or more domains.

They efficiently and effectively retain the knowledge they have learned and use that

knowledge to more efficiently and effectively learn new tasks.” (Silver et al., 2013)

Currently, work on deep approaches to lifelong learning is also referred to as “con-

tinual learning” (CL). Here, similar to De Lange et al. (2019), I focus on problem-

incremental continual learning. In this setting, each problem is different. A new prob-

lem is defined by a whole dataset, which the algorithm can process offline, possibly

over multiple epochs. Moreover, the datasets of previous or future problems are not

accessible. When evaluating, the model is given an input and the index of the input’s

problem. There are two common instances of problem-incremental continual learning:

domain-incremental and task-incremental. Domain-incremental sequences have differ-

ent input domains but share the same task. Task-incremental sequences have different

tasks but share input space.

Definition 5. (Problem-incremental Continual Learning) Given t problems {Ψi =(Di,Ti,Di)}t
i=1,

and a new problem Ψt+1, Problem-incremental Continual Learning aims to develop an

2.5. Lifelong Learning 31

algorithm A , which outputs a hypothesis ht+1 such that:

ht+1 = A(Dt+1,ht)

hi = A(Di,hi−1)

h0 = /0

s.t.

∀i ∈ 1, ..., t +1 : Ri(ht+1)≤ Ri(A(Di, /0)) ,

where Ri is the risk of a hypothesis on the ith problem. Ideally, A minimises the

computational and memory requirements.

There are few things to note in this definition. First, the algorithm takes as input

only the dataset of the latest problem, and the previous hypothesis. Therefore, the

algorithm does not have direct access to the previous datasets. Second, the risk for

each problem is computed using the latest hypothesis. This means that, after learning

to solve a new problem, the algorithm should be able to improve, or at least maintain,

its performance on previous problems. The following continual learning properties are

commonly referenced in the literature: positive forward transfer, avoiding negative

forward transfer, backward transfer and avoiding catastrophic forgetting. These are

detailed next.

As an illustrative example, consider a sequence of 3 problems: Ψ1,Ψ2,Ψ3, where

Ψ1 and Ψ3 share similar hypotheses. First, to avoid forgetting, a CL algorithm that is

provided with Ψ2, should make sure that its new hypothesis does not perform worse

on Ψ1. In general, when a new problem Ψi is given, and the performance of the new

hypothesis hi on a previous problem decreases (when R j(hi−1) < R j(hi),1 ≤ j < i),

then forgetting is said to have occurred. If said performance decreases dramatically,

i.e. R j(hi−1) << R j(hi),1 ≤ j < i), catastrophic forgetting is said to have occurred.

In practice, deep learning algorithms can experience catastrophic forgetting when they

change previously learned parameters to better fit the new task. Second, when a CL

algorithm is given Ψ3, it should be able to further improve its performance on the third

problem by transferring the knowledge acquired from the first problem Ψ1, since both

problems share similar hypotheses. If h3’s performance on Ψ3 is higher than the per-

formance of a model trained only on Ψ3, positive forward transfer is said to have oc-

curred. Conversely, if h3’s performance is lower, the algorithm has performed negative

forward transfer. In general, for a new problem Ψi, a CL algorithm achieves positive

transfer when Ri(hi)<Ri(A(Di, /0)) and negative transfer when Ri(hi)>Ri(A(Di, /0)).

32 Chapter 2. Background: Lifelong Learning

Therefore, CL algorithms should selectively transfer previous knowledge, in order to

promote positive transfer and avoid negative transfer. Finally, given Ψ3, a CL al-

gorithm should use the new dataset to also improve its performance on Ψ1. This is

referred to as backward transfer or reverse transfer. In general, backward transfer is

defined similarly to catastrophic forgetting, as it is the opposite. Given a new prob-

lem Ψi, if the performance of the new hypothesis hi on a previous problem increases

(R j(hi)< R j(hi−1),1 ≤ j < i,), then reverse transfer is said to have occurred.

Another two properties which are commonly found in LML literature are plastic-

ity and stability. Stability refers to an algorithm’s ability to retain previously acquired

knowledge and is required in order to avoid catastrophic forgetting. It is usually ad-

dressed by placing a restriction on how a model updates on new problems. Conversely,

plasticity refers to an algorithm’s ability to continuously learn to solve new problems.

For optimal plasticity, an algorithm’s generalisation performance on a given problem

should be at least as good as when said problem is solved in isolation. We distinguish

between two causes of reduced plasticity. First, if a model is severely restricted on

how it can update on new tasks, this can affect its capacity to represent new hypothe-

ses. Second, even if a model has enough capacity, using harmful inductive bias from

previous problems would lead to negative transfer, and thus reduced performance on

the new problem.

A similar idea to lifelong learning is that of never-ending learning, presented in

Mitchell et al. (2018). In never-ending learning, the agent improves over a series of

tasks in a semi-supervised way. Moreover, the agent is also responsible for formulating

new problems, which it needs to solve. The paper presents a specific implementation

of such an agent - the Never-Ending Language Learner (NELL). Given initial ontology,

the agent processes web pages in a random-walk fashion and populates its knowledge

base with confidence-weighted beliefs. It is shown that, with time, the agent improves

and is able to gather more information from a web page. One disadvantage of NELL is

that it organises its knowledge in a structured way, therefore, it is limited in the type of

knowledge, which can be learned. There are other lifelong learning approaches, which

do not make use of deep learning and are therefore omitted from this thesis. For more

information on them, the reader is referred to Chen and Liu (2018). The rest of this

section covers different deep learning approaches to continual learning.

2.5. Lifelong Learning 33

2.5.1 Common Experiments and Measurements

Most approaches assume that the input space is the same for all encountered prob-

lems, while the input distributions can be different. Even though these are different

problems, they are often referred to as different tasks. For consistency, I will adopt

this terminology while describing different approaches. Moreover, most CL methods

use a common architecture, which shares a learned hidden representation across tasks

φ(x;θθθ). Depending on the experiments, the output layer can be shared between tasks

(single-head architecture) or be task-specific (multi-head architecture). After training

on task t, the prediction for the jth input of task i, x(j)
i , is expressed as ĥ(i)t (x(j)

i).

2.5.1.1 Measurements

As detailed above, two desirable properties of a CL algorithm are positive transfer and

avoiding negative transfer. Both are related to the algorithm’s performance on a new

task and are mutually exclusive. After training on task t, we can use a standalone

baseline to evaluate which of the two has occurred:

T Rt = Rt(A(Dt , /0))−Rt(ht) .

If T Rt is positive, then the algorithm has achieved positive transfer, and conversely, if

Tr is negative, then negative transfer has occurred. Note that we can approximate Rt

using a test dataset for task t. The other two desirable properties of a CL algorithm

are backward transfer and avoiding catastrophic forgetting. They both relate to the

performance of a past task i and a target task t, and can be evaluated by:

Bt,i = Ri(hi)−Ri(ht) .

A positive Bt,i value indicates that backward transfer has occurred on task i, while a

negative Bt,i value is evidence of catastrophic forgetting.

The aforementioned measures are evaluated one task at a time and can become

difficult to analyse, as the number of tasks increase. Lopez-Paz and Ranzato (2017)

propose evaluation metrics which summarise a CL algorithm’s performance. For a

sequence of T tasks, a matrix C ∈ RT×T is calculated, where Ci, j is the test classifica-

tion accuracy of hi on task j. Moreover, b ∈ RT×1 is the vector of test classification

accuracy of the standalone baseline. The following measurements are proposed:

Average Final Accuracy: ACC =
1
T

T

∑
i=1

CT,i

34 Chapter 2. Background: Lifelong Learning

Backward Transfer: BWT =
1

T −1

T−1

∑
i=1

CT,i −Ci,i

Zero Shot Transfer: ZST =
1

T −1

T

∑
i=2

Ci−1,i −bi .

Zero-shot transfer evaluates the performance of a model ht on the next task ht+1. The

authors name this “forward transfer”, but I consider this naming to be misleading,

thus have renamed it here. Instead, I define forward transfer to compare a model ht’s

performance on task t, compared to a standalone baseline, in order to capture positive

and negative transfer:

Forward Transfer: FWD =
1

T −1

T

∑
i=2

Ci,i −bi .

Note that the measures imply that all tasks are equally important. The Average Final

Accuracy is the most commonly used in papers to compare different approaches.

2.5.1.2 Common Datasets

To evaluate a CL algorithm, one needs a sequence of problems. The more diverse the

sequence, the more challenging it is. For example, a sequence can introduce different

label spaces with each task (Yi ̸= Y j, if i ̸= j). Moreover, datasets can be selected

to increase the difference of the input distributions between the tasks. One commonly

used sequence of tasks is Permutted MNIST, first described in Goodfellow et al. (2013).

Each task consists of the MNIST (LeCun et al., 2010) image classification dataset, but

has a different task-specific random permutation of the inputs. This sequence eval-

uates an algorithm’s ability to reuse the underlying problem structure across tasks.

Given a new task, a model should learn to associate new collections of pixels to pen

strokes, without forgetting old connections between pixels and pen strokes (Goodfel-

low et al., 2013). Because the random permutation loses an image’s local properties,

on which convolutional layers rely, this sequence is used to train models only with

fully-connected layers. Since the label space and the target labelling function are the

same between tasks, a single-head architecture is used.

Another common task sequence is Split MNIST, introduced by Zenke et al. (2017).

They divide the MNIST dataset into five binary classification problems: 0/1, 2/3, 4/5,

6/7, 8/9. Methods usually use a multi-head architecture for this experiment. Similarly,

the authors define “Split CIFAR10” and “Split CIFAR100”, based on the CIFAR10

and CIFAR100 datasets (Krizhevsky et al., 2009) respectively.

2.5. Lifelong Learning 35

While there are benchmarks designed to evaluate LML’s performance in a rein-

forcement learning setting (Schwarz et al., 2018a; Wołczyk et al., 2021; Nekoei et al.,

2021), this thesis’ focus is on supervised learning. Therefore, we only mention them

for completeness and refer the reader to the review in (Khetarpal et al., 2020).

2.5.2 Approaches

One could try to apply a transfer learning approach, namely, fine-tuning, to continual

learning (a baseline also referred to as SGD). However, at task t, fine-tuning optimises

the network parameters in order to only minimise the new loss function Lt(θθθ). There-

fore, the loss on previous tasks increases, leading to catastrophic forgetting. Goodfel-

low et al. (2013) investigate how different choices for a neural network’s architecture

and training affect catastrophic forgetting. These choices are evaluated on three se-

quences of length 2, which is similar to the transfer learning setting. The authors

report that using Dropout (Srivastava et al., 2014) during training leads to the least for-

getting (a baseline referred to as SGD+Dropout). However, SGD and Dropout do not

scale to longer task sequences and are outperformed by methods specifically designed

for continual learning (Kirkpatrick et al., 2017). Recently, Mirzadeh et al. (2020) have

shown evidence that, using carefully tuned hyperparameters, along with well-known

techniques, such as dropout and large learning rate with decay and shrinking batch size,

can result in an approach which outperforms other more complex LML algorithms on

three standard continual learning benchmarks.

Most of the current approaches to lifelong learning can be grouped into the follow-

ing three categories: parameter-regularisation-based, replay-based and architecture-

based approaches. Parameter regularisation methods restrict how much a model’s

parameters can change when learning to solve a new problem. Replay methods re-

visit data points from previous problems while training on a new problem. Finally,

architecture-based methods change the model’s neural architecture between problems.

For example, this can involve adding new problem-specific parameters (Rusu et al.,

2016) or computing a problem-specific parameter mask (Mallya et al., 2018). Catas-

trophic forgetting is usually prevented by freezing previously trained parameters.

2.5.2.1 Parameter Regularisation

Parameter regularisation methods address forgetting by storing additional parameter-

specific information from past tasks, and using it to augment the training loss function

36 Chapter 2. Background: Lifelong Learning

of a new task.

Bayesian parameter regularisation methods are based on the idea of expressing the

posterior distribution over the model parameters, given data from all tasks as follows:

p(θθθ|D1:T) =
p(D1:T |θθθ)p(θθθ)

p(D1:T)
=

p(DT |θθθ)p(D1:T−1|θθθ)p(θθθ)
p(DT |D1:T−1)p(D1:T−1)

=
p(DT |θθθ)p(θθθ|D1:T−1)

p(DT |D1:T−1)
=

p(DT |θθθ)p(θθθ|D1:T−1)∫
p(DT |θθθ)p(θθθ|D1:T−1)dθθθ

.

(2.1)

This means that it is not necessary to have access to all datasets. To approximate the

latest posterior over parameters P(θθθ|D1:T), one “only” requires the latest dataset DT

and the previous posterior P(θθθ|D1:T−1). This is referred to as Bayesian evidence accu-

mulation (BEA). Usually, computing the true posterior is computationally intractable,

so approaches aim to estimate it. In addition to estimating the posterior, some methods

add heuristic modifications to the resulting loss function in order to improve the em-

pirical performance of their methods. Applying log on each side of the equation leads

to:

log p(θθθ|D1:T) ∝ log p(DT |θθθ)+ log p(θθθ|D1:T−1) .

This can be interpreted as log p(DT |θθθ) being the loss term defined over the latest

dataset, and log p(θθθ|D1:T−1) being the regularization term. Therefore, methods which

follow BEA are also referred to as regularisation-based.

Elastic weight consolidation (EWC) (Kirkpatrick et al., 2017) is a method inspired by

BEA (Kirkpatrick et al., 2018). The method is a modified version of computing a di-

agonal Laplace approximation of the posterior. The posterior of the first task p(θθθ|D1)

is approximated by a Gaussian distribution centered around the maximum likelihood

estimate θ̂θθ1. The Gaussian distribution has a diagonal precision given by the diagonal

of the Fisher information matrix (FIM) F1. The function minimised in EWC for the

second task is

L(θθθ) = L2(θθθ)+∑
i

λ

2
F(i)

1 (θθθ(i)− θ̂θθ
(i)
1)

2
, (2.2)

where L2 is the loss over the dataset of the second task, i is the index of each parame-

ter and λ is a hyper-parameter, setting the importance of problem 1. When applied to

multiple tasks, EWC computes a different approximation of the weights posterior of

each task and then uses all of them for regularisation. This can be problematic, since

the algorithm’s computational and storage demands increase with the number of en-

countered tasks. To address this, Schwarz et al. (2018b) and Chaudhry et al. (2018a)

augment EWC by accumulating all of the Fisher information matrices into a single one

2.5. Lifelong Learning 37

and allowing only one approximation to be stored at a time. EWC also assumes that

FIM is a diagonal matrix, which is typically unlikely. To address this, Liu et al. (2018c)

decompose the expression for computing an FIM and use it to derive a reparameter-

ization of the layers of a neural network which encourages FIM to be approximately

diagonal. On the other hand, Ritter et al. (2018a) aim to remove the diagonal restric-

tion. They compute Kronecker factored Laplace approximation (Ritter et al., 2018b)

which allows the resulting posterior to capture the interaction between weights within

the same layer.

Variational Continual Learning (VCL) (Nguyen et al., 2018) applies BEA to lifelong

learning and approximates the distributions over the model parameters with a isotropic

multivariate Gaussian using Bayes by Backprop (BBB) (Blundell et al., 2015). This al-

lows the approximation to be fitted during training instead of after finding the MAP as

in when using Laplace approximation. Since a Gaussian might not capture the whole

posterior of the parameters, repeating approximations for each task might lead to er-

ror accumulation, which in turn could cause catastrophic forgetting. In an attempt to

remedy this, the authors suggest keeping a coreset - a fixed number of data points for

all encountered tasks. They re-write the posterior over parameters in a way which in-

cludes the coreset and show that this leads to an improvement in performance. VCL

can be seen as combining parameter regularisation with rehearsal-based methods.

EWC uses parameter uncertainty in the loss function, by allowing uncertain parame-

ters to change from previously found optima. Similarly, Uncertainty-guided Continual

Bayesian Neural Networks (UCB) (Ebrahimi et al., 2019) calculate parameter uncer-

tainty using BBB, but use it to regulate the learning rate of the optimiser. The intuition

is that more uncertain parameres should be allowed to change more rapidly, while more

certain parameters’ updates should be slow in order to prevent catastrophic forgetting.

There are other parameter regularisation approaches, which are not based on Bayesian

approximations. Synaptic Intelligence (SI) (Zenke et al., 2017) optimises a loss func-

tion similar to EWC. At task t they minimise

L̃t(θθθ) = Lt(θθθ)+ c∑
i

Ω
(i)
t (θθθ(i)− θ̂θθ

(i)
t−1)

2
. (2.3)

Here, Lt is the task-specific loss and c is a hyper-parameter which regularises the im-

portance of remembering old tasks. Each parameter is penalised for changing from

its optimal value on the previous task θ̂θθ
(i)
t−1, based on a parameter-specific coefficient

Ω
(i)
t , capturing how important the parameter has been to the loss of past tasks. To

38 Chapter 2. Background: Lifelong Learning

calculate Ω
(i)
t , SI accumulates the partial derivatives of the loss with respect to the i-

th parameter, observed across the training steps, which reflects on how important this

parameter has been for changing the loss. This captures the change in a previous loss

as the value of a parameter θ moves away from θ̂θθ
(i)
t−1 in the direction observed during

training. However, this can underestimate the loss as the parameter’s value changes in

the other direction. Park et al. (2019) account for this by using a scalar to overestimate

the loss in the unexplored direction. Memory Aware Synapses (MAS) (Aljundi et al.,

2018) also optimise Eq. (2.3) for continual learning. In contrast to SI, MAS calculates

a parameter’s importance based on how much it affects the output of the neural net-

work on average. The coefficient Ω
(i)
t is calculated using the partial derivative of the

neural network’s output h(x;θθθ) with respect to θθθ
(i). Finally, Jung et al. (2020) propose

to group the parameters that are part of the same hidden unit in a DNN, and regularise

them with the same coefficient. The importance of each group is calculated using the

average activation value of the associated hidden unit.

2.5.2.2 Memory-based Approaches

The parameter regularisation approaches which I discussed above maintain informa-

tion about the optimal parameters on past tasks. This is then used to prevent important

parameters to greatly change from their previously found optimal values. Instead,

memory-based approaches assume that it is possible to retain some of the past data

from previous problems, which can then be used to restrict further changes to the

model in order to prevent catastrophic forgetting. One possible advantage of this ap-

proach is that it can allow for more flexibility in how the parameters change, as long as

the constraints are satisfied. The main research questions revolve around how to best

make use of the available data from past problems, how to select which past data to

store and how to store past data.

Rehearsal-based approaches optimise their model on the available past data, while

also training it to solve a new problem (Robins, 1995; Rolnick et al., 2019; Chaudhry

et al., 2019b). In the supervised learning setting, this can involve simultaneously

training the model to correctly predict the target labels of the stored inputs. Instead,

Buzzega et al. (2020) store past inputs as well as the model’s corresponding output

logits. Motivated by knowledge distillation (Hinton et al., 2015), the stored logits are

then used as targets during rehearsal.

Alternatively to directly training on it, past data can be used to modify the gradients

computed using the new data. GEM (Lopez-Paz and Ranzato, 2017) modifies the

2.5. Lifelong Learning 39

gradient of the new loss g = ∆Lt(x;θθθ) in order to align it with each of the gradients of

the previous losses g j = ∆L j(D j;θθθ). This way, any updates to the parameters should

either decrease or keep each of the expected losses on previous tasks L j the same.

However, each parameter update requires an extra optimisation step that involves all

of the stored data, which prevents GEM from scaling to a large number of tasks and

bigger number of stored data points. A-GEM (Chaudhry et al., 2018b) addresses this

by computing an average gradient, gre f , representative of the losses of past tasks, using

a random subset of the past data. In contrast to GEM, Farajtabar et al. (2020) project

g to be orthogonal to the gradients of a DNN’s outputs on past data with respect to its

parameters. This is designed to keep the past input-output mappings unchanged, as the

DNN adapts to the new task.

Bayesian functional regularisation approaches (Titsias et al., 2019; Pan et al.,

2020) compute a posterior over the function values of a selected subset of inputs from

the training set. In effect, this represents a posterior over functions, given the training

data. When training on a later task, they add a regularisation term to the objective,

which ensures that shared parameters are constrained to change while being consistent

with the previously computed functional posteriors.

Since it is typically not feasible to retain all of the previously observed data, meth-

ods store only a subset of it. As a result, a line of work investigates different ways

of selecting which data point to retain. Isele and Cosgun (2018) outlines three ap-

proaches: random selection which preserves the underlying distribution, selecting the

inputs associated to the highest prediction loss, selecting inputs by maximising the se-

lected subset’s coverage over the input space. Aljundi et al. (2019) suggest using the

gradients in order to select the inputs which ”pull” the model’s parameters in the most

diverse set of directions. Using hindsight to anchor past knowledge in continual learn-

ing. With respect to the number of the retained data points, Chaudhry et al. (2019b)

presented evidence that even using a tiny amount of data points for rehearsal still leads

to competitive LML performance. Instead of storing raw inputs, which can each be

large in terms of their memory demands, Pellegrini et al. (2019) propose to store the

latent embeddings. They assume that all tasks are related to image processing where

the lower layers of a pre-trained CNN have been found to be reusable across tasks

(Yosinski et al., 2014).

Another line of work develops approaches which avoid storing any of the past

data. Given a new task, these approaches create a pseudo dataset which is considered

to be representative of the data distribution of past tasks. Robins (1995) proposes to

40 Chapter 2. Background: Lifelong Learning

generate a pseudo dataset by first randomly sampling inputs from the input space and

then labelling them using the model. Li and Hoiem (2017) propose to use the training

inputs on the new task and label them with the task-specific output heads of their DNN.

They then use a distillation-based multi-task objective to ensure that the task-specific

outputs remain unchanged while the DNN is being trained. Shin et al. (2017) propose

to use a generative model, namely a generative adversarial network (Goodfellow et al.,

2014), to model the input distribution over all past tasks.

2.5.2.3 Architecture-based approaches

All previously described methods used a single-head or multi-head architecture, where

the hidden layers of the neural network are shared between tasks. Even if data from

all tasks is present, work on multi-task learning has shown that sharing all hidden

weights can lead to catastrophic interference, reducing the performance on some of the

tasks. Architecture-based continual learning methods change the model’s architecture

between tasks in order to reduce catastrophic forgetting, while allowing knowledge

transfer.

One line of work contains methods which also utilise a multi-head architecture

but use task-specific masks in order to restrict the parameter overlap between tasks.

Piggyback (Mallya et al., 2018) assumes that the shared parameters are pre-trained on

a large image dataset, on ImageNet. For each new task, the method learns a different

binary mask M over the model’s weights and the parameters of the task-specific output,

while keeping the shared parameters frozen. After training, a binary mask over the

shared parameters, costing 1 bit per parameter, is kept for each task. Since each task

has a separate mask, and the shared parameters do not change, catastrophic forgetting

is prevented by design. However, Piggyback is limited by its reliance on the initial

values of the shared parameters. PackNet (Mallya and Lazebnik, 2018) allows the

shared parameters to be updated on new tasks. After training on a new task, PackNet

performs a step of iterative pruning. A task-specific binary mask is created by sorting

the parameters of each layer by absolute value and discarding the lowest 50% by setting

the associated mask value to 0. The rest of the mask values are set to 1. Next, the model

is finetuned using the new mask, in order to adapt to the pruned weights. When training

on following tasks, all previous masks are combined to freeze the parameters which

useful for previous tasks. While PackNet relies on heuristic-based pruning to acquire a

task-specific mask, Hard Attention to the Task (HAT) (Serra et al., 2018) learns a mask,

together with the network parameters. Rather than masking parameters, HAT masks

2.5. Lifelong Learning 41

hidden activations. Moreover, instead of a strictly binary mask, the method allows

intermediate values between 0 and 1 and a regularisation term is added to encourage

mask values to be 0. After training on a new task, HAT computes cumulative attention

a(l,i)≤t which stores the maximum mask values for a given hidden activation. When

training on following tasks, cumulative attention is used to restrict the gradient updates

to parameters. This limits catastrophic forgetting by not allowing previously important

parameters to change.

Constraining continual learning methods to use a constant amount of parameters

limits the number of tasks which said methods can solve. This is why some approaches

have the ability to grow the model’s architecture given a new task. Compacting, Pick-

ing and Growing (CPG) (Hung et al., 2019) is a more parameter-efficient CL method

which adds new parameters to its model on demand, while using pruning to keep its

size small. The method has three main steps: pruning, masking and expanding on

demand. After the model is trained on task 1, CPG uses gradual pruning (Zhu and

Gupta, 2017) to prune the trainable parameters. The pruned parameters are marked as

trainable for future tasks W E
1 , while the rest of the trainable parameters are added to

a set of frozen weights W F
1 . Given a new task t, CPG trains the learnable parameters

in W E
t−1, as well as a task-specific binary mask Mt over W F

t−1, similarly trained to the

one in Piggyback. The mask is supposed to allow the model to selectively reuse part of

the frozen weights from previous tasks W F
t−1. After training, the final performance is

evaluated. If the performance is not higher than a manually defined hyper-parameter,

CPG increases the model’s capacity by adding new parameters to W F
t−1. Afterwards,

Mt and W F
t−1 are re-trained. Since all the weights used in previous tasks are stored in

W F
t−1 and frozen, CPG avoids catastrophic forgetting by design.

Progressive neural networks (PNNs) (Rusu et al., 2016) are another example of

a method which expands its architecture. PNNs consider the usually used feedfor-

ward deep neural network as a column in their architecture. For each new task, a new

task-specific column is introduced to the architecture and trained to solve said task.

Moreover, the previously learned columns’ parameters are frozen, thus avoiding catas-

trophic forgetting. As described, the setup is identical to training a different DNN for

each task. In order to facilitate transfer between tasks, PNNs introduce lateral connec-

tions between columns. For a new task t, each input from the new dataset is processed

by each column simultaneously. Moreover, each hidden activation g(l)t for layer l of the

new task t, is computed using the hidden activation from the previous layer g(l−1)
t as

well as the hidden activations from the previous layers of the previous columns g(l−1)
<t .

42 Chapter 2. Background: Lifelong Learning

PNNs are evaluated on sequences of up to twelve Atari games and they demonstrate

an ability to transfer better than the baselines. The authors also hint at possible optimi-

sation difficulty, related to lateral connections, which prevents more effective transfer.

The experiments further reveal that PNNs are prone to negative transfer. A big disad-

vantage of PNNs is that the number of parameters grows quadratically with the number

of tasks. The authors demonstrate that only a fraction of the newly introduced param-

eters are used.

Another line of work considers a modular approach to LML. A deep neural network

is decomposed into modules, where each module can be thought of as a sub-network

that performs a parameterised non-linear transformation of its inputs. These methods

select a task-specific subset of the available modules which is used to process the inputs

of a given task. By grouping parameters into modules and only reusing a subset of

modules per task, these methods allow their modules to specialise in performing an

atomic transformation which is reusable across tasks. Furthermore, once trained, a

module can be frozen in order to prevent forgetting. PathNet (Fernando et al., 2017)

uses a modular deep neural network consisting of L module layers, each of which has

d modules to choose from. For each task, they select a task-specific subset of modules,

which involves selecting k < d modules per layer. To make this selection, they use a

genetic algorithm to search for a suitable subset of modules, while also optimising the

modules’ parameters. Rajasegaran et al. (2019) define a similar setting, however, they

propose to use random search in order to select a task-specific subset of modules. Both

of these methods use a constant amount of modules which limits the number of tasks

which they can solve.

Veniat et al. (2020) also group parameters into multi-layer modules, with the hope

that this would allow modules to perform atomic and more reusable transformations.

Their method is called Modular Networks with Task Driven Prior (MNTDP). MNTDP

considers a feedforward architecture of S modules. For task 1, all S modules M(i)
1 are

randomly initialised and learned. Afterwards, the modules are frozen for future tasks

and added to the pool of modules which can be reused. For task 2, for each mod-

ule index i, there is a choice between reusing the module M(i)
1 and introducing a new

randomly initialised module M(i)
2 . The authors refer to each unique combination of

modules as a path π. Therefore, to solve task 2, MNTDP needs to select the best path

and to train any new modules. Two strategies are proposed for this: Stochastic and

Deterministic. The stochastic strategy (MNTDP-S) alternates between optimising the

choice of a path using gradient descent via REINFORCE (Williams, 1992), and learn-

2.5. Lifelong Learning 43

ing the new parameters using gradient descent and the supervised learning loss. The

deterministic strategy (MNTDP-D) evaluates all possible paths by training a different

copy of the new modules for each path. Either method can be used to select a path

and train the new modules. Afterwards, the newly trained modules on task 2 are also

frozen and added to the pool of options. For each task, the selected path can reuse

some of the modules, however, the number of possible paths grows exponentially with

the number of encountered tasks T : O(T S). This paper applies a number of heuristics

to reduce the path search space. Given a new task t, the closest past task j∗ is selected.

This is done by processing the new dataset using each optimal path π j for previous

tasks. The search space is restricted to considering a combination of the modules from

the closest path π j∗ and the new modules. This restricts the search space to O(2S).

Another heuristic is to restrict the search to paths in which a pre-trained module can

be connected to a new one, but a new module cannot feed into a pre-trained module.

This restricts the method to only be able to transfer low-level perceptual knowledge.

The authors notice that MNTDP-S leads to lower average accuracy than MNTDP-D,

and reason that this occurs because training modules as part of different paths leads to

sub-optimal convergence of their parameters.

Chapter 3

Background - Related Areas

This thesis presents a neurosymbolic framework in which neural networks are rep-

resented as functional programs. This leads to a modular lifelong learning approach

which searches for a problem-specific neural architecture. In later chapters, we im-

prove on our work by making use of Bayesian optimisation. Overall, our work benefits

from the advantages of multiple sub-fields within deep learning. This chapter provides

background into said sub-fields. Concretely, I present modular deep learning, neu-

rosymbolic methods, neural programming, neural architecture search and Bayesian

optimisation of black-box functions.

3.1 Modular Deep Learning

Typically, deep learning approaches have a fixed set of parameters, which are all used

to make a prediction on a given input. Alternatively, one can assume that a given

problem can be divided into sub-problems. For example, it can be assumed that the

input space can be divided in two, with two different functions solving each part. In

this case, modular approaches solve a problem by creating different sets of parameters,

which are selectively applied, depending on the given input. These sets of parameters

are sometimes referred to as modules and each module performs a nonlinear transfor-

mation of its input. The goal of modular approaches is that each module specialises

in solving a different sub-problem. This divide-and-conquer approach can lead to a

number of benefits (Rosenbaum, 2020). First, as different parts of the input data are

processed by different modules, this could reduce the learning interference between

data points and lead to higher performance. Second, since a different subset of mod-

ules can be used to process each input, the effective size of the whole model can be

45

46 Chapter 3. Background - Related Areas

greatly increased, without affecting the time it takes to process an input (Shazeer et al.,

2017). This increases the model’s expressivity while keeping the computational com-

plexity of a forward pass constant. Third, the parameters of a modular approach are

more transferrable if each module focuses on a sub-problem. It is also possible to re-

assemble the modules in a novel way in order to solve a previously unseen problem

(Chang et al., 2018). Fourth, as modules are reused only on related sub-tasks, this

could reduce their catastrophic forgetting. The rest of the modules that are not relevant

to a new problem are unaffected by any finetuning of the relevant parameters.

Given a problem, modular approaches have two main challenges. Selecting mod-

ules for each input and training the modules’ parameters. If these challenges are not

addressed properly, this could lead to different issues. For example, a modular ap-

proach could keep on selecting the same small subset of modules for every input - a

problem known as module collapse. Another potential issue is overfitting, since having

multiple modules increases the overall number of parameters.

3.1.1 Mixture of Experts

One modular approach is Mixture of Experts (MoE). (Jacobs et al., 1990). Each mod-

ule is a neural network, referred to as an expert network, which makes a prediction

about the label of a given input. MoE uses a gating network in order to combine the

ouputs of all K experts ei. The gating network g(x) processes a given input and outputs

an expert-specific weight gi = g(x)i. A MoE then outputs a linear combination of the

experts’ outputs:

ŷ =
K

∑
i=1

g(x)iei(x) . (3.1)

This allows for a standard loss function to be used for training: L = L(ŷ,y). However,

this training procedure can lead to co-dependence between the experts, as all of them

are used to collectively make a prediction. Jacobs et al. (1991) address this by chang-

ing the gating network g to output a categorical distribution over the choice of experts

for a given input, i.e. ∑
K
i g(x)i = 1. Afterwards, the loss function is changed by imag-

ining that only one expert is sampled from the categorical distribution and used for

prediction. As a result, the loss function can be changed to L = ∑
K
i g(x)iL(ei(x,y)),

which is the expected loss between a selected expert’s prediction and the actual label.

At test time, the prediction can still be made according to Eq. 3.1. Following this work,

the gating networks in MoE are followed by a softmax activation by default. Overall,

mixtures of experts require each of the experts to be run on the given input, which

3.1. Modular Deep Learning 47

introduces memory and computational limitations that restrict the number of experts

that can be used. Shazeer et al. (2017) scale this idea by introducing Sparsely-Gated

Mixture-of-Experts (SGMoE). First, the authors treat a mixture of experts as a layer

and introduce such a layer between two stacked LSTM layers. Setting the number

of experts for each MoE layer to a high number dramatically increases the model’s

capacity. However, this model would be prohibitively computationally expensive. To

address this, SGMoE uses the gating network to select the k experts with the highest

probability out of all K experts. Since K >> k, some experts might never be selected.

This is fixed by adding a learned input-specific noise to the logits of a gating network.

The experiments demonstrate that SGMoE allows for the training of a model con-

taining an MoE with up to 137 billion parameters. SGMoE achieves state-of-the-art

performance on language modelling and machine translation benchmarks.

3.1.2 Routing Networks

Another popular direction for modular neural networks builds on Routing Networks

(Rosenbaum et al., 2017). This framework has two main components: sets of modules

and a router. Each input is processed by multiple layers of modules. For each layer,

the router selects an input-specific module from a set of modules associated with said

layer. Concretely, each layer l of the feedforward computation contains Ol modules.

The router is a learnable function which uses the layer’s input vl−1 to select a single

module to be used. As a result, each input can be processed by a different compo-

sition of modules. Overall, there are different options for setting up the architecture

of a routing network. For example, each layer could have the same list of modules

which it should select from. In this case, the router can recursively apply the same

list of modules, up to maximum depth d. As another example, if layers have a differ-

ent number of modules, one could introduce multiple layer-specific routers. To train

a routing network, we can use loss backpropagation to tune module parameters with

SGD. On the other hand, training the router is more involved. Rosenbaum et al. (2017)

use reinforcement learning to train the router. They evaluate routing networks in the

multi-task learning setting. This is achieved by conditioning the router’s decisions on

the task’s index as well.

Chang et al. (2018) show that routing networks can generalise to harder problems.

They consider problems, where each is a combination of S sub-problems. In this set-

ting, different combinations of sub-problems result in a different problem. For ex-

48 Chapter 3. Background - Related Areas

ample, multilingual arithmetic problems are considered, where each problem has an

input encoded into a source language and a label encoded into a target language. Each

source-target language pair is a different problem. The authors simultaneously train on

multiple problems using multi-task learning. However, they want each of their modules

to solve a sub-problem. Therefore, they make use of curriculum learning (Bengio et al.,

2009), during training. Afterwards, they demonstrate that routing networks can gener-

alise to previously unseen problems of higher difficulty. In the multilingual arithmetic

example, they show that their model can generalise to previously unseen source-target

language pairs (the target language is provided to the router). Moreover, the model

generalises to longer arithmetic expressions.

Kirsch et al. (2018) propose a different way to train routing networks. They formu-

late a routing network as a probabilistic model and consider the choice of a module as

a latent variable. Then, they train both the modules and the router using generalised

Expectation-Maximisation (EM) (Jordan, 1998). The authors note that routing net-

works, as described in Rosenbaum et al. (2017), suffered from module collapse, i.e.

only make use of a small subset of the modules, thus lacking module diversity. The

experiments show that the new training algorithm alleviates module collapse, without

the need for explicit diversity regularisation.

3.1.3 Modular Deep Learning for Visual Question Answering

In the previously discussed routing networks, the routers rely on the input and, op-

tionally, on a task index in order to select the modules. It is possible to also supply

meta-information about the given input, in order to specify the desired task. This

finds application in visual question answering, where the question provides such meta-

information. Here, I discuss neural module networks (Andreas et al., 2016), which

can be seen as routing networks with a hand-engineered router that makes use of meta-

information.

In visual question answering (VQA) datasets, a model is supplied with an image

and a question and needs to learn to reason about the objects illustrated in the given

image in order to successfully answer the given question. CLEVR (Johnson et al.,

2017) is a synthetic dataset designed to evaluate a model’s ability to reason. Unlike

the previous datasets, it was designed to not contain statistical biases which can be

exploited by the models.

3.1. Modular Deep Learning 49

Neural module networks (Andreas et al., 2016) is a modular deep learning approach

to visual question answering. The authors notice that the input questions in VQA can

be decomposed into sub-problems. For example, the question “where is the dog” can

be decomposed into the sub-problems of locating the dog in the image and recognising

where it is situated. The latter sub-problem is also contained in the question “where is

the cat”. For each question, the authors extract the sub-problems and assign a neural

module to solve each unique sub-problem. The selected neural modules are assembled

in an order consistent with the question, e.g. where(dog(IMAGE)). The output of the

selected neural modules, together with an embedding of the question is used to pro-

vide an answer. This process is detailed next. First, the question is processed by a

semantic parser to extract structure from sentences. The parser’s output is then used to

select a subset of neural modules and determine their layout. The input image is then

processed by a shared sequence of convolutional layers (referred to here as CNN) and

then by the neural modules. Next, the question is embedded using a recurrent neural

network. The resulting embedding is combined with the output of the neural modules

and used to output a final prediction. In the experiments, neural module networks are

compared to a monolithic neural architecture, which uses the same parameters to pro-

cess and answer all questions. It is found that this compositional approach outperforms

the competing method on SHAPES - an easier two-dimensional version of CLEVR. On

the other hand, it is only slightly better than the competitor on a dataset of natural im-

ages. The authors partially attribute this to the out-of-the-box parser, which they found

made errors when parsing complicated questions.

To address this, the follow-up work presented in Hu et al. (2017), focuses on learn-

ing to assemble neural modules from data. They introduce an additional deep model

which, given a question predicts a distribution over all possible layouts p(l|q;θθθlayout).

The whole pipeline is trained end-to-end on the target dataset, using backpropagation

for the differentiable part and policy gradient for the non-differentiable part. The big

search space over layouts makes this hard to train θθθlayout from random parameters,

therefore the authors first train it on expert-provided question-layout pairs. On the

SHAPES dataset, the new approach outperforms neural module networks. The au-

thors then show that the new approach achieves 83.7 overall accuracy on the CLEVR

dataset, which is significantly better than the competing monolithic methods. This is

evidence that their approach is capable of reasoning about complex questions in the

dataset. Overall, this line of work is able to exploit the problem compositionality by

inducing a problem-specific bias. They augment neural approaches with the ability to

50 Chapter 3. Background - Related Areas

symbolically describe neural networks, thus allowing for neural modules to specialise

in sub-problems. Moreover, the question-specific layouts provide more transparency

into how this approach interprets and answers a question.

3.2 Neurosymbolic Methods

Deep neural networks are flexible models that are good at learning from noisy inputs

with a high dimension Despite their success, they currently have limitations. Firstly,

DNNs require a considerable amount of data in order to train their many parameters.

Secondly, DNNs typically do not generalise well to inputs sampled from a different

distribution than the training distribution. Thirdly, DNNs make predictions based on

many multiplications of their parameters with a given input. This makes it hard to

interpret how a DNN’s prediction is made.

Symbolic methods are another line of work, aimed at automating learning, knowl-

edge discovery and decision making. These methods’ basic unit is a symbol, which is

a human-readable string and an abstract representation of an entity or a concept. Sym-

bolic methods can use symbolic data to discover relations between different symbols.

Moreover, formally specified inference rules can be used to deduce further sets of rela-

tions (Garnelo and Shanahan, 2019). In addition, symbolic methods can search through

different symbol combinations in order to solve a problem. For example, in planning,

given an initial state, a goal state and a set of actions, search algorithms can be used

to find the string of actions leading to the goal state. Overall, symbolic methods allow

for easy integration of human knowledge, making them data efficient. They can also

operate on symbols from different tasks, making them generalisable. Finally, symbolic

systems are interpretable, since every aspect of their design is human readable. One

disadvantage of these methods is that the symbols and the rules are handcrafted, and

are not learned from high-dimensional data. Moreover, it is hard for these methods to

handle noisy data.

It can be seen that deep neural networks and symbolic approaches have comple-

mentary strengths. As a result, there is a line of work, referred to as neurosymbolic

or neural-symbolic methods, which combines the two fields (Garnelo and Shanahan,

2019; Garcez and Lamb, 2020). In his AAAI 2020 keynote lecture, Kautz (2020) sorts

neurosymbolic work into five categories, which are described next.

Category 1 encompasses standard deep learning methods since they can process

symbolic inputs and produce symbolic outputs. Deep learning for translation and ques-

3.2. Neurosymbolic Methods 51

tion answering are two examples from this category.

Category 2 includes methods which contain a neural sub-routine within a symbolic

solver. One example of a category 2 system is AlphaGo (Silver et al., 2016) which is

applied for playing the board game Go. This system has two deep neural networks -

a policy network that outputs probabilities over possible moves, and a value network,

which is trained to predict the winner, based on a given position. In addition, the

system uses Monte Carlo tree search (MCTS) to search for the best move, since the

search space is too big. MCTS makes use of the policy network in order to select sub-

trees, corresponding to moves which are more likely to be successful. After reaching

maximum depth, MCTS uses the value network (in combination with fast rollout) to

estimate the value of the leaf state.

Category 3 consists of methods, in which a system for manipulating symbols, using

a set of rules is approximated by a neural network by training on the system’s inputs

and outputs. For example, Lample and Charton (2019) use deep learning for symbolic

mathematics. They train a DNN to solve problems on function integration and ordinary

differential equations. The input and labels are represented as trees and linearised using

prefix notation. The authors make use of a sequence-to-sequence architecture, often

used for translation. As a result, the trained model is shown to outperform commercial

systems.

Category 4 encompasses systems in which the input is first processed by a DNN,

and the DNN’s output is processed by a symbolic system. This would allow the DNN

to transform high dimensional input into a symbolic representation, and take advan-

tage of a symbolic system’s strong reasoning abilities. For example, Yi et al. (2018)

present a neurosymbolic method for visual question answering (NS-VQA). NS-VQA

has a scene parsing component, consisting of two DNNs, which transforms the image

into a symbolic scene representation, describing each of the objects in a given image.

There is also a question parsing component which transforms an input question into

an executable program. This is based on an LSTM sequence-to-sequence architecture.

Finally, NS-VQA uses a symbolic program executor to run the extracted program on

the extracted symbolic scene representation of the input image. The program execu-

tor provides expert-written Python implementations for each possible function in the

program.

Category 5 contains methods which embed symbolic reasoning inside a neural ar-

chitecture. The difference from Category 4 is that Category 5 methods can selectively

make calls to the symbolic component, when necessary.

52 Chapter 3. Background - Related Areas

3.3 Neural Programming

Lifelong learning involves re-using previously learned weights. At the same time, code

reuse is an important concept in programming. The connection between programming

and lifelong learning is made in Gaunt et al. (2016a); Reed and De Freitas (2015),

and we explore a similar idea in Chapter 4. Therefore, literature, connecting deep

neural networks and programming is described next. Given input-output examples, the

methods try to approximate or synthesize the underlying algorithm, which conforms

to the pairs.

Neural abstract machines are a class of methods, which aim to approximate an

algorithm by fitting a deep neural network architecture on given input-output pairs.

They are usually augmented with additional memory sources. Another common char-

acteristic of these methods is that they don’t produce source code, thus the induced

programs aren’t interpretable. For example, Neural Turing Machines (NTM) (Graves

et al., 2014) are introduced in order to improve standard recurrent neural networks

(RNN), enhancing their ability to learn algorithmic tasks. The architecture involves

a neural controller, represented by an LSTM or an MLP, that operates over multiple

time steps. A differentiable memory is also introduced. The controller receives input

and produces an output by reading and writing to the differentiable memory, making

the process end-to-end differentiable. Good generalization is observed, however, the

target programs’ difficulty is limited. What is more, a new model has to be trained for

each program, as the program is contained within the learned weights.

Alternatively, Neelakantan et al. (2015) presents an architecture, capable of work-

ing on multiple programs. It includes a programmer - an RNN which processes a string

database query and its last hidden state is considered to be a latent program. Using this

program, the model performs multiple operations in order to retrieve the requested

database information. To facilitate this, the neural networks have been augmented

with arithmetic and logic operators. However, the model is evaluated only on simple

queries and the authors report problems during training, which they addressed by in-

jecting Gaussian noise to the gradients. Moreover, although the authors claim that the

Neural Programmer can be applied to different domains, data sources and languages,

each new problem would require a separate model to be trained.

