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 Abstract 

 Spatial-modulated  cells  of  the  medial  entorhinal  cortex  (MEC)  and  neighbouring  cortices  are 

 thought  to  provide  the  neural  substrate  for  self-localisation  behaviours.  These  cells  include 

 grid  cells  of  the  MEC  which  are  thought  to  compute  path  integration  operations  to  update 

 self-location  estimates.  In  order  to  read  this  grid  code,  downstream  cells  are  thought  to 

 reconstruct a positional estimate as a simple rate-coded representation of space. 

 Here,  I  show  the  coding  scheme  of  grid  cell  and  putative  readout  cells  recorded  from  mice 

 performing  a  virtual  reality  (VR)  linear  location  task  which  engaged  mice  in  both  beaconing 

 and  path  integration  behaviours.  I  found  grid  cells  can  encode  two  unique  coding  schemes 

 on  the  linear  track,  namely  a  position  code  which  reflects  periodic  grid  fields  anchored  to 

 salient  features  of  the  track  and  a  distance  code  which  reflects  periodic  grid  fields  without 

 this  anchoring.  Grid  cells  were  found  to  switch  between  these  coding  schemes  within 

 sessions.  When  grid  cells  were  encoding  position,  mice  performed  better  at  trials  that 

 required  path  integration  but  not  on  trials  that  required  beaconing.  This  result  provides  the 

 first mechanistic evidence linking grid cell activity to path integration-dependent behaviour. 

 Putative  readout  cells  were  found  in  the  form  of  ramp  cells  which  fire  proportionally  as  a 

 function  of  location  in  defined  regions  of  the  linear  track.  This  ramping  activity  was  found  to 

 be  primarily  explained  by  track  position  rather  than  other  kinematic  variables  like  speed  and 

 acceleration.  These  representations  were  found  to  be  maintained  across  both  trial  types  and 

 outcomes indicating they likely result from recall of the track structure. 

 Together,  these  results  support  the  functional  importance  of  grid  and  ramp  cells  for 

 self-localisation  behaviours.  Future  investigations  will  look  into  the  coherence  between  these 

 two  neural  populations,  which  may  together  form  a  complete  neural  system  for  coding  and 

 decoding self-location in the brain. 
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 Lay Summary 

 Navigating  to  food,  away  from  danger  and  in  search  of  mates,  forms  the  basis  of  movement 

 for  all  life  in  the  animal  kingdom.  The  brain’s  solution  to  planning  the  routes  we  take  comes 

 in  the  form  of  a  “cognitive  map”  found  in  the  hippocampus  and  medial  entorhinal  cortex 

 (MEC)  in  the  form  of  neurons  that  fire  electrical  signals  at  rates  proportional  to  specific 

 locations,  heading  direction  and  running  speed.  Neurons  called  grid  cells  fire  at  multiple 

 locations  that  resemble  a  triangular  grid  in  an  environment.  These  cells  are  thought  to  play  a 

 role  in  calculating  how  mammals  update  the  estimate  of  where  they  are  within  an 

 environment.  A  further  group  of  cells  termed  readout  cells  are  likely  needed  to  read  the  grid 

 code.  One  possible  type  of  readout  cell  termed  a  ramp  cell  fires  proportionally  to  the 

 distance to a specific location and resembles a ramping firing profile. 

 In  this  thesis,  I  recorded  from  grid  and  ramp  cells  in  the  MEC  and  neighbouring  brain  areas 

 of  mice  trained  to  navigate  along  a  virtual  reality  (VR)  linear  track  and  stop  at  a  specific 

 location  to  receive  a  reward.  This  location  was  either  marked  with  a  visual  cue  or  not.  I  found 

 grid  cells  fired  at  similar  locations  across  trials  when  mice  were  successful  on  trials  in  which 

 the  visual  cue  was  absent,  suggesting  grid  cell  firing  is  associated  with  navigation  without 

 the  need  of  visual  cues.  The  firing  of  ramp  cells  were  not  affected  by  the  success  of  mice 

 navigating  to  the  reward  nor  the  type  of  navigation  required  of  the  mice.  This  suggested 

 ramp  cells  form  a  memory  of  the  linear  track  which  can  be  used  to  guide  the  stopping 

 behaviour of the mouse. 

 The  results  in  this  thesis  show  that  these  two  types  of  cell  are  important  for  navigation  of 

 mice  and  most  likely  humans.  Understanding  how  these  two  cell  types  work  together  to 

 guide navigation will be the next step to uncovering how mammals navigate in the real world. 
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 Introduction 

 The  goal  of  modern  neuroscience  is  to  understand  the  organic  computer  that  is  the  brain,  so 

 that  we  might  cure  illness,  learn  from  its  algorithmic  solutions  to  information  processing  and 

 uncover  what  makes  life  so  je  ne  sais  quoi  .  In  Chapter  1.2  of  Vision  (Marr  1982)  ,  David  Marr 

 describes  the  three  levels  at  which  an  information  processing  machine  must  be  understood, 

 these  are  (1)  the  goal  of  the  computation  being  carried  out,  (2)  the  algorithmic  solution  to  the 

 computation  and  (3)  the  physical  implementation  of  the  algorithm.  Studying  spatial 

 navigation  in  rodents  is  one  of  the  leading  paradigms  in  modern  neuroscience  because  it 

 offers  a  complete  reconciliation  of  these  three  levels.  First,  it  offers  a  clear  behavioural 

 readout  in  the  form  of  trackable  spatial  variables,  providing  an  objective  measure  of  the 

 performance  of  the  computation.  Secondly,  in  combination  with  electrophysiological 

 recording,  the  algorithmic  solutions  can  be  unearthed  by  resolving  these  spatial  variables 

 with  neural  activity.  And  finally,  the  implementations  of  these  algorithms  might  be  deduced 

 with  precision  manipulations,  to  reconstruct  the  network  blueprints  underlying  the  spatial 

 behaviour. 

 In  this  thesis,  I  will  address  the  neural  computation  of  self  localisation,  a  process  in  which 

 self-location  is  estimated  within  an  environment.  Estimates  of  one’s  location  can  be 

 calculated  through  landmark-driven  beaconing  and  path  integration,  a  spatial  navigation 

 strategy  used  in  invertebrates  (Wehner  and  Wehner  1986)  and  mammals  (Mittelstaedt  and 

 Mittelstaedt  1980)  to  update  their  estimate  of  self-location  through  integrating  self-motion 

 signals.  How  mammals  implement  path  integration  operations  in  the  brain  is  an  outstanding 

 question.  The  principal  candidates  for  this  computation  are  grid  cells  of  the  medial  entorhinal 

 cortex,  a  spatial  modulated  cell  type  that  fires  periodically  such  that  their  firing  fields  appear 

 at  the  vertices  of  a  hexagonal  lattice  and  tile  the  environment  (Hafting  et  al.  2005)  .  I  will 

 argue  that  key  features  of  their  firing  activity  correlates  with  the  behaviour  of  mice  performing 

 path  integration.  I  will  then  argue  a  new  spatial  modulated  cell  type  is  linked  to  the  effective 

 readout  of  a  spatial  estimate  of  self-location.  To  establish  the  premise  of  this  research,  In 

 Chapter  1,  I  will  review  the  literature  highlighting  the  research  of  self-localisation  and  path 

 integration,  grid  cell  firing  and  the  lack  of  viable  evidence  for  reconciling  the  causal 

 relationships  of  the  two.  In  Chapter  2,  I  will  describe  the  technical  specifications  for 

 reproduction  of  work  discussed  in  this  thesis.  In  Chapter  3,  I  will  present  a  spatial  navigation 

 task  which  can  only  be  solved  by  performing  path  integration-based  navigation.  I  will  then 

 detail  improvements  I  have  made  to  the  task  to  reproduce  reliable  path  integration 

 behaviours.  In  Chapter  4,  I  will  address  what  grid  cells  encode  while  performing  the 

 self-localisation  task  and  investigate  whether  the  coding  is  linked  to  accurate 
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 self-localisation.  In  Chapter  5,  I  will  present  work  in  which  I  was  joint  co-first  author 

 concerning  a  newly  discovered  spatial-modulated  cell  type  we  called  positional  “ramp  cells”. 

 These  novel  cells  found  for  the  first  time  in  in-vivo  electrophysiological  recordings  have  long 

 been  hypothesised  as  a  functional  component  to  the  readout  of  a  path  integration  neural 

 network.  And  finally  in  Chapter  6,  I  will  discuss  the  implications  of  the  findings  of  this  thesis 

 and will contextualise future research directions and predictions spawned from this work. 
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 1.1 Spatial navigation as a model for studying the brain 

 Spatial  navigation  encompasses  the  ability  to  plan,  guide  and  execute  routes  to  target 

 locations  in  physical  space.  Unsurprisingly,  it  is  an  essential  skill  for  survival  in  all  locomotive 

 animals.  Its  origins  however  can  be  seen  in  the  earliest  examples  of  life  on  earth. 

 Single-celled  life  has  long  been  expected  to  have  begun  around  hydrothermal  vents  in  the 

 deep  oceans  approximately  4.5  billion  years  ago  (Betts  et  al.  2018)  .  Here,  early  lifeforms 

 would  have  collected  nutrients  by  navigating  chemical  gradients  similar  to  microbes  alive 

 today,  in  a  process  called  chemotaxis  (Porter,  Wadhams,  and  Armitage  2011)  .  This  was  the 

 first  example  of  an  organism  using  its  sensation  of  its  local  environment  to  inform  its  future 

 actions.  Being  able  to  move  to  advantageous  locations  for  nourishment  and  away  from 

 danger  fuelled  the  evolution  of  complex  life  as  we  know  it.  Moreover,  it  was  the  first  evidence 

 of  an  organism  implementing  a  navigational  strategy  consistent  with  having  a  spatial  model 

 of  a  physical  environment.  This  can  be  seen  in  Figure  1  ,  where  a  single-celled  agent  detects 

 nutrients  and  uses  the  relative  abundances  of  the  nutrients  on  its  cell  surface  to  inform  its 

 future  direction.  In  this  case  the  agent  moves  north,  and  over  time  will  move  closer  to  the 

 highly  enriching  region  of  the  environment.  If  the  single-celled  agent’s  movement  was  not 

 informed  by  the  nutrients  it  accumulates,  its  movement  would  resemble  random  chaotic 

 motion.  The  important  implication  is  that  the  agent  is  no  longer  naive  to  the  distribution  of 

 nutrients  and  can  use  this  newly  acquired  knowledge  to  make  informed  navigational  choices, 

 and  can  thus  minimise  the  energy  expended  to  locate  more  nutrients.  These  organisms 

 could  then  outcompete  their  naive  relatives.  Fast-forward  to  the  present  day,  organisms  have 

 developed  a  host  of  sensory  systems  to  inform  their  local  position  in  their  environment  such 

 as  visual,  tactile,  auditory  and  chemical  perception.  A  mouse  in  addition  to  following 

 chemical  gradients  via  its  olfactory  system  uses  vision  to  find  food.  It  thus  follows  that  the 

 study  of  spatial  navigation  is  not  just  the  study  of  how  animals  guide  their  locomotion,  but 

 can  also  be  a  study  of  how  a  model  of  physical  space  emerged  in  the  brain  to  guide 

 locomotion. 
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 Figure  1.  Relationship  between  single  cell  and  multicellular  spatial  navigation.  Agents 

 navigating  through  a  2D  environment  explore  for  nutrition.  Left:  A  single-celled  organism 

 uses  chemotaxis  to  move  toward  regions  of  an  environment  with  high  concentrations  of 

 nutrients.  Right:  A  mouse  exploring  for  food  primarily  uses  its  vision  and  olfaction  to  detect 

 regions of an environment with high concentrations of food. 
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 1.2 Spatial navigation strategies 

 Mammals  inhabit  a  vast  range  of  environments  including  ground,  underground,  water  and 

 sky.  These  environments  demand  different  navigational  strategies  as  they  vary  in  physical 

 structure  and  the  sensory  cues  available.  Some  mammals  can  be  found  in  multiple  of  these 

 environments  and  thus  require  a  brain  with  a  capacity  to  execute  and  switch  between  a  host 

 of  strategies.  It  is  important  to  note  that  navigational  strategies  can  be  subdivided  on  a 

 number  of  different  levels  of  abstraction.  These  include  categorization  based  on  the  type  of 

 sensory  information  utilised,  the  frames  of  reference  used,  the  types  of  spatial  memory 

 implicated  or  the  utility  of  an  internal  spatial  model,  with  a  large  degree  of  overlap  between 

 these  subdivisions.  In  this  section,  navigation  strategies  will  be  reviewed  with  a  focus  on  the 

 types  of  sensory  information  utilised,  as  this  will  be  central  to  the  questions  addressed  in  this 

 thesis with regards to the functional role of spatially-modulated cells. 

 Sensory  information  available  to  animals  comes  in  two  classes  of  sensory  cues  namely 

 allothetic  and  idiothetic  information.  Allothetic  information  is  provided  by  the  environment  and 

 is  picked  up  mainly  through  sensory  signals  external  to  the  body  including  visual,  auditory 

 and  olfactory  sensation.  Conversely,  idiothetic  information  is  provided  internally  and  is 

 created  through  the  process  of  motion.  These  self-generated  motion  cues  come  in  the  form 

 of  proprioception  (the  body’s  ability  to  sense  the  location  of  body  parts  relative  to  itself), 

 motor-efferent  copies  (movement-generating  signals  produced  by  the  motor  system),  and 

 sensory  flow  (relative  motion  of  sensory  stimuli  caused  by  the  movement  of  an  observer  in 

 an  environment).  Navigation  directly  towards  allothetic  cues  is  called  beaconing  whereas 

 navigation with idiothetic cues is called path integration  (Geva-Sagiv et al. 2015)  . 

 1.2.1 Beaconing 

 Navigation  using  beaconing  involves  the  use  of  external  sensory  cues  (or  “beacons”)  to 

 inform  the  trajectory  taken  towards  a  target  location.  In  its  simplest  form,  a  beacon  is  a  static 

 navigational  landmark  which  serves  as  the  target  location.  Beacons  can  also  serve  as 

 way-points  along  a  trajectory  or  a  proximal  landmark  to  a  target  location  in  the  cases  of 

 route-following  and  piloting  strategies  respectively.  All  such  examples  have  been  shown  in 

 bats.  Visual  beaconing  in  bats  was  observed  in  Trinidad  where  the  central  mountain  range 

 was  used  as  a  beacon  (Williams,  Williams,  and  Griffin  1966)  .  Auditory  piloting  was  observed 

 in  which  the  sounds  of  chorusing  swamp  frogs  were  used  as  a  proximal  beacon  to  possibly 

 hunt  for  insects  co-localising  with  the  frogs  (Buchler  and  Childs  1981)  .  Route-following  was 

 also  observed  in  which  forest  paths  (Jones  and  Holderied  2007)  and  passageways  of 
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 underground  caves  (Blatchley  1896)  were  used  as  beaconed  routes.  A  simple  example  of 

 beaconing via route following is shown in  Figure 2  A  in the case of animal homing. 

 15 

https://www.zotero.org/google-docs/?PJFAmZ


 Figure  2.  Homing  behaviour  by  visual  beaconing  and  path  integration.  (A)  A  mouse 

 ventures  out  of  its  house  and  moves  towards  a  tree  stump  followed  by  a  log,  before  returning 

 home.  The  tree  stump,  log  and  house  all  serve  as  visual  sensory  cues  to  guide  its  trajectory. 

 (B)  The  mouse  makes  the  same  outbound  journey  to  the  tree  stump  and  log  but  this  time, 

 navigates  back  to  its  house  without  using  the  house  as  a  sensory  cue  (as  if  the  house  wasn’t 

 visible  due  to  fog).  Here,  the  mouse  can  theoretically  calculate  a  homing  vector  by  keeping 

 track  of  the  distance  that  it  traversed  and  its  change  in  heading  direction  on  its  outbound 

 legs of its journey. Part B is adapted from  Mcnaughton  et al. (2006)  . 
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 1.2.2 Path integration 

 Idiothetic  cues  provide  the  self-motion  information  necessary  to  calculate  the  displacement 

 (or  velocity  vector)  between  two  locations.  When  this  information  is  integrated  over  time,  a 

 displacement  from  the  starting  point  can  be  calculated  by  summing  all  velocity  vectors 

 together.  These  calculations  afford  the  observer  to  estimate  their  relative  location  from  some 

 starting  point  without  the  need  for  beaconing  cues.  This  form  of  navigation  was  particularly 

 useful  for  oceanfaring  navigators  as  beaconing  cues  were  sparingly  available.  Navigators 

 estimated  their  speed  by  casting  a  weighted  string  into  the  water  and  counted  how  many 

 knots  in  the  string  passed  through  their  fingers  in  30  seconds.  This  idiothetic  information  was 

 used  to  calculate  the  distance  they  travelled  over  time  and  logged  their  expected  location  on 

 a  map.  This  was  termed  “dead  reckoning”  as  one  could  only  do  as  well  to  ‘reckon’  where 

 they  were.  The  process  naturally  accumulated  positional  errors  over  time  and  thus  required 

 correction  when  beaconing  cues  were  available.  Static  beacons  were  used  for  this  correction 

 as  they  provided  a  measure  of  the  ground  truth  position  to  compare  their  best  estimates 

 with.  These  came  in  the  form  of  stars  at  night  whose  position  in  the  sky  provided  vital 

 angular  reorientation  and  other  static  landmarks  such  as  a  recognisable  island  for  which 

 self-location estimates could be corrected in both location and heading direction. 

 To  effectively  use  path  integration  navigation,  self-location  must  be  tracked  over  time. 

 Without  a  log  book  of  its  own,  an  animal  must  store  a  representation  of  its  location  internally. 

 Early  rodent  experiments  demonstrated  rats  could  learn  about  their  environment  without 

 explicit  rewards  (Blodgett,  1929)  .  When  rewards  became  available  in  a  maze,  rats  quickly 

 exploited  shortcuts.  This  demonstrated  rats  could  learn  about  their  environment  latently  and 

 suggested  the  formation  of  a  “cognitive  map”  of  the  environment  within  the  rats’  brain 

 (Tolman,  1948)  .  The  first  experimental  evidence  for  mammals  tracking  their  linear  and 

 angular  motion  came  from  Mittelstaedt  and  Mittelstaedt  (1980)  .  Female  gerbils  journeyed  out 

 of  their  nests  onto  a  circular  arena  in  complete  darkness  to  search  for  and  bring  back  their 

 pups  which  had  been  displaced  into  cups.  If  the  arena  was  quickly  rotated  while  the  mother 

 was  inside  a  cup,  they  could  return  directly  back  to  their  nest.  This  showed  angular 

 information  had  been  actively  tracked,  possibly  through  vestibular  input.  If  the  cup  was 

 moved  without  rotation  however,  the  gerbil  missed  the  nest  by  the  same  amount  as  the  cup 

 was  moved.  This  showed  the  positional  displacement  had  been  tracked  during  the  outbound 

 journey,  and  was  being  used  to  construct  the  return  trajectory.  This  experiment  also 

 highlights  that  different  types  of  idiothetic  cues  are  required  to  accurately  update  linear  and 

 angular  motion.  Vestibular  input  was  the  only  idiothetic  information  available  to  the  mother 

 while  in  the  cup  and  was  sufficient  to  account  for  rotations  but  not  translations.  Consider  the 
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 mouse  in  Figure  2  ,  when  it  arrives  at  the  log,  in  order  to  compute  a  homing  vector  it  must 

 integrate  the  distance  travelled  with  the  changes  in  angular  velocity  to  accurately  compute 

 the  return  direction  and  distance.  This  neatly  demonstrates  that  navigation  by  path 

 integration  can  be  subdivided  into  two  components,  angular  and  linear  path  integration  but 

 must be reconciled to accurately navigate in real-world environments. 

 1.3 The cognitive map 

 1.3.1 Building blocks of a cognitive map 

 How  are  these  navigational  strategies  set  to  action  in  the  brain?  Substantiating  Tolman’s 

 cognitive  map  hypothesis,  O’Keefe  and  Dostrovsky  (1971)  discovered  “place  cells”  in  the 

 hippocampus  that  fired  only  when  a  rat  was  at  a  particular  location  in  its  environment.  This 

 has  since  been  followed  up  by  the  discovery  of  numerous  spatially-modulated  cell  types 

 including  border  cells  in  the  entorhinal  cortex  (  Solstad  et  al.  2008  ),  boundary  vector  cells  in 

 the  subiculum  (Lever  et  al.  2009)  ,  head  direction  cells  in  the  postsubiculum  (J.  Taube,  Muller, 

 and  Ranck  1990)  ,  speed  cells  in  the  medial  entorhinal  cortex  (MEC;  Kropff  et  al.  2015)  ,  grid 

 cells  in  the  MEC  (Hafting  et  al.  2005)  and  cells  with  mixed  or  heterogeneous  spatial  firing 

 properties  (Sargolini  et  al.  2006;  Hardcastle  et  al.  2017)  .  Furthermore,  the  theta  oscillation 

 (4–12  Hz)  in  local  field  potentials  in  the  hippocampal  formation  is  closely  associated  with 

 spatial  functions.  Individual  neurons  show  phase  precession  in  place  and  grid  cells  (Hafting 

 et  al.  2008;  John  O’Keefe  and  Recce  1993)  .  Border  cells  fire  exclusively  at  borders  or 

 boundaries  in  an  environment.  Boundary  vector  cells  fire  exclusively  at  set  distances  from 

 borders  or  boundaries  .  Head  direction  cells  fire  preferentially  to  a  single  heading  direction 

 within  an  environment.  Speed  cells  fire  proportionally  to  the  current  speed  of  the  animal.  Grid 

 cells  fire  periodically  such  that  their  firing  fields  appear  at  the  vertices  of  a  hexagonal  lattice 

 and  tile  the  environment.  Conjunctive  representations  also  exist  between  these  cell  types 

 with  large  overlaps.  Several  examples  are  shown  in  Figure  3  .  The  presence  of  this  array  of 

 cells  within  the  hippocampus  and  neighbouring  retrohippocampal  regions  shows  the  brain 

 holds  representations  of  both  allocentric  space  and  egocentric  spatial  variables,  which  are 

 the key ingredients for beaconing and path integration-based navigation respectively. 

 What  do  these  cells  add  to  the  navigation  system?  Place  cells  as  a  population  can  encode 

 an  animal’s  current  position  within  an  environment.  Robinson  et  al.  (2020)  showed  activation 

 of  place  cells  with  firing  fields  associated  with  a  reward  zone  could  drive  behaviours 

 associated  with  a  mouse  being  in  the  reward  zone.  This  showed  direct  evidence  for  a  causal 

 role  of  place  cells  in  spatial  navigation.  Placing  task  demands  on  an  animal  has  been  shown 

 to  dramatically  remap  locations  of  place  fields  (Griffin,  Eichenbaum,  and  Hasselmo  2007; 
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 Geva-Sagiv  et  al.  2015)  .  These  findings  are  consistent  with  place  cells  reflecting  a  code  of 

 distinct  spatial  memories  within  the  same  environment  and  not  a  general  purpose  spatial 

 map.  Head  direction  cells  provide  a  population  metric  for  quantifying  the  relative  heading 

 direction  of  the  animal  in  relation  to  the  environment.  This  could  be  considered  as  the 

 compass  upon  the  navigator’s  map.  Border  cells  are  thought  to  provide  an  anchoring  signal 

 to  other  spatial  cell  types  like  place  and  grid  cells  (Solstad  et  al.  2008)  .  This  is  supported  by 

 evidence  that  border  representations  are  found  before  place  and  grid  cells  in  developing  rats 

 (Bjerknes,  Moser,  and  Moser  2014)  .  Moreover,  border  representations  were  predicted  from 

 early  emergent  models  of  place  cells  (Hartley  et  al.  2000)  .  Grid  cells  are  thought  to  play  a 

 role  in  path  integration  (Hafting  et  al.  2005;  McNaughton  et  al.  2006)  as  they  are  ideally 

 localised  to  brain  regions  which  receive  both  head  direction  and  speed  inputs  that  are 

 required  to  compute  changes  in  positional  updates.  Moreover,  many  computation  models 

 have  demonstrated  how  populations  of  grid  cells  might  be  employed  to  encode  position 

 (McNaughton  et  al.  2006;  Bush  et  al.  2015;  Fiete,  Burak,  and  Brookings  2008)  .  Speed  cells 

 are  thought  to  provide  a  speed  input  to  grid  cells  to  support  their  path  integration 

 computations.  Non-specific  spatial  cells  can  encode  a  conjunctive  representation  of  spatial 

 variables  and  may  contribute  to  the  firing  properties  of  specific  spatial  cell  types  or  are 

 recruited when task demands are placed on the animal. 

 1.3.2 The cognitive map and navigation 

 Does  this  cognitive  map  play  an  active  role  in  navigation?  To  test  the  role  of  the 

 hippocampus,  Packard  and  McGaugh  (1996)  trained  rats  to  solve  a  T-maze  task  in  which  the 

 animal  must  choose  between  an  East  or  West  turn  to  reach  a  food  reward  (in  this  case,  the 

 west  goal  of  the  maze).  The  navigational  strategy  employed  by  the  rat  could  be  probed  by 

 rotating  the  T-maze  180°.  If  the  animal  took  the  path  East,  a  response  strategy  was 

 employed  as  the  navigational  actions  were  maintained  (e.g.  go  forward  and  turn  left).  If  the 

 animal  took  the  path  West,  a  place  strategy  was  employed  as  the  navigation  actions  were 

 altered  in  response  to  the  changes  in  the  spatial  relationships  between  environment  cues. 

 After  8  days  of  training,  rats  favoured  the  place  strategy  consistent  with  the  employment  of  a 

 cognitive  map  that  embedded  cues  and  their  spatial  relations  into  a  common  framework. 

 Inactivation  of  the  hippocampus  with  lidocaine  removed  this  preference  for  a  place  strategy. 

 This  task  was  extended  to  require  rats  to  continuously  alter  their  choices  on  consecutive 

 trials  (Ainge  et  al.  2007)  .  Hippocampal  lesions  did  not  affect  performance  but  did  when  a 

 delay  was  introduced  between  trials.  This  is  consistent  with  the  hippocampus  playing  a  role 

 in  the  recall  of  the  spatial  memories  from  the  preceding  trial.  In  the  Morris  water  maze  task, 

 animals  learn  to  swim  to  invisible  water-submerged  platforms  from  a  number  of  different 
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 starting  positions  (Morris  et  al.  1982)  .  When  trained  only  from  a  single  starting  location,  rats 

 with  hippocampal  lesions  successfully  navigate  to  the  platform,  however  they  fail  when 

 trained  from  multiple  starting  locations  and  are  required  to  take  novel  routes  (Eichenbaum, 

 Stewart,  and  Morris  1990)  .  This  points  to  the  hippocampus  supporting  a  cognitive  map  in 

 which novel navigation can be generalised from previous experiences. 

 In  the  neighbouring  entorhinal  cortex,  lesions  caused  impaired  sensory  integration  and 

 spatial  learning  in  rats  (Davis,  Gimenez,  and  Therrien  2001)  .  Path  integration  behaviour  is 

 also  impaired  when  glutamate  receptors  AMPA  and  NMDA  are  experimentally  ablated  in 

 retrohippocampal  regions  with  a  noted  change  in  grid  cell  spatial  firing  properties  (Allen  et  al. 

 2014;  Gil  et  al.  2018)  .  Tennant  et  al.  (2018)  targeted  layer  II  MEC  stellate  cells  and  found 

 inactivation  reduced  spatial  learning  in  a  spatial  memory  task  for  both  beaconing  and  path 

 integration  behaviours.  These  findings  in  rodents  are  backed  up  by  evidence  by  Kunz  et  al. 

 (2018)  that  showed  spatial  behaviours  in  a  virtual  reality  path  integration  task  to  differ  in 

 humans  that  carried  the  Alzheimer’s  genetic  risk  factor  APOE-e4  with  a  significant  reduction 

 of  blood-oxygen-level-dependent  (BOLD)  signal  in  the  temporal  lobe  associated  with  grid  cell 

 representations. 
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 Figure  3:  Examples  of  spatial  modulated  cell  types  found  when  a  mouse  freely 
 explores  an  open  field  arena.  A  mouse  explores  a  square  arena,  tracing  a  trajectory  over 

 time  and  sampling  all  parts  of  the  environment  (A).  Recorded  spikes  (B)  are  binned  in  space 

 (as  in  C-F)  or  binned  by  heading  direction  (as  in  G)  and  firing  rates  calculated  as  the  number 

 of  spikes  within  a  bin  divided  by  the  total  time  spent  in  the  bin  across  the  session  to  create 

 firing  rate  maps  over  space  (C-F)  or  direction  (G).  Example  spatial  cells  include  a  (C)  grid 

 cell,  (D)  border  cell,  (E)  place  cell,  (F)  non-specific  spatial  cell,  (G)  head  direction  cell  and 

 (H)  speed  cell.  White  portions  of  the  rate  map  are  locations  not  sampled  by  the  mouse.  The 

 polar  plot  in  E  shows  the  firing  rate  preference  in  red  and  relative  proportions  of  directional 

 sampling  in  black.  Scatter  plot  in  F  shows  the  instantaneous  firing  rate  vs  the  instantaneous 

 speed.  The  black  dots  indicate  the  mean  firing  rate  as  a  function  of  speed,  and  black  line 

 indicates standard error of the mean. 
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 1.3.3 Connectivity of the cognitive map 

 How  do  these  cells  work  together  to  inform  navigational  decisions  and  form  the  cognitive 

 map?  Figure  4  shows  a  high  level  schematic  of  the  connectivity  and  strength  of  cortical  input 

 to  the  hippocampal  formation.  The  vast  majority  of  input  to  the  hippocampus  proper  is 

 delivered  through  the  entorhinal  areas.  These  areas  receive  input  from  many  sensory  areas 

 such  as  visual,  auditory,  and  somatosensory  cortices,  which  provides  the  pathways  to  deliver 

 information  that  can  be  used  to  build  spatial  representations.  The  proximity  of  the  various 

 spatially-modulated  cell  types  within  the  hippocampal  formation  suggests  a  collaborative 

 function  for  the  navigating  animal.  Figure  5  outlines  the  information  flow  between  regions  in 

 the  hippocampal  formation.  Place  cells  are  found  in  the  dentate  gyrus  and  hippocampus 

 proper.  Head  direction  signals  are  conveyed  to  the  hippocampus  via  the  parasubiculum, 

 presubiculum  and  MEC  (J.  S.  Taube  2007)  .  Positional  input  to  the  hippocampus  may  come 

 in  the  form  of  border  representations  from  the  subiculum  (Barry  et  al.  2006;  Colin  Lever  et  al. 

 2009;  Stewart  et  al.  2014)  ,  MEC  (Savelli,  Yoganarasimha,  and  Knierim  2008;  Solstad  et  al. 

 2008)  ,  presubiculum  and  parasubiculum  (Boccara  et  al.  2010)  or  from  grid  cells  in  layer  II/III 

 of  the  MEC  (Hafting  et  al.  2005)  .  Border  and  head  direction  cells  emerge  early  in  rat 

 development  (Langston  et  al.  2010;  Wills  et  al.  2010;  Bjerknes,  Moser,  and  Moser  2014)  so 

 might  form  the  spatial  substrates  for  positional  coding,  while  place  cells  and  then  grid  cells 

 emerge  at  later  developmental  stages  (Langston  et  al.  2010;  Wills  et  al.  2010)  .  While  place 

 cells  can  exist  in  the  absence  of  grid  cells,  lesioning  layer  III  of  the  MEC,  which  removes  the 

 MEC-CA1  and  MEC-subiculum  projection,  was  shown  to  disrupt  place  coding  in  CA1  but  not 

 CA3,  presumably  because  grid  cells  in  layer  II  provide  sufficient  positional  input  to  support 

 place  codes  (Brun  et  al.  2008)  .  On  the  other  hand,  inactivation  of  the  hippocampus  has  been 

 shown  to  disrupt  grid  cell  periodicity  (Bonnevie  et  al.  2013)  suggesting  the  stability  of  spatial 

 coding  in  the  entorhinal-hippocampal  circuit  is  dependent  at  least  to  some  extent  on  one 

 another. 
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 Figure  4:  Connectivity  strength  between  cortical  and  hippocampal  regions.  Strength  of 

 the  connections  are  indicated  by  the  thickness  of  the  lines.  Open  lines  indicate  connections 

 that  are  known  but  were  quantified  in  the  study.  Regions  are  abbreviated  as  follows, 

 subiculum  (Sub),  hippocampus  proper  (HPC),  dentate  gyrus  (DG),  lateral  entorhinal  area 

 (LEA),  medial  entorhinal  area  (MEA),  perirhinal  cortex  (PR,  areas  35  and  36),  postrhinal 

 cortex  (POR),  motor  areas  (MOs),  prelimbic  and  infralimbic  areas  (PL/ILA),  orbital  areas 

 (ORB),  temporal  areas  (Te),  auditory  areas  (AUD),  anterior  cingulate  areas  (ACA), 

 retrosplenial  areas  (RSP),  posterior  parietal  areas  (PTL),  somatosensory  areas  (SS),  visual 

 areas  (VIS),  agranular  insular  areas  (AI)  and  gustatory  areas  (GU)  .  Figure  taken  from 

 Burwell (2006)  . 
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 Figure  5:  Hippocampal  and  retrohippocampal  connectivity.  (I)  Cartoon  of  a  rat  brain 

 within  the  head.  (II)  A  horizontal  plane  through  the  brain  reveals  a  (III)  histology  cross 

 section  with  the  hippocampal  formation  circled  in  red.  This  region  can  be  subdivided  (IV)  into 

 the  lateral  entorhinal  cortex  (LEC),  medial  entorhinal  cortex  (MEC),  parasubiculum  (Para), 

 presubiculum  (Pre),  subiculum  (Sub),  CA1,  CA2,  CA3  and  dentate  gyrus  (DG).  (V)  Graphical 

 connectivity  map  between  these  regions  showing  the  directionality  of  inputs  and  outputs. 