On the other hand, the Neural Programmer Interpreter (Reed and De Freitas, 2015)

is able to re-use weights across tasks. In this paper, programs are also represented as

latent encodings and are stored as the value of a key-value persistent mapping. They

3.4. Neural Architecture Search 53

can also interact with an environment, representing a more realistic scenario. The main

component of an NPI is the NPI core, implemented as an LSTM, which processes an

embedding of the environment, the program embedding, and the program arguments,

and executes the program. An important feature of the core is that it’s reusable for

different problems. Therefore, after it is trained, new programs can be learned and ex-

ecuted using the same NPI core. The programs’ embeddings are induced using samples

from the target tasks. One shortcoming is that this method requires rich supervision,

necessitating that the whole program execution trace is available for each input-output

pair. On the other hand, this is shown to help achieve good generalisability. Further-

more, the NPI core works on program and environment embeddings, which allows the

NPI to learn diverse tasks by having different parameters for embedding each environ-

ment. Catastrophic forgetting is still an issue in this architecture. To avoid it, when

learning a new program, the authors concurrently train on previous programs as well.

Therefore, it is assumed that datasets for multiple problems are available simultane-

ously, which is not desirable for a lifelong learning solution.

The alternative to learning a program using gradient descent is through symbolic

program synthesis (Gulwani et al., 2017). These two approaches are compared in

Gaunt et al. (2016b), which demonstrates that symbolic program synthesis outper-

forms inferring programs through gradient descent. Still, neural networks can assist

symbolic methods. Balog et al. (2016) uses neural networks to guide the search

of Inductive Program Synthesis (IPS) methods. The authors design a SQL-inspired

domain-specific language, consisting of low-level functions (e.g. Head, Maximum)

and high-level functions (e.g. Map, Filter, Scan). They then train a DNN model to

predict which functions are likely to be used in a target program, by looking at the pro-

gram’s input-output pairs. For this purpose, a dataset of input-output-program triples

is created. Empirical results show that this approach speeds up the baseline IPS meth-

ods.

3.4 Neural Architecture Search

Deep learning has alleviated the need for a domain expert to design input features for

different problems. Since the input transformation is learned from data, performance

can be improved by modifying the architecture of a deep neural network. A neural

architecture can be changed in order to bias the hypothesis space, e.g. convolutional

neural networks represent hypotheses which apply the same transformations to every

54 Chapter 3. Background - Related Areas

pixel in a given image. Moreover, a neural architecture can be changed in order to im-

prove optimisation. For example, ResNet (He et al., 2016) introduces skip-connections

in order to make it easier to train deep models with a high number of layers. Neural

architecture search (NAS) aims to automate the process of discovering a neural archi-

tecture which achieves higher performance on a given problem. The process involves

the evaluation of multiple architectures, which is costly. Therefore, some NAS research

also focuses on reducing the computational demand. Here, NAS work is organised fol-

lowing the structure in Elsken et al. (2019). For more insightful surveys, the reader is

referred to Wistuba et al. (2019) and Ren et al. (2020).

NAS methods have a common structure, which includes a search space, a search

strategy and a performance estimation strategy. Firstly, a NAS method needs to de-

fine a search space which specifies a set of possible architectures. The search space

captures the ranges of different properties of a neural architecture. As a simple ex-

ample, for a fully-connected architecture, the search space could entail the number of

hidden layers and the number of hidden units per layer. The bigger the search space,

the fewer aspects of a neural architecture are manually specified, however, the harder

the search. Secondly, a NAS method needs to specify a search strategy. The search

strategy describes the order in which architectures are evaluated. For example, archi-

tectures can be selected at random from the search space. Ideally, the search strategy

should decrease the time taken to find the best architecture. Thirdly, NAS needs to

estimate the performance of each selected architecture on a given dataset. The sim-

plest performance estimation strategy is to train a new deep model, described by an

architecture, until convergence. NAS methods can run until reaching a pre-specified

computational limit. Afterwards, the architecture with the highest performance, from

those considered, is returned and used for the given problem. Next, I describe different

approaches to designing each of the three components of a NAS method: search space,

search strategy and performance estimation strategy.

3.4.1 Search Space

The search space describes the set of architectures, which a NAS model operates on. A

global search space describes aspects of the whole neural architecture. For example,

for convolutional neural networks, a search space can describe the number of layers,

the type of each layer (e.g. convolutional, pooling), the hyperparameters of each layer

(e.g. kernel size, stride) and the connectivity between layers (whether there are any

3.4. Neural Architecture Search 55

skip connections). An expressive global search space captures a large set of architec-

tures but also makes it more difficult to find high performing architectures. Moreover,

it is easier to find an architecture that overfits on the target problem and does not gen-

eralise to new problems. To address these concerns, different works have introduced a

modular approach. A neural architecture is divided into modules, referred to as cells,

which are stacked to get the final result. The cells share hyper-parameters but have

different parameters. Thus, the search space is constrained to describing an individual

cell. For example, Zoph et al. (2018) describe a CNN in terms of two alternating types

of cells: a normal cell, which preserves the dimension of its input, and a reduction

cell, which reduces the input dimension. This modular approach reduces the search

space. Moreover, the discovered cells can be reused on harder problems by increasing

the number of cells added in an architecture. This makes the solutions in the modu-

lar search space potentially more reusable across problems, as shown in Zoph et al.

(2018).

3.4.2 Search Strategy

With the search space defined, a NAS needs to select a search strategy, used to search

for a high performing neural architecture. This is challenging because the search prob-

lem is non-continuous and relatively high dimensional (Elsken et al., 2019). Methods

have addressed this using one of the following: random search (RS), reinforcement

learning (RL), evolutionary algorithms (EA), Bayesian optimisation (BO) and contin-

uous search (CS). Random search constitutes randomly selecting architectures from

the search space for evaluation. Despite its simplicity, it is a strong baseline. Li and

Talwalkar (2020) report that random search, combined with early stopping, performs at

least as well as a more sophisticated approach to NAS (Pham et al., 2018). In reinforce-

ment learning, an agent is trained to perform a sequence of actions in order to maximise

a reward. RL can be applied to NAS by letting the agent select actions, which grad-

ually define a neural architecture. Evolutionary algorithms maintain a population of

samples from the search space. At each evolutionary step, at least one sample, referred

to as a parent, is selected for reproduction, based on performance. If there are two

parents, their properties are mixed in order to produce “offspring” samples. Moreover,

each offspring sample exhibits mutations, which further modifies the sample’s proper-

ties at random. This way, with each evolutionary step, the sample population should

contain samples with higher average performance. Evolutionary NAS maintain a pop-

56 Chapter 3. Background - Related Areas

ulation of neural architectures, which are then evolved in search of ones with higher

performance. Real et al. (2019) compare their evolutionary NAS method to RL and RS

baselines on the CIFAR10 dataset. They find that the evolutionary method and the RL

baseline converge to similar performance, however, the evolutionary method discovers

more accurate architectures earlier, indicated that it is the preferable method if one has

limited computational resources. Moreover, the authors show that RS’s performance

is only slightly lower, achieving around 1.5% lower accuracy. Bayesian optimisation

usually uses Gaussian Processes (GPs) and is applied to low-dimensional continuous

problems (Elsken et al., 2019).

In order to make use of GPs, Kandasamy et al. (2018) develop a kernel function,

capturing the similarity between two neural architectures. They describe two concepts:

layer mass, representing the amount of computation carried out by a layer, and path

length between layers. These concepts are used to create a distance between architec-

tures, which is in turn used to define a kernel. One could also use a different model

for the surrogate function. For instance, Zela et al. (2018) use tree-structured Parzen

estimator (TPE) (Bergstra et al., 2011) to propose neural architectures to evaluate.

Alternatively, Liu et al. (2018a) propose to use an ensemble of 5 LSTMs, trained on

different 4/5 subsets of the evaluations, as a surrogate. They explore the search space in

an order of increasing difficulty, thus exploring simpler neural architectures first. This

way the search can focus on only exploring the more complex architectures, which are

an extension of the more successful simpler architectures. The authors use the mean

of the surrogate ensemble, without taking the variance into account. Therefore, they

categorise their approach as sequential model-based optimisation. Continuous opti-

misation refers to methods which relax the search space to make it continuous and

use gradient descent to optimise the architecture. For example, DARTS (Liu et al.,

2018b) uses a softmax, parameterised by hyper-parameters ααα, to select among differ-

ent architecture choices. The neural network parameters are trained concurrently to

optimise the architecture using gradient descent. The gradients of the neural network

parameters are calculated using the loss on the training set, while the gradients of the

hyper-parameters ααα also use the loss calculated on the validation set.

3.4.3 Performance Estimation Strategy

Having selected a strategy that proposes neural architectures, a NAS method needs to

score each of them. A simple solution is to train a different set of parameters for each

3.5. Black-box Optimisation 57

architecture and evaluate the resulting model on the validation dataset. However, this

is too time-consuming, especially for big datasets. Therefore, different ideas have been

explored in order to estimate an architecture’s performance on the validation dataset,

without training from random initialisation. One idea is to speed up the time it takes to

train each new model by only training on a subset of the training dataset, or by reducing

the number of training epochs. Another idea is to perform fewer training epochs and

use an additional surrogate model to predict the final performance (Baker et al., 2017).

Alternatively, one can reuse the weights from previous models, using them instead

of random initialisation when evaluating a new architecture (Pham et al., 2018). Even

though this is a widely used approach, there is evidence that it can result in the incorrect

ranking of the proposed neural architectures (Yu et al., 2019). Another approach is

to generate the trained weights of a neural network, conditioned on its architecture.

Brock et al. (2017) present SMASH, which trains a Hypernetwork (Ha et al., 2016)

to predict the trained parameters of a neural network, conditioned on its architecture.

Once a hypernetwork is trained, it is used to cheaply evaluate architectures sampled at

random.

3.5 Black-box Optimisation

Many problems can be described as searching for the arguments which maximise the

output of a target function. In parametric machine learning models, one optimises a

loss function of the training dataset, where the arguments are the model’s parameters.

In this case, gradient descent can be used in order to optimise this function’s arguments.

However, for other functions of interest, one can only evaluate their output for some

arguments, but cannot evaluate the function’s gradient with respect to the arguments.

Optimising such a function is referred to as black-box optimisation. This section is

concerned with the setting where it is costly to evaluate the target function. In this

case, one needs to optimise the target function with as few evaluations as possible.

3.5.1 Sequential Model-based Optimisaition

When performing black-box optimisation, one can approximate the target function

with a machine learning model, referred to as a surrogate model. This model is quick

to evaluate, thus can be used to speed up the optimisation. Moreover, one can choose a

differentiable surrogate model, which allows one to take advantage of gradient-based

58 Chapter 3. Background - Related Areas

(a) The surrogate model (b) The acquisition function (c) The target function

Figure 3.1: An illustration of the components of Bayesian optimisation.

optimisation techniques. Sequential model-based optimisation (Hutter et al., 2011) de-

scribes one way of how to use a surrogate model for black-box optimisation. Using

this approach, one alternates between training a surrogate model on the current obser-

vations and using the model to propose new arguments to evaluate. Most commonly,

the surrogate model is designed to also output uncertainty about its predictions. In this

case, the optimisation procedure is referred to as Bayesian optimisation.

3.5.2 Bayesian Optimisation

Bayesian optimisation (BO) is a model-based sequential optimisation approach for

black-box optimisation. Bayesian optimisation has been successfully applied to mul-

tiple areas. This includes machine learning hyperparameter optimisation, where BO

is used to tune the hyperparamets of a machine learning algorithm. Moreover, BO

has been used for neural architecture search, where the architecture of a deep learn-

ing model is optimised. In both of these cases, each evaluation of the target function is

costly, as it involves training the parameters of a deep model. Next, I describe Bayesian

optimisation in more detail, however, the reader is referred to Shahriari et al. (2015)

for a comprehensive review.

Bayesian optimisation aims to find the optimal values x∗ for the arguments of a

given function f , s.t.

x∗ = argmax
x∈X

f (x) ,

where X is the arguments’ domain. It is assumed that it is possible to evaluate f at a

proposed location x(i) and obtain a noisy unbiased evaluation y(i) = f (x(i))+ ε, where

ε is the noise, usually assumed to have a 0-centered normal distribution. This allows

one to model the function’s output distribution p(y(i)|ϕ(x(i))) using a surrogate model.

The mapping ϕ is used to underscore that the inputs might be embedded differently

before being provided to the surrogate model. For example, a discrete variable might

3.5. Black-box Optimisation 59

need to be one-hot encoded. This mapping is defined by an expert and can be specific

to the choice of surrogate model.

Bayesian optimisation starts with R randomly selected arguments, which constitute

the initial training dataset for the surrogate model h. Afterwards, the following four

steps are repeated. First, the surrogate model is updated using the training dataset. For

example, Figure 3.1a shows a Gaussian process which is fit on 5 observations. Note

that the mean prediction of the surrogate model peaks near the already explored values

in the middle. Therefore, a surrogate model needs to also output the uncertainty of

its prediction, in order to provide information about other potentially high argument

values. Second, Bayesian optimisation selects new arguments for evaluation using

the surrogate model. To do this, one needs to specify an acquisition function, which

combines the predicted mean and the predicted uncertainty into a measurement of the

given argument’s value. Acquisition functions are designed to balance exploration

and exploitation. Exploration occurs when Bayesian optimisation selects arguments,

which its surrogate model is uncertain about. Exploitation occurs when the argument

values selected are close to already explored well-performing values. Figure 3.1b plots

an acquisition function, namely expected improvement, over the argument space. The

new arguments, selected for evaluation, are the ones that maximise the acquisition

function. They are found by a search procedure, enabled by the cheap evaluation

of the surrogate model and its optional gradient. Third, the Bayesian optimisation

algorithm evaluates the selected arguments using the target function and returns the

noisy prediction. Fourth, the selected arguments and the noisy prediction are added to

the training dataset. In summary, Bayesian optimisation has the following components:

the arguments domain, a surrogate model and an acquisition function.

The arguments domain is specific to the target function, however, it can also be

used to guide the choice of the surrogate model. Some important considerations are

the dimensionality of the arguments and whether or not they contain categorical vari-

ables. The choice of a surrogate model can impact the efficiency of Bayesian opti-

misation. One choice is to use a Gaussian process (GP), which is a commonly used

nonparametric model (Rasmussen and Williams, 2006). A GP uses a kernel function,

which captures the similarity between two inputs. Therefore, the choice of a kernel

function is related to the input space and affects a GP’s performance. Despite their

wide use, GPs have multiple disadvantages (Falkner et al., 2018). Classical GPs have

a cubic computational complexity O(N3) with respect to the size of the training dataset

N. They require careful kernel customisation when applying it to complex argument

60 Chapter 3. Background - Related Areas

spaces. Finally, GPs require hyper-parameter tuning. Other options for a surrogate

model include random forests (Breiman, 2001; Hutter et al., 2011) and TPE (Bergstra

et al., 2011). Common choices for a surrogate function are expected improvement

(EI) and upper confidence bound (UCB). Let x be some arguments values and ν h(x)
a random variable distributed according to the distribution predicted by the surrogate

model. Then EI (Mockus et al., 1978) captures how much the new function value is

likely to increase the previously best observed function value τ:

EI(x) = E[(ν− τ)1(ν > τ)] ,

where 1 is 1 if the condition is true, and 0 otherwise. Let the predicted distribution of

the surrogate model be Gaussian with mean µ and variance σ2, i.e. µ,σ = h(x). UCB

is an optimistic acquisition function (Shahriari et al., 2015), which sums the predicted

mean and standard deviation:

UCB(x) = µ+βσ ,

where β is a hyperparameter. If one seeks to minimise the target function, one would

use the lower confidence bound (LCB), defined as

LCB(x) = µ−βσ .

Bayesian optimisation approaches use machine learning models to approximate the

target function. As a result, their good performance relies on the different assumptions

made about the target function, such as the smoothness assumption. On the other hand,

random search does not make any assumptions and randomly selects argument values

for evaluation. This makes random search a strong baseline. Li et al. (2017) introduce

random 2x which is random search with twice as many resources as Bayesian optimi-

sation, i.e. run for twice as long. They show that random 2x performs competitively

to the Bayesian optimisation methods on the selected data sets. This suggests that the

efficiency increase provided by Bayesian optimisation may not necessarily be too big,

compared to random search. What is more, when the arguments are high-dimensional,

Bayesian optimisation performs similarly to random search (Wang et al., 2013). There-

fore, successfully applying Bayesian optimisation requires careful consideration of the

target function and the choice of a surrogate model.

Chapter 4

HOUDINI: Lifelong Learning as

Program Synthesis

This chapter introduces HOUDINI- a neurosymbolic framework for solving supervised

machine learning problems. For each problem, the framework employs a symbolic

search procedure in order to find a problem-specific neural architecture which can

achieve high generalisation performance. This allows it to operate on problems with

different input spaces. We show that HOUDINI is readily applicable to the lifelong

machine learning (LML) setting. Our results demonstrate that our framework provides

multiple advantages over other LML approaches.

In contrast to preceding work in LML, we distinguish between different types of

forward transfer, namely, perceptual, non-perceptual and few-shot transfer. Percep-

tual transfer shares the knowledge of how to process the inputs between two problems

with similar input domains. For example, this can involve transferring the knowledge

of extracting low-level features, like edges, from natural images. Conversely, non-

perceptual transfer involves sharing knowledge between problems with disparate input

domains but similar tasks. For example, transferring sentiment classification knowl-

edge across different languages (Zhou et al., 2019). Finally, few-shot transfer involves

solving a new problem which is represented by only a few training data points by

reusing previous knowledge. For instance, if an algorithm can perform sentiment clas-

sification of reviews in English, and knows how to translate from French to English,

it should be able to combine this knowledge in a novel way and perform sentiment

classification of French sentences using only a few training examples.

Current LML approaches have several shortcomings. First, they employ the same

or a similar neural architecture for all problems. For example, they use either the

61

62 Chapter 4. HOUDINI: Lifelong Learning as Program Synthesis

multi-head architecture (Lopez-Paz and Ranzato, 2017; Titsias et al., 2019; Nguyen

et al., 2018) or an architecture with a preset depth and preset types of hidden lay-

ers (Rusu et al., 2016; Hung et al., 2019; Veniat et al., 2020). As a result, these

approaches cannot be applied to a sequence of problems, which require different neu-

ral architectures. This prevents LML algorithms from being able to simultaneously

solve problems from different input domains, such as natural language processing and

image processing. Second, most of the current methods focus on avoiding catastrophic

forgetting (Dı́az-Rodrı́guez et al., 2018; Delange et al., 2021). Therefore, they do not

address the challenges of avoiding negative transfer and achieving backward trans-

fer. Furthermore, current methods do not allow non-perceptual transfer, in which only

higher layers are transferred, allowing the model to learn new parameters to process

a new input domain. Non-perceptual transfer is important, as it allows the reuse of

abstract task-specific knowledge across disparate input domains.

Our framework can be used to address these shortcomings. HOUDINI represents

deep neural networks as typed functional programs. The functions are implemented

by neural modules, and different modules can process inputs of different types. Each

functional program can contain a composition of modules and higher-order functions,

e.g. map. This allows the functional programs to operate on a wide variety of input

spaces. Given a problem, HOUDINI needs to find a functional program, which has a

high generalisation performance. This is achieved by using an exhaustive search over

type-compatible programs. Multiple programs are evaluated by having their neural

modules trained and the highest-performing program is returned as the solution. HOU-

DINI can be adapted to the lifelong learning setting. After finding the correct program

for the first problem, its modules can be frozen and added to a library of modules.

For each new problem, the programs can then either contain pre-trained or randomly

initialised modules. The new modules are trained on the new problem and added to

the module library. This leads to a lifelong accumulation of knowledge, which can be

reused on new problems.

As a result, HOUDINI contains many desirable properties of a lifelong learning al-

gorithm. First, our framework can find a problem-specific neural architecture. It can

adjust the types and the number of neural modules, as required by the problem. For ex-

ample, it can choose between using a convolutional or a recurrent module. This allows

our framework to operate on different input spaces. Second, catastrophic forgetting

is prevented by design, since all pre-trained parameters are frozen. Third, HOUDINI

is capable of transferring both input-processing functions as well as other more ab-

63

stract functions. Thus, the framework can achieve both perceptual and non-perceptual

transfer. Fourth, our framework can achieve few-shot transfer if the new problem can

be solved by simply combining pre-trained modules in a novel way. Finally, HOU-

DINI can avoid negative transfer since, for each explored program, it firstly explores a

standalone version of said program, which contains only randomly initialised modules.

Our neurosymbolic approach has the additional benefit of increased interpretability.

We can inspect the optimal program found for a given problem. We can then examine

which pre-trained modules are reused and check when said modules were originally

trained. This allows us to better understand the knowledge transfer that occurs between

problems.

Next, I present our paper, which was published at the Thirty-second Annual Con-

ference on Neural Information Processing Systems (NeurIPS 2018). Afterwards, I

conclude this chapter with a broader discussion. Note that the paper refers to percep-

tual transfer as low-level transfer, and to non-perceptual transfer as high-level transfer,

reflecting the fact that these transfers can be achieved by reusing the first (low) and the

later (high) layers respectively.

HOUDINI: Lifelong Learning as Program Synthesis

Lazar Valkov
University of Edinburgh
L.Valkov@sms.ed.ac.uk

Dipak Chaudhari
Rice University

dipakc@rice.edu

Akash Srivastava
University of Edinburgh

Akash.Srivastava@ed.ac.uk

Charles Sutton
University of Edinburgh,

The Alan Turing Institute, and Google Brain
charlessutton@google.com

Swarat Chaudhuri
Rice University
swarat@rice.edu

Abstract

We present a neurosymbolic framework for the lifelong learning of algorithmic
tasks that mix perception and procedural reasoning. Reusing high-level concepts
across domains and learning complex procedures are key challenges in lifelong
learning. We show that a program synthesis approach that combines gradient
descent with combinatorial search over programs can be a more effective response
to these challenges than purely neural methods. Our framework, called HOUDINI,
represents neural networks as strongly typed, differentiable functional programs
that use symbolic higher-order combinators to compose a library of neural func-
tions. Our learning algorithm consists of: (1) a symbolic program synthesizer that
performs a type-directed search over parameterized programs, and decides on the
library functions to reuse, and the architectures to combine them, while learning a
sequence of tasks; and (2) a neural module that trains these programs using stochas-
tic gradient descent. We evaluate HOUDINI on three benchmarks that combine
perception with the algorithmic tasks of counting, summing, and shortest-path
computation. Our experiments show that HOUDINI transfers high-level concepts
more effectively than traditional transfer learning and progressive neural networks,
and that the typed representation of networks significantly accelerates the search.

1 Introduction

Differentiable programming languages [25, 29, 8, 15, 10, 39, 34] have recently emerged as a powerful
approach to the task of engineering deep learning systems. These languages are syntactically similar
to, and often direct extensions of, traditional programming languages. However, programs in these
languages are differentiable in their parameters, permitting gradient-based parameter learning. The
framework of differentiable languages has proven especially powerful for representing architectures
that have input-dependent structure, such as deep networks over trees [35, 2] and graphs [23, 19].

A recent paper by Gaunt et al. [14] points to another key appeal of high-level differentiable languages:
they facilitate transfer across learning tasks. The paper gives a language called NEURAL TERPRET
(NTPT) in which programs can invoke a library of trainable neural networks as subroutines. The
parameters of these “library functions” are learned along with the code that calls them. The modularity
of the language allows knowledge transfer, as a library function trained on a task can be reused in
later tasks. In contrast to standard methods for transfer learning in deep networks, which re-use the
first few layers of the network, neural libraries have the potential to enable reuse of higher, more
abstract levels of the network, in what could be called high-level transfer. In spite of its promise,
though, inferring the structure of differentiable programs is a fundamentally hard problem. While

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

NTPT and its predecessor TERPRET [15] allow some aspects of the program structure to be induced,
a detailed hand-written template of the program is required for even the simplest tasks.

In this paper, we show that algorithmic ideas from program synthesis can help overcome this difficulty.
The goal in program synthesis [3, 36, 13] is to discover programs (represented as terms following a
specified syntax) that accomplish a given task. Many symbolic algorithms for the problem have been
proposed in the recent past [16]. These algorithms can often outperform purely neural approaches on
procedural tasks [15]. A key insight behind our approach is that these methods naturally complement
stochastic gradient descent (SGD) in the induction of differentiable programs: while SGD is an
effective way of learning program parameters, each step in a symbolic search can explore large
changes to the program structure.

A second feature of our work is a representation of programs in a typed functional language. Such
a representation is natural because functional combinators can compactly describe many common
neural architectures [26]. For example, fold combinators can describe recurrent neural networks,
and convolution over data structures such as lists and graphs can also be naturally expressed as
functional combinators. Such representations also facilitate search, as they tend to be more canonical,
and as the type system can help prune infeasible programs early on in the search [13, 27].

Concretely, we present a neurosymbolic learning framework, called HOUDINI, which is to our
knowledge the first method to use symbolic methods to induce differentiable programs. In HOUDINI,
a program synthesizer is used to search over networks described as strongly typed functional programs,
whose parameters are then tuned end-to-end using gradient descent. Programs in HOUDINI specify
the architecture of the network, by using functional combinators to express the network’s connections,
and can also facilitate learning transfer, by letting the synthesizer choose among library functions.
HOUDINI is flexible about how the program synthesizer is implemented: here, we use and compare
two implementations, one performing top-down, type-directed enumeration with a preference for
simpler programs, and the other based on a type-directed evolutionary algorithm. The implementation
for HOUDINI is available online [1].

We evaluate HOUDINI in the setting of lifelong learning [38], in which a model is trained on a
series of tasks, and each training round is expected to benefit from previous rounds of learning. Two
challenges in lifelong learning are catastrophic forgetting, in which later tasks overwrite what has
been learned from earlier tasks, and negative transfer, in which attempting to use information from
earlier tasks hurts performance on later tasks. Our use of a neural library avoids both problems, as
the library allows us to freeze and selectively re-use portions of networks that have been successful.

Our experimental benchmarks combine perception with algorithmic tasks such as counting, summing,
and shortest-path computation. Our programming language allows parsimonious representation for
such tasks, as the combinators used to describe network structure can also be used to compactly
express rich algorithmic operations. Our experiments show that HOUDINI can learn nontrivial
programs for these tasks. For example, on a task of computing least-cost paths in a grid of images,
HOUDINI discovers an algorithm that has the structure of the Bellman-Ford shortest path algorithm [7],
but uses a learned neural function that approximates the algorithm’s “relaxation” step. Second, our
results indicate that the modular representation used in HOUDINI allows it to transfer high-level
concepts and avoid negative transfer. We demonstrate that HOUDINI offers greater transfer than
progressive neural networks [32] and traditional “low-level” transfer [40], in which early network
layers are inherited from previous tasks. Third, we show that the use of a higher-level, typed language
is critical to scaling the search for programs.

The contributions of this paper are threefold. First, we propose the use of symbolic program synthesis
in transfer and lifelong learning. Second, we introduce a specific representation of neural networks
as typed functional programs, whose types contain rich information such as tensor dimensions, and
show how to leverage this representation in program synthesis. Third, we show that the modularity
inherent in typed functional programming allows the method to transfer high-level modules, to avoid
negative transfer and to achieve high performance with a small number of examples.

Related Work. HOUDINI builds on a known insight from program synthesis [16]: that functional
representations and type-based pruning can be used to accelerate search over programs [13, 27, 20].
However, most prior efforts on program synthesis are purely symbolic and driven by the Boolean
goals. HOUDINI repurposes these methods for an optimization setting, coupling them with gradient-
based learning. A few recent approaches to program synthesis do combine symbolic and neural

2

Types τ :
τ ::= Atom | ADT | F Atom ::= bool | real
TT ::= Tensor〈Atom〉[m1][m2] . . . [mk] ADT ::= TT | α〈TT 〉
F ::= ADT | F1 → F2 .

Programs e over library L: e ::= ⊕w : τ0 | e0 ◦ e1 |mapα e | foldα e | convα e.

Figure 1: Syntax of the HOUDINI language. Here, α is an ADT, e.g., list; m1, . . . ,mk ≥ 1 define
the shape of a tensor; F1 → F2 is a function type; ⊕w ∈ L is a neural library function that has type
τ0 and parameters w; and ◦ is the composition operator. map, fold, and conv are defined below.

methods [11, 6, 12, 28, 18]. Unlike our work, these methods do not synthesize differentiable programs.
The only exception is NTPT [14], which neither considers a functional language nor a neurosymbolic
search. Another recent method that creates a neural library is progress-and-compress [33], but this
method is restricted to feedforward networks and low-level transfer. It is based on progressive
networks [32], a method for lifelong learning based on low-level transfer, in which lateral connections
are added between the networks for the all the previous tasks and the new task.

Neural module networks (NMNs) [4, 17] select and arrange reusable neural modules into a program-
like network, for visual question answering. The major difference from our work is that NMNs
require a natural language input to guide decisions about which modules to combine. HOUDINI
works without this additional supervision. Also, HOUDINI can be seen to perform a form of neural
architecture search. Such search has been studied extensively, using approaches such as reinforcement
learning, evolutionary computation, and best-first search [42, 24, 31, 41]. HOUDINI operates at a
higher level of abstraction, combining entire networks that have been trained previously, rather than
optimizing over lower-level decisions such as the width of convolutional filters, the details of the
gating mechanism, and so on. HOUDINI is distinct in its use of functional programming to represent
architectures compactly and abstractly, and in its extensive use of types in accelerating search.

2 The HOUDINI Programming Language

HOUDINI consists of two components. The first is a typed, higher-order, functional language of
differentiable programs. The second is a learning procedure split into a symbolic module and a
neural module. Given a task specified by a set of training examples, the symbolic module enumerates
parameterized programs in the HOUDINI language. The neural module uses gradient descent to find
optimal parameters for synthesized programs; it also assesses the quality of solutions and decides
whether an adequately performant solution has been discovered.

The design of the language is based on three ideas:

• The ubiquitous use of function composition to glue together different networks.
• The use of higher-order combinators such as map and fold to uniformly represent neural archi-

tectures as well as patterns of recursion in procedural tasks.
• The use of a strong type discipline to distinguish between neural computations over different forms

of data, and to avoid generating provably incorrect programs during symbolic exploration.

Figure 1 shows the grammar for the HOUDINI language. Here, τ denotes types and e denotes
programs. Now we elaborate on the various language constructs.

Types. The “atomic” data types in HOUDINI are booleans (bool) and reals. For us, bool is
relaxed into a real value in [0, 1], which for example, allows the type system to track if a vector has
been passed through a sigmoid. Tensors over these types are also permitted. We have a distinct type
Tensor〈Atom〉[m1][m2] . . . [mk] for tensors of shape m1 × · · · ×mk whose elements have atomic
type Atom. (The dimensions m1, . . . ,mk, as well as k itself, are bounded to keep the set of types
finite.) We also have function types F1 → F2, and abstract data types (ADTs) α〈TT 〉 parameterized
by a tensor type TT . Our current implementation supports two kinds of ADTs: list〈TT 〉, lists with
elements of tensor type TT , and graph〈TT 〉, graphs whose nodes have values of tensor type TT .

Programs. The fundamental operation in HOUDINI is function composition. A composition opera-
tion can involve functions ⊕w, parameterized by weights w and implemented by neural networks,
drawn from a library L. It can also involve a set of symbolic higher-order combinators that are

3

guaranteed to preserve end-to-end differentiability and used to implement high-level network archi-
tectures. Specifically, we allow the following three families of combinators. The first two are standard
constructs for functional languages, whereas the third is introduced specifically for deep models.

• Map combinators mapα〈τ〉, for ADTs of the form α〈τ〉. Suppose e is a function. The expression
maplist〈τ〉 e is a function that, given a list [a1, . . . , ak], returns the list [e(a1), . . . , e(ak)]. The
expression mapgraphτ

e is a function that, given a graph G whose i-th node is labeled with a value
ai, returns a graph that is identical to G, but whose i-th node is labeled by e(ai).

• Left-fold combinators foldα〈τ〉. For a function e and a term z, foldlist〈τ〉 e z is the function that,
given a list [a1, . . . , ak], returns the value (e (e . . . (e (e z a1) a2) . . .) ak). To define fold over
a graph, we assume a linear order on the graph’s nodes. Given G, the function foldgraph〈τ〉 e z
returns the fold over the list [a1, . . . , ak], where ai is the value at the i-th node in this order.

• Convolution combinators convα〈τ〉. Let p > 0 be a fixed constant. For a “kernel” function e,
convlist〈τ〉 e is the function that, given a list [a1, . . . , ak], returns the list [a′1, . . . , a

′
k], where

a′i = e [ai−p, . . . , ai, . . . , ai+p]. (We define aj = a1 if j < 1, and aj = ak if j > k.) Given
a graph G, the function convgraph〈τ〉 e returns the graph G′ whose node u contains the value
e [ai1 , . . . , aim], where aij is the value stored in the j-th neighbor of u.

Every neural library function is assumed to be annotated with a type. Using programming language
techniques [30], HOUDINI assigns a type to each program e whose subexpressions use types consis-
tently (see supplementary material). If it is impossible to assign a type to e, then e is type-inconsistent.
Note that complete HOUDINI programs do not have explicit variable names. Thus, HOUDINI follows
the point-free style of functional programming [5]. This style permits highly succinct representations
of complex computations, which reduces the amount of enumeration needed during synthesis.

Figure 2: A grid of images
from the GTSRB dataset [37].
The least-cost path from the
top left to the bottom right
node is marked.

HOUDINI for deep learning. The language has several properties
that are useful for specifying deep models. First, any complete HOU-
DINI program e is differentiable in the parameters w of the neural
library functions used in e. Second, common deep architectures can be
compactly represented in our language. For example, deep feedforward
networks can be represented by ⊕1 ◦ · · · ◦ ⊕k, where each ⊕i is a neu-
ral function, and recurrent nets can be expressed as foldlist〈τ〉 ⊕ z,
where ⊕ is a neural function and z is the initial state. Graph convo-
lutional networks can be expressed as convgraph〈τ〉 ⊕. Going further,
the language can be easily extended to handle bidirectional recurrent
networks, attention mechanisms, and so on.

Example: Shortest path in a grid of images. To show how HOU-
DINI can model tasks that mix perception and procedural reasoning,

we use an example that generalizes the navigation task of Gaunt et al. [14]. Suppose we are given a
grid of images (e.g., Figure 2), whose elements represent speed limits and are connected horizontally
and vertically, but not diagonally. Passing through each node induces a penalty, which depends on
the node’s speed limit, with lower speed limits having a higher penalty. The task is to predict the
minimum cost d(u) incurred while traveling from a fixed starting point init to every other node u.

One way to compute these costs is using the Bellman-Ford shortest-path algorithm [7], whose i-th
iteration computes an estimated minimum cost di(u) of travel to each node u in the graph. The
cost estimates for the (i + 1)-th iteration are computed using a relaxation operation: di+1(u) :=
min(di(u),minv∈Adj (u) di(v) + w(v)), where w(v) is the penalty and Adj (u) the neighbors of u.
As the update to di(u) only depends on values at u and its neighbors, the relaxation step can be
represented as a graph convolution. As described in Section 4, HOUDINI is able to discover an
approximation of this program purely from data. The synthesized program uses a graph convolution,
a graph map, a neural module that processes the images of speed limits, and a neural module that
approximates the relaxation function.

3 Learning Algorithm

Now we define our learning problem. For a HOUDINI program ew parameterized by a vector w,
let e[w 7→ v] be the function for the specific parameter vector v, i.e. by substituting w by v in e.

4

Suppose we have a library L of neural functions and a training set D. As usual, we assume that D
consists of i.i.d. samples from a distribution pdata . We assume that D is properly typed, i.e., every
training instance (xi, yi) ∈ D has the same type, which is known. This means that we also know the
type τ of our target function. The goal in our learning problem is to discover a program e∗w of type
τ , and values v for w such that e∗w[w 7→ v] = argmine∈Progs(L),w∈Rn(Ex∼pdata [l(e,D, x)]), where
Progs(L) is the universe of all programs over L, and l is a suitable loss function.

Our algorithm for this task consists of a symbolic program synthesis module called GENERATE and a
gradient-based optimization module called TUNE. GENERATE repeatedly generates parameterized
programs ew and “proposes” them to TUNE. TUNE uses stochastic gradient descent to find parameter
values v for ew that lead to the optimal value of the loss function on a training set, and produces a
program e = ew[w 7→ v] with instantiated parameters. The final output of the algorithm is a program
e∗, among all programs e as above, that leads to optimal loss on a validation set.

As each program proposed by GENERATE is subjected to training, GENERATE can only afford to
propose a small number of programs, out of the vast combinatorial space of all programs. Selecting
these programs is a difficult challenge. We use and compare two strategies for this task. Now we
sketch these strategies; for more details, see the supplementary material.

• The first strategy is top-down iterative refinement, similar to the algorithm in the λ2 program
synthesizer [13]. Here, the synthesis procedure iteratively generates a series of “partial” programs
(i.e., programs with missing code) over the library L, starting with an “empty” program and ending
with a complete program. A type inference procedure is used to rule out any partial program that is
not type-safe. A cost heuristic is used to generate programs in an order of structural simplicity.
Concretely, shorter programs are evaluated first.

• The second method is an evolutionary algorithm inspired by work on functional genetic program-
ming [9]. Here, we use selection, crossover, and mutation operators to evolve a population of
programs over L. Types play a key role: all programs in the population are ensured to be type-safe,
and mutation and crossover only replace a subterm in a program with terms of the same type.

In both cases, the use of types vastly reduces the amount of search that is needed, as the number of
type-safe programs of a given size is a small fraction of the number of programs of that size. See
Section 4 for an experimental confirmation.

Lifelong Learning. A lifelong learning setting is a sequence of related tasks D1,D2, . . ., where
each task Di has its own training and validation set. Here, the learner is called repeatedly, once for
each task Di using a neural library Li, returning a best-performing program e∗i with parameters v∗i .

We implement transfer learning simply by adding new modules to the neural library after each call
to the learner. We add all neural functions from e∗i back into the library, freezing their parameters.
More formally, let ⊕i1 . . .⊕iK be the neural library functions which are called anywhere in e∗i . Each
library function ⊕ik has parameters wik, set to the value v∗ik by TUNE. The library for the next task
is then Li+1 = Li ∪ {⊕ik[wik 7→ v∗ik]}. This process ensures that the parameter vectors of ⊕ik are
frozen and can no longer be updated by subsequent tasks. Thus, we prevent catastrophic forgetting
by design. Importantly, it is always possible for the synthesizer to introduce “fresh networks” whose
parameters have not been pretrained. This is because the library always monotonically increases over
time, so that an original neural library function with untrained parameters is still available.

This approach has the important implication that the set of neural library functions that the synthesizer
uses is not fixed, but continually evolving. Because both trained and untrained versions of the library
functions are available, this can be seen to permit selective transfer, meaning that depending on which
version of the library function GENERATE chooses, the learner has the option of using or not using
previously learned knowledge in a new task. This fact allows HOUDINI to avoid negative transfer.

4 Evaluation

Our evaluation studies four questions. First, we ask whether HOUDINI can learn nontrivial differen-
tiable programs that combine perception and algorithmic reasoning. Second, we study if HOUDINI
can transfer perceptual and algorithmic knowledge during lifelong learning. We study three forms of
transfer: low-level transfer of perceptual concepts across domains, high-level transfer of algorithmic
concepts, and selective transfer where the learning method decides on which known concepts to

5

Individual tasks
recognize digit(d): Binary
classification of whether image
contains a digit d ∈ {0 . . . 9}
classify digit: Classify a digit into
digit categories (0− 9)

recognize toy(t): Binary
classification of whether an image
contains a toy t ∈ {0 . . . 4}
regress speed: Return the speed value
and a maximum distance constant
from an image of a speed limit sign.
regress mnist: Return the value and a
maximum distance constant from a
digit image from MNIST dataset.
count digit(d): Given a list of images,
count the number of images of digit d
count toy(t): Given a list of images,
count the number of images of toy t
sum digits: Given a list of digit
images, compute the sum of the
digits.
shortest path street: Given a grid of
images of speed limit signs, find the
shortest distances to all other nodes
shortest path mnist: Given a grid of
MNIST images, and a source node,
find the shortest distances to all other
nodes in the grid.

Task Sequences
Counting
CS1: Evaluate low-level transfer.
Task 1: recognize digit(d1); Task 2: recognize digit(d2); Task 3:
count digit(d1); Task 4: count digit(d2)
CS2: Evaluate high-level transfer, and learning of perceptual tasks from
higher-level supervision.
Task 1: recognize digit(d1); Task 2: count digit(d1); Task 3:
count digit(d2); Task 4: recognize digit(d2)
CS3: Evaluate high-level transfer of counting across different image
domains.
Task 1: recognize digit(d); Task 2: count digit(d); Task 3: count toy(t);
Task 4: recognize toy(t)

Summing
SS: Demonstrate low-level transfer of a multi-class classifier as well as
the advantage of functional methods like foldl in specific situations.
Task 1: classify digit; Task 2: sum digits

Single-Source Shortest Path
GS1: Learning of complex algorithms.
Task 1: regress speed; Task 2: shortest path street
GS2: High-level transfer of complex algorithms.
Task 1: regress mnist; Task 2: shortest path mnist; Task 3:
shortest path street
Long sequence LS.
Task 1:count digit(d1); Task 2: count toy(t1); Task 3: recognize toy(t2);
Task 4: recognize digit(d2); Task 5: count toy(t3); Task 6:
count digit(d3); Task 7: count toy(t4); Task 8: recognize digit(d4); Task
9: count digit(d5)

Figure 3: Tasks and task sequences.

reuse. Third, we study the value of our type-directed approach to synthesis. Fourth, we compare the
performance of the top-down and evolutionary synthesis algorithms.

Task Sequences. Each lifelong learning setting is a sequence of individual learning tasks. The full
list of tasks is shown in Figure 3. These tasks include object recognition tasks over three data sets:
MNIST [21], NORB [22], and the GTSRB data set of images of traffic signs [37]. In addition, we
have three algorithmic tasks: counting the number of instances of images of a certain class in a list of
images; summing a list of images of digits; and the shortest path computation described in Section 2.

We combine these tasks into seven sequences. Three of these (CS1, SS, GS1) involve low-level
transfer, in which earlier tasks are perceptual tasks like recognizing digits, while later tasks introduce
higher-level algorithmic problems. Three other task sequences (CS2, CS3, GS2) involve higher-level
transfer, in which earlier tasks introduce a high-level concept, while later tasks require a learner
to re-use this concept on different perceptual inputs. For example, in CS2, once count digit(d1) is
learned for counting digits of class d1, the synthesizer can learn to reuse this counting network on a
new digit class d2, even if the learning system has never seen d2 before. The graph task sequence GS1
also demonstrates that the graph convolution combinator in HOUDINI allows learning of complex
graph algorithms and GS2 tests if high-level transfer can be performed with this more complex task.
Finally, we include a task sequence LS that is designed to evaluate our method on a task sequence
that is both longer and that lacks a favourable curriculum. The sequence LS was initially randomly
generated, and then slightly amended in order to evaluate all lifelong learning concepts discussed.

Experimental setup. We allow three kinds of neural library modules: multi-layer perceptrons
(MLPs), convolutional neural networks (CNNs) and recurrent neural networks (RNNs). We use two
symbolic synthesis strategies: top-down refinement and evolutionary. We use three types of baselines:
(1) standalone networks, which do not do transfer learning, but simply train a new network (an RNN)
for each task in the sequence, starting from random weights; (2) a traditional neural approach to
low-level transfer (LLT) that transfers all weights learned in the previous task, except for the output
layer that is kept task-specific; and (3) a version of the progressive neural networks (PNNs) [32]

6

Task Top 3 programs RMSE
Task 1: regress mnist 1. nn gs2 1 ◦ nn gs2 2 1.47

Task 2:
shortest path mnist

1. (conv g10 (nn gs2 3)) ◦ (map g (lib.nn gs2 1 ◦ lib.nn gs2 2)) 1.57
2. (conv g9 (nn gs2 4)) ◦ (map g (lib.nn gs2 1 ◦ lib.nn gs2 2)) 1.72
3. (conv g9 (nn gs2 5)) ◦ (map g (nn gs2 6 ◦ nn gs2 7)) 4.99

Task 3:
shortest path street

1. (conv g10(lib.nn gs2 3)) ◦ (map g (nn gs2 8 ◦ nn gs2 9)) 3.48
2. (conv g9(lib.nn gs2 3)) ◦ (map g (nn gs2 10 ◦ nn gs2 11)) 3.84
3. (conv g10(lib.nn gs2 3)) ◦ (map g (lib.nn gs2 1 ◦ lib.nn gs2 2)) 6.91

Figure 4: Top 3 synthesized programs on Graph Sequence 2 (GS2). map g denotes a graph map (of
the appropriate type); conv gi denotes i repeated applications of a graph convolution combinator.

approach, which retains a pool of pretrained models during training and learns lateral connections
among these models. Experiments were performed using a single-threaded implementation on a
Linux system, with 8-core Intel E5-2620 v4 2.10GHz CPUs and TITAN X (Pascal) GPUs.