 Figure adapted from  Poulter, Hartley and Lever (2018)  . 
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 1.3.4 Towards a generalised cognitive map 

 While  the  cognitive  map  hypothesis  was  first  devised  as  a  means  of  explaining  how  animals 

 could  forge  an  internal  model  of  their  external  environment,  new  evidence  has  emerged 

 supporting  the  idea  of  a  generalised  cognitive  map  that  extends  beyond  the  domain  of 

 spatial  navigation.  The  discovery  of  location-specific  firing  in  the  hippocampus  was 

 particularly  surprising  given  the  hippocampus  was  thought  to  play  a  role  in  declarative 

 memory  since  the  clinical  studies  of  hippocampal  lesions  in  the  case  of  H.M.  (Squire  1992)  . 

 To  reconcile  space  and  memory  functions,  a  common  framework  was  devised  that  combined 

 the  brain  functions.  Evidence  emerged  showing  hippocampal  neurons  responding  to 

 nonspatial  features  of  an  environment  such  as  odours  (Eichenbaum  et  al.  1987)  ,  tactile 

 inputs  (Wood  et  al.  2000)  ,  time  (Hampson,  Heyser,  and  Deadwyler  1993  )  and  sound 

 (Aronov,  Nevers,  and  Tank  2017)  .  These  same  cells  produced  spatial  firing  fields  suggesting 

 a  more  nuanced  hippocampal  function.  In  the  example  of  sound,  Aronov  et  al.  (2017)  trained 

 rats  to  control  the  frequency  of  a  sound  with  a  joystick  and  to  stop  at  a  specific  frequency  to 

 receive  a  reward.  Place  cells  were  shown  to  exhibit  firing  fields  within  the  frequency  space 

 (  Figure  6  )  supporting  the  idea  that  the  hippocampus  and  neighbouring  cortices  play  a  more 

 general  role  in  mapping  continuous  variables  (Buzsáki  and  Moser  2013;  Schiller  et  al.  2015)  . 

 Following  this  conceptual  framework,  Constantinescu  et  al.  (2016)  showed  humans 

 navigating  in  abstract  feature  spaces  had  increasing  BOLD  signals  in  their  temporal  lobe 

 indicative  of  grid  cell  firing.  These  signals  were  first  demonstrated  by  Doeller,  Barry,  and 

 Burgess,  2010  while  humans  navigated  virtual  environments  with  a  joystick,  and  were  later 

 observed  while  humans  participated  in  navigation  of  imagined  environments  (Horner  et  al. 

 2016)  .  Taken  together,  these  findings  indicate  that  the  hippocampus  and  entorhinal  cortex 

 operate  a  generalised  cognitive  map  for  navigating  continuous  feature  spaces,  whether  it  be 

 physical  space,  time,  sound  frequency  domains,  chemical  gradients  or  more  abstract  feature 

 spaces.  Understanding  how  the  brain  is  able  to  navigate  feature  maps  either  in  physically 

 real  or  abstract  domains  is  a  critical  aspect  to  reconciling  practical  implementations  of 

 model-based learning, a key feature of intelligent life. 
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 Figure  6.  Non-spatial  coding  in  hippocampal  place  cells  and  MEC  grid  cells.  Rats  were 

 trained  in  a  sound  manipulation  task  (SMT)  to  manipulate  a  joystick  to  control  the  frequency 

 of  a  sound  and  stop  at  a  specific  frequency  to  receive  a  reward  within  the  target  zone.  (A)  A 

 population  of  recorded  cells  from  CA1  map  the  full  range  of  locations  visited  during  a  linear 

 track  task  (top),  similarly,  CA1  cells  map  the  full  range  of  sound  frequencies  observed  during 

 the  sound  manipulation  task.  Example  neuron  plots  are  taken  and  adapted  from  Yoon  et  al. 

 (2016  )  and  Aronov,  Nevers,  and  Tank  (2017  ).  (B)  MEC  grid  cells  exhibit  periodic  firing  fields 

 during  a  linear  track  task  (top),  similarly,  MEC  grid  cells  exhibit  periodic  firing  fields  during 

 the  frequency  task.  Example  neuron  plots  are  taken  and  adapted  from  Miao  et  al.  (2015)  and 

 Aronov,  Nevers,  and  Tank  (2017  ).  The  examples  were  originally  compiled  in  Behrens  et  al. 

 (2018)  . 

 26 

https://www.zotero.org/google-docs/?wnu1v5
https://www.zotero.org/google-docs/?wnu1v5
https://www.zotero.org/google-docs/?MC5Hjm
https://www.zotero.org/google-docs/?43Q7YM
https://www.zotero.org/google-docs/?FJ5dCb
https://www.zotero.org/google-docs/?IVKfFj
https://www.zotero.org/google-docs/?IVKfFj


 1.4 Grid cells and path integration 

 Grid  cells  are  widely  believed  to  play  a  key  role  in  path  integration  (McNaughton  et  al.  2006)  . 

 Within  the  context  of  a  cognitive  map,  path  integration  can  be  used  as  the  mechanism  to 

 update  a  positional  estimate  across  the  map  (Etienne  and  Jeffery  2004)  .  Even  though  pure 

 path  integration  is  not  a  wise  navigation  strategy  for  any  animal  to  adopt  when  sensory  cues 

 are  available  as  it  is  prone  to  accumulating  errors,  it  may  serve  as  a  temporary  solution 

 when  sensory  cues  are  unavailable  or  in  combination  with  beaconed  navigation  between 

 landmarks.  Grid  cells  are  well  suited  as  a  candidate  for  a  path  integration  system,  not  only 

 by  their  connectivity  within  the  hippocampal  formation  but  also  because  they  provide  a 

 context-independent  metric  of  distance  travelled.  In  this  section,  the  properties  of  the  grid 

 cell  system  will  be  discussed  before  evaluating  the  current  theories  of  path  integration  with 

 grid cells. 

 1.4.1 Properties of the grid cell system 

 Grid  cells  were  first  observed  in  the  dorsal  MEC  of  rats  exploring  a  sufficiently  large  arena  to 

 record  the  spatial  regularity  of  the  grid-like  firing  pattern  (Hafting  et  al.  2005)  .  Recording  from 

 a  wealth  of  grid  cells  at  different  locations  within  the  MEC  revealed  grid  cells  have  at  least 

 three  dimensions  of  variation,  namely  the  phase,  orientation  and  scale  of  the  grid  fields.  In 

 terms  of  geometric  transformations,  these  variations  reflect  translations,  rotations  and 

 scaling of the grid fields respectively (  Figure 7  ). 

 Grid  cells  were  found  to  be  organised  topographically  along  the  dorsoventral  axis  of  the 

 MEC  in  discrete  modules,  whereby  grid  scales  and  orientations  are  fixed  within  individual 

 modules  but  individual  cells  may  be  translated  with  respect  to  one  another  (H.  Stensola  et  al. 

 2012)  .  Distortions  of  the  grid  fields  from  a  perfect  hexagonal  structure  and  the  specific 

 frequency  of  theta-modulated  firing  were  also  shown  to  be  maintained  within  grid  modules 

 (Barry  et  al.  2007)  .  To  test  whether  grid  modules  coherently  remap,  a  test  environment  was 

 compressed  to  induce  grid  rescaling  and  grid  modules  were  found  to  remap  independently 

 of  other  modules.  Taken  together,  individual  modules  might  be  considered  as  functionally 

 independent from one another  (H. Stensola et al. 2012)  . 

 Grid  orientations  of  grid  cells  recorded  from  square  arenas  were  found  to  be  very  similar 

 across  different  animals  suggesting  a  common  function.  The  cardinal  axes  of  the  square 

 arenas  used  to  measure  grid  activity  actually  determined  the  orientation  of  the  grids  (T. 

 Stensola  et  al.  2014;  Krupic  et  al.  2015)  .  Grid  cells  did  not  perfectly  align  with  the  arena  walls 
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 but  rather  orientations  peaked  at  ±  7.5°.  This  particular  alignment  in  square  arenas 

 corresponded  to  a  maximal  asymmetry  with  the  environment  suggesting  a  common 

 mechanism  was  at  play  to  help  disambiguate  geometrically  similar  regions  of  a  square 

 arena.  Orientations  at  60°  multiples  of  the  cardinally  aligned  grid  axes  differed  from  the  7.5° 

 offset  measured  at  the  cardinal  axes,  suggesting  the  grid  was  not  perfectly  hexagonal  but 

 rather  had  undergone  ellipification.  Stensola  et  al.  (2014)  suggested  this  ellipification  was  a 

 result  of  a  shearing  transformation  from  the  borders  of  the  environment.  When  the  offset  was 

 compared  between  familiar  and  novel  environments,  it  was  shown  novel  environments 

 lacked  the  grid  offset  that  maximised  grid  asymmetry.  This  suggests  the  grid  cell  system 

 evolves  over  spatial  learning  to  inherit  information  into  its  code  containing  spatial  context. 

 Krupic  et  al.  (2015)  found  similar  ellipification  of  the  grid  pattern  in  highly  polarised 

 environments  like  trapezoid  arenas.  Further  distortions  from  the  a  perfect  hexagonal 

 structure  was  shown  when  a  reward  was  introduced  to  the  open  field,  grid  fields  were  more 

 frequently  located  proximally  to  rewarded  locations  (Butler,  Hardcastle,  and  Giocomo  2019)  , 

 possibly reflecting an increased spatial precision around reward locations. 
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 Figure  7.  Spatial  firing  properties  of  the  grid  cell  system.  (A)  A  grid  cell  fires 

 preferentially  within  firing  fields  that  resemble  a  triangular  grid  (overlaid).  (B)  Variations  in 

 grid  cells  can  take  the  form  of  geometric  transformations  include  a  phase  shift;  translation  of 

 grid  fields  across  the  plane,  a  change  in  field  orientation;  a  rotation  of  the  grid  fields  about  a 

 reference  point,  and  scaling  of  the  distances  between  adjacent  fields;  uniform  scaling  of  the 

 grid  fields.  Red  indicates  the  necessary  geometric  transformation  to  alter  the  grid  code  from 

 some reference (black) grid phase, orientation and scale. Figure inspired from  Moser (2014)  . 
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 1.4.2 Emergence of grid patterns 

 The  striking  regularity  of  the  grid  structures  produced  by  grid  cells  has  compelled  much 

 computational  effort  to  seek  out  solutions  to  the  emergence  of  grid-like  spatial  firing  patterns. 

 The  proximity  of  grid  cells  to  speed  and  head  direction  input,  as  well  as  the  strong 

 connectivity  between  the  MEC  and  hippocampus  lead  to  a  working  consensus  that  grid  cells 

 provide  a  computational  solution  to  path  integration  (Hafting  et  al.  2005;  McNaughton  et  al. 

 2006; Fuhs and Touretzky 2006)  . 

 This  led  to  two  main  algorithmic  models  being  proposed  based  on  the  integration  of  velocity 

 signals  into  positional  updates  in  the  allocentric  reference  frame.  First,  grid  cell  firing  might 

 result  from  continuous  attractor  dynamics.  Here,  localised  firing  may  be  generated  by 

 excitation  of  grid  cells  with  similar  grid  phases  and  inhibition  of  grid  cells  with  more  distant 

 phase  relationships.  This  difference  of  Gaussians  model  resembles  a  ‘Mexican  hat’ 

 excitatory/inhibitory  relationship  between  grid  cells  in  a  neural  sheet  arranged  according  to 

 their  grid  phase.  Activity  in  this  sheet  can  be  translated  in  accordance  with  the  animals 

 movement  with  inputs  from  speed  and  head  direction  cells  (Fuhs  and  Touretzky  2006;  Burak 

 and  Fiete  2009)  .  As  grid  phase  is  a  cyclic  variable,  in  some  models  this  neural  sheet  can  be 

 wrapped  around  onto  itself  to  form  a  torus  (McNaughton  et  al.  2006)  or  twisted  torus 

 topology  (Guanella,  Kiper,  and  Verschure  2007)  .  Points  on  this  torus  can  therefore  be 

 mapped  to  multiple  locations  of  an  animal  in  an  environment,  and  inversely  the  numerous 

 firing  fields  of  a  grid  cell  are  mapped  to  a  single  position  on  the  torus  (  Figure  9  ).  The 

 hexagonal  structure  can  then  be  explained  by  self-organisation  between  competing 

 excitation  bumps  in  this  neural  manifold,  where  distances  between  bumps  are  maximised 

 similar to maximise the spatial coding capacity  (McNaughton  et al. 2006  ;  Figure 8  ). 

 Second,  grid  cell  firing  might  result  from  the  interference  pattern  between  two  or  more 

 velocity-controlled  oscillators  (VCOs;  Burgess,  Barry,  and  O’Keefe  2007)  .  If  the  frequency  of 

 the  oscillator  is  determined  by  velocity,  the  phase  difference  between  oscillators  is 

 proportional  to  the  displacement  of  the  animal.  While  there  is  some  evidence  to  support 

 theta-frequency  modulation  as  a  function  of  running  speed  (Geisler  et  al.  2007)  and  heading 

 direction  (Welday  et  al.  2011)  ,  evidence  for  continuous  attractor  dynamic-based  grid  firing  on 

 the  other  hand  has  proliferated  both  in  terms  of  physiological  evidence  for  continuous 

 attractor  dynamics.  K.  Yoon  et  al.  (2013)  showed  the  population  activity  of  concurrently 

 recorded  grid  cells  on  the  same  tetrode  could  be  explained  to  reside  on  a  2D  manifold  in 

 support  of  continuous  attractor  dynamics.  Recent  evidence  from  high  density  grid  cell 

 recordings  has  provided  further  evidence  for  grid  cell  networks  exhibiting  continuous 
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 attractor  dynamics.  Gardner  et  al.  (2022)  demonstrated  that  the  activity  of  a  large  population 

 of  grid  cells  within  a  single  grid  module  does  indeed  reside  on  a  toroidal  manifold  as 

 expected from a 2D attractor network (  Figure 9  ). 

 While  most  grid  cell  models  were  designed  with  the  computational  operation  of  path 

 integration  in  mind,  an  alternative  approach  might  be  to  train  an  artificial  neural  network 

 agent  to  solve  spatial  tasks  and  to  ask  whether  any  network  units  contain  grid-like 

 representations  of  space.  Banino  et  al.  (2018)  showed  units  within  a  reinforcement  learning 

 (RL)  agent  that  adopted  a  recurrent  neural  network  architecture  exhibited  grid-like 

 representations.  Competing  RL  agents  using  some  of  the  most  state-of-the-art  RL  algorithms 

 consistently  performed  worse  than  the  grid-cell  agent.  Furthermore,  this  grid  cell  agent 

 executed  the  shortest  possible  path  to  goal  locations,  even  when  not  exposed  to  these 

 shorter  paths  during  training  epochs.  This  work  suggested  the  grid  cell  system  is  a  general 

 solution  to  navigation  because  it  is  an  emergent  feature  of  a  high  performance  navigating 

 agent,  just  like  mammals.  However,  Schaeffer,  Khona,  and  Fiete  (2022)  advise  caution  when 

 concluding  emergent  grid  cells  result  as  a  natural  solution  to  path  integration.  They  found  the 

 vast  majority  of  networks  trained  to  perform  path  integration  did  not  form  grid  cell 

 representations  and  only  a  small  percentage  of  the  sweeped  hyperparameter  space  yielded 

 grid  cells.  This  suggests  the  grid  cell  solution  to  path  integration  may  only  be  a  single 

 solution  of  many  and  thus  attempts  to  infer  grid  cells  as  a  natural  consequence  of  path 

 integration  may  have  been  inadvertently  baked  into  the  trained  networks  by  tuning 

 hyperparameters  in  search  of  that  small  hyperparameter  subset  that  can  yield  grid  cell 

 representations. 
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 Figure  8.  Emergence  of  hexagonal  grid  firing.  (A)  A  difference  of  Guassian  (or  “Mexican 

 hat”)  connectivity  profile  used  for  grid  emergence.  A  grid  cell  within  a  module  is  connected  to 

 another  grid  cell  with  a  synaptic  weight  according  to  the  phase  relationship  between  the  cells 

 where  1  is  a  strong  excitatory  synapse  and  -1  is  a  strong  inhibitory  synapse.  (B)  Neurons 

 arranged  in  a  neural  sheet  according  to  their  grid  phase.  Using  the  Mexican  hat  connectivity, 

 neighbouring  cells  excite  each  other  whereas  distant  cells  inhibit  each  other.  (C)  Network 

 simulation  of  grid  emergence.  Neurons  are  arranged  in  a  75-by-75  array,  representing  5625 

 unique  neurons.  Starting  from  initially  random  conditions  and  iterating  the  Mexican  hat 

 connectivity  over  time,  neurons  begin  to  resemble  and  then  stabilise  as  a  hexagonal  grid. 

 Figure adapted from  McNaughton et al. (2006)  . 
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 Figure  9.  Toroidal  topology  of  a  grid  module.  (A)  On  the  boundaries  of  a  neural  sheet  as 

 in  Figure  8  B,  connectivity  can  be  wrapped  along  each  axis  to  create  a  (B)  continuous 

 toroidal  surface  in  which  the  neural  sheet  has  no  boundaries.  (C)  Gardner  et  al.  (2022) 

 recorded  from  149  simultaneous  grid  cells  within  a  single  module  and  performed 

 dimensionality  reduction  on  the  population  activity  which  revealed  a  toroidal  architecture 

 predicted  of  grid  cells  with  underlying  continuous  attractor  dynamics.  Each  dot  represents 

 the  population  activity  at  a  single  time  point  and  colours  indicate  the  first  principal 

 component.  Two  different  views  of  the  torus  are  shown.  An  example  5  second  trajectory  of 

 the  rat  is  overlaid,  showing  adjacent  positions  on  the  torus  correspond  to  a  smooth 

 translation  of  location  in  physical  space.  (D)  Individual  spikes  (black  dots)  from  three 

 example  grid  cells  map  to  singular  field  locations  on  the  toroidal  manifold.  Spike  plots,  rate 

 maps  and  spatial  autocorrelograms  are  shown  below.  Peak  firing  rates  for  the  rate  maps  and 

 grid scores (GS) are labelled above their respective plots. 
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 1.4.3 Spatial content of grid cells 

 The  exact  role  grid  cells  play  in  spatial  coding  is  still  far  from  clear.  With  a  population  of  grid 

 cells  that  span  different  orientations  and  scales,  two  different  types  of  spatial  information  can 

 be  theoretically  derived,  position  within  an  environment  and  distance  to  or  from  a  reference 

 point  (Fiete,  Burak,  and  Brookings  2008)  .  The  positional-dependent  firing  of  these  cells 

 suggest  they  play  a  role  in  encoding  a  position  estimate.  On  the  other  hand,  the  multiple 

 firing  fields  of  grid  cells  affords  only  an  ambiguous  representation  of  position  when  derived 

 directly  from  single  cells.  With  the  addition  of  multiple  grid  modules,  position  can  be  encoded 

 in  the  grid  code  by  a  combination  of  the  activity  bumps  across  different  modules  as  a  phase 

 vector  (Fiete,  Burak,  and  Brookings  2008;  Stemmler,  Mathis,  and  Herz  2015)  with  a  range  of 

 locations  that  far  exceeds  the  largest  grid  module  spacing  (Fiete,  Burak,  and  Brookings 

 2008)  ,  which  is  comparable  to  observed  foraging  ranges  (Russell  et  al.  2005)  .  Distance  can 

 be  calculated  as  the  difference  between  two  phase  vectors  representing  two  locations 

 (Burak and Fiete 2009; Stemmler, Mathis, and Herz 2015; Bush et al. 2015)  . 

 The  grid  phase  vector  represents  the  points  on  the  neural  sheet  from  each  available  grid 

 module  creating  an  n-dimensional  representation  of  space  where  n  is  the  number  of  grid 

 modules.  Phase  from  single  grid  modules  has  been  proposed  to  be  represented  by  a 

 modular  arithmetic  scheme,  a.k.a.  modulo  code  (Fiete,  Burak,  and  Brookings  2008)  or  a 

 maximum  likelihood  approach  (Stemmler,  Mathis,  and  Herz  2015)  .  The  modulo  code 

 calculates  a  phase  estimate  from  the  remainder  following  integer  division  of  the  internal 

 positional  estimate.  As  the  modulo  code  operates  using  the  residual  number  system  (RNS), 

 the  phase  code  can  be  straightforwardly  updated  as  a  result  of  the  animal’s  displacement 

 due  to  the  carry-free  property  of  the  RNS.  This  affords  no  carry-over  operations  between  grid 

 modules  and  is  consistent  with  the  functional  independence  of  grid  modules.  The  maximum 

 likelihood  code  calculates  a  phase  estimate  from  the  joint  probability  distribution  of  grid  firing 

 within  an  individual  grid  module.  Again,  each  phase  representation  is  independent  across 

 grid  modules  and  affords  no  carry  over  operations  between  grid  modules.  Combining  the 

 probability  distributions  across  grid  modules  produces  a  maximum  likelihood  estimate  of 

 position  with  smaller-period  modules  providing  the  finer  spatial  resolution.  As  individual  grid 

 cell  firing  is  known  to  be  highly  variable  (Nagele,  Herz,  and  Stemmler  2020)  ,  error-correction 

 is  required  to  avoid  catastrophic  errors  in  the  positional  estimate.  In  the  maximum  likelihood 

 scheme,  error-correction  of  the  grid  phase  is  achieved  inherently  at  the  level  of  the  grid 

 module  through  the  maximum  likelihood  operation  whereas  error-correction  in  the  modulo 

 scheme  would  be  required  during  the  phase  readout  as  some  phase  vectors  are  impossible 

 with  any  given  set  of  grid  module  periods.  The  correction  would  thus  require  the  phase 
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 vector  readout  to  map  to  the  closest  valid  phase  combination.  Deviations  from  a  perfect 

 hexagonal  grid  such  as  adding  contextual  information  from  learning  an  environment  (T. 

 Stensola  et  al.  2014)  ,  a  reward  location  (Butler,  Hardcastle,  and  Giocomo  2019)  or 

 ellipification  (T.  Stensola  et  al.  2014;  Krupic  et  al.  2015)  as  previously  discussed  can  be 

 easily  incorporated  into  the  phase  code  and  is  compatible  with  the  modulo  and 

 maximum-likelihood  approaches  provided  grid  distortions  are  consistent  within  modules, 

 which is exactly what has been experimentally observed  (H. Stensola et al. 2012)  . 

 Accurate  positional  coding  with  a  grid  phase  vector  requires  grid  cells  to  become  anchored 

 to  features  of  an  environment,  that  is,  the  firing  fields  must  not  drift  over  time  otherwise  the 

 phase  vector  would  encode  a  different  location  compared  to  before  the  firing  field  drift.  If 

 firing  fields  are  not  anchored  to  fixed  positions  in  an  environment,  distance  travelled  from  a 

 reference  point  can  still  be  decoded  from  phase  changes  across  the  neural  sheet.  Jacob  et 

 al.  (2019)  showed  using  a  circular  track  that  some  grid  cells  in  rats  do  not  anchor  to  features 

 of  a  track  but  rather  encode  the  integrated  distance  travelled.  To  test  whether  the  periodic 

 firing  of  grid  cells  breaks  down  when  there  are  no  allothetic  cues  to  anchor  to,  all  traces  of 

 allothetic  cues  must  be  removed.  Open  field  arenas  even  in  darkness  are  very  difficult  to 

 remove  allothetic  cues  from,  such  as  odour  or  sound  cues.  As  such,  recording  a  grid  cell 

 without  the  influence  of  sensory  cues  can  be  achieved  using  the  modern  virtual  or 

 augmented  reality  set  ups,  for  examples,  see  (Domnisoru,  Kinkhabwala,  and  Tank  2013; 

 Tennant  et  al.  2018;  Jayakumar  et  al.  2019)  .  Recent  evidence  from  (Campbell  et  al.  2021) 

 showed  a  subset  of  MEC  neurons  encoded  distance  on  a  treadmill  in  complete  darkness, 

 however did not identify the 2D spatial properties of these cells. 

 Position  and  distance  coding  need  not  be  mutually  exclusive  coding  functions.  Indeed,  grid 

 cells  clearly  encode  position  information  as  over  repeated  trajectories  or  trials  of  an 

 environment,  grid  fields  remain  in  the  same  location,  while  also  firing  periodically  at 

 equidistant  intervals  consistent  with  distance  coding.  Landmarks  may  provide  the  reference 

 points  from  which  the  distance  codes  are  generated  through  path  integration.  Hardcastle  et 

 al.  (2015)  showed  the  positional  estimate  encoded  by  grid  cells  tended  to  drift  in  more  open 

 regions  of  an  environment,  supporting  the  idea  the  grid  cell  system  is  reset  following  the 

 accumulating  errors  during  path  integration.  Furthermore,  directional-dependence  within  the 

 error correction suggested border cells serve as the neural substrate for error correction. 
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 1.4.4 Reading a grid code 

 How  are  these  spatial  representations  readout  by  downstream  systems?  The  hypothesised 

 combinatorial  code  of  modular  phases  is  a  diffuse  population  code  that  spans  the  entire 

 length  of  the  MEC,  this  undoubtedly  raises  questions  about  how  the  brain  makes  sense  of 

 this  code  to  guide  navigational  decisions.  Two  broad  classes  of  potential  readout 

 mechanisms,  which  are  not  necessarily  mutually  exclusive  schemes  are  place-label 

 readouts and metric readouts. 

 Place-labels  may  be  as  simple  as  a  position  represented  by  place  cells  in  the  hippocampus 

 that  can  be  formed  through  the  summation  of  grid  cell  inputs  across  different  grid  modules 

 (Solstad,  Moser,  and  Einevoll  2006)  .  Using  the  phase  vector  representation,  place-labels  can 

 be  generated  as  unique  codewords  as  if  defined  in  a  codebook  or  look-up  table.  Consider  a 

 translation  across  a  1D  track  from  locations  10  -  50  cm  using  a  phase  vector  from  three 

 distinct  grid  modules  of  periods  L  =  {10  cm,  30  cm,  60  cm}.  A  potential  readout  may  treat  the 

 absolute  phase  vector  at  locations  10  and  50  cm  as  a  unique  neural  label  P  =  {1/2π  rad, 

 3/2π  rad,  5/4π  rad}  without  using  the  metric  information  of  the  integrated  40  cm  distance 

 over  the  journey  (Fiete,  Burak,  and  Brookings  2008)  .  Alternatively,  the  phase  vector  could  be 

 decoded  into  displacements  throughout  the  journey  so  that  downstream  neurons  reflect  the 

 metric  information  of  physical  distances  (in  this  case  a  40  cm  displacement)  rather  than 

 abstract  vectors  in  modular  phase  space  (Fiete,  Burak,  and  Brookings  2008;  Stemmler, 

 Mathis,  and  Herz  2015;  Bush  et  al.  2015)  .  Such  metrics  information  is  useful  for  animals 

 computing  homing  trajectories  for  example,  whereby  a  distance  and  direction  is  readout  from 

 the  difference  between  the  phase  vector  code  for  current  location  and  home.  This 

 vector-navigation  permits  animals  to  execute  novel  routes  home  even  after  taking  circuitous 

 routes  away  from  home.  However,  metric  information  like  distance  and  head  direction  is 

 difficult  to  extract  from  the  grid  code  without  the  addition  of  dedicated  neural  networks  (Burak 

 and Fiete 2009)  . 

 Computational  work  has  proposed  candidates  for  these  readout  networks,  each  with 

 predictions  of  novel  spatial-tuned  cells  from  which  metric  readouts  can  be  made  (Fiete, 

 Burak,  and  Brookings  2008;  Bush  et  al.  2015;  Stemmler,  Mathis,  and  Herz  2015)  .  In  the 

 metric  readout  model  proposed  by  Fiete  et  al.  (2008  )  and  inspired  by  a  single  layer  recurrent 

 neural  network  conceived  by  Sun  and  Yao  (1994)  ,  grid  phases  represented  as  modulo 

 residues  are  inputs  to  the  network  and  the  network  outputs  to  a  neuron  with  a  firing  rate 

 proportional  to  the  displacement  of  the  animal.  This  network  utilises  residue-to-decimal 

 conversion  using  a  non-symmetrical  Hopfield  neural  network  which  boasts  biological 
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 plausibility.  In  the  distance  cell  model  proposed  by  Huhn  et  al.  (2009)  and  Bush  et  al.  (2015  ), 

 grid  cells  within  the  same  module  project  to  distance  cells  that  encode  distance  travelled  as 

 the  summated  activity  of  grid  cells  results  in  a  periodic  signal  equal  to  the  grid  spacing  of  the 

 module.  Competing  distance  cells  from  different  innerating  grid  modules  then  project  with 

 winner-take-all  dynamics  to  a  readout  neuron  that  exhibits  a  firing  rate  proportional  to  the 

 distance  travelled  along  a  particular  cardinal  axis.  In  the  rate-coded  vector  cell  model 

 proposed  by  Bush  et  al.  (2015  ),  pairs  of  grid  cells  within  single  modules  that  encode  current 

 and  goal  locations  project  to  vector  cells  that  encode  the  displacement  between  the  current 

 and  goal  location  as  the  phase  difference  between  the  grid  cells  through  multiplicative 

 synapses  onto  vector  cells.  The  phase  difference  across  modules  corresponds  to  the 

 displacement  between  current  and  goal  locations.  When  pairs  of  grid  cells  encoding  current 

 and  goal  location  fire  simultaneously  across  modules,  a  single  vector  cell  is  activated 

 corresponding  to  the  consistent  displacement  and  winner-take-all  dynamics  eliminate  activity 

 in  other  vector  cells.  This  model  requires  less  additional  neurons  than  the  distance  cell 

 model  but  lacks  biological  plausibility  as  synapses  don’t  support  multiplicative  operations.  To 

 overcome  this  constraint,  the  phase  difference  may  be  inferred  from  the  theta  firing  phase 

 (termed  the  phase-coded  vector  cell  model;  Bush  et  al.  2015)  as  many  grid  cells  exhibit  theta 

 phase  precession,  that  is,  firing  spikes  appear  progressively  earlier  relative  to  the  theta  local 

 field  potential  as  the  animal  moves  through  the  grid  field  and  results  in  an  approximate  linear 

 relationship  between  theta  phase  and  distance  travelled  through  the  field.  This  model 

 however requires the theta phase precession to align along cardinal axes. 

 An  alternative  neural  implementation  utilises  a  linear  look-ahead  function  in  which 

 simulations  of  movement  signals  search  out  the  place-label  correspondence  between  the 

 current  location  and  the  target  location  in  the  modular  phase  code  (Erdem  and  Hasselmo 

 2012;  2014;  Kubie  and  Fenton  2012)  .  Under  this  scheme,  the  integrated  distance  travelled 

 from  a  starting  point  is  encoded  by  the  duration  of  the  look  ahead  event.  Readout  models 

 are  understandably  speculative  at  best  however  the  testable  predictions  that  spawn  from 

 them provide tangible lines of enquiry for in vivo electrophysiologists. 

 These  theorised  readout  mechanisms  form  a  starting  point  for  analysis  of  in-vivo 

 electrophysiological  experiments  which  can  probe  for  the  predicted  cell-types.  Across  the 

 discussed  readout  theories,  predicted  cell-types  include  distance,  vector  and  readout  cells. 

 In  the  broadest  terms,  readout  theories  indicate  that  additional  spatially  tuned  neurons  are 

 required  downstream  of  the  grid  cell  system.  A  common  predicted  cell  type  is  a  rate-coded 

 cell  with  firing  rate  proportional  to  distance  travelled  from  a  reference  point  up  to  some 

 salient  point  like  a  rewarded  location,  corresponding  to  a  linear  ramp  (Fiete,  Burak,  and 
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 Brookings  2008;  Bush  et  al.  2015;  Stemmler,  Mathis,  and  Herz  2015)  .  If  these 

 representations  do  indeed  exist,  the  behavioural  task  utilised  within  this  thesis  is  well  suited 

 to identify these neurons. 
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 Figure  10.  Grid  cell  readout.  (A)  The  grid  cell  system  is  arranged  into  modules  of  grid  cells 

 which  share  a  common  grid  scale  within  modules  but  increase  in  size  along  the  dorsal 

 ventral  axis  of  the  medial  entorhinal  cortex.  A  population  code  of  allocentric  position  can  be 

 decoded  across  these  modules  as  a  vector  of  grid  phases  on  a  toroidal  (shown)  or  flat  neural 

 sheet  in  the  2D  case  or  a  ring  in  the  1D  case.  (B)  Using  the  1D  case  for  simplicity,  these  grid 

 phases  can  uniquely  encode  locations  along  a  linear  path  up  to  the  point  the  phase  vector  is 

 repeated.  (C)  The  phase  vector  may  be  read  directly  as  a  place  label,  discarding  the  metric 

 information  of  the  displacements  or  the  metric  information  recalculated  from  the  phase 

 vector into readout response neurons. 
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 1.4.5 Possible behaviour roles of grid cells 

 What  evidence  is  there  for  a  behavioural  role  of  grid  cells?  Discussions  up  to  this  point  have 

 been  focused  on  the  theoretical  potential  of  the  grid  cell  system.  Whether  the  above 

 schemes  are  physically  realised  remains  to  be  seen.  To  add  credence  to  the  behavioural 

 claims  of  grid  cell  function,  grid  cells  must  be  recorded  while  a  behavioural  task  is  taking 

 place.  To  date,  few  studies  corroborate  the  claims  made  upon  discovery  that  grid  cells  are 

 utilised  for  navigation.  To  investigate  beaconing  and  path  integration  behaviours  and  the 

 roles  played  by  grid  cells,  appropriate  experimental  designs  are  required  beyond  the 

 standard  open  field  settings  used  to  record  the  spatial  firing  properties  of  grid  cells.  For 

 example,  recording  grid  cells  during  an  open  field  task  cannot  be  used  to  link  path 

 integration  and  grid  cell  activity  as  whether  the  animal  is  actively  path  integrating  during  the 

 task  remains  ambiguous  while  beaconing  cues  are  available.  Errors  naturally  accumulate 

 during  path  integration  so  when  navigation  via  beaconing  is  possible,  it  stands  to  reason  the 

 animal  will  utilise  beaconed-based  approaches  to  navigate  to  target  locations  to  avoid 

 positional  uncertainty  that  comes  with  pure  path  integration.  To  overcome  this,  a  navigation 

 task  is  required  that  eliminates  beaconing  as  a  viable  strategy.  Simply  turning  out  the  lights 

 or  cleaning  an  open  field  arena  thoroughly  cannot  guarantee  the  removal  of  these  visual  or 

 olfactory  beaconing  cues  respectively.  Virtual  environments  on  the  other  hand  can  be 

 controlled  such  that  beaconing  cues  can  be  omitted  or  limited  in  their  utility  in  a  beaconing 

 strategy.  For  example,  a  visual  beacon  can  be  removed  on  some  trials  to  probe  the 

 interaction  between  grid  cell  activity  and  trial  behaviour.  Other  potential  beaconing  cues 

 originating  from  outside  of  the  virtual  environment  but  still  within  perception  of  the  animal 

 could  not  usefully  inform  positional  information  if  these  cues  do  not  consistently  align  with 

 cues  on  the  track,  for  example  if  the  circumference  of  a  treadmill  matched  the  distance  of  the 

 linear  track,  discernible  features  on  the  treadmill  like  odours  and  visual  imperfection  could  be 

 used  as  track  beacons  by  proxy.  When  this  possibility  is  removed,  the  beaconing  cues 

 available to the animal is entirely controlled by the experimenter. 