The architecture chosen for the standalone and LLT baselines composes an MLP, an RNN, and a
CNN, and matches the structure of a high-performing program returned by HOUDINI, to enable
an apples-to-apples comparison. In PNNs, every task in a sequence is associated with a network
with the above architecture; lateral connections between these networks are learned. Each sequence
involving digit classes d and toy classes t was instantiated five times for random values of d and t,
and the results shown are averaged over these instantiations. In the graph sequences, we ran the same
sequences with different random seeds, and shared the regressors learned for the first tasks across the
competing methods for a more reliable comparison. We do not compare against PNNs in this case, as
it is nontrivial to extend them to work with graphs. We evaluate the competing approaches on 2%,
10%, 20%, 50% and 100% of the training data for all but the graph sequences, where we evaluate
only on 100%. For classification tasks, we report error, while for the regression tasks — counting,
summing, regress speed and shortest path — we report root mean-squared error (RMSE).

Results: Synthesized programs. HOUDINI successfully synthesizes programs for each of the tasks
in Figure 3 within at most 22 minutes. We list in Figure 4 the top 3 programs for each task in the graph
sequence GS2, and the corresponding RMSEs. Here, function names with prefix “nn ” denote fresh
neural modules trained during the corresponding tasks. Terms with prefix “lib.” denote pretrained
neural modules selected from the library. The synthesis times for Task 1, Task 2, and Task 3 are 0.35s,
1061s, and 1337s, respectively.

As an illustration, consider the top program for Task 3: (conv g10 lib.nn gs2 3) ◦
(map g (nn gs2 8 ◦ nn gs2 9)). Here, map g takes as argument a function for processing the
images of speed limits. Applied to the input graph, the map returns a graphG in which each node con-
tains a number associated with its corresponding image and information about the least cost of travel
to the node. The kernel for the graph convolution combinator conv g is a function lib.nn gs2 3,
originally learned in Task 2, that implements the relaxation operation used in shortest-path algorithms.
The convolution is applied repeatedly, just like in the Bellman-Ford shortest path algorithm.

In the SS sequence, the top program for Task 2 is: (fold l nn ss 3 zeros(1)) ◦ map l(nn ss 4 ◦
lib.nn ss 2). Here, fold l denotes the fold operator applied to lists, and zeros(dim) is a function
that returns a zero tensor of appropriate dimension. The program uses a map to apply a previously
learned CNN feature extractor (lib.nn ss 2) and a learned transformation of said features into a 2D
hidden state, to all images in the input list. It then uses fold with another function (nn ss 3) to give
the final sum. Our results, presented in the supplementary material, show that this program greatly
outperforms the baselines, even in the setting where all of the training data is available. We believe
that this is because the synthesizer has selected a program with fewer parameters than the baseline
RNN. In the results for the counting sequences (CS) and the long sequence (LS), the number of
evaluated programs is restricted to 20, therefore fold l is not used within the synthesized programs.
This allows us to evaluate the advantage of HOUDINI brought by its transfer capabilities, rather than
its rich language.

Results: Transfer. First we evaluate the performance of the methods on the counting sequences
(Figure 5). For space, we omit early tasks where, by design, there is no opportunity for transfer; for
these results, see the Appendix. In all cases where there is an opportunity to transfer from previous
tasks, we see that HOUDINI has much lower error than any of the other transfer learning methods.
The actual programs generated by HOUDINI are listed in the Appendix.

7

Low-level transfer (CS1) High-level transfer (CS2) High-level transfer
across domains (CS3)

(a) CS1 Task 3: count digit(d1) (b) CS2 Task 3: count digit(d2) (c) CS3 Task 3: count toy(t1)

(d) CS1 Task 4: count digit(d2) (e) CS2 Task 4: recognize digit(d2) (f) CS3 Task 4: recognize toy(t1)

Figure 5: Lifelong “learning to count” (Sequences CS1 – CS3), demonstrating both low-level
transfer of perceptual concepts and high-level transfer of a counting network. HOUDINI-TD and
HOUDINI-EVOL are HOUDINI with the top-down and evolutionary synthesizers, respectively.

Task sequence CS1 evaluates the method’s ability to selectively perform low-level transfer of a
perceptual concept across higher level tasks. The first task that provides a transfer opportunity is
CS1 task 3 (Figure 5a). There are two potential lower-level tasks that the methods could transfer
from: recognize digit(d1) and recognize digit(d2). HOUDINI learns programs composed of neural
modules nn cs1 1, nn cs1 2, nn cs1 3, and nn cs1 4 for these two tasks. During training for the
count digit(d1) task, all the previously learned neural modules are available in the library. The
learner, however, picks the correct module (nn cs1 2) for reuse, learning the program “nn cs1 7 ◦
(map l (nn cs1 8 ◦ lib.nn cs1 2))” where nn cs1 7 and nn cs1 8 are fresh neural modules, and
map l stands for a list map combinator of appropriate type. The low-level transfer baseline cannot
select which of the previous tasks to re-use, and so suffers worse performance.

Task sequence CS2 provides an opportunity to transfer the higher-level concepts of counting, across
different digit classification tasks. Here CS2 task 3 (Figure 5b) is the task that provides the first
opportunity for transfer. We see that HOUDINI is able to learn much faster on this task because
it is able to reuse a network which has learned from the previous counting task. Task sequence
CS3 examines whether the methods can demonstrate high-level transfer when the input image
domains are very different, from the MNIST domain to the NORB domain of toy images. We see in
Figure 5c that the higher-level network still successfully transfers across tasks, learning an effective
network for counting the number of toys of type t1, even though the network has not previously
seen any toy images at all. What is more, it can be seen that because of the high-level transfer,
HOUDINI has learned a modular solution to this problem. From the subsequent performance on a
standalone toy classification task (Figure 5f), we see that CS3 task 3 has already caused the network
to induce a re-usable classifier on toys. Overall, it can be seen that HOUDINI outperforms all the
baselines even under the limited data setting, confirming the successful selective transfer of both
low-level and high-level perceptual information. Similar results can be seen on the summing task
(see supplementary material). Moreover, on the longer task sequence LS, we also find that HOUDINI
performs significantly better on the tasks in the sequence where there is an opportunity for transfer,
and performs comparably the baselines on the other tasks (see supplementary material). Furthermore,
on the summing sequence, our results also show low level transfer.

Finally, for the graph-based tasks (Table 2), we see that the graph convolutional program learned by
HOUDINI on the graph tasks has significantly less error than a simple sequence model, a standalone

8

Task Number of programs
size = 4 size = 5 size = 6

No types

Task 1 8182 110372 1318972
Task 2 12333 179049 2278113
Task 3 17834 278318 3727358
Task 4 24182 422619 6474938

+ Types

Task 1 2 20 44
Task 2 5 37 67
Task 3 9 47 158
Task 4 9 51 175

Table 1: Effect of the type system on the number of
programs considered in the symbolic search for task
sequence CS1.

Task 1 Task 2
RNN w llt 0.75 5.58
standalone 0.75 4.96
HOUDINI 0.75 1.77

HOUDINI EA 0.75 8.32
low-level-transfer 0.75 1.98

(a) Low-level transfer (llt) (task sequence GS1).

Task 1 Task 2 Task 3
RNN w llt 1.44 5.00 6.05
standalone 1.44 6.49 7.
HOUDINI 1.44 1.50 3.31

HOUDINI EA 1.44 6.67 7.88
low-level-transfer 1.44 1.76 2.08

(b) High-level transfer (task sequence GS2).

Table 2: Lifelong learning on graphs. Col 1:
RMSE on speed/distance from image. Cols 2,
3: RMSE on shortest path (mnist, street).

baseline and the evolutionary-algorithm-based version of HOUDINI. As explained earlier, in the
shortest path street task in the graph sequence GS2, HOUDINI learns a program that uses newly
learned regress functions for the street signs, along with a “relaxation” function already learned
from the earlier task shortest path mnist. In Table 2, we see this program performs well, suggesting
that a domain-general relaxation operation is being learned. Our approach also outperforms the
low-level-transfer baseline, except on the shortest path street task in GS2. We are unable to compare
directly to NTPT because no public implementation is available. However, our graph task is a more
difficult version of a task from [14], who report on their shortest-path task “2% of random restarts
successfully converge to a program that generalizes” (see their supplementary material).

Results: Typed vs. untyped synthesis. To assess the impact of our type system, we count the
programs that GENERATE produces with and without a type system (we pick the top-down imple-
mentation for this test, but the results also apply to the evolutionary synthesizer). Let the size of a
program be the number of occurrences of library functions and combinators in the program. Table 1
shows the number of programs of different sizes generated for the tasks in the sequence CS1. Since
the typical program size in our sequences is less than 6, we vary the target program size from 4 to 6.
When the type system is disabled, the only constraint that GENERATE has while composing programs
is the arity of the library functions. We note that this constraint fails to bring down the number of
candidate programs to a manageable size. With the type system, however, GENERATE produces far
fewer candidate programs. For reference, neural architecture search often considers thousands of
potential architectures for a single task [24].

Results: Top-Down vs. Evolutionary Synthesis. Overall, the top-down implementation of GEN-
ERATE outperformed the evolutionary implementation. In some tasks, the two strategies performed
similarly. However, the evolutionary strategy has high variance; indeed, in many runs of the task
sequences, it times out without finding a solution. The timed out runs are not included in the plots.

5 Conclusion

We have presented HOUDINI, the first neurosymbolic approach to the synthesis of differentiable
functional programs. Deep networks can be naturally specified as differentiable programs, and
functional programs can compactly represent popular deep architectures [26]. Therefore, symbolic
search through a space of differentiable functional programs is particularly appealing, because it
can at the same time select both which pretrained neural library functions should be reused, and
also what deep architecture should be used to combine them. On several lifelong learning tasks that
combine perceptual and algorithmic reasoning, we showed that HOUDINI can accelerate learning by
transferring high-level concepts.

Acknowledgements. This work was partially supported by DARPA MUSE award #FA8750-14-2-
0270 and NSF award #CCF-1704883.

9

References

[1] Houdini code repository. https://github.com/capergroup/houdini.

[2] Miltiadis Allamanis, Pankajan Chanthirasegaran, Pushmeet Kohli, and Charles Sutton. Learning
continuous semantic representations of symbolic expressions. In International Conference on
Machine Learning (ICML), 2017.

[3] Rajeev Alur, Rastislav Bodı́k, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman,
Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa.
Syntax-guided synthesis. In Formal Methods in Computer-Aided Design, FMCAD, pages 1–17,
2013.

[4] Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
39–48, 2016.

[5] John Backus. Can programming be liberated from the von Neumann style?: A functional style
and its algebra of programs. Commun. ACM, 21(8):613–641, August 1978.

[6] Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow.
Deepcoder: Learning to write programs. In International Conference on Learning Representa-
tions (ICLR), 2017. arXiv:1611.01989.

[7] Richard Bellman. On a routing problem. Quarterly of Applied Mathematics, 16(1):87–90, 1958.

[8] Matko Bosnjak, Tim Rocktäschel, Jason Naradowsky, and Sebastian Riedel. Programming with
a differentiable Forth interpreter. In International Conference on Machine Learning (ICML),
pages 547–556, 2017.

[9] Forrest Briggs and Melissa O’Neill. Functional genetic programming with combinators. In
Proceedings of the Third Asian-Pacific Workshop on Genetic Programming (ASPGP), pages
110–127, 2006.

[10] Rudy R. Bunel, Alban Desmaison, Pawan Kumar Mudigonda, Pushmeet Kohli, and Philip H. S.
Torr. Adaptive neural compilation. In Advances in Neural Information Processing Systems 29,
pages 1444–1452, 2016.

[11] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed,
and Pushmeet Kohli. Robustfill: Neural program learning under noisy I/O. In International
Conference on Machine Learning (ICML), 2017.

[12] Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Joshua B. Tenenbaum. Learning to
infer graphics programs from hand-drawn images. CoRR, abs/1707.09627, 2017.

[13] John K. Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing data structure transformations
from input-output examples. In ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 229–239, 2015.

[14] Alexander L. Gaunt, Marc Brockschmidt, Nate Kushman, and Daniel Tarlow. Differentiable
programs with neural libraries. In International Conference on Machine Learning (ICML),
pages 1213–1222, 2017.

[15] Alexander L. Gaunt, Marc Brockschmidt, Rishabh Singh, Nate Kushman, Pushmeet Kohli,
Jonathan Taylor, and Daniel Tarlow. Terpret: A probabilistic programming language for program
induction. CoRR, abs/1608.04428, 2016.

[16] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program synthesis. Foundations and
Trends in Programming Languages, 4(1-2):1–119, 2017.

[17] Ronghang Hu, Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Kate Saenko. Learning to
reason: End-to-end module networks for visual question answering. In International Conference
on Computer Vision (ICCV), 2017. CoRR, abs/1704.05526.

[18] Ashwin Kalyan, Abhishek Mohta, Oleksandr Polozov, Dhruv Batra, Prateek Jain, and Sumit
Gulwani. Neural-guided deductive search for real-time program synthesis from examples. In
International Conference on Learning Representations (ICLR), 2018.

[19] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations (ICLR), 2017.

10

[20] Vu Le and Sumit Gulwani. FlashExtract: A framework for data extraction by examples. In
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI),
pages 542–553, 2014.

[21] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[22] Yann LeCun, Fu Jie Huang, and Leon Bottou. Learning methods for generic object recognition
with invariance to pose and lighting. In Computer Vision and Pattern Recognition (CVPR),
2004.

[23] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. In International Conference on Learning Representations (ICLR), 2016.

[24] Chenxi Liu, Barret Zoph, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan
Huang, and Kevin Murphy. Progressive neural architecture search. In European Conference on
Computer Vision (ECCV), 2018. arXiv:1712.00559.

[25] Dougal Maclaurin, David Duvenaud, Matthew Johnson, and Ryan P. Adams. Autograd: Reverse-
mode differentiation of native Python, 2015.

[26] Christopher Olah. Neural networks, types, and functional programming, 2015. http://colah.
github.io/posts/2015-09-NN-Types-FP/.

[27] Peter-Michael Osera and Steve Zdancewic. Type-and-example-directed program synthesis. In
PLDI, volume 50, pages 619–630. ACM, 2015.

[28] Emilio Parisotto, Abdel rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and
Pushmeet Kohli. Neuro-symbolic program synthesis. In International Conference on Learning
Representations (ICLR), 2016.

[29] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

[30] Benjamin C. Pierce. Types and programming languages. MIT Press, 2002.

[31] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan,
Quoc V. Le, and Alexey Kurakin. Large-scale evolution of image classifiers. In International
Conference on Machine Learning (ICML), 2017.

[32] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv
preprint arXiv:1606.04671, 2016.

[33] Jonathan Schwarz, Jelena Luketina, Wojciech M. Czarnecki, Agnieszka Grabska-Barwinska,
Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework
for continual learning. In International Conference on Machine Learning (ICML), 2018.

[34] Asim Shankar and Wolff Dobson. Eager execution: An imperative, define-
by-run interface to tensorflow. https://research.googleblog.com/2017/
10/eager-execution-imperative-define-by.html, 2017.

[35] Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Manning, Andrew Y
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a
sentiment treebank. In EMNLP, 2013.

[36] Armando Solar-Lezama. Program sketching. STTT, 15(5-6):475–495, 2013.

[37] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. Man vs. computer: Benchmarking machine
learning algorithms for traffic sign recognition. Neural Networks, (0), 2012.

[38] Sebastian Thrun and Tom M. Mitchell. Lifelong robot learning. Robotics and Autonomous
Systems, 15(1-2):25–46, 1995.

[39] Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton. Chainer: a next-generation open
source framework for deep learning. In Proceedings of NIPS Workshop on Machine Learning
Systems (LearningSys), 2015.

[40] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in
deep neural networks? In Advances in Neural Information Processing Systems 27 (NIPS), 2014.

11

[41] Zhao Zhong, Junjie Yan, and Cheng-Lin Liu. Practical network blocks design with q-learning.
CoRR, abs/1708.05552, 2017.

[42] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In
International Conference on Learning Representations (ICLR), 2017.

12

Supplementary material for HOUDINI: Lifelong
Learning as Program Synthesis

Lazar Valkov
University of Edinburgh
L.Valkov@sms.ed.ac.uk

Dipak Chaudhari
Rice University

dipakc@rice.edu

Akash Srivastava
University of Edinburgh

Akash.Srivastava@ed.ac.uk

Charles Sutton
University of Edinburgh,

The Alan Turing Institute, and Google Brain
charlessutton@google.com

Swarat Chaudhuri
Rice University
swarat@rice.edu

A Assigning Types to HOUDINI Programs

A program e in HOUDINI is assigned a type using the following rules:

• e = e′ ◦ e′′ is assigned a type iff e′ has type ττ ′ and e′′ has type τ ′τ ′′. In this case, e has type ττ ′′.
• e =ατ e′ is assigned a type iff e′ has the type ττ ′. In this case, the type of e is ατατ ′.
• e =ατ e′ z is assigned a type iff e′ has the type τ ′(ττ ′) and z has the type τ ′. In this case, e has

type αττ ′.
• e =ατ e′ is assigned a type iff e′ has the type listττ ′. In this case, e has type ατατ ′.

If it is not possible to assign a type to the program e, then it is considered type-inconsistent and
excluded from the scope of synthesis.

B Symbolic Program Synthesis

In this appendix we provide implementation details of our synthesis algorithms.

B.1 Synthesis Using Top-down Iterative Refinement

Now we give more details on the implementation of based on iterative refinement. To explain this
algorithm, we need to define a notion of a partial program. The grammar for partial programs e
is obtained by augmenting the HOUDINI grammar (Figure ??) with an additional rule: e ::= τ .
The form τ represents a hole, standing for missing code. A program with holes has no operational
meaning; however, we do have a type system for such programs. This type system follows the rules in
Appendix A, but in addition, axiomatically assumes any subterm τ to be of type τ . A partial program
that cannot be assigned a type is automatically excluded from the scope of synthesis.

Now, the initial input to the algorithm is the type τ of the function we want to learn. The procedure
proceeds iteratively, maintaining a priority queue Q of synthesis subtasks of the form (e, f), where e
is a type-safe partial or complete program of type τ , and f is either a hole of type τ ′ in e, or a special
symbol ⊥ indicating that e is complete (i.e., free of holes). The interpretation of such a task is to find
a replacement e′ of type τ ′ for the hole f such that the program e′′ obtained by substituting f by e′ is
complete. (Because e is type-safe by construction, e′′ is of type τ .) The queue is sorted according to
a heuristic cost function that prioritizes simpler programs.

Initially, Q has a single element (e, f), where e is an “empty” program of form τ , and f is a reference
to the hole in e. The procedure iteratively processes subtasks in the queue Q, selecting a task (e, f)

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

in the beginning of each iteration. If the program e is complete, it is sent to the neural module for
parameter learning. Otherwise, the algorithm expands the program e by proposing a partial program
that fills the hole f . To do this, the algorithm selects a production rule for partial programs from the
grammar for partial programs. Suppose the right hand side of this rule is α. The algorithm constructs
an expression e′ from α by replacing each nonterminal in α by a hole with the same type as the
nonterminal. If e′ is not of the same type as f , it is automatically rejected. Otherwise, the algorithm
constructs the program e′′ = e[f 7→ e′]. For each hole f ′ in e′′, the algorithm adds to Q a new task
(e′′, f ′). If e′′ has no hole, it adds to Q a task (e′′,⊥).

B.2 Evolutionary Synthesis

The evolutionary synthesis algorithm is an iterative procedure that maintains a population of programs.
The population is initialized with a set of randomly generated type-safe parameterized programs.
Each iteration of the algorithm performs the following steps.

1. Each program in the population is sent to the neural module , which computes a fitness score
(the loss under optimal parameters) for the program.

2. We perform random proportional selection, in which a subset of the (parameterized) pro-
grams are retained, while the other programs are filtered out. Programs with higher fitness
are more likely to remain in the population.

3. We perform a series of crossover operations, each of which draws a random pair of programs
from the population and swaps a pair of randomly drawn subterms of the same type in these
programs.

4. We perform a series of mutation operations, each of which randomly chooses a program and
replaces a random subterm the program with a new subterm of the same type.

Because the crossover and mutation operations only replace terms with other terms of the same type,
the programs in the population are always guaranteed to be type-consistent. This fact is key to the
performance of the algorithm.

C Details of Experimental Setup

The initial library models, which have trainable weights, have the following architecture. MLP
modules have one hidden layer of size 1024, followed by batch normalization and dropout, followed
by an output layer. CNNs have two convolutional layers with 32 and 64 output channels respectively,
each with a 5x5 kernel, stride 1 and 0 padding, and each followed by max pooling, followed by spatial
dropout. RNN modules are long short-term memory (LSTM) networks with a hidden dimension of
100, followed by an output layer, which transforms the last hidden state. For a given task, we use the
input and output types of the new function to decide between MLP, CNN, or RNN, and also deduce
the output activation function.

The standalone baseline for counting uses an architecture of the form λx.RNN((MLP ◦ CNN(x))),
which is intuitively appropriate for the task, and also matches the shape of some programs commonly
returned by HOUDINI. As for the shortest path sequences, the first task for GS1 and GS2 is regression,
which we train using a network with architecture MLP ◦CNN, in which the last layer is linear. In the
RNN baseline for the other tasks in the graph sequences, we map a learned MLP ◦ CNN regression
module to each image in the grid. Afterwards, we linearize the grid row-wise, converting it into a list,
and then we process it using an LSTM (RNN) with hidden state of size 100. The number was chosen
so that both our implementation and the baseline have almost the same number of parameters.

For multi-class classification (Sequence SS - Task 1) and regression (GS1 - Task1, GS2 - Task 1), we
used all training images available. For the rest of the tasks in GS1, GS2, GS3 and SS, we use 12000
data points for training, with 2100 for testing. The list lengths for training are [2, 3, 4, 5], and [6,
7, 8] for testing in order to evaluate the generalization to longer sequences. We train for 20 epochs
on all list-related tasks and for 1000 epochs for the regression tasks. The training datasets for the
graph shortest path tasks (GS1 - Task 2; GS2 - Task2, GS2 - Task3) consists of 70,000 3x3 grids and
1,000,000 4x4 grids, while the testing datasets consists of 10,000 5x5 grids. The number of epochs
for these tasks is 5. In GS2 - Task3, the low-level transfer baseline reuses the regression function
learned in GS2 - Task1, thus, the image dimensions from MNIST and the colored GTSRB need to

2

match. Therefore, we expanded the MNIST digit images, used for the graph sequences GS1 and GS2,
to 28x28x3 dimensionality and resized the images from GTSRB from 32x32x3 to 28x28x3.

For all experiments, we use early stopping, reporting the the test error at the epoch where the
validation error was minimized.

D Programs Discovered in Experiments

Tables 1-22 list the top 3 programs and the corresponding classification errors/RMSEs, on a test
dataset, for most of our task sequences. The programs are ordered by their performance on a validaiton
dataset. Finally, the presented programs are the ones evaluated for all (100%) of the training dataset.
Here we use the syntax to denote function composition. Program terms with prefix “nn ” denote
neural modules trained during the corresponding tasks whereas terms with prefix “lib.” denote already
trained neural modules in the library. For example, in Counting Sequence 1 (Table 1), “nn cs1 1”
is the neural module trained during Task 1 (recognize digit(d1)). After completion of this task, the
neural module is added to the library and is available for use during the subsequent tasks. For example,
the top performing program for Task 3 (count digit(d1)) uses the neural module “lib.nn cs1 1” from
the library (and a freshly trained neural module “nn cs1 5”) to construct a program for the counting
task.

E Summing Experiment

In this section we present the result from task sequence SS in Figure 3 of the main paper. This
sequence was designed to demonstrate low-level transfer of a multi-class classifier as well as the
advantage of functional methods like foldl in specific situations. The first task of the sequence is
a simple MNIST classifier, on which all competing methods do equally well. The second task is a
regression task, to learn to sum all of the digits in the sequence. The standalone method, low level
transfer one and the progressive neural networks all perform equally poorly (note that their lines are
overplotted in the Figure), but the synthesized program from HOUDINI is able to learn this function
easily because it is able to use a foldl operation. We also add a new baseline ”standalone with fold”,
which reuses the program found by HOUDINI, but trains the parameter from a random initialization.

(a) Task 2: Sum digits

Figure 1: Lifelong learning for “learning to sum” (Sequence SS).

F Full Experimental Results on Counting Tasks

In the paper, we present results for the counting sequences on for the later tasks, in which transfer
learning is possible. For completeness, in this section we present results on all of the tasks in the
sequences. See Figures 2–4. We note that for the early tasks in each task sequence (e.g. CS1 tasks 1
and 2), there is little relevant information that can be transferred from early tasks, so as expected all
methods perform similarly; e.g., the output of HOUDINI is a single library function.

3

Table 1: Counting Sequence 1(CS1). “CE” denotes classification error and “RMSE” denotes root
mean square error.

Task Top 3 programs Error
Task 1: recognize digit(d1) 1. (nn cs1 1, nn cs1 2) 1% CE

Task 2: recognize digit(d2)
1. (nn cs1 3, nn cs1 4) 1% CE
2. (nn cs1 5, lib.nn cs1 2) 1% CE
3. (lib.nn cs1 1, nn cs1 6) 1% CE

Task 3: count digit(d1)
1. (nn cs1 7, ((nn cs1 8, lib.nn cs1 2))) 0.38 RMSE
2. ((nn cs1 9, (nn cs1 10)), (nn cs1 11)) 0.38 RMSE
3. (nn cs1 12, ((nn cs1 13), (lib.nn cs1 2))) 0.40 RMSE

Task 4: count digit(d2)
1. (nn cs1 14, ((lib.nn cs1 1), (nn cs1 15))) 0.32 RMSE
2. (lib.nn cs1 7, ((nn cs1 16, lib.nn cs1 4))) 0.37 RMSE
3. (lib.nn cs1 7, ((nn cs1 17), (lib.nn cs1 4))) 0.37 RMSE

Table 2: Counting Sequence 2(CS2)

Task Top 3 programs Error
Task 1: recognize digit(d1) 1. (nn cs2 1, nn cs2 2) 1% CE

Task 2: count digit(d1) 1. (nn cs2 3, ((nn cs2 4), (nn cs2 5))) 0.35 RMSE
2. (nn cs2 6, ((nn cs2 7, nn cs2 8))) 0.40 RMSE
3. ((nn cs2 9, (nn cs2 10)), (nn cs2 11)) 0.41 RMSE

Task 3: count digit(d2)
1. (lib.nn cs2 3, ((nn cs2 12), (lib.nn cs2 2))) 0.34 RMSE
2. (lib.nn cs2 3, ((nn cs2 13, lib.nn cs2 2))) 0.33 RMSE
3. (lib.nn cs2 3, ((nn cs2 14), (nn cs2 15))) 0.33 RMSE

Task 4: recognize digit(d2)
1. (nn cs2 16, nn cs2 17) 1% CE
2. (nn cs2 18, lib.nn cs2 2) 1% CE
3. (lib.nn cs2 12, lib.nn cs2 2) 1% CE

Table 3: Counting Sequence 3(CS3)

Task Top 3 Programs Error
Task 1: recognize digit(d) 1. (nn cs3 1, nn cs3 2) 1% CE

Task 2: count digit(d) 1. (nn cs3 3, ((nn cs3 4, nn cs3 5))) 0.40 RMSE
2. (nn cs3 6, ((nn cs3 7, lib.nn cs3 2))) 0.40 RMSE
3. (nn cs3 8, ((nn cs3 9), (lib.nn cs3 2))) 0.41 RMSE

Task 3: count toy(t)
1. (lib.nn cs3 3, ((nn cs3 10), (nn cs3 11))) -0.73
2. (lib.nn cs3 3, ((nn cs3 12, nn cs3 13))) 0.67 RMSE
3. (lib.nn cs3 3, ((lib.nn cs3 1), (nn cs3 14))) 0.96 RMSE

Task 4: recognize toy(t)
1. (nn cs3 15, lib.nn cs3 11) 7% CE
2. (nn cs3 16, nn cs3 17) 5% CE
3. (lib.nn cs3 10, lib.nn cs3 11) 6% CE

Table 4: Summing Sequence(SS)

Task Top 3 programs Error
Task 1: classify digit 1. (nn ss 1, nn ss 2) 1% CE

Task 2: sum digits 1. ((nn ss 3 zeros(1)), ((nn ss 4, lib.nn ss 2))) 2.15 RMSE
2. ((nn ss 5 zeros(1)), ((nn ss 6, nn ss 7))) 2.58 RMSE
3. ((nn ss 8 zeros(1)), ((lib.nn ss 1, lib.nn ss 2))) 4.30 RMSE

Table 5: Graph Sequence 1(GS1)

Task Top 3 Programs Error
Task 1: regress speed 1. (nn gs1 1, nn gs1 2) 0.64 RMSE

Task 2: shortest path street
1. (10(nn gs1 3), ((lib.nn gs1 1, lib.nn gs1 2))) 1.88 RMSE
2. (9(nn gs1 4), ((lib.nn gs1 1, lib.nn gs1 2))) 2.02 RMSE
3. (10(nn gs1 5), ((nn gs1 6, nn gs1 7))) 6.76 RMSE

Table 6: Graph Sequence 2(GS2)

Task Top 3 Programs Error
Task 1: regress mnist 1. (nn gs2 1, nn gs2 2) 1.47 RMSE

Task 2: shortest path mnist
1. (10(nn gs2 3), ((lib.nn gs2 1, lib.nn gs2 2))) 1.57 RMSE
2. (9(nn gs2 4), ((lib.nn gs2 1, lib.nn gs2 2))) 1.73 RMSE
3. (9(nn gs2 5), ((nn gs2 6, nn gs2 7))) 4.99 RMSE

Task 3: shortest path street
1. (10(lib.nn gs2 3), ((nn gs2 8, nn gs2 9))) 3.48 RMSE
2. (9(lib.nn gs2 3), ((nn gs2 10, nn gs2 11))) 3.84 RMSE
3. (10(lib.nn gs2 3), ((lib.nn gs2 1, lib.nn gs2 2))) 6.92 RMSE

4

Table 7: Long Sequence 1(LS1).

Task Top 3 Programs Error

Task 1: count digit(7)
1. ((nn ls1 1, (nn ls1 2)), (nn ls1 3)) 0.46 RMSE
2. (nn ls1 4, ((nn ls1 5, nn ls1 6))) 0.49 RMSE
3. (nn ls1 7, ((nn ls1 8), (nn ls1 9))) 0.51 RMSE

Task 2: count digit(4)
1. (lib.nn ls1 1, ((nn ls1 10), (nn ls1 11))) 1.50 RMSE
2. (lib.nn ls1 1, ((nn ls1 12, nn ls1 13))) 1.61 RMSE
3. ((lib.nn ls1 1, (nn ls1 14)), (nn ls1 15)) 1.64 RMSE

Task 3: recognize toy(0)
1. (nn ls1 16, lib.nn ls1 11) 9.81% CE
2. (nn ls1 17, nn ls1 18) 8.86% CE
3. (nn ls1 19, lib.nn ls1 3) 12.86% CE

Task 4: recognize digit(9)
1. (nn ls1 20, nn ls1 21) 1.38% CE
2. (nn ls1 22, lib.nn ls1 3) 2.14% CE
3. (lib.nn ls1 2, nn ls1 23) 1.95% CE

Task 5: count digit(2)
1. (nn ls1 24, ((nn ls1 25), (nn ls1 26))) 1.08 RMSE
2. (lib.nn ls1 1, ((nn ls1 27, nn ls1 28))) 1.02 RMSE
3. (lib.nn ls1 1, ((lib.nn ls1 16, nn ls1 29))) 0.95 RMSE

Task 6: count digit(9)
1. (lib.nn ls1 1, ((nn ls1 30, nn ls1 31))) 0.49 RMSE
2. (lib.nn ls1 1, ((nn ls1 32, lib.nn ls1 21))) 0.49 RMSE
3. (lib.nn ls1 1, ((nn ls1 33, lib.nn ls1 3))) 0.49 RMSE

Task 7: count digit(0)
1. (nn ls1 34, ((lib.nn ls1 16, lib.nn ls1 11))) 0.94 RMSE
2. (lib.nn ls1 1, ((nn ls1 35, nn ls1 36))) 0.81 RMSE
3. (nn ls1 37, ((nn ls1 38, nn ls1 39))) 0.85 RMSE

Task 8: recognize digit(7)
1. (lib.nn ls1 2, lib.nn ls1 3) 0.86% CE
2. (nn ls1 40, lib.nn ls1 3) 1.19% CE
3. (nn ls1 41, lib.nn ls1 21) 1.05% CE

Task 9: count digit(2)
1. (nn ls1 42, ((nn ls1 43, lib.nn ls1 26))) 0.43 RMSE
2. (lib.nn ls1 1, ((nn ls1 44, nn ls1 45))) 0.45 RMSE
3. (lib.nn ls1 1, ((nn ls1 46, lib.nn ls1 3))) 0.45 RMSE

Table 8: Long Sequence 2(LS2).

Task Top 3 Programs Error

Task 1: count digit(1)
1. (nn ls2 1, ((nn ls2 2, nn ls2 3))) 0.43 RMSE
2. (nn ls2 4, ((nn ls2 5), (nn ls2 6))) 0.45 RMSE
3. ((nn ls2 7, (nn ls2 8)), (nn ls2 9)) 0.48 RMSE

Task 2: count digit(0)
1. (nn ls2 10, ((nn ls2 11), (nn ls2 12))) 0.96 RMSE
2. (lib.nn ls2 1, ((nn ls2 13, nn ls2 14))) 0.84 RMSE
3. ((lib.nn ls2 1, (nn ls2 15)), (nn ls2 16)) 0.92 RMSE

Task 3: recognize toy(1)
1. (nn ls2 17, nn ls2 18) 5.05% CE
2. (nn ls2 19, lib.nn ls2 12) 4.00% CE
3. (lib.nn ls2 2, nn ls2 20) 10.52% CE

Task 4: recognize digit(5)
1. (nn ls2 21, nn ls2 22) 0.76% CE
2. (nn ls2 23, lib.nn ls2 3) 0.86% CE
3. (lib.nn ls2 17, nn ls2 24) 0.81% CE

Task 5: count digit(4)
1. (lib.nn ls2 1, ((nn ls2 25, nn ls2 26))) 1.68 RMSE
2. (lib.nn ls2 1, ((nn ls2 27, lib.nn ls2 18))) 1.51 RMSE
3. (lib.nn ls2 1, ((nn ls2 28, lib.nn ls2 12))) 1.46 RMSE

Task 6: count digit(5)
1. (nn ls2 29, ((nn ls2 30, nn ls2 31))) 0.43 RMSE
2. (nn ls2 32, ((lib.nn ls2 21, lib.nn ls2 22))) 0.43 RMSE
3. (lib.nn ls2 1, ((nn ls2 33, lib.nn ls2 22))) 0.45 RMSE

Task 7: count digit(1)
1. (nn ls2 34, ((lib.nn ls2 25, nn ls2 35))) 0.64 RMSE
2. (nn ls2 36, ((nn ls2 37, nn ls2 38))) 0.74 RMSE
3. (nn ls2 39, ((nn ls2 40, lib.nn ls2 26))) 0.83 RMSE

Task 8: recognize digit(1)
1. (nn ls2 41, lib.nn ls2 3) 0.29% CE
2. (nn ls2 42, lib.nn ls2 12) 0.19% CE
3. (nn ls2 43, lib.nn ls2 22) 0.24% CE

Task 9: count digit(8)
1. (nn ls2 44, ((nn ls2 45, lib.nn ls2 31))) 0.46 RMSE
2. (nn ls2 46, ((nn ls2 47, lib.nn ls2 26))) 0.45 RMSE
3. (nn ls2 48, ((nn ls2 49, lib.nn ls2 3))) 0.47 RMSE

5

Table 9: Long Sequence 3(LS3).

Task Top 3 Programs Error

Task 1: count digit(9)
1. (nn ls3 1, ((nn ls3 2), (nn ls3 3))) 0.46 RMSE
2. (nn ls3 4, ((nn ls3 5, nn ls3 6))) 0.48 RMSE
3. ((nn ls3 7, (nn ls3 8)), (nn ls3 9)) 0.55 RMSE

Task 2: count digit(1)
1. (lib.nn ls3 1, ((nn ls3 10, nn ls3 11))) 0.63 RMSE
2. (lib.nn ls3 1, ((nn ls3 12), (nn ls3 13))) 0.68 RMSE
3. ((lib.nn ls3 1, (nn ls3 14)), (nn ls3 15)) 0.63 RMSE

Task 3: recognize toy(2)
1. (nn ls3 16, nn ls3 17) 8.19% CE
2. (nn ls3 18, lib.nn ls3 11) 9.95% CE
3. (lib.nn ls3 2, nn ls3 19) 14.00% CE

Task 4: recognize digit(1)
1. (nn ls3 20, lib.nn ls3 3) 0.38% CE
2. (nn ls3 21, lib.nn ls3 17) 0.48% CE
3. (nn ls3 22, nn ls3 23) 0.24% CE

Task 5: count digit(3)
1. (lib.nn ls3 1, ((nn ls3 24, nn ls3 25))) 0.51 RMSE
2. (lib.nn ls3 1, ((nn ls3 26, lib.nn ls3 17))) 0.66 RMSE
3. (lib.nn ls3 1, ((nn ls3 27, lib.nn ls3 11))) 0.61 RMSE

Task 6: count digit(1)
1. (nn ls3 28, ((nn ls3 29, lib.nn ls3 11))) 0.38 RMSE
2. (nn ls3 30, ((nn ls3 31, lib.nn ls3 3))) 0.37 RMSE
3. (lib.nn ls3 1, ((nn ls3 32, lib.nn ls3 3))) 0.40 RMSE

Task 7: count digit(2)
1. (nn ls3 33, ((nn ls3 34, lib.nn ls3 17))) 0.96 RMSE
2. (lib.nn ls3 1, ((nn ls3 35, nn ls3 36))) 0.99 RMSE
3. (lib.nn ls3 1, ((nn ls3 37, lib.nn ls3 17))) 0.90 RMSE

Task 8: recognize digit(9)
1. (nn ls3 38, nn ls3 39) 1.52% CE
2. (lib.nn ls3 2, nn ls3 40) 2.43% CE
3. (lib.nn ls3 2, lib.nn ls3 3) 1.43% CE

Task 9: count digit(3)
1. (nn ls3 41, ((nn ls3 42, nn ls3 43))) 0.39 RMSE
2. (nn ls3 44, ((nn ls3 45, lib.nn ls3 39))) 0.42 RMSE
3. (nn ls3 46, ((nn ls3 47, lib.nn ls3 3))) 0.44 RMSE

Table 10: Long Sequence 4(LS4).

Task Top 3 Programs Error

Task 1: count digit(6)
1. (nn ls4 1, ((nn ls4 2), (nn ls4 3))) 0.40 RMSE
2. (nn ls4 4, ((nn ls4 5, nn ls4 6))) 0.45 RMSE
3. ((nn ls4 7, (nn ls4 8)), (nn ls4 9)) 0.48 RMSE

Task 2: count digit(2)
1. (lib.nn ls4 1, ((nn ls4 10), (nn ls4 11))) 0.89 RMSE
2. (lib.nn ls4 1, ((nn ls4 12, nn ls4 13))) 0.99 RMSE
3. ((lib.nn ls4 1, (nn ls4 14)), (nn ls4 15)) 0.91 RMSE

Task 3: recognize toy(3)
1. (nn ls4 16, lib.nn ls4 11) 4.95% CE
2. (nn ls4 17, nn ls4 18) 4.00% CE
3. (lib.nn ls4 10, nn ls4 19) 2.43% CE

Task 4: recognize digit(8)
1. (nn ls4 20, lib.nn ls4 3) 0.71% CE
2. (nn ls4 21, nn ls4 22) 0.52% CE
3. (nn ls4 23, lib.nn ls4 11) 0.86% CE

Task 5: count digit(1)
1. (lib.nn ls4 1, ((nn ls4 24, nn ls4 25))) 0.64 RMSE
2. (lib.nn ls4 1, ((nn ls4 26, lib.nn ls4 11))) 0.57 RMSE
3. (lib.nn ls4 1, ((lib.nn ls4 16, nn ls4 27))) 0.70 RMSE

Task 6: count digit(8)
1. (lib.nn ls4 1, ((nn ls4 28, lib.nn ls4 3))) 0.39 RMSE
2. (lib.nn ls4 1, ((nn ls4 29, nn ls4 30))) 0.38 RMSE
3. (lib.nn ls4 1, ((nn ls4 31, lib.nn ls4 11))) 0.40 RMSE

Task 7: count digit(3)
1. (lib.nn ls4 1, ((nn ls4 32, lib.nn ls4 11))) 0.61 RMSE
2. (lib.nn ls4 1, ((nn ls4 33, nn ls4 34))) 0.54 RMSE
3. (lib.nn ls4 1, ((nn ls4 35, lib.nn ls4 25))) 0.60 RMSE

Task 8: recognize digit(6)
1. (nn ls4 36, lib.nn ls4 3) 0.81% CE
2. (lib.nn ls4 20, nn ls4 37) 0.90% CE
3. (nn ls4 38, nn ls4 39) 0.86% CE

Task 9: count digit(5)
1. (lib.nn ls4 1, ((nn ls4 40, nn ls4 41))) 0.37 RMSE
2. (lib.nn ls4 1, ((nn ls4 42, lib.nn ls4 3))) 0.39 RMSE
3. (lib.nn ls4 1, ((nn ls4 43, lib.nn ls4 11))) 0.39 RMSE

6

Table 11: Long Sequence 5(LS5).

Task Top 3 Programs Error

Task 1: count digit(4)
1. (nn ls5 1, ((nn ls5 2), (nn ls5 3))) 0.45 RMSE
2. (nn ls5 4, ((nn ls5 5, nn ls5 6))) 0.46 RMSE
3. ((nn ls5 7, (nn ls5 8)), (nn ls5 9)) 0.48 RMSE

Task 2: count digit(3)
1. (nn ls5 10, ((nn ls5 11), (lib.nn ls5 3))) 0.60 RMSE
2. (lib.nn ls5 1, ((nn ls5 12), (nn ls5 13))) 0.63 RMSE
3. ((lib.nn ls5 1, (nn ls5 14)), (nn ls5 15)) 0.58 RMSE

Task 3: recognize toy(4)
1. (nn ls5 16, nn ls5 17) 20.33% CE
2. (lib.nn ls5 11, nn ls5 18) 17.76% CE
3. (nn ls5 19, lib.nn ls5 3) 21.38% CE

Task 4: recognize digit(7)
1. (nn ls5 20, nn ls5 21) 1.19% CE
2. (nn ls5 22, lib.nn ls5 3) 0.90% CE
3. (lib.nn ls5 2, nn ls5 23) 1.62% CE

Task 5: count digit(0)
1. (lib.nn ls5 10, ((nn ls5 24, nn ls5 25))) 0.90 RMSE
2. (lib.nn ls5 10, ((nn ls5 26, lib.nn ls5 17))) 0.90 RMSE
3. (lib.nn ls5 10, ((nn ls5 27, lib.nn ls5 3))) 0.86 RMSE

Task 6: count digit(7)
1. (lib.nn ls5 1, ((nn ls5 28, nn ls5 29))) 0.47 RMSE
2. (lib.nn ls5 1, ((nn ls5 30, lib.nn ls5 21))) 0.47 RMSE
3. (nn ls5 31, ((lib.nn ls5 16, nn ls5 32))) 0.47 RMSE

Task 7: count digit(4)
1. (nn ls5 33, ((nn ls5 34, lib.nn ls5 25))) 1.72 RMSE
2. (nn ls5 35, ((nn ls5 36, lib.nn ls5 17))) 1.50 RMSE
3. (lib.nn ls5 1, ((nn ls5 37, nn ls5 38))) 1.80 RMSE

Task 8: recognize digit(4)
1. (nn ls5 39, lib.nn ls5 3) 0.29% CE
2. (nn ls5 40, lib.nn ls5 21) 0.38% CE
3. (lib.nn ls5 20, nn ls5 41) 0.48% CE

Task 9: count digit(0)
1. (nn ls5 42, ((nn ls5 43, nn ls5 44))) 0.37 RMSE
2. (nn ls5 45, ((lib.nn ls5 24, nn ls5 46))) 0.40 RMSE
3. (nn ls5 47, ((nn ls5 48, lib.nn ls5 21))) 0.40 RMSE

Table 12: Counting Sequence 1(CS1), Evolutionary Algorithm. “CE” denotes classification error and
“RMSE” denotes root mean square error.

Task Top 3 programs Error

Task 1: recognize digit(d1)
1. (nn cs1 1, nn cs1 2) 0.57% CE
2. (nn cs1 3, nn cs1 2) 0.38% CE
3. (nn cs1 4, nn cs1 2) 0.76% CE

Task 2: recognize digit(d2)
1. (nn cs1 5, nn cs1 6) 0.38% CE
2. (nn cs1 7, nn cs1 8) 0.48% CE
3. (nn cs1 9, nn cs1 10) 0.43% CE

Task 3: count digit(d1)
1. (nn cs1 11, ((nn cs1 12, lib.nn cs1 2))) 0.38 RMSE
2. (nn cs1 13, ((nn cs1 14, lib.nn cs1 2))) 0.38 RMSE
3. (nn cs1 15, ((lib.nn cs1 1, lib.nn cs1 2))) 0.40 RMSE

Task 4: count digit(d2) No Solution

Table 13: Counting Sequence 2(CS2), Evolutionary Algorithm.

Task Top 3 programs Error

Task 1: recognize digit(d1)
1. (nn cs2 1, nn cs2 2) 1% CE
2. (nn cs2 3, nn cs2 4) 1% CE
3. (nn cs2 5, nn cs2 2) 1% CE

Task 2: count digit(d1)
1. (nn cs2 6, ((lib.nn cs2 1, lib.nn cs2 2))) 0.38 RMSE
2. (nn cs2 6, ((nn cs2 7, lib.nn cs2 2))) 0.38 RMSE
3. (nn cs2 8, ((nn cs2 9, nn cs2 10))) 0.39 RMSE

Task 3: count digit(d2) No Solution

Task 4: recognize digit(d2)
1. (nn cs2 11, nn cs2 12) 1% CE
2. (nn cs2 13, nn cs2 14) 1% CE
3. (lib.nn cs2 1, nn cs2 15) 1% CE

Table 14: Counting Sequence 3(CS3), Evolutionary Algorithm.

Task Top 3 Programs Error

Task 1: recognize digit(d) 1. (nn cs3 1, nn cs3 2) 0.57% CE
2. (nn cs3 3, nn cs3 4) 0.67% CE
3. (nn cs3 5, nn cs3 6) 0.62% CE

Task 2: count digit(d) 1. (nn cs3 7, ((nn cs3 8, lib.nn cs3 2))) 0.36 RMSE
2. (nn cs3 7, ((nn cs3 9, nn cs3 10))) 0.39 RMSE
3. (nn cs3 11, ((nn cs3 12, nn cs3 13))) 0.39 RMSE

Task 3: count toy(t)
1. (lib.nn cs3 7, ((nn cs3 14, nn cs3 15))) 0.70 RMSE
2. (lib.nn cs3 7, ((nn cs3 16, nn cs3 17))) 0.61 RMSE
3. (lib.nn cs3 7, ((nn cs3 18, nn cs3 19))) 0.64 RMSE

Task 4: recognize toy(t)
1. (nn cs3 20, lib.nn cs3 15) 5.62% CE
2. (lib.nn cs3 14, lib.nn cs3 15) 5.38% CE
3. (nn cs3 21, lib.nn cs3 15) 5.76% CE

7

Table 15: Summing Sequence(SS), Evolutionary Algorithm

Task Top 3 programs Error
Task 1: classify digit 1. (nn ss 1, nn ss 2) 1% CE

Task 2: sum digits 1. ((nn ss 3 zeros(1)), ((nn ss 4, lib.nn ss 2))) 6.64 RMSE
2. ((nn ss 5 zeros(1)), ((nn ss 6, lib.nn ss 2))) 6.66 RMSE
3. ((nn ss 7 zeros(1)), ((nn ss 8, lib.nn ss 2))) 6.70 RMSE

Table 16: Graph Sequence 1(GS1), Evolutionary Algorithm.

Task Top 3 Programs Error
Task 1: regress speed 1. (nn gs1 1, nn gs1 2) 0.80 RMSE

Task 2: shortest path street
1. ((nn gs1 3, lib.nn gs1 2)) 8.36 RMSE
2. ((nn gs1 4, nn gs1 5)) 8.37 RMSE
3. ((nn gs1 6, lib.nn gs1 2)) 8.35 RMSE

Table 17: Graph Sequence 2(GS2), Evolutionary Algorithm.

Task Top 3 Programs Error
Task 1: regress mnist 1. (nn gs2 1, nn gs2 2) 1.47 RMSE

Task 2: shortest path mnist
1. ((lib.nn gs2 1, nn gs2 3)) 6.58 RMSE
2. ((lib.nn gs2 1, nn gs2 4)) 6.59 RMSE
3. ((lib.nn gs2 1, nn gs2 5)) 6.63 RMSE

Task 3: shortest path street
1. ((lib.nn gs2 1, nn gs2 6)) 7.82 RMSE
2. ((lib.nn gs2 1, nn gs2 7)) 7.87 RMSE
3. ((nn gs2 8, nn gs2 9)) 7.96 RMSE

Table 18: Long Sequence 1(LS1), Evolutionary Algorithm.

Task Top 3 Programs Error

Task 1: count digit(7)
1. (nn ls1 1, ((nn ls1 2, nn ls1 3))) 0.42 RMSE
2. (nn ls1 4, ((nn ls1 5, nn ls1 6))) 0.44 RMSE
3. (nn ls1 1, ((nn ls1 7, nn ls1 8))) 0.50 RMSE

Task 2: count digit(4)
1. (lib.nn ls1 1, ((nn ls1 9, nn ls1 10))) 1.65 RMSE
2. (lib.nn ls1 1, ((nn ls1 11, nn ls1 12))) 1.53 RMSE
3. (lib.nn ls1 1, ((nn ls1 13, nn ls1 14))) 1.60 RMSE

Task 3: recognize toy(0)
1. (nn ls1 15, lib.nn ls1 10) 9.81% CE
2. (nn ls1 16, nn ls1 17) 9.76% CE
3. (nn ls1 18, lib.nn ls1 10) 8.76% CE

Task 4: recognize digit(9)
1. (nn ls1 19, nn ls1 20) 1.43% CE
2. (nn ls1 21, nn ls1 22) 1.43% CE
3. (nn ls1 23, nn ls1 24) 1.62% CE

Task 5: count digit(2)
1. (nn ls1 25, ((lib.nn ls1 19, nn ls1 26))) 0.90 RMSE
2. (lib.nn ls1 1, ((nn ls1 27, nn ls1 28))) 0.94 RMSE
3. (lib.nn ls1 1, ((nn ls1 29, nn ls1 30))) 0.98 RMSE

Task 6: count digit(9) No Solution
Task 7: count digit(0) No Solution

Task 8: recognize digit(7)
1. (nn ls1 31, lib.nn ls1 26) 1.29% CE
2. (nn ls1 32, lib.nn ls1 3) 0.71% CE
3. (nn ls1 33, nn ls1 34) 1.19% CE

Task 9: count digit(2)
1. (nn ls1 35, ((nn ls1 36, lib.nn ls1 3))) 0.36 RMSE
2. (lib.nn ls1 25, ((nn ls1 36, nn ls1 37))) 0.38 RMSE
3. (nn ls1 38, ((nn ls1 39, nn ls1 40))) 0.37 RMSE

Table 19: Long Sequence 2(LS2), Evolutionary Algorithm.

Task Top 3 Programs Error
Task 1: count digit(1) No Solution
Task 2: count digit(0) No Solution

Task 3: recognize toy(1)
1. (nn ls2 1, nn ls2 2) 5.43% CE
2. (nn ls2 3, nn ls2 4) 5.81% CE
3. (nn ls2 5, nn ls2 6) 5.05% CE

Task 4: recognize digit(5)
1. (nn ls2 7, nn ls2 8) 0.71% CE
2. (nn ls2 9, nn ls2 10) 0.43% CE
3. (nn ls2 9, nn ls2 11) 0.62% CE

Task 5: count digit(4) No Solution
Task 6: count digit(5) No Solution
Task 7: count digit(1) No Solution

Task 8: recognize digit(1)
1. (nn ls2 12, nn ls2 13) 0.19% CE
2. (nn ls2 14, lib.nn ls2 2) 0.29% CE
3. (nn ls2 15, lib.nn ls2 2) 0.33% CE

Task 9: count digit(8) No Solution

8

Table 20: Long Sequence 3(LS3), Evolutionary Algorithm.

Task Top 3 Programs Error
Task 1: count digit(9) No Solution
Task 2: count digit(1) No Solution

Task 3: recognize toy(2)
1. (nn ls3 1, nn ls3 2) 10.52% CE
2. (nn ls3 3, nn ls3 2) 9.14% CE
3. (nn ls3 4, nn ls3 2) 10.81% CE

Task 4: recognize digit(1)
1. (nn ls3 5, nn ls3 6) 0.48% CE
2. (nn ls3 7, lib.nn ls3 2) 0.33% CE
3. (nn ls3 8, nn ls3 9) 0.24% CE

Task 5: count digit(3) No Solution

Task 6: count digit(1)
1. (nn ls3 10, ((nn ls3 11, lib.nn ls3 6))) 0.38 RMSE
2. (nn ls3 12, ((nn ls3 13, nn ls3 14))) 0.37 RMSE
3. (nn ls3 15, ((nn ls3 11, lib.nn ls3 6))) 0.39 RMSE

Task 7: count digit(2)
1. (lib.nn ls3 10, ((nn ls3 16, nn ls3 17))) 1.02 RMSE
2. (lib.nn ls3 10, ((nn ls3 18, nn ls3 17))) 0.92 RMSE
3. (lib.nn ls3 10, ((nn ls3 16, nn ls3 19))) 0.96 RMSE

Task 8: recognize digit(9)
1. (nn ls3 20, nn ls3 21) 1.05% CE
2. (nn ls3 22, nn ls3 23) 1.14% CE
3. (nn ls3 24, lib.nn ls3 17) 1.86% CE

Task 9: count digit(3)
1. (lib.nn ls3 10, ((nn ls3 25, lib.nn ls3 21))) 0.45 RMSE
2. (lib.nn ls3 10, ((nn ls3 26, lib.nn ls3 17))) 0.47 RMSE
3. (lib.nn ls3 10, ((nn ls3 25, lib.nn ls3 21))) 0.46 RMSE

Table 21: Long Sequence 4(LS4), Evolutionary Algorithm.

Task Top 3 Programs Error
Task 1: count digit(6) No Solution
Task 2: count digit(2) No Solution

Task 3: recognize toy(3)
1. (nn ls4 1, nn ls4 2) 5.10% CE
2. (nn ls4 3, nn ls4 4) 3.57% CE
3. (nn ls4 5, nn ls4 6) 4.24% CE

Task 4: recognize digit(8)
1. (nn ls4 7, nn ls4 8) 0.33% CE
2. (nn ls4 9, nn ls4 10) 0.48% CE
3. (nn ls4 11, nn ls4 12) 0.90% CE

Task 5: count digit(1) No Solution

Task 6: count digit(8)
1. (nn ls4 13, ((nn ls4 14, nn ls4 15))) 0.41 RMSE
2. (nn ls4 16, ((nn ls4 17, lib.nn ls4 8))) 0.44 RMSE
3. (nn ls4 18, ((nn ls4 19, lib.nn ls4 8))) 0.44 RMSE

Task 7: count digit(3)
1. (lib.nn ls4 13, ((nn ls4 20, nn ls4 21))) 0.56 RMSE
2. (lib.nn ls4 13, ((nn ls4 22, lib.nn ls4 2))) 0.59 RMSE
3. (lib.nn ls4 13, ((nn ls4 20, lib.nn ls4 2))) 0.57 RMSE

Task 8: recognize digit(6)
1. (nn ls4 23, lib.nn ls4 15) 0.48% CE
2. (nn ls4 24, lib.nn ls4 15) 0.62% CE
3. (nn ls4 25, lib.nn ls4 15) 0.71% CE

Task 9: count digit(5)
1. (lib.nn ls4 13, ((nn ls4 26, nn ls4 27))) 0.41 RMSE
2. (lib.nn ls4 13, ((nn ls4 26, nn ls4 27))) 0.41 RMSE
3. (lib.nn ls4 13, ((nn ls4 28, nn ls4 29))) 0.41 RMSE

Table 22: Long Sequence 5(LS5), Evolutionary Algorithm.

Task Top 3 Programs Error
Task 1: count digit(4) No Solution
Task 2: count digit(3) No Solution

Task 3: recognize toy(4)
1. (nn ls5 1, nn ls5 2) 17.00% CE
2. (nn ls5 3, nn ls5 4) 21.62% CE
3. (nn ls5 5, nn ls5 6) 16.52% CE

Task 4: recognize digit(7)
1. (nn ls5 7, nn ls5 8) 1.14% CE
2. (nn ls5 9, nn ls5 10) 0.95% CE
3. (nn ls5 11, nn ls5 12) 1.00% CE

Task 5: count digit(0) No Solution
Task 6: count digit(7) No Solution
Task 7: count digit(4) No Solution

Task 8: recognize digit(4)
1. (nn ls5 13, nn ls5 14) 0.38% CE
2. (nn ls5 15, lib.nn ls5 8) 0.33% CE
3. (nn ls5 15, nn ls5 16) 0.33% CE

Task 9: count digit(0)
1. (nn ls5 17, ((nn ls5 18, lib.nn ls5 8))) 0.38 RMSE
2. (nn ls5 17, ((nn ls5 19, lib.nn ls5 2))) 0.38 RMSE
3. (nn ls5 17, ((nn ls5 20, lib.nn ls5 8))) 0.40 RMSE

9

(a) Task 1: recognize digit(d1) (b) Task 2: recognize digit(d2)

(c) Task 3: count digit(d1) (d) Task 4: count digit(d2)

Figure 2: Lifelong learning for “learning to count” (Sequence CS1), demonstrating low-level transfer
of perceptual recognizers.

G Results on Longer Task Sequence LS

We report the performance of all methods on the longer task sequences on Figure 5. To save space,
we report performance of all methods when trained on 10% of the data. The full learning curves
follow similar patterns as the other task sequences. We report the classification and regression tasks
from LS separately, because the error functions for the two tasks have different dynamic ranges.
Please note that in the Figure, the tasks are labelled starting from 0. On the classification tasks, we
note that all methods have similar performance. Examining the task sequence LS from Figure ??,
we see that these tasks have no opportunity to transfer from earlier tasks. On the regression tasks
however, there is opportunity to transfer, and we see that HOUDINI shows much better performance
than the other methods.

10

(a) Task 1: recognize digit(d1) (b) Task 2: count digit(d1)

(c) Task 3: count digit(d2) (d) Task 4: recognize digit(d2)

Figure 3: Lifelong learning for “learning to count” (Sequence CS2), demonstrating high-level transfer
of a counting network across categories.

(a) Task 1: recognize digit(d1) (b) Task 2: count digit(d1)

(c) Task 3: count toy(t1) (d) Task 4: recognize toy(t1)

Figure 4: Lifelong learning for “learning to count” (Sequence CS3), demonstrating high-level transfer
across different types of images. After learning to count MNIST digits, the same network can be used
to count images of toys.

11

Figure 5: Performance of transfer learning systems on task sequence LS1. At top: regression tasks.
At bottom: classification tasks

12

88 Chapter 4. HOUDINI: Lifelong Learning as Program Synthesis

4.1 Related Work

Considering the neurosymbolic categorisation outlined in Section 3.2, HOUDINI is

the closest to Category 2, in which the methods contain a neural sub-routine within

a symbolic solver. This is because our symbolic program synthesis solves a given

problem by repeatedly calling a neural-network-based sub-routine which trains a given

program and returns its performance on a held-out dataset. Interestingly, by modifying

HOUDINI’s DSL, one could allow our framework to synthesise other neurosymbolic

systems, as discussed in the next section.

HOUDINI operates over modular deep neural networks. The modular deep learn-

ing (MDL) algorithms discussed in Section 3.1 condition the choice of modules on

inputs within the same problem. They concurrently optimise the parameters of all mod-

ules within different module compositions, which allows their modules to learn more

reusable functions. In contrast, HOUDINI conditions the choice of modules (functions)

which we use on the given problem. In our experiments, we encourage modules to

learn reusable functions by ordering the problems of our sequences according to a cur-

riculum. We note that applying MDL algorithms to the setting of lifelong learning

would require augmenting them in order to address catastrophic forgetting. Still, such

methods would have an inherent disadvantage because selecting modules based on the

inputs would not allow for non-perceptual transfer.

HOUDINI possess advantages over the other lifelong learning methods discussed

in Section 2.5. To begin with, the discussed replay-based and parameter regularisation

methods use a fixed multi-head neural architecture. Sharing the same set of parameters

for all tasks puts a limit on the number of different tasks that can be learned, which lim-

its these algorithms’ plasticity. Moreover, having to use the same parameters for each

task can introduce harmful inductive bias which could lead to negative transfer. In con-

trast, HOUDINI can introduce new randomly initialised modules for a given task. This

way it always has the capacity to learn a new task, and can also avoid negative trans-

fer by simply choosing not to transfer anything, if no useful knowledge is available.

A shared architecture also affects LML methods’ stability since learning to perform a

new task involves optimising all shared parameters. This introduces forgetting, which

is mitigated to a different extent by different algorithms. In contrast, HOUDINI does

not exhibit forgetting by design, as it freezes all modules’ parameters after training. In

terms of forward transfer, methods which share the same parameters for all tasks can

potentially achieve both perceptual and non-perceptual transfer, however, the focus of

4.1. Related Work 89

preceding and most of following work remains on perceptual transfer. A disadvantage

of HOUDINI, especially evident in perceptual transfer, is that freezing the modules

does not allow it to adapt to slightly different input domains and might require a new

module to be introduced. Instead, regularisation-based continual learning methods can

adjust their parameters and account for the changes in the input distribution. When

non-perceptual transfer needs to be done across disparate input domains, sharing the

lower layers of a neural network could lead to negative transfer. In contrast, HOUDINI

can introduce new lower modules, while reusing the higher ones. What is more, a

multi-head architecture may not be suitable for few-shot transfer, as it introduces new

parameters which need to be optimised on the new task. In comparison, HOUDINI can

achieve few-shot transfer without introducing trainable parameters by re-arranging the

available modules in a novel way in order to compute a new function. However, this

is limited to LML settings in which the modules are learned in a way that makes them

reusable, e.g. through a problem curriculum and/or through module architecture bias.

One shortcoming of HOUDINI is that freezing the weights of modules in the library

makes backward transfer impossible by design. In contrast, GEM (Lopez-Paz and Ran-

zato, 2017) exhibits some level of success in achieving backward transfer. In terms of

required resources, regularisation-based methods’ and replay-based methods’ memory

and computational requirements can remain constant with the number of solved prob-

lems. Similarly, HOUDINI can be implemented with a constant memory requirement

by only loading modules from the library in the memory on demand. However, apply-

ing HOUDINI to long sequences can become prohibitively computationally expensive.

This is because the search space of possible neural architectures and possible combi-

nation of modules can quickly become too big for our search method to be effective.

Considering architecture-based approaches to LML, Piggyback (Mallya et al., 2018)

and PackNet (Mallya and Lazebnik, 2018) rely on the assumption that the underlying

model’s initial parameters are going to be relevant for all of the encountered tasks,

which limits these methods’ applicability to varied sequences. Our method does not

share this limitation. HAT (Serra et al., 2018) focuses on avoiding catastrophic forget-

ting but also allows for graceful forgetting. Other than that, the method uses a fixed

architecture with shared parameters at beginning of learning of each task, which is

likely to lead to negative transfer. Progressive neural networks (Rusu et al., 2016) add

new parameters for every task which makes them too memory-demanding. Moreover,

they are limited to perceptual transfer and have been observed to exhibit negative trans-

fer. Compacting, Picking and Growing (CPG) uses a heuristic and manually defined

90 Chapter 4. HOUDINI: Lifelong Learning as Program Synthesis

performance threshold to decide when to add new parameters. Unlike HOUDINI, it

also incorporates a compacting phase which aims to restrict the size of the accumu-

lated pre-trained parameters over time. PathNet (Fernando et al., 2017) is a modular

approach to LML which was made available before the publication of our work. They

maintain the same number of modules across all tasks which restricts their capacity to

learn new problems. Moreover, it makes the method vulnerable to negative transfer, as

observed in their results. In comparison, HOUDINI can better avoid negative transfer

because it can always choose to introduce new modules if necessary. In terms of trans-

fer, PathNet focuses perceptual transfer, while our work demonstrates that modular

approaches can achieve non-perceptual and few-shot transfer. Moreover, we show that

modular approaches can be used to transfer knowledge across different neural architec-

ture. In terms of scalability, both PathNet’s genetic search algorithm and HOUDINI’s

exhaustive search are unlikely to be effective in large search spaces which result from

a large number of available modules.

Overall, one big difference of our approach, compared to previous LML methods

is that we represent neural networks as functional programs, which allows us to search

for a suitable neural architecture, as well as knowledge transfer. This increases the

applicability of HOUDINI, allowing it to be used on sequences which require different

neural architectures and have problems with different input spaces. Another advantage

of our neurosymbolic approach is that it is more interpretable than the aforementioned

approaches because the programs used to solve a problem can provide insight into

which modules are reused and what tasks were these modules originally trained on.

Related LML work, developed after ours was published, has focused on devel-

oping modular approaches to LML which search for the best selection of pre-trained

modules, given a user-specified neural architecture. MNTDP-D (Veniat et al., 2020),

described in Chapter 2, is an efficient modular LML algorithm which requires that

L+1 different modules be evaluated per problem, where L is the number of layers in

the given neural architecture. The authors’ approach aggressively restricts the search

space which in turn limits MNTDP-D’s transfer properties to only performing percep-

tual transfer. Ostapenko et al. (2021) present LMC - a modular LML algorithm which

obtains a soft selection of pre-trained and new modules for each layer, using continu-

ous optimisation. For this purpose, they model the output distribution of each module

which is then used while obtaining the soft selection. The algorithm can achieve both

perceptual transfer and few-shot transfer, however, is not capable of non-perceptual

transfer. Moreover, computing a forward pass using a soft selection requires that all

4.2. Discussion 91

modules be stored in memory, which makes the algorithm very expensive in terms of

memory and places a limit on the amount of pre-trained modules which can be accu-

mulated. The authors also show evidence that LMC is outperformed by MNTDP on

longer sequences. Further discussion on both methods is available in the next chapter.

HOUDINI searches for both an optimal neural architecture and an optimal selec-

tion of modules. At the same time, the field of neural architecture search (NAS), as

described in Chapter 2, defines different ways to search for an optimal neural archi-

tecture. Focusing the discussion on the search for a suitable neural architecture, our

search space is arguably more complex than the search spaces of the methods explored

in Section 3.4. This is because the neural architectures which we consider have varying

lengths and also can use different higher-order functions from functional programming

to result in different patterns of computation. Still, these architectures are inherently

compositional which is a property that could be exploited by a surrogate-based NAS

method. HOUDINI uses types to significantly reduce the search space of all possi-

ble neural architectures, however, it then applies exhaustive search over the resulting

search space. In contrast, NAS conduct a more sophisticated adaptive search. Ex-

ploring HOUDINI’s restricted search space of type-correct neural architectures with a

NAS approach is an interesting direction for future work. One potential challenge is

that our LML setting requires that as few different neural architectures are evaluated as

possible. In contrast, NAS methods can require evaluating a large number of different

architectures before finding a solution. For instance, DARTS (Liu et al., 2018b) is or-

ders of magnitude faster than other NAS techniques, and still takes one and a half days

of runtime. Therefore, it is crucial to use an even more efficient NAS method.

4.2 Discussion

The presented work demonstrates that HOUDINI possesses most of the properties which

are desired from a lifelong machine learning solution. While our work has limitations,

they could be addressed in future work, which should lead to a general framework for

lifelong machine learning.

HOUDINI freezes all pre-trained modules in order to prevent catastrophic forget-

ting. However, this leads to several shortcomings. First, it prevents backward transfer,

as previous parameters are not modified. Second, not being able to finetune can lead

to suboptimal results. For example, this could happen if we try to reuse a pre-trained

module on a slightly different input distribution than the distribution it was trained on.

92 Chapter 4. HOUDINI: Lifelong Learning as Program Synthesis

In this case, the module’s weights might need to be adapted to the new problem. If

the new data is small, HOUDINI would choose to use the suboptimal parameters. Oth-

erwise, our approach would choose to train a new randomly initialised module. The

latter case would result in the library having two modules which have very similar

functionality. Therefore, the third shortcoming of freezing pre-trained modules is that

it can introduce redundancies in the library.

One could address this by combining HOUDINI with a regularisation approach to

continual learning. Whenever a pre-trained module is reused, one would need to aug-

ment the loss in order to reduce catastrophic forgetting. Current regularisation-based

approaches have trouble scaling to a large sequence of problems. However, our frame-

work selectively reuses pre-trained modules only on relevant problems. Therefore each

module-specific regularisation would need to prevent catastrophic forgetting on only a

fraction of all problems.

The main shortcoming of the work presented in this chapter is that it does not

scale to a large number of problems. Currently, we use types to drastically reduce

the program search space. However, the number of type-compatible programs grows

exponentially with the number of pre-trained modules in the library. As a result, the

currently used exhaustive search procedure becomes prohibitively computationally ex-

pensive for large sequences. The next chapter investigates how to address this limita-

tion.

It is interesting to note that the HOUDINI programming language can be modified to

describe some of the neurosymbolic approaches, discussed in Section 3.2. Remember

that neurosymbolic approaches of category 1 are deep neural networks (DNNs), which

operate on symbols and/or output symbols. Moreover, category 3 consists of DNNs,

which approximate a symbolic system. Therefore, HOUDINI can easily represent neu-

rosymbolic systems from these two categories. Category 4 consists of methods which

combine a deep model and a symbolic system. The symbolic system can be added as

a typed function inside our framework library. This could allow these neurosymbolic

systems to be described by the HOUDINI programming language. Therefore, one can

imagine extending our framework to lifelong learning of neurosymbolic methods.

Chapter 5

PICLE: A Probabilistic Framework for

Modular Lifelong Learning

In the previous chapter we developed a neurosymbolic framework for modular lifelong

machine learning (LML) and demonstrated that it can achieve a number of desirable

properties. The main disadvantage of HOUDINI is that it does not scale to larger search

spaces. Given a problem, it uses exhaustive search to search for a suitable modular neu-

ral architecture and a suitable selection of pre-trained modules to reuse. The number

of pre-trained modules can grow linearly with the number of solved problems. As a

result, the resulting search space is bounded by O(ntL) where n are the number of pos-

sible architectures, t is the index of the given problem and L is the maximum number

of modules in the considered architectures. Therefore, as either quantity grows, it can

quickly become prohibitively computationally expensive for exhaustive search to find

a good solution. In this chapter, we assume that the neural architecture is fixed, which

still results in a large search space bounded by O(tL). Our goal is to develop a modular

LML algorithm that maintains the transfer learning properties of HOUDINI but also

scales to large search spaces. Such an algorithm would be applicable to more realis-

tic lifelong learning settings, involving much larger sequences of problems and more

complex modular neural architectures which are comprised of more modules.

This chapter introduces PICLE, a probabilistic search framework for scalable mod-

ular LML. PICLE explores subsets of the search space using a probabilistic model to

compute a probability distribution over the choice of pre-trained modules. We identify

two important subsets of module combinations and show how to explore them effi-

ciently using our framework. First, we identify a set of module combinations which

transfer knowledge across similar input domains. We model each module’s training

93

94 Chapter 5. PICLE: A Probabilistic Framework for Modular Lifelong Learning

input distribution and define a probabilistic model over the choice of pre-trained mod-

ules and the resulting hidden states for a given problem. Second, we identify of a set of

module combinations which transfer knowledge across problems with disparate input

distributions or different input spaces. We define a kernel between module combi-

nations and show that applying our framework leads to Bayesian optimisation search.

Finally, we show how the two search procedures can be combined and used to construct

a scalable modular LML algorithm.

In order to assess our method, we develop a more challenging evaluation set-

ting than the one in Chapter 4. To this end, we first define a list of desiderata for

lifelong learning which places an emphasis on forward knowledge transfer. Second,

we develop BELL, a benchmark suite which consists of sequences of compositional

problems that each evaluate a different subset of the identified desired LML proper-

ties. The problems require a neural architecture which consists of 8 modules, so even

for sequences of length 6, the search space for the last problem is upper bounded by

O(68) = O(1,679,616). Note that navigating this search space is challenging because

evaluating most of its items involves training the parameters of a neural network.

We provide empirical evidence that our approach meets all of our desiderata, apart

from backward transfer. It exhibits these properties across different input domains and

neural architectures, which allows it to outperform competitive baselines.

5.1 Introduction

The lifelong machine learning (LML) setting calls for algorithms that can solve a se-

quence of learning problems (Thrun, 1998). Compared to solving the same problems

separately, LML could lead to better generalisation performance on each problem as

well a smaller memory footprint for the final model. An LML algorithm should avoid

catastrophic forgetting — i.e., not allow later tasks to overwrite what has been learned

from earlier tasks — and achieve transfer across a large sequence of problems. Ideally,

the algorithm should be able to transfer knowledge across similar input distributions

(perceptual transfer), dissimilar input distributions and different input spaces (non-

perceptual transfer), and to problems with a few training examples (few-shot transfer).

Modular approaches (Valkov et al., 2018; Veniat et al., 2020; Ostapenko et al.,

2021) have been proposed as a promising direction for LML. These approaches rep-

resent a neural network as a composition of modules, where each module is a param-

eterised function that is trained to perform an atomic transformation of its input and

5.1. Introduction 95

is reusable across tasks. Modular LML algorithms accumulate a library of diverse

modules by solving the encountered problems in a sequence. Given a new problem,

their goal is to find the most suitable combination of pre-trained and new modules, out

of the set of all possible combinations, as measured by the performance on a held-out

dataset. Unlike LML approaches which share the same parameters across all problems,

modular algorithms can introduce new modules and, thus, do not have an upper bound

on the number of solved problems.

However, scalability remains a key challenge in modular approaches to LML, as

the set of module combinations is discrete and explodes combinatorially, rendering

naive search strategies futile. It is important for an LML algorithm’s resource demands

to scale sub-linearly with the size of this set, because this would allow said algorithm

to be applied to larger problem sequences as well as larger modular architectures. Prior

work has sidestepped this challenge by introducing various restrictions. For example,

by only handling perceptual transfer (Veniat et al., 2020) or by relaxing the search

space and imposing an implicit limit on the number of pre-trained modules that can

be accumulated (Ostapenko et al., 2021). The design of LML algorithms that relaxes

these restrictions and can also scale remains an open problem.

In this work we present PICLE, a new probabilistic search framework for modular

LML, in response to this challenge. For a given problem, PICLE divides the set of

all module combinations into subsets of combinations with common properties. It

then explores each subset using a subset-specific probabilistic model, designed to take

advantage of the subset’s properties. This model is used to compute a distribution over

the choice of pre-trained modules, which can be queried efficiently without having to

train new parameters. To apply our framework, we first develop a probabilistic model

over a set of module combinations which can achieve perceptual and few-shot transfer.

We design this model to take advantage of our insight that the input distribution on

which a module is trained can indicate how successfully said module would process

a set of inputs. Second, we identify a subset of module combinations capable of non-

perceptual transfer and introduce a new kernel between them, allowing us to define a

probabilistic model over this subset. The kernel is based on our insight that if the pre-

trained modules of two paths compute similar functions, then said paths are likely to

exhibit similar generalisation performance after their new modules are trained. Finally,

we show that each of the two probabilistic models can be used to conduct separate

searches through module combinations, which can then be combined into a scalable

modular LML algorithm capable of perceptual, few-shot and non-perceptual transfer.

96 Chapter 5. PICLE: A Probabilistic Framework for Modular Lifelong Learning

To evaluate our approach, we introduce a challenging evaluation setting for LML.

To this end, we specify LML desiderata which differ from ones defined in previous

work by distinguishing between different types of forward transfer. We then intro-

duce a benchmark suite, BELL, which contains different sequences of problems which

are designed to evaluate different subsets of LML properties. In contrast to a similar

benchmark suite (Veniat et al., 2020), we use compositional tasks which allows us to

define additional sequences which evaluate more LML properties.

5.2 Background

m11

m21

π*1

m11

m22

π*2

m13

m22

π*3
Set of all paths, Π4 :

m14

m24

m11

m24

m13

m24

m14

m21

m14

m22

m11

m21

m11

m22

m13

m22

m13

m21

ΠPT,1
4 ΠNT4ΠPT,2

4

Library, Λ4 = {m11 , m 13 , m21 , m 22}
New problem, Ψ4

Past solutions :

Figure 5.1: This illustrates the set of all paths, Π4, which a modular algorithm con-

siders when solving the fourth problem Ψ4 of some sequence, where the modular

architecture has L = 2 layers. The library consists of all previously trained modules:

Λ4 = {m1
1,m

1
3,m

2
1,m

2
2}, which are illustrated with a grey background in order to indicate

that their parameters are frozen. Paths in Π
PT,1
4 (Eq. 5.4) select a pre-trained module

for the first layer, which allows them to perform perceptual transfer. Paths in Π
PT,2
4 reuse

modules in both layers. They can perform few-shot transfer since they only require a

few examples, so that the correct path can be selected. Paths in Π
NT,1
4 (Eq. 5.11) can

achieve non-perceptual transfer by reusing a module in the second layer, allowing for it

to be applied to a new input domain.

A lifelong machine learning algorithm A is tasked with solving a sequence of prob-

lems S = (Ψ1, ...,ΨT), usually provided one at a time. We consider the supervised

setting, in which each problem is characterised by a tuple Ψ = (D,T), where D is

the input domain, comprised of an input space and an input distribution, and T is a

task, defined by a label space and a labelling function (Pan and Yang, 2009). an LML

algorithm aims to transfer knowledge between the problems in a sequence in order to

improve each problem’s generalisation performance. The knowledge transfer to a sin-

5.2. Background 97

gle problem can be defined as the difference in an algorithm’s performance, compared

to when it is trained in the absence of the rest of the problems.

To maximise its performance, an LML algorithm should possess a number of

desiderata. First, plasticity refers to an algorithm’s ability to continuously learn to

solve new problems and obtain at least as good generalisation performance as a stan-

dalone baseline. Plasticity can be negatively affected by a model’s restricted capacity

to learn new knowledge or by negative transfer. Second, stability is required in order to

prevent catastrophic forgetting, which can occur when an algorithm’s performance on

a past problem decreases drastically. Third, forward transfer refers to an algorithm’s

ability to transfer knowledge to a newly encountered problem. We distinguish be-

tween three types of transfer: between problems with similar input distributions (per-

ceptual), between problems with different input distributions or different input-spaces

(non-perceptual) and to problems with a few training examples (few-shot). We note

that knowledge transfer can involve transferring knowledge across similar problems

which require different neural architectures, e.g. when performing transfer across dif-

ferent input spaces. Fourth, an LML algorithm should be capable of backward transfer,

allowing it to improve its performance of previously encountered problems after solv-

ing new ones. Finally, an LML algorithm should be effective on large sequences of

problems under constrained resources (scalability). In particular, the computational

and memory requirements should scale sub-linearly with the number of encountered

problems.

Modular approaches represent a deep neural network ζΘ as a composition of mod-

ules ζΘ = mL ◦ ... ◦m2 ◦m1, where the first module that is applied to the input is m1.

Each module mi represents a nonlinear transformation, parameterised by θ(mi). It can

consist of one or more hidden layers, each with a potentially different type (e.g. con-

volutional or fully connected) and with a different activation function (e.g. ReLU or

tanh). Given a problem, one needs to select optimal values for all parameters Θ and

return the resulting neural network ζΘ as the solution.

Modular approaches have been successfully applied to lifelong learning. After

solving t − 1 problems, they accumulate a library of previously trained modules that

each have been used to help perform one or more of the previously encountered tasks.

The library Λt =
⋃L

i=1{mi
j} j<t is a set of pre-trained modules, where mi

j denotes a

module in layer i that was trained on the j-th problem. It is then possible to construct

different modular neural networks by either selecting a pre-trained module from the

library or by training a new one from scratch for each of the L layers. We denote the set

98 Chapter 5. PICLE: A Probabilistic Framework for Modular Lifelong Learning

of all modular neural networks as Πt = {({m1
j} j<t ∪{m1

t })× ...× ({mL
j} j<t ∪{mL

t)},

where mi
t denotes a new module used in layer i with randomly initialised parameters.

We refer to each element of Πt as a path, as it can be seen as guiding the forward

computation through different modules. Figure 5.1 illustrates the set of all paths Π4

for the fourth problem of some sequence, using a modular architecture with 2 module

layers. Let a new problem Ψt be specified by a training and a validation datasets,

Dtr = (Xtr,Ytr) and Dval = (Xval,Yval). To solve it, a modular LML algorithm searches

for the path which leads to the best validation performance by optimising:

π
∗
t = argmax

π∈S(Πt)

p(Yval|π[pre],π
[new]
Θ∗

new
,Xval) (5.1)

s.t. Θ
∗
new = argmax

Θnew

p(Ytr|π[pre],π
[new]
Θnew

,Xtr).

Here π[pre] and π[new] denote the pre-trained and randomly initialised modules, re-

spectively. If a path π contains new randomly initialised modules, their parameters

Θ∗
new = {θ(mi

j) : mi
j ∈ π[new]} need to be trained before the path can be evaluated. In

this case, said parameters are trained on the training dataset and the resulting model is

evaluated on the validation dataset. As a result, evaluating a path can be computation-

ally expensive and one wants to evaluate as few paths as possible. However, the search

space grows quickly. If there are J pre-trained modules for each module type in the

library, the search space consists of (J + 1)L unique paths. This necessitates a search

strategy S(Πt) which can prioritise the most promising paths for evaluation. Under fi-

nite resources, the algorithm can evaluate only the first r paths suggested by the search

strategy. Algorithm 1 summarises how the described modular LML algorithm solves a

given problem. This algorithm, named MOLL, provides a template which can be com-

bined different search strategies in order to create different modular LML algorithms.

Modular algorithms can achieve most of the LML desiderata (Valkov et al., 2018).

Catastrophic forgetting is prevented by freezing the parameters of all pre-trained mod-

ules in the library. A path with only randomly initialised parameters can be selected,

ensuring the methods’ plasticity. As more problems are solved, the pre-trained mod-

ules in the library can be reused in order to achieve all types of forward transfer, as

shown in Figure 5.1 and as discussed in the following sections. It is possible for two

problems can require two different modular neural architectures which use the same

modules for some of their layers. At the same time, modular LML algorithms can op-

erate on different modular neural architectures for different problems, therefore, they

can perform transfer across neural architectures. An additional benefit is that selected

5.2. Background 99

Algorithm 1: MOLL
Input: t, Current problem’s index

Input: Dtr
t , Training dataset

Input: Dval
t , Validation dataset

Input: Λt−1, Latest library

Input: S, A search strategy for prioritising paths

Input: r, Number of paths that can be evaluated

Input: ζ, The modular neural architecture

/* Use Λt−1 to generate the set of all paths. */

[1] Πt = {({m1
j} j<t ∪{m1

t })× ...× ({mL
j} j<t ∪{mL

t })
/* Evaluate the first r paths recommended by S and select the

one with the best performance on Dval
t */

[2]

π
∗
t = argmax

π∈S(Πt)

p(Yval|π[pre],π
[new]
Θ∗

new
,Xval)

s.t. Θ
∗
new = argmax

Θnew

p(Ytr|π[pre],π
[new]
Θnew

,Xtr).

/* Update the library with the new modules */

[3] Λt = Λt−1 ∪{mi
t for mi

t in π∗
t }

/* Return the found solution as well as the new library. */

[4] return ζ(π∗
t), Λt

100 Chapter 5. PICLE: A Probabilistic Framework for Modular Lifelong Learning

paths can be interpreted in order to obtain insight into which problem(s) is knowledge

being transferred from. However, a key challenge has been to retain all these trans-

fer properties while using memory and computational resources that scale sub-linearly

with the number of problems. To achieve this, one needs a search strategy which scales

to enormous search spaces.

Prior to our work, Veniat et al. (2020) presented a scalable modular LML algo-

rithm, MNTDP-D, whose search strategy always proposes a constant number of paths

for evaluation when solving a problem. To achieve this, they severely restrict the search

space which prevents them from achieving non-perceptual and few-shot transfer. Their

approach requires that each previous solution is separately used to process the train-

ing data of a new problem, and that a K-nearest-neighbour classifier is fit to the ex-

tracted latent features. Therefore, technically, the computational requirement of this

approach does not scale sub-linearly with the number of problems. However, this ad-

ditional cost only becomes non-negligible in comparison to the rest, when the number

of solved problems is very large, which is not a setting considered in current LML

literature. Therefore, we still consider MNTDP-D to be scalable. In general, we con-

sider a modular LML algorithm to be scalable if it can effectively achieve its transfer

learning properties in large search spaces, while the number of modules which it si-

multaneously loads in memory and the number of paths which it explores both scale

sub-linearly with the number of encountered problems.

5.3 PICLE: A Probabilistic Search Framework

We propose a probabilistic approach which uses the information available about the

new problem to compute a probability distribution over different choices for pre-

trained modules. The distribution does not model new modules which allows it to

be queried efficiently, without having to train any new parameters.

Our approach is to split Πt into subsets Πi
t ⊂ Πt of paths in which the reused

modules are at the same layer positions. For each subset, one can then define a prob-

abilistic model and use it to compute a probability distribution over the choice of pre-

trained modules p(π[pre]|Xtr,Ytr,Xtr,Yval,E j), where one can make use of the available

datasets and the previously evaluated paths E j. Computing this distribution can be done

efficiently, as it does not involve randomly initialised modules. We can then define a

search strategy for each path subset as selecting the unevaluated path with the highest

5.4. Scalable Perceptual and Few-shot Transfer 101

posterior probability of its pre-trained modules:

SMAP(Π
i
t) =

argmax
π∈Πi

t

p(π[pre]|Xtr,Ytr,Xtr,Yval,E j)


j

(5.2)

This allows us to define our search framework PICLE, which explores the set of all

paths by combining the recommendations of SMAP applied to different subsets:

SPICLE =
⊕

i

SMAP(Π
i
t) (5.3)

where
⊕

denotes the operation which is used to combine the recommendations. In

this work, we simply concatenate the recommendations.

Next, we show how our framework can be used to create a scalable search strategy.

First, we apply our probabilistic approach to subsets of paths which are capable of

perceptual and few-shot transfer. Second, we apply it to a subset of paths capable

of non-perceptual transfer. In both cases, we define a suitable probabilistic model,

which takes advantage of each subset’s properties. Finally, we show how the two

search strategies can be combined. When used within Algorithm 1, this leads to a

scalable LML algorithm which can achieve different types of transfer while always

evaluating a constant number of paths per problem. Developing other probabilistic

models necessary for the exploration of the remaining subsets of Πt is left for future

work.

5.4 Scalable Perceptual and Few-shot Transfer

In order to achieve perceptual transfer, a model needs to transfer knowledge on how

to transform the input. For example, how to extract edges from natural images. For a

path, this means reusing pre-trained modules for the first l ∈ {1, ...,L} module layers.

If all L layers are reused, this can allow for few-shot transfer, since there are no new

parameters that need to be learned. Therefore, we identify subsets of paths Π
PT,l
t ∈ Πt

which can achieve perceptual transfer and few-shot transfer. In each path, the first l

layers are selected from the library, while the rest are selected to be new randomly

initialised modules, i.e.

Π
PT,l
t = {π : π = {mi

<t , i ≤ l}∪{mi
t , i > l}}. (5.4)

Figure 5.1 illustrates two examples of PT subsets, namely Π
PT,1
4 and Π

PT,2
4 . Each sub-

set grows polynomially with the size of the library and exponentially with the number

102 Chapter 5. PICLE: A Probabilistic Framework for Modular Lifelong Learning

of layers, which makes a naive search inapplicable when either of the two quantities

is large. In this section, we use our probabilistic approach to devise a scalable search

strategy.

5.4.1 Probabilistic model

In general, if a neural network is evaluated on inputs which are not sampled from its

training distribution, its performance can degrade significantly (Csurka, 2017). We

hypothesise that the density of an input under the model’s training input distribution

is indicative of how well the model can transform the input. We extend this idea to

modules since they also are parameterised nonlinear transformations, each trained on

some input distribution. Therefore, for a new problem and a given path, the density of

each pre-trained module’s inputs under said module’s training input distribution should

be indicative of the path’s expected performance. For a PT path, the first l modules are

pre-trained, which allows us to use them to process the training data and calculate the

inputs which each of these modules needs to handle.

M1 M2 M3

H2
iH1

iXi
N

Figure 5.2: A graphical model depicting the joint distribution over the three pre-trained

modules (M1, M2 and M3) of a PT path π ∈ ΠPT, 3 and their inputs: Xi, H1
i and H2

i

respectively.

Using this insight, for a given value of l, we define a probabilistic model over the

choices of pre-trained modules and their N inputs (including X , the problem inputs,

and H i, the relevant hidden states). The graphical model for l = 3 is depicted in Figure

5.2 and the general joint probability distribution can be written as:

p(M1, ...,Ml,X1, ...,XN ,H1
1 , ...,H

1
N , ...,H

l−1
1 , ...,H l−1

N)

=
N

∏
j=1

{
p(X j|H1

j ,M
1)

l−1

∏
i=2

[
p(H i−1

j |H i
j,M

i)
]

p(H l−1
j |Ml)

}
l

∏
i=1

[
p(Mi)

]
. (5.5)

We can then model the posterior of a PT path of length l as only being dependent on

the training inputs, p(π[pre]|Xtr) := p(m1, ...,ml|x1, ...,xN), and express it in terms of

5.4. Scalable Perceptual and Few-shot Transfer 103

quantities which we can approximate. To ease the presentation, and without loss of

generality, we set the number of pre-trained modules l = 3. Next, we express the joint

distribution in terms of quantities which we can approximate. We write

p(M1,M2,M3,X1, ...,XN ,H1
1 , ...,H

1
N ,H

2
1 , ...,H

2
N)

= p(M1)p(M2)p(M3)
N

∏
j=1

p(X j|H1
j ,M

1)p(H1
j |H2

j ,M
2)p(H2

j |M3)

where

p(X j|H1
j ,M

1)=
p(X j,H1

j ,M
1)

p(H1
j ,M1)

=
p(H1

j |X j,M1)p(X j|M1)p(M1)

p(H1
j)p(M1)

=
p(H1

j |X j,M1)p(X j|M1)

∑m2′ p(H1
j |m2′)p(m2′)

and

p(H1
j |H2

j ,M
2) =

p(H1
j ,H

2
j ,M

2)

p(H2
j ,M2)

=
p(H2

j |H1
j ,M

2)p(H1
j |M2)p(M2)

p(H2
j)p(M2)

=
p(H2

j |H1
j ,M

2)p(H1
j |M2)

∑m3′ p(H2
j |m3′)p(m3′)

.