 Allen  et  al.  (2014)  developed  a  L-maze  task  in  which  mice  were  trained  to  navigate  via  an 

 L-shaped  corridor  to  a  hidden  platform  submerged  in  an  opaque  liquid  in  complete  darkness. 

 On  test  trials,  the  corridor  was  removed  to  test  the  shortest  route  taken  by  the  mouse.  As  no 

 allothetic  cues  were  available  to  guide  navigation,  path  integration  was  the  only  viable 

 strategy  to  self-locate  in  the  arena.  A  beaconing  version  of  this  task  was  introduced  by  Gil  et 

 al.  (2018)  where  lights  were  turned  on  and  a  flag  signalled  the  submerged  platform.  To 

 assess  the  impact  of  grid  cell  firing  on  beaconing  and  path  integration  behaviours,  glutamate 

 receptors  AMPA  and  NMDA  were  experimentally  ablated  in  retrohippocampal  regions  and 
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 were  shown  to  disrupt  grid  cell  firing.  Mice  with  this  disrupted  grid  firing  performed 

 significantly  worse  than  controls  on  the  path  integration  but  not  beaconing  versions  of  the 

 task.  While  this  offers  some  of  the  first  evidence  linking  grid  cell  firing  with  navigational 

 operations  specific  to  path  integration,  the  specific  grid  activity  that  causes  the  navigational 

 impairment remains elusive. 

 An  alternative  approach  to  real  world  environments  is  to  utilise  virtual  navigation.  Sensory 

 cues  in  a  virtual  environment  can  be  controlled  completely  by  the  researcher,  as  established 

 by  Domnisoru,  Kinkhabwala,  and  Tank  (2013)  .  Tennant  et  al.  (2018)  developed  a  task  in 

 which  mice  were  trained  to  stop  at  a  specific  rewarded  location  on  a  virtual  reality  linear 

 track.  The  reward  zone  was  either  marked  by  a  visual  cue  or  left  unmarked.  The  rest  of  the 

 track  consisted  of  visual  cues  not  specific  to  any  single  location  of  the  track.  Trials  in  which 

 the  reward  zone  was  marked  by  a  visual  cue  could  be  completed  with  a  beaconing  strategy, 

 whereas  when  the  reward  zone  was  unmarked,  only  a  path  integration  strategy  was  viable. 

 This  task  offers  the  benefit  of  assessing  both  beaconing  and  path  integration  behaviours 

 while  also  concurrently  recording  the  activity  of  grid  cells.  As  mentioned  in  1.3.2  ,  Tennant  et 

 al.  (2018)  targeted  layer  II  MEC  stellate  cells  and  found  inactivation  reduced  spatial  learning 

 in  both  beaconing  and  path  integration  behaviours.  As  the  task  operates  on  a  linear  track 

 rather  than  a  2D  arena,  it  offers  the  potential  of  recording  the  periodic  firing  of  grid  cells 

 without  the  need  for  a  mouse  to  sample  all  locations  like  is  necessary  in  open  field 

 recordings.  Consequently,  trial-by-trial  analysis  is  possible  and  offers  the  finest  temporal 

 resolution  of  grid  cell  recording  to  address  the  variable  dynamics  throughout  a  recording 

 session.  Whether  grid  cell  coding  remains  stable  over  the  course  of  a  virtual  navigation  task 

 is  not  clear.  Within  an  open  field  exploration  task  and  a  virtual  linear  track  task,  (Nagele, 

 Herz,  and  Stemmler  2020)  showed  grid  cells  do  not  always  fire  as  the  mouse  crosses 

 through  a  grid  field  or  are  significantly  shifted  away  from  the  grid  field.  This  spiking  variability 

 might  reflect  behavioural  states  or  may  simply  be  a  feature  of  a  noisy  population  code.  Pettit, 

 Yuan,  and  Harvey  (2022)  showed  water-deprived  mice  disengaged  from  a  virtual  linear  track 

 task  over  the  course  of  a  recording  session  and  this  was  coupled  with  a  decreased  decoding 

 accuracy  of  a  population  of  simultaneously  recorded  place  cells.  Should  this  extend  to  the 

 grid  cell  system,  the  variability  of  grid  cell  firing  may  reflect  changes  in  task  engagement.  If 

 grid  codes  are  gated  by  task  engagement,  we  might  expect  codes  to  be  behaviourally  gated 

 during path integration behaviours but not when beaconing is available. 

 In  humans,  Doeller,  Barry,  and  Burgess  (2010)  showed  a  BOLD  signal  associated  with  grid 

 cell  firing  correlated  with  the  performance  in  a  virtual  spatial  memory  task.  Further,  Kunz  et 

 al.  (2018)  showed  spatial  behaviours  in  a  virtual  reality  path  integration  task  to  differ  in 
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 humans  that  carried  the  Alzheimer’s  genetic  risk  factor  APOE-e4  with  a  significant  reduction 

 of  BOLD  signal  in  the  temporal  lobe  associated  with  grid  cell  representations.  To  extract  this 

 signal  used  to  quantify  the  grid  representation  in  humans,  the  navigational  task  must  be 

 completed  in  a  2D  arena  to  assess  the  60°  rotational  symmetry  associated  with  grid  cell 

 firing.  While  this  task  benefits  from  concurrent  electrophysiological  and  behaviour  recording, 

 the  requirement  of  a  2D  arena  does  not  afford  the  temporal  resolution  of  periodic  grid  firing 

 possible from the linear location task established by  Tennant et al. (2018)  . 

 42 

https://www.zotero.org/google-docs/?PP6wY7


 1.5 Thesis aims 

 The  overall  aims  of  the  thesis  are  to  identify  the  coding  scheme  of  grid  and  cells  that  might 

 carry  out  readout  operations.  I  will  look  to  answer  to  what  extent  spatial  coding  can  be 

 explained in terms of beaconing and path integration-based behaviours exhibited. 

 In  Chapter  2,  I  will  describe  the  means  of  building  and  implementing  an  open  field 

 exploration  task  and  linear  location  task.  I  will  then  detail  how  these  tasks  were  combined 

 with  electrophysiology  apparatus  to  record  single  unit  activity  while  mice  perform  these  tasks 

 and  how  the  spatial  firing  properties  of  individual  neurons  were  calculated  to  detect 

 classically defined spatially-modulated cell types. 

 In  Chapter  3,  I  will  show  that  mice  can  be  trained  on  a  virtual  reality  navigation  task  following 

 a  training  protocol  developed  by  Sarah  Tennant  (Tennant  2017;  Tennant  et  al.  2018)  and 

 improved  over  the  course  of  this  work.  This  task  recruits  both  beaconing  and  path 

 integration-based  navigation  and  will  be  used  to  delineate  roles  of  grid  and  readout  cells  in 

 Chapters 4 and 5. 

 In  Chapter  4,  I  will  ask  how  grid  cells  of  the  MEC  spatially  code  during  the  linear  location 

 task  and  address  whether  this  coding  is  (1)  stable  and  (2)  dependent  on  the  trial  outcome 

 during either beaconed or path integration behaviours. 

 In  Chapter  5,  I  will  ask  whether  cells  in  the  retrohippocampus  that  exhibit  ramp-like  firing 

 profiles  reflect  a  new  positional  code  for  space  and  address  whether  this  coding  is  (1)  stable 

 and  (2)  dependent  on  the  trial  outcome  during  either  beaconed  or  path  integration 

 behaviours. 

 In Chapter 6, I will look to reconcile my findings with the wider literature. 
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 Materials and methods 

 2.1 Ethical statement 

 All  research  was  conducted  in  accordance  with  the  The  University  of  Edinburgh  Animal 

 Welfare  committee  and  performed  under  the  UK  Home  Office  project  license  (no. 

 PC198F2A0).  All  procedures  complied  with  the  Animals  (Scientific  Procedures)  Act,  1986 

 and  the  European  Directive  86/609/EEC  on  the  protection  of  animals  used  for  experimental 

 purposes. All procedures were approved by the Named Veterinary Surgeon. 

 2.2 Research animals 

 Wild  type  male  C57BL/6NCrl  mice  were  obtained  (Charles  River)  and  housed  in  a  secure 

 animal  facility.  Mice  of  10-15  weeks  old  were  used  for  experiments.  Male  mice  were 

 preferred  due  to  their  increased  size.  This  afforded  a  larger  space  on  the  skull  to  attach  the 

 headpost.  (It  should  be  stated  for  anyone  reading  this  thesis,  that  selecting  male  mice  for 

 their  increased  size  is  not  a  valid  justification  for  not  including  female  mice  in  an  experiment 

 and upon reflection, mice should have been size and weight matched instead). 

 2.3 Tetrode microdrives 

 2.3.1 Overview 

 Electrophysiological  measurements  via  tetrodes  offer  a  continuous  recording  of  the 

 extracellular  potential  difference  in  the  brain.  Four  electrodes  bundled  together 

 simultaneously  record  spatial  disparate  voltage  traces,  which  when  combined  can  be  used  to 

 reconstruct  single  unit  activity.  As  the  aim  of  this  thesis  focuses  on  reconciling  single  unit 

 activity  with  spatial  behaviours,  it  was  necessary  to  implement  and  refine  a  reproducible 

 tetrode  microdrive  design  that  was  compatible  with  these  aims.  In  particular,  the  microdrive 

 needed  to  have  the  stability  to  remain  in  place  for  chronic  recordings  across  weeks  (up  to  3 

 months  in  some  cases)  and  needed  to  accommodate  a  headpost  to  head-fix  the  mouse 

 during  virtual  reality  experiments.  In  this  section,  the  microdrive  assembly  and  implantation 

 are described and briefly discussed. 
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 2.3.2 Microdrive assembly 

 Board  assembly.  A  16-channel  Omnetics  board  (Neuralynx,  EIB-16)  was  mounted  to  a 

 Omnetics  to  Mill-Max  adapter  (Axona,  HSADPT-NN1)  held  off  the  surface  of  a  work  bench 

 with  a  helping  hand.  A  cannula  was  cut  to  size  (Stainless  Tube  and  Needle  Co,  17  gauge/7 

 mm),  sanded  and  cleaned  inside.  The  inner  cannula  was  glued  to  the  corner  of  the  board 

 with  epoxy  resin.  Two  3cm  ground  wires  (thin  insulated  wire)  were  cut  and  1cm  insulation 

 removed from each end. These were then pinned into the ground slots on the board. 

 Tetrodes.  To  create  a  tetrode  bundle,  30cm  of  platinum-iridium  wire  (Axona,  EW-17PI)  was 

 cut  and  taped  at  both  ends  to  a  single  small  1  cm  patch  of  electrical  tape  such  that  the  wire 

 ends  were  parallel  on  the  tape.  The  wire  was  cut  at  the  midpoint  to  make  two  wires  of  the 

 same  length.  These  wires  were  lined  up  flush  with  the  tip  of  a  finger  slightly  wetted  with 

 saline.  The  ends  of  the  wires  not  attached  to  the  tape  were  folded  over  onto  the  tape  to  line 

 up  4  parallel  wires  on  the  tape  connected  by  two  loops  below  the  tape.  The  tape  was 

 grasped  tightly  with  a  hemostat  and  suspended  from  a  horizontal  pole  and  spun  gently  to 

 twist  the  4  wires  into  a  bundle.  Once  the  bundle  is  longer  than  4  cm,  a  heat  gun  set  to  250 

 degrees celsius was wafted over the bundle for 6 seconds to adhere the bundle together. 

 Wiring.  Four  tetrode  bundles  were  created  per  board  and  individually  loaded  into  the  inner 

 cannula  and  wired  under  a  microscope  to  each  pin.  To  load  a  tetrode,  the  tetrode  was 

 bathed  in  ethanol  in  a  weighing  boat  and  picked  up  by  the  loop  with  fine  tweezers  before 

 being  slotted  down  the  inner  cannula.  The  top  loop  was  cut,  producing  four  wire-ends  that 

 could  be  fed  through  the  board  pinholes  bottom  to  top.  All  wire-ends  from  a  single  tetrode 

 were  wired  to  a  single  side  of  the  square  Omnetics  board.  Once  a  wire  was  fed  through  a 

 pinhole,  a  gold  pin  was  punched  into  the  top  hole,  this  severed  the  top  of  the  wire  and  in  the 

 process removed sufficient electrical insulation to connect the board pin to the wire. 

 With  all  wires  connected,  connections  were  tested  using  a  “bubble  test”  circuit.  A  small  well 

 was  filled  with  saline  and  the  tetrode  ends  suspended  such  that  they  were  making  contact 

 with  the  saline.  The  saline  well  was  connected  to  the  positive  terminal  of  a  9V  battery  and  a 

 pin  adapter  compatible  with  a  single  pin  of  the  Omnetics  to  Mill-Max  adapter  connected  to 

 the  negative  terminal.  Connecting  this  pin  adaptor  to  a  single  pin  created  bubbles  in  the 

 saline  if  the  connection  was  true.  The  connection  was  satisfactory  if  it  could  be  verified  no 

 pin  connection  created  bubbles  from  multiple  tetrodes,  and  bubbles  created  from  the  same 

 tetrode  consistent  with  the  channel  map  did  indeed  come  from  the  same  tetrode  end.  If  the 

 connections could not be verified by bubble testing the wiring stage was repeated in full. 
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 Once  wiring  was  complete  and  verified,  the  connections  were  covered  with  layers  of  epoxy 

 resin  to  ensure  the  connections  stayed  true  throughout  the  experiment.  This  took  place  over 

 days  to  allow  adequate  time  for  the  epoxy  to  cure  between  layers.  Both  sides  of  the  board 

 were  covered  where  tetrode  connections  existed,  as  illustrated  by  Figure  11  A.  The  minimum 

 of epoxy resin was used to maintain a low total weight of the microdrive. 

 Drive  mechanism  .  In  order  to  move  the  tetrodes  down  while  in  the  brain  to  record  from 

 multiple  sites,  a  drive  mechanism  was  installed  adjacent  to  the  Omnetics  board.  A  bare 

 microdrive  frame  (Axona,  MDR-01)  was  suspected  next  to  the  board  with  bluetac  and 

 adhered  to  the  board  using  dental  cement  (Kemdent,  ACR807  and  ACR924).  The  remainder 

 of  the  exposed  epoxy  was  covered  with  the  dental  cement  to  create  a  strong  connection 

 between  frame  and  board.  The  position  of  the  frame  relative  to  the  board  was  decided  based 

 on  the  target  location  of  the  craniotomy.  All  experiments  described  in  this  thesis  targeted  the 

 MEC  of  the  right  hemisphere,  thus  illustrations  in  Figure  11  and  12  are  compatible  with  this 

 design. 

 Outer  cannula  .  A  thicker  outer  cannula  was  cut,  sanded  and  cleaned  inside  (Stainless  Tube 

 and  Needle  Co,  21  gauge).  A  single  end  was  sanded  to  angle  the  cannula  slightly  so  it  might 

 fit  the  curvature  of  the  skull  when  lowered  during  implantation.  The  other  end  was  shortened 

 such  that  there  was  just  enough  space  to  move  the  microdrive  down  throughout  the 

 experiment  and  also  to  cover  the  exposed  tetrode  wires  lowered  into  the  brain  region  of 

 interest.  Once  cut  to  size  and  shape,  the  microdrive  was  positioned  upside  down  with  the 

 tetrodes  pointing  upwards  and  the  lumen  of  the  cannula  passed  through  the  tetrode  bundle. 

 If  the  tetrodes  were  not  sufficiently  close,  they  were  wetted  with  ethanol  with  fine  forceps.  To 

 temporarily  secure  the  outer  cannula  before  it  could  be  lowered  during  implantation,  vaseline 

 was deposited between the cannula and the microdrive board. 

 Gold  plating.  In  final  preparation  for  the  microdrive  implantation,  the  tips  of  the  electrodes 

 were  individually  gold  plated  in  order  to  create  a  similar  conductance  across  electrodes  in 

 each  tetrode  bundle.  This  was  done  within  24  hours  of  the  implantation  surgery.  Tetrodes 

 were  lowered  into  a  non-cyanide  gold  solution  (Neuralynx)  connected  to  an  open  source 

 gold  plater  circuit  (Matsumoto  2019)  .  The  circuit  enabled  a  readout  of  the  impedance  from 

 each  electrode  from  an  oscilloscope  (1  kHz  sine  wave).  This  could  be  reduced  to  an  ideal 

 target  range  of  150-200  KΩ  for  later  spike  sorting  by  pressing  the  switch  and  passing  a  2.5 

 µA  current  for  gold  plating.  The  microdrive  was  fastened  to  the  lip  of  a  storage  jar  (Fisher 

 Scientific,  30  mL  wide-mouth  screw  cap  jar)  with  blue  tac  and  stored  in  a  dry  area  ready  for 

 implantation. 

 46 

https://paperpile.com/c/GYNNCx/hkTq


 Figure  11.  Tetrode  microdrive  design.  (A)  Schematic  of  custom  built  tetrode  microdrive 

 and  (B)  photographs  from  several  different  angles.  Note  that  the  microdrives  were 

 photographed before the final cut of the tetrodes took place. 
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 2.3.3 Implantation 

 Pre-op.  To  prepare  for  surgery,  surfaces  were  wiped  down  with  95  %  ethanol  then 

 autoclaved  surgical  tools  and  drapes  were  laid  adjacent  to  the  surgical  area.  The  mouse  was 

 collected  from  its  holding  room  and  brought  to  the  surgical  room.  A  pre-surgery  weight  was 

 recorded  to  gauge  the  post-operative  health  of  the  mouse.  It  was  transferred  to  an 

 anaesthetic  chamber  supplied  with  5  %  isoflurane  (Abbott  Laboratories  IL)  to  induce 

 anaesthesia.  Once  anaesthetised  (confirmed  by  showing  no  locomotive  movement,  sharp 

 deep  breaths  and  the  absence  of  a  pedal  pinch  reflex),  the  hair  on  the  surface  of  the  skull 

 was  clipped  and  the  mouse  was  placed  on  a  stereotaxic  frame,  with  a  continuous  supply  of  2 

 %  isoflurane  to  maintain  anaesthesia  throughout  surgery.  Heart  rate  was  monitored 

 throughout  surgery  and  isoflurane  levels  adjusted  accordingly.  30  µL  analgesic  (Vetergesic 

 1:10  sterile  water)  was  injected  subcutaneously  behind  the  neck.  The  mouse’s  eyes  were 

 covered  with  Ocry-gel  to  avoid  them  drying  out  during  the  surgery  and  the  top  of  the  head 

 was  cleaned  with  10  %  Betadine  (povidone-iodine)  to  sterilise  the  incision  site.  Finally,  the 

 mouse’s body was draped to keep it warm. 

 Initial  incision.  Ear  and  nose  bars  were  tightened  to  fix  the  head  in  place.  This  was  checked 

 and  maintained  throughout.  An  incision  was  made  between  the  ears  and  sufficient  skin 

 removed  to  expose  the  skull  in  order  to  accommodate  space  for  the  headpost.  Neck  muscles 

 were  disconnected  with  a  spatula  to  expose  sufficient  skull  area.  Connective  tissue  was 

 scraped  off  the  surface  of  the  skull  and  cleaned  away  to  create  a  dry  contact  for  headpost 

 fixing.  The  skull  was  scored  with  a  scalpel  to  increase  contact  points.  A  craniotomy  location 

 was chosen and roughly marked with a fine permanent marker pen. 

 Headpost.  The  headpost  (Osborne  and  Dudman  2014)  (Attenborough  Labs)  was  superglued 

 to  the  base  of  the  skull,  providing  adequate  room  for  the  cannula  of  the  microdrive  to  sit 

 within  the  headpost  appropriately  above  the  craniotomy  site.  Ultraviolet-activated  dental 

 cement  (Dental  Sky,  RelyX  Unicem  2  Automix  A3,  123-0006)  was  used  to  create  strong 

 contact  points  between  the  skull  and  headpost.  Vetbond  was  then  used  to  seal  any  loose 

 skin around the headpost. The final headpost position is illustrated in  Figure 12  . 
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 Figure 12. Headpost position and possible ground screw locations on the skull. 

 Ground  screws.  Two  ground  screw  locations  were  marked  with  a  permanent  marker  on  the 

 skull.  Locations  varied  depending  on  skull  size  and  headpost  position.  Figure  12  shows 

 possible  locations  for  ground  screws.  Most  ground  screw  locations  were  contralateral  of  the 

 craniotomy  site.  Screw  sites  were  drilled  several  millimetres  into  the  skull,  not  going  all  the 

 way  through.  The  drill  bits  used  did  not  exceed  the  width  of  the  screw.  Ground  screws  were 

 screwed  into  the  drill  sites  until  fastened.  Superglue  was  added  to  the  base  of  the  screw  to 

 create stronger contact between screw and skull. 

 Craniotomy.  The  craniotomy  location  was  drilled  to  expose  the  surface  of  the  brain. 

 Surfacing  blood  was  soaked  up  with  sterile  tissues  and  cleaned  with  saline  until  it  stopped. 

 An  injection  pipette  was  lowered  no  more  than  1  mm  into  the  tip  of  the  craniotomy  (typically 

 500  µm  less  than  the  tetrode  implantation  depth)  to  assess  whether  the  tetrodes  would  be 

 obstructed  while  being  moved  down  into  position  within  the  brain.  If  the  injection  pipette  was 

 obstructed, the craniotomy was expanded and reassessed. 

 Tetrode  implantation.  The  microdrive  was  mounted  to  an  Omnetics  adaptor  above  the 

 headpost  and  adjusted  to  the  correct  angle  of  entry  and  implantation  coordinates.  Tetrodes 

 were  cleaned  with  95  %  ethanol  and  then  saline.  The  tetrodes  were  lowered  to  the  surface  of 

 the  craniotomy  and  then  lowered  slowly  (roughly  one  minute)  to  the  correct  location. 

 Vaseline  was  placed  around  the  surface  of  the  craniotomy  to  prevent  cement  from  entering. 
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 The  outer  cannula  was  lowered  and  RelyX  Unicem  2  resin  cement  (3M)  dental  cement 

 added  to  the  base  of  the  outer  cannula  and  feat  of  the  microdrive.  Ground  wires  were 

 wrapped  around  ground  screws  and  fixed  in  place  with  silver  paint  (RS  components 

 101-5621).  Dental  cement  was  pipetted  into  the  headpost  to  fill  all  remaining  gaps  and 

 create  further  contact  points  between  the  microdrive  feet,  headpost  and  outer  cannula.  Once 

 all cement had dried, the microdrive was unmounted. 

 Post-operative  care.  The  mouse  was  removed  from  the  stereotaxic  frame  and  weighed.  The 

 weight  differential  between  pre  and  post  op  was  used  to  estimate  the  weight  of  the 

 microdrive.  The  mouse  was  injected  subcutaneously  with  300  µL  saline  for  rehydration 

 purposes  before  being  placed  in  a  warm  box  until  it  showed  signs  of  waking  up.  It  was  then 

 transferred  back  to  a  fresh  home  cage  atop  a  heated  pad  and  monitored  until  moving  around 

 its  cage.  It  was  provided  with  water,  water-covered  food  pellets,  edible  analgesic  jelly  and 

 bedding.  No  enriching  objects  were  placed  in  the  cage  for  two  days  to  avoid  the  chance  of 

 haemorrhages  due  to  the  mouse  knocking  into  objects  in  the  cage.  The  mouse  was 

 monitored daily by animal technicians and the surgeon until showing full signs of health. 
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 2.4 Experimental setups 

 2.4.1 Overview 

 Mice  were  head-restrained  and  trained  to  run  on  a  treadmill  while  a  projection  of  a  virtual 

 corridor  was  visualised  and  updated  in  accordance  with  their  movement  on  the  treadmill. 

 Mice  were  then  placed  in  a  square  open  arena  to  freely  explore.  In  both  behavioural  tasks, 

 the  electrical  activity  within  the  brain  was  recorded.  To  successfully  record  the  electrical 

 activity  within  the  brain,  all  erroneous  sources  that  are  electrically  ‘louder’  than  this  activity 

 must  be  removed.  This  was  done  both  by  electrically  grounding  the  experimental  hardware 

 used  during  the  behaviours  and  pre-processing  the  raw  voltage  traces  through  the 

 OpenEphys  software.  In  this  section,  the  construction  of  the  hardware  and  the  data 

 collection  procedures  will  be  discussed  for  the  two  spatial  navigation  tasks  central  to  this 

 thesis. 

 2.4.2 Virtual reality 

 A  mouse  is  head-restrained  using  a  3D  printed  headpost  (Attenborough  Labs)  on  a 

 cylindrical  polystyrene  treadmill  (Graham  Sweet  Studios).  A  projector  (InFocus,  IN3118HD) 

 beams  an  image  of  a  virtual  linear  track  onto  the  inside  of  a  torus  shaped  screen  (Talbot 

 Designs  Limited)  with  the  mouse  at  the  centre  of  the  torus.  A  rotary  encoder  (Pewatron, 

 E6-2500-472-IE)  translates  the  rotation  of  the  circular  treadmill  into  inputs  to  the  image 

 rendering  software  (Blender3D).  These  inputs  update  the  image  in  real-time  (30  Hz 

 frame-rate)  to  complete  a  closed  loop  system  between  the  movement  of  the  mouse  and  the 

 image  displayed.  This  creates  an  immersive  virtual  reality  experience  of  traversing  a  virtual 

 linear  track  with  the  locomotion  of  the  mouse.  The  mounted  position  of  the  mouse  and  its 

 point of view (POV) is illustrated in  Figure 13  . 
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 Figure 13. Schematic of mouse head-restrained in the virtual reality rig. 

 Two  different  virtual  reality  rigs  were  used  for  experiments  discussed  in  this  thesis,  both  built 

 for  the  same  purpose  and  not  functionally  different.  They  differed  only  in  their  outer  casing 

 used  to  shield  them  from  electrical  noise  from  the  computers  and  experimenters.  The  rigs 

 were  constructed  atop  an  aluminium  breadboard  (Thor  Labs)  inside  a  custom  designed 

 frame  (CSI  products).  The  concave  screen,  mirrors  and  the  treadmill  were  fixed  to  the 

 breadboard with M6 connectors and screws (Thor Labs) as in  Figure 15  . 
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 Figure  14.  Virtual  reality  setup.  (A)  Graphic  rendering  of  the  virtual  reality  rig.  (B) 

 Photographs of the rig (left) and while projecting the track (right). 

 Electrical  shielding  of  the  two  rigs  was  achieved  by  surrounding  the  frame  with  metal  to 

 create  a  faraday  cage.  For  the  first  rig,  a  single  layer  of  chicken  wire  was  used.  For  the 

 second  rig,  the  faraday  cage  consisted  of  a  custom-built  metal  box  with  stainless  steel 

 panels  (Frame  parts  from  Kanya  UK,  C01-1,  C20-10,  A33-12,  B49-75,  B48-75,  A39-31, 

 ALU3).  Further  electrical  shielding  was  carried  out  and  maintained  throughout  experiments 

 by  assuring  strong  electrical  contacts  between  all  metal  components  in  the  rig.  A 

 combination  of  crocodile  clips  and  M6  screws  were  used  to  conduct  adjacent  metal  parts 

 together.  This  was  repeated  until  voltage  traces  (roughly  on  the  scale  of  10-100  mV)  on  the 

 magnitude of neuron spike events could be discerned from the baseline electrical noise. 
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 Track  rendering.  Track  designs  were  created  in  Blender3D.  Dimensions  and  textures  used 

 for  the  track  are  described  in  2.5.2.2  A  camera  object  was  positioned  at  the  start  of  the 

 virtual  track,  directed  down  the  corridor,  just  as  though  a  mouse  was  staring  down  a  corridor. 

 During  runtime  of  the  Blender3D  program,  the  projected  image  was  geometrically 

 transformed  such  that  the  resulting  image  passing  through  the  mirrors  and  onto  the  screen 

 appeared  as  a  linear  track.  This  image  was  projected  onto  a  flat  mirror  (Knight  Optical 

 Limited,  140  mm  diameter  aluminium  front  coated  mirror),  followed  by  an  angular 

 amplification  mirror  (AAM;  Protolabs)  onto  the  toroidal  screen.  This  is  schematised  in  Figure 

 14  and mirror components shown in  Figure 15  . 

 Figure  15.  Mirror  components  of  the  virtual  reality  rig.  (A)  3D-rendering  of  the  mirror 

 assembly (B) Photograph of the mirror assembly. 
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 Motion  tracking.  To  update  the  projected  image,  input  from  a  rotary  encoder  coupled  to  the 

 treadmill  (  Figure  16  )  is  sent  to  the  Blender3D  program  during  runtime.  This  effectively 

 translates  physical  movement  into  virtual  movement  within  the  virtual  track.  The  rotary 

 encoder  consisted  of  two  optical  sensors  directed  at  the  circumference  of  an  evenly  grated 

 disk.  As  the  treadmill  spins  on  its  axis,  the  optical  sensors  either  detect  a  light  or  dark  portion 

 of  the  grating.  There  were  5000  of  these  pulses  per  rotation  (PPR).  The  number  of  dark 

 portions  passed  per  unit  time  is  proportional  to  the  velocity  of  the  treadmill.  To  update  the 

 location  of  the  camera  object  (and  thus  the  projected  image),  Blender3D  received  the 

 number  of  pulses  passed  at  a  rate  of  60  Hz,  this  was  then  used  to  calculate  the 

 displacement since the last updated location, given by 

 (1)  𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡    ( 𝑐𝑚 )   =  𝑁     𝑝𝑢𝑙𝑠𝑒𝑠 
 𝑃𝑃𝑅 ×  2π ×  𝑡𝑟𝑒𝑎𝑑𝑚𝑖𝑙𝑙     𝑟𝑎𝑑𝑖𝑢𝑠    ( 𝑐𝑚 )   

 and 

 (2)  𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡    ( 𝑣𝑖𝑟𝑡𝑢𝑎𝑙     𝑢𝑛𝑖𝑡𝑠 )   =  𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡    ( 𝑐𝑚 )
 𝑐𝑒𝑛𝑡𝑖𝑚𝑒𝑡𝑟𝑒𝑠     𝑝𝑒𝑟     𝑣𝑖𝑟𝑡𝑢𝑎𝑙     𝑢𝑛𝑖𝑡    ( 𝑐𝑚 )   

 Where  the  radius  of  the  treadmill  was  10  cm,  PPR  was  5000  and  centimetres  per  virtual  unit 

 was set to 10 cm. The location of the camera object was then updated accordingly. 
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 Figure  16.  Treadmill  and  rotary  encoder.  (A)  3D-rendering  of  the  treadmill  attached  to  the 

 rotary  encoder  and  components  of  the  treadmill  assembly.  (B)  Photograph  of  the  treadmill 

 assembly. (C) 3D-rendering of the headmount in relation to the treadmill assembly. 
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 Head  restraining.  To  successfully  immerse  a  mouse  in  virtual  reality,  they  must  take  the 

 place  of  the  central  camera  object  in  the  virtual  environment.  As  the  camera  does  not 

 change  its  viewing  direction  or  angle,  the  mouse  does  not  either.  This  is  achieved  through 

 fixing  the  position  of  the  head  in  the  focal  point  of  the  virtual  environment.  Most  importantly, 

 the  mouse  must  be  comfortable  in  order  to  be  receptive  to  learning  a  goal-directed  task.  To 

 best  accommodate  the  aims  of  electrophysiological  recording  during  a  virtual  reality  task,  a 

 wide  angled  headpost  (Osborne  and  Dudman  2014)  was  adopted  to  support  enough  room 

 for  a  microdrive  to  sit  within  the  hollow  body,  as  shown  in  Figure  17  .  A  headmount  (Ronal 

 Tool  Company,  Inc)  was  assembled  above  the  treadmill  to  allow  the  mouse  to  perch  on  the 

 top of the treadmill, affording the mouse full control of its movement. 

 Figure  17.  Microdrive  headpost  design.  (A)  Illustration  of  mouse  with  headpost  and 

 implanted  microdrive.  (B)  Schematic  of  headpost  mounting  assembly  and  headpost  design. 

 Figure taken from  Osborne and Dudman (2014)  . 
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 Electrophysiology.  The  headstage  adapter  protruding  from  the  microdrive  was  connected  to 

 an  SPI  cable  (Intan  Technologies,  RHD2000  6-ft  (1.8  m)  standard  SPI  interface  cable)  and 

 attached  to  an  acquisition  board  (Open  Ephys,  49).  The  SPI  cable  was  dropped  from  the  rig 

 frame to remain out of view of the mouse. 