Therefore, the joint distribution can be expressed as:

p(M1,M2,M3,X1, ...,XN ,H1
1 , ...,H

1
N ,H

2
1 , ...,H

2
N)

= p(M1)p(M2)p(M3)
N

∏
j=1

p(H1
j |X j,M1)p(X j|M1)

∑m2′ p(H1
j |m2′)p(m2′)

p(H2
j |H1

j ,M
2)p(H1

j |M2)

∑m3′ p(H2
j |m3′)p(m3′)

p(H2
j |M3).

(5.6)

This expression contains three groups of distributions, which we need to define. First,

we can define a prior over the choices of pre-trained modules for different module

layers, p(Mi). Second, we can approximate each module’s training input distribu-

tion, leading to p(H i
j|mi+1

<t) ≈ q(H i
j|mi+1

<t). The third group of distributions contains

p(H i
j|H i−1

j ,Mi) which is a distribution over the values of a hidden layer H i given the

previous hidden layer hi−1 and a module mi. However, said hidden layer is given by the

deterministic transformation hi
j =mi(hi−1

j). Therefore, we can model p(H i
j|H i−1

j ,Mi)=

δ(H i
j−hi

j) using the Dirac delta function δ. This function has the property that
∫

∞

−∞
f (z)δ(z−

104 Chapter 5. PICLE: A Probabilistic Framework for Modular Lifelong Learning

c)dz = f (c), which we use next in order to simplify the posterior. We write:

p(m1,m2,m3|x1, ...,xN) =
p(m1,m2,m3,x1, ...,xN)

p(x1, ...,xN)
∝ p(m1,m2,m3,x1, ...,xN)

=
∫

∞

−∞

...
∫

∞

−∞

p(m1,m2,m3,x1, ...,xN ,h
′1
1 , ...,h

′1
N ,h

′2
1 , ...,h

′2
N)dx1...dh

′
N

= p(m1)p(m2)p(m3)
N

∏
j=1

p(x j|m1)

∑m2′ p(h1
j |m2′)p(m2′)

p(h1
j |m2)

∑m3′ p(h2
j |m3′)p(m3′)

p(h2
j |m3)

≈ p(m1)p(m2)p(m3)
N

∏
j=1

q(x j|m1)

∑m2′ q(h1
j |m2′)p(m2′)

q(h1
j |m2)

∑m3′ q(h2
j |m3′)p(m3′)

q(h2
j |m3)

In general, for l pre-trained modules, we approximate the numerator of the posterior

using:

p(m1, ...,ml|x1, ...,xN) ∝ p(m1, ...,ml,x1, ...,xN)

≈
l

∏
i=1

p(mi)
N

∏
j=1

l−1

∏
i=1

 q(hi−1
j |mi)

∑mi+1′ q(hi
j|mi+1′)p(mi+1′)

q(hl−1
j |ml)


(5.7)

To compute this, we need to define a prior distribution over modules and approximate

a module’s training input distribution. These are detailed next.

5.4.1.1 Defining the prior

Computing Eq. 5.7 requires us to define a prior distribution over the choice of a pre-

trained module, p(Mi). Say two modules mi
a and mi

b are trained using two differ-

ent paths on two different problems. Now, say that the model trained on problem a

achieved Acc(a) validation accuracy, while the model trained on problem b achieved

a higher validation accuracy Acc(b) = Acc(a)+d, for d > 0. We hypothesise that the

module, whose model achieved the higher accuracy after training, is likely to compute

a more useful transformation of its input. Therefore, if mi
a and mi

b have a similar like-

lihood for a given set of training data points, we would give preference to using mi
b.

To this end, we define the prior distribution in terms of a module’s original accuracy

using the softmax function as follows:

p(mi
j) =

e
Acc(j)

T

Σmi
j′
e

Acc(j′)
T

. (5.8)

Here T is the temperature hyperparameter which we compute as follows. Suppose

that, for a given set of inputs {x1, ...,xN}, we have selected the first i−1 modules and

5.4. Scalable Perceptual and Few-shot Transfer 105

have computed the inputs to the ith module, DH i−1
= {hi−1

j }N
j=1. Moreover, suppose

that the likelihood of module mi
a is slightly higher than the likelihood of mi

b, i.e. that

p(DH i−1|mi
a) > p(DH i−1|mi

b). However, because the model of mi
b was trained to a

higher accuracy (Acc(b) = Acc(a)+d), we would like to give mi
b preference over mi

a.

Therefore, we would like to set the hyperparameter T so that the posterior of the path

using mi
b is higher, i.e. p(m1

<t , ...,m
i
a|x1, ...,xN)< p(m1

<t , ...,m
i
b|x1, ...,xN). Using Eq.

5.7 we can express this as:

p(m1
<t , ...,m

i
a|x1, ...,xN)< p(m1

<t , ...,m
i
b|x1, ...,xN)

p(mi
a)p(DH i−1|mi

a)< p(mi
b)p(DH i−1|mi

b)

p(mi
a)

p(mi
b)

<
p(DH i−1|mi

b)

p(DH i−1|mi
a)

e
Acc(a)

T

e
Acc(a)+d

T

<
p(DH i−1|mi

b)

p(DH i−1|mi
a)

Acc(a)
T

− Acc(a)+d
T

< log
p(DH i−1|mi

b)

p(DH i−1|mi
a)

T >
d

log p(DH i−1|mi
b)− log p(DH i−1|mi

a)
.

(5.9)

We can then use the inequality in Eq. 5.9 in order to determine the value T. To do this,

one needs to decide how much difference in log likelihood should be overcome by a

difference d in accuracy.

5.4.1.2 Approximating the likelihood

In order to compute Eq. 5.7, we need to approximate each module’s training input

distribution, p(H i−1|mi
<t)≈ q(H i−1|mi

<t). Let mi
c be a module in the ith layer trained

on the c-th problem with inputs {x j}N
j=1, using the path π∗

c . After training, we can

compute this module’s training inputs by processing the problem’s inputs using the

first i− 1 modules of π∗
c . This way we compute a set of hidden activations Dtr,H i−1

=

{hi−1
j }N

j=1 which can be used to approximate the module’s training input distribution.

In this work, we use a multivariate Gaussian distribution because of its simplicity

and efficiency. However, this has two disadvantages. First, for a module with inputs

hi−1 ∈Rd of dimensionality d, a Gaussian approximation would require d2+d param-

eters, which could become undesirably large for high values of d. Second, if N < d

or if some of the input dimensions are not linearly independent, the sample covariance

matrix would be rank-deficient (Mohammadi et al., 2016) which leads to an ill-defined

density of the corresponding Gaussian distribution.

106 Chapter 5. PICLE: A Probabilistic Framework for Modular Lifelong Learning

To address this, we assume that there are at least k ≪ d linearly independent dimen-

sions. We then perform dimensionality reduction of each input hi−1
j using a random

projection with a randomly generated matrix Ai−1 ∈ Rk×d (Pedregosa et al., 2011).

This projection has a number of useful properties. First, since Ai−1 is a full column-

rank matrix, it is highly likely that the k dimensions of the projected inputs will be lin-

early independent. Second, it has been shown that a random projection approximately

preserves the distance between the projected data points (Johnson, 1984). Third, the

matrix Ai−1 is not data-dependant, so the same matrix can be reused to project points

with the same dimensionality sampled from different input distributions. Fourth, the

density of a projected data point p(Ai−1hi−1
j) is proportional to the average density

of all the original data points that could be projected to it (Cunningham and Fiterau,

2021). Since the support of the data distribution usually lies on a manifold with a sig-

nificantly lower dimension, it is unlikely that two different data points sampled from

a data distribution will be projected to the same point. In this case the two densities

would be proportional p(hi−1
j) ∝ p(i−1hi−1

j) with a high probability.

Therefore, for a given set of hidden activations Dtr,H i−1

j = {hi−1
j }N

j=1, representing

the inputs that a module mi
c was trained on, we approximate the projected input train-

ing distribution with a multivariate Gaussian p(Ai−1H i−1|mi
c) ≈ q(Ai−1H i−1|mi

c) =

N (µi
k,Σ

i
k), where µi

k and Σi
k are respectively the sample mean and the sample co-

variance, computed using the projected module inputs in Dtr,H i−1

j . This addresses the

challenge of singular sample covariance and each approximation requires much fewer

parameters, k2 + k. In our ablation experiments, we compare the utility of multivariate

Gaussian approximations of the projected module inputs to that of multivariate Gaus-

sian approximations over the original module inputs. Surprisingly, our results suggest

that the former (our approximation) leads to a more reliable identification of the correct

modules which should be selected to process some given set of inputs.

As a result of our approximations, our probabilistic model from Equation 5.5 be-

comes a model over the choice of modules and their projected inputs, modelling

p(M1, ...,Ml,A0X1, ...,A1H1
1 , ...,A

l−1H l−1
N). Because of the aforementioned propor-

tionality of the likelihood, it is likely that the posterior distributions are proportional as

well, i.e. p(m1, ...,ml|x1, ...,xN) ∝ p(m1, ...,ml|A0x1, ...,A0xN).

Having specified a probabilistic model and a way to compute the posterior distri-

bution over pre-trained, we next show how to apply the search strategy defined in Eq.

5.2 to subsets of PT paths.

5.5. Scalable Non-Perceptual Transfer 107

5.4.2 Search Strategy

The number of possible PT paths of length l increases exponentially with l. As a

result, it is not computationally feasible to directly apply the search strategy SMAP (Eq.

5.2) since it would require that p(π[pre]|Xtr) is evaluated for all PT paths of length l.

Instead, we augment it with a greedy policy, such that after selecting the first l pre-

trained modules, we freeze this selection and reuse the same l modules for PT paths

which transfer more modules. As a result, p(π[pre]|Xtr) needs to be evaluated for at

most O(tL) paths. Moreover, for each value of l, the search only recommends the path

which has the highest probability under our model for evaluation, since this is the path

which is best equipped to handle the inputs. We define the augmented search strategy

over all ΠPT
t =

⋃L
l=1 Π

PT,l
t as:

SPT
G (ΠPT

t) := {π
∗PT,l}L

l=1 (5.10)

where π
∗PT,l = π

∗PT,l−1[: l −1]∪m∗,l ∪{mi
t}L

i=l

m∗,l = argmax
ml

p(π∗′PT,l−1[: l −1]∪ml|x1, ...,xN)

This search strategy always recommends a constant number of paths (O(L) paths) for

evaluation irrespective of the value of t and, thus, irrespective of the size of the search

space. Moreover, it requires that only a constant number of modules be loaded in

memory at a time. As a result, combining SPT
G with Algorithm 1 would result in a

scalable modular LML algorithm capable of perceptual and few-shot transfer.

5.5 Scalable Non-Perceptual Transfer

To achieve non-perceptual transfer, a model can use pre-trained modules for the last l

module layers. This represents knowledge on how to transfer a latent representation

of the input to a task-specific prediction. Therefore, we identify subsets Π
NT,l
t ∈ Πt

which consists of paths capable of non-perceptual transfer. Each path has its first L− l

modules randomly initialised while the rest l modules are selected from a library:

Π
NT,l
t =

{
π

NT,l
t : π

NT,l
t = {mi

t}l
i=1 ∪{mi

<t}L
i=L−l+1

}
. (5.11)

Figure 5.1 illustrates an example of a NT subset, namely Π
NT,1
4 . Each subset grows

polynomially with the size of the library and exponentially with l, which makes a naive

search inapplicable when either of the two quantities is large. In this section we use

our probabilistic approach to devise a scalable search strategy.

108 Chapter 5. PICLE: A Probabilistic Framework for Modular Lifelong Learning

5.5.1 Probabilistic Model

For NT paths of length l, we define a probabilistic model over the choice of pre-trained

modules, the labels of the validation dataset, the inputs of the validation dataset and the

previous path evaluations E j. The first two are treated as random variables while the

latter two are treated as parameters. This allows us to express the posterior distribution

over paths as:

p(π[pre]|Xval,Yval,E j) ∝ p(Yval|Xval,π[pre],E j)p(π[pre]). (5.12)

E j is a set of tuples, each containing a previously evaluated NT path of length l and its

performance on the validation dataset after its new parameters are trained.

We define a prior over π[pre] which assigns equal non-zero values only to pre-trained

modules which have been used together to solve a previous problem. This reflects our

prior assumption that using a novel combination of modules for non-perceptual transfer

is unnecessary for the sequences which we consider. A similar prior is used in Veniat

et al. (2020).

For the purposes of numerical stability, we approximate the log-likelihood,

log p(Yval|Xval,π[pre],E j) using a Gaussian process (GP), which is fit on previous path

evaluations E j. To enable this, we next define a kernel function between the pre-trained

modules of two NT paths.

The difference between two NT paths πi and π j of length l is that their last l pre-

trained modules compute different functions. We hypothesise that if said functions are

similar, the two NT paths will exhibit similar performance after their random parame-

ters are trained. To make use of this insight, we define an inner product between two

vector-valued functions, f : Ω → Rr and g : Ω → Rr as: ⟨ f , g⟩ = ∫
Ω

f (z) · g(z)dz .

This allows us to compute the distance between two functions as:

d(f ,g) := || f −g||=
√

⟨ f −g , f −g⟩=
√∫

Ω

(f (z)−g(z)) · (f (z)−g(z))dz .

(5.13)

We approximate this value using Monte Carlo integration with a set of inputs, Z, from

the functions’ common input space. We can then define the kernel function between

the chosen pre-trained modules of two same-length NT paths using the squared expo-

nential kernel function and the distance between the functions computed by their last l

modules:

κ(π
[pre]
i ,π

[pre]
j ;Z) = σ

2 exp
{
−(d(π[pre]

i ,π
[pre]
j ;Z)2)/(2γ

2)
}

(5.14)

5.5. Scalable Non-Perceptual Transfer 109

where σ and γ are the kernel hyperparameters which are fit to maximise the marginal

likelihood of a GP’s training data (Rasmussen and Williams, 2006). To create Z for

a value of l, we store a small number of samples from the input distribution of each

pre-trained module at layer L− l+1. Given a new problem, we create Z by combining

all the stored hidden activations. This allows us to compare functions on regions of the

input space with higher density.

5.5.2 Search Strategy

In order to develop a suitable search strategy to search over NT paths, we modify

SMAP (Eq. 5.2) and apply it on a single subset Π
NT,lmin
t where lmin is the user-defined

minimum number of modules which need to be transferred in order to improve the

performance. Due to our choice of prior, maximising the posterior using Eq. 5.12 is

equal to maximising the log-likelihood over the paths with nonzero prior probability.

However, our GP-based approximation provides a distribution over the log-likelihood’s

value, which reflects the uncertainty of the GP’s prediction. To account for this, we

use an acquisition function, namely Upper Confidence Bound (UCB) (Shahriari et al.,

2015) which provides an optimistic prediction of the log-likelihood. The resulting

search strategy resembles Bayesian Optimisation:

SBO-MAP(Π
NT,lmin
t) =

 argmax
π∈Π

NT,lmin
t

UCB
(

log p(Yval|Xval,π[pre],E j)
)

j

. (5.15)

At each step j the search strategy updates the GP using the previously available path

evaluations and then uses the GP to predict the log-likelihoods of all unevaluated paths.

The path whose predicted distribution has the highest UCB value is selected as the

most promising and recommended for evaluation. For the first two steps (j ∈ {1,2})

we use Equation 5.13 to select the NT paths whose pre-trained functions have the

lowest average distance to others’. Our intuition is that these paths are the most related

to others so their evaluation should be the most informative about the performance of

other paths.

The GP makes it possible to detect when further improvement is unlikely, allowing

us to perform early stopping. For this purpose we compute the Expected Improvement,

EI
(

log p(π[pre]|Xval,Yval,E j)
)

of the path selected for evaluation at each step j. If it is

lower than a certain threshold, the search strategy terminates and does not recommend

any more paths for evaluation. EI-based early stopping has been previously suggested

110 Chapter 5. PICLE: A Probabilistic Framework for Modular Lifelong Learning

in Nguyen et al. (2017) and, similarly to Makarova et al. (2022), our preliminary ex-

periments showed that it leads to fewer path evaluations, compared to using UCB for

early stopping.

In the worst case, SBO-MAP would propose O (t −1) paths for evaluation which

scales linearly with the number of solved problems. While early stopping reduces the

number of evaluated paths, our experiments suggest said number still scales linearly

with the number of problems. However, our ablation experiments demonstrate that our

search strategy exhibits a good anytime performance. This means that our Bayesian

optimisation algorithm is capable of quickly finding a path which achieves positive

non-perceptual transfer. Therefore, it is possible to constrain SBO-MAP to evaluating

a constant number of paths and still achieve non-perceptual transfer across a long

sequence of problems. Moreover, the strategy can be implemented in a way which

requires only a constant number of modules to be stored in memory at a time. As a

result, combining SBO-MAP with Algorithm 1 would result in a scalable modular LML

algorithm capable of non-perceptual transfer.

5.6 Combining The Two Search Strategies

Following our framework defined in Equation 5.3 we combine the two search strate-

gies, SPT
G (Eq. 5.10) and SBO-MAP (Eq. 5.15). To do this, we simply invoke them con-

secutively, calling SPT
G first since it always recommends a constant number of paths.

This leads to the following search strategy:

S̃PICLE(Π
PT
t ∪Π

NT,lmin
t) = SPT

G (ΠPT
t)∪SBO-MAP(Π

NT,lmin
t). (5.16)

The resulting search strategy, S̃PICLE benefits from the transfer learning properties

of its constituent strategies. As discussed in earlier sections, both SPT
G and SBO-MAP

can be used for recommending a constant number of paths, regardless of the size of

the search space. Moreover, they require that only a constant number of modules be

loaded in memory at a time. Therefore, S̃PICLE can be combined with Algorithm 1

in order to develop a scalable modular LML algorithm which can perform perceptual,

non-perceptual and few-shot transfer.

5.7. BELL: Benchmark suite for Lifelong Learning 111

5.7 BELL: Benchmark suite for Lifelong Learning

In order to evaluate our ideas, we introduce BELL - a suite of benchmarks for eval-

uating the LML properties outlined in Section 5.2. We assume compositional tasks

and then generate various problem sequences, with each evaluating one or two of the

desired properties. Running an LML algorithm on all sequences then allows us to

asses which LML properties are present and which are missing. This builds upon

the CTrL benchmark suite, presented in Veniat et al. (2020), which defines differ-

ent sequences of image classification tasks, namely Spl, S−, Sout, Sin, S+ and Slong.

They evaluate plasticity, perceptual transfer, non-perceptual transfer, catastrophic for-

getting, backward transfer and scalability. We define our sequences similarly but over

problems with compositional tasks. This provides more flexibility in defining the types

of knowledge transferred between problems. As a result, we introduce additional se-

quences which evaluate new LML properties (Ssp and Sfew). We also introduce new

more challenging sequences (Sout* and Sout**).

Figure 5.3: An example input for Ψ = (DMNIST1,hMNIST1,g = (g(2)XOR,g
(1)
1)). The 2-tuple

of images are classified by hMNIST and then are mapped to the coordinates (1, 6) by g(1)1

since they represent the first and sixth classes respectively. Afterwards, g(2)XOR labels this

input as 0, using the XOR pattern, shown in Fig. 5.4.

We assume that the task of each problem is compositional, i.e. that its labelling

function can be decomposed into f = g◦h. We then denote each problem as a 3-tuple,

Ψt = (D j,h j,gk). Figure 5.3 presents an example of a problem where the input domain

D j is over 2-tuples of MNIST (LeCun et al., 2010) images; h j maps a 2-tuple of images

into a 2-tuple of classes; gk maps a 2-tuple of classes to a Boolean value specifying

whether or not the classes conform to some pattern. We can exploit the composition-

ality of the problems in order to evaluate different transfer learning properties. For

instance, if two problems share the same D and h, then perceptual transfer can occur

between them. If two problems share the same g, then non-perceptual transfer can

occur between them. Finally, if a problem’s 3-tuple combines previously encountered

values for D j, h j and gk, then this could allow for few-shot transfer.

112 Chapter 5. PICLE: A Probabilistic Framework for Modular Lifelong Learning

The sequences we define rely on a pool of input domains and their input labelling

sub-functions {(D j,h j)} j as well as a pool of upper labelling sub-functions {gk} j.

Each of the following sequences is a pattern which specifies the number of problems,

the common elements between the problems as well as the problems’ dataset sizes. To

evaluate an LML algorithm over one of the defined sequences, one randomly samples

from the aforementioned pools and according to the sequence’s pattern. Following

Veniat et al. (2020), we set the sequence length of most sequences to 6 which, as

we show in the experiments section, is sufficient for evaluating different LML prop-

erties. Specifically, we can still use these sequences to evaluate the scalability of a

modular LML algorithm because our experiments use an 8-layered modular neural ar-

chitecture which leads to a large search space in the last problem, upper bounded by

O(68 = 1679616). For a problem Ψt = (D j,h j,gk), we refer to h j as the lower labelling

sub-function and to gk as the upper labelling sub-function. We use the indices j and

k to indicate whether the corresponding labelling sub-function has occurred before in

the sequence (j < t, k < t) or if it is new and randomly selected (j = t, k = t). For

brevity, if j = t and k = t, we don’t write out the whole triple but only Ψt . By repeat-

ing previously encountered domains or labelling sub-functions, we can control what

knowledge can be transferred in each of the define sequences. In turn, this allows us

to evaluate different LML properties. We use Ψ+ to indicate that the dataset generated

for this problem is sufficient to learn a well generalising approximation without trans-

ferring knowledge. On the other hand, Ψ− indicates that the LML algorithm cannot

achieve good generalisation on this problem without transferring knowledge. Finally,

Ψ−− indicates that the generated training dataset consists of only a few datapoints,

e.g. 10. Next, we separately present each sequence, detailing which LML properties it

evaluates.

Plasticity and Stability: The sequence Spl = [Ψ+
1 ,Ψ

+
2 ,Ψ

+
3 ,Ψ

+
4 ,Ψ

+
5 ,Ψ

+
6] consists of

6 distinct problems, each of which has a different input domain and a different task.

Moreover, each of the generated datasets has a sufficient number of data points as not

to necessitate transfer. Therefore, this sequence evaluates an LML algorithm’s abil-

ity to learn distinct problems, i.e. its plasticity. Moreover, this sequence can be used

to evaluate an algorithm’s stability by assessing its performance after training on all

problems and checking for forgetting.

Forward Transfer: Most of our sequences are dedicated to evaluate different types

of forward transfer. To begin with, in the sequence S− = [Ψ+
1 ,Ψ

−
2 ,Ψ

−
3 ,Ψ

−
4 ,Ψ

−
5 ,Ψ

−
1]

the first and the last datasets represent the same problem, however, the last dataset has

5.7. BELL: Benchmark suite for Lifelong Learning 113

fewer data points. Therefore, an LML algorithm would need to transfer the knowledge

acquired from solving the first problem, thus, demonstrating its ability to perform for-

ward transfer to a previously solved problem.

Perceptual Forward Transfer: We introduce three different sequences for evaluat-

ing perceptual transfer. First, in Sout = [Ψ+
1 ,Ψ

−
2 ,Ψ

−
3 ,Ψ

−
4 ,Ψ

−
5 ,Ψ

−
6 = (D1,h1,g6)] the

last problem has the same input domain and input-processing target function h1 as in

problem 1. However, the last problem’s dataset is small, therefore, an LML algorithm

needs to perform perceptual transfer from the first problem, which is described by a

large dataset. Second, Sout* = [Ψ−
1 ,Ψ

+
2 = (D1,h1,g2),Ψ

−
3 ,Ψ

−
4 ,Ψ

−
5 ,Ψ

−
6 = (D1,h1,g6)]

shares the same input distributions and lower labelling sub-function h1 across prob-

lems Ψ1, Ψ2 and Ψ6. Therefore, an LML algorithm needs to decide whether to trans-

fer knowledge obtained from the first or from the second problem. Third, the sequence

Sout** = [Ψ−
1 ,Ψ

+
2 = (D1,h1,g2),Ψ

−
3 ,Ψ

−
4 ,Ψ

−
5 ,Ψ

−
1] is similar to the preceding one, with

the distinction that the last problem is the same as the first. In this sequence, an LML

algorithm needs to decide between reusing knowledge acquired from solving the same

problem (Ψ1), or to transfer perceptual knowledge from a more different problem (Ψ2).

Overall, these three sequences are designed to be increasingly more challenging in or-

der to distinguish between different LML algorithms which are capable of perceptual

transfer to a different extent.

Non-Perceptual Forward Transfer: Currently, we define two sequences to assess

an algorithm’s ability to transfer non-perceptual knowledge. Firstly, in Sin = [Ψ+
1 ,

Ψ
−
2 ,Ψ

−
3 ,Ψ

−
4 ,Ψ

−
5 ,Ψ

−
6 = (D6,h6,g1)] the last problem has the same upper labelling

sub-function as the first problem. However, the two problems’ input distributions

and lower labelling sub-functions are different. Therefore, an LML algorithm would

need to transfer knowledge across different input domains. Secondly, the sequence

Ssp = [Ψ+
1 ,Ψ

−
2 ,Ψ

−
3 ,Ψ

−
4 ,Ψ

−
5 ,Ψ

−
6 = (D6,h6,g1)] is simiarly defined, however, the in-

put distribution of the last problem is also defined on a different input space from the

input space of the first problem. Therefore, an algorithm would need to transfer knowl-

edge across different input spaces.

Few-shot Forward Transfer: In order to evaluate this property, we introduce the fol-

lowing sequence, in which the first two problems are different from the rest of the

sequences: Sfew = [Ψ+
1 = (D1,h1),Ψ

+
2 = (D2,h2),Ψ

−
3 ,Ψ

−
4 = (D1,h1,g4),Ψ

−
5 ,Ψ

−−
6 =

(D2,h2,g4)]. The labelling functions of the first two problems are simpler, each con-

sisting only of a lower labelling sub-function. This is done in order to provide an LML

algorithm with more supervision on how to approximate h1 and g1 more accurately.

114 Chapter 5. PICLE: A Probabilistic Framework for Modular Lifelong Learning

The fourth problem Ψ4 in this sequence then shares the same input domain and lower

labelling sub-function as the first problem, but introduces a new upper labelling sub-

function g4. The last problem then shares the input domain and the lower labelling

sub-function of Ψ2, while also sharing the upper labelling sub-function of problem

Ψ4. Moreover, the last problem’s training dataset consists of only a few data points.

Therefore, an LML algorithm would need to reuse its approximations of h2 and g4 in

a novel manner in order to solve the last problem.

Backward Transfer: The sequence S+ = [Ψ−
1 ,Ψ

−
2 ,Ψ

−
3 ,Ψ

−
4 ,Ψ

−
5 ,Ψ

+
1] has the same

first and last problem. However, the first dataset has significantly less data points than

the last. Ideally, an LML algorithm should use the knowledge acquired after solving

the last problem in order to improve its performance on the first problem. While this

sequence represents a starting point for evaluating backward transfer, it is possible to

introduce other sequences, representing more elaborate evaluations. For instance, in-

troducing sequences which evaluate perceptual and non-perceptual backward transfer

separately. However, as backward transfer is not the focus of this thesis, this is left for

future work.

Scalability: This property can be evaluated using a long sequence of problems. For

this purpose we define Slong = [Ψi]
60
i=1 which consists of 60 problems, each randomly

selected with replacement from a set of problems. Most problems are represented by

a small dataset, Ψ
−
t . Each of the first 50 problems has a 1

3 probability of being repre-

sented by a large dataset, Ψ
+
t . Each problem also has a 1

10 probability of being rep-

resented by an extra small dataset, Ψ
−−
t . Overall, this sequence evaluates perceptual,

non-perceptual and few-shot transfer on a longer sequence of problems.

The definitions of these sequences rely on two pools of (domains, lower labelling

sub-functions) and upper labelling sub-functions, respectively. In turn, these can be

used to create a set of problems. Next, we present a set of problems which can be

used together with the aforementioned sequence definitions in order to evaluate LML

algorithms.

5.7.1 Compositional Problems

To implement the sequences defined above, one needs to define a set of compositional

problems. To this end, we define 9 different pairs of an input domain and a lower la-

belling sub-function, {(Di,hi)}9
i=1. Moreover, we define 16 different upper labelling

sub-functions {gi}16
i=1. These can be combined into a total of 144 different composi-

5.7. BELL: Benchmark suite for Lifelong Learning 115

tional problems.

First, we define 9 image multi-class classification tasks, which all share input and

output spaces R28×28 → R8, but each have a different input distribution Di and a

domain-specific labelling function hi. Concretely, we start with image classification

datasets which depict: digits (MNIST) (LeCun et al., 2010), fashion products (FM-

NIST) (Xiao et al., 2017), letters (EMNIST) (Cohen et al., 2017) and cursive Japanese

characters (KMNIST) (Clanuwat et al., 2018). Since some of the classes in KMNIST

have significantly fewer training data points, we only use the 33 classes with the fol-

lowing indices: [0,1,2,4−12,15,17−21,24−28,30,34,35,37−41,46,47], as they

have a sufficient number of associated data points. We split the image datasets into

smaller 8-class classification datasets. We use i to denote the different splits of the

same original dataset. For example MNIST1 denotes the dataset consisting of the first

8 digits ({0, ...,7}). There is no MNIST2 because there are only 10 different classes

available. As another example, EMNIST2 represents the third split of EMNIST, cor-

responding to a classification task among the letters from ’i’ to ’p’. Using this we

end up with the following 9 image datasets: MNIST1, FMNIST1, {EMNISTi}3
i=1,

{KMNISTi}4
i=1. For each of these image datasets, we set aside 4800 validation images

from the training dataset. We also keep the provided test images separate.

Figure 5.4: An illustration of the four two-dimensional patterns which are used by the

four g(2) functions to label the input coordinates. Green indicates a positive label, and

red indicates a negative label.

Second, we define a set of binary classification tasks, which map R16 → {0,1}.

Each task’s labelling function gi receives two concatenated 8-dimensional one-hot en-

codings and returns a binary value, indicating if the given combination of 2 classes,

represented by the input, fulfils a certain criteria. We further decompose the labelling

function into gi(x) = g(2)k (g(1)j (x[: 8]),g(1)j (x[8 :])).

Here, g(1)j maps a one-hot encoding to an integer between 1 and 8. For instance, g(1)1

maps the first dimension to 1, the second to 2 and so on. As a result, we use g(1) to

convert the initial input of two one-hot encodings to two-dimensional coordinates. We

116 Chapter 5. PICLE: A Probabilistic Framework for Modular Lifelong Learning

define 4 different g(1) mappings, where g(1)1 is defined as above, and g(2)1 , g(3)1 and g(4)1

each map the dimensions to a different randomly selected integer between 1 and 8.

At the same time, each g(2)k : R2 → {0,1} outputs whether a given two-dimensional

coordinate is a part of a certain pattern or not. We define 4 different g(2) functions,

each corresponding to one of 4 two-dimensional patterns, shown in Fig 5.4. In total,

these functions need to label 8∗8 = 64 different two-dimensional coordinates.

We fuse the 4 different g(1) functions with the 4 different g(2) functions to define 16

different g functions:

{g(k−1)∗4+ j(x) = g(2)k (g(1)j (x[: 8]),g(1)j (x[8 :])),k ∈ {1,2,3,4}, j ∈ {1,2,3,4}}.

Finally, we can combine our 9 image classification datasets {(Di,hi)}9
i=1 with our

16 binary classification tasks, in order to create 144 compositional problems {Ψ(k−1)∗9+ j =

(Dk,hk,g j),k ∈ {1, ...,9}, j ∈ {1, ...,16}}. The input to a problem Ψi = (Dk,hk,g j) are

two images sampled from Di. Each image is labelled by hi, each resulting in an eight-

dimensional one-hot encoding of the corresponding image’s class. The two one-hot

encodings are then concatenated and labelled by g j, which results in a binary label. An

example for Ψ = (DMNIST1,hMNIST1,g = (g(2)XOR,g
(1)
1)) is shown in Fig 5.3.

Sequence Ssp involves transferring across input spaces by having its last problem’s

input domain be defined over a different input space. To create this domain we flatten

any randomly selected domain from R28×28 to R784. This loses the images’ spacial

information and requires that a different neural architecture is applied to process those

inputs.

5.7.2 Realising the sequences

To implement a sequence S of length l, we need to select l concrete compositional

problems which fit the pattern specified by said sequence. Let the sequence have l(1)

different pairs of image domain and lower labelling sub-function, and l(2) different

upper labelling sub-functions. For all sequences, apart from Slong, we select l(1) pairs

of (Di,hi) by sampling from the set of all possible image classification tasks, without

replacement. Similarly, we select l(2) different upper labelling sub-functions by sam-

pling without replacement from the set of available binary classification tasks {gi}16
i=1.

For Slong, we use sampling with replacement.

If a problem’s training dataset needs to be large, Ψ
+
i , we generate it according to

the triple n+tr = (30000,Alltr,All). The first value indicates that we generate 30000

5.8. Experiments 117

data points in total. The second value indicates how many unique images from the

ones set aside for training, are used when generating the inputs. In this case, we use all

the available training images. The third value indicates how many out of the 64 unique

two-dimensional coordinates, used by the upper labelling sub-function, are represented

by the input images. In this case, we use all two-dimensional coordinates.

Some of the problems’ training datasets are required to be small and to neces-

sitate transfer. For sequences S−,Sout,Sout*,Sout**,Sfew,S+, we generate the training

datasets of each problem Ψ− using the triple n−tr = (10000,100,All). This way, only

100 unique images are used to generate the training dataset, so solving the problem

is likely to be difficult without perceptual transfer. The subset of unique images is

randomly sampled and can is different between two problems which share an input

domain. For sequences Sin and Ssp, which evaluate non-perceptual transfer, we use

the triple n−tr = (10000,Alltr,30). As a result, the generated datasets will only rep-

resent 30/64 of the two-dimensional coordinates, which is not sufficient for learning

the underlying two-dimensional pattern. Therefore, these problems will necessitate

non-perceptual transfer. When generating a dataset for a problem Ψ− in the sequence

Slong, we randomly choose between the two, namely between (10000,100,All) and

(10000,Alltr,30).

For the problems in which the training dataset needs to contain only a few data

points, Ψ−−, we use the triple n−−
tr = (10,20,10). This creates only 10 data points,

representing 20 different images and 10 different two-dimensional patterns.

For problems with Ψ−−, we use the triple n−−
val = (10,20,10) for generating the val-

idation dataset. For the rest of the problems, we use the triple n−−
val = (5000,Allval,All).

Finally, we generate all test datasets using the triple n−−
test = (5000,Alltest,All).

5.8 Experiments

Our experiments evaluate our approaches’ ability to achieve the LML desiderata which

we specified in Section 5.2. We are interested in our approaches’ ability to scale to

large search spaces and still achieve perceptual, non-perceptual and few-shot transfer.

Furthermore, we assess their applicability to disparate input domains and neural archi-

tectures. For this purpose, we perform experiments on our BELL benchmark suite as

well as on the CTrL (Veniat et al., 2020) benchmark suite. Finally, we conduct ablation

experiments in order to verify our design choices.

We combine the search strategies which we defined earlier with Algorithm 1 in

118 Chapter 5. PICLE: A Probabilistic Framework for Modular Lifelong Learning

order to derive three modular LML algorithms: EMO which can perform perceptual

and few-shot transfer using SPT
G (ΠPT

t) (Eq 5.10); NOMO which can perform non-

perceptual transfer using SBO-MAP(Π
NT,lmin
t) (Eq. 5.2); PICLE which can perform all

three of the aforementioned types of transfer using S̃PICLE(Π
PT
t ∪Π

NT,lmin
t) (Eq. 5.16).

Since the focus of this chapter is on augmenting modular LML methods, we com-

pare our algorithms to a number of competitive modular LML baselines. First, we

define MCL-RS which randomly selects paths from Πt . A similar modular LML al-

gorithm is described in Rajasegaran et al. (2019). Moreover, random search has been

shown to be a competitive baseline in high-dimensional search spaces (Wang et al.,

2013) and for neural architecture search (Li and Talwalkar, 2020). Second, we eval-

uate HOUDINI with a fixed neural architecture in order to keep the results compara-

ble. Third, we evaluate MNTDP-D (Veniat et al., 2020) which is a scalable modular

LML algorithm, capable of perceptual transfer. The algorithm evaluates a constant

number L of different paths (where L is the number of module layers) and is detailed

in Section 2.5.2.3. MTNDP-D has been shown to outperform parameter regularisation

LML methods (Kirkpatrick et al., 2017) and rehearsal-based methods (Chaudhry et al.,

2019a) on the CTrL benchmark suite. We selected MNTDP-D instead of its stochastic

version MNTDP-S because the authors showed that the former achieves better per-

formance. Finally, we also evaluate the standalone baseline (SA), which trains a new

model on each problem. This can demonstrate the performances which can be achieved

without knowledge transfer.

We use the same set of hyperparameters for our approaches across both benchmark

suites, which suggests that this choice of hyperparameters is robust and applicable to

different problems and neural architectures. For EMO and PICLE we project the hid-

den states to 20 dimensions before approximating the resulting distribution. Moreover,

we use 0.001 as the softmax temperature parameter for the prior distribution over pre-

trained modules. For NOMO and PICLE we store 40 of the training inputs of each

of the pre-trained modules used in the (L− lmin + 1)th layer. The value for lmin is 3

for both the BELL and the CTrL benchmarks. The jitter of the expected improvement

is 0.001 and the threshold used for early stopping, is 0.001. To calculate the value of

the upper confidence bound (UCB), we set the hyperparameter β = 2 in order to en-

courage exploration over exploitation. Finally, we use a problem-specific random seed

to make the training process deterministic, so that the difference in performance can

be accredited only to the LML algorithm, and not to randomness introduced during

training.

5.8. Experiments 119

For each baseline, we assess the performance on a held-out test dataset and report

the average accuracy of the final model across all problems, A, as well as the amount

of forward transfer on the last problem, Tr−1, computed as the difference in accuracy,

compared to the standalone baseline.

All experiments are implemented using PyTorch 1.11.0 (Paszke et al., 2019). We

also use GPy’s (GPy, 2012) implementation of a Gaussian process. We run each LML

algorithm on a single sequence, on a separate GPU. All experiments are run on a single

machine with two Tesla P100 GPUs with 16 GB VRAM, 64-core CPU of the following

model: ”Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz”, and 377 GB RAM.

5.8.1 BELL benchmarks

We first evaluate our algorithms and the baselines on the benchmark suite which we

introduced in Section 5.7. In order to reduce the effect of randomness on the results,

we create 3 versions of each sequence by randomly selecting different compositional

problems. Then, for each sequence, we report the measurements, averaged over these

3 versions. As discussed next, for a sequence of length 6, the search space of possi-

ble paths is upper bounded by O(68 = 1679616), making it possible to evaluate the

scalability of the different baselines.

5.8.1.1 Neural Architecture

Here, we present the minimal neural architecture which we have found to be suitable

for solving the problems we use in BELL. We arrived at this architecture by evaluating

the performance of the SA baseline on randomly selected problems with a large amount

of training data.

We first define a convolutional neural network ζCNN : R28×28 → R8, suitable for

processing images from the image classification datasets. We use a 5-layer architec-

ture with ReLU hidden activations and a softmax output activation. The layers are

as follows: Conv2d(input channels=1, output channels=64, kernel size=5, stride=2,

padding=0), Conv2d(input channels=64, output channels=64, kernel size=5, stride=2,

padding=0), flatten, FC(4*4*64, 64), FC(64, 64), FC(64, 10). Here, Conv2d specified

a two-dimensional convolutional layer and FC specifies a fully-connected layer.

Second, we define a fully-connected neural network for processing a concatenation

of two 8-dimensional one-hot embeddings, ζMLP : R16 → R1. It consists of 2 FC

hidden layers with 64 hidden units and RELU hidden activations, followed by an output

120 Chapter 5. PICLE: A Probabilistic Framework for Modular Lifelong Learning

FC layer with a sigmoid activation.

For a compositional problem Ψk = (Di,hi,g j) the input is a 2-tuple of images,

(x1,x2) and the expected output is a binary classification. We solve it using the archi-

tecture ζcomp = ζMLP(concatenate(ζCNN(x2),ζCNN(x2))). This architecture processes

each of the 2 input images with the same ζCNN model. Then the 2 outputs are concate-

nated and processed by a ζMLP model.

We represent this as a modular neural architecture by considering each of the 8

parameterised nonlinear transformations to be a separate module. This increases the

number of possible paths for each problem. As a result, for the 6th problem in a

sequence, the number of possible paths is upper bounded by O(68 = 1679616). There-

fore, in this setting, even sequences of length 6 are challenging for modular LML

approaches.

The input space of the last problem in the sequence Ssp is given by a flattened

vector with 784 dimensions. Therefore, only for this problem, we replace ζCNN with a

different architecture, ζFC, which consists of two fully connected layers, with a hidden

size of 64, uses ReLU as a hidden activation and softmax as its output activation.

We train new parameters to increase the log-likelihood of the labels using the

AdamW optimiser (Loshchilov and Hutter, 2017) with 0.00016 learning rate, and

0.97 weight decay. The training is done with a mini-batch size of 32 and across 1200

epochs. We apply early stopping, based on the validation loss. We stop after 6000

updates without improvement and return the parameters which were logged to have

had the best validation accuracy during training.

5.8.1.2 Results

The results for the sequences which do not involve non-perceptual transfer are pre-

sented in Table 5.1. We present EMO and PICLE in the same column as they exhibit

the same performance on these sequences. Overall, it can be observed that PICLE

outperforms the rest of the baselines on all sequences, apart from S+, with MNTDP-

D coming second. PICLE’s advantage is the biggest on Sfew and Sout** where we

achieve significant improvement over all other methods. The low amount of transfer

which MCL-RS and HOUDINI achieve on the last problems highlights the fact that

naive search strategies are not suitable for large search spaces. We next review these

results in more detail.

To begin with Spl consists of 6 problems, represented by a large dataset and eval-

uates an algorithm’s ability to learn a large number of problems without catastrophic

5.8. Experiments 121

SA MCL-RS HOUDINI MNTDP-D EMO, PICLE

A(S−) 73.88 76.67 79.59 81.67 81.92
Tr−1(S−) 0. 17.22 34.27 34.29 34.29

A(Sout) 74.25 76.16 74.40 77.95 78.15
Tr−1(Sout) 0. 5.64 0. 15.41 15.41

A(Sout*) 72.27 73.39 72.27 75.48 75.72
Tr−1(Sout*) 0. 0.43 0. 12.53 12.53

A(Sout**) 71.51 73.85 71.75 73.71 75.73
Tr−1(Sout**) 0. 4.61 1.46 1.74 12.04

A(Sfew) 75.47 78.14 80.82 82.18 88.12
Tr−1(Sfew) 0. 5.87 4.54 11.42 46.07

A(Spl) 93.61 93.63 93.61 93.72 93.79
Tr−1(Spl) 0. 0. 0. 00.20 00.20

A(S+) 73.61 75.08 73.61 74.54 74.49

Tr−1(S+) 0. 0. 0. 0. 0.

Table 5.1: The results on our compositional benchmarks which do not evaluate non-

perceptual transfer. PICLE outperforms the rest of the baselines on all sequences,

apart from S+.

122 Chapter 5. PICLE: A Probabilistic Framework for Modular Lifelong Learning

forgetting. Forgetting is not evaluated, since all of the baselines avoid it by design.

In terms of plasticity, all baselines achieve equal or better performance than the stan-

dalone baseline. Moreover, our results indicate that knowledge transfer is still possible

in this sequence, with PICLE achieving the highest average accuracy.

The sequence S− evaluates knowledge transfer to an already encountered problem,

represented by a much smaller dataset upon the second encounter. Both MNTDP-D

and PICLE achieve the highest transfer on the final problem, but PICLE also achieves

a higher average accuracy across problems. This indicates that our algorithm can more

often find paths which lead to knowledge transfer.

The sequence Sout evaluates an algorithm’s perceptual transfer between two prob-

lems with the same input distributions. Both MNTDP-D and PICLE achieve the best

amount of transfer on the last problem, but again PICLE attains a higher average ac-

curacy.