 Feeding  delivery.  Mice  were  given  soy  milk  (Alpro,  Soya  Original)  on  successful  trials  during 

 the  task.  This  was  delivered  using  a  feeding  needle  (Kinesis  Ltd)  superglued  to  tubing 

 (NResearch)  attached  to  a  container  of  soy  milk.  This  container  was  suspended  higher  than 

 the  feeding  needle  such  that  without  any  interruption  to  the  tubing,  soy  milk  was  continuously 

 flowing  out  of  the  needle  via  the  capillary  effect.  To  gate  the  flow  of  soy  milk,  a  pinch  value 

 (NResearch,  Full  Opening  Pinch  Valve)  was  attached  to  the  tubing  creating  a  default  state  of 

 no  flow  unless  otherwise  activated.  Activation  of  the  pinch  value  was  controlled  via  a  valve 

 driver  (NResearch,  CoolDriveSolo  Universal  Valve  Driver)  which  was  controlled  by  inputs 

 from Blender3D during the task. 

 Hardware  connectivity.  A  closed  loop  system  was  set  up  to  create  a  virtual  reality  experience 

 of  running  down  a  corridor  and  receiving  soy  milk  rewards.  The  task  was  run  through  the 

 Blender3D  computer  which  communicated  the  visual  display  to  the  mouse  through  the 

 projector  and  mirrors  onto  the  concave  screen.  Motor  information  from  the  mouse  was 

 translated  into  an  analogue  voltage  signal  to  the  DAC  channel  of  an  Arduino  Due 

 microcontroller  computer  (Arduino)  and  read  by  the  Blender3D  computer  to  update  the 

 projected  image  proportional  to  the  displacement  signalled.  When  the  movement  conditions 

 were  met  for  the  mouse  to  be  rewarded,  the  Blender3D  computer  communicated  to  the 

 pinch  valve  to  open  for  100  ms,  thus  allowing  roughly  10  μL  soy  milk  to  flow  toward  the 

 mouse’s  mouth  for  that  time.  This  movement  information  and  the  associating  task  variables 

 were  simultaneously  copied  as  analogue  voltage  signals  to  the  acquisition  board  with  the 

 recorded brain activity from the SPI cable connected to the mouse. 
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 Figure 18. Connectivity map for hardware components of the virtual reality task. 
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 Data  collection.  Electrophysiological  and  movement  data  were  collected  simultaneously  to 

 address  the  main  thesis  aims  of  uncovering  the  brain's  solutions  to  spatial  navigation 

 problems.  A  single  session’s  data  is  collected  and  stored  into  a  single  recording  folder 

 consisting  of  voltage  trace  signals  saved  as  numerical  arrays  as  the  Open  Ephys 

 “.continuous”  file  format.  There  are  18  channels  (16  electrodes  +  2  ground  screws) 

 originating  from  the  headstage  adapter  on  the  microdrive  and  3  additional  channels  to  store 

 task  variables  (1  track  location  and  2  trial  type  indicators).  The  3  task  variable  channels  were 

 received  into  the  acquisition  board  through  an  I/O  Board  (Open  Ephys)  at  the  Blender3D  60 

 Hz  sampling  rate,  then  resampled  by  the  acquisition  board  at  30  KHz.  Track  location  was 

 recorded  as  a  voltage  proportional  to  the  current  track  location  of  the  camera  object  and  was 

 later  scaled  by  the  track  length  in  cm.  Trial  types  were  recorded  on  two  binary  voltage 

 channels  where  a  beaconed  trial  corresponded  to  [0,0],  non-beaconed  trial  to  [1,0]  and 

 probe trial to [1,1]. 

 All  channel  files  were  then  represented  by  a  voltage  trace  sampled  at  30  KHz  over  the 

 course  of  roughly  30  minutes.  These  raw  voltage  files  would  be  later  used  to  reconstruct  the 

 spatial  variables  in  the  task  (such  as  trial  number,  trial  type,  track  location  etc,  instantaneous 

 speed  etc.)  and  the  spike  event  timestamps,  see  2.7  for  more  information.  The  different 

 types  of  raw  voltage  traces  are  illustrated  in  Figure  19  to  provide  an  intuition  of  how  data  is 

 stored and later reconstructed for post processing. 

 Data  storage.  Raw  voltage  files  were  transferred  from  the  Open  Ephys  computer  to  the 

 University  of  Edinburgh  DataStore  system  for  data  processing  purposes  and  long-term 

 storage security. 
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 Figure  19.  Open  Ephys  recorded  variables  for  the  virtual  reality  task.  Continuous  Open 

 Ephys  files  for  different  variables  including  (top)  neural  activity,  (middle)  trial  type  and 

 (bottom) track location voltages. Grey vertical lines indicate the timestamp of a new trial. 
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 2.4.3 Open field 

 A  mouse  was  transferred  to  one  of  two  open  field  arenas,  both  square  arenas  with  side 

 lengths  80  cm  and  100  cm  respectively.  The  two  open  field  arenas  were  located  in  different 

 animal  facility  floors  and  the  choice  between  arena  sizes  was  based  on  the  availability  of  the 

 experiment  rooms  alone.  One  one  of  the  two  arenas  was  only  ever  used  for  a  single  cohort. 

 The  arenas  consisted  of  a  metal  box  built  from  four  removable  metal  walls  (100  cm  wide, 

 50cm  high)  and  a  metal  floor  (100  cm  x  100  cm),  housed  in  a  custom  metal  frame  (Frame 

 parts  from  Kanya  UK,  C01-1,  C20-10,  A33-12,  B49-75,  B48-75,  A39-31,  ALU3;  Figure  20  ). 

 The  interior  walls  and  floor  of  the  box  was  sanded,  primed  and  spray-painted  black.  For  the 

 80  cm  wide  arena,  a  custom-built  box  was  constructed  with  four  perspex  walls  (80  cm  wide, 

 50  cm  high)  and  a  perspex  floor  (80  cm  x  80  cm),  surrounded  externally  with  a  single  layer  of 

 chicken  wire  and  lined  internally  with  a  matt  white  self-adhesive  film.  This  setup  was 

 necessary  to  reduce  electrical  noise  to  an  acceptable  level  for  detecting  neural  spike  activity. 

 A  camera  (Logitech  B525,  1280  x  720  pixels  Webcam,  RS  components  795-0876)  was 

 mounted  on  the  top  of  the  metal  frame  viewing  downwards  toward  the  arena  floor.  A  3D 

 printed  commutator  (Patrick  Spooner  of  the  University  of  Edinburgh,  custom  designed) 

 suspended  from  the  top  of  the  frame  was  used  to  freely  rotate  a  SPI  cable  (Intan 

 Technologies,  RHD2000  6-ft  (1.8  m)  Ultra-Thin  SPI  interface  cable  C3216)  connected  to  the 

 headstage  adapter  protruding  from  the  mouse’s  microdrive.  This  afforded  the  mouse  free 

 movement  throughout  the  arena  with  minimal  resistance  from  the  SPI  cable.  To  reduce  the 

 weight  of  the  cable  felt  by  the  mouse,  the  SPI  cable  was  supported  by  elastic  strings, 

 suspended  from  the  end  of  a  thin  metal  pole  freely  rotating  with  the  commutator.  To 

 illuminate the arena, a strip of LED lights was applied to each edge of the ceiling. 
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 Figure  20.  Open  field  design.  (A)  Schematic  of  the  open  field  arena  assembly.  (B) 

 Photographs of open field exterior (left) and interior (right). 
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 Motion  tracking.  To  record  the  location  of  a  mouse,  a  camera  mounted  to  the  ceiling  of  the 

 open  field  captured  the  surface  of  the  arena.  The  location  of  the  mouse  was  estimated  as 

 the  midpoint  between  two  polystyrene  beads  (one  green,  one  red),  mounted  to  the 

 microdrive  when  in  the  arena.  The  outlines  of  these  beads  were  detected  on  the  camera 

 image  separately  and  midpoints  averaged.  Image  processing  was  carried  out  using  Bonsai 

 tracking  software  and  using  a  custom  bonsai  script  (Lopes  et  al.  2015)  .  The  workflow  of  this 

 Bonsai script is detailed in  Figure 21  . 

 A  sync  pulse  LED  was  also  picked  up  by  the  camera,  which  was  used  to  synchronise  the 

 location  readings  with  the  electrophysiological  signal.  An  Arduino  Due  microcontroller 

 emitted  a  signal  to  (1)  the  acquisition  board  and  (2)  to  an  LED,  prompting  a  short  burst  of 

 light  that  could  be  picked  up  by  the  camera,  and  used  in  later  processing  for  synchronisation 

 of  the  behavioural  and  electrophysiological  data.  The  LEd  was  switched  on  for  100  ms  at 

 random  times  throughout  the  session.  This  served  the  purpose  of  creating  an  irregular 

 pattern  of  LED  pulses  (see  Figure  23  )  that  could  be  used  to  match  the  timing  of  the  tracking 

 and  the  electrophysiology  data  streams  by  finding  the  lag  at  which  the  correlation  between 

 both LED data streams were maximised. 
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 Figure  21.  Bonsai  tracking  workflow.  Two  regions  are  tracked  in  parallel,  the  open  field 

 arena  floor  and  the  LED  sync  pulse.  Mouse  position  is  estimated  by  tracking  green  and  red 

 elements  of  the  arena  (coupled  to  the  green  and  red  beads  mounted  to  the  microdrive)  and 

 saving  the  midpoint  (a.k.a  centroid).  LED  sync  pulses  are  captured  by  recording  the 

 luminosity  of  the  cropped  region  around  the  LED.  This  is  timestamped  and  saved  in  a  .csv 

 format for synchronising with the electrophysiology data. 
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 Electrophysiology.  The  headstage  adapter  protruding  from  the  microdrive  was  connected  to 

 a  light  weight  SPI  cable  (Intan  Technologies,  RHD2000  6-ft  (1.8  m)  Ultra  Thin  SPI  interface 

 cable  C3216)  and  connected  to  an  SPI  cable  adapter  board,  (Intan  Technologies,  C3430). 

 This  adapter  board  connected  to  a  second  SPI  cable  (Intan  Technologies,  RHD2000  6-ft  (1.8 

 m)  standard  SPI  interface  cable)  which  was  attached  to  an  acquisition  board  (Open  Ephys, 

 49).  The  light  weight  SPI  cable  was  dropped  down  from  the  commutator  to  remain  out  of 

 view of the mouse. 

 Hardware  connectivity  .  Electrophysiology  signals  were  sent  via  SPI  cables  to  an  Open 

 Ephys  acquisition  board.  Movement  of  the  mouse  was  captured  by  a  ceiling  mounted 

 camera.  To  synchronise  the  timestamps  of  electrophysiological  and  spatial  data,  an  arduino 

 Due  was  programmed  to  spontaneously  and  briefly  illuminate  an  LED  light  mounted  to  the 

 edge  of  one  of  the  open  field  walls.  This  LED  sync  pulse  was  sent  to  the  acquisition  board 

 and the LED light was picked up by the camera. 
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 Figure 22. Connectivity map for hardware components of the open field task. 
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 Data  collection.  Electrophysiological  data  was  recorded  much  the  same  as  described  in 

 2.4.2  .  Movement  and  sync  pulse  data  was  captured  by  a  mounted  camera  and  saved  via 

 .csv  files  created  through  Bonsai  tracking  software.  A  single  session’s  data  is  collected  and 

 stored  into  a  single  recording  folder  consisting  of  voltage  trace  signals  saved  as  numerical 

 arrays  as  the  Open  Ephys  “.continuous”  file  format.  There  are  18  channels  (16  electrodes  + 

 2  ground  screws)  originating  from  the  headstage  adapter  on  the  microdrive  and  1  additional 

 channel  to  store  sync  pulse  data.  The  sync  pulse  channel  was  received  into  the  acquisition 

 board  through  an  I/O  Board  (Open  Ephys)  at  the  Bonsai  30  Hz  sampling  rate,  then 

 resampled  by  the  acquisition  board  at  30  KHz.  All  channel  files  were  then  represented  by  a 

 voltage  trace  sampled  at  30  KHz  over  the  course  of  roughly  30  minutes.  Sync  pulse  data 

 saved  separately  by  the  Open  Ephys  and  Bonsai  software  were  later  used  to  synchronise 

 the  movement  data  with  the  electrophysiological.  The  rest  of  the  Bonsai  data  would  be  later 

 used  to  reconstruct  the  spatial  variables  in  the  task  (such  as  X  location,  Y  location,  head 

 direction,  instantaneous  speed  etc.)  and  Open  Ephys  data  for  the  spike  event  timestamps, 

 see  2.7  for  more  information.  The  different  types  of  raw  voltage  traces  are  illustrated  in 

 Figure  23  along  with  the  Bonsai  data  (  Table  1  )  to  provide  an  intuition  of  how  data  is  stored 

 and later reconstructed for post processing. 

 Data  storage.  Raw  voltage  files  and  Bonsai  tracking  .csv  files  were  transferred  from  the 

 Open  Ephys  computer  to  the  University  of  Edinburgh  DataStore  system  for  data  processing 

 purposes and long-term storage security. 
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 Timestamp 
 (time) 

 Red-X 
 (pixel) 

 Red-Y 
 (pixel) 

 Green-X 
 (pixel) 

 Green-Y 
 (pixel) 

 Sync pulse 
 (amplitude) 

 1  10  34  11  33  0.0 

 2  12  30  13  29  1.0 

 3  15  30  16  29  0.0 

 4  17  31  17  30  0.0 

 5  12  32  14  33  0.0 

 6  9  31  10  31  1.0 

 7  7  25  8  25  0.0 

 8  8  23  7  22  1.0 

 …  …  …  …  …  … 

 N  13  40  14  39  0.0 

 Table  1.  Example  Bonsai  tracking  data  used  to  reconstruct  the  position  of  the  mouse 
 in  the  open  field  and  synchronise  this  spatial  data  with  the  electrophysiological  data. 
 A  midpoint  is  calculated  for  the  red  and  green  beads  atop  the  mouse’s  microdrive  with  X  and 

 Y  locations  in  pixels  logged.  For  the  sync  pulse,  the  camera  image  is  cropped  around  the 

 LED  and  the  sum  of  the  pixel  values  within  the  cropped  region  is  stored  as  a  measure  of 

 LED  amplitude.  This  summed  signal  is  passed  through  a  thresholding  function  that 

 computes a binary value signifying if the LED sync pulse is illuminated (1) or not (0). 
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 Figure  23.  Open  Ephys  recorded  variables  for  the  open  field  task.  Continuous  Open 

 Ephys  files  for  different  variables  including  (top)  neural  activity,  and  (bottom)  LED  sync 

 pulses. 
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 2.5 In vivo behavioural tasks 

 2.5.1 Overview 

 Mice  performed  two  different  spatial  navigation  tasks  in  a  single  day,  (1)  a  goal-direction 

 location  estimation  task  in  virtual  reality  and  (2)  a  free  exploration  task  in  an  open  field 

 arena. In this section, the behavioural aspects of the two tasks will be discussed. 

 A  mouse  was  head-restrained  on  a  treadmill  with  its  vision  and  forward  movement  coupled 

 in  a  closed  loop  to  create  a  virtual  reality  environment.  As  it  ran,  it  moved  through  a  virtual 

 corridor  and  once  it  had  fully  traversed  the  virtual  corridor,  it  was  teleported  back  to  the  start 

 to  repeat  the  process.  Here,  the  term  ‘virtual  corridor’  and  ‘virtual  track’  are  used 

 synonymously.  The  objective  of  the  task  was  to  stop  at  a  reward  zone  to  receive  a  reward. 

 This  reward  zone  was  either  cued  or  non-cued  and  most  importantly  was  marked  a  set 

 distance  away  from  a  cued  starting  point.  This  was  thus  coined  a  virtual  reality  linear  location 

 estimation  task  (or  shortened  to  linear  location  task).  This  task  was  designed  to  test  a 

 mouse’s  ability  to  navigate  towards  a  goal  location  using  either  the  cue  as  a  visual  beacon  or 

 using  its  self-motion  information  and  memory  when  this  cue  was  absent.  Self-motion 

 information  was  available  to  the  mouse  in  two  ways,  (1)  self-generated  motor  information 

 and  (2)  optic  flow  in  the  form  of  a  repeating  texture  on  the  walls  and  floor  of  the  arena 

 (repeating  every  20  cm).  These  textures  could  not  alone  be  used  to  distinguish  track 

 location.  To  accurately  execute  the  task,  the  mouse  must  principally  use  a  path 

 integration-based  navigation  strategy  as  no  salient  cues  are  available  to  the  mouse  when  the 

 reward  zone  is  non-cued.  With  the  mouse  performing  a  path  integration  behaviour, 

 simultaneous  electrophysiological  recording  allowed  the  interrogation  of  the  neural 

 mechanism  of  path  integration  in  the  brain.  The  virtual  reality  task  described  in  this  section  is 

 the  same  that  is  described  in  Sarah  Tennant’s  PhD  thesis  and  published  work  since  (Tennant 

 2017; Tennant et al. 2018)  . 

 The  mouse  was  then  transferred  to  an  open  field  arena  after  a  30  minute  break  in  an 

 enriching  playground  arena.  The  mouse  ran  around  the  square  arena  until  the  mouse  had 

 sufficiently  sampled  all  locations  within  the  arena.  This  afforded  the  detection  of 

 spatial-modulated  cell  types,  in  particular  grid  cells.  As  grid  cells  are  defined  by  their 

 observed  firing  properties  in  2D  environments,  it  was  not  possible  to  identify  grid  cells  in  VR 

 sessions  alone.  With  the  positive  identification  of  grid  cells  in  the  open  field  session,  the 

 utility of grid cells in the VR sessions could then be studied. 
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 2.5.2 Virtual reality 

 2.5.2.1 Task design 
 Mice  performed  a  linear  location  task  for  30  minutes  5  days  a  week  followed  by  2  break 

 days.  They  were  transferred  from  their  holding  room  to  the  experimental  room  and  given  30 

 minutes  of  free-play  in  an  enriching  playground  environment  to  minimise  their  stress.  They 

 were  then  head  restrained  and  perched  on  a  treadmill  in  the  virtual  reality  system  previously 

 described.  Mice  ran  through  the  virtual  track  and  were  teleported  back  to  the  beginning  of 

 the  track  to  initiate  another  track  run.  Each  track  run  was  defined  as  a  single  trial.  Two 

 different  trial  types  were  used  at  the  start  of  training,  a  cued  trial,  termed  “beaconed”  and  a 

 non-cued  trial,  termed  “non-beaconed”.  These  terms  reflected  whether  the  track  on  a  given 

 trial  had  the  reward  zone  marked  by  a  cue  or  not.  When  a  mouse’s  speed  dropped  below  a 

 stopping  threshold,  the  mouse  was  deemed  to  have  stopped.  If  the  mouse’s  location  was 

 within  the  limits  of  the  reward  zone,  a  reward  was  dispensed  from  a  feeding  tube  as  detailed 

 in  2.5.2.3  . 

 To  approximate  the  speed  of  the  mouse,  the  elapsed  distance  was  calculated  over  the 

 previous  100  ms  in  real  time  in  the  Blender3D  software.  As  the  frame  rate  of  Blender3D  was 

 60  Hz,  the  elapsed  distance  was  calculated  by  the  location  of  the  mouse  on  the  track  minus 

 the  location  of  the  mouse  on  the  track  6  frames  prior.  In  cases  where  the  mouse  was 

 teleported  back  to  the  start,  this  was  accounted  for.  When  the  mouse’s  speed  dropped  below 

 a  threshold  of  4.7  cm/s,  the  mouse  was  deemed  to  have  stopped.  This  seemingly  arbitrary 

 value  was  attained  by  trial  and  error  over  many  experiments  carried  out  by  a  handful  of 

 experimenters.  It  was  agreed  upon  collectively  as  a  good  compromise  between  an  accurate 

 representation  of  a  stopping  action  by  the  mouse  and  an  achievable  behaviour  to  learn  in  the 

 timescale  of  days.  A  more  stricter  stopping  threshold  often  resulted  in  mice  not  learning  to 

 stop within the reward zone. 

 Following  two  successive  days  of  demonstrating  a  clear  stopping  preference  for  the  reward 

 zone  as  detailed  in  2.5.2.8  ,  a  third  trial  type  was  introduced,  whereby  the  reward  zone  was 

 non  cued  and  no  reward  was  dispensed  upon  successful  stopping  at  the  reward  zone,  this 

 was termed a “probe” trial. A timeline of the experiment is detailed in  Figure 24  . 
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 Figure  24.  Experimental  timeline.  Taken  and  modified  from  Sarah  Tennant’s  PhD  thesis 

 with permission. 
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 2.5.2.2 Linear track 
 The  track  was  designed  and  rendered  in  Blender3D.  It  consisted  of  a  floor  and  two  flanking 

 walls  similar  to  a  corridor.  The  track  was  200  cm  and  consisted  of  two  30  cm  dark  regions 

 termed  the  black  boxes  at  either  end  of  the  track  and  a  textured  regioned  from  30  -  170  cm 

 on  the  wall  and  floor.  The  textured  wall  pattern  was  made  up  of  a  repeated  pattern  of  white 

 circles  on  a  black  background  with  a  rim  of  white  at  the  top  and  bottom  of  the  wall.  The 

 texture  floor  pattern  was  made  up  of  a  repeated  pattern  of  wooden  floorboards.  These 

 patterns  repeated  every  20  cm.  This  region  was  designed  such  that  a  mouse  had  no  unique 

 cue  to  estimate  its  location.  To  prevent  the  mouse  using  the  end  of  the  track  as  a  cue,  the 

 visual  range  of  the  mouse  was  restricted  to  only  50  cm  in  front  of  the  mouse  at  all  times.  To 

 train  the  mice  to  stop  at  a  particular  location,  a  reward  was  available  when  the  mouse 

 stopped  in  a  reward  zone  located  between  90  -  110  cm  and  a  visual  cue  was  added  to  an 

 identical  track  to  mark  the  location  of  this  reward  zone.  This  cue  consisted  of  a  black-white 

 grating  on  the  floor  and  a  black-green  grating  on  the  wall.  Figure  25  shows  these  two  tracks 

 as well as a point of view from the mouse’s perspective. 

 A  trial  consisted  of  a  mouse  running  the  full  length  of  the  track.  When  the  mouse  reached  the 

 end  of  the  track,  its  position  in  the  virtual  track  was  reset  to  the  start  to  initiate  another  trial. 

 These  two  tracks  were  used  across  three  different  trial  types,  termed  beaconed, 

 non-beaconed  and  probe  trial  types.  Beaconed  trials  took  place  on  the  beaconing  track 

 whereas  non-beaconed  and  probe  trials  took  place  on  the  non-beaconed  track.  Probe  trials 

 were  identical  to  non-beaconed  trials  except  no  reward  was  released  for  stopping  in  the 

 reward zone. 
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 Figure  25.  Virtual  reality  track  design.  (A)  Track  schematics  for  beaconing  and  path 

 integration  navigation  behaviours,  completed  on  the  beaconed  and  non-beaconed  tracks 

 respectively. (B) Mouse point of view (POV) for beaconing and non-beaconed trials. 
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 2.5.2.3 Reward 
 When  the  mouse  speed  was  below  the  stopping  threshold  of  4.7  cm/s  and  the  mouse’s 

 location  was  registered  between  the  reward  zone  limits,  a  reward  was  dispensed  in  the  form 

 of  soy  milk  (Alpro,  Soya  Original),  as  described  in  2.5.2.1  .  This  reward  was  combined  with 

 the  playing  of  an  auditory  tone  for  500  ms  to  reinforce  the  association  between  the  rewarded 

 location  and  the  reward.  During  probe  trials,  no  reward  was  dispensed  nor  was  the  reward 

 tone played. 

 2.5.2.4 Animal housing 
 Prior  to  the  microdrive  implantation  surgery,  mice  were  group  housed  in  a  holding  room, 

 operating  on  a  reverse  light  cycle.  Here,  lights  were  controlled  on  an  automatic  timer  such 

 that  they  were  turned  on  at  7  pm  and  off  at  7  am  daily.  No  external  sunlight  was  visible  from 

 either  the  holding  room  or  experimental  room.  This  maintained  a  reversed  daily  light  cycle  as 

 mice  are  much  more  active  during  dark  hours.  This  facilitated  the  experimenter  to  maintain 

 regular  sleeping  hours.  Daily  experimental  sessions  typically  took  place  between  the  hours 

 of 10 am to 5 pm and similar timings were used for a given mouse each day. 

 Following  microdrive  implantation,  mice  were  transferred  to  fresh  cages  and  individually 

 housed  from  this  point  onwards.  Each  mouse  was  housed  in  a  cage  measuring  30  cm  long, 

 15  cm  wide  and  12  cm  tall.  Cages  included  wooden  shavings  scattered  about  the  floor, 

 cotton wool bedding, a cardboard igloo, a running wheel and two hammocks for enrichment. 

 2.5.2.5 Animal handling 
 To  get  the  mouse  accustomed  to  being  handled,  it  was  vital  to  spend  time  with  each  mouse. 

 Experimenters  wore  gloves,  fresh  scrubs,  hair  nets,  and  face  masks  (due  to  Covid-19 

 regulations  at  the  time  of  experimentation).  Mice  were  handled  for  20  minutes  twice  daily  for 

 1  week  following  2  days  of  post-operative  recovery.  On  days  1  and  2  of  handling,  the 

 experimenter  laid  their  palm  upwards  in  the  mouse’s  cage  to  allow  the  mouse  to  climb  and 

 sniff  around  the  hand.  When  the  mouse  became  comfortable  enough  to  sit  on  the  hand,  the 

 mouse  was  gently  moved  between  hands  and  back  to  the  cage.  This  was  repeated  to 

 reinforce  the  association  between  the  experimenter’s  hands  and  the  safety  of  returning  to 

 their home cage. 

 When  scheduling  allowed  (e.g.  when  the  experimenter  was  waiting  for  the  mice  to  grow  to  a 

 particular  age  before  starting  the  experiment),  mice  were  given  extra  handling  sessions  in 

 the  week  before  surgery.  Group  housed  mice  were  transferred  together  to  the  playground 

 arena  to  freely  explore.  Again,  the  experimenter’s  hands  were  introduced  to  the  arena  for 
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 mice  to  climb  and  sniff  when  comfortable.  It  was  observed  that  mice  that  were  more 

 comfortable  being  picked  up  were  less  visibly  stressed  on  the  first  few  days  being 

 head-restrained  on  the  virtual  reality  treadmill.  It  was  thus  encouraged  to  spend  an  hour  a 

 day  playing  with  the  mice  in  the  playground  and  importantly  only  engaging  with  a  mouse 

 once it was actively moving towards and climbing on the experimenter's hands and arms. 

 2.5.2.6 Animal habituation 
 During  animal  handling,  soy  milk  was  offered  out  of  the  experimenter's  glove  to  strengthen 

 the  association  between  the  experimenter  and  food  rewards.  Head-restraining  the  mouse  to 

 the  headmount  above  the  treadmill  is  unfortunately  a  stressful  scenario  the  first  couple  of 

 times.  To  minimise  this  stress  for  the  first  training  day,  mice  were  head-restrained  for  10  and 

 20  minutes  for  2  days  respectively.  The  virtual  reality  system  was  switched  on  and  soy  milk 

 was  available  as  reward  such  that  the  mouse  could  get  accustomed  to  the  environment  it 

 would be exposed to in the coming days and weeks. 

 2.5.2.7 Food deprivation protocol 
 To  motivate  the  mouse  to  learn  the  task  swiftly,  the  food  reward  was  made  substantially 

 more  valuable  to  the  mouse  by  depriving  the  mouse  of  food  prior  to  the  task.  Food 

 deprivation protocols were signed off by a named surgeon and adhered to strictly. 

 Weights  were  recorded  daily  at  the  same  time  each  day  starting  immediately  after 

 postoperative  recovery.  Here,  the  weight  of  the  mouse  provided  a  key  metric  for  monitoring 

 the  health  of  the  mouse.  To  obtain  a  baseline  body  weight,  an  average  weight  was 

 calculated  from  the  five  days  preceding  the  start  of  food  deprivation.  The  weight  of  the 

 mouse  did  not  include  the  microdrive  or  headpost.  The  weight  of  the  microdrive  and 

 headpost  were  subtracted  from  all  measurements  to  obtain  a  weight  of  the  mice  alone. 

 Immediately  after  the  second  habituation  session,  the  mouse  was  provided  with  a  fresh  cage 

 and  no  food  was  given  to  the  mouse  for  24  hours.  The  food  given  to  the  mouse  on  the 

 subsequent days was based on its baseline body weight as indicated by  Table 2  . 
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 Baseline body 
 weight (g) 

 Initial daily food 
 allowance (g) 

 < 17  3.1 

 17 - 19  3.3 

 19 - 21  3.5 

 21 - 23  3.7 

 23 - 25  3.9 

 25 - 26  4.0 

 26 - 27  4.1 

 > 27  4.2 

 Table  2.  The  amount  of  daily  food  given  to  a  mouse  following  24  hours  of  food 
 deprivation. 
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 The  restricted  allowance  of  daily  food  was  given  in  order  to  maintain  a  weight  of  85  %  of  the 

 baseline  bodyweight.  This  weight  is  a  tolerable  level  for  the  mouse's  wellbeing,  but 

 encourages  the  mouse  to  eat  when  food  is  immediately  available  to  it.  As  the  experiment 

 takes  place  for  up  to  10  weeks,  maintaining  85  %  of  the  original  baseline  body  weight  would 

 not  account  for  the  expected  growth  of  the  mouse  over  this  time.  To  account  for  this,  the 

 expected  daily  growth  of  a  large  population  of  mice  was  obtained  from  The  Jackson 

 Laboratory.  This  data  was  available  for  male  and  female  mice  across  a  range  of  ages  as 

 shown  in  Figure  26  .  This  expected  daily  growth  was  then  adjusted  based  on  the  baseline 

 body  weight  of  a  given  mouse.  Firstly,  the  baseline  body  weight  of  the  experimental  mouse 

 was  compared  to  the  mean  population  body  weight,  matched  by  age  and  gender,  to  make  a 

 body weight factor given by: 

 (3)  𝐵𝑜𝑑𝑦     𝑤𝑒𝑖𝑔ℎ𝑡     𝑓𝑎𝑐𝑡𝑜𝑟    =    
 𝑀𝑜𝑢𝑠𝑒     𝑏𝑜𝑑𝑦     𝑤𝑒𝑖𝑔ℎ𝑡 

 𝐴𝑔𝑒    =    𝑖 ,    𝐺𝑒𝑛𝑑𝑒𝑟    =    𝑗 
 𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 

 𝑀𝑜𝑢𝑠𝑒     𝑏𝑜𝑑𝑦     𝑤𝑒𝑖𝑔ℎ𝑡 
 𝐴𝑔𝑒    =    𝑖 ,    𝐺𝑒𝑛𝑑𝑒𝑟    =    𝑗 
 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛     𝑀𝑒𝑎𝑛 

 This  factor  was  multiplied  by  the  daily  expected  growth  of  the  population  to  obtain  a 

 corrected  daily  growth  for  the  experimental  mouse.  This  corrected  daily  growth  was  added  to 

 the  baseline  body  weight  every  day  to  obtain  the  growth-corrected  baseline  body  weight. 

 The  daily  food  allowance  was  thus  adjusted  to  maintain  the  mouse’s  body  weight  at  85  % 

 the growth-corrected baseline. 

 The  daily  food  allowance  was  altered  throughout  the  experiment  to  maintain  a  high  level  of 

 task  engagement  while  also  maintaining  healthy  body  weights.  To  monitor  the  health  of  the 

 mouse,  a  severity  score  was  used  to  access  and  record  the  mouse’s  level  of  deprivation.  A 

 score  of  0  -  3  was  assigned  based  on  criteria  listed  in  Table  3  .  A  severity  score  of  1  was 

 aimed  for.  At  the  end  of  the  fifth  training  day  per  week,  mice  were  provided  with  a  fresh 

 home  cage  and  instead  given  130  %  of  their  daily  food  allowance  to  compensate  for  the  food 

 they  did  not  receive  in  task  rewards.  On  break  days  one  and  two,  mice  were  given  115  % 

 and 100 % of their daily food allowance respectively. 
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 Figure  26.  Jackson  Laboratory  weight  index  for  C57Bl/6J  mice.  Figure  taken  from  the 

 C57BL/6J strain datasheet  provided by the Jackson  Laboratory. 
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 Severity 
 score 

 Behavioural criteria  Daily food changes 

 0  -  Weight above 95 % baseline 
 -  Mouse does not eat immediately when 

 offered food 

 - 0.2 g 

 1  -  Weight between 85-90 % baseline 
 -  Very active behaviour 

 -  Running on playground wheel 
 -  Nibbling fingers of experimenter 

 No change 

 2  -  Weight between 80-85 % baseline 
 -  Hyperactive behaviour 

 -  Running frantically in playground 
 -  Biting down on the fingers of 

 experimenter 

 + 0.2 g 

 3  -  Weight less than 80 % baseline 
 -  Lethargic behaviour 

 -  Slow movement 
 -  Hunched posture 

 2 x daily food 
 (Constant monitoring, 

 wetted food if 
 necessary) 

 Table 3. Severity scores used to assess the deprivation of a mouse. 
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 2.5.2.8 Behavioural training 
 A  mouse  was  trained  in  the  linear  estimation  virtual  reality  task  for  30  minutes  per  day,  five 

 days  a  week,  with  two  days  break.  Comfort  and  performance  was  monitored  daily.  The 

 behavioural  training  began  with  the  mouse  running  beaconed  and  non-beaconed  trials  in  a 

 ratio  of  4:1  (4  beaconed  followed  by  1  non-beaconed).  Training  days  were  broadly  split  into 

 three distinct phases. These included (1) learning, (2) graduation, and (3) manipulation. 

 Learning.  Learning  encompassed  the  initial  phase  of  training  and  ended  when  the  mouse 

 demonstrated  a  clear  bias  for  stopping  at  the  reward  zone  on  both  trial  types.  This  bias  was 

 identified when the stop distribution peaked in the reward zone versus the rest of the track. 