Sout∗ is a more challenging sequence for evaluating perceptual transfer, in which

the first two problems share the same input distribution as the last problem. Therefore,

the algorithms needs to select the correct problem to transfer from. Surprisingly to us,

both MNTDP-D and PICLE are equally successful in achieving the highest perceptual

transfer on the last problem. Still, PICLE attains a higher average accuracy across

problems.

Sout∗∗ is an even more challenging sequence for evaluating perceptual transfer. The

first and the last problems are the same and are both given by a small dataset. The

second problem, represented by a large dataset, shares the same input distribution as

the first and the last problems, but has a different labelling function. Therefore, an

algorithm needs to transfer knowledge from the second problem to the last problem,

even though the first and the last problems are the same. Our results demonstrate that

PICLE achieves the highest perceptual transfer on the last problem, with a signifi-

cant advantage over the other baselines. Our prior distribution over modules, which

prioritises modules trained to a higher accuracy, helps us select the correct problem

to transfer from. At the same time, MNTDP-D is outperformed by random search

(MCL-RS).

Sfew evaluates a modular algorithm’s ability to recompose previously trained mod-

ules in a novel way in order to solve a previously unseen problem. Once again, our re-

sults indicate that PICLE significantly outperforms the baselines. On the last problem,

it achieves 34.65 higher accuracy than the second-best, MNTDP-D. This demonstrates

our algorithm’s ability to achieve few-shot transfer.

5.8. Experiments 123

SA MCL-RS HOUDINI MNTDP-D EMO NOMO PICLE

A(Sin) 89.01 90.85 89.32 90.62 90.26 92.20 92.82
Tr−1(Sin) 0. 1.81 11.04 9.70 7.61 18.89 22.28

A(Ssp) 87.94 92.22 92.99 87.94 87.92 91.92 91.93

Tr−1(Ssp) 0. 25.68 30.27 0. 0. 23.65 23.65

Table 5.2: The results on our compositional benchmarks which evaluate non-

perceptual transfer. The results demonstrate that PICLE is able to perform non-

perceptual transfer across problems with different input distributions and different input

spaces.

S+ evaluates an algorithm’s ability to achieve backward knowledge transfer from

the last problem to the first. However, none of the competing methods are capable of

backward transfer by design. Surprisingly, MCL-RS is able to find the best average

accuracy across problems.

Our results on sequences which evaluate non-perceptual transfer, presented in Ta-

ble 5.2, demonstrate that SBO-MAP enables NOMO and PICLE to transfer knowl-

edge across different input distributions and input spaces. At the same time EMO and

MNTDP-D can only achieve perceptual transfer on the last problem which leads to

their significantly smaller performance. PICLE is able to achieve the highest perfor-

mance on Sin. Surprisingly, it achieves a higher amount of knowledge transfer on the

last problem than NOMO. Upon investigation, we found that for one of the three ran-

dom realisations of Sin, it was better to transfer perceptual knowledge, than to transfer

non-perceptual knowledge to the last problem, which PICLE was able to take advan-

tage of. In Ssp, the different input space of the last problem necessitates a different

modular architecture for the first 5 modules, resulting in a much smaller search space,

O(63 = 216). This allows non-scalable approaches, namely MCL-RS and HOUDINI,

to also be effective on this sequence. Lastly, PICLE’s performance demonstrates that

combining SPT
G and SBO-MAP leads to better performance on sequences that allow for

both perceptual and non-perceptual transfer.

Finally, we evaluated our approach on Slong - a sequence of 60 problems. EMO

achieved +7.37 higher average accuracy than the standalone baseline demonstrating

its ability to achieve perceptual transfer on a long sequence of problems. MNTDP-

D achieved +8.83 higher average accuracy than SA which confirmed its scalability.

Finally, PICLE performed the best, attaining +12.25 higher average accuracy than SA.

124 Chapter 5. PICLE: A Probabilistic Framework for Modular Lifelong Learning

This shows that our approach can successfully attain perceptual and non-perceptual

transfer across a long sequence of problems.

5.8.2 CTrL benchmarks

The CTrL benchmark suite was introduced in Veniat et al. (2020). They define a

number of sequences, based on seven image classification tasks, namely: CIFAR10

and CIFAR100 (Krizhevsky et al., 2009), DTD (Cimpoi et al., 2014), SVHN (Netzer

et al., 2011), MNIST (LeCun et al., 1998), RainbowMNIST (Finn et al., 2019), and

Fashion MNIST (Xiao et al., 2017). All images are rescaled to 32x32 pixels in the

RGB color format. CTrL was first to introduce the following sequences: S−, S+,

Sin, Sout, Spl and Slong, which are defined similarly to our definitions. However, the

difference is that they are defined for and implemented by image classification tasks.

The last task in Sin, which evaluates non-perceptual transfer, is given by MNIST images

with a different background color than the first task. The last task in Sout is given by

shuffling the output labels of the first task. Slong has 100 tasks. For each task, they

sample a random image dataset and a random subset of 5 classes to classify. The

number of training data points is sampled according to a distribution that makes it

more likely for later tasks to have small training datasets. In contrast to BELL, they

use only 1 selection of tasks for each sequence, i.e. 1 realisation of each sequence. To

generate the sequences, we use the code provided by the authors (Veniat and Ranzato,

2021).

Our experimental setup mirrors the one used in Veniat et al. (2020), except that we

make the training process deterministic, as discussed above. The neural architecture

used is a small variant of ResNet18 architecture which is divided into 6 modules, each

representing a different ResNet block (He et al., 2016). While the paper presenting the

CTrL benchmark states that 7 modules are used, we used the authors’ code (Veniat,

2021) for this method which specifies only 6 modules with the same total number of

parameters. The difference from the architecture stated in the paper is that the output

layer is placed in the last module, instead of in a separate module. All parameters

are trained to reduce the cross-entropy loss with an Adam optimiser Kingma and Ba

(2014) with β1 = 0.9, β1 = 0.999 and ε = 10−8. For each task, each path is evaluated

6 times with different combinations of values for the hyperparameters of the learning

rate ({10−2,10−3}) and of the weight decay strength {0,10−5,10−4}. The hyperpa-

rameters which lead to the best validation performance are selected. Early stopping is

5.8. Experiments 125

SA MNTDP-D EMO NOMO PICLE

A(Sin) 58.77 61.36 61.78 63.41 63.10

Tr−1(Sin) 0. 22.12 24.67 32.57 32.57

A(S−) 56.28 81.67 81.92 - 81.92
Tr−1(S−) 0. 34.29 34.29 - 34.29

A(Sout) 74.25 77.95 78.15 - 78.15
Tr−1(Sout) 0. 15.41 15.41 - 15.41

A(Spl) 58.25 93.72 93.79 - 93.79
Tr−1(Spl) 0. 00.20 00.20 - 00.20

A(S+) 73.61 74.54 74.49 - 74.49

Tr−1(S+) 0. 0. 0. - 0.

Table 5.3: The evaluations on the CTrL sequences, except for Slong. For each se-

quence, we report average accuracy A and the amount of forward transfer on the last

problem Tr−1.

employed during training. If no improvement is achieved in 300 training iterations, the

parameters with the best logged validation performance are selected. Data augmenta-

tion is also used during training, namely random crops (4 pixels padding and 32x32

crops) and random horizontal reflection.

Our results are shown in Table 5.3. We do not present results on MCL-RS and

HOUDINI as we have already demonstrated that these approaches do not scale to

large search spaces. It can be observed that EMO and PICLE, achieve similar per-

formance to MNTDP-D on Spl, S+, S−, Sout which evaluate plasticity, backward and

perceptual transfer. This demonstrates that our approach can successfully perform

perceptual transfer in this setting. On S−, NOMO and PICLE successfully perform

non-perceptual transfer, leading to superior performance on the last problem of the

sequence (+10.45 higher than MNTDP). CTrL also specifies Slong which has 100

problems but only evaluates perceptual transfer. EMO was successful in transferring

knowledge, achieving an average accuracy that was +14.48 higher than SA. MNTDP-

D was also successful in scaling to this long sequence, achieving +19.34 higher per-

formance than SA. Overall, the results demonstrate that both SPT
G and SBO-MAP are also

applicable to more complex modular architectures.

126 Chapter 5. PICLE: A Probabilistic Framework for Modular Lifelong Learning

5.8.3 Ablation Experiments

5.8.3.1 Random projections

The usage of SPT
G (Eq. 5.10) relies on approximations of the training input distributions

of pre-trained modules. Instead of modelling a module’s training input distribution

directly, we proposed to first project samples from it to k dimensions using random

projection, and then we model the resulting distribution with a multivariate Gaussian.

In this section we would like to evaluate three aspects of this approach. First, we

would like to assess the usefulness of the resulting approximations for the purposes of

selecting the correct input distribution. Second, we would like to assess the sensitivity

of our approximations to the hyperparameter k. Third, we would like to compare our

approach to Gaussian approximation of the original input space in order to determine

whether we sacrifice performance.

To this end, we evaluate whether our approach is useful for distinguishing between

a set of input distributions. We compare the approximations resulting from different

choices of k = {0,20,40}. The resulting methods are referred to as rp 10, rp 20 and

rp 40 respectively. Moreover, we compare to the method of computing a Gaussian

approximation of a module’s training input distribution, without a random projection.

Since this can lead to a singular covariance matrix, we make use of diagonal loading

(Draper and Smith, 1998) in which we add a small constant (10−8) to the diagonal of

the computed sample covariance matrix in order to make it positive definite. We refer

to the resulting method as diag loading.

We compare how well can these approaches distinguish between the 9 image datasets

used in BELL. We chose to use the input images for our comparison since they have

the highest dimension and should be the most difficult to approximate.

To evaluate one of the methods, we first use it to approximate all 9 input distribu-

tions using N data points, resulting in 9 approximations, denoted as {qi}9
i . Second, for

each input distribution p j, we sample 100 different data points and use them to order

the approximations in descending order of their likelihood. Ideally, if the data points

are sampled from the j-th distribution p j, the corresponding approximation q j should

have the highest likelihood, and thus should be the first in the list, i.e. should have an

index equal to 0. We compute the index of q j in the ordered list and use it as an indica-

tion of how successfully the method has approximated p j. We compute this index for

each of the 9 distributions and report the average index, also referred to as the average

position.

5.8. Experiments 127

(a) (b)

Figure 5.5: Comparison of different methods for modelling a module’s input distribution.

The x axis represents the number N of data points used to compute an approximation.

The y axis represents the average position, as defined in the main text, which indicates

how well a method can approximate the distributions. The lower the average position is,

the better the model performs. Figure a) presents a plot across all choices of N. Figure

b) focuses on the first few values of N.

We evaluate each method for different choices of N, N = {50, 100, 500, 1000,

5000, 10000, 20000, 30000, 44000}. Moreover, we repeat all evaluations 5 times

using different random seeds and report the mean and standard error of the average

position. The results are reported in Fig. 5.5.

Our results show that directly modelling the original distribution with a Gaussian

leads to sub-optimal performance. On the other hand, we observe that for N ≥ 500,

the methods which use random projection can always match the given data points with

the correct distribution which they were sampled for. Surprisingly, for N = 50 and

N = 100, diag loading outperforms the other methods and can successfully identify

the correct distribution of the given data points. Furthermore, we observe that for these

values of N, decreasing the dimension k that the data points are projected to leads to

better performance of the methods that are based on random projection.

Overall, our results suggest that the approximations which we use for SPT
G are ef-

fective when the new modules are trained on more than 100 data points. This seems

like a reasonable requirement, as fewer points are likely to result in a sub-optimal

performance.

128 Chapter 5. PICLE: A Probabilistic Framework for Modular Lifelong Learning

(a) Comparing to randomly selected initial

points (BO l2 rnd init), and random search

(RS).

(b) Comparing between different choices of

GP kernels.

Figure 5.6: Comparing different design choices for our Bayesian optimisation algorithm

sNT,l
BO .

5.8.3.2 Bayesian Optimisation

The search strategy SBO-MAP, which we use to search through NT paths for the op-

portunity of non-perceptual transfer, is equivalent to Bayesian optimisation. In this

setting, we are interested in evaluating various aspects of SBO-MAP. First, we assess its

ability to accelerate the search for the optimal NT path. Second, we assess its early

stopping capabilities. Third, we compare our kernel function to other alternatives.

To begin with, we create a new sequence:

Sin+ = [Ψ+
1 ,Ψ

+
2 , ...,Ψ

+
15,Ψ

−
16 = (D6,h6,g1)]

which involves all 16 upper labelling sub-functions g of BELL. The last problem’s

dataset is generated according to the triple n−tr = (10000,Alltr,30), which states that

only 30 out of the 64 possible two-dimensional patterns are represented in the dataset.

As a result, non-perceptual transfer is necessary in order to maximise the performance

on the final problem. We create 5 realisations of Sin+ with different randomly selected

problems.

Even though our method is deterministic, the baselines we compare it to involve

randomly selecting 2 or all random paths. For each such baseline, and each of the 5

realisations of the sequence Sin+, we run the baseline 10 times with 10 different random

seeds. This results in 10∗5 = 50 evaluations per method which we average over when

reporting its performance. For each method, we plot its maximum accuracy achieved

per number of programs evaluated (Fig 5.6), and we also report the average number of

5.8. Experiments 129

RS bo l2 bo l2 r bo gdp r bo pc r bo cov r bo gdp pc r bo gdp l2 r bo gdp l2 pc r

#paths 17 11.5 11.03 14.57 13.53 11.98 15.27 13.93 13.61

A 94.70 94.08 94.46 94.51 94.60 94.55 94.61 94.17 94.17

Table 5.4: A comparison of different discrete search algorithms.

programs it evaluates before early stopping (#paths) as well as the maximum accuracy

it achieves at the end of its run (A), as shown in Table 5.4.

There are 3 properties which we require from our approach: good any-time perfor-

mance, good final performance, and effective early stopping. In other words, it should

quickly find a good solution, then perform early stopping as soon as possible, and

return a solution the performance of which is close to the best possible performance.

We begin by comparing our search strategy SBO-MAP (which we denote BO l2) to

an augmented version which randomly selects the initial 2 paths (BO l2 r), and to a

random search baseline which recommends paths in a random order (RS). The results

are shown in Fig. 5.6a and the first 3 columns of Table 5.4. The results demon-

strate that BO l2 experiences a much stronger anytime performance, while evaluating

a comparable number of paths and achieving a similar, albeit not the best, accuracy.

Surprisingly, the 2 initial points chosen by BO l2 already achieve high performance.

As shown in Makarova et al. (2022), when early stopping based on the calculated Ex-

percted Improvement, it is possible to sacrifice performance in exchange for evaluating

fewer candidates. However, we consider the observed difference (also referred to as

regret) to not be significant. The results also show that, even for randomly selected

initial paths, the resulting method BO l2 r exhibits a better anytime performance than

random search, albeit worse than BO l2. Moreover, BO l2 r achieves better final accu-

racy than BO l2 and evaluates slightly fewer paths, on average, than BO l2. However,

this method’s reliance on randomly selected initial paths makes it less reliable than

BO l2.

Next, we investigate different choices of a kernel function used by the Gaussian

process of SBO-MAP. Both BO l2 and BO l2 r use the RBF kernel, as defined in Eq.

5.14 in order to convert a distance between functions into a similarity between func-

tions. Instead, we can directly calculate different similarity measures simv which can

then be used with the following kernel:

kv(π
NT,l
j ,πNT,l

k ;Z) = σ
2
0 +σ

2
1simv(π

NT,l
j ,πNT,l

k ;Z) (5.17)

where σ0 and σ1 are scalar hyperparameters that are optimised on the GP’s training

130 Chapter 5. PICLE: A Probabilistic Framework for Modular Lifelong Learning

dataset, and Z is a set of points from the functions’ input space, as defined in Section

5.5.1. We define the following similarity measurements for two scalar functions. First,

we can compute the covariance between the function’s outputs which computes the

linear relationship between the functions’ outputs but also reflects the magnitude of

the outputs. This leads to the following similarity:

simcov(f1, f2;Z) :=COV (∪i f (zi),∪ig(zi)) . (5.18)

Second, we can compute the sample Pearson correlation coefficient (Lee Rodgers and

Nicewander, 1988), denoted as PC, between the functions’ outputs. This captures the

linear correlation of the functions’ outputs while ignoring their magnitude. As a result,

the similarity ranges between [−1,1]. The similarity is defined as:

simpc(f1, f2;Z) := PC(∪i f (zi),∪ig(zi)) . (5.19)

Third, we note that the aforementioned similarities are computed based on the func-

tions’ outputs which only reflect points in their output space. Instead, we can compare

the functions’ curvatures around each evaluation input zi. For each input, we compute

the gradient of each function’s output with respect to its input and normalise it to have

a unit norm. The dot product between the two resulting normalised gradients is then

computed in order to capture the alignment between the two curvatures. This leads to

the following similarity:

simgdp(f1, f2;Z) :=
1
V

V

∑
i=1

(
∇ f1(zi)∥∥∇ f1(zi)

∥∥
2

)
·
(

∇ f2(zi)∥∥∇ f2(zi)
∥∥

2

)
. (5.20)

The 3 similarities defined above lead to 3 kernels, which in turn result in the follow-

ing 3 BO algorithms: BO cov r, BO pc r, BO gpd r. Moreover, one can sum kernel

functions in order to result in a new kernel function, which uses a combination of

similarities. We combine different kernels which leads to the following algorithms:

BO gpd pc r, BO gpd l2 r and BO gpd l2 pc r. For all algorithms, we use randomly

selected initial paths, because the paths selected deterministically perform too well

which makes it harder to compare algorithms. The resulting comparison is presented

in Fig. 5.6b and Table 5.4. It can be observed that early stopping prevents all of the BO

algorithms from finding the optimal solution. However, they all achieve comparable

performance while evaluating fewer paths. Overall, BO l2 r achieves the best anytime

performance by finding well-performing paths more quickly. Moreover BO l2 r evalu-

ates the fewest number of paths before early stopping. However, BO l2 r has a slightly

5.8. Experiments 131

worse final accuracy, compared to using other similarity measures. Finally, we observe

that combining the RBF kernel of BO l2 r with other kernels does not result in a better

algorithm.

Overall, our results suggest that SBO-MAP can be used to accelerate the search for

the optimal NT path. Moreover, its early stopping capabilities reduce the number of

paths which need to be evaluated, if this number is not restricted by an expert. Finally,

we show that our kernel function leads to quicker early stopping as well as better

anytime performance.

5.8.4 Discussion

Our experiments evaluated our approach’s LML capabilities on two separate bench-

mark suites. The results were consistent between sequences from the two benchmarks.

This demonstrates our approach’s applicability to different input domains and differ-

ent neural architectures. Overall, the following properties can be observed. First, the

results on both Spl sequences demonstrate PICLE’s plasticity as our method even sur-

passes the standalone baseline. Second, catastrophic forgetting is prevented by design,

which assures our methods’ stability. Third, we demonstrate all of the forward transfer

properties which we distinguish between in our desiderata. Specifically, our method’s

perceptual transfer is evident from the results on both Sout sequences, both Slong se-

quences, and on the Sout* and Sout** BELL sequences. Moreover, the Sfew sequence

in BELL shows that PICLE can attain few-shot transfer. Furthermore, the results on

both Sin, and on the Ssp and Slong BELL sequences, all demonstrate our approach’s

ability to achieve non-perceptual transfer. Fourth, the results on both S+ sequences

show that PICLE is unable to perform backward transfer. Finally, our experiments

were designed so that they also evaluate the methods’ scalability, as the search spaces

for even the short sequences of BELL and CTrL are upper-bounded by O(167916) and

O(46656) respectively. Therefore PICLE’s ability to attain these LML properties on

these large search spaces provides evidence of its scalability. Moreover, the results on

both Slong sequences show that PICLE can also scale to longer sequences of problems.

Our experimental results also demonstrate PICLE’s advantages over other modular

LML algorithms. We consistently outperform both MCL-RS and HOUDINI, demon-

strating the advantages of our approach over modular LML algorithms which use a

naive search strategy. On the other hand, MNTDP-D is a scalable modular LML

algorithm which can achieve perceptual transfer. Our results demonstrate that both

132 Chapter 5. PICLE: A Probabilistic Framework for Modular Lifelong Learning

MNTDP-D and PICLE achieve comparable performance on the short sequences that

evaluate the LML properties which are shared between the methods. However, PICLE

is able to outperform MNTDP-D on the Sfew, Ssp and Slong BELL sequences as well as

on both Sin sequences. This is due to MNTDP-D’s inability to achieve non-perceptual

and few-shot transfer. Interestingly, MNTDP-D demonstrated better performance than

EMO on both Slong sequences, suggesting that MNTDP-D’s search strategy is more

effective at perceptual transfer than SPT
G on long sequences. Conversely, SPT

G demon-

strated that it can utilise its prior distribution to achieve superior performance on the

Sout** BELL sequence, which evaluates perceptual transfer.

5.9 Related Work

Different desirable LML properties can be found across the literature. This includes

catastrophic forgetting (Kirkpatrick et al., 2017), backward transfer (Lopez-Paz and

Ranzato, 2017), scalability (Chaudhry et al., 2018b), non-perceptual transfer (Valkov

et al., 2018), negative transfer (Rusu et al., 2016), few-shot transfer (Valkov et al.,

2018; Ostapenko et al., 2021), privacy guarantees (Farquhar and Gal, 2019). Kemker

and Kanan (2017) suggest that an algorithm should overcome catastrophic forgetting

across different modalities, e.g. images and audio data, however, they modify both

modalities so that they share the same input space. In this work, we present a list of

properties, important for an LML algorithm, in which we focus on different transfer

learning requirements.

Previous work also defines different LML desiderata. For instance PC (Schwarz

et al., 2018b), EC (Hadsell et al., 2020), CS (Delange et al., 2021) and MC (Veniat

et al., 2020) all define a list of desirable properties. All mention scalability, how-

ever, PC and EC do not further specify a requirement, CS asks that the algorithm’s

memory remains constant, and MC asks that the algorithm’s memory and compute

requirements scale sub-linearly with the number of encountered problems. While the

rest aim to minimise catastrophic forgetting, CS also asks for ”selective forgetting of

trivial information”. All these papers agree that positive forward transfer and positive

backward transfer are necessary. However, only MC further decomposes it into what

we call perceptual and non-perceptual transfer. Still, MC is missing the requirements

for few-shot transfer and non-perceptual transfer across input spaces. EC requires an

algorithm to be able to quickly adapt to domain shifts. While this can be interpreted as

perceptual transfer, it is an important property which should be listed separately. In our

5.9. Related Work 133

work, we do not list it explicitly and our benchmark suite does not evaluate for it. EC

also lists that an algorithm should require minimal access to previous problems. We do

not list this, as we assume it is implied, however, it might be useful for this property to

be stated explicitly. Other properties listed in the aforementioned work are not related

to what we have defined as problem-incremental learning. For instance, PC, EC and

CS argue that an algorithm shouldn’t be provided with the index of the problem being

solved. Moreover, CS asks that an algorithm be able to perform online learning on a

continuous stream of data, as well as to be able to perform unsupervised learning on

unlabelled data.

Different sequences and benchmarks have been proposed to evaluate different LML

settings. For instance, CORe50 (Lomonaco and Maltoni, 2017) presents sequences for

continuous object recognition based on a new dataset of natural images. Depending

on the sequence, at each training batch they provide new images of a previously seen

object, or new objects with previously unseen classes, or both. Therefore, even though

they maintain the same problem, the data seen during training changes and an algo-

rithm needs to adapt to it. Farquhar and Gal (2018) discuss a number of requirements

for that an LML benchmark should have. For instance, the authors advocate for over-

lapping tasks and unclear task demarcations. However, in this work, we focus on

incremental-problem setting in LML, in which problems are given one at a time and

their index is specified. We do this because this setting is already challenging for cur-

rent methods, without the need for an extra layer of complexity. Different sequences,

relevant to this setting, have been proposed in the literature. Permutted MNIST Good-

fellow et al. (2013), described in Section 2.5.1.2, presents a sequence in which each

task is to classify MNIST images, but the inputs are permutted with a random problem-

specific permutation. This random permutation means that convolutional layers can’t

be used to process the input, as they depend on local features in the image. As a result,

this sequence is usually addressed using a neural architecture which consists of only

fully-connected layers. However, in this case, only the first layer needs to change in

order to accommodate for the new problem, meaning that it suffices to control catas-

trophic forgetting on the first layer only. Still, Permutted MNIST can be seen as eval-

uating non-perceptual transfer. We have not used it because of the limitations that it

places on the applicable neural architectures. Two other common LML sequences are

Split-CIFAR10 and Split-CIFAR100, also described in Section 2.5.1.2. The labels of

either image dataset are split into disjoint subsets and each problem then involves clas-

sifying images from the corresponding subset of classes. As a result, all problems in

134 Chapter 5. PICLE: A Probabilistic Framework for Modular Lifelong Learning

a sequence have a similar input domain, which allows perceptual knowledge transfer,

but does not evaluate an algorithm’s ability to avoid negative transfer. While such se-

quences are useful for evaluating catastrophic forgetting and some form of transfer,

they are limited in the number of properties they evaluate.

Instead, in Chapter 4, we presented a number of different sequences of compositional

problems, designed to evaluate different properties of LML. However, the image clas-

sification tasks that we used were primarily binary classification between two image

classes, which reduces the difficulty. Moreover, there were only 1 or 2 different tasks

operating on a list of binary classifications, namely, counting and summing. This re-

stricts the number of different compositional problems and prevents us from construct-

ing challenging longer sequences. In contrast, BELL uses multi-class image classifi-

cation and contains a larger variety of compositional problems. The CTrL benchmark

(Veniat et al., 2020) also introduced a number of sequences of image classification

tasks, which allows us to diagnose the properties of an LML algorithm. Our work

builds on this by extending it to compositional problems. This allows us to make Sin

more challenging and to introduce new sequences, designed to be more difficult ver-

sions of already existing sequences, namely Sout∗ and Sout∗∗. Moreover, due to our

problems’ compositionality, we can add two new sequences, Sin and Sfew, which eval-

uate for LML properties that were not evaluated in CTrL.

Continual learning methods can be categorised into ones based on regularisation,

replay or a dynamic architecture (Parisi et al., 2019). The first two share the same

set of parameters across all problems which limits their capacity and, in turn, their

plasticity (Kirkpatrick et al., 2017). Dynamic architecture methods can share differ-

ent parameters by learning problem-specific parameter masks (Mallya and Lazebnik,

2018) or adding more parameters (Rusu et al., 2016). This category includes modular

approaches to CL, which share and introduce new modules, allowing groups of pa-

rameters to be trained and always reused together. Modular approaches mainly differ

by their search space and their search strategy. PathNet (Fernando et al., 2017) uses

evolutionary search to search through paths that combine up to 4 modules per layer.

Rajasegaran et al. (2019) use random search on the set of all paths. HOUDINI (Valkov

et al., 2018) uses type-guided exhaustive search on the set of all possible modular ar-

chitectures and all paths. This method can attain the three types of forward transfer,

but does not scale to large search spaces. Their results also show that exhaustive search

leads to better performance than evolutionary search. MNTDP-D (Veniat et al., 2020)

is a scalable approach which restricts its search space to perceptual transfer paths,

5.9. Related Work 135

derived from previous solutions. Similarly to SPT
G , MNTDP-D evaluates only L+ 1

paths per problem, however, the approach does not allow for novel combinations of

pre-trained modules which prevents it from achieving few-shot transfer. In contrast,

our approach can achieve all three types of forward transfer. LMC (Ostapenko et al.,

2021) makes a soft selection over paths. For each layer, they compute a linear com-

bination of the outputs of all available pre-trained modules. To do this, the authors

model the distribution over each module’s outputs using a separate auto-encoder. In

contrast, for SPT
G we use multivariate Gaussian approximations of the projected inputs

of a pre-trained module, which requires orders of magnitude fewer parameters. Con-

cretely, in our experiments we need 420 parameters per approximation, while LMC

needs 82,176. Finally, LMC requires that all modules be kept in memory which limits

its scalability to larger libraries, thus, larger search spaces.

The work presented in this chapter automates the process of choosing the best

path. As such, the setting is similar to that of AutoML (He et al., 2021) in which the

algorithms aim to automate different aspects of the process of applying machine learn-

ing to a problem. In particular, our setting is similar to hyperparameter optimisation

(HPO) (Yu and Zhu, 2020) and neural architecture search (NAS) (Elsken et al., 2019).

HPO aims to optimise different hyperparameters related to the training procedure (e.g.

learning rate, choice of optimizer, magnitude of regularisation) and the neural archi-

tecture (e.g. number of hidden layers, number of hidden units, choice of activation

functions). Categorical hyperparameters are typically encoded as a one-of-k embed-

ding. However, in our setting, embedding all of the selected modules would result in

an embedding of size O(t lmin) which would make the sample complexity of our sur-

rogate model prohibitively high. NAS is a sub-setting of HPO which specialises to

searching through more elaborate neural architectures. For this purpose, NAS meth-

ods also study how to best featurise a neural architecture, as described in Section 3.4.

However, the approaches expressed in literature are specific to the respective neural

architectures and aren’t applicable to our setting. Despite the differences, there are

also similarities between previous work in HPO and NAS, and our approach. For in-

stance, most HPO and NAS approaches make use of a surrogate function. Moreover,

it is common to use Bayesian optimisation with a Gaussian process (GP) as a surro-

gate function in HPO. Kandasamy et al. (2018) use Bayesian optimisation with a GP

for NAS. Similarly to our work, they define their own kernel function to compute the

similarity between two neural architectures. The idea of early stopping with Bayesian

optimisation has also been explored before. For this purpose, Nguyen et al. (2017) use

136 Chapter 5. PICLE: A Probabilistic Framework for Modular Lifelong Learning

EI, Lorenz et al. (2015) use the probability of improvement (PI) and Makarova et al.

(2022) use a measure based on the lower confidence bound (LCB). Makarova et al.

(2022) compare all 3 approaches and show that while using EI and PI has a higher

chance of stopping before finding an optimal solution, they also evaluate significantly

fewer different configurations.

5.10 Conclusion

In this chapter, we specified a list of LML desiderata, which distinguishes between

different types of forward transfer. We then presented the first modular LML algorithm

capable of achieving all of the listed LML properties, apart from backward transfer. To

achieve this, we introduced a probabilistic search framework which can be used to

perform efficient search over module combinations. We developed two probabilistic

models over two different subset of module combinations. Used within our framework,

these models enabled us to search for paths which achieve perceptual, few-shot and

non-perceptual transfer, while scaling to large search spaces. Finally, we introduced

a new benchmark suite which can be used to diagnose an LML algorithm’s ability to

attain the identified desiderata.

An exciting direction for future work is enabling modular LML algorithms to

achieve backward transfer. This would lead to the first LML algorithm, which can

achieve all of the desiderata that we have identified in this chapter. To achieve this, one

would need to unfreeze the pre-trained modules, allowing their parameters to change

on future tasks. An additional insight is necessary in order to then prevent forgetting

and encourage backward transfer.

Another direction for future work is applying our probabilistic framework to more

subsets of module combinations. This can bring additional benefits, such as being able

to simultaneously perform perceptual and non-perceptual transfer, while also intro-

ducing new modules in the middle of a modular neural architecture. For this purpose,

one would need to define a different probabilistic model over a subset of some of the

currently unexplored module combinations.

Chapter 6

A Transfer-Learning Extension of

Hyperband

In Chapter 5 we presented a template for modular lifelong machine learning (LML) al-

gorithms (Algorithm 1) in which a key component is a search strategy S for navigating

the set of all paths (all module combinations), Πt , for a given problem. Furthermore,

we showed that we can apply a divide-and-conquer approach by exploring different

path subsets using different search strategies. However, the approach which we pre-

sented left a big subset of paths unexplored, namely Πrest
t = Πt \ (ΠPT

t ∪ΠNT
t). This

subset includes paths which can simultaneously perform perceptual and non-perceptual

transfer as well as other potentially useful paths which are more flexible in the way

they transfer knowledge. This subset is also not explored by other modular LML algo-

rithms (Veniat et al., 2020; Ostapenko et al., 2021). While HOUDINI searches through

all paths (and neural architectures), its search algorithm prevents it from being applica-

ble to large search spaces. Overall, there is a need for a scalable search strategy which

can explore Πrest
t .

In this chapter, we phrase the optimisation problem in Algorithm 1 (Eq. 5.1) as

black-box optimisation (BBO) which allows us to make use of hyperparameter optimi-

sation (HPO) methods when designing a relevant search strategy. However, previous

HPO methods suffer from one or more out of three shortcomings. These shortcom-

ings include the necessity for a manually-designed special input featurisation (e.g. a

suitable GP kernel), the cold-start problem and the inefficiency incurred by evaluating

every considered element using the same constant number of resources. As a result,

previous HPO methods are difficult to apply for searching through Πrest
t . To address

this, this chapter presents a new HPO method which addresses all of the aforemen-

137

138 Chapter 6. A Transfer-Learning Extension of Hyperband

tioned shortcomings. The merits of our method are experimentally verified in the HPO

setting, and using it for modular LML is left for future work.

We augment a popular multi-fidelity approach, Hyperband (Li et al., 2017), with

adaptive sampling, using a neural-network-based surrogate model, ABLR (Perrone

et al., 2018). As a result, our surrogate model is flexible enough to learn useful rep-

resentations of the input, while also being able to address the cold-start problem by

transferring data across HPO tasks. We evaluate the resulting method, which we refer

to as HB-ABLR, on two HPO settings, where HB-ABLR outperforms the previous

state-of-the-art (Falkner et al., 2018) approach. Afterwards, we present a discussion

on how HB-ABLR can be applied to modular LML.

6.1 Introduction

6.1.1 Black-Box Optimisation for Deep Learning

Algorithms for black-box optimisation (BBO) (Section 3.5) present a useful set of tools

that are applicable to a wide variety of settings. A black-box function is a function for

which an analytical form is not available, making it impossible to obtain its derivative

analytically (Li et al., 2021b). It is possible to evaluate the function on a selected input,

however, doing so is usually assumed to be expensive in terms of required resources.

For instance, evaluating a function can be time-consuming. The setting of single-

objective BBO, also known as zeroth-order optimisation, requires one to find the input

of a scalar black-box function f : Ω →R which optimises said function’s output value.

In order words, one needs to find x∗ where x∗ = argminx∈Ω f (x). Since each evaluation

is expensive, the goal is to optimise the function using as few evaluations as possible.

The challenge of optimising some properties of a deep learning algorithm can be

phrased as BBO. Concretely, one could look for the values of some properties of a

deep neural network, which minimise its validation loss after training, thus, setting

f = Lval. For instance, the modular lifelong learning (MOLL) algorithm, defined in

Algorithm 1 in Chapter 5, optimises the choice of a path π ∈ Πt which leads to the

lowest validation loss (Eq. 5.1). Similarly, in hyperparameter optimisation (HPO),

one searches for the hyperparameters of a machine learning algorithm, which lead

to the lowest validation loss. Moreover, in neural architecture search, which can be

seen a sub-field of HPO, the focus is on optimising the architecture of a deep neural

network, in order to minimise its validation loss.

6.1. Introduction 139

A common approach, which is applicable to all three settings is sequential model-

based optimization (SMBO) (Section 3.5.1). It approximates the target function f

with a surrogate model, using the previously obtained input evaluations. The result-

ing approximation is then used to find the most promising input to be evaluated next.

Bayesian optimisation (BO) (Section 3.5.2) is a popular SMBO approach, in which the

surrogate models the function’s noisy output distribution p(f (x)+ ε|ϕ(x)), for some

mean-centered normally distributed noise ε ∼ N (0,σ2). Here, ϕ is used to underscore

that the input could be differently embedded when provided to the model, e.g. a dis-

crete variable can be embedded using one-hot encoding. The conditional distribution

also reflects the uncertainty of the surrogate model about its prediction, which allows

BO algorithms to choose between exploitation and exploration. In Chapter 5, we used

BO to define a search strategy over paths for non-perceptual transfer (SBO-MAP, Equa-

tion 5.15).

There are three important obstacles related to applying SMBO and BO algorithms

to black-box optimisation. First, one needs to define the mapping ϕ in order to rep-

resent the inputs in a way which is suitable for the surrogate model. For example, in

order to use SBO-MAP in Chapter 5 we had to define a kernel function between paths

which implicitly defines an embedding of each of the considered paths. This was done

in order to allow the use of a Gaussian process (GP) as a surrogate model. Second,

these algorithms can encounter the cold-start problem which occurs in the early it-

erations of these algorithms, especially when the input is high dimensional. When a

few function evaluations are available, this is unlikely to be sufficient for the surrogate

model to learn a useful approximation of the target function, which means that the

model is unlikely to locate promising locations which should be explored next. This

leads to poor performance in the initial iterations, where performance is defined by the

lowest validation loss (target function value) found so far. Third, SMBO and BO can

be resource inefficient which can hinder their performance when only a small amount

of resources can be dedicated to an optimisation run. A potentially unnecessary cost

can be incurred due to the fact that these methods require that each function be evalu-

ated using the same amount of resources. For example, that a neural network be trained

for the same number of epochs before its validation loss is evaluated.

In this chapter, we introduce an approach which addresses the aforementioned three

obstacles. We present a multi-fidelity approach which uses Bayesian optimisation to

select promising inputs. Moreover, our approach can address the cold-start problem

by transferring knowledge from evaluations of similar black-box functions, obtained

140 Chapter 6. A Transfer-Learning Extension of Hyperband

while performing BBO on said functions. We demonstrate our algorithm’s effective-

ness in the setting of hyperparameter optimisation. However, it is also applicable to

neural architecture search, as evident by the application of a similar algorithm (Falkner

et al., 2018) in this setting (Dong and Yang, 2020). Moreover, this chapter includes a

discussion on how this method can be applied to modular lifelong learning.

6.1.2 Hyperparameter Optimisation

Applying a machine learning algorithm to solve a problem requires a user to set the

values of algorithm-specific parameters, which are broadly referred to as hyperparam-

eters. Examples of hyperparameters are the learning rate of stochastic gradient descent

(Bottou and Cun, 2003) and the number of hidden units of a fully connected deep neu-

ral network (Bergstra and Bengio, 2012). Selecting the correct hyperparameters can

significantly increase the performance of the resulting ML algorithm. While good

performance hinges on a careful tuning of the hyperparameters, this process is time-

consuming and crucially depends on the level of expertise of the practitioner. There-

fore, it is desirable to automate the tuning process in order to reduce the associated

costs.

Bayesian optimisation has been successfully used to automate hyperparameter search

by casting it as black-box optimisation (Zhang et al., 2021; Melis et al., 2017; Jafar and

Myungho, 2020). However, as discussed above, there are three obstacles to applying

BO, which also arise in the setting of hyperparameter optimisation. First, finding the

correct encoding for the hyperparameters, i.e. defining ϕ, can be challenging. For in-

stance, if we wanted to find the best value for the learning rate between (1e−5,1), it

can be seen that 99% of the values fall in the range (1e−2,1), leaving the rest unlikely

to be explored during optimisation. This can be addressed by applying a log scale to

the hyperparameter, and instead optimising for a value between (log10 1e−5, log10 1).

This spreads the values of interest more evenly. However, having an expert specify the

scaling of each continuous hyperparameter is laborious and error-prone (Snoek et al.,

2014), so it is preferable that the scaling be learned. Second, the issue of cold start, as

described earlier, has also been observed when using BO for hyperparameter optimi-

sation (Swersky et al., 2013). Third, most Bayesian optimisation methods evaluate all

hyperparameter configurations with the same number of resources, which can incur an

unnecessary cost, as discussed above.

ABLR (Perrone et al., 2018) is a surrogate model, which addresses the first two

6.1. Introduction 141

challenges. It computes a latent embedding of the hyperparameters using a neural net-

work. It then feeds the latent embedding to a Bayesian linear regression (BLR), which

then predicts the target function’s conditional output distribution. As a result, ABLR

can learn a suitable embedding of the hyperparameters using a neural network. In ad-

dition, a multi-head architecture can be used, in which the neural network is shared

and a separate BLR is used to predict the outputs of different black-box functions. In

effect, this transfers knowledge on how to embed the hyperparameters from previous

BO runs on similar black-box functions. This addresses the cold-start problem as suit-

able parameter values of the surrogate neural network can be found, even if only a few

evaluations are available from the black-box function of current interest.

The third challenge can be addressed using a multi-fidelity approach. Starting from

the key observation that training ML models is an incremental process controlled by

some resources, for instance, training set sizes, number of epochs or some amount

of time, a recent line of work (Swersky et al., 2014; Klein et al., 2017; Li et al.,

2017; Falkner et al., 2018) has proposed to exploit this feature to reallocate resources

to the most promising HPs by making cheap and early decisions based on evalua-

tions of f after having consumed few resources. Successive Halving (Jamieson and

Talwalkar, 2016) selects n hyperparameter configurations uniformly at random, and

evaluates them for r0 resources before selecting a portion with the highest observed

performance. It then iterates between further evaluating the remaining configurations

with more resources and further filtering out configurations which exhibit lower per-

formance. However, it is not clear what is the minimum number of resources r0 after

which one can reliably discard configurations. To address this, Hyperband (HB) (Li

et al., 2017) invokes Successive Halving using different values for n anr r0. Despite its

simplicity, HB has been shown to outperform BO on many ML-related tuning tasks in

regimes where solutions with moderate precision are acceptable. However, since the

configurations are randomly sampled, the method does not exploit promising areas of

hyperparameter values which can lead to sub-optimal final performance. To improve

the precision resolution of Hyperband, several model-based extensions of Hyperband

have been recently proposed (Bertrand et al., 2017; Wang et al., 2018; Falkner et al.,

2018). Instead of randomly sampling the competing configurations, these methods use

model-based adaptive sampling, which allows them to balance between exploitation

and exploration and can lead to better final performance. However, the methods which

use a Gaussian process (Bertrand et al., 2017) cannot scale to a large number of evalu-

ations and the methods based on TPE (Wang et al., 2018; Falkner et al., 2018) are only

142 Chapter 6. A Transfer-Learning Extension of Hyperband

trained on a subset of the available HB evaluations. Furthermore, these methods train

their surrogate model only on evaluations of the current black-box of interest, thus,

they do not address the cold-start problem.

In this work we augment Hyperband with adaptive sampling which uses ABLR as

a surrogate model. Our approach models the amount of resources used to evaluate a

hyperparameter configuration as a contextual variable, which allows us to fit the sur-

rogate using all available evaluations. HB-ABLR can also make use of evaluations

obtained from previous hyperparameter optimisation tasks. This knowledge transfer

allows our method to increase both its anytime and final performances. Our work

addresses all three of the aforementioned obstacles. Using a neural-network-based

surrogate model allows us to learn a suitable transformation of the hyperparameters.

Furthermore, HB-ABLR addresses the cold-start problem by transferring knowledge

from previous evaluations. Finally, our method represents a multi-fidelity approach

which can early stop under-performing configurations from being fully evaluated. We

perform experiments on two hyperparameter optimisation tasks. Our results show that

HB-ABLR can achieve competitive performance, in the absence of transfer. Using

knowledge transfer, HB-ABLR consistently outperforms the previous state-of-the-art

method (Falkner et al., 2018). Moreover, we perform ablation experiments which pro-

vide insight into the type of knowledge being transferred and into the robustness of

single-task HB-ABLR.

6.2 Background

Say one is interested in performing hyperparameter optimisation for some machine

learning algorithm A and for given training and validation datasets, Dtr and Dval.

This can be cast as BBO, where the target black-box function maps a hyperparam-

eter configuration c to a value l, which represents the validation performance, eval-

uated after training the ML algorithm, using the selected hyperparameters and R re-

sources, on the given training dataset. Unless stated otherwise, we assume that l

represents the validation loss. Evaluating the validation loss is assumed to lead to a

noisy observation, since training the same algorithm with the same hyperparameters

can lead to different validation losses. Therefore, the observation can be expressed

as l = f (c)+ ε = L(A(Dtr;c,R),Dval), where epsilon is a zero-centered normally dis-

tributed noise, ε ∼ N (0,σ2). After defining the target function, it is necessary to

then define a set of hyperparameters Ω to be considered by defining the set of values

6.2. Background 143

which each of the hyperparameters of interest can take. One is then interested in find-

ing the optimal hyperparameter configuration c∗ which minimises the validation loss,

c∗ = argminc∈Ω L(A(Dtr;c,R),Dval). The performance of a hyperparameter optimi-

sation approach can be defined by the minimal validation loss which has been found

after evaluating a certain number of candidates.

Bayesian optimisation (BO) uses a surrogate model to model the conditional output

distribution of the target function, p(l|ϕ(c)) Here, ϕ is a mapping which maps the

selected hyperparameters to a representation which is suitable for the chosen surrogate

model. For instance ϕ can map a discrete variable with 3 values to a three-dimensional

one-hot encoding. While ϕ is usually omitted, we use it to underscore the need for

an expert to select a suitable embedding. After evaluating n configurations, BO fits

its surrogate model using the set of available evaluations, E = {c(i), l(i)}n
i=0. BO uses

an acquisition function g which computes a configuration c(j)’s value, based on the

surrogate model’s prediction. The most promising configuration to be evaluated next

is selected by minimising the acquisition function: ĉ = argminc∈Ω g(p(l|ϕ(c);v)) (or

maximising, depending on the acquisition function). When the number of previous

evaluations, |E|, is low, the surrogate model might not approximate the target function

well, which makes the chosen hyperparameter configuration unlikely to lead to an

improvement over the previously observed minimum validation loss. In this case, the

cold-start problem is said to have arisen.