 Graduation.  When  the  mouse  demonstrated  this  bias  and  was  running  a  minimum  of  75 

 trials  for  two  days  in  a  row,  the  mouse  “graduated”  to  the  second  phase  of  training.  Here,  a 

 third  trial  type  was  introduced.  This  trial  type  named  probe  was  a  non-beaconed  trial 

 however  no  reward  was  dispensed  when  the  mouse  successfully  stopped  in  the  reward 

 zone.  This  was  introduced  to  control  for  the  effect  of  a  reward  signal  in  later  analysis.  Mice 

 now ran trials with a ratio of 8:1:1. The order of these trials is summarised in  Table 4  . 

 Manipulation.  The  final  phase  of  training  (Manipulation)  introduced  a  number  of 

 manipulations  to  the  standard  experimental  protocol.  These  included  training  days  on  longer 

 tracks or using a different trial type order entirely. 

 Experimental  endpoints.  The  behavioural  portion  of  the  experiment  ended  when  any  one  of  a 

 number of conditions were met. These included: 

 -  Poor performance - Mouse performing < 20 trials for two days after training day 10. 

 -  Health  reasons  -  Mouse  visibly  uncomfortable  on  the  treadmill  past  training  day  10, 

 not eating food, haemorrhaging from microdrive. 

 -  Poor electrophysiology - No curated clusters identified for 5 days. 

 -  Experiment time cap - Mouse had completed the imposed cap of 50 training days. 

 Once  a  mouse  had  finished  the  experiment,  it  was  fed  ad-libitum  until  it  was  euthanized  via 

 lethal injection and tissue prepared for imaging by perfusion fixation (see  2.6.2  ). 
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 Learning  Graduation  Manipulation 

 Trial 1  B  B  B 

 Trial 2  B  B  B 

 Trial 3  B  B  B 

 Trial 4  B  B  B 

 Trial 5  NB  NB  NB 

 Trial 6  B  B  B 

 Trial 7  B  B  B 

 Trial 8  B  B  B 

 Trial 9  B  B  B 

 Trial 10  NB  P  P 

 …  Repeat from Trial 1 

 Table  4.  Trial  type  orders  for  learning,  graduation  and  manipulation  phases.  Trial 

 orders repeated every 10 trials. B = beaconed, N = non-beaconed, P = probe. 
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 2.5.3 Open field 

 Mice  performed  a  free  exploration  task  for  30  minutes,  5  days  a  week  followed  by  2  break 

 days.  These  sessions  occurred  after  a  30  minute  session  performing  the  virtual  reality  task 

 followed by a 30 minute break in a playground environment. 

 2.5.3.1 Task design 
 The  open  field  task  was  considerably  easier  for  the  mouse,  as  no  training  was  required  per 

 se.  Mice  were  placed  in  the  open  field  arena  with  a  cable  attached  to  their  microdrive  for 

 recording  the  electrophysiological  signal  while  the  mouse  was  exploring  the  environment. 

 Over  the  course  of  30  minutes,  the  majority  of  mice  explored  the  entire  arena  and  sampled 

 the  same  location  in  the  arena  multiple  times.  This  was  encouraged  by  minimising  the  light 

 provided  to  the  arena  and  minimising  the  noise  created  by  the  researcher.  This  created  a 

 safe  environment  for  the  mouse  to  explore  more  exposed  regions  of  the  arena.  The  arena 

 was  designed  to  be  very  plain  and  limited  in  environmental  enrichment.  No  food  was  used  to 

 encourage  exploration.  The  wall  was  single  coloured,  either  white  or  black  and  had  a  single 

 yellow  cue  card  present  on  the  middle  of  one  of  the  walls.  This  cue  card  was  used  as  a 

 disambiguating  cue  for  the  mouse  in  the  case  the  mouse  could  not  determine  its  orientation 

 within  the  arena.  Of  the  two  open  field  setups  used  (100  x  100  cm  and  80  x  80  cm),  the 

 majority  of  the  mice  performed  the  open  field  task  in  the  bigger  arena  (N  =  13  vs  N  =  2, 

 respectively). 

 Figure 27. Open field arena schematic 

 The  purpose  of  the  free  exploration  task  was  to  reproduce  the  experimental  conditions  for 

 detecting  classically  defined  spatial  modulated  cell  types  in  the  MEC  including  head  direction 

 cells,  speed  cells,  border  cells  and  grid  cells  (J.  Taube,  Muller,  and  Ranck  1990;  Kropff  et  al. 

 2015;  Solstad  et  al.  2008;  Hafting  et  al.  2005)  .  Detection  of  these  cells  was  necessarily  done 

 in  a  2D  arena  as  it  was  not  possible  to  compute  scoring  metrics  to  define  grid,  border  and 

 head direction cells from the virtual reality task. 
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 2.6 Tissue Imaging 

 2.6.1 Overview 

 To  be  able  to  address  questions  of  the  function  of  spatial  cells  in  MEC,  one  must  verify  that 

 the  neural  spikes  recorded  do  indeed  originate  from  the  MEC.  In  this  thesis,  three  separate 

 methods  are  used  to  estimate  a  recording  location.  These  include  (1)  imaging  the  tetrodes  or 

 tetrode  tracks  within  the  brain,  (2)  looking  for  theta  wave  oscillations  of  the  local  field 

 potential  (LFP)  and  (3)  looking  for  theta-modulated  firing  of  individual  neurons,  also 

 indicative  of  retrohippocampal.  In  this  section,  the  process  for  imaging  the  tetrodes  and 

 tetrode  tracks  within  the  brain  will  be  described.  To  determine  tetrode  locations  either  Cresyl 

 violet staining or microcomputed tomography (microCT) was used. 

 For  microCT,  Brains  were  processed  using  a  modified  protocol  designed  for  x-ray  micro- 

 computed  tomography  (micro-CT)  imaging  of  whole  rat  brains  (Masis  et  al.  2018)  .  This 

 process  aims  to  image  a  whole  brain  with  tetrodes  intact  and  visible  for  tetrode  localisation. 

 Osmium  tetroxide  is  used  as  a  contrast  agent  to  discern  regions  with  high  or  low  densities  of 

 neuron  cell  bodies  which  can  be  used  to  detect  notable  anatomical  structures  such  as  the 

 hippocampus.  The  process  is  illustrated  in  Figure  28  .  For  Cresyl  violet  staining,  brains  were 

 processed,  sliced  and  then  imaged  satitally.  Inspecting  sagittal  cross-sections  allowed  the 

 negative  trace  of  the  tetrodes  to  be  seen.  Tetrodes  or  tetrode  tracks  were  localised  relative  to 

 landmarks  in  version  2  of  the  Allen  Reference  Atlas  for  the  mouse  brain 

 (  https://mouse.brain-map.org/static/atlas  ). 

 2.6.2 Perfusion fixation 

 Mice  were  anaesthetised  in  a  bell  jar  with  several  drops  of  isoflurane  (Abbott  Laboratories  IL) 

 pipetted  onto  a  paper  towel  on  the  floor  of  the  jar.  Once  pedal  and  eye  reflex  were  no  longer 

 present,  the  mouse  was  injected  with  0.1  mL  pentobarbital.  intraperitoneally.  The  mouse 

 was  pinned  down  to  a  corkboard  and  the  heart  was  swiftly  exposed  by  removing  skin  and 

 the  ribcage  with  fine  scissors.  Phosphate  buffered  saline  (PBS;  Fisher  Scientific, 

 7001104410,  10  times  diluted  with  distilled  water)  was  intracardially  perfused  at  10  mL  / 

 minute  and  the  liver  was  cut  to  allow  blood  to  flow  out  of  the  body.  Once  liquid  from  the  liver 

 turned  clear  in  colour,  the  perfusion  solution  was  switched  to  2  %  (for  micro-CT  processed 

 brains)  or  4  %  paraformaldehyde  (for  cresyl  violet  processed  brains;  PFA;  Sigma  Aldrich, 

 30525-89-4),  2.5  %  (for  micro-CT  processed  brains  only;  GA;  Emsdiasum,  16220)  in  1  M 

 phosphate  buffer  (PB;  Sigma  Aldrich,  P7994)  for  5-10  minutes.  The  mouse  was  decapitated 
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 and  the  head  was  post  fixed  in  2  %  PFA,  2.5  %  GA  in  1M  PB  for  48-72  hours  at  4°C  while 

 shaking at 50 rpm on an orbital shaker. 

 2.6.3 Micro-CT 

 2.6.3.1 Tissue processing 
 After  shaking  for  48-72  hours,  heads  were  washed  in  distilled  water  (ddH  2  0)  three  times  and 

 left  on  a  rocker  at  room  temperature  (RT)  for  1  minute  between  washes.  A  final  wash  was 

 done  with  a  15  minute  wait  on  the  rocker.  Solutions  were  made  up  to  cover  the  brain  with  10 

 mL additional volume above the brain (roughly 20 mL). 

 Microdrive  removal.  The  outer  cannula  of  the  drive  was  cut  at  the  base  of  the  headpost, 

 followed  by  the  drive  mechanism.  This  was  done  to  reduce  the  amount  of  excess  metal 

 imaged  by  the  scanner,  which  causes  excessive  light  scattering  and  image  noise.  Brains 

 were  then  excavated  from  the  heads.  Special  care  was  taken  to  keep  the  microdrive  and 

 headpost  attached  to  the  top  of  the  skull  such  that  the  tetrode  did  not  move  while  still  in  the 

 brain. 

 Osmication.  Brains  were  placed  in  20  mL  2  %  Osmium  tetroxide  (10  mL  4  %  OsO  4  diluted  in 

 10  mL  ddH  2  0,  Emsdiasum,  19190)  in  50  mL  conical  tubes.  Tubes  were  sealed  with  parafilm 

 and  covered  in  aluminium  foil.  These  were  stored  vertically  in  a  large  beaker  on  a  rocker  at 

 50  rpm  under  a  fume  hood  at  RT  for  2  weeks.  (SPECIAL  NOTE:  For  any  person  reading  this 

 thesis  with  view  of  implementing  this  protocol,  please  note  osmium  tetroxide  is  an  extremely 

 deadly  chemical,  causing  blindness  with  contact  with  eyes  and  is  known  to  cause  long  term 

 liver  and  kidney  problems.  Take  extreme  care  and  read  safety  protocols  exhaustively  before 

 use). 

 Embedding.  Brains  were  washed  in  ddH  2  0  three  times  and  left  on  a  rocker  at  RT  for  1  minute 

 between  washes,  followed  by  a  15,  60,  and  30  minute  wash.  Brains  were  dehydrated  with 

 increasing  concentrations  of  ethanol,  (20  %,  50  %,  70  %,  90  %  and  100  %)  on  the  rocker  for 

 30  minutes  each.  Brains  were  then  washed  with  100  %  acetone  solutions  on  the  rocker  three 

 times  at  30  minutes  between  washes.  To  embed  the  brains  in  resin,  increasing 

 concentrations  of  a  water-soluble  epoxy  resin,  Durcupan  was  used  (Sigma  Aldrich, 

 component  A-44611,  component  B-44612,  component  C-44613,  component  D-44614). 

 Solutions  were  slowly  mixed  to  avoid  bubbles.  Brains  were  further  washed  with  increasing 

 concentrations  of  Durcupan  component  A  (33  %,  50  %,  67  %)  diluted  in  acetone  and  left 

 shaking  at  RT  for  2,  2.5  and  2  hours  respectively.  This  was  followed  by  a  12  hour  wash  in  10 
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 mL  component  A,  10  mL  component  B  and  100  μL  component  C  on  the  shaker  at  RT.  Brains 

 were  transferred  to  embedding  moulds  (Ted  Pella,  27114)  and  a  final  wash  was  applied  in  a 

 solution  of  10  mL  component  A,  10  mL  component  B,  100  μL  component  C  and  300  μL 

 component  D  for  4  hours  shaking  at  RT.  All  times  during  embedding  were  strictly  adhered  to 

 because  it  was  observed  that  acetone  could,  given  enough  time  dissolve  the  dental 

 cemental.  This  needed  to  be  avoided  as  it  is  critical  to  keeping  the  remaining  cannula  in 

 place  (and  thus  the  tetrodes).  Brains  were  transferred  to  an  oven  and  left  to  cure  in  resin  at 

 60°C for 48 hours. 

 2.6.3.2 Imaging 
 Scanning.  Brains  were  scanned  in  a  micro-CT  scanner  (Skyscan  1172,  Bruker),  with  a  ten 

 megapixel  detector.  A  Hamamatsu  (100/250)  x-ray  source  metal  was  used,  scanned  at  100 

 kV  and  100  μA  with  a  1.45  second  exposure  time,  and  took  900  projections  averaging  4 

 frames  per  projection.  A  Cu+Al  filter  was  used  to  reduce  the  edge  artefacts  created  by  the 

 edges of the brain. 

 Reconstruction.  Samples  were  reconstructed  into  a  Z-stack  of  images  with  NRecon  (v 

 1.7.0.4)  and  saved  in  TIFF  format.  Stack  images  were  rotated  in  X,  Y  and  Z  directions  in  Fiji 

 to  align  sagittal  slices  to  the  Allen  Brain  Atlas.  Tetrodes  could  be  localised  to  a  brain  region 

 by visually cross referencing sagittal CT slices with the atlas sagittal segmentation guide. 
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 Figure  28.  Step  for  processing  and  analysing  a  brain  using  Micro-CT  imaging.  Figure 

 taken from  Masis et al. 2018  . 
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 2.6.4 Cresyl violet staining 

 Following  perfusion  fixation,  brains  were  removed  and  placed  in  4  %  PFA  in  0.1  M  PB  for  12 

 hours  followed  by  30  %  sucrose  in  PBS  for  48  hours.  A  freezing  microtome  was  used  to  cut 

 50  μm  sagittal  slices,  which  were  mounted  on  polarised  slides.  Sections  were  left  to  dry  out 

 for  24  hours  before  being  based  in  xylene  before  rehydration  in  varying  concentrations  of 

 ethanol  (100  %,  90  %  then  70  %  for  1-2  minutes  each).  Sections  were  placed  in  Cresyl  violet 

 for  2  mins  before  additional  washing  and  dehydration  (70  %  then  90  %  for  1.5  minutes  each 

 followed  by  two  30  second  washes  in  100  %).  Sections  were  then  placed  in  xylene  and 

 mounted  with  Dibutylphthalate  Polystyrene  Xylene  (DPX).  Imaging  of  sections  was 

 performed with a slide scanner (Zeiss Axioscan Z1). 
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 2.7 Data Processing and Analysis 

 2.7.1 Overview 

 Data  was  collected  and  analysed  five  days  a  week  throughout  the  navigation  experiments.  In 

 order  to  facilitate  the  training  of  the  mice  and  the  optimal  collection  of  a  variety  of 

 spatial-modulated  cells,  the  previous  day’s  session  required  a  basic  analysis.  This  basic 

 analysis  provided  important  feedback  to  the  experimenter  including  a  range  of  plots  and 

 graphs  conveying  the  spatial  behaviour  of  the  mice  and  the  cells  recorded.  To  produce  this 

 analysis  in  a  timely  manner,  a  user-friendly  Python  repository  was  developed  and  is  publicly 

 available  on  GitHub  (  https://github.com/MattNolanLab/in_vivo_ephys_openephys  ).  For  detail 

 on the data management of the pipeline see.  (Gerlei  2019)  . 

 This  section  will  detail  the  processing  pipeline  for  raw  spatial  and  electrophysiological  data 

 into single unit activity of putative neurons as is graphed in  Figure 29  . 

 2.7.2 Pre-processing 

 To  isolate  neuron  spikes  from  electrophysiological  data,  automated  spike  sorting  was 

 performed  using  MountainSort  3  (v  0.11.5  and  dependencies)  (Chung  et  al.  2017)  .  For 

 optimal  performance,  first  the  raw  voltage  channels  were  passed  through  a  bandpass  filter 

 between  600-6000  Hz  to  remove  noise  outside  the  range  of  a  typical  action  potential. 

 Secondly, spatial whitening was performed over all 16 channels to remove correlated noise. 

 This  step  removed  voltage  fluctuations  recorded  across  all  channels  that  are  unlikely  to 

 originate  from  a  single  neural  source  but  are  rather  movement-related  or  environmental 

 noise. 
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 Figure 29. Python pipeline for analysing electrophysiology recordings 
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 2.7.3 Spike sorting 

 Neural  spike  detection  and  clustering  into  separable  neural  units  was  performed  by 

 MountainSort  3.  Neuron  spiking  events  were  defined  as  peaks  in  the  cleaned  voltage 

 channels  with  an  amplitude  greater  than  three  standard  deviations  above  the  mean  and  at 

 least 0.33 ms apart from other events detected on the same channel. 

 Clustering  of  these  events  was  performed  using  the  ISO-SPLIT  spike  sorting  algorithm 

 (Chung  et  al.  2017)  .  Firstly,  the  corresponding  waveforms  for  neural  events  were  extracted 

 from  the  cleaned  voltage  channel  and  the  first  10  principal  components  taken  for  clustering. 

 The  ISO-SPLIT  algorithm  is  based  on  two  key  assumptions  about  cluster  distributions  in  a 

 feature  space,  (1)  each  cluster  arises  from  a  density  function  that,  when  projected  onto  any 

 line  is  unimodal  and  has  a  single  region  of  highest  density  and  (2)  any  two  clusters  can  be 

 separated  by  a  hyperplane  in  the  feature  space.  The  algorithm  first  over-clusters  waveforms 

 and  then  performs  pair-wise  checks,  reclustering  where  necessary  until  all  groupings  meet 

 the  assumptions.  The  algorithm  completes  with  a  set  of  unique  cluster  labels  for  the  detected 

 spike events. These spike times and cluster labels are outputted for curation. 

 2.7.4 Curation 

 To  remove  clusters  unlikely  to  have  originated  from  true  neuron  spiking  events,  a  set  of 

 validated  metrics  were  used  to  evaluate  cluster  quality  (Chung  et  al.  2017)  .  Clusters  that  had 

 isolation  >  0.9,  noise  overlap  <  0.05  and  peak  signal-to-noise  ratio  >  1  were  accepted  for 

 further  analysis.  No  constraint  was  placed  on  firing  rate  to  accommodate  the  possibility  of 

 cells firing in one environment but not the other. 

 It  was  observed  that  artefacts  originating  from  licking  events  often  passed  curation.  As  the 

 waveforms  of  these  artefacts  were  typically  much  larger  in  amplitude  than  other  curated 

 clusters,  clusters  with  waveforms  with  peak  amplitudes  above  500  μV  were  rejected  from 

 further analysis. 
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 2.7.5 Post-processing 

 Spike  timestamps  and  their  associated  cluster  labels  were  passed  into  post-processing  with 

 the time-synchronised spatial variables to analyse the cluster’s spatial firing properties. 

 For  daily  analysis  during  the  experiment,  graphical  plots  were  generated  to  provide  feedback 

 to  the  experimenter  about  the  behaviour  of  the  mice  performing  the  spatial  tasks  and  the 

 firing  properties  of  the  curated  clusters.  For  the  VR  task,  this  included  speed  profile  plots 

 across  trial  types,  stop  raster  plots,  waveform  plots,  spike  raster  plots,  and  firing  rate  plots. 

 For  the  open  field  task,  additional  plots  included  trajectory  maps,  coverage  maps  and  spatial 

 autocorrelograms.  This  provided  information  about  the  mouse’s  motivation  and  task  aptitude 

 as  well  as  whether  the  tetrodes  were  localised  in  a  brain  region  populated  with 

 spatial-modulated cells. 

 Spatial  metrics  were  also  calculated  daily  to  indicate  the  presence  of  grid  cells,  border  cells, 

 head  direction  cells,  speed  cells  and  theta-modulated  cells  (Hafting  et  al.  2005;  Solstad  et  al. 

 2008;  J.  Taube,  Muller,  and  Ranck  1990;  Kropff  et  al.  2015;  Kornienko  et  al.  2018)  .  As  grid 

 cells  are  the  main  focus  of  this  paper,  tetrodes  were  lowered  daily  by  50  µm  until  a  grid  cell 

 was  found,  this  location  was  recorded  for  two  days  before  it  was  lowered  in  search  of  more 

 grid cells. 

 2.7.6 Remote computing services 

 Eddie  and  Eleanor  .  Remote  computing  services  were  utilised  to  process  the  data  in  this 

 thesis  using  Eddie  and  Eleanor,  a  University  of  Edinburgh  hosted  linux  computer  cluster  and 

 research  cloud  service  respectively.  A  16  core  CPU,  96  GB  RAM  virtual  computer  hosted  by 

 Eleanor  was  remotely  controlled  via  a  secure  shell  procedure  (SSH)  through  a  Python  IDE, 

 PyCharm  V2019.2.4.  Where  highly  parallel  computer  processing  was  required,  such  as 

 when  shuffling  open  field  spike  times  to  generate  shuffled  open  field  scores,  Eddie  was 

 accessed  via  terminal  and  remote  SSH.  Both  services  had  electronic  access  to  the 

 DataStore server where the raw data and analysed data was held. 

 93 

https://www.zotero.org/google-docs/?iOguVS
https://www.zotero.org/google-docs/?iOguVS


 2.8 Identifying spatial cells in open field and virtual reality environments 

 Spatial  cells  are  classically  defined  by  their  spatial  coding  properties  when  recorded  from 

 animals  exploring  or  completing  a  spatial  task  in  a  2D  environment.  This  creates  an  obvious 

 challenge  when  the  spatial  task  is  solely  1D.  To  get  around  this  issue,  mice  are  recorded  in 

 spatial  arenas  in  a  single  recording  day,  one  30  minute  session  in  an  open  field  arena  and 

 one  30  minute  session  head  restrained  on  a  treadmill  running  through  a  virtual  linear  track. 

 The  former  provides  a  baseline  recording  for  capturing  grid  cell  activity  with  the  primary 

 function  of  classifying  grid  cells,  whereas  the  latter  provides  a  recording  of  grid  cell  activity 

 while the mouse performs a 1D spatial memory task. 

 2.8.1 Concatenated spike sorting 

 There  are  two  contrasting  approaches  to  identifying  spike  clusters  that  originate  from  the 

 same  neural  source  between  two  separate  recordings  within  electrophysiology.  The  first  and 

 most  commonly  used  approach  is  cluster  matching.  Recording  sessions  are  spike  sorted 

 independently  from  one  another  and  the  firing  properties  of  the  resulting  curated  spike 

 clusters  are  statistically  compared  to  determine  whether  the  clusters  can  with  confidence  be 

 ascribed  to  the  same  neural  source.  The  second  approach  termed  concatenated  sorting, 

 involves  spike  sorting  both  recording  sessions  together  to  cluster  spikes  within  the  same 

 feature  space  across  sessions.  This  method  was  preferred  as  it  removed  the 

 parameterisation  and  statistical  thresholding  of  firing  properties  required  in  cluster  matching, 

 (see  Campbell et al. 2018)  . 

 Concatenated  sorting  begins  with  the  concatenation  of  the  raw  voltage  traces  across 

 electrodes.  With  a  16-channel  (4  tetrode)  design  each  channel  voltage  trace  from  the  first 

 session  was  appended  with  the  corresponding  channel  in  the  second  session,  creating  16 

 voltage  traces  corresponding  to  roughly  60  minutes  (30  minutes  x  2  recording  sessions). 

 Preprocessing  steps  and  spike  sorting  proceeded  as  described  in  2.7  .  Spike  clusters 

 spanning  both  sessions  were  curated  together  before  being  split  back  into  session-specific 

 firing  timestamps.  This  allowed  the  cluster  IDs  produced  during  spike  sorting  to  be  shared 

 between  open  field  and  virtual  reality  neural  recordings  and  provide  a  one-to-one  mapping  of 

 the  spatial  firing  properties  between  recording  sessions.  A  grid  cell  recording  processed  with 

 concatenated sorting is shown in  Figure 30  . 
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 Figure  30.  Example  grid  cell  from  concatenated  spike  sorting  of  two  different 
 electrophysiological  recordings.  Spike  waveforms  and  autocorrelograms  show  the  same 

 waveform  shape  and  temporal  firing  properties.  This  allows  the  spatial  firing  properties  to  be 

 assessed  with  confidence  that  the  spikes  come  from  the  same  neural  source.  From  top  to 

 bottom,  plots  are  showing:  30  example  spike  waveforms  from  the  cluster,  the  temporal 

 autocorrelogram,  spike  histogram  across  the  session,  spike  raster  plot  and  firing  rate  map. 

 For  the  firing  rate  maps,  the  colour  bars  are  scaled  between  0  and  the  max  firing  rate  which 

 is given above the plot. 
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 2.8.2 Classification of cell types in the open arena 

 To  classify  cells  based  on  their  activity  in  the  open  arena,  methods  in  (Diehl  et  al.  2017)  were 

 followed.  Cells  were  classified  into  one  of  five  hierarchically  organised  functional  cell  types: 

 grid  >  border  >  spatial  >  head  direction  >  non-spatial.  Cells  were  assigned  to  the  highest  cell 

 type  in  the  hierarchy  for  which  their  corresponding  identity  metric  was  greater  than  the  99  th 

 percentile  of  the  same  scores  from  1000  shuffled  datasets.  For  example,  a  cell  with  grid 

 score  above  the  99  th  percentile  was  classified  as  a  grid  cell  irrespective  of  scores  in  other 

 categories.  To  generate  shuffled  spike  data,  a  single  value  from  a  uniform  distribution 

 between  20-580  seconds  was  drawn  and  added  to  the  timestamp  of  each  spike.  Spike  times 

 that  exceeded  the  recording  length  were  wrapped  around  to  the  start  of  the  session.  Spike 

 locations  were  recomputed  from  the  shuffled  spike  times  and  spatial  scores  calculated 

 similar  to  measured  data.  Using  this  method,  1000  shuffles  per  cell  were  generated  and  the 

 99  th  percentile of the scores used as a threshold  for belonging to the five cell types. 

 Established  scores  were  used  for  grid,  border,  head  direction  and  spatial  stability  (Hafting  et 

 al.  2005;  Solstad  et  al.  2008;  Skagg  et  al.  1993)  .  Grid  scores  were  defined  as  the  difference 

 between  the  minimum  correlation  coefficient  for  rate  map  autocorrelogram  rotations  of  60 

 and  120  degrees  and  the  maximum  correlation  coefficient  for  autocorrelogram  rotations  of 

 30,  90  and  150  degrees.  The  firing  rate  map  was  calculated  by  binning  spikes  into  2.5  cm 

 bins  and  dividing  by  the  total  time  occupied  in  each  bin  and  then  smoothed  with  a  Gaussian 

 kernel  (standard  deviation  =  2  bins).  Autocorrelograms  were  calculated  by  sliding  the  rate 

 map  over  all  X  and  Y  bins  and  calculating  a  correlation  score.  Fields  were  detected  in  this 

 autocorrelogram  by  converting  it  into  a  binary  array  using  20  %  of  the  maximal  correlations 

 as  a  threshold.  If  the  binary  array  had  more  than  7  local  maxima,  a  grid  score  was 

 calculated.  Correlations  between  the  rotated  autocorrelograms  were  then  calculated  using 

 only  a  ring  containing  the  6  local  maxima  closest  to  the  centre  of  the  binary  array  and 

 excluding  the  maximum  at  the  centre.  The  ring  was  detected  based  on  the  average  distance 

 of  the  6  fields  near  the  centre  of  the  autocorrelogram  (middle  border  =  1.25  *  average 

 distance, outer border = 0.25 * average distance). 

 To  calculate  border  scores  (Solstad  et  al.  2008)  ,  firing  fields  were  identified  from  the  firing 

 rate  map  by  collecting  neighbouring  bins  with  firing  rates  greater  than  30  %  the  maximal 

 firing  rate  and  covering  at  least  200  cm  2  .  For  each  putative  field,  the  mean  firing  distance  d  m 

 was  computed  as  the  average  distance  to  the  wall  for  each  bin,  divided  by  the  mean  firing 

 rate  of  the  field.  To  obtain  a  value  between  0  and  1,  d  m  was  normalised  by  the  shortest 

 distance  from  the  centre  of  the  arena  to  the  wall.  The  maximal  coverage  c  m  of  a  field  was 
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 measured  as  the  maximum  proportion  of  field  bins  occupying  any  of  the  four  edges  of  the 

 firing rate map. The border score was then given by 

 (4)  𝑏    =    
 𝑐 

 𝑚 
   −    𝑑 

 𝑚 

 𝑐 
 𝑚 

   +    𝑑 
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 To  calculate  head  direction  scores,  the  head  direction  recorded  at  times  corresponding  to 

 firing  events  were  binned  into  360  bins  between  0  and  2π  and  was  normalised  by  the 

 duration  of  time  spent  occupying  each  directional  bin.  This  polar  histogram  was  then 

 smoothed  with  a  rolling  sum  with  a  window  size  of  23  degrees.  The  head  direction  score  is 

 the  length  of  the  mean  vector  of  this  polar  histogram.  To  obtain  this  length,  the  X  and  Y 

 components  are  computed  by  first  calculating  dx  and  dy  in  a  unit  circle  (radius  =  1)  in  steps 

 of 1 degree as 

 (5)  𝑑𝑥    =     𝑐𝑜𝑠 ( 𝑎𝑛𝑔𝑙𝑒 )
 𝑟𝑎𝑑𝑖𝑢𝑠 ,     𝑑𝑦    =     𝑠𝑖𝑛 ( 𝑎𝑛𝑔𝑙𝑒 )

 𝑟𝑎𝑑𝑖𝑢𝑠 

 The head direction score is then given using the Pythagorean theorem by 

 (6) (Σ    𝑝𝑜𝑙𝑎𝑟     𝐻𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 ·  𝑑𝑥 )  2    + (Σ    𝑝𝑜𝑙𝑎𝑟     𝐻𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 ·  𝑑𝑦 )  2    

 For  assessing  spatial  stability,  two  separate  metrics  were  used,  spatial  information  and  the 

 within-session  spatial  correlation  to  identify  spatial  cells  (Diehl  et  al.  2017;  Hafting  et  al. 

 2005;  Sargolini  et  al.  2006;  Boccara  et  al.  2010;  Hardcastle  et  al.  2017)  .  The  spatial 

 information per spike was calculated as 

 (7) 
 𝑖 = 1 

 𝑁 

∑  𝑃  𝑖 (
 𝑅𝑖 

 𝑅 ) ·  𝑙𝑜𝑔 
 2 
(

 𝑅𝑖 

 𝑅 )

 where  i  indexes  a  position  bin  in  the  firing  rate  map,  N  is  the  number  of  bins,  P  i  is  the 

 occupancy  probability,  R  i  is  the  firing  rate  in  the  bin,  R  is  the  mean  firing  rate.  The 

 within-session  spatial  correlation  is  calculated  by  computing  the  Pearson  correlation 

 between  the  firing  rate  map  computed  from  the  first  half  session  and  the  second  half 

 session. Bins that were not visited in both halves were excluded from the calculation. 
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 Self-localisation behaviours in a VR linear location task 

 3.1 Introduction 

 To  investigate  the  functional  roles  of  spatial  cells  in  self-localisation  behaviours,  a 

 behavioural  task  that  distinguished  beaconing  and  path  integration-based  behaviours  was 

 required.  Tennant  et  al.  (2018)  introduced  a  virtual  reality-based  linear  location  estimation 

 task  that  requires  mice  to  estimate  their  location  along  a  linear  track  and  execute  stops  at  a 

 specific  location  to  receive  a  soy  reward.  Mice  could  complete  this  task  via  beaconing  when 

 salient  visual  cues  marking  the  reward  zone  were  available.  Alternatively,  mice  could  adopt  a 

 path  integration-based  strategy  as  the  reward  zone  was  always  a  fixed  distance  from  the 

 beginning  of  the  track.  When  the  salient  visual  cue  was  not  present,  a  path  integration-based 

 approach remained the only viable strategy for effective localisation of the reward zone. 

 The  task  boasts  valuable  qualities  which  makes  it  well  suited  to  address  questions 

 surrounding  biological  solutions  to  path  integration.  The  introduction  of  virtual  reality 

 technologies  provides  the  tools  for  experimenters  to  design  environments  where  the 

 completion  of  a  spatial  navigation  task  is  only  possible  by  employing  path  integration-based 

 strategies.  This  is  achieved  in  the  VR  linear  location  task  by  creating  an  intentionally 

 ambiguous  track  made  up  of  repeating  textures  as  shown  in  Figure  25  .  As  the  track  repeats 

 the  same  textures  from  track  locations  30  -  170  cm,  the  estimation  of  self-location  must  be 

 computed  as  an  iterative  update  by  integrating  speed  estimates  over  time  from  a 

 previously-visited  landmark.  This  is  because  no  unique  cues  exist  along  the  track  (except  on 

 beaconed  trials)  to  correct  the  mouse’s  self-location  estimate.  This  would  not  be  the  case  for 

 a  real  linear  track  as  unique  cues  can  not  be  easily  ruled  out,  even  if  designed  and  prepared 

 meticulously.  These  cues  could  take  the  form  of  imperfections  in  the  material  used  to  make 

 the  track,  odour  cues  left  by  the  mouse  itself  such  as  urine  or  even  non-perfectly  uniform 

 lighting  across  the  length  of  the  track.  In  the  virtual  track  design  however,  these  issues  do 

 not  arise.  Material  imperfections  are  only  possible  on  the  concave  projector  screen  or  the 

 treadmill,  but  these  cannot  be  associated  with  any  specific  location  on  the  track.  Odour  cues 

 are  possible  on  the  treadmill  however  the  circumference  of  the  treadmill  (~63  cm)  and  the 

 virtual  track  length  (typically  200  cm)  are  not  compatible  for  tracking  any  specific  track 

 location. 

 Tennant  et  al.  (2018)  found  most  mice  learnt  the  self-localisation  task  within  the  space  of  two 

 weeks,  stopping  selectively  at  the  reward  zone  on  both  beaconed  and  non-beaconed  trials. 

 This  was  verified  with  replications  of  the  study  by  myself  in  this  chapter.  Mice  performed 
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 better  on  beaconed  trials  compared  to  non-beaconed  trials  suggesting  while  mice  were 

 adopting  a  path  integration-based  strategy  (at  least  on  non-beaconed  trials),  the  visual  cue 

 available  on  beaconed  trials  was  being  utilised.  Performance  typically  fluctuated  throughout 

 training  and  between  trial  types,  presumably  due  to  changes  in  engagement  fuelled  by 

 reward  motivation  and  attention.  The  variation  in  trial  outcomes  afforded  comparisons  of 

 spatial firing properties under different behavioural outcomes. 

 The  goal  for  this  chapter  is  to  demonstrate  mice  learn  to  use  a  path  integration  and 

 beaconing  navigation  strategy  to  solve  a  linear  location  task  and  to  outline  changes  I  made 

 to  the  behavioural  task  to  increase  the  information  provided  about  path  integration  based 

 behaviours.  The  behavioural  protocol  taken  from  work  by  Tennant  et  al.  (2018)  adopted  an 

 interleaved  trial  delivery  of  beaconed  and  non-beaconed  trials  at  a  ratio  of  4:1.  As  work  in 

 this  thesis  looks  to  address  the  activity  of  spatial  cell  types  during  both  beaconed  and  path 

 integration-based  behaviour,  this  ratio  was  amended  in  favour  of  more  non-beaconed  trials 

 than  beaconed  trials.  Under  this  scheme,  mice  completed  more  non-beaconed  trials 

 however  completed  a  smaller  percentage  of  the  total  non-beaconed  trials.  This  afforded  a 

 greater  sampling  of  the  behaviour  on  non-beaconed  trials  which  provided  a  greater  statistical 

 power to compare neural activity under different trial outcomes in the following chapters. 
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 3.2 Methods 

 Materials  and  methodologies  used  for  this  experiment  are  as  described  in  Chapter  2.  While 

 behavioural  analysis  is  the  sole  focus  of  this  chapter,  it  is  important  to  note  the  analysis 

 presented  comes  from  mice  which  have  been  surgically  implanted  with  a  tetrode  microdrive 

 and have undergone the same behavioural training procedures. 

 3.2.1 Subjects 

 15  male  wild  type  C57BL/6NCrl  mice  were  obtained  (Charles  River)  and  surgically  implanted 

 between  the  ages  of  10-15  weeks.  Male  mice  were  chosen  over  females  as  the  increased 

 size  of  males  afforded  more  space  on  the  skull  to  implant  and  attach  the  tetrode  microdrive. 

 Data  from  12  of  these  mice  are  shown  in  the  chapter.  One  mouse  was  culled  during 

 habituation  due  to  the  microdrive  being  loose  and  becoming  a  danger  to  the  animal’s 

 wellbeing.  Two  further  mice  were  excluded  because  they  were  showing  visible  signs  of 

 distress  on  the  VR  treadmill  and  did  not  improve.  Mice  were  trained  and  handled  alone  by 

 the  author,  Harry  Clark.  In  3.3.2  ,  an  additional  6  mice  (making  18  in  total)  were  used  as  a 

 baseline  measurement  for  the  default  trial  type  ratio.  These  mice  were  trained  by  Sarah 

 Tennant (1), Junji Hua (1), Wannan Yang (2) and myself, Harry Clark (2). 

 3.2.2 Data analysis 

 Behavioural  analysis  was  performed  in  Python  3.8  and  statistics  calculated  using  the  Scipy 

 and  Statsmodal  modules.  It  should  be  noted  that  only  fully  balanced  within-subject  designs 

 are  supported  in  Statsmodal  (v  0.14.0)  for  ANOVA  calculations,  as  such,  data  is  ejected  for 

 unbalanced  data  samples.  For  example,  if  mice  did  not  complete  30  training  sessions,  data 

 was ejected from the last day in which there was a completed training session for all mice. 

 3.2.3 Quantification of spatial behaviours 

 The  linear  location  task  can  be  thought  of  in  terms  of  a  reinforcement  learning  paradigm. 

 Mice  are  encouraged  to  stop  at  a  specific  location  to  receive  a  reward  and  may  receive 

 many  rewards  by  completing  more  trials  throughout  the  experiment.  To  speed  up  the 

 learning  of  a  rewarded  location  on  the  track,  a  beaconed  cue  is  placed  at  the  reward  zone 

 for  the  majority  of  trials.  To  quantify  this  spatial  learning,  stops  (as  defined  in  2.5.2.1  )  and 

 speed  profiles  are  used  to  disambiguate  a  spatial  behaviour  over  naive  exploration.  A  mouse 

 performing  a  clear  stopping  strategy  is  one  that  stops  at  specific  locations  on  the  track  over 

 many  trials,  such  that  compiling  the  stops  into  a  histogram  reveals  peaks  above  random 

 chance.  This  chance  level  threshold  is  calculated  by  shuffling  the  location  of  all  stops  to 
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 random  locations  and  computing  the  histogram  peak.  This  is  repeated  1000  times  and  peak 

 amplitudes  collated.  The  99  th  percentile  is  taken  as  the  chance  level  threshold  and  is 

 computed  independently  for  each  trial  type.  Only  fully  completed  trials  are  included.  Figure 

 31  shows  the  spatial  learning  profile  of  an  example  mouse  (M11).  While  enumerating  stops 

 is  a  helpful  metric,  additional  reward-related  stops  are  often  picked  up  when  the  mouse  is 

 receiving  the  reward.  To  overcome  this,  the  first  stop  of  each  trial  is  taken  and  enumerated  in 

 Figure  32  .  Speed  profiles  are  also  used  to  investigate  task  performance,  as  the  selectivity  for 

 the  reward  zone  can  be  measured  by  weighting  the  relative  speeds  within  and  outside  the 

 reward zone, as shown in  Figure 33  . 
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 Figure  31.  Stopping  behaviour  of  an  example  mouse  M11.  (A)  Stop  raster  and  (B)  stop 

 histogram  on  training  day  1  and  24.  Grey  line  denotes  the  shuffled  99  th  percentile  for 

 histogram  peaks.  (C)  Stop  raster  from  training  day  1  to  30,  red  horizontal  lines  denote  the 

 start  of  a  new  training  day.  (D)  Percentage  stops  registered  within  the  reward  zone  as  a 

 function of training day. 
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 Figure  32.  First  stop  behaviour  of  an  example  mouse  M11.  (A)  First  stop  raster  and  (B) 

 first  stop  histogram  on  training  day  1  and  24.  Grey  line  denotes  the  shuffled  99  th  percentile 

 for  histogram  peaks.  (C)  First  stop  raster  from  training  day  1  to  30,  red  horizontal  lines 

 denote  the  start  of  a  new  training  day.  (D)  Percentage  first  stops  registered  within  the  reward 

 zone as a function of training day. 
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 Figure  33.  Speed  profiles  of  an  example  mouse  M11.  (A)  speed  heatmap  and  (B)  average 

 speed  profiles  on  training  day  1  and  24.  (C)  Speed  heatmap  from  training  day  1  to  30,  black 

 horizontal  lines  denote  the  start  of  a  new  training  day.  (D)  Average  trial  speed  across  training 

 days  (left)  and  the  differential  between  the  track  speed  and  speed  in  the  reward  zone  (right). 

 Note  that  based  on  the  variation  of  the  stops,  and  the  smoothing  of  the  speed  profiles,  the 

 mean minimum speed can appear above the stop threshold. 
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 It  is  clear  this  mouse  quickly  learns  a  stopping  strategy  within  several  days  which  is  biassed 

 to  the  reward  zone  for  both  beaconed  and  non-beaconed  trials.  At  the  beginning  of  training, 

 trial  speeds  are  slow,  and  in  the  case  of  this  example  mouse,  is  below  the  stop  threshold  on 

 the  first  day  of  training.  As  such,  most  locations  along  the  track  qualify  as  the  mouse  having 

 stopped.  By  training  day  24,  the  mouse  achieves  an  average  trial  speed  of  approximately  40 

 cm/s.  When  comparing  the  average  trial  speeds  with  the  average  speed  within  the  reward 

 zone,  it  can  be  seen  these  two  metrics  drift  apart  throughout  training,  demonstrating  the 

 mouse  is  adopting  a  stopping  strategy  biassed  to  the  reward  zone.  The  discrepancy 

 between  trial  speeds  and  reward  zone  speeds  is  also  present  on  probe  trials,  showing  the 

 difference  cannot  be  a  feature  of  the  dispensing  of  a  reward.  Engagement  in  the  task 

 fluctuates  over  the  course  of  training  and  within  training  sessions.  As  can  be  seen  in  Figure 

 31  ,  32  and  33  ,  trial  speeds  at  the  beginning  of  sessions  are  typically  slow  and  many  stops 

 are  registered.  As  more  trials  and  sessions  are  completed,  the  mouse  runs  quicker  which 

 can  generally  be  explained  by  the  mouse  getting  more  comfortable  running  on  a  treadmill 

 while  head-fixed.  The  mouse  also  learns  to  stop  exclusively  within  the  reward  zone  which 

 shows the mouse has learnt the task structure. 

 3.2.4 Classification of trial outcome 

 Using  the  registered  stops  and  speed  profiles,  the  performance  of  any  given  trial  can  be 

 quantified.  This  is  important  for  addressing  functional  associations  between  spatial  cell  types 

 and  spatial  behaviours  because  engagement  in  the  task  changes  throughout  a  session 

 based  on  variables  unbeknownst  to  the  experimenter.  Possible  factors  include  comfort, 

 energy levels or motivation for the reward. 

 A  single  trial  is  classified  as  a  hit  when  a  stop  is  registered  within  the  reward  zone  or  a  miss 

 when  a  stop  is  registered  outside  of  the  reward  zone  or  not  at  all  (  Figure  34  ).  This  however, 

 does  not  accurately  capture  all  the  nuances  of  task  engagement.  A  mouse  moving  below  the 

 stop  threshold  will  register  a  stop  within  the  reward  zone  without  demonstrating  any 

 navigational  selectivity  to  the  reward  zone.  Similarly,  a  trial  in  which  a  mouse  narrowly 

 misses  the  reward  zone  would  be  categorised  equally  to  a  trial  in  which  the  mouse  runs  at 

 full  speed  through  the  reward  zone.  To  better  classify  trials  based  on  task  engagement,  miss 

 trials  were  split  into  near-hits  (tries)  and  run-throughs  (runs).  Initially  classified  misses  were 

 split  by  comparing  their  average  speeds  in  the  reward  zone  to  hit  trials.  The  95  th  percentile  of 

 average  speeds  in  the  reward  zone  for  hit  trials  in  a  single  session  was  used  to  discriminate 

 between tries (< 95  th  percentile speed) and run trials  (> 95  th  percentile speed). 
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 Figure  34.  Example  classification  of  trial  outcomes.  Trials  are  classified  into  hits,  tries 

 and  runs,  based  on  stopping  locations  and  the  speed  profile  on  a  given  trial.  First,  trials  are 

 classified  into  hits  and  misses  based  on  whether  a  stop  was  registered  in  the  reward  zone  or 

 not.  Next,  a  distribution  of  the  average  speeds  in  the  reward  zone  is  drawn  for  hit  and  miss 

 trials,  the  95  th  percentile  of  the  hit  average  speeds  in  the  reward  zone  is  used  to  split  the 

 miss  trials  into  near  hits  (tries)  and  run-throughs  (runs).  Finally,  slow  trials  are  removed  to 

 better discriminate trial outcomes based on the mouse’s engagement. 

 It  is  important  to  note  that  at  low  running  speeds,  a  hit  trial  does  not  correspond  with  a 

 spatially  selective  stopping  strategy  for  the  reward  zone.  For  example  in  Figure  31  and  32  , 

 the  example  mouse  runs  below  the  stopping  threshold  on  training  day  1.  As  these  trials 

 qualify  as  hit  trials,  it  benefits  the  evaluation  of  task  performance  to  consider  which  hit  trials 

 are slow or fast.  Figure 35  A shows the distribution  of trial speeds outside of the reward zone. 

 The  speed  profiles  of  the  corresponding  bins  are  shown  in  Figure  35  B.  This  shows  the 

 slowest  hit  trials  do  not  necessarily  correspond  to  a  spatial  selective  stopping  strategy.  To 

 overcome  this,  hit  trials  corresponding  to  an  average  track  speed  greater  than  20  cm/s  were 

 considered  as  fast  hit  trials,  whereas  hit  trials  with  average  track  speeds  less  than  20  cm/s 

 were considered as slow hit trials. 
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 Figure  35.  Distribution  of  trial  speeds.  (A)  Distribution  of  average  track  speeds  for  hit  and 

 miss  trials  and  the  (B)  average  speed  profile  binned  by  the  average  track  speed  (shown  with 

 the  corresponding  colour  as  in  A).  Below  20  cm/s,  the  hit  speed  profiles  do  not  reflect  a  clear 

 spatial  preference  for  the  reward  zone.  Average  track  speeds  above  20  cm/s  are  considered 

 fast hits in some analyses. 
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 3.3 Results 

 3.2.5 Mice learn to solve a linear location estimation task 

 3.2.5.1 Performance summary 
 To  address  whether  mice  learn  the  linear  location  task  over  the  course  of  training,  a 

 repeated-measures  one-way  ANOVA  was  used  to  test  the  effect  of  session  number  on  the 

 proportion  of  fast  hit  trials.  For  both  beaconed  and  non-beaconed  trials,  there  was  a 

 significant  effect  on  the  percentage  of  fast  hit  trials  in  a  session  as  a  function  of  training  day 

 (beaconed,  DF  =  24,  168,  F  =  6.2,  P  <  1e-12;  non-beaconed,  DF  =  24,  168,  P  =  0.008,  F  = 

 1.9).  The  proportion  of  fast  hit  trials  was  used  as  the  metric  to  quantify  task  performance 

 over  any  hit  trials  as  mice  typically  begin  the  experiment  running  at  low  speeds  and  achieve 

 many  hit  trials  by  simply  running  below  the  stopping  threshold,  which  as  explained  in  3.2.4 

 does  not  necessarily  reflect  a  selective  stopping  strategy  to  the  reward  zone.  Consistent  with 

 this,  using  the  proportion  of  hit  trials  as  a  metric  for  task  performance  yielded  a  non 

 significant  effect  of  training  day  (beaconed,  DF  =  24,  168,  P  =  0.65,  F  =  0.87;  non-beaconed, 

 DF  =  24,  168,  P  =  0.46,  F  =  1.0).  Figure  36  and  37  shows  the  proportion  of  fast  hit  trials  and 

 hit  trials  changes  as  a  function  of  training  day.  Probe  trials  were  not  analysed  as  they  were 

 introduced  at  different  time  points  within  the  experiment  based  on  the  animal’s  performance 

 however are shown for completeness . 

 The  strategies  implemented  throughout  training  might  change  based  on  the  mices’ 

 understanding  of  the  task  structure  and  or  their  motivation.  Beaconing  is  a  valid  solution  to 

 stopping  on  beaconed  trials  whereas  path  integration  is  the  only  viable  option  during 

 non-beaconed  and  probe  trials.  The  proportion  of  fast  hit  trials  was  significantly  greater  on 

 beaconed  than  non-beaconed  trials  when  compared  across  all  training  days  (F  =  1144.0  ,  P 

 <  1e-28  ,  N  =  309,  Wilcoxon  sign-rank  test).  To  compare  between  trial  types  for  each  training 

 day,  multiple  Wilcoxon  sign-rank  tests  were  used.  It  was  found  that  throughout  the  majority 

 of  training,  performance  was  greater  on  beaconed  trials  compared  to  non-beaconed  trials. 

 These  tests  reveal  two  features  of  learning  between  these  different  trial  types,  (1)  mice  learn 

 the  beaconed  task  quicker  than  the  non-beaconed  task  and  (2)  once  performance  plateaus, 

 performance  on  beaconed  trials  is  greater  than  on  non-beaconed  trials.  The  former  point  can 

 be  explained  by  mice  being  trained  on  more  beaconed  trials  than  non-beaconed  trials, 

 whereas  the  latter  might  be  explained  by  the  beaconed  task  being  easier  to  execute  as 

 multiple strategies can be utilised. 
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 Combined  with  improved  fast  hit  percentages,  Figure  38  shows  a  clear  increase  in  trials 

 attempted.  This  might  reflect  improved  mobility  on  the  treadmill  as  mice  became  more 

 comfortable  running  on  a  treadmill  while  being  head-fixed  and  presumably  attempted  more 

 trials  to  maximise  the  soy  milk  rewards  as  the  session  length  was  not  constrained  to  a  set 

 number  of  trials  but  rather  a  maximum  time  of  30  minutes.  This  was  confirmed  with  a 

 repeated-measures  one-way  ANOVA  to  test  the  effect  of  session  number  on  the  number  of 

 trials attempted (DF = 24, 168, F = 5.3, P <  1e-10). 
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 Figure  36.  Proportion  of  fast  hit  trials  across  training.  This  is  shown  (A)  by  mouse,  (B) 

 averaged  across  mice  for  beaconed,  non-beaconed  and  probe  trials.  (C)  Average  plots  from 

 B  are  overlaid.  Shaded  regions  represent  the  standard  deviation  across  animals.  Red  stars 

 indicate  where  beaconed  and  non-beaconed  percentage  hit  trials  are  significantly  different 

 (P < 0.05, Wilcoxon sign-rank test). 
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 Figure  37.  Proportion  of  hit  trials  across  training.  This  is  shown  (A)  by  mouse,  (B) 

 averaged  across  mice  for  beaconed,  non-beaconed  and  probe  trials.  (C)  Average  plots  from 

 B  are  overlaid.  Shaded  regions  represent  the  standard  deviation  across  animals.  Red  stars 

 indicate  where  beaconed  and  non-beaconed  percentage  hit  trials  are  significantly  different 

 (P < 0.05, Wilcoxon sign-rank test). 
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 Figure  38.  Trials  and  trial  speeds  across  training.  (A)  Number  of  trials  completed  and  (B) 

 Average  trial  speeds  as  a  function  of  training  day  by  mouse  (left  plots)  and  averaged  across 

 mice (right plots). Shaded regions represent the standard deviation of across animals. 
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 3.2.5.2 Mice optimise a stopping strategy over learning 
 Over  what  time  frame  of  learning  do  mice  learn  the  linear  location  task?  To  address  this,  the 

 numbers  and  relative  proportions  of  stops  and  first  stops  within  the  reward  zone  were 

 compared  across  training  days  and  trial  types.  Consistent  with  increased  trial  numbers  and 

 average  trial  speeds  over  training,  the  number  of  registered  stops  was  significantly  different 

 across  training  days  (repeated-measures  ANOVA,  beaconed:  DF  =  24,  268,  P  <  1e-9,  F  = 

 4.9,  non-beaconed:  DF  =  24,  268,  P  <  1e-12,  F  =  6.1;  Figure  39  ).  This  was  not  as  clearly 

 shown  for  stops  registered  in  the  reward  zone  (repeated-measures  ANOVA,  beaconed:  DF  = 

 24,  268,  P  =  0.23,  F  =  1.2,  non-beaconed:  DF  =  24,  268,  P  =  0.04,  F  =  1.6;  Figure  40  ), 

 suggesting  the  stops  were  maintained  across  training  in  the  reward  zone  but  not  the  rest  of 

 the  track.  This  is  supported  by  an  increased  proportion  of  stops  being  localised  to  the  reward 

 zone  (repeated-measures  ANOVA,  beaconed:  DF  =  24,  268,  P  <  1e-12,  F  =  5.9, 

 non-beaconed:  DF  =  24,  268,  P  <  1e-7,  F  =  4.3;  Figure  41  ).  Taken  together,  mice  learn  to 

 minimise  the  number  of  stops  attempted  on  a  trial  and  selectively  stop  primarily  within  the 

 reward  zone.  A  truly  optimal  stopping  strategy  would  see  the  mouse  stop  once  in  the  reward 

 zone  without  any  anticipatory  stops  before  the  reward.  Consistent  with  this  optimisation,  the 

 percentage  of  first  stops  within  the  reward  zone  increases  over  training  (repeated-measures 

 ANOVA,  beaconed:  DF  =  24,  268,  P  <  1e-6,  F  =  3.8,  non-beaconed:  DF  =  24,  268,  P  = 

 0.015,  F  =  1.8;  Figure  42  ).  This  is  seen  by  the  reduction  in  pre-reward  zone  stops  between 

 early and late training days (  Figure 42  C). 

 To  compare  the  performance  of  mice  across  trial  types  over  the  course  of  training,  metrics 

 were  compared  by  day  using  a  Wilcoxon  sign-rank  test.  Mice  typically  attempted  more  stops 

 on  beaconed  trials.  This  is  consistent  with  the  greater  proportion  of  hit  and  fast  hit  trials  in 

 beaconed  compared  to  non-beaconed  trials,  showing  mice  performed  better  on  beaconed 

 trials.  The  differences  between  beaconed  and  non-beaconed  performance  narrowed  towards 

 the  end  of  training  (  Figure  36  ),  which  is  consistent  with  the  late  rise  of  first  stops  within  the 

 reward  zone  (  Figure  41  ).  This  shows  mice  can  stop  with  a  selectivity  for  the  reward  zone  on 

 non-beaconed trials on par with beaconed trials given sufficient training. 
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 Figure  39.  Stops  per  trial  as  a  function  of  training  day.  This  is  shown  (A)  by  mouse  and 

 (B)  averaged  across  mice  for  beaconed,  non-beaconed  and  probe  trials.  (C)  Average  plots 

 from  B  overlaid.  Shaded  regions  represent  the  standard  deviation  of  across  animals.  Red 

 stars  indicate  where  beaconed  and  non-beaconed  percentage  hit  trials  are  significantly 

 different (P < 0.05, Wilcoxon sign-rank test). 
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 Figure  40.  Stops  per  trial  within  the  reward  zone  as  a  function  of  training  day.  This  is 

 shown  (A)  by  mouse  and  (B)  averaged  across  mice  for  beaconed,  non-beaconed  and  probe 

 trials.  (C)  Average  plots  from  B  overlaid.  Shaded  regions  represent  the  standard  deviation  of 

 across  animals.  Red  stars  indicate  where  beaconed  and  non-beaconed  percentage  hit  trials 

 are significantly different (P < 0.05, Wilcoxon sign-rank test). 
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 Figure  41.  Percentage  stops  registered  within  the  reward  zone  as  a  function  of 
 training  day.  This  is  shown  (A)  by  mouse  and  (B)  averaged  across  mice  for  beaconed, 

 non-beaconed  and  probe  trials.  (C)  Histogram  of  stops  from  training  days  1-5  (left)  and 

 25-30 (right). 
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 Figure  42.  Percentage  first  stops  registered  within  the  reward  zone  as  a  function  of 
 training  day.  This  is  shown  (A)  by  mouse  and  (B)  averaged  across  mice  for  beaconed, 

 non-beaconed  and  probe  trials.  (C)  Histogram  of  stops  from  training  days  1-5  (left)  and 

 25-30 (right). 
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 3.2.5.3 Mice do not rely on the treadmill for distance estimation 

 Do  mice  use  visual  or  olfactory  cues  provided  by  the  treadmill  to  guide  distance  estimation? 

 The  circumference  of  the  treadmill  is  approximately  63  cm,  while  the  distance  from  the  end 

 of  the  black  box  to  the  start  of  the  reward  zone  is  60  cm.  As  such,  mice  could  take  note  of 

 the  visual  or  olfactory  cues  that  exist  on  the  treadmill  when  they  are  leaving  the  black  box 

 and  stop  when  they  notice  these  noted  cues.  To  test  this  possibility,  I  looked  at  the  stop 

 histograms  on  sessions  in  which  the  mouse  was  trained  on  different  tracks  that  did  not  have 

 this  similar  correspondence  between  the  treadmill  circumference  and  the  distance  to  the 

 goal.  If  mice  utilised  these  treadmill  cues  then  mice  should  stop  at  the  same  track  location 

 even  if  different  track  lengths  are  used.  This  would  appear  as  a  peak  at  roughly  93  cm  on  the 

 stop  histogram  (30  cm  for  the  black  box  and  63  cm  for  one  cycle  of  the  treadmill).  After  the 

 initial  training  on  a  200  cm  track,  several  trained  mice  were  switched  to  a  longer  track  for  two 

 training  sessions.  The  length  of  these  longer  tracks  and  location  of  the  reward  zone  followed 

 the increased track lengths in  (Tennant et al. 2018) 

 Four  different  track  lengths  are  shown  in  Figure  43  .  As  can  be  seen,  no  clear  peak  appears 

 for  any  of  the  three  alternative  track  lengths  and  as  such  I  could  reject  the  possibility  of  mice 

 using treadmill cues to guide stopping behaviour. 
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 Figure 43. Stop histograms of trained mice on different track lengths. 
 Stops  were  compiled  across  the  last  5  training  days  for  track  length  200  (N  =  18  mice,  90 

 sessions)  and  all  sessions  for  greater  track  lengths.  (N  =  5  mice,  29  sessions).  The  red 

 vertical  line  indicates  the  location  of  the  peak  corresponding  to  a  stopping  strategy 

 consistent with mice using treadmill cues (visual or olfactory). 
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 3.2.6 Task improvements: Improving non-beaconed task engagement 

 3.2.6.1 Motivation 
 The  default  task  operated  with  a  trial  type  ratio  of  4  beaconed  trials  followed  by  1 

 non-beaconed  trial.  Probe  trials  were  introduced  once  every  2  non-beaconed  trials  as  soon 

 as  the  mouse  demonstrated  a  clear  stopping  preference  for  the  reward  zone  on 

 non-beaconed  trials  for  two  successive  days.  It  was  often  observed  that  mice  ceased 

 stopping  on  non-beaconed  trials  as  though  they  had  given  up  attempting  to  gain  rewards  on 

 these  trials.  Such  a  strategy  would  make  sense  if  a  large  proportion  of  the  rewards  available 

 in  a  training  session  were  obtainable  on  beaconed  trials.  If  mice  abandon  efforts  to 

 successfully  complete  non-beaconed  trials  in  favour  of  only  completing  beaconed  trials,  this 

 suboptimal  policy  although  warranting  less  reward  on  average,  can  guarantee  rewards  when 

 stops  are  initiated  by  beaconing  with  the  visual  cue,  which  might  be  adequate  for  the  mouse. 

 As  the  aims  of  this  thesis  are  focussed  on  understanding  how  mice  utilise  spatial  cells  to 

 inform  their  stopping  on  beaconed  trials  as  well  as  non-beaconed  trials  it  was  important  to 

 address  this  behaviour  and  to  encourage  continued  engagement  on  non-beaconed  trials 

 throughout the experiment. 

 To illustrate the gain/loss trade-off of engagement in the two different trial types, it is useful to 

 consider  the  expected  reward  (ER)  allocation  from  each  trial  type  within  a  training  session 

 (  Figure  44  ).  The  two  parameters  in  which  to  vary  the  proportion  of  rewards  available  include 

 the  trial  type  ratio  and  the  relative  reward  dispensed  on  each  trial.  The  reward  dispensed  on 

 different  trial  types  can  be  varied  by  adjusting  the  length  of  time  the  reward  valve  is  open. 

 For  example,  if  the  valve  is  open  for  twice  as  long  on  non-beaconed  trials  compared  to 

 beaconed  trials,  then  roughly  twice  as  much  reward  is  available  on  non-beaconed  trials. 

 Assaying  these  parameters  shows  what  proportion  of  the  total  reward  available  from  the 

 training  session  can  be  obtained  from  non-beaconed  trials.  Figure  44  shows  that  using  the 

 default  parameters,  only  20  %  of  the  total  expected  rewards  available  in  the  training  session 

 are  obtainable  from  non-beaconed  trials.  Following  the  introduction  of  probe  trials,  this  drops 

 to  11  %  as  rewards  are  withheld  on  probe  trials  and  mice  have  no  way  of  knowing  whether 

 they  are  on  a  non-beaconed  trial  or  probe  trial.  Figure  45  shows  the  task  performance  of 

 mouse  M14  whereby  non-beaconed  performance  increased  and  then  subsequently  dropped 

 before  I  intervened  and  amended  the  expected  reward  available  from  non-beaconed  trials  on 

 training  day  15.  Weighting  the  total  reward  more  in  favour  of  non-beaconed  trials  improved 

 the performance of non-beaconed trials in the later stages of training. 
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 Figure  44.  Expected  reward  allocation  across  a  training  session  for  non-beaconed 
 trials  .  Trial  type  ratio  and  the  relative  reward  dispensed  is  assayed  and  the  proportion  of  the 

 total  expected  reward  over  a  single  training  session  is  calculated  for  non-beaconed  trials 

 (ER  NB  ).  The  remainder  of  the  expected  reward  is  obtainable  on  beaconed  trials.  Percentages 

 as  defined  by  the  colour  bar  are  annotated  onto  the  parameter  heatmap.  The  green  boxes 

 indicate  the  default  parameters  from  the  original  task  design  (Tennant  2017;  Tennant  et  al. 

 2018)  . 
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 Figure  45.  Performance  of  training  for  mouse  M14  with  a  change  of  reward  allocation. 
 The  mouse  completes  more  beaconed  and  non-beaconed  trials  over  training  however  the 

 number  and  percentage  of  successful  non-beaconed  trials  drops  by  day  15  suggesting  the 

 mouse  abandoned  a  path  integration  strategy  in  favour  of  a  cue-response  stopping  strategy. 

 The  trial  type  ratio  used  for  these  training  sessions  was  2:1  (beaconed:  non-beaconed  trials). 

 To  increase  the  proportion  of  total  reward  available  from  non-beaconed  trials,  from  day  15, 

 the  reward  dispensed  on  non-beaconed  trials  is  3  times  greater  than  on  beaconed  trials.  The 

 percentage  expected  reward  from  non-beaconed  trials  is  colour-coded  for  reference  to  the 

 heatmap in  Figure 44  . 
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 3.2.6.2 The effect of expected reward allocation on task performance 
 To  test  manipulations  of  the  expected  reward  allocation  that  might  result  in  the  improved 

 engagement  of  non-beaconed  trials,  the  reward  allocation  was  altered  in  two  different  ways 

 across  2  mice  cohorts.  In  the  first  manipulation,  the  trial  type  ratio  was  amended  in  favour  of 

 non-beaconed  trials,  such  that  an  increased  proportion  of  the  total  session  reward  was 

 available  from  non-beaconed  trials  compared  to  the  default  parameters.  In  the  second 

 manipulation,  both  the  trial  type  ratio  was  amended  in  favour  of  non-beaconed  trials,  and  the 

 reward  dispensed  on  non-beaconed  trials  was  increased  to  three  times  the  amount 

 dispensed  on  beaconed  trials.  To  quantify  the  task  performance  across  these  manipulations, 

 the  number  and  percentage  of  fast  hit  trials  was  compared  across  manipulation  groups  and 

 statistically  compared  with  cohorts  which  operated  with  the  default  parameters.  A  single 

 value  of  the  number  and  percentage  of  fast  hit  trials  was  calculated  for  each  mouse  by 

 averaging  across  the  last  five  days  of  training.  To  obtain  a  performance  baseline  from  the 

 default  parameters,  additional  mice  were  pooled  from  the  same  experiment  however  data 

 was collected by different experimenters. 

 Trial  type  ratio  manipulations  (abbreviated  TTR)  and  trial  type  ratio  plus  the  relative  reward 

 dispensed  between  trial  types  (abbreviated  TTR+R)  both  increased  the  number  of  fast  hit 

 trials  compared  to  the  default  group  for  non-beaconed  but  no  significant  effect  on  beaconed 

 trials  numbers  (beaconed  trials,  default  vs  TTR:  DF  =  8,  P  =  0.35,  T=  7.0;  default  vs  TTR+R: 

 DF  =  8,  P  =  0.47,  T=  8.0;  non-beaconed  trials,  default  vs  TTR:  DF  =  8,  P  =  0.0095,  T  =  0.0; 

 default  vs  TTR+R:  DF  =  8,  P  =  0.0095,  T=  0.0;  Mann-Whitney  U  tests).  There  was  no  clear 

 differences  between  TTR  and  TTR+R  manipulation  groups  (beaconed  trials,  TTR  vs  TTR+R: 

 DF  =  6,  P  =  0.35,  T=  7.0;  non-beaconed  trials,  TTR  vs  TTR+R:  DF  =  6,  P  =  0.68,  T  =  10.0; 

 default vs TTR+R: DF = 6, P = 0.2, T= 3.0; Mann-Whitney U tests). 

 Comparing  the  percentage  of  fast  hit  trials  between  groups  revealed  a  marginal  effect  of  the 

 manipulations  compared  to  the  default  group  on  both  trial  types  (beaconed  trials,  default  vs 

 TTR:  DF  =  8,  P  =  0.17,  T=  5.0;  default  vs  TTR+R:  DF  =  8,  P  =  0.038,  T=  2.0;  non-beaconed 

 trials,  default  vs  TTR:  DF  =  8,  P  =  0.038,  T  =  2.0;  default  vs  TTR+R:  DF  =  8,  P  =  0.18,  T= 

 5.0;  Mann-Whitney  U  tests).  Again  no  differences  were  found  between  TTR  and  TTR+R 

 manipulation  groups  (beaconed  trials,  TTR  vs  TTR+R:  DF  =  6,  P  =  0.35,  T=  7.0; 

 non-beaconed  trials,  TTR  vs  TTR+R:  DF  =  6,  P  =  0.69,  T  =  10.0;  default  vs  TTR+R:  DF  =  6, 

 P = 1, T= 8.0; Mann-Whitney U tests). 
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 Taken  together,  these  results  suggest  amendments  to  the  default  parameters  improves 

 engagement  of  non-beaconed  trials  both  in  terms  of  the  numbers  and  to  a  lesser  extent  the 

 percentage  of  completed  fast  trials,  while  not  affecting  the  engagement  of  beaconed  trials. 