When optimising the hyperparameters of a black-box function ft with index t, it

is possible to use evaluations E<t of similar, previously encountered, functions f<t in

order to warm-start the optimisation process. A similar function could be the post-

training validation loss of the same algorithm, computed using different training and

validation datasets. One can then augment the surrogate model to take advantage of

previous evaluations, modelling p(l|ϕ(c),Et ,E<t), where Et are the available evalua-

tions of the function of interest ft . For instance Swersky et al. (2013) use multi-task

Gaussian processes, which jointly model the output distributions of both the previously

encountered functions and the black-box function of current interest. Such approaches

are said to perform knowledge transfer to the target black-box function. Note that this

transfer benefits the surrogate model, while in previous chapter we have discussed the

knowledge transfer which benefits the learning algorithm A . Transfer learning can be

used to address the cold-start problem of Bayesian optimisation.

We now present a list of desiderata for a practical approach to hyperparameter op-

timisation, introduced in Falkner et al. (2018), which we later refer to when analysing

144 Chapter 6. A Transfer-Learning Extension of Hyperband

our approach. 1. Strong Anytime Performance. Evaluating a single hyperparameter

configuration can be expensive in terms of time and computational resources, espe-

cially if it involves training a deep neural network. However, it is often the case that

only a limited amount of resources can be allocated to a single run of HPO. Therefore,

it is important for a HPO approach to be able to find acceptable solutions using a small

number of overall resources. 2. Strong Final Performance. On the other hand, when

many resources can be allocated for a single HPO run, what matters is the performance

that an HPO approach attains at the end. 3. Effective Use of Parallel Resources. If

multiple machines are available, e.g. a compute cluster, an HPO method needs to be

able to make use of these effectively. 4. Scalability. As the complexity of the target

machine learning algorithm grows, there might be a need to tune more hyperparame-

ters. Therefore, it is important that a HPO algorithm can scale to searching through a

large number of hyperparameters. 5. Robustness & Flexibility. To increase the ap-

plicability of a HPO method, it needs to be able to effectively search through different

types to hyperparameters, such as binary, categorical, integer and continuous. Further-

more, it needs to be robust with respect to its own hyperparameters. 6. Simplicity. It

is desirable for an HPO method to limit its reliance on an expert for the selection of

said method’s hyperparameters. For instance, having to select a suitable kernel func-

tion. The authors also argue that it is important for a HPO approach to be easy to

re-implement in different libraries. 7. Computational Efficiency. The method should

be able to scale with a large number of evaluations. This can become necessary for

large experiments in which multiple parallel evaluations are possible using a compute

cluster.

6.2.1 Adaptive Bayesian Linear Regression (ABLR)

Perrone et al. (2018) present a surrogate model for Bayesian optimisation (ABLR),

which can be used to alleviate the need for manual input featurisation and can address

the cold start problem by transferring knowledge from previous BO runs. Moreover,

the model can scale linearly with the number of evaluations. To achieve this, the au-

thors use Bayesian linear regression (BLR), as it can be modified to scale linearly with

the number of inputs and cubically with its input dimension (Bishop, 2006). Since

BLR has limited expressivity, the authors introduce a nonlinear transformation φz, pa-

rameterised by z, which computes a suitable latent representation of a hyperparame-

ter configuration. Transfer learning is achieved by using a multi-head architecture in

6.2. Background 145

which a shared φz is used to help approximate multiple black-box functions.

Let the hyperparameter optimisation problem of interest have index t. Further-

more, let there be Nt already evaluated configurations, stored in a meta dataset Et =

{(c(i)t , l(i)t)}Nt
i=1. A feedforward fully connected neural network is used to represent the

nonlinear transformation φz(ϕ(c)) : RP → RD, where c is a configuration with initial

dimensionality ϕ(c)∈RP. The feature matrix of all latent embeddings of the evaluated

hyperparameter configurations is denoted as Φt = [φz(ϕ(c
(i)
t))]Nt

i=1. ABLR models the

observed values lt and the prior distribution over the weights as follows:

p(lt |wt ,z,βt) = N (Φtwt ,β
−1
t INt), p(wt |αt) = N (0,α−1

t ID)

where βt > 0 and αt > 0 are precision parameters which are used to specify the obser-

vational noise and the prior over the weights, respectively. For a new data point c∗t , the

predicted noise-free value according to the model is f ∗t = w⊤
t φz(ϕ(c∗t)). The predictive

distribution

p(f ∗t |c∗t ,Et) =
∫

p(f ∗t |c∗t ,wt)p(wt |Et)dwt

is Gaussian and the authors show how to compute it by analytically integrating out the

weights wt . As a result, the parameters that need to be learned are z, αt and βt . These

are found by jointly minimising the log marginal likelihood:

ρ(z,αt ,βt) =− logP(l|z,αt ,βt)

Overall, ABLR can be regarded as a deep neural network whose final linear layer

is subject to Bayesian treatment. If evaluations of previously encountered black-box

functions are available, ABLR models all evaluations with a multi-head neural ar-

chitecture. Concretely, each black-box function is predicted using a shared φz and a

separate Bayesian linear regression for each black-box function. All parameters are

then jointly learned by minimising the following criterion:

ρ(z,{α
′
t ,β

′
t}t ′) =−∑

t ′
logP(l|z,αt ′,βt ′) (6.1)

Knowledge transfer is achieved through the shared nonlinear transformation, which

learns how to embed the hyperparameter configurations in a way which is useful for

the prediction of the values of all encountered black-box functions.

All parameters of ABLR are optimised using LBFGS (Byrd et al., 1995). The

authors show that the multi-task learning criterion and its gradient can be computed in

O(∑t ′ max(Nt ′,D)min(Nt ′ ,D)2). They note that for a large number of transfer data, it is

possible to optimise φz only on previous black-box functions and freeze its parameters.

This would further improve the efficiency of the method.

146 Chapter 6. A Transfer-Learning Extension of Hyperband

Algorithm 2: SuccessiveHalving
Input: R, Maximum number of resource per configuration.

Input: n, Initial number of candidates.

Input: s, Number of iterations.

Input: η, Specifying the proportion of configurations to keep.

[1] r = Rη−s

[2] T = get hyperparameter configurations(n)

[3] foreach i ∈ {0, ...,s} do
[4] ni = ⌊nη−i⌋
[5] ri = rηi

[6] L = {run then return val loss(t,ri) : t ∈ T}
[7] T = top k(T,L,⌊ni

η
⌋)

[8] end

6.2.2 Hyperband

Hyperband (Li et al., 2017) is a hyperparameter optimisation method which considers

a pool of randomly sampled configurations at a time. For each pool, the method iterates

between evaluating the configurations using a small amount of resources and then se-

lecting the best performing portion to be further evaluated with more resources, while

discarding the rest. Hyperband has been shown to have strong anytime performance

and to be able to find a good configuration much faster than resource-unaware Bayesian

optimisation methods. On the other hand, Bayesian optimisation methods typically

have a better final performance, as they find a better configuration given enough time

(Falkner et al., 2018). Hyperband uses Successive Halving (Jamieson and Talwalkar,

2016) as a sub-routine. For this reason, we first present Successive Halving, using the

parameterisation presented in Li et al. (2017) and then describe Hyperband.

Successive Halving (SH) iteratively evaluates a pool of hyperparameter candidates

at different fractions of the maximum amount of resources possible, discarding a frac-

tion of the candidates at every iteration. The algorithm is presented in Algorithm 3.

Among its inputs, R is the maximum number of resources which a hyperparameter

configuration can be evaluated for, e.g. maximum number of epochs necessary to train

a neural network. Moreover, n is the initial number of configurations in the pool and

η is used to specify the proportion of candidates which we would like to keep after

each iteration, 1
η

. Finally, s specifies the number of iterations we would like Succes-

6.2. Background 147

siveHalving to perform. After s iterations, each of the configurations left in the pool

of configurations should be evaluated for R resources. Therefore, SH uses s and R

to determine the number of resources ri which need to be used at each iteration. SH

creates the initial pool of candidates by sampling configurations uniformly at random

from the defined hyperparameter space. The algorithm then performs s+1 iterations.

At each iteration, the pool of remaining candidates T is evaluated for ri resources

and the ni
η

candidates with the lowest observed validation loss are kept in the pool for

further evaluation, while the rest are discarded. The resulting algorithm is heavily re-

liant on the selected values for its inputs. They determine the amount of resources

r0 on which all initial configurations are evaluated before a proportion of them are

discarded. However, r0 may not be enough to successfully distinguish between the

promising configurations and the ones that should be discarded. Therefore, it can be

challenging to manually set the input values.

Hyperband addresses this by repeatedly applying Successive Halving using dif-

ferent input values. Supported by theoretical guarantees for correctness and sample

complexity, Hyperband follows a resource-allocation schedule determined from two

parameters, η and R. The goal is for each run of SH to consume approximately B

resources, which imposes a trade-off between the initial number of configurations n

and the resources used before the first proportion of candidates is discarded, r0. The

algorithm is presented in Algorithm 3. Hyperband calls SH smax +1 times with differ-

ent inputs, and each application of SH is referred to as a bracket. In the first bracket,

s = smax and the number of n is set to maximise exploration. As a result, r0 is small and

only 1 configuration is evaluated for the maximum number of resources R. In the last

bracket, s = 0, a small pool of n configurations are all evaluated for r0 = R resources.

During its run, Hyperband obtains a growing set of evaluations EHB = {c(i),r(i), l(i)}i,

where ri specifies the amount of resources used to obtain the evaluation.

Overall, Hyperband can automatically adapt to optimising different target func-

tions, without requiring extra expert knowledge. While Hyperband has consistently

demonstrated strong anytime performance, its final performance is typically weaker

than Bayesian optimisation methods (Falkner et al., 2018). This is because candidates

are always sampled uniformly at random, which does not focus on high-performing

regions of the hyperparameter space.

148 Chapter 6. A Transfer-Learning Extension of Hyperband

Algorithm 3: Hyperband
Input: R, Maximum number of resource per configuration.

Input: η, Specifying the proportion of configurations to keep.

[1] smax = ⌊logη(R)⌋
[2] B = (smax +1)R

[3] foreach s ∈ {smax,smax −1, ...,0} do
[4] n = ⌈B

R
ηs

(s+1)⌉
[5] r = Rη−s

[6] SuccessiveHalving(R,n,s,η)

[7] end
[8] return Configuration with the smallest validation loss seen so far.

6.3 Augmenting Hyperband with ABLR

ABLR-based Bayesian optimisation and Hyperband have complementary strengths.

ABLR can be used within BO to provide a scalable approach with competitive per-

formance. Due to the flexibility of neural networks ABLR does not rely on an expert

to provide problem-specific hyperparameter embeddings. Moreover, ABLR can use

transfer learning to further improve the anytime and final performances of the resulting

BO algorithm (Perrone et al., 2018). However, when used within a resource-unaware

approach, which evaluates all hyperparameter configurations with R resources, the

resulting optimisation algorithm incurs certain inefficiencies which hinder the algo-

rithm’s anytime performance.

On the other hand, Hyperband is a multi-fidelity approach which has demonstrated

better anytime performance than resource-unaware algorithms. However, it randomly

samples hyperparameter configurations, which can result in lower final performance,

compared to methods which use adaptive sampling.

We augment Hyperband with adaptive sampling, based on ABLR. The resulting

method, which we name HB-ABLR, achieves strong anytime and final performances,

and can use transfer from previous evaluations to further increase both. We use HB

to select different values for n and r, and modify its Successive Halving sub-routine

as shown in Algorithm 4. We use ABLR to iteratively sample the initial pool of con-

figurations, c at a time where c is the number of candidates that can be evaluated

concurrently.

Before suggesting configurations, ABLR is fit on all previous evaluations EHB from

6.3. Augmenting Hyperband with ABLR 149

Algorithm 4: SuccessiveHalvingWithABLR
Input: R, Maximum number of resource per configuration.

Input: n, Initial number of candidates.

Input: s, Number of iterations.

Input: η, Specifying the proportion of configurations to keep.

Input: c, Number of concurrent evaluations.

[1] r = Rη−s

/* Adaptively sample initial pool in the fist iteration. */

[2] T = {}, L = {}, i = 0, n0 = n, r0 = r

[3] while |T |< n do
[4] ablr = ABLR(EHB,{EHB

<t })
[5] C = suggest(min(c,n0 −|T |),r0,ablr,EI)

[6] T = T ∪T

[7] L = L∪{run then return val loss(t,r0) : t ∈C}
[8] end
[9] T = top k(T,L,⌊n0

η
⌋)

/* Run the rest of the iterations as usual. */

[10] foreach i ∈ {1, ...,s} do
[11] ni = ⌊nη−i⌋
[12] ri = rηi

[13] L = {run then return val loss(t,ri) : t ∈ T}
[14] T = top k(T,L,⌊ni

η
⌋)

[15] end

Figure 6.1: SH augmented with ABLR-based adaptive sampling, which we use within

Hyperband.

150 Chapter 6. A Transfer-Learning Extension of Hyperband

the current HB run. Since the data EHB = {c(i),r(i), l(i)}i contains evaluations obtained

with a different number of resources, we add r to the embedding of the hyperparam-

eters ϕ(c) and treat r as a contextual input variable because its value is provided by

HB and not suggested by ABLR. Since r takes a limited number of discrete values, it

is possible to embed it using a one-hot-encoding, or as log(r) to reflect the fact that

one can expect smaller performance gains as r increases. However, using one-hot-

encoding wouldn’t depict the ordering between the values of r, and manually selecting

a transformation for a variable can be error-prone (Snoek et al., 2014). Instead, we

normalise the values of r between [−1,1] and allow ABLR’s neural network to learn

the correct scaling for this dimension. Following Perrone et al. (2018), when optimis-

ing the parameters of ABLR, we start from the previously found optimal parameters,

and use L-BFGS to train on all available evaluations. In practice, we also found that L-

BFGS converges after a few iterations. Once ABLR is trained, we use it together with

expected improvement (EI) to suggest c configurations. We optimise EI with respect

to the hyperparameters, while keeping the resource contextual variable fixed r = r0.

This suggests that we are interested in hyperparameter configurations with promis-

ing performance after evaluating them on r0 resources. Alternatively, we considered

setting r = R, which would reflect the fact that we are interested in maximising the

performance of a configuration after R resources. However, HB evaluates only a few

configurations fully, making ABLR’s predictions for r = R less reliable. One could try

a heuristic, in which suggestions are made using the maximum value of r, for which

there are more than some manually-specified number of evaluations. Instead, in the

interest of simplicity, we use r = r0 for our algorithms’ suggestions.

Our approach can take advantage of evaluations obtained on previous hyperparam-

eter optimisation tasks. Let {EHB
<t } be the sets of evaluations obtained by a HB-based

algorithm on past HPO tasks. If such evaluations are available, we use them together

with the new evaluations to train our ABLR model using the multi-task criterion from

Eq. 6.1. This allows us to transfer knowledge by training the shared neural network

of ABLR to represent the hyperparameters in a way which is useful for multiple tasks.

Because we use a multi-task criterion, if the number of past HPO tasks is too big, the

efficiency of updating the ABLR model could become a concern. In this case, it is

possible to pre-train the neural network only on past evaluations and freeze its weights

during the new HPO task, which would avoid having to optimise its weights across

multiple tasks after every new batch of evaluations becomes available. A key benefit

of our method is its ability to benefit from a large number of previous evaluations.

6.3. Augmenting Hyperband with ABLR 151

Combined with the method’s flexibility, this allows for domain-specific knowledge to

be effectively utilised, which can result in an increase in HB-ABLR’s anytime and final

performances.

At the moment, as in the original Successive Halving sub-routine, the configura-

tions to be discarded from a pool of configurations are selected based on their observed

performance after ri resources. Alternatively, one could use the observed performances

together with ABLR in order to make this selection. One way to do this by predicting

each configuration’s performance in a future iteration (ri+1 or R). This would be similar

to HPO methods which try to approximate a ML algorithm’s learning curve (Swersky

et al., 2014; Klein et al., 2017). Since we use ABLR with a fully-connected neural

networks, we cannot directly condition on the configurations’ observed performances

up to ri. Instead, we can train ABLR on the new evaluations and then use it to make

predictions about the future performances of the configurations in the current pool.

Another way to make the selection would involve using the value of the acquisition

function instead. For this purpose, we can again train ABLR on the newly obtained

evaluations and then discard the configurations from the pool which have the lowest

expected improvement for ri+1 resources, where the improvement can be calculated

with respect to the best performance observed in the bracket. This second approach is

more appealing, as it balances between exploration and exploitation. Utilising a surro-

gate model within HB in this way has not been discussed previously. While we think

that this is an interesting approach, we made the decision to not incorporate it into our

method for the sake of the method’s simplicity. Therefore, we left evaluating this idea

for future work.

Our method fulfils all of the desiderata for a HPO algorithm, described in Falkner

et al. (2018). First, strong anytime performance is mainly achieved due to our use

of HB, which allows us to evaluate poor-performing configurations after using fewer

resources. In addition, our use of adaptive sampling and transfer learning both further

improve the anytime performance. Second, HB-ABLR achieves strong final perfor-
mance because of our use of adaptive sampling which allows the algorithm to focus

on promising areas of the search space. The final performance can be further improved

using our method by transferring knowledge from previous HPO tasks. Third, our

algorithm can effectively use parallel resources as it can suggest and evaluate c can-

didates at a time. A potential bottleneck can arise if configurations take noticeably

different amount of time. Since Successive Halving requires that all configurations in

the current pool be evaluated before some of them are discarded, this could lead to idle

152 Chapter 6. A Transfer-Learning Extension of Hyperband

compute time. If necessary, this could be addressed by simply starting a separate HB

bracket, as suggested in Falkner et al. (2018). However, since all configurations are

evaluated with the same amount of resources, we assume that their evaluation would

take a similar amount of time, thus, we do not expect this modification to be necessary.

Fourth, our algorithm uses a neural network to process the hyperparameter, which al-

lows it to scale to a large number of hyperparameters, i.e. high-dimensional search

spaces. Fifth, due to the use of a neural network, HB-ABLR is also flexible with re-

gard to the types of hyperparameters that we search over. Furthermore, Perrone et al.

(2018) show that ABLR can achieve good performance across different HPO tasks us-

ing the same neural architecture, which indicates that ABLR is robust with respect to

its hyperparameters. Sixth, we used simplicity as a guiding principle in designing our

algorithm. Separately, HB and ABLR can both be seen as simple in terms of the de-

sign choices necessary in order to apply to new problems, as well as the effort required

to be implemented. To further this design philosophy, we maintain a single surrogate

model across all HB brackets. Moreover, we train ABLR on all available evaluations,

including the ones from past HPO tasks, without using a heuristic to select only a part

of them. Seventh, our algorithm is computationally efficient as it scales linearly with

the number of evaluations.

HB-ABLR also addresses the three challenges outlined in the introduction. First,

the neural network used in ABLR can learn a suitable transformation for the hyperpa-

rameters of interest. This alleviates the necessity of injecting expert prior knowledge

by defining hyperparameter-specific embeddings. Furthermore, our algorithm can ad-

dress the cold-start problem by transferring knowledge from previous HPO tasks. Fi-

nally, HB-ABLR is a multi-fidelity algorithm, which reduces the inefficiency incurred

by evaluating all hyperparameter configurations with a constant amount of resources.

6.4 Related Work on Hyperparameter Optimization

Among others, hyperparameter optimisation (HPO) has been applied to optimising

the hyperparameters of random forests, support vector machines and neural networks

(Shahriari et al., 2015). When applied to deep learning, HPO has led to performance

improvements in image classification (Jafar and Myungho, 2020) natural language pro-

cessing (Melis et al., 2017) and reinforcement learning (Zhang et al., 2021).

One approach to HPO is grid search in which a user first specifies a set of values for

each hyperparameter, after which the search evaluates configurations from the Carte-

6.4. Related Work on Hyperparameter Optimization 153

sian product of the specified sets. One shortcoming of this approach is that it can be

difficult for an expert to manually identify potentially high-performing hyperparameter

values. Alternatively, one can define a range of values for each hyperparameter and se-

lect configurations from the resulting search space uniformly at random. This approach

is called random search and has been shown to outperform grid search (Bergstra and

Bengio, 2012). Random search does not make any assumptions about the black-box

function being optimised, e.g. the smoothness assumption. However, since all con-

figurations are independent and identically distributed, random search does not exploit

the potential information provided by past evaluations and does not focus on regions

which can lead to higher performance.

On the other hand, Bayesian optimisation (BO) performs adaptive search by tak-

ing advantage of previous evaluations, and has been shown to be superior to RS for

hyperparameter tuning of machine learning algorithms (Turner et al., 2021). Among

others, BO has been successfully applied to tunning the hyperparameters of convolu-

tional neural networks (Falkner et al., 2018) and has been used to win on 3 datasets in

the AutoML challenge (Mendoza et al., 2016).

An important component of a BO algorithm is the choice of a surrogate model. Gaus-

sian processes (GPs) are used most commonly (Shahriari et al., 2015) as they provide

smooth and well-calibrated uncertainty estimates (Falkner et al., 2018). However, GPs

require specialised kernels to be applied to more complex search spaces and require

carefully set hyperpriors. Moreover, they scale cubically with the number of eval-

uated configurations. As an alternative, the Tree Parzen Estimator (TPE) (Bergstra

et al., 2011) uses kernel density estimators (KDEs) to model densities over the con-

figurations, instead of over the observed values. They support mixed continuous and

discrete hyperparameter spaces and scale linearly with the number of observations.

As originally described, TPE uses a hierarchy of one-dimensional KDEs which could

fail to model important interactions between hyperparameters. This can be addressed

by using a single multi-dimensional KDE, however, there is evidence that this ap-

proach fails at high dimensions (Lu et al., 2013; Falkner et al., 2018). ABLR (Perrone

et al., 2018) can also scale linearly with the number of observations and is applica-

ble to mixed spaces of hyperparameters. In contrast to TPE, ABLR does not have an

inherent limitation on the hyperparameter dimensionality and is applicable to high di-

mensional inputs as well. Similarly, DNGO (Snoek et al., 2015) is a surrogate model

which combines a neural network with an output Bayesian linear regression. DNGO

first obtains the parameters of the neural network separately, and then the most suitable

154 Chapter 6. A Transfer-Learning Extension of Hyperband

BLR parameters. In contrast, ABLR optimises both sets of parameters jointly, which

has been shown to lead to better performance (Perrone et al., 2018).

The scaling of the hyperparameters is another important consideration in Bayesian op-

timisation. For example, one can embed the learning rate j as log10(j) to make sure

that the values of interest are more evenly spread out. This also makes it easier for

surrogate models to approximate the black-box function, as a small change in the in-

put should always result in a change in the output of a similar magnitude. However,

the correct scale of each hyperparameter may not be apparent. To address this, Snoek

et al. (2014) propose to use are parameterised monotonic transformations, called input

warpings, for each hyperparameter. In contrast to other surrogate models, ABLR con-

tains a parameterised input transformation of the hyperparameters and does not require

additional transformations.

Bayesian optimisation is prone to the cold-start problem. To address it, one needs to

insert additional knowledge about the target black-box function, which makes it eas-

ier for a surrogate model to approximate it with a few data points. To address this,

a line of work has focused on knowledge transfer using evaluations of previously en-

countered black-box functions, obtained from previous BO runs (Swersky et al., 2013;

Bardenet et al., 2013; Yogatama and Mann, 2014; Wistuba et al., 2015; Feurer et al.,

2015; Perrone et al., 2018). For example, (Feurer et al., 2015) propose to first eval-

uate hyperparameter configurations which have performed well in previous BO runs.

Swersky et al. (2013) use a multi-task Gaussian process to fit the surrogate model on all

available observations across multiple black-box functions. This approach is limited

by the cubic complexity of GPs. On the other hand, if many observations across previ-

ous optimisations are available, the nonlinear mapping of ABLR can be trained offline,

leaving only its BLR component to be trained. This results in a linear complexity in

terms of the observed values of the target black-box function.

Multi-fidelity approaches detect poor-performing configurations early and stop their

further evaluation. This leads to a more efficient use of resources and to better any-

time performance. For example in Klein et al. (2017) the authors allow a configuration

to be evaluated using a subset of the training dataset. They use a GP to predict the

loss and the computational cost of evaluating the given configuration using the given

percentage of the training dataset. The acquisition function then computes the amount

of information gain per unit cost and is used to select both the next configuration to

evaluate and the amount of training data to evaluate it with. Alternatively, one can

evaluate a configuration using a different number of training iterations of the target

6.4. Related Work on Hyperparameter Optimization 155

machine learning algorithm, e.g. a different number of stochastic gradient descent up-

dates. Freeze-thaw (Swersky et al., 2014) uses a GP to model the learning curve of a

hyperparameter configuration, using a specifically designed kernel for training curves.

They use the surrogate model to predict a configuration’s final result from the observed

performance after some iterations. Given a pool of configurations, the surrogate model

is used to decide whether to pause the evaluation of a configuration, as well as which

configuration to start or continue evaluating. Hyperband is a multi-fidelity approach

which is agnostic about the type of resource being used.

Previous to our work, others have presented different ways of augmenting Hy-

perband by sampling the pool of configuration using Bayesian optimisation methods.

Bertrand et al. (2017) use a GP as a surrogate model. Similar to our work, the au-

thors model the budget as well as the hyperparameters to output a prediction of the

validation loss. This allows their method to take advantage of all previous evaluations

generated across Hyperband brackets. This approach shares the limitations of GPs de-

scribed above. Alternatively, Wang et al. (2018) and Falkner et al. (2018) propose to

use TPE as a surrogate model. Wang et al. (2018) use a separate TPE for each bracket

and select the configurations in the initial pool sequentially using adaptive sampling,

based on the performance of previous configurations within the bracket after using r0

resources. As a result of the authors’ design choice, their method cannot benefit from

evaluations obtained in previous HB brackets. Instead, in BOHB (Falkner et al., 2018),

a TPE is also fitted on some evaluations from previous brackets. The authors use all

past evaluations which have been evaluated for bc max resources, where bc max is the

highest number of resources for which there is a user-specified minimum number of

evaluations available. In contrast, our work takes advantage of all previous evalua-

tions across Hyperband brackets. Furthermore, the authors also show evidence that

BOHB ”struggles” when the hyperparameters’ embedding is high dimensional. This

could be partly attributed to the challenges of applying TPE to high dimensions, as

discussed above. On the other hand, our method uses a neural network, which does not

impose a limitation on the dimensionality. In contrast to all previous methods that aug-

ment Hyperband, our approach is capable of knowledge transfer from previous runs of

hyperparameter optimisation. This allows us to warm-start the optimisation process,

leading to better anytime performance. Following our work, Li et al. (2021a) propose

a method which tries to model all evaluations obtained across the HB brackets. They

train a separate surrogate for evaluations obtained with different budgets. Then they

use a mixture-of-experts approach in order to combine the surrogates’ predictions. In

156 Chapter 6. A Transfer-Learning Extension of Hyperband

comparison, we only use a single surrogate to model all previous evaluations.

6.5 Experimental Evaluation

In this section, we evaluate our method’s properties experimentally. We are interested

in evaluating the advantage of combining HB and ABLR, as opposed to using these

methods separately. Moreover, we would like to assess the benefit of training the

surrogate on all previous evaluations within a single HB run, as opposed to a subset

of them. Finally, we would like to evaluate the increase in performance gained by

transferring knowledge from previous HB runs.

We compare our method to a number of competitive baselines, which we divide

into two groups.

First, we consider resource-unaware approaches which always evaluate the blackbox

function using the same, maximum amount of resources. These include random search

(random) (Bergstra and Bengio, 2012) and GP-based BO (Snoek et al., 2012), im-

plemented using GPyOpt (González and Dai, 2016). The kernel we used for GPs

is Matérn-5/2 with automatic relevance determination hyperparameters, optimized by

empirical Bayes (Rasmussen and Williams, 2006). We also compare our method to

ABLR using the original implementation and with the default hyper-parameters, used

in Perrone et al. (2018). Concretely, we use a fully-connected neural architecture with

3 hidden layers, where each has 50 hidden units and uses the tanh activation function.

We evaluate both ABLR without transfer learning (ABLR) and with transfer learning

(ABLR-tr). Here, transfer learning is to be understood as reusing evaluations from

previous HP optimization tasks, computed with a maximum number of resources.

Second, we consider resource-aware approaches, which assume that a function can

be evaluated using different number of resources. We aim to compare our work to

Hyperband and to previous method which extend it. Both Wang et al. (2018) and

Falkner et al. (2018) propose to combine Hyperband with TPE-based BO. However,

the latter, whose method is BO-HB, trains its surrogate on more evaluations and has

demonstrated state-of-the-art performance across many experiments. Therefore, we

compare to BO-HB, which we refer to as HBBO in our results to keep it consistent

with notation used for the rest of the methods. We use the open-source implementa-

tion provided by the authors. We also compare to the combination of Hyperband and

a GP-based BO (HB GP). Our implementation is similar to the approach described in

Bertrand et al. (2017), with the difference that they use a squared exponential kernel,

6.5. Experimental Evaluation 157

while we employ Matérn-5/2. The main difference between them is that the former

assumes a higher degree of smoothness on the target black-box functions (Rasmussen

and Williams, 2006). HB GP models model and use the budget the same way as our

method, making the choice of a surrogate the only difference.

For our method, we use the same architecture as the one for ABLR. We encode the

resources used as a contextual variable r, normalised within [−1,1]. We evaluate our

method’s performance without transfer (HB-ABLR) and with transfer (HB-ABLR-tr).

All methods which have BO-based sampling use Expected Improvement as the acqui-

sition function. All HB-based methods use η = 3. For ABLR-tr and HB-ABLR-tr, use

use transfer learning data resulting from 1 run of random search and HB, respectively,

per previous optimisation task.

Our experimental protocol follows a leave-one-task-out procedure, where a BO

problem is solved for a given held-out task using the data from the T − 1 remain-

ing tasks. We thereafter report results averaged over, both, T leave-on-task-out folds

and 30 random replications of the experiments. The performance of each baseline

for a certain number of resources is defined by the minimum performance found up

to that point. Inspired by Golovin et al. (2017), we aggregate results across tasks by

first normalising each performance according to the final performance of the random

search baseline within each task (random search then has unit final performance across

tasks). This allows us to better capture the relative performance gap between HP op-

timisation methods across tasks, irrespective of the performance magnitude, which

can vary greatly across tasks. To aggregate the normalised performances of a method

across tasks and random replications, we compute the mean and the standard error. We

plot the normalised performances per amount of resources used, as shown in Figures

6.2, 6.3 and 6.4. When plotting performances, we apply a log-scale to better illustrate

the difference between the competing methods. Each x axis in our plots represents r/R

, where r is the number of resources used by the HP optimisation method, and R is

the maximum number of resources used to evaluate a single hyperparameter configu-

ration. We apply log scale to better distinguish between methods’ performance at the

early stages of optimisation.

158 Chapter 6. A Transfer-Learning Extension of Hyperband

6.5.1 Tuning Stochastic Gradient Descent

First, we evaluate our methods’ ability to tune the hyperparameters of stochastic gradi-

ent descent (SGD). The machine learning (ML) algorithm whose performance we want

to optimise is linear regression, optimised using SGD. For this purpose we define a lin-

ear regression model with parameters θ ∈ Rp×1, which transforms an input x ∈ Rp×1

into a scalar prediction. One task of the ML algorithm is specified by a training dataset

Dtr = {(x)tr
i ,y

tr
i }N

i=1 and a validation dataset Dval = {(x)val
i ,yval

i }N
i=1, where N = 81 and

p = 9. For a single ML task, we use a standard normal distribution to sample all the

inputs as well as the target parameter θ∗. For the targets, we consider a noisy linear

model yi = x⊤i θ∗ + εi. The ML algorithm uses SGD to optimise the parameters by

minimising the training loss L tr. Concretely, SGD solves:

argmin
θ∈Rp×1

N

∑
i=1

L tr
i (x

tr
i ,y

tr
i ,θ) where L tr

i (xi,yi,θ) =
1
2
(x⊤i θ− yi)

2

, using the following update rule at step k:v = γv+ ν

1+νλk ∇L tr
i (x

tr
i ,y

tr
i ,θ

(k))

θ(k+1) = θ(k))−v
.

Here, we use the momentum γ ∈ [0.3,0.999], the learning rate ν ∈ [0.001,1.0] and λ ∈
[0.001,1000.0] as hyperparameters of the SGD, as advocated in Bottou (2012). Given

a ML task, the hyperparameter optimisation (HPO) task is to tune the hyperparameters

of SGD, namely γ, ν and λ, in order to minimise the validation root mean squared error

(RMSE):

Lval(θ) =

√
∑

N
i=1(xval

i ·θ− yval
i)2

N
.

We define a unit of resource as three SGD updates and set the maximum amount of

resources to R = 243. We generate T = 30 tasks using the method described above.

Our results are shown in Figure 6.2. From the resource-unaware BO methods,

we see that GP’s performance is marginally better than that of random. ABLR and

ABLR-tr exhibit much better anytime and final performances. As expected, using

HB results in a significant improvement in the anytime performance but, surprisingly,

HB also achieves a similar final performance to ABLR and ABLR-tr. Methods which

combine HB and BO demonstrate even further improvement in anytime performance.

However, HB-GP has the same final performance as HB. Combined with the results of

GP suggests that the Gaussian process used as a surrogate model is not suitable for this

6.5. Experimental Evaluation 159

Figure 6.2: Comparison of our method to the baselines for the tuning of the SGD learn-

ing rate used to optimise linear regression problems. The x axis plots log10(r/R) where

the resources used are the number of SGD iterations, and the maximum number of re-

sources per configuration is R = 243.

task. Overall, HB-BO, HB-ABLR and HB-ABLR-tr demonstrate the best anytime and

final performances, while HB-ABLR and HB-ABLR-tr are better after R resources are

consumed. Surprisingly, both these methods have the same performance. In contrast,

ABLR-tr achieves better anytime performance than ABLR. This suggests that, while

knowledge transfer is possible on this task, HB-ABLR-tr does not benefit from it.

6.5.2 Tuning XGBoost binary classifiers

Now we consider a more complex setting which involves tuning more hyperparame-

ters and more challenging datasets. We begin by selecting T = 28 binary classification

datasets from the libsvm repository (Chang and Lin, 2011), namely: australian,

fourclass, german.numer, gina agnostic, madelon, splice, breast-cancer,

higgs small, a6a, a7a, a8a, ijcnn1, mushrooms, phishing, rcv1.binary,

skin nonskin, spambase, susy, svmguide1, w6a, w7a, w8a, cod-rna, a1a,

w1a. Each dataset represents a separate ML problem which we solve using XGBoost

(Chen and Guestrin, 2016). For each dataset, the HPO task is to optimise the hy-

perparameters of XGBoost in order to maximise the validation area under the curve

(AUC). We tune the following 8 hyperparameters: eta ∈ [0,1], subsample ∈ [0.5,1],

colsample bytree ∈ [0.3,1], gamma ∈ [2−20,64], min child weight ∈ [2−8,64], alpha

160 Chapter 6. A Transfer-Learning Extension of Hyperband

∈ [2−20,256], lambda ∈ [2−10,256], max depth ∈ [2,128]. We define a unit of resource

as one round of XGBoost and set the maximum amount of resources to R = 81.

Figure 6.3: Comparison of our method to the baselines for the tuning of the hyperparam-

eters of XGBoost binary classifiers. The x axis plots log10(r/R) where the resources

used are the number XGBoost rounds, and the maximum number of resources per con-

figuration is R = 81.

Our results are presented in Figure 6.3. It can be seen that GP has a similar anytime

performance to random, but a stronger final performance. ABLR demonstrates an

improvement over GP in terms of anytime performance. Interestingly, ABLR-tr is able

to transfer knowledge from previous HB runs and achieves a performance which is

comparable to the methods which combine HB and BO. HB demonstrates an improved

anytime performance over the other BO methods, but its final performance is lower

because it uses random search. HB-ABLR achieves an improvement over both HB and

HB-GP, but it is outperformed by HB-BO. This suggests that combining HB with TPE

is more suitable for the setting, even though it does not use all previous HB evaluations

like HB-ABLR and HB-GP do. Finally, the results show that HB-ABLR-tr can benefit

from knowledge transfer in this setting and achieves a significant improvement in terms

of anytime performances, compared to the other methods.

In both our previous experimental settings we have considered above, tuning of

SGD and XGBoost, we have not made assumptions about the search spaces. In partic-

ular, we have not used any prior information in the form of warping transformations,

e.g. logarithmic transformations of some hyperparameter ranges spanning several or-

der of magnitudes. To assess the effect of injecting prior knowledge in the form of

6.5. Experimental Evaluation 161

Figure 6.4: Comparing the performance of our baselines operating in the raw search

space to the random search in the appropriately transformed search space specified by

an expert (random-log). The x axis plots log10(r/R) where the resources used are the

number XGBoost rounds, and the maximum number of resources per configuration is

R = 81.

warping transformations, we change our setting for XGBoost by appropriately trans-

forming some of its hyperparameter ranges. Concretely, we apply log2 scaling to the

gamma, min child weight, lambda and alpha hyperparameters, and encode the dis-

cretised list of max depth=[2,3,4,6,8,11,16,23,32,45,64,91,128] as an integer cor-

responding to the indices in the list. We then run random search on this augmented

hyperparameter search space and refer to the resulting method as random-log. Figure

6.4 shows the comparison of this new method to the rest. We can observe that appropri-

ate transformations in the search space, if available, lead to a significant improvement.

HB-ABLR-tr is the only method operating in the ”raw” search space that can achieve

a better anytime performance, and match the final performance of random-log. This

suggests that the knowledge being transferred from previous tasks through a neural

network relates to the correct embedding of the hyperparameters. Despite the trans-

fer, we notice that random-log starts from a better performance than both ABLR-tr and

HB-ABLR-tr. We attribute this to the fact that both ABLR-based methods sample their

initial values randomly in the ”raw” search spaces, which makes randomly sampling

better-performing values highly unlikely.

162 Chapter 6. A Transfer-Learning Extension of Hyperband

6.5.3 Predictive Uncertainty with ABLR

In our preliminary investigation, we replicated the experiment conducted in Perrone

et al. (2018), in which the target black-box function is given by a quadratic function:

f (x) = 1
2a2||x||22 + a11⊤x+ a0, where a0, a1 and a2 are scalars sampled uniformly at

random between [0.1,10], and x ∈ R3. The HPO task is to find the x which minimises

the black-box function. Our experiments matched the observations show in Figure 1a)

in Perrone et al. (2018). Concretely, we observed that using a GP leads to better any-

time performance than ABLR, in the absence of transfer. To investigate, we fit both

a GP and an ABLR on the same set of observations and compared their predictions.

We observed that ABLR’s predictive uncertainty was much smaller than that of GP,

meaning that ABLR was overconfident in its predictions. As a result, the BO proce-

dure which uses ABLR, could prioritise exploitation over exploration. On the other

hand, for our primary experiments, we observed that ABLR exhibited competitive per-

formance, with ABLR-based methods outperforming GP-based method.

Further insight into this intermittent issue can be obtained by considering another

line of work, namely deep kernel learning (DKL) (Calandra et al., 2016; Wilson et al.,

2016a,b). These approaches use a neural network to obtain a latent representation of

given inputs, which is in turn used by a GP to predict the output’s distribution. Neu-

ral linear models represent a DKL approach which uses a linear kernel for the GP

(Riquelme et al., 2018; Ober et al., 2021). Therefore, ABLR can be seen as a neural

linear model, due to the equivalence between GPs with a linear kernel and Bayesian

linear regression (Rasmussen and Williams, 2006). Ober and Rasmussen (2019) in-

vestigate the capabilities of neural linear models on simple regression tasks selected

from the UCI and UCI ”gap” datasets. They compare different neural linear models,

which differ in the way their parameters are trained. One of the models is equivalent

to ABLR, with the difference that the authors train the parameters using Adam instead

of L-BFGS. Their results show that, on some of the datasets, ABLR’s average test log-

likelihood can be significantly improved by tuning the hyperparameters for ABLR’s

optimiser. This suggests that the uncertainty estimates of ABLR can be affected by the

choice of ABLR hyperparameters for some tasks. In another paper, Ober et al. (2021)

find that DKLs trained using the marginal likelihood, like ABLR, can still overfit on the

training dataset. Furthermore, Tran et al. (2019) find that DKLs can be overconfident

in their predictions, despite the Bayesian treatment of their last layer.

Overall, this suggests that ABLR can exhibit overconfidence on some tasks. While

6.6. HB-ABLR for Modular Lifelong Learning 163

this may be addressed by tuning the hyperparameters of ABLR, doing so for a HPO

task may be infeasible. As a result, the performance of HB-ABLR may not be better

than BO-HB or HB-GP, in the absence of transfer from previous HPO tasks.

6.6 HB-ABLR for Modular Lifelong Learning

The section presents a discussion on how HB-ABLR can be used to improve previous

modular lifelong learning algorithms. In Chapter 5 we outlined a general algorithm for

modular lifelong machine learning, MOLL, described in Algorithm 1. Given a prob-

lem with index t, MOLL searches for the optimal path π∗ ∈ Πt which leads to the best

validation performance. Evaluating a single path π involves training any randomly ini-

tialised modules which the path specifies. This restricts the number of paths which can

be evaluated, which necessitates a search strategy which can quickly identify promis-

ing paths and suggest them for evaluation. Our approach in Chapter 5 was to split

the set of all possible paths Πt into subsets and manually define a separate efficient

search strategy for each subset. We explored two subsets ΠPT
t and ΠNT

t , containing

paths capable of perceptual and non-perceptual transfer, respectively. However, this

still leaves a big portion of potentially beneficial paths Πrest
t = Πt \ (ΠPT

t ∪ΠNT
t) for

which we have not defined a search strategy. For example, Πrest
t contains paths which

can simultaneously achieve perceptual and non-perceptual transfer by transferring both

the first l1 and the last l2 modules, while letting the remaining L− (l1 + l2) modules

be randomly initialised, where L is the number of modular layers in the given neural

architecture. The subset Πrest
t is also ignored by (Veniat et al., 2020; Ostapenko et al.,

2021). Therefore, there is a need for a search strategy which can explore Πrest
t effi-

ciently. Such a search strategy could be combined with others’ in order to improve the

transfer learning capabilities of current scalable modular LML algorithms.

MOLL, as defined in Algorithm 1 can be seen as a resource-unaware algorithm

for black-box optimisation, operating on a discrete search space. If target black-box

function is the validation loss Lval
t evaluated after training, the optimisation problem

in Equation 5.1 is equivalent to:

argmin
π∈Πt

Lval
t (π).

Furthermore, one can evaluate Lval after training the new parameters using a different

number of resources (a different number of epochs), which allows for a multi-fidelity

optimisation algorithm to be employed. Therefore, we can use HB-ABLR to search

164 Chapter 6. A Transfer-Learning Extension of Hyperband

for the best path π ∈ Πrest
t . The advantage of this approach is that it does not require a

manually-defined search strategy tailored to paths in Πrest
t . Moreover, a multi-fidelity

approach would allow many more paths to be evaluated using the same amount of

resources as the resource-unaware algorithms presented in Chapter 5.

One challenge of applying HB-ABLR is deciding how to encode a path so that

it can be processed by ABLR’s neural network, i.e. defining a mapping ϕ(π). Let

a path π specify L modules for each of the layers in a given neural architecture and

let there be t options to choose from, for each of the L modular layers. A naive ap-

proach would be to use one-hot encoding to represent each of the L modules selected

by π which would lead to a high-dimensional encoding of size tL. Since ABLR uses

a fully-connected neural network, which does not incorporate knowledge about the

structure of its inputs, having very high-dimensional inputs would increase the num-

ber of path evaluations necessary before the neural network can learn a transformation

which is useful for processing unseen paths. Another approach would be to introduce

a separate parameterised embedding for each module. Then, a path can be encoded as

a concatenation of the selected modules’ embeddings. To train ABLR’s parameters,

one would then optimise both the weights of the NN and the input’s parameters. The

resulting approach could lead to overfitting. Overall, in the absence of other expert-

provided biases, applying HB-ABLR is likely to be ineffective without using transfer

learning from past path optimisation tasks, i.e. path evaluations of past problems in the

lifelong learning sequence. Therefore, HB-ABLR is unlikely to be effective for short

sequences, such as the sequences with 6 problems used in Chapter 5. However, we

expect it to be applicable to long sequences of problems, for which a large number of

path evaluations will become available to transfer from.

The second challenge of applying HB-ABLR is determining how to suggest a path

that should be evaluated. Computing the value of the acquisition function for all un-

evaluated path would be computationally infeasible. Typically, Bayesian optimisation

algorithms make suggestions by optimising the surrogate model’s input using the gra-

dient of an acquisition function. Since our search space is discrete, the suggested input

c∗ is unlikely to correspond to an actual path. To address this, one could choose the

unevaluated path whose embedding is the closest to the suggested input, minimising

the distance between c∗ and ϕ(π).

Overall, applying HB-ABLR could by applied to modular lifelong learning in order

to search through paths which are not considered by current modular LML algorithms.