 As  analysis  discussed  later  in  this  thesis  benefits  from  the  increased  trial  numbers  while  the 

 mice  are  engaged  in  both  path  integration  and  beaconing  behaviours,  the  manipulations  to 

 the  default  parameters  are  a  useful  improvement  to  the  task  design.  Amendments  to  the  trial 

 type  ratios  in  favour  of  more  non-beaconed  trials  naturally  increase  the  number  of  possible 

 fast  hit  trials  and  this  was  indeed  the  case,  however  amendments  to  the  relative  reward 

 dispensed  between  trial  types  did  not  change  the  number  or  percentage  of  fast  hit  trials 

 suggesting  this  manipulation  is  not  strictly  necessary.  It  should  be  noted  that  changing  the 

 relative  weighting  of  rewards  could  complicate  further  analysis  as  this  change  between  trial 

 types  might  affect  the  brain  state  and  neural  activity  of  the  animal.  This  is  possible  because 

 the  visual  cue  is  visible  (or  not  in  the  case  of  non-beaconed  trials)  from  10  cm  out  of  the 

 black  box  at  the  start  of  a  trial.  This  means  the  mouse  has  access  to  information  about  the 

 trial  type  for  the  vast  majority  of  the  distance  up  to  the  rewarded  location,  which  possibly 

 affords  the  mouse  to  alter  its  strategy  for  a  given  trial  type  to  maximise  its  rewards.  If  the 

 reward  weighting  is  different,  this  might  factor  into  the  mouse’s  strategy,  which  complicates 

 comparisons  between  trial  types  given  that  the  different  trial  types  should  be  used  to 

 compare  behaviour  and  neural  activity  on  the  basis  of  the  navigational  strategies  available  to 

 the  mouse  and  not  the  extent  to  which  the  mouse  is  rewarded.  For  future  experiments,  it  is 

 suggested  from  this  work  that  manipulating  the  total  expected  reward  from  non-beaconed 

 trials is best changed by altering the trial type ratio. 
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 Figure  46.  Comparison  of  task  performance  of  the  default  trial  type  ratio  (TTR)  and  the 
 relative  reward  (R)  between  beaconed  and  non-beaconed  trials.  P  values  are  annotated 

 above  the  comparison.  Each  data  point  indicates  the  average  session  statistic  across  the 

 last  5  days  of  training  from  a  single  mouse.  Manipulations  of  the  reward  allocation  were 

 made  over  the  course  of  several  cohorts.  The  default  group  comprised  6  mice  tested  by 

 experimenters  Sarah  Tennant  (1),  Junji  Hua  (1),  Wannan  Yang  (2)  and  myself,  Harry  Clark 

 (2).  The  TTR  and  TTR+R  groups  both  comprised  4  mice  each  tested  by  myself,  Harry  Clark. 

 In  total,  the  task  performance  of  14  mice  is  shown.  Mice  that  did  show  a  clear  learning  profile 

 over  the  course  of  30  training  days  were  excluded  from  the  analysis.  These  mice  typically 

 failed  to  run  sufficiently  fast  enough  to  qualify  any  trials  as  fast  hit  trials.  ERNB  from  each 

 group are as follows: Default = 20 %; TTR = 33 %, TTR+R = 60 %. 
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 3.3 Discussion 

 To  establish  the  linear  location  task  captures  self-localisation  behaviours  like  beaconing  and 

 path  integration,  as  previously  reported  (Tennant  2017;  Tennant  et  al.  2018)  ,  I  looked  to 

 repeat  the  task  and  validate  the  original  findings.  I  found  the  majority  of  mice  were  able  to 

 learn  to  stop  at  the  reward  zone  for  both  beaconed  and  non-beaconed  trial  types  within  10 

 days.  These  results  were  consistent  with  the  original  findings  establishing  the  task  as  a 

 measure  for  self-localisation  behaviour.  To  address  whether  an  alternative  strategy  might  be 

 employed other than path integration is an important issue and will be discussed below. 

 As  the  default  task  operated  with  a  far  greater  number  of  beaconed  trials  compared  to 

 non-beaconed  trials,  I  asked  whether  the  task  design  could  be  amended  to  accommodate 

 more  non-beaconed  trials  in  order  to  increase  the  statistical  power  to  address  the  functional 

 roles  of  spatially-modulated  cells  in  path  integration  behaviours.  I  found  mice  were  able  to 

 perform  the  task  with  a  greater  proportion  of  non-beaconed  trials  and  found  this  did  not 

 affect  the  performance  of  beaconed  trials.  These  results  indicate  that  future  experiments 

 should  take  advantage  of  these  amended  task  designs  where  questions  of  path  integration 

 wish to be addressed. 

 3.3.1 Technical challenges 

 With  the  increased  numbers  of  experimenters  addressing  linear  location  estimation  within 

 the  lab,  it  became  apparent  a  second  experimental  rig  was  required  to  accommodate 

 everybody.  As  the  experimental  rig  required  an  open  field  setup  within  the  same  animal 

 house  and  preferably  the  same  room,  I  took  it  upon  myself  to  build  and  set  up  a  second  rig. 

 The  first  experiment  tested  on  this  rig  was  a  success  with  mice  performing  the  task  within  10 

 days, thus negating any unknown variables from the learning process of the mice. 

 3.3.2 Do animals path integrate in a VR linear location estimation task? 

 The  linear  location  task  was  designed  to  train  mice  to  estimate  their  distance  travelled  and 

 stop  when  a  particular  distance  was  traversed  from  the  start  of  the  virtual  track.  Marking  the 

 rewarded  location  with  a  sensory  cue  or  not  provides  a  clear  experimental  manipulation  for 

 comparing  beaconed  and  path  integration  behaviours.  While  it  might  appear  a  clear 

 experiment  to  capture  beaconed  and  path  integration-based  behaviour,  it  is  worth 

 considering  whether  other  navigational  strategies  could  be  employed  in  place  of  beaconing 

 or  the  error-ridden  process  of  path  integration.  At  the  beginning  of  each  trial,  mice  traverse 

 out  of  a  black  box  region  into  the  textured  track.  After  travelling  10  cm  out  of  the  black  box,  if 

 the  mouse  is  on  a  beaconed  trial,  the  mouse  will  be  able  to  see  the  visual  cue  marking  the 
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 reward  location.  From  this  point  the  mouse  could  choose  to  navigate  with  a  beaconed 

 strategy  and  even  disregard  any  other  strategy.  These  alternative  strategies  include  path 

 integration  and  time  or  step-counting.  As  discussed  previously,  path  integration  is  inherently 

 prone  to  errors  and  would  lead  to  more  errors  than  beaconing.  Time  or  step  counting 

 involves  the  navigating  animal  to  remember  the  duration  of  travel  or  the  number  of  steps 

 required  to  reach  the  reward  zone,  and  has  been  shown  in  rodents  (Light  et  al.  2019)  .  Both 

 strategies  are  prone  to  similar  errors  in  the  imperfections  and  variabilities  of  timekeeping  and 

 gait  respectively.  Therefore,  it  stands  to  reason  that  when  a  beacon  is  available,  the  animal 

 will resort to beaconing navigation as it affords the possibility of a low uncertainty method. 

 On  non-beaconed  trials,  beaconing  no  longer  becomes  a  viable  strategy.  The  remaining 

 strategies  available  include  path  integration  and  time  or  step-counting.  As  all  of  these 

 strategies  are  prone  to  accumulating  errors,  which  is  consistent  with  the  distance-dependent 

 stopping  error  reported  in  the  original  study  (Tennant  et  al.  2018)  .  As  mice  stop  at  distances 

 consistent  with  path  integrating  with  motor-based  self-motion  signals  (Tennant  et  al.  2018)  , 

 step-counting  cannot  be  ruled  out.  A  timing-based  strategy  would  result  in  a  consistent  time 

 to  reward  in  each  trial  throughout  a  session.  Work  from  Teris  Tam  showed  in  a 

 representative  session,  the  time  to  the  reward  can  vary  considerably  suggesting  a  timing 

 based-strategy was not preferentially observed  (Tennant  et al. 2022)  . 

 On  both  trial  types,  path  integration  is  a  valid  strategy  and  cannot  be  easily  separated  from 

 beaconing  on  beaconed  trials.  This  is  because  information  crucial  to  drive  path  integration  is 

 available  to  the  mouse  at  all  times  (e.g.  optic  flow,  motor  efferent  information).  In  order  to 

 draw  comparisons  of  the  behaviour  and  neural  activity  between  trial  types,  it  is  important  to 

 consider  the  additional  information  provided  by  the  visual  beacon  may  influence  the 

 navigational  strategy  away  from  one  based  on  path  integration,  while  without  the  visual 

 beacon,  this  influence  is  in  effect  absent.  Thus,  the  comparisons  that  can  be  made  between 

 trial  types  are  not  strictly  based  on  beaconed  versus  path  integration  navigation,  but  are 

 rather weighted on the credibility of the navigational strategy available. 
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 How do grid representations relate to task performance? 

 4.1 Introduction 

 Since  the  discovery  of  grid  cells  in  rats  freely  exploring  an  open  arena  (Hafting  et  al.  2005)  , 

 this  has  been  followed  up  in  other  environments  such  as  linear  tracks  (Derdikman  et  al. 

 2009;  Pérez-Escobar  et  al.  2016)  and  cue-rich  virtual  tracks  (Domnisoru,  Kinkhabwala,  and 

 Tank  2013;  Campbell  et  al.  2018)  .  These  examples  showed  the  allocentric  coding 

 capabilities  of  grid  cells  as  firing  fields  mapped  to  the  same  environment  locations  across 

 traversals  of  an  open  arena  and  laps  of  linear  and  virtual  tracks.  Grid  cell  activity  can  in  some 

 conditions  spontaneously  remap  (Low  et  al.  2021)  and  it  has  also  been  observed  that  grid 

 cell  activity  can  represent  egocentric  or  allocentric  codes  (Jacob  et  al.  2019)  ,  but  what  is 

 unclear  is  whether  anchoring  of  grid  codes  to  spatial  cues  that  facilitates  allocentric  coding  is 

 necessary  for  solving  behavioural  problems.  Grid  cells  are  thought  to  support 

 path-integration  operation  by  integrating  speed  and  head  direction  inputs.  As  such,  grid  cells 

 should  operate  with  very  minimal  spatial  cues  in  which  to  function  as  path  integrators.  Using 

 a  task  designed  to  encourage  mice  to  utilise  both  beaconing  and  path  integration-based 

 navigation,  the  functional  relevance  of  spatial  coding  of  grid  cells  can  be  investigated.  This 

 chapter  addresses  whether  grid  cells  contribute  to  successful  performance  of  the  task.  If  so, 

 then  their  activity  should  be  locked  to  the  track  on  successful  trials.  Moreover,  if  performance 

 errors  result  from  failures  in  grid  coding  then  this  should  be  apparent  as  discrepancies 

 between grid representations and track location on miss trials. 

 To  begin  addressing  the  function  of  grid  cell  activity  on  a  linear  track,  first,  a  true  grid  cell 

 must  be  classified  based  on  its  60  °  rotational  symmetry  in  a  2D  environment.  To  do  so,  mice 

 performed  two  tasks  on  the  same  recording  day,  an  open  field  exploration  task,  used  to 

 identify  grid  cells  followed  by  a  VR  linear  location  estimation  task  used  to  evaluate  the 

 relationship  between  grid  cell  firing  and  behavioural  performance  .  Neural  activity  recorded  as 

 electrode  voltage  traces  was  concatenated  between  these  two  recording  sessions  such  that 

 spike  sorting  was  performed  across  recording  sessions  on  the  same  day.  This  provided  an 

 objective  approach  for  cross-session  spike  identification  and  subsequent  classification  of  grid 

 cells  for  both  tasks.  Next,  grid  cell  activity  in  the  linear  location  task  was  classified  based  on 

 its  spatial  coding  scheme.  A  method  was  devised  to  quantify  the  spatial  coding  schemes 

 consistent  with  continuous  attractor  dynamics.  It  was  found  that  grid  cells  encoded  both 

 allocentric  and  egocentric  coding  schemes  and  individual  grid  cells  were  not  always  locked 

 to  a  single  spatial  code.  Where  coding  changes  did  occur,  it  was  found  that  jointly  recorded 
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 grid  cells  were  also  more  likely  to  change  their  spatial  code  coherently.  This  suggests  that  at 

 least  within  grid  modules,  spatial  coding  schemes  are  a  functional  output  of  the  medial 

 entorhinal  cortex.  Finally,  whether  spatial  codes  were  linked  to  particular  spatial  behaviours 

 was  addressed.  It  was  found  that  allocentric  coding  was  more  common  in  mice  performing 

 the  task  with  high  fidelity,  particularly  on  trials  in  which  path  integration  was  the  only  viable 

 solution. This provides evidence that grid cell activity is linked to path integration behaviours. 
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 4.2 Methods 

 4.2.1 Subjects 

 15  male  wild  type  C57BL/6NCrl  mice  were  obtained  (Charles  River)  and  surgically  implanted 

 between  the  ages  of  10-15  weeks.  Mice  were  the  same  as  presented  from  in  Chapter  3. 

 Data  from  12  of  these  mice  are  shown  in  this  chapter,  as  explained  in  3.2.1  .  Mice  were 

 trained and handled solely by the author, Harry Clark. 

 4.2.2 Data analysis 

 Preprocessing,  spike  sorting,  and  post-processing  was  completed  as  detailed  in  Chapter  2: 

 Methods  and  Materials.  Spatial  firing  analysis  was  performed  in  Python  3.8  and  statistics 

 calculated using the Scipy and Astropy modules. 

 4.2.3 Calculating spatial periodicity 

 4.2.3.1 Possible coding schemes 
 The  current  best  explanation  for  the  60  °  rotational  symmetry  in  firing  activity  postulates  grid 

 cells  form  a  network  that  follow  continuous  attractor  dynamics  (McNaughton  et  al.  2006)  .  In 

 this  framework,  neurons  are  organised  in  a  neural  sheet  by  their  spatial  phase,  and  exert 

 short  range  exhibition  and  long  range  inhibition  (with  a  mexican  hat  architecture)  or  short 

 range  inhibition  and  long  range  excitation  (with  an  inverted  Lincoln  hat  architecture).  Activity 

 can  be  translated  across  the  neural  sheet  in  accordance  with  the  animals  movement  in  the 

 environment  which  can  be  expressed  by  directional  and  speed  signals  from  head  direction 

 and  speed  cells  respectively.  As  grid  fields  are  stable  across  time  (Hafting  et  al.  2005)  , 

 allothetic  cues  likely  play  a  role  in  anchoring  field  positions  to  the  environment  such  as  the 

 environmental  boundaries  (Hardcastle,  Ganguli,  and  Giocomo  2015)  .  If  these  anchoring 

 dynamics  are  extrapolated  to  a  grid  cell  firing  on  a  virtual  reality  track  where  trials  are  run 

 and  then  animals  are  teleported  back  to  the  beginning,  field  positions  would  remain  fixed  and 

 grid  cells  would  potentially  break  their  periodic  firing  to  realign  to  the  track  and  its  cues 

 (  Figure  47  ).  On  the  other  hand,  if  an  animal  moves  forward  continuously  without  the 

 impedance  of  a  barrier,  it  follows  that  a  grid  cell  may  continue  its  periodic  firing  indefinitely, 

 without  realignment.  While  early  evidence  has  suggested  grid  cells  encode  the  allothetic 

 position  on  a  virtual  track  (Domnisoru,  Kinkhabwala,  and  Tank  2013)  ,  whether  this  is  a  stable 

 feature  of  the  grid  cell  system  is  unclear.  Moreover,  the  extent  to  which  specific  navigation 

 strategies guide the coding scheme is a completely untouched question. 
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 Figure  47.  The  dogmatic  view  of  grid  cell  firing  in  open  arenas  and  virtual  tracks.  (A) 

 mice  explore  open  arenas  and  virtual  reality  tracks  with  clear  landmark  cues  (yellow  and  red 

 markers).  (B)  Grid  fields  remain  stable  over  time  and  thus  thought  to  anchor  to  locations  in 

 both open arenas and virtual linear tracks. 
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 4.2.3.2 Quantification of spatial periodicity 
 Quantification  of  the  spatial  periodicity  that  will  be  used  to  distinguish  position  or  distance 

 coding  from  aperiodic  coding  can  be  achieved  by  estimating  the  periodicity  of  a  cell's  firing 

 rate  as  a  function  of  track  position.  If  a  cell  periodically  fires  at  the  same  locations  across  a 

 range  of  trials,  then  it  will  be  well  modelled  by  a  sinusoidal  wave  with  a  spatial  frequency  f 

 that  corresponds  to  a  firing  rate  profile  with  f  oscillations  per  track  length,  which  can  be 

 interpreted  for  grid  cells  to  be  the  number  of  firing  fields  observed  per  track  length.  If  a  cell 

 fires  periodically  but  its  firing  is  not  anchored  to  specific  track  positions,  the  firing  can  again 

 be  well  modelled  by  a  sinusoidal  wave,  however  the  phase  of  the  oscillations  will  fluctuate 

 between  trials  as  the  periodic  firing  rolls  over  on  consecutive  trials.  The  best  fit  sinusoidal 

 wave  with  spatial  frequency  f  will  approximately  represent  the  average  number  of  oscillations 

 (or  firing  fields)  per  track  length.  As  the  number  of  oscillations  remain  constant  for  position 

 coding  due  to  track  anchoring,  the  approximated  spatial  frequency  will  be  constrained  to 

 integer  values,  whereas  the  best  fit  spatial  frequency  for  distance  coding  without  track 

 anchoring  will  not.  Taken  together,  the  spatial  frequency  at  which  a  sinusoid  best  fits  the 

 firing  rate  of  a  measured  cell  can  be  used  to  distinguish  between  position  and  distance 

 coding. 
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 Figure  48.  Possible  coding  schemes  consistent  with  continuous  attractor  models. 
 Spatial  periodograms  predict  integer  peaks  for  allocentric  coding  grid  cells.  In  an  allocentric 

 coding  scheme,  a  grid  cell  fires  with  field  spacing  λ  and  resets  its  firing  every  trial  by 

 anchoring  its  fields  to  the  same  location.  A  realignment  lag  R  would  be  observed  in  the 

 spatial  autocorrelogram.  The  number  of  fields  remains  constant  on  each  trial  and  thus  is 

 approximated  with  an  integer  power  in  the  spatial  periodogram  (see  Figure  49  ).  In  an 

 egocentric  coding  scheme,  a  grid  cell  fires  with  field  spacing  λ  and  continues  to  fire  at  regular 

 intervals  without  anchoring.  Unless  field  spacing  and  the  track  length  are  integer  divisible, 

 the  number  of  fields  per  trial  varies,  and  thus  the  peak  of  the  spatial  periodogram 

 approximates the average number of fields per trial and will not be an integer frequency. 
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 To  quantify  a  cell’s  spatial  periodicity,  the  Lomb-Scargle  method  of  least-squares  spectral 

 analysis  (LSSA)  was  used  to  generate  a  periodogram  in  the  spatial  domain  (Lomb  1976; 

 Scargle  1982)  .  Similar  to  Fourier  analysis,  LSSA  is  a  method  that  approximates  the 

 composition of a signal into a linear combination of sinusoidal waves. 

 For  a  given  set  of  data  values  (in  this  case  a  cell’s  firing  rate)  h  i  =  1,  …,  N  at  respective 

 observation  points  p  i  (the  corresponding  track  locations  scaled  between  0  and  1)  the 

 Lomb-Scargle  periodogram  is  constructed  first  by  computing  the  data’s  mean  and  variance 

 by 
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 Finally  the  normalised  Lomb-Scargle  periodogram  (spectral  power  as  a  function  of  ω)  is 

 defined by 
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 These  equations  were  taken  from  (Press  and  Rybicki  1989)  and  edited  to  show  spatial 

 observation data points rather than time. 
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 LSSA  was  chosen  over  computing  the  Fourier  transform  as  it  can  handle  unequally  spaced 

 data  and  the  spectral  precision  is  not  constrained  by  the  length  of  the  data  samples.  For  grid 

 cells  that  fire  periodically  but  also  sporadically  such  that  their  firing  fields  might  appear  out  of 

 phase  with  each  other,  it  became  apparent  that  computing  a  frequency  spectrum  over  the  full 

 signal  would  not  be  optimal.  Instead,  a  spectral  estimate  was  computed  every  10  cm  with  a 

 sample  length  equal  to  3  track  lengths.  Spectral  estimates  were  concatenated  to  create  a 

 spatial  periodogram  across  the  session  and  averaged  across  trial  samples  to  generate  the 

 average  spatial  periodogram.  Peaks  in  this  periodogram  could  then  be  used  to  classify  a 

 cell’s  spatial  firing  properties  to  the  position  and  distance  coding  schemes.  The  peak  of  the 

 average  periodogram  can  be  interpreted  as  the  best  fitting  sinusoidal  component  for  the 

 signal.  The  spatial  frequency  of  this  component  is  equivalent  to  the  average  number  of  firing 

 oscillations  occurring  in  a  single  trial  and  the  power  is  proportional  to  the  relative  weight  of 

 the  component  in  the  signal.  A  summary  of  the  method  is  provided  in  Figure  49  .  Spatial 

 frequencies  >  5  were  discarded  from  further  analysis  as  no  grid  cells  were  found  with  grid 

 spacings < 40 cm. 
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 Figure  49.  Procedure  for  extracting  a  spatial  periodogram  for  a  set  of  spike 
 timestamps.  A  single  cell’s  spikes  are  binned  in  space  (1  cm  bin  size)  and  smoothed  using 

 a  Guassian  kernel  (standard  deviation  =  2  cm).  LSSA  was  computed  on  a  signal  equivalent 

 to  3  track  lengths  long  using  the  Lomb-scargle  implementation  in  the  Astropy  Python  module 

 (Δx  =  distance  elapsed  in  trials,  Δy  =  firing  rate).  The  signal  was  advanced  10  cm  and 

 repeated  for  the  whole  session.  All  spatial  periodograms  are  concatenated  and  averaged 

 across trials to generate the average spatial periodogram. 
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 4.2.3.3 Classifying spatial periodicity using a field shuffle method 
 The  average  spatial  periodogram  generated  as  explained  in  4.2.3.2  provides  a  useful  metric 

 for  quantifying  the  spatial  periodic  firing  properties  of  a  cell  on  repeated  trials  of  a  linear 

 track.  But  how  can  this  be  used  to  statistically  classify  a  cell  as  spatially  periodic?  What  if  the 

 cell  is  temporally  periodic?  And  is  that  sufficient  to  falsely  classify  a  cell  as  spatial  periodic 

 given  the  potential  for  coupling  between  space  and  time?  To  address  these  questions,  a 

 procedure  was  designed  to  compare  the  spectral  peaks  between  the  measured  cell  and  a 

 false  alarm  threshold  signifying  the  likelihood  of  the  peak  power  being  greater  than 

 chance-level  periodicity.  This  was  inspired  from  the  field  shuffle  procedure  used  for  grid  cells 

 in  2D  (Barry  and  Burgess  2017)  .  Available  analytical  and  numerical  approximations  of  a  false 

 alarm  threshold  were  not  suitable  for  statistical  comparisons  as  these  methods  generated 

 false  alarm  thresholds  based  on  signals  derived  from  Gaussian  noise  with  no  periodic 

 components  (Baluev  2007)  .  Furthermore,  as  neural  signals  are  known  to  have  temporal 

 dynamics  such  as  burst  firing  or  theta-modulated  firing,  it  was  important  these  features  were 

 incorporated  into  the  firing  properties  of  a  shuffled  cell  as  much  as  possible.  To  overcome 

 these  issues,  a  bootstrapping  method  was  devised  by  generating  1000  shuffled  instances  of 

 the  cell’s  firing  from  which  to  compare  against  the  measured  cell.  Measuring  the  spatial 

 periodicity  of  these  1000  shuffles  generated  a  distribution  of  peak  powers.  A  false  alarm 

 threshold  was  then  derived  from  the  99  th  percentile  of  the  peak  power  distribution.  If  the  cell’s 

 peak  power  was  greater  than  the  false  alarm  threshold,  the  peak  power  could  be  rejected  as 

 a false alarm and the cell could be classified as spatially periodic. 

 To  generate  a  shuffled  instance  with  disrupted  spatial  periodicity  while  preserving  any  local 

 temporal  firing,  first,  firing  fields  were  identified  in  a  highly  smoothed  version  of  the  cell’s 

 firing  rate  map  (Guassian  kernel,  standard  deviation  =  4  cm).  To  identify  fields,  the  peaks  and 

 troughs  of  the  highly  smoothed  firing  rate  map  were  first  identified,  with  a  minimum  peak 

 distance  of  20  cm,  smaller  peaks  were  removed  until  the  condition  was  satisfied  (see 

 scipy.signal.find_peaks).  Fields  were  defined  as  the  detected  trough  to  trough.  The  field 

 positions  were  reallocated  in  an  unsmoothed  rate  map  to  random  positions,  preserving  the 

 spatial  organisation  of  the  field  and  subsequently  bins  not  attributed  to  a  firing  field  filled  the 

 remaining  gaps.  The  shuffled  unsmoothed  rate  map  was  then  smoothed  (Guassian  kernel, 

 standard  deviation  =  2  cm)  and  spatial  periodogram  calculated  as  in  4.2.3.2  .  This  was 

 repeated  1000  times  and  the  99  th  percentile  calculated  from  the  distribution  of  shuffled  peak 

 power.  A  cell  that  had  a  peak  that  exceeded  this  99  th  percentile  was  classified  as  spatially 

 periodic.  The  procedure  is  summarised  in  Figure  50  .  If  the  cell  was  spatially  periodic,  it  was 

 either  consistent  with  an  allocentric  position  encoding  if  the  frequency  at  its  peak  power  was 

 within  5  %  of  an  integer  spatial  frequency  or  egocentric  distance  coding  if  it  was  outside  5  % 
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 of  an  integer  spatial  frequency.  Using  this  threshold  theoretically  fixes  the  false  positive  rate 

 of  true  distance-encoding  cells  classified  as  position-encoding  to  5  %,  as  distance-encoding 

 cells  can  have  peaks  at  any  spatial  frequency.  This  was  considered  sufficient  for  the 

 purposes  of  classifying  the  vast  majority  of  periodic  signals  correctly.  Figure  51  illustrates  the 

 spatial  periodograms  computed  from  different  cells  with  spatial  firing  properties.  For  spatially 

 periodic  cells,  the  measured  spatial  periodogram  peak  is  greater  than  the  false  alarm 

 threshold.  It  is  worth  noting  that  while  multiple  peaks  may  fall  above  the  false  alarm 

 threshold,  this  does  not  equate  to  the  signal  being  well  modelled  by  these  additional  spatial 

 frequencies.  Spectral  analysis  is  an  approach  used  to  approximate  the  signal  composition 

 from  a  set  of  sinusoidal  waves.  When  signals  do  not  correspond  with  perfect  sinusoidal 

 waves,  a  linear  combination  of  sinusoidal  waves  is  estimated  to  best  fit  the  signal,  which  may 

 fall  within  the  spatial  frequency  range  of  interest.  Therefore,  it  is  important  to  appreciate  that 

 only the peak spatial frequency is taken to estimate the periodicity of the signal. 
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 Figure  50.  Procedure  for  estimating  a  false  alarm  threshold  using  a  field  shuffle  for  a 
 given  cell.  A  single  cell’s  spikes  are  binned  in  space  (1  cm  bin  size)  and  smoothed  using  a 

 Guassian  kernel  (standard  deviation  =  4  cm).  Firing  fields  are  detected  and  field  bins 

 reallocated  in  an  unsmoothed  rate  map.  Bins  not  attributed  to  a  field  are  allocated  to  the 

 remaining  gaps.  This  rate  map  is  then  smoothed  with  a  Guassian  kernel  (standard  deviation 

 =  2  cm).  An  average  spatial  periodogram  is  calculated  and  peak  power  detected.  This  is 

 repeated  1000  times  and  a  false  alarm  threshold  assigned  from  the  99  th  percentile  of  the 

 shuffled cell’s peak power distribution. 
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 Figure  51.  Eight  example  cells  to  illustrate  the  expected  measured  periodicity  for 
 different  cell  types.  From  top  to  bottom  shows  the  spike  raster  by  trial,  firing  rate  map  by 

 trial,  spatial  periodogram  by  trial  and  the  trial-averaged  spatial  periodogram.  From  left  to 

 right,  the  example  cells  include  (i)  a  perfect  allocentric  grid  cell,  (ii)  a  perfect  egocentric  grid 

 cell,  (iii)  a  allocentric  grid  cell  with  field  jitter  ,  (iv)  an  egocentric  grid  cell  with  field  jitter,  (v)  a 

 perfect  place  cell,  (vi)  a  ramp-like  cell,  (vii)  randomly  positioned  fields  and  (viii)  Guassian 

 noise.  Within  each  example  shows  the  firing  rate  map  across  trials  (top  left  within  the 

 example  panel),  the  average  firing  rate  map  (bottom  left),  the  spatial  periodogram  (top  right), 

 the  average  spatial  periodogram  (bottom  right)  and  the  classification  labels  (true  and 

 predicted;  far  right).  Cells  that  are  spatial  periodic  in  nature,  either  over  some  spatial  interval 

 or  are  additionally  locked  to  features  of  the  track  will  show  a  peak  in  the  trial-averaged  spatial 

 periodogram  above  chance  level.  Spatial  firing  patterns  which  are  not  periodic  in  nature  will 

 show a peak in the trial-averaged spatial periodogram below chance level. 
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 4.2.3.4 Classifying spatial periodicity across a single session 
 To  classify  cells  throughout  the  recording  session,  rolling  windows  of  the  spatial  periodogram 

 were  averaged  over  200  data  samples  which  equated  to  10  trials  (20  samples  per  200  cm 

 track  with  10  cm  steps).  Similar  to  classifying  across  the  entire  session,  the  peak  of  the 

 average  spatial  periodogram  from  a  single  window  was  identified.  The  peak  power  and  the 

 frequency  at  which  this  occurred  were  extracted.  To  determine  if  the  peak  reflected  a  periodic 

 signal  that  occurred  above  chance  level,  it  was  compared  with  an  adjusted  false  alarm 

 threshold.  As  the  heights  of  average  periodogram  peaks  are  extracted  for  each  field  shuffle 

 to  generate  a  distribution  from  which  the  false  alarm  threshold  is  approximated,  peak  heights 

 vary  depending  on  the  number  of  samples  in  the  periodogram.  Figure  52  shows  how  the 

 false  alarm  threshold  changes  as  a  function  of  the  number  of  periodograms  used  to  compute 

 the  average  periodogram  from  a  representative  recording.  As  the  number  of  samples  within 

 the  rolling  window  increases,  the  false  alarm  threshold  decreases.  This  is  a  common  feature 

 across  all  cells.  The  adjusted  false  alarm  threshold  must  therefore  reflect  the  same  number 

 of  samples  to  have  the  same  statistical  purpose.  To  compute  this  adjusted  false  alarm 

 threshold,  for  each  field  shuffle,  the  first  200  samples  are  used  to  compute  the  average 

 periodogram,  thus  matching  the  number  of  samples  used  in  the  rolling  window  calculation. 

 The  99  th  percentile  of  peak  powers  from  1000  field  shuffles  is  used  as  the  adjusted  false 

 alarm threshold. 
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 Figure  52.  False  alarm  threshold  as  a  function  of  the  rolling  window  sample  size  from 
 a  single  recording,  n  =  30  cells.  The  false  alarm  threshold  is  defined  by  the  99  th  percentile 

 of  the  distribution  of  the  peak  power  of  the  average  spatial  periodogram  for  1000  shuffled 

 instances  of  a  cell’s  firing  rate  profile  across  the  full  session.  The  rolling  window  sample  size 

 is  defined  as  the  number  of  samples  of  spatial  periodograms  over  which  the  average  spatial 

 periodogram  is  computed.  The  false  alarm  threshold  decreased  asymptotically  in  all  cells 

 with an increase in rolling window sample size. 
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 4.2.3.5 Validation of periodicity classification 
 To  evaluate  classification  of  cells  as  positional  or  distance  coding  we  simulated  cell  types 

 including  grid  cells,  place  cells,  ramp  cells  and  aperiodic  cells  (  Figure  51  ).  For  each  cell  type, 

 we  simulated  an  agent  moving  with  a  constant  velocity  of  10  cm/s  across  100  trials  of  a  200 

 cm  long  linear  track  and  recorded  the  locations  visited  with  a  sampling  rate  of  1000  Hz.  For 

 each  cell-type  the  probability  of  firing  at  any  given  location  was  defined  by  a  probability 

 density  function  (PDF)  with  a  maximum  range  of  0  to  1,  with  1  equating  to  a  guaranteed  firing 

 event.  The  average  firing  rate  was  set  by  multiplying  this  normalised  PDF  by  a  scalar 

 variable  P  max  (spike)  which  by  default  was  set  to  0.1.  Firing  events  were  then  assigned  to 

 each  sampled  location  based  on  the  scaled  PDF.  Firing  rate  maps  and  subsequent  spatial 

 periodograms were created as described previously. 

 PDFs  for  grid  cells  were  created  by  positioning  Guassians  kernels  at  equidistant  locations 

 along  the  track,  with  kernel  standard  deviation  equal  to  0.1  multiplied  by  a  given  grid  spacing 

 between  the  kernels.  To  simulate  positional  grid  codes,  the  Guassian  kernels  were 

 positioned  at  the  same  track  location  on  each  trial,  whereas  to  simulate  distance  grid  codes 

 the  kernels  were  positioned  independently  from  the  track  with  distances  equal  to  the  grid 

 spacing.  To  simulate  field  jitter,  a  displacement  of  the  kernel  position  was  drawn  from  another 

 Guassian  distribution  with  M  =  0  cm  and  SD  =  0  cm  (for  no  jitter)  or  10  cm  (for  default  jitter). 

 A  random  variable  denoting  jitter  was  drawn  for  each  field  and  was  used  to  shift  the  field. 

 The  PDF  for  the  place  cell  example  was  made  up  of  a  singular  Guassian  kernel  (M  =  100 

 cm,  SD  =  10  cm)  positioned  at  the  centre  of  the  track  and  was  repeated  every  trial.  The  PDF 

 for  the  ramp  cell  example  consisted  of  a  linear  ramp  from  the  start  of  the  track  (0  cm)  to  the 

 end  of  the  track  (200  cm).  The  PDF  for  the  “random  field”  cell  was  created  by  first  generating 

 the  PDF  for  the  place  cell  example  and  then  passing  this  through  the  field  shuffle  as 

 explained above. The PDF for the noisy cell example was a uniform distribution. 