This would alleviate the need of manually specifying search strategies for subsets of

6.7. Conclusion 165

paths. However, in the absence of additional prior knowledge, we expect to HB-ABLR

to become useful for long problem sequences, as it needs many previous evaluations

on which to train its surrogate model. Still, due to its multi-fidelity approach and its

ability to transfer knowledge, HB-ABLR is the most applicable to modular LML our of

the other HPO methods which we compare to in this chapter. We leave the application

HB-ABLR to modular LML and the evaluation of the resulting approach, for future

work.

6.7 Conclusion

In this chapter, we developed HB-ABLR which is a model-based multi-fidelity hy-

perparameter optimisation (HPO) approach. HB-ABLR addressed three challenges of

HPO, namely, the necessity for a manually-designed special input featurisation (e.g.

a suitable GP kernel), the cold-start problem and the inefficiency incurred by eval-

uating every considered element using the same constant number of resources. This

allows our algorithm to exhibit better anytime performance than competitive baselines,

as shown in our experiments. Finally, we presented a discussion on how HB-ABLR

can be used to augment current scalable modular LML algorithms in order to improve

their knowledge transfer capabilities.

Chapter 7

Conclusion

This thesis introduced a modular framework for lifelong machine learning (LML).

Moreover, it developed two approaches, which can be used to improve the framework’s

computational efficiency. Here, I present a summary of our contributions and discuss

possible future research directions.

In Chapter 4, we introduced a neurosymbolic framework for LML, called HOU-

DINI. We introduced a specific representation of neural networks as typed functional

programs. We then showed that symbolic program synthesis can be applied to trans-

fer learning and LML. Our method uses function types in order to reduce the search

space to well-typed programs. We demonstrated that our approach fulfils almost all

properties an LML algorithm should have. Compared to previous work, our method

can operate across input spaces, perform non-perceptual transfer and avoid negative

transfer. Given a new problem, HOUDINI searches for the problem-specific optimal

program, which allows it to operate on different input spaces. The modularity of func-

tional programs allows us to perform non-perceptual transfer by reusing higher mod-

ules which operate on a more abstract, latent space. Moreover, our algorithm can avoid

negative transfer because we first evaluate the standalone version of each program we

consider. Finally, the pre-trained modules can be combined in novel ways, which al-

lows our framework to achieve high performance even with a small number of training

examples.

In Chapter 5, we listed a set of desirable LML properties. Our main contribution

is introducing a probabilistic search framework over module combinations, which al-

lowed us to develop the first modular LML algorithm, which can achieve all of the

listed properties, apart from backward transfer. For this purpose we developed two

distinct probabilistic models which modelled the choice of pre-trained modules. For

167

168 Chapter 7. Conclusion

the first model, we showed how a module’s input distribution can be efficiently ap-

proximated. For the second model, we introduced a kernel function between module

combinations. Apart from this, we presented a benchmark suite which can be used to

diagnose all of the listed desirable LML properties.

In Chapter 6, we augmented Hyperband Li et al. (2017) by replacing its random

sampling with model-based adaptive sampling. Our choice of a surrogate model Per-

rone et al. (2018) allowed us to make use of previous evaluations from past searches.

We demonstrated that our approach outperforms the state-of-the-art baselines in the

hyperparameter optimisation (HPO) setting. As a secondary contribution, we phrased

the search over module combinations performed by modular LML algorithm as black-

box optimisation problem. We then presented a discussion on how the HPO method

introduced in this chapter can be used to augment modular LML algorithms.

7.1 Future Work

The work presented in this thesis opens up a number of potential research directions.

Some of them are discussed next.

One avenue is to extend HOUDINI to describe neurosymbolic systems as functional

programs. Currently, all of the functions are implemented as neural modules. However,

any symbolic function can be added to the library and then be used on a new problem.

For example, HOUDINI could be used to describe the neurosymbolic method for visual

question answering NS-VQA, presented out Yi et al. (2018). The resulting functional

program should combine a convolutional network, an LSTM and a symbolic program

executor. Overall, our framework could be modified to allow one to automatically

discover a problem-specific neurosymbolic solution.

Another research question is how to augment the modular LML algorithm pre-

sented in Chapter 5 in order to allow for backward transfer. This would create the first

deep lifelong learning algorithm which possesses all of the desired LML properties

listed in this thesis. One advantage of our framework towards this goal is that neural

modules are selectively reused only on relevant problems. It is possible that this makes

it easier to achieve backwards transfer.

The scalable modular LML algorithm presented in Chapter 5 assumes that a problem-

specific neural architecture is provided by the user. An interesting research direction

is to investigate how to combine this algorithm with ideas from neural architecture

search. This would further automate the process of applying our modular LML algo-

7.1. Future Work 169

rithm to sequences with disparate problems.

The method proposed in Chapter 6 performed well in the setting of hyper-parameter

optimisation. The chapter also presented a discussion on how this method an be used

to augment modular LML algorithms. Evaluating the merits of such a combination is

another interesting research direction.

Bibliography

Agrawal, P., Girshick, R., and Malik, J. (2014). Analyzing the performance of multi-

layer neural networks for object recognition. In European conference on computer

vision, pages 329–344. Springer.

Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., and Tuytelaars, T. (2018).

Memory aware synapses: Learning what (not) to forget. In Proceedings of the Eu-

ropean Conference on Computer Vision (ECCV), pages 139–154.

Aljundi, R., Lin, M., Goujaud, B., and Bengio, Y. (2019). Gradient based sample

selection for online continual learning. Advances in neural information processing

systems, 32.

Andreas, J., Rohrbach, M., Darrell, T., and Klein, D. (2016). Neural module networks.

In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 39–48.

Badue, C., Guidolini, R., Carneiro, R. V., Azevedo, P., Cardoso, V. B., Forechi, A.,

Jesus, L., Berriel, R., Paixao, T. M., Mutz, F., et al. (2020). Self-driving cars: A

survey. Expert Systems with Applications, page 113816.

Baker, B., Gupta, O., Raskar, R., and Naik, N. (2017). Accelerating neural architecture

search using performance prediction. arXiv preprint arXiv:1705.10823.

Balog, M., Gaunt, A. L., Brockschmidt, M., Nowozin, S., and Tarlow, D. (2016).

Deepcoder: Learning to write programs. arXiv preprint arXiv:1611.01989.

Bardenet, R., Brendel, M., Kégl, B., and Sebag, M. (2013). Collaborative hyperpa-

rameter tuning. In International conference on machine learning, pages 199–207.

PMLR.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Ma-

linowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., et al. (2018).

171

172 Bibliography

Relational inductive biases, deep learning, and graph networks. arXiv preprint

arXiv:1806.01261.

Bengio, Y., Léonard, N., and Courville, A. (2013). Estimating or propagating gra-

dients through stochastic neurons for conditional computation. arXiv preprint

arXiv:1308.3432.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum learning.

In Proceedings of the 26th annual international conference on machine learning,

pages 41–48.

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2011). Algorithms for hyper-

parameter optimization. In 25th annual conference on neural information process-

ing systems (NIPS 2011), volume 24. Neural Information Processing Systems Foun-

dation.

Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimization.

Journal of machine learning research, 13(2).

Berner, J., Grohs, P., Kutyniok, G., and Petersen, P. (2021). The modern mathematics

of deep learning. arXiv preprint arXiv:2105.04026.

Bertrand, H., Ardon, R., Perrot, M., and Bloch, I. (2017). Hyperparameter optimization

of deep neural networks: Combining hyperband with bayesian model selection. In

Conférence sur l’Apprentissage Automatique.

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015). Weight uncer-

tainty in neural network. In International Conference on Machine Learning, pages

1613–1622. PMLR.

Bottou, L. (2012). Stochastic gradient descent tricks. In Neural networks: Tricks of

the trade, pages 421–436. Springer.

Bottou, L. and Cun, Y. (2003). Large scale online learning. Advances in neural infor-

mation processing systems, 16.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

Bibliography 173

Brock, A., Lim, T., Ritchie, J. M., and Weston, N. (2017). Smash: one-shot model

architecture search through hypernetworks. arXiv preprint arXiv:1708.05344.

Buzzega, P., Boschini, M., Porrello, A., Abati, D., and Calderara, S. (2020). Dark

experience for general continual learning: a strong, simple baseline. Advances in

neural information processing systems, 33:15920–15930.

Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. (1995). A limited memory algorithm for

bound constrained optimization. SIAM J. Sci. Comput., 16(5):1190–1208.

Calandra, R., Peters, J., Rasmussen, C. E., and Deisenroth, M. P. (2016). Manifold

gaussian processes for regression. In 2016 International Joint Conference on Neural

Networks (IJCNN), pages 3338–3345. IEEE.

Caruana, R. (1997). Multitask learning. Machine learning, 28(1):41–75.

Caruana, R. (1998). Multitask learning. In Learning to learn, pages 95–133. Springer.

Chang, C.-C. and Lin, C.-J. (2011). Libsvm: a library for support vector machines.

ACM transactions on intelligent systems and technology (TIST), 2(3):1–27.

Chang, M. B., Gupta, A., Levine, S., and Griffiths, T. L. (2018). Automatically com-

posing representation transformations as a means for generalization. arXiv preprint

arXiv:1807.04640.

Chaudhry, A., Dokania, P. K., Ajanthan, T., and Torr, P. H. (2018a). Riemannian walk

for incremental learning: Understanding forgetting and intransigence. In Proceed-

ings of the European Conference on Computer Vision (ECCV), pages 532–547.

Chaudhry, A., Ranzato, M., Rohrbach, M., and Elhoseiny, M. (2018b). Efficient life-

long learning with a-gem. arXiv preprint arXiv:1812.00420.

Chaudhry, A., Rohrbach, M., Elhoseiny, M., Ajanthan, T., Dokania, P. K., Torr, P. H.,

and Ranzato, M. (2019a). Continual learning with tiny episodic memories.

Chaudhry, A., Rohrbach, M., Elhoseiny, M., Ajanthan, T., Dokania, P. K., Torr, P. H.,

and Ranzato, M. (2019b). On tiny episodic memories in continual learning. arXiv

preprint arXiv:1902.10486.

Chen, K. (2015). Deep and modular neural networks. In Springer Handbook of Com-

putational Intelligence, pages 473–494. Springer.

174 Bibliography

Chen, T. and Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’16, pages 785–794, New York, NY, USA. ACM.

Chen, Z. and Liu, B. (2018). Lifelong machine learning. Synthesis Lectures on Artifi-

cial Intelligence and Machine Learning, 12(3):1–207.

Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B., and LeCun, Y. (2015). The

loss surfaces of multilayer networks. In Artificial intelligence and statistics, pages

192–204. PMLR.

Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., and Vedaldi, A. (2014). Describing

textures in the wild. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 3606–3613.

Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K., and

Ha, D. (2018). Deep learning for classical japanese literature. arXiv preprint

arXiv:1812.01718.

Cohen, G., Afshar, S., Tapson, J., and Schaik, A. V. (2017). Emnist: Extending mnist

to handwritten letters. 2017 International Joint Conference on Neural Networks

(IJCNN).

Crawshaw, M. (2020). Multi-task learning with deep neural networks: A survey. arXiv

preprint arXiv:2009.09796.

Csurka, G. (2017). Domain adaptation for visual applications: A comprehensive sur-

vey. arXiv preprint arXiv:1702.05374.

Cunningham, E. and Fiterau, M. (2021). A change of variables method for rectangular

matrix-vector products. In International Conference on Artificial Intelligence and

Statistics, pages 2755–2763. PMLR.

De Lange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis, A., Slabaugh,

G., and Tuytelaars, T. (2019). A continual learning survey: Defying forgetting in

classification tasks. arXiv preprint arXiv:1909.08383.

Delange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis, A., Slabaugh, G.,

and Tuytelaars, T. (2021). A continual learning survey: Defying forgetting in clas-

sification tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence.

Bibliography 175

Deng, L. and Liu, Y. (2018). Deep learning in natural language processing. Springer.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training

of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805.

Dı́az-Rodrı́guez, N., Lomonaco, V., Filliat, D., and Maltoni, D. (2018). Don’t forget,

there is more than forgetting: new metrics for continual learning. arXiv preprint

arXiv:1810.13166.

Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., and Darrell, T.

(2014). Decaf: A deep convolutional activation feature for generic visual recogni-

tion. In International conference on machine learning, pages 647–655.

Dong, X. and Yang, Y. (2020). Nas-bench-201: Extending the scope of reproducible

neural architecture search. arXiv preprint arXiv:2001.00326.

Draper, N. R. and Smith, H. (1998). Applied regression analysis, volume 326. John

Wiley & Sons.

Du, S. S., Zhai, X., Poczos, B., and Singh, A. (2018). Gradient descent provably

optimizes over-parameterized neural networks. arXiv preprint arXiv:1810.02054.

Duong, L., Cohn, T., Bird, S., and Cook, P. (2015). Low resource dependency pars-

ing: Cross-lingual parameter sharing in a neural network parser. In Proceedings of

the 53rd annual meeting of the Association for Computational Linguistics and the

7th international joint conference on natural language processing (volume 2: short

papers), pages 845–850.

Ebrahimi, S., Elhoseiny, M., Darrell, T., and Rohrbach, M. (2019). Uncertainty-guided

continual learning with bayesian neural networks. arXiv preprint arXiv:1906.02425.

Elsken, T., Metzen, J. H., Hutter, F., et al. (2019). Neural architecture search: A survey.

J. Mach. Learn. Res., 20(55):1–21.

Falkner, S., Klein, A., and Hutter, F. (2018). Bohb: Robust and efficient hyperparam-

eter optimization at scale. In International Conference on Machine Learning, pages

1437–1446. PMLR.

176 Bibliography

Farajtabar, M., Azizan, N., Mott, A., and Li, A. (2020). Orthogonal gradient descent

for continual learning. In International Conference on Artificial Intelligence and

Statistics, pages 3762–3773. PMLR.

Farquhar, S. and Gal, Y. (2018). Towards robust evaluations of continual learning.

arXiv preprint arXiv:1805.09733.

Farquhar, S. and Gal, Y. (2019). Differentially private continual learning. arXiv

preprint arXiv:1902.06497.

Fernando, C., Banarse, D., Blundell, C., Zwols, Y., Ha, D., Rusu, A. A., Pritzel, A., and

Wierstra, D. (2017). Pathnet: Evolution channels gradient descent in super neural

networks. arXiv preprint arXiv:1701.08734.

Feurer, M., Springenberg, J., and Hutter, F. (2015). Initializing bayesian hyperpa-

rameter optimization via meta-learning. In Proceedings of the AAAI Conference on

Artificial Intelligence, volume 29.

Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic meta-learning for fast

adaptation of deep networks. In International conference on machine learning,

pages 1126–1135. PMLR.

Finn, C., Rajeswaran, A., Kakade, S., and Levine, S. (2019). Online meta-learning. In

International Conference on Machine Learning, pages 1920–1930. PMLR.

Garcez, A. d. and Lamb, L. C. (2020). Neurosymbolic ai: The 3rd wave. arXiv preprint

arXiv:2012.05876.

Garnelo, M. and Shanahan, M. (2019). Reconciling deep learning with symbolic artifi-

cial intelligence: representing objects and relations. Current Opinion in Behavioral

Sciences, 29:17–23.

Gaunt, A. L., Brockschmidt, M., Kushman, N., and Tarlow, D. (2016a). Differentiable

programs with neural libraries. arXiv preprint arXiv:1611.02109.

Gaunt, A. L., Brockschmidt, M., Singh, R., Kushman, N., Kohli, P., Taylor, J., and

Tarlow, D. (2016b). Terpret: A probabilistic programming language for program

induction. arXiv preprint arXiv:1608.04428.

Bibliography 177

Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies for

accurate object detection and semantic segmentation. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 580–587.

Gnecco, G. (2012). A comparison between fixed-basis and variable-basis schemes for

function approximation and functional optimization. Journal of Applied Mathemat-

ics, 2012.

Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., and Sculley, D. (2017).

Google vizier: A service for black-box optimization. In Proceedings of the 23rd

ACM SIGKDD international conference on knowledge discovery and data mining,

pages 1487–1495.

González, J. and Dai, Z. (2016). GPyOpt: A bayesian optimization framework in

python. http://github.com/SheffieldML/GPyOpt.

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. (2016). Deep learning,

volume 1. MIT press Cambridge.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Advances in

neural information processing systems, pages 2672–2680.

Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A., and Bengio, Y. (2013). An

empirical investigation of catastrophic forgetting in gradient-based neural networks.

arXiv preprint arXiv:1312.6211.

GPy (since 2012). GPy: A gaussian process framework in python.

http://github.com/SheffieldML/GPy.

Graves, A., Wayne, G., and Danihelka, I. (2014). Neural turing machines. arXiv

preprint arXiv:1410.5401.

Gühring, I., Raslan, M., and Kutyniok, G. (2020). Expressivity of deep neural net-

works. arXiv preprint arXiv:2007.04759.

Gulwani, S., Polozov, O., and Singh, R. (2017). Program synthesis. Foundations and

Trends in Programming Languages, 4(1-2):1–119.

178 Bibliography

Guo, Y., Shi, H., Kumar, A., Grauman, K., Rosing, T., and Feris, R. (2019). Spottune:

transfer learning through adaptive fine-tuning. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 4805–4814.

Ha, D., Dai, A., and Le, Q. V. (2016). Hypernetworks. arXiv preprint

arXiv:1609.09106.

Hadsell, R., Rao, D., Rusu, A. A., and Pascanu, R. (2020). Embracing change: Con-

tinual learning in deep neural networks. Trends in cognitive sciences, 24(12):1028–

1040.

Harnad, S. (1990). The symbol grounding problem. Physica D: Nonlinear Phenomena,

42(1-3):335–346.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 770–778.

He, X., Zhao, K., and Chu, X. (2021). Automl: A survey of the state-of-the-art.

Knowledge-Based Systems, 212:106622.

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural

network. arXiv preprint arXiv:1503.02531.

Hospedales, T. M., Antoniou, A., Micaelli, P., and Storkey, A. J. (2021). Meta-learning

in neural networks: A survey. IEEE transactions on pattern analysis and machine

intelligence.

Howard, J. and Ruder, S. (2018). Universal language model fine-tuning for text classi-

fication. arXiv preprint arXiv:1801.06146.

Hu, R., Andreas, J., Rohrbach, M., Darrell, T., and Saenko, K. (2017). Learning to

reason: End-to-end module networks for visual question answering. In Proceedings

of the IEEE International Conference on Computer Vision, pages 804–813.

Huh, M., Agrawal, P., and Efros, A. A. (2016). What makes imagenet good for transfer

learning? arXiv preprint arXiv:1608.08614.

Hung, S. C., Tu, C.-H., Wu, C.-E., Chen, C.-H., Chan, Y.-M., and Chen, C.-S.

(2019). Compacting, picking and growing for unforgetting continual learning. arXiv

preprint arXiv:1910.06562.

Bibliography 179

Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011). Sequential model-based opti-

mization for general algorithm configuration. In International conference on learn-

ing and intelligent optimization, pages 507–523. Springer.

Isele, D. and Cosgun, A. (2018). Selective experience replay for lifelong learning. In

Proceedings of the AAAI Conference on Artificial Intelligence, volume 32.

Jacobs, R. A., Jordan, I. M. I., and Berta, A. G. (1990). Task decomposition through

competition.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. (1991). Adaptive mixtures

of local experts. Neural computation, 3(1):79–87.

Jafar, A. and Myungho, L. (2020). Hyperparameter optimization for deep residual

learning in image classification. In 2020 IEEE International Conference on Auto-

nomic Computing and Self-Organizing Systems Companion (ACSOS-C), pages 24–

29. IEEE.

Jamieson, K. and Talwalkar, A. (2016). Non-stochastic best arm identification and

hyperparameter optimization. In Artificial intelligence and statistics, pages 240–

248. PMLR.

Jiao, L. and Zhao, J. (2019). A survey on the new generation of deep learning in image

processing. IEEE Access, 7:172231–172263.

Johnson, J., Hariharan, B., Van Der Maaten, L., Fei-Fei, L., Lawrence Zitnick, C., and

Girshick, R. (2017). Clevr: A diagnostic dataset for compositional language and

elementary visual reasoning. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2901–2910.

Johnson, W. B. (1984). Extensions of lipschitz mappings into a hilbert space. Contemp.

Math., 26:189–206.

Jordan, M. I. (1998). Learning in graphical models, volume 89. Springer Science &

Business Media.

Jung, S., Ahn, H., Cha, S., and Moon, T. (2020). Adaptive group sparse regularization

for continual learning. arXiv preprint arXiv:2003.13726.

Kanclerz, K., Miłkowski, P., and Kocoń, J. (2020). Cross-lingual deep neural transfer

learning in sentiment analysis. Procedia Computer Science, 176:128–137.

180 Bibliography

Kandasamy, K., Neiswanger, W., Schneider, J., Poczos, B., and Xing, E. (2018). Neu-

ral architecture search with bayesian optimisation and optimal transport. arXiv

preprint arXiv:1802.07191.

Kautz, H. (2020). The third ai summer, aaai robert s. engelmore memorial lecture,

thirty-fourth aaai conference on artificial intelligence, new york, ny, february 10,

2020.

Kawaguchi, K. (2016). Deep learning without poor local minima. Advances in neural

information processing systems, 29.

Kemker, R. and Kanan, C. (2017). Fearnet: Brain-inspired model for incremental

learning. arXiv preprint arXiv:1711.10563.

Khetarpal, K., Riemer, M., Rish, I., and Precup, D. (2020). Towards continual rein-

forcement learning: A review and perspectives. arXiv preprint arXiv:2012.13490.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A.,

Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al. (2017). Overcoming

catastrophic forgetting in neural networks. Proceedings of the national academy of

sciences, 114(13):3521–3526.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A.,

Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al. (2018). Reply to

huszár: The elastic weight consolidation penalty is empirically valid. Proceedings

of the National Academy of Sciences, 115(11):E2498–E2498.

Kirsch, L., Kunze, J., and Barber, D. (2018). Modular networks: Learning to decom-

pose neural computation. arXiv preprint arXiv:1811.05249.

Klein, A., Falkner, S., Bartels, S., Hennig, P., and Hutter, F. (2017). Fast bayesian

optimization of machine learning hyperparameters on large datasets. In Artificial

intelligence and statistics, pages 528–536. PMLR.

Kornblith, S., Shlens, J., and Le, Q. V. (2019). Do better imagenet models transfer bet-

ter? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 2661–2671.

Bibliography 181

Kozma, R., Ilin, R., and Siegelmann, H. T. (2018). Evolution of abstraction across

layers in deep learning neural networks. Procedia computer science, 144:203–213.

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from

tiny images.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with

deep convolutional neural networks. In NIPS.

Lample, G. and Charton, F. (2019). Deep learning for symbolic mathematics. arXiv

preprint arXiv:1912.01412.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553):436–

444.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

LeCun, Y., Cortes, C., and Burges, C. (2010). Mnist handwritten digit database. ATT

Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, 2.

Lee Rodgers, J. and Nicewander, W. A. (1988). Thirteen ways to look at the correlation

coefficient. The American Statistician, 42(1):59–66.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. (2017). Hyper-

band: A novel bandit-based approach to hyperparameter optimization. The Journal

of Machine Learning Research, 18(1):6765–6816.

Li, L. and Talwalkar, A. (2020). Random search and reproducibility for neural archi-

tecture search. In Uncertainty in Artificial Intelligence, pages 367–377. PMLR.

Li, Y., Shen, Y., Jiang, J., Gao, J., Zhang, C., and Cui, B. (2021a). Mfes-hb: Efficient

hyperband with multi-fidelity quality measurements. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 35, pages 8491–8500.

Li, Y., Shen, Y., Zhang, W., Chen, Y., Jiang, H., Liu, M., Jiang, J., Gao, J., Wu, W.,

Yang, Z., et al. (2021b). Openbox: A generalized black-box optimization service.

In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &

Data Mining, pages 3209–3219.

182 Bibliography

Li, Z. and Hoiem, D. (2017). Learning without forgetting. IEEE transactions on

pattern analysis and machine intelligence, 40(12):2935–2947.

Li, Z., Zhong, C., Wang, R., and Zheng, W.-S. (2020). Continual learning of new

diseases with dual distillation and ensemble strategy. In International Conference

on Medical Image Computing and Computer-Assisted Intervention, pages 169–178.

Springer.

Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.-J., Fei-Fei, L., Yuille,

A., Huang, J., and Murphy, K. (2018a). Progressive neural architecture search. In

Proceedings of the European conference on computer vision (ECCV), pages 19–34.

Liu, H., Simonyan, K., and Yang, Y. (2018b). Darts: Differentiable architecture search.

arXiv preprint arXiv:1806.09055.

Liu, X., Masana, M., Herranz, L., Van de Weijer, J., Lopez, A. M., and Bagdanov, A. D.

(2018c). Rotate your networks: Better weight consolidation and less catastrophic

forgetting. In 2018 24th International Conference on Pattern Recognition (ICPR),

pages 2262–2268. IEEE.

Liu, X., Zhang, F., Hou, Z., Mian, L., Wang, Z., Zhang, J., and Tang, J. (2021). Self-

supervised learning: Generative or contrastive. IEEE Transactions on Knowledge

and Data Engineering.

Lomonaco, V. and Maltoni, D. (2017). Core50: a new dataset and benchmark for

continuous object recognition. In Conference on Robot Learning, pages 17–26.

PMLR.

Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks for

semantic segmentation. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 3431–3440.

Lopez-Paz, D. and Ranzato, M. (2017). Gradient episodic memory for continual learn-

ing. arXiv preprint arXiv:1706.08840.

Lorenz, R., Monti, R. P., Violante, I. R., Faisal, A. A., Anagnostopoulos, C., Leech,

R., and Montana, G. (2015). Stopping criteria for boosting automatic experi-

mental design using real-time fmri with bayesian optimization. arXiv preprint

arXiv:1511.07827.

Bibliography 183

Loshchilov, I. and Hutter, F. (2017). Decoupled weight decay regularization. arXiv

preprint arXiv:1711.05101.

Lu, L., Jiang, H., and Wong, W. H. (2013). Multivariate density estimation by

bayesian sequential partitioning. Journal of the American Statistical Association,

108(504):1402–1410.

Makarova, A., Shen, H., Perrone, V., Klein, A., Faddoul, J. B., Krause, A., Seeger, M.,

and Archambeau, C. (2022). Automatic termination for hyperparameter optimiza-

tion. In First Conference on Automated Machine Learning (Main Track).

Mallya, A., Davis, D., and Lazebnik, S. (2018). Piggyback: Adapting a single network

to multiple tasks by learning to mask weights. In Proceedings of the European

Conference on Computer Vision (ECCV), pages 67–82.

Mallya, A. and Lazebnik, S. (2018). Packnet: Adding multiple tasks to a single net-

work by iterative pruning. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 7765–7773.

Melis, G., Dyer, C., and Blunsom, P. (2017). On the state of the art of evaluation in

neural language models. arXiv preprint arXiv:1707.05589.

Mendoza, H., Klein, A., Feurer, M., Springenberg, J. T., and Hutter, F. (2016). Towards

automatically-tuned neural networks. In Workshop on automatic machine learning,

pages 58–65. PMLR.

Mirzadeh, S. I., Farajtabar, M., Pascanu, R., and Ghasemzadeh, H. (2020). Under-

standing the role of training regimes in continual learning. Advances in Neural

Information Processing Systems, 33:7308–7320.

Misra, I., Shrivastava, A., Gupta, A., and Hebert, M. (2016). Cross-stitch networks

for multi-task learning. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3994–4003.

Mitchell, T. (1997). Machine Learning. McGraw-Hill International Editions. McGraw-

Hill.

Mitchell, T., Cohen, W., Hruschka, E., Talukdar, P., Yang, B., Betteridge, J., Carl-

son, A., Dalvi, B., Gardner, M., Kisiel, B., et al. (2018). Never-ending learning.

Communications of the ACM, 61(5):103–115.

184 Bibliography

Mockus, J., Tiesis, V., and Zilinskas, A. (1978). The application of bayesian methods

for seeking the extremum. Towards global optimization, 2(117-129):2.

Mohammadi, H., Riche, R. L., Durrande, N., Touboul, E., and Bay, X. (2016). An an-

alytic comparison of regularization methods for gaussian processes. arXiv preprint

arXiv:1602.00853.

Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press.

Nagarajan, V., Andreassen, A., and Neyshabur, B. (2020). Understanding the failure

modes of out-of-distribution generalization. arXiv preprint arXiv:2010.15775.

Neelakantan, A., Le, Q. V., and Sutskever, I. (2015). Neural programmer: Inducing

latent programs with gradient descent. arXiv preprint arXiv:1511.04834.

Nekoei, H., Badrinaaraayanan, A., Courville, A., and Chandar, S. (2021). Continuous

coordination as a realistic scenario for lifelong learning. In International Conference

on Machine Learning, pages 8016–8024. PMLR.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. (2011). Reading

digits in natural images with unsupervised feature learning.

Nguyen, A., Yosinski, J., and Clune, J. (2016). Multifaceted feature visualization:

Uncovering the different types of features learned by each neuron in deep neural

networks. arXiv preprint arXiv:1602.03616.

Nguyen, C. V., Li, Y., Bui, T. D., and Turner, R. E. (2018). Variational continual

learning. In International Conference on Learning Representations.

Nguyen, V., Gupta, S., Rana, S., Li, C., and Venkatesh, S. (2017). Regret for ex-

pected improvement over the best-observed value and stopping condition. In Asian

conference on machine learning, pages 279–294. PMLR.

Ober, S. W. and Rasmussen, C. E. (2019). Benchmarking the neural linear model for

regression. arXiv preprint arXiv:1912.08416.

Ober, S. W., Rasmussen, C. E., and van der Wilk, M. (2021). The promises and pitfalls

of deep kernel learning. In Uncertainty in Artificial Intelligence, pages 1206–1216.

PMLR.

Bibliography 185

Olivas, E. S., Guerrero, J. D. M., Martinez-Sober, M., Magdalena-Benedito, J. R.,

Serrano, L., et al. (2009). Handbook of Research on Machine Learning Applica-

tions and Trends: Algorithms, Methods, and Techniques: Algorithms, Methods, and

Techniques. IGI Global.

Oquab, M., Bottou, L., Laptev, I., and Sivic, J. (2014). Learning and transferring mid-

level image representations using convolutional neural networks. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages 1717–1724.

Ostapenko, O., Rodriguez, P., Caccia, M., and Charlin, L. (2021). Continual learning

via local module composition. Advances in Neural Information Processing Systems,

34:30298–30312.

Ouali, Y., Hudelot, C., and Tami, M. (2020). An overview of deep semi-supervised

learning. arXiv preprint arXiv:2006.05278.

Pan, P., Swaroop, S., Immer, A., Eschenhagen, R., Turner, R. E., and Khan, M. E.

(2020). Continual deep learning by functional regularisation of memorable past.

arXiv preprint arXiv:2004.14070.

Pan, S. J. and Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on

knowledge and data engineering, 22(10):1345–1359.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter, S. (2019). Continual

lifelong learning with neural networks: A review. Neural Networks, 113:54–71.

Park, D., Hong, S., Han, B., and Lee, K. M. (2019). Continual learning by asym-

metric loss approximation with single-side overestimation. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, pages 3335–3344.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,

Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,

Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala,

S. (2019). Pytorch: An imperative style, high-performance deep learning library. In

Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett,

R., editors, Advances in Neural Information Processing Systems 32, pages 8024–

8035. Curran Associates, Inc.

186 Bibliography

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon-

del, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine

learning in python. the Journal of machine Learning research, 12:2825–2830.

Pellegrini, L., Graffieti, G., Lomonaco, V., and Maltoni, D. (2019). Latent replay for

real-time continual learning. arXiv preprint arXiv:1912.01100.

Perrone, V., Jenatton, R., Seeger, M., and Archambeau, C. (2018). Scalable hyperpa-

rameter transfer learning. In Proceedings of the 32nd International Conference on

Neural Information Processing Systems, pages 6846–6856.

Pham, H., Guan, M., Zoph, B., Le, Q., and Dean, J. (2018). Efficient neural architec-

ture search via parameters sharing. In International Conference on Machine Learn-

ing, pages 4095–4104. PMLR.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al. (2018). Improving

language understanding by generative pre-training.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. (2019).

Language models are unsupervised multitask learners. OpenAI blog, 1(8):9.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li,

W., and Liu, P. J. (2019). Exploring the limits of transfer learning with a unified

text-to-text transformer. arXiv preprint arXiv:1910.10683.

Rajasegaran, J., Hayat, M., Khan, S., Khan, F. S., and Shao, L. (2019). Random

path selection for incremental learning. Advances in Neural Information Processing

Systems, 3.

Rasmussen, C. E. and Williams, C. K. (2006). Gaussian processes for machine learn-

ing.

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. (2019). Regularized evolution for im-

age classifier architecture search. In Proceedings of the aaai conference on artificial

intelligence, volume 33, pages 4780–4789.

Reed, S. and De Freitas, N. (2015). Neural programmer-interpreters. arXiv preprint

arXiv:1511.06279.

Bibliography 187

Ren, P., Xiao, Y., Chang, X., Huang, P.-Y., Li, Z., Chen, X., and Wang, X. (2020).

A comprehensive survey of neural architecture search: Challenges and solutions.

arXiv preprint arXiv:2006.02903.

Riquelme, C., Tucker, G., and Snoek, J. (2018). Deep bayesian bandits showdown:

An empirical comparison of bayesian deep networks for thompson sampling. arXiv

preprint arXiv:1802.09127.

Ritter, H., Botev, A., and Barber, D. (2018a). Online structured laplace approximations

for overcoming catastrophic forgetting. Advances in Neural Information Processing

Systems, 31.

Ritter, H., Botev, A., and Barber, D. (2018b). A scalable laplace approximation for neu-

ral networks. In 6th International Conference on Learning Representations, ICLR

2018-Conference Track Proceedings, volume 6. International Conference on Repre-

sentation Learning.

Robins, A. (1995). Catastrophic forgetting, rehearsal and pseudorehearsal. Connection

Science, 7(2):123–146.

Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T., and Wayne, G. (2019). Experience

replay for continual learning. Advances in Neural Information Processing Systems,

32.

Rosenbaum, C., Klinger, T., and Riemer, M. (2017). Routing networks: Adap-

tive selection of non-linear functions for multi-task learning. arXiv preprint

arXiv:1711.01239.

Rosenbaum, C. G. (2020). Dynamic composition of functions for modular learning.

Ruder, S. (2017). An overview of multi-task learning in deep neural networks. arXiv

preprint arXiv:1706.05098.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations

by back-propagating errors. nature, 323(6088):533–536.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpa-

thy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). ImageNet

Large Scale Visual Recognition Challenge. International Journal of Computer Vi-

sion (IJCV), 115(3):211–252.

188 Bibliography

Russell, S. J. and Norvig, P. (2009). Artificial Intelligence: a modern approach. Pear-

son, 3 edition.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J.,

Kavukcuoglu, K., Pascanu, R., and Hadsell, R. (2016). Progressive neural networks.

arXiv preprint arXiv:1606.04671.

Saenko, K., Kulis, B., Fritz, M., and Darrell, T. (2010). Adapting visual category

models to new domains. In European conference on computer vision, pages 213–

226. Springer.

Salman, H., Ilyas, A., Engstrom, L., Kapoor, A., and Madry, A. (2020). Do adversari-

ally robust imagenet models transfer better? arXiv preprint arXiv:2007.08489.

Schwarz, J., Altman, D., Dudzik, A., Vinyals, O., Teh, Y. W., and Pascanu, R. (2018a).

Towards a natural benchmark for continual learning. In NeurIPS Workshop on Con-

tinual Learning.

Schwarz, J., Czarnecki, W., Luketina, J., Grabska-Barwinska, A., Teh, Y. W., Pascanu,

R., and Hadsell, R. (2018b). Progress & compress: A scalable framework for contin-

ual learning. In International Conference on Machine Learning, pages 4528–4537.

PMLR.

Serra, J., Suris, D., Miron, M., and Karatzoglou, A. (2018). Overcoming catastrophic

forgetting with hard attention to the task. In International Conference on Machine

Learning, pages 4548–4557. PMLR.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and De Freitas, N. (2015). Taking

the human out of the loop: A review of bayesian optimization. Proceedings of the

IEEE, 104(1):148–175.

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding machine learning: From

theory to algorithms. Cambridge university press.

Sharif Razavian, A., Azizpour, H., Sullivan, J., and Carlsson, S. (2014). Cnn features

off-the-shelf: an astounding baseline for recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition workshops, pages 806–813.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., and Dean, J.

(2017). Outrageously large neural networks: The sparsely-gated mixture-of-experts

layer. arXiv preprint arXiv:1701.06538.

Bibliography 189

Shin, H., Lee, J. K., Kim, J., and Kim, J. (2017). Continual learning with deep gener-

ative replay. In Proceedings of the 31st International Conference on Neural Infor-

mation Processing Systems, pages 2994–3003.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,

Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016).

Mastering the game of go with deep neural networks and tree search. nature,

529(7587):484–489.

Silver, D. L., Yang, Q., and Li, L. (2013). Lifelong machine learning systems: Beyond

learning algorithms. In 2013 AAAI spring symposium series. Citeseer.

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical bayesian optimization of

machine learning algorithms. Advances in neural information processing systems,

25.

Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Sundaram, N., Patwary, M.,

Prabhat, M., and Adams, R. (2015). Scalable bayesian optimization using deep

neural networks. In International conference on machine learning, pages 2171–

2180. PMLR.

Snoek, J., Swersky, K., Zemel, R., and Adams, R. (2014). Input warping for bayesian

optimization of non-stationary functions. In International Conference on Machine

Learning, pages 1674–1682. PMLR.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).

Dropout: a simple way to prevent neural networks from overfitting. The journal of

machine learning research, 15(1):1929–1958.

Storkey, A. (2009). When training and test sets are different: characterizing learning

transfer. Dataset shift in machine learning, pages 3–28.

Swersky, K., Snoek, J., and Adams, R. P. (2013). Multi-task bayesian optimization.

Advances in neural information processing systems, 26.

Swersky, K., Snoek, J., and Adams, R. P. (2014). Freeze-thaw bayesian optimization.

arXiv preprint arXiv:1406.3896.

Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., and Liu, C. (2018). A survey on deep

transfer learning. In International conference on artificial neural networks, pages

270–279. Springer.

190 Bibliography

Taylor, M. E. and Stone, P. (2009). Transfer learning for reinforcement learning do-

mains: A survey. Journal of Machine Learning Research, 10(7).

Thrun, S. (1998). Lifelong learning algorithms. In Learning to learn, pages 181–209.

Springer.

Titsias, M. K., Schwarz, J., Matthews, A. G. d. G., Pascanu, R., and Teh, Y. W. (2019).

Functional regularisation for continual learning with gaussian processes. In Inter-

national Conference on Learning Representations.

Tran, G.-L., Bonilla, E. V., Cunningham, J., Michiardi, P., and Filippone, M. (2019).

Calibrating deep convolutional gaussian processes. In The 22nd International Con-

ference on Artificial Intelligence and Statistics, pages 1554–1563. PMLR.

Turner, R., Eriksson, D., McCourt, M., Kiili, J., Laaksonen, E., Xu, Z., and Guyon,

I. (2021). Bayesian optimization is superior to random search for machine learning

hyperparameter tuning: Analysis of the black-box optimization challenge 2020. In

NeurIPS 2020 Competition and Demonstration Track, pages 3–26. PMLR.

Valkov, L., Chaudhari, D., Srivastava, A., Sutton, C., and Chaudhuri, S. (2018). Hou-

dini: lifelong learning as program synthesis. In Proceedings of the 32nd Interna-

tional Conference on Neural Information Processing Systems, pages 8701–8712.

Van Engelen, J. E. and Hoos, H. H. (2020). A survey on semi-supervised learning.

Machine Learning, 109(2):373–440.

Veniat, T. (2021). Mntdp. https://github.com/TomVeniat/MNTDP.

Veniat, T., Denoyer, L., and Ranzato, M. (2020). Efficient continual learning with

modular networks and task-driven priors. arXiv preprint arXiv:2012.12631.

Veniat, T. and Ranzato, M. (2021). Continual transfer learning benchmark.

https://github.com/facebookresearch/CTrLBenchmark.

Wang, J., Xu, J., and Wang, X. (2018). Combination of hyperband and bayesian

optimization for hyperparameter optimization in deep learning. arXiv preprint

arXiv:1801.01596.

Wang, R., Su, H., Wang, C., Ji, K., and Ding, J. (2019). To tune or not to tune? how

about the best of both worlds? arXiv preprint arXiv:1907.05338.

Bibliography 191

Wang, Z., Zoghi, M., Hutter, F., Matheson, D., De Freitas, N., et al. (2013). Bayesian

optimization in high dimensions via random embeddings. In IJCAI, pages 1778–

1784.

Weiss, K., Khoshgoftaar, T. M., and Wang, D. (2016). A survey of transfer learning.

Journal of Big data, 3(1):9.

Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., and Perona, P.

(2010). Caltech-ucsd birds 200.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning. Machine learning, 8(3-4):229–256.

Wilson, A. G., Hu, Z., Salakhutdinov, R., and Xing, E. P. (2016a). Deep kernel learn-

ing. In Artificial intelligence and statistics, pages 370–378. PMLR.

Wilson, A. G., Hu, Z., Salakhutdinov, R. R., and Xing, E. P. (2016b). Stochastic vari-

ational deep kernel learning. Advances in Neural Information Processing Systems,

29.

Wistuba, M., Rawat, A., and Pedapati, T. (2019). A survey on neural architecture

search. arXiv preprint arXiv:1905.01392.

Wistuba, M., Schilling, N., and Schmidt-Thieme, L. (2015). Learning hyperparameter

optimization initializations. In 2015 IEEE international conference on data science

and advanced analytics (DSAA), pages 1–10. IEEE.

Wołczyk, M., Zajac, M., Pascanu, R., Kuciński, Ł., and Miłoś, P. (2021). Continual

world: A robotic benchmark for continual reinforcement learning. Advances in

Neural Information Processing Systems, 34:28496–28510.

Wolpert, D. H. (1996). The lack of a priori distinctions between learning algorithms.

Neural computation, 8(7):1341–1390.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for

benchmarking machine learning algorithms.

Yang, X., He, X., Liang, Y., Yang, Y., Zhang, S., and Xie, P. (2020). Transfer learning

or self-supervised learning? a tale of two pretraining paradigms. arXiv preprint

arXiv:2007.04234.

192 Bibliography

Yang, Y. and Hospedales, T. M. (2014). A unified perspective on multi-domain and

multi-task learning. arXiv preprint arXiv:1412.7489.

Yi, K., Wu, J., Gan, C., Torralba, A., Kohli, P., and Tenenbaum, J. B. (2018). Neural-

symbolic vqa: Disentangling reasoning from vision and language understanding.

arXiv preprint arXiv:1810.02338.

Yogatama, D. and Mann, G. (2014). Efficient transfer learning method for automatic

hyperparameter tuning. In Artificial intelligence and statistics, pages 1077–1085.

PMLR.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are features

in deep neural networks? arXiv preprint arXiv:1411.1792.

Yu, K., Sciuto, C., Jaggi, M., Musat, C., and Salzmann, M. (2019). Evaluating the

search phase of neural architecture search. arXiv preprint arXiv:1902.08142.

Yu, T. and Zhu, H. (2020). Hyper-parameter optimization: A review of algorithms and

applications. arXiv preprint arXiv:2003.05689.

Zeiler, M. D. and Fergus, R. (2014). Visualizing and understanding convolutional

networks. In European conference on computer vision, pages 818–833. Springer.

Zela, A., Klein, A., Falkner, S., and Hutter, F. (2018). Towards automated deep learn-

ing: Efficient joint neural architecture and hyperparameter search. arXiv preprint

arXiv:1807.06906.

Zenke, F., Poole, B., and Ganguli, S. (2017). Continual learning through synaptic

intelligence. In International Conference on Machine Learning, pages 3987–3995.

PMLR.

Zhang, B., Rajan, R., Pineda, L., Lambert, N., Biedenkapp, A., Chua, K., Hutter,

F., and Calandra, R. (2021). On the importance of hyperparameter optimization

for model-based reinforcement learning. In International Conference on Artificial

Intelligence and Statistics, pages 4015–4023. PMLR.

Zhang, Y. and Yang, Q. (2017). A survey on multi-task learning. arXiv preprint

arXiv:1707.08114.

Zhang, Y. and Yang, Q. (2021). A survey on multi-task learning. IEEE Transactions

on Knowledge and Data Engineering.

Bibliography 193

Zhou, J. T., Pan, S. J., and Tsang, I. W. (2019). A deep learning framework for hybrid

heterogeneous transfer learning. Artificial Intelligence, 275:310–328.

Zhu, M. and Gupta, S. (2017). To prune, or not to prune: exploring the efficacy of

pruning for model compression. arXiv preprint arXiv:1710.01878.

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., and He, Q. (2020).

A comprehensive survey on transfer learning. Proceedings of the IEEE.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2018). Learning transferable archi-

tectures for scalable image recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 8697–8710.

	Cover Sheet.pdf
	LVs_Thesis_final.pdf