 To  generate  PDFs  of  grid  cells  alternating  between  positional  and  distance  codes, 

 representations  of  each  type  were  generated  and  merged  based  on  the  type  of  alternation. 

 For  the  simulations  that  alternated  in  blocks  of  trials,  the  initial  trial  was  randomly  assigned  to 

 either  the  anchored  PDF  or  the  non-anchored  PDF  with  equal  probability,  for  all  subsequent 

 trials  there  was  a  10%  chance  of  alternating  to  the  other  PDF  (e.g.  anchored  to 

 non-anchored  or  non-anchored  to  anchored).  For  simulations  that  alternated  at  the  level  of 

 single  trials,  every  trial  was  randomly  assigned  to  either  the  anchored  PDF  or  the 

 non-anchored PDF, with equal probability. 
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 To  gauge  the  accuracy  and  any  underlying  bias  in  our  classification  of  periodic  firing  at  the 

 level  of  individual  cells,  we  simulated  500  anchored  grid  cells  and  500  non-anchored  grid 

 cells  with  grid  spacings  uniformly  distributed  between  grid  spacings  of  40  -  400  cm  and 

 compared  the  true  labels  of  these  simulated  cells  with  the  predicted  classifications.  To 

 determine  what  spatial  frequency  tolerance  to  use  in  our  classification,  we  classified  the 

 simulated  dataset  across  a  range  of  spatial  frequency  thresholds  to  graph  at  which  spatial 

 frequency  tolerances  we  could  maximise  prediction  accuracy  and  minimise  the  estimation 

 bias  between  position  and  distance  encoding  classifications.  This  was  repeated  using  a 

 range  of  P  max  (Spike)  and  jitter  SD  values.  To  simplify  the  analysis,  no  field  shuffle  was 

 computed  on  simulated  data  within  this  particular  analysis  and  therefore  no  false  alarm 

 threshold  was  used.  This  effectively  forced  our  classifier  to  label  cells  position  or  distance 

 without  the  possibility  of  an  aperiodic  label.  The  prediction  accuracy  of  our  classification  was 

 calculated  as  the  percentage  of  true  position  and  distance-encoding  grid  cells  with  a  correct 

 prediction  label.  The  prediction  bias  was  calculated  as  the  difference  between  the  number  of 

 cells predicted as position-encoding and the number of cells predicted as distance-encoding. 

 Figure  53  shows  the  prediction  accuracy  is  above  80%  under  a  range  of  firing  parameters 

 when a spatial frequency tolerance close to zero is used. 

 Similarly,  to  gauge  the  accuracy  and  underlying  bias  in  our  classification  of  periodic  firing  at 

 the  level  of  individual  trials,  we  simulated  100  grid  cells  with  grid  spacings  uniformly 

 distributed  between  grid  spacings  of  40  -  400  cm  that  could  alternate  between  position  and 

 distance  encoding  either  in  blocks  of  trials  or  every  trial  (see  above)  and  compared  the  true 

 labels  of  these  simulated  cells  and  trials  with  the  predicted  classifications.  To  determine  how 

 many  spatial  periodograms  to  average  over  (or  if  any),  we  classified  the  simulated  dataset 

 across  a  range  of  rolling  window  sizes  to  graph  at  which  rolling  window  size  we  could 

 maximise  prediction  accuracy  and  minimise  the  estimation  bias  between  position  and 

 distance  encoding  classifications.  Again  this  was  repeated  This  was  repeated  using  a  range 

 of  P  max  (Spike)  and  jitter  SD  values  and  no  field  shuffles  were  computed.  The  prediction 

 accuracy  of  our  classification  was  calculated  as  the  average  percentage  of  true  position  and 

 distance-encoding  trials  with  a  correct  prediction  label.  The  prediction  bias  was  calculated  as 

 the  difference  between  the  true  difference  between  the  number  of  position  and  distance 

 encoding  trials  and  the  predicted  difference  between  the  number  of  position  and  distance 

 encoding  trials.  Figure  54  A  shows  several  examples  of  grid  cells  switching  between  position 

 and  distance  either  in  trial  blocks  or  at  the  level  of  individual  trials.  Figure  54  B  shows  the 

 prediction  accuracy  initially  increases  and  then  decreases  as  a  function  of  the  number  of 

 periodograms  used  in  the  rolling  classification.  Based  on  this  analysis,  it  is  clear  the 
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 classification  of  recorded  grid  cells  will  be  more  accurate  if  grid  cells  could  indeed  switch 

 periodic coding schemes in blocks rather than at the level of individual trials. 
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 Figure  53.  Classification  accuracy  and  bias  on  the  level  of  cell  as  a  function  of  spatial 
 frequency.  1000  grid  cells  were  simulated  as  per  section  4.2.3.5  .  Classifications  were  made 

 on  each  set  of  simulations  by  comparing  the  spatial  frequency  at  which  a  peak  occurred 

 within  the  average  spatial  periodogram.  The  difference  between  this  spatial  frequency  and 

 the  closest  positive  integer  was  calculated  as  used  to  classify  the  cell  into  the  position  cell 

 class  by  being  smaller  than  or  equal  to  a  given  spatial  frequency  threshold  or  into  distance 

 cell  class  by  being  greater  than  this  threshold.  Prediction  accuracy  (left)  and  bias  (right)  are 

 shown  as  a  function  of  the  spatial  frequency  from  a  positive-integer  used  for  the  spatial 

 frequency threshold. 
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 Figure  54.  Classification  accuracy  and  bias  on  the  level  of  trial  as  a  function  of  rolling 
 window  size.  (A)  Four  example  grid  cells  which  switch  between  anchored  and  non-anchored 

 periodic  firing.  Within  each  example  shows  the  firing  rate  map  across  trials  (top  left  within  the 

 example  panel),  the  average  firing  rate  map  (bottom  left),  the  spatial  periodogram  (top  right), 

 the  average  spatial  periodogram  (bottom  right)  and  the  classification  labels  (true  and 

 predicted;  far  right).  (B)  100  grid  cells  were  simulated  with  grid  spacings  between  40-400  cm 

 (randomly  assigned  individually)  and  classified  into  position  or  distance  encoding  cells  based 

 on  the  peak  spatial  frequency  measured  from  their  average  spatial  periodograms.  Each  grid 

 cell  was  simulated  as  a  periodic  set  of  firing  fields  following  on  a  linear  track  of  length  200  cm 

 and  with  100  trials.  Either  cells  were  simulated  as  position  encoding  by  anchoring  field 

 locations  to  track  locations  on  each  trial  or  by  continuously  the  periodic  field  locations  without 

 explicit  track  anchoring.  In  each  simulation,  there  was  an  equal  probability  of  anchoring  or 

 not  anchoring.  1000  simulations  were  repeated  over  different  spike  rate  probabilities  and 

 over  different  field  jitters  (as  defined  by  the  standard  deviation  of  the  field  locations  from  their 

 preassigned  locations).  Classifications  were  made  on  each  set  of  simulations  by  comparing 

 the  spatial  frequency  at  which  a  peak  occurred  within  the  average  spatial  periodogram.  If  the 

 difference  between  this  spatial  frequency  and  the  closest  positive  integer  was  smaller  than  or 

 equal  to  0.05  the  cell  was  classified  as  position-encoding  and  distance-encoding  otherwise. 

 Prediction  accuracy  (left)  and  bias  (right)  are  shown  as  a  function  of  the  number 

 periodograms  used  to  compute  rolling  classifications.  Each  line  shows  the  average  prediction 

 accuracy or bias across the 100 grid cells for a given parametrisation of the simulation. 
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 4.3 Results 

 Mice  with  neural  implants  targeting  the  MEC  were  recorded  while  performing  an  open  field 

 exploration  task  and  a  VR  linear  location  task.  Only  cells  that  fired  in  both  environments  and 

 recorded  from  mice  that  ran  a  minimum  of  10  trials  on  a  200  cm  track  were  analysed.  Grid 

 cells  were  recorded  from  nine  mice  across  three  separate  cohorts  (9  /  12)  and  252  sessions 

 (21.0  ±  8.6  per  mouse;  Table  5  ).  Of  the  2063  neurons  recorded  from  qualifying  sessions, 

 2050  fired  in  both  environments,  103  were  grid  cells  (5  %;  vs  1%  expected  from  the  grid  cell 

 classification  method  based  on  shuffling  with  a  99  th  percentile  grid  score  threshold;  see 

 2.8.2  ).  The  vast  majority  of  grid  cells  recorded  are  positively  assigned  to  the  MEC  (99.0  %; 

 102/103;  Table  5  ;  Figure  63  ).  As  a  result,  claims  made  concerning  grid  cells  are  primarily 

 with respect to MEC grid cell populations. 

 4.3.1 Grid cells encode position and distance on a linear track 

 What  spatial  coding  schemes  are  employed  by  grid  cells  on  the  linear  track?  In  order  to 

 address  this,  the  firing  rate  profiles  of  each  cell  were  classified  into  periodic  (position  and 

 distance  codes)  and  aperiodic  schemes  by  comparing  the  spatial  periodogram  of  the  firing 

 rate profile against chance-level (see  4.2.3.2  and  4.2.3.3  ). 

 Virtually  all  grid  cells  were  found  to  be  spatially  periodic,  with  97%  (100/103)  of  the 

 corresponding  spatial  periodograms  containing  a  peak  power  greater  than  the  false  alarm 

 threshold  derived  from  the  field-shuffled  analysis.  The  majority  of  grid  cells  were  found  to  be 

 position  encoding  (68/103)  while  a  significant  proportion  were  found  to  encode  distance 

 (32/103).  A  handful  of  grid  cells  were  not  classified  to  position  or  distance  coding  (3/103). 

 Several  examples  are  shown  in  Figure  55  .  In  comparison  to  non-grid  cells,  position  encoding 

 grid  cells  were  observed  in  similar  proportions  as  position  encoding  non-grid  cells  (66%  grid 

 cell  position  encoding  vs  67%  non-grid  cell  position  encoding).  Distance  encoding  grid  cells 

 however  were  observed  in  greater  proportions  to  non-grid  cells  (31.1%  grid  cell  distance 

 encoding  vs  17.6%  non-grid  cell  distance  encoding).  This  left  a  small  proportion  of  aperiodic 

 cells  in  the  grid  cell  population  while  there  was  a  significant  proportion  in  the  non-grid  cell 

 population  (2.9%  grid  cell  encoding  aperiodically  vs  15.7%  non-grid  cell  encoding 

 aperiodically). 

 To  characterise  the  cells  in  each  coding  population,  features  of  the  periodicity  and  firing  such 

 as  the  peak  power,  the  peak  width  and  the  mean  firing  rate  were  compared  between  groups. 

 Peak  width  was  defined  as  the  difference  between  trough  to  trough  within  the  average  spatial 

 periodogram  that  contained  the  peak.  Of  the  two  periodic  coding  populations,  peak  power 
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 was  significantly  greater  in  position  encoding  neurons  than  distance  (DF  =  98,  P  =  0.0007,  T 

 =  1549.0,  Mann-Whitney  U  test),  showing  the  periodic  firing  patterns  of  position  encoding 

 neurons  was  better  explained  by  a  single  sinusoidal  component  than  for  distance  encoding 

 neurons.  As  distance  encoding  neurons  are  not  locked  to  cues  on  the  track,  the  code  might 

 be  more  susceptible  to  accumulating  positional  errors  that  could  broaden  the  peak  in  the 

 spatial  periodogram.  It  is  therefore  possible  the  differences  in  peak  power  between  coding 

 schemes  reflect  the  spatial  irregularities  of  firing  fields  of  distance  encoding  neurons. 

 Consistent  with  this  idea,  distance  encoding  neurons  in  general  had  a  wider  distribution  of 

 peak  widths  compared  to  position  encoding  neurons  (DF  =  98,  P  =  0.0001,  KS  =  0.46, 

 Kolmogorov-Smirnov  test).  Mean  firing  rates  weren’t  drastically  different  between  encoding 

 neurons  (position  vs  distance,  5.0  ±  3.9  vs  3.9  ±  2.6,  DF  =  98,  P  =  0.21,  T  =  1257.0, 

 Mann-Whitney  U  test)  however  aperiodic  encoding  grid  cells  did  fire  less  than  position  or 

 distance  encoding  grid  cells  (position  vs  aperiodic,  5.0  ±  3.9  vs  1.0  ±  0.9,  DF  =  69,  P  =  0.011, 

 T  =  185.0;  distance  vs  aperiodic,  3.9  ±  2.6  vs  1.0  ±  0.9,  DF  =  33,  P  =  0.02,  T  =  10.0, 

 Mann-Whitney  U  tests).  This  suggested  aperiodic  coding  of  grid  cells  could  be  explained  by 

 cells that fired significantly less on the linear track. 
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 Figure  55.  Grid  cells  encode  track  location  using  allocentric  and  egocentric  coding 
 schemes.  Three  example  cells  from  allocentric  and  egocentric  coding  cells  (position  and 

 distance  respectively)  and  a  single  example  of  a  cell  encoding  neither  schemes.  From  top  to 

 bottom  plots  show:  VR  firing  rate  map  across  trials,  VR  trial-averaged  firing  rate  map,  VR 

 spatial  autocorrelation,  VR  session-averaged  spatial  periodogram,  open  field  firing  rate  map 

 and  open  field  spatial  autocorrelogram.  Shaded  regions  indicate  the  standard  error  of  the 

 mean  for  the  VR  trial-averaged  firing  rate  map  and  VR  session-averaged  spatial 

 periodogram.  The  red  line  indicates  the  false  alarm  threshold  estimated  from  a  field  analysis 

 shuffle  and  peaks  are  labelled  with  a  triangle.  X-axis  scales  are  adjusted  on  VR  spatial 

 autocorrelation for several examples to visualise the long-range periodic signal. 
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 Figure  56.  Population  statistics  of  position  and  distance  encoding  neurons.  (A) 

 Percentage  of  grid  cells  classified  to  position,  distance  and  aperiodic  groups  (left),  the 

 distribution  of  recorded  grid  cells’  peak  spatial  frequency  and  power  minus  the  field  shuffle 

 false  alarm  threshold  (middle)  and  the  corresponding  distribution  where  the  difference  from 

 an  integer  (Δ  from  int)  is  the  difference  between  the  spatial  frequency  and  the  nearest 

 positive  integer  (right).  The  Y  value  indicates  the  difference  between  the  peak  power  and  the 

 false  alarm  threshold.  Red  dashed  line  indicates  the  false  alarm  threshold.  (B)  Same  as  A  for 

 the  non-grid  cell  population.  (C)  Comparison  of  peak  power,  peak  width  and  mean  firing  rate 

 between  position,  distance  and  aperiodic  encoding  grid  cells  with  (top)  cumulative 

 histograms and (bottom) box plots. 
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 4.3.2 Grid cells are not locked to a single coding scheme 

 Is  position  or  distance  coding  by  grid  cells  stable  within  a  session  (  Figure  57  A)  or  can  the 

 spatial  code  change  within  it?  (  Figure  57  B).  For  example,  a  change  between  position  and 

 distance  coding  might  be  prompted  by  the  gain  or  loss  of  cue  anchoring  dynamics.  Initial 

 analyses  have  shown  both  position  and  distance  codes  are  exhibited  by  grid  cells,  but 

 whether  these  differences  reflect  unique  populations  of  grid  cells  or  reflect  changes  at  the 

 level  of  spatial  firing  dynamics  is  not  clear.  To  test  this,  I  calculated  a  rolling  average  of  the 

 spatial  periodogram  across  trials  and  computed  the  peak  powers  and  their  corresponding 

 spatial  frequencies  to  classify  the  spatial  coding  of  a  cell  throughout  the  session.  All  trials  of 

 each  trial  type  were  included  in  this  analysis.  If  grid  cells  are  locked  to  a  single  coding 

 scheme  then  their  classification  will  be  stable  across  the  session.  On  the  other  hand,  if  grid 

 cells  can  switch  between  coding  schemes,  their  classifications  too  will  change  throughout  the 

 session.  To  quantify  this,  I  assigned  neurons  that  encoded  a  single  coding  scheme  for 

 greater  than  85  %  of  the  session  to  a  stable  coding  group  and  cells  that  encoded  a  single 

 coding  scheme  for  less  than  85  %  of  the  session  to  an  unstable  coding  group.  I  found  most 

 cells  originally  assigned  as  position  and  distance  cells  were  unstable  when  classified  on  a 

 rolling  basis  and  these  cells  commonly  switched  between  position  and  distance  codes 

 (76/103;  73.8  %).  This  is  illustrated  in  Figure  57  D,  as  a  large  proportion  of  position-encoding 

 grid  cells  (PG)  and  distance-encoding  grid  cells  (DG)  cells  were  found  to  encode  the 

 alternative  periodic  coding  scheme  (i.e.  PG  cells  encoding  distance  and  DG  cells  encoding 

 position  for  significant  portions  of  the  session),  while  PG  and  DG  cells  did  not  encode 

 aperiodic  coding  schemes  for  significant  portions  of  the  session.  A  minority  of  cells  did 

 exhibit  stable  periodic  codes  (27/103;  26.2  %).  Examples  of  each  type  are  shown  in  Figure 

 57  C. 

 To  test  whether  codes  change  at  behaviourally-relevant  timescales  (compatible  with  changes 

 in  behaviour),  I  quantified  the  proportion  of  a  session  in  which  a  grid  cell  continuously  coded 

 a  single  periodic  code  into  coding  blocks.  I  then  compared  the  true  block  lengths  against 

 block  lengths  measured  when  trials  were  shuffled  and  rolling  classifications  were 

 recomputed  (  Figure  58  A).  If  coding  is  maintained  across  a  sequence  of  trials,  the  distribution 

 of  true  block  lengths  will  be  skewed  to  longer  block  lengths  compared  to  the  shuffled  trials 

 blocks.  Alternatively,  if  coding  switched  every  trial  or  at  a  timescale  shorter  than  the  typical 

 duration  of  a  trial,  the  block  lengths  between  the  true  and  shuffled  trials  would  be  similar. 

 Only  cells  that  exhibited  unstable  periodic  coding  were  used  in  this  analysis.  I  found  the 

 distribution  of  true  block  lengths  was  significantly  different  from  the  shuffled  trial  blocks 
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 length  (  Figure  58  B;  DF  =  1765,  2359,  P  =  0.0003,  Ks  =  0.066,  Kolmogorov-Smirnov  test) 

 consistent with coding remaining stable over behaviourally-relevant timescales. 

 Taken  together,  this  analysis  shows  that  classification  on  the  level  of  cells  fails  to  capture  the 

 fluidity  of  the  recorded  grid  coding  as  single  grid  cells  can  switch  between  position  and 

 distance  codes  within  a  session.  These  switches  could  reflect  changes  in  task  behaviour  or 

 task  perception  as  these  switches  occur  on  the  scale  of  tens  of  trials  which  is  consistent  with 

 behaviourally-relevant changes. 

 155 



 Figure  57.  Grid  coding  throughout  a  training  session.  (A,B)  Grid  cells  either  maintain  a 

 coding  scheme  or  remap  within  a  session  (top).  Remapping  events  occur  when  the  coding 

 scheme  changes  within  the  session.  These  remapping  events  can  be  hypothesised  by  the 

 gating  of  speed  and  visual  information  to  grid  cells  (bottom).  (C)  Examples  of  neurons 

 exhibiting  constant  positional  coding,  constant  distance  coding  and  remapping  events.  From 

 top  to  bottom,  plots  show  the  firing  rate  map  across  trials,  spatial  periodogram  across  trials 

 and  the  session-averaged  spatial  periodogram.  Average  periodograms  are  computed  across 

 trials  corresponding  to  position  and  distance  coding  separately.  (D)  Histograms  of  the 

 fraction  of  a  recording  session  grid  cells  were  encoding  position,  distance  or  neither.  Colours 

 in  the  histogram  indicate  the  initial  classification  of  the  neurons  to  the  position,  distance  or 

 unclassified  groups.  The  red  line  indicates  the  point  at  which  a  grid  cell  can  be  considered  to 

 encode position or distance stably. 
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 Figure  58.  Comparison  of  the  length  of  periodic  coding  blocks.  (A)  Schematic  illustrating 

 how  coding  blocks  are  recomputed  from  shuffling  spikes  at  the  level  of  trials.  Spike  locations 

 are  reallocated  to  a  new  position  in  the  firing  profile  based  on  the  random  shuffling  of  trials. 

 With  these  new  spike  locations,  the  rolling  classification  is  recomputed  and  coding  blocks 

 can  be  measured.  (B)  Cumulative  histogram  of  block  lengths  for  the  observed  grid  cells  (red) 

 and  the  same  grid  cells  with  the  trial  order  shuffled  and  blocks  recalculated  (grey).  P  value 

 for the Kolmogorov-Smirnov test is labelled above. 
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 4.3.3 Pairs of grid cells switch between periodic coding schemes coherently 

 Does  the  spatial  coding  of  one  grid  cell  coincide  with  the  spatial  coding  of  another?  In  other 

 words,  do  grid  cells  switch  between  periodic  coding  schemes  coherently?  Individual  grid 

 modules  are  well  modelled  by  continuous  attractor  dynamics  (K.  Yoon  et  al.  2013;  Gardner  et 

 al.  2022)  .  Consistent  with  this,  neurons  maintain  phase  relationships  across  environments 

 (Caswell  Barry  et  al.  2007;  Waaga  et  al.  2022)  and  are  similarly  maintained  in  sleep  (Trettel 

 et  al.  2019;  Gardner  et  al.  2019;  2022)  .  In  line  with  this  coherence,  I  predicted  pairs  of  grid 

 cells  recorded  within  the  same  recording  session  would  change  coding  schemes  at  the  same 

 points  during  a  session.  To  test  this,  I  compared  the  positions  of  the  coding  blocks  with  a 

 shuffled  arrangement  of  the  coding  blocks  within  the  population  of  remapped  grid  cells 

 (  Figure  59  B).  I  computed  an  agreement  score  as  the  proportion  of  the  session  where  codes 

 between  a  pair  of  grid  cells  overlapped.  An  agreement  matrix  in  Figure  59  C  illustrates  the 

 agreement  between  all  pairs  of  grid  cells  from  a  single  recording  and  the  corresponding 

 agreement  when  the  blocks  are  shuffled  and  an  average  computed  across  100  shuffles. 

 Shuffling  the  coding  blocks  and  computing  an  average  across  shuffles  provides  an  estimate 

 of  the  expected  agreement  score  if  grid  coding  is  independent  of  other  grid  cell  coding. 

 Agreements  were  compared  between  the  observed  and  shuffled  grid  cell  pairs  and  revealed 

 the  observed  agreements  were  significantly  greater  than  the  corresponding  shuffled 

 agreements  (DF  =  121,  P  <  1e-18,  T  =  290.0;  Wilcoxon  sign-rank  test).  This  result  is 

 consistent  with  the  coherent  remapping  of  grid  cell  modules  as  previously  observed  (Caswell 

 Barry  et  al.  2007;  H.  Stensola  et  al.  2012)  .  Interestingly,  grid  cells  28  and  31  appeared  to  be 

 less  coherent  with  all  other  simultaneously  recorded  grid  cells.  Grid  cell  28  was  the  only  cell 

 classified  as  a  distance-encoding  cell  whereas  grid  cell  31  was  classified  as  a 

 position-encoding  cell.  The  lack  of  coherence  might  be  explained  by  these  cells  belonging  to 

 different  grid  modules,  as  both  cells  differed  from  a  spatial  frequency  of  2  at  which  the  peak 

 power  was  observed.  Grid  spacings  as  calculated  from  the  corresponding  open  field  session 

 did  indicate  that  grid  cell  31  had  a  larger  grid  spacing  than  the  remaining  recorded  grid  cells 

 but  this  was  not  the  case  for  grid  cell  28  (Grid  spacing:  GC  28  =  58.1  cm  vs  GC  session 

 average  =  66.8  ±  11.8  cm,  GC  31  =  77.0  cm  vs  GC  session  average  =  63.6  ±  11.1  cm).  If  grid 

 cell  31  does  indeed  belong  to  a  different  grid  module,  this  further  highlights  coherent 

 remapping  might  be  a  feature  of  independently  remapping  grid  modules  (Caswell  Barry  et  al. 

 2007;  H.  Stensola  et  al.  2012)  however  many  more  neurons  across  multiple  grid  modules  will 

 need to be recorded from in order to deliver strong evidence for this. 
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 Figure  59.  Grid  cells  switch  between  coding  schemes  coherently.  (A)  Joint  activity  of  7 

 simultaneously  recorded  grid  cells.  From  top  to  bottom,  plots  show  the  firing  rate  map  across 

 trials,  spatial  periodogram  across  trials,  and  the  average  spatial  periodogram.  (B)  (I) 

 Encoding  blocks  are  shuffled  by  positioning  whole  encoding  blocks  at  random  positions  and 

 (II)  an  agreement  score  calculated  based  on  the  proportion  of  the  session  where  coding 

 blocks  overlap  between  two  cells.  This  is  repeated  100  times  per  shuffle  and  average 

 agreement  score  calculated  (C)  Agreement  matrix  for  the  coding  scheme  across  a  session 

 for  the  example  cells  in  A  for  the  true  comparison  and  between  shuffled  blocks.  (D) 

 Agreements  between  the  true  grid  pairs  and  the  block  shuffled  pairs  test  whether  coding 

 blocks  agree  within  a  session  between  pairs  of  grid  cells  above  chance  level  (122  grid  pairs 

 across  18  sessions).  Only  cells  without  a  stable  coding  scheme  were  compared  (<  85  %  of  a 

 stable coding scheme; Wilcoxon sign-rank test). 
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 4.3.4 Grid coding is associated with path integration-dependent behaviours 

 Are  the  periodic  coding  schemes  of  grid  cells  associated  with  spatial  behaviours  presented 

 by  the  animal?  First,  a  ‘by-cell’  analysis  was  considered.  Stopping  behaviour  was  collated 

 from  all  sessions  in  which  stable  position  coding  and  distance  encoding  grid  cells  were 

 found.  Histograms  of  these  stops  indicated  there  was  no  apparent  difference  between 

 position  and  distance  coding  grid  cells  for  beaconed  trials  but  there  was  a  large  difference  for 

 non-beaconed  trials  (  Figure  60  A).  To  quantify  these  differences,  the  percentage  of  correct 

 trials,  the  amplitude  of  the  peak  of  the  stop  histogram  within  the  reward  zone  and  the  location 

 of  the  peak  were  all  compared  between  coding  schemes  for  each  trial  type.  Sessions  which 

 contained  at  least  one  stable  position  encoding  grid  cell  were  no  more  successful  during  the 

 beaconed  trials  than  sessions  which  contained  at  least  one  stable  distance  encoding  grid  cell 

 (DF  =  18,  P  =  0.057,  T=  75.0,  Mann-Whitney  U  test).  This  was  not  the  case  on 

 non-beaconed  trials,  as  sessions  which  contained  at  least  one  stable  position  encoding  grid 

 cell  were  more  successful  than  sessions  which  contained  at  least  one  stable  distance 

 encoding  grid  cell  (DF  =  18,  T  =  92.0,  P  =  0.001,  Mann-Whitney  U  test).  This  was  further 

 reflected  when  comparing  the  peak  of  the  stopping  histogram  within  the  reward  zone  which 

 corresponds  to  how  frequently  across  all  trials  the  animal  successfully  stopped  in  the  reward 

 zone  (beaconed  trials,  DF  =  18,  P  =  0.32,  T=  76.0;  non-beaconed  trials,  DF  =  18,  P  =  0.002, 

 T  =  82.0,  Mann-Whitney  U  test).  The  peak  location  of  the  stopping  histogram  did  not  differ 

 between  coding  schemes  for  either  trial  type  (beaconed  trials,  DF  =  18,  P  =  0.06,  T=  40.5; 

 non-beaconed trials, DF = 18, P = 0.44, T = 31.5, Mann-Whitney U test). 

 As  the  majority  of  grid  cells  displayed  some  level  of  remapping,  a  ‘by-trial’  analysis  was 

 considered  to  address  whether  position  and  distance  coding  were  aligned  to  success  or 

 failures.  To  test  this,  the  spatial  behaviours  from  both  beaconed  and  non-beaconed 

 behaviours  were  compared  across  trials  in  which  grid  cells  were  found  to  encode  position 

 and  distance.  Trials  were  grouped  by  three  different  factors,  (1)  trial  type,  (2)  trial  outcome, 

 and  (3)  the  dominant  coding  scheme  observed  by  the  grid  cell.  In  this  analysis,  all  grid  cells 

 were  included  rather  than  the  small  subset  of  stable  encoding  grid  cells.  Similar  to  the 

 ‘by-cell’  analysis,  the  stopping  histogram  appeared  to  show  no  apparent  differences  in 

 stopping  behaviour  on  beaconed  trials  but  possibly  differences  on  non-beaconed  trials 

 (  Figure  60  B).  Beaconed  trials  in  which  grid  cells  encoded  position  were  no  more  successful 

 than  beaconed  trials  in  which  grid  cells  encoded  distance  (DF  =  80,  P  =  0.3,  T  =  1198.0, 

 Wilcoxon  sign-rank  test).  On  the  other  hand,  non-beaconed  trials  in  which  grid  cells  encoded 

 position  were  significantly  more  successful  than  non-beaconed  trials  in  which  grid  cells 

 encoded  distance  (DF  =  80,  P  <  1e-4,  T  =  586.5;  Wilcoxon  sign-rank  test).  Comparing  the 
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 peak  amplitude  of  the  stopping  histogram  within  the  reward  zone  revealed  more  successful 

 stops  occurred  on  position-encoding  trials  than  distance-encoding  trials  for  non-beaconed 

 trials  but  wasn’t  the  case  on  beaconed  trial  (beaconed  trials,  DF  =  81,  P  =  0.57,  T=  1541.0; 

 non-beaconed  trials,  DF  =  81,  P  =  0.0007,  T  =  943.0,  Mann-Whitney  U  test).  Again,  the 

 peak  location  of  the  stopping  histogram  did  not  differ  between  coding  schemes  for  either  trial 

 type  (beaconed  trials,  DF  =  81,  P  =  0.88,  T=  1216.0;  non-beaconed  trials,  DF  =  81,  P  =  0.83, 

 T  =  1216.0,  Mann-Whitney  U  test).  Several  example  remapped  grid  cells  are  shown  in  Figure 

 61  .  From  these  examples,  it  is  clear  engagement  in  non-beaconed  but  not  beaconed  tasks 

 align  with  positional  coding  of  grid  cells  suggesting  anchoring  of  track  cues  is  required  for 

 successful non-beaconed trials. 

 To  complement  the  ‘by-trial’  analysis,  it  was  considered  what  proportion  of  different  trial 

 outcomes  corresponded  to  particular  coding  schemes.  To  address  this,  trials  were  classified 

 in  both  the  trial  outcome  and  the  coding  scheme  of  a  recorded  grid  cell.  The  percentage  of 

 trials  that  were  classified  as  a  particular  coding  scheme  was  calculated  for  each  trial 

 outcome.  Figure  62  shows  that  as  the  quality  of  the  trial  outcome  increases  (hit  >  try  >  run), 

 the  proportion  of  trials  that  correspond  to  position-encoding  also  increase  in  non-beaconed 

 but  not  beaconed  trials.  Conversely,  the  proportion  of  trials  that  correspond  to 

 distance-encoding  decreases  as  a  function  of  trial  outcome  in  non-beaconed  trials  but  not 

 beaconed  trials.  Using  a  one-way  ANOVA,  trial  outcome  was  found  to  be  a  significant  factor 

 in  the  variation  of  the  proportion  of  position-encoding  in  non-beaconed  trials  but  not  in 

 beaconed  trials  (beaconed,  DF  =  32,  P  =  0.6,  F  =  0.51;  non-beaconed,  DF  =  76,  P  <  1e-7,  F 

 = 20.2). 

 Taken  together,  these  results  indicated  that  the  spatial  behaviours  displayed  were  indeed 

 different  between  sessions  containing  position  and  distance  encoding  grid  cells  as  well  as  at 

 the  level  of  trial,  though  only  for  non-beaconed  trials.  As  path  integration  is  required  for 

 successful  stopping  on  non-beaconed  trials,  these  results  provide  evidence  that  positional 

 coding of grid cells is associated with successful path integration operations. 
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 Figure  60.  Comparison  of  spatial  behaviour  during  position  and  distance  encoding 
 trials.  (A)  Cells  assigned  to  the  stable  position  and  stable  position  group  were  compared  by 

 each  trial  type  by  their  (left  to  right)  stopping  histogram,  hit  percentage,  peak  amplitude  of 

 stops  in  the  reward  zone  and  location  of  the  stopping  peak.  (B)  Same  as  in  A  but  in  this 

 analysis,  all  grid  cells  were  included  and  trials  partitioned  based  on  whether  the  grid  cell  was 

 encoding  position  or  distance.  Shaded  region  of  the  stop  histogram  shows  standard  error  of 

 the mean across cells. 
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 Figure  61.  Stopping  behaviours  during  grid  cell  position  and  distance  encoding  trials. 
 Three  example  grid  cells  from  three  separate  sessions  are  shown.  From  left  to  right,  plots 

 show  the  stop  histogram  during  position  and  distance  encoding  beaconed  trials,  likewise  with 

 non-beaconed  trials,  the  firing  rate  map  across  all  trials,  the  spatial  periodogram  with 

 rolling-window  classifier,  the  active  engagement  in  the  task  showing  beaconed  and 

 non-beaconed  trials  separately.  The  number  of  trials  used  to  construct  the  stop  histograms 

 are  labelled  on  each  histogram.  Animals  are  considered  engaged  in  the  task  if  they  do  not 

 exceed  a  streak  of  3  successive  failed  trials  for  a  given  trial  type.  Shaded  regions  of  the  stop 

 histogram  indicate  the  standard  error  of  the  mean  across  trials.  Peak  firing  rates  are  given  for 

 the firing rate maps. 
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 Figure  62.  Proportion  of  hit,  try  and  run  trials  corresponding  to  position,  distance  or 
 aperiodic  coding  schemes.  Trials  from  sessions  with  at  least  one  recorded  grid  cell  were 

 grouped  based  on  trial  outcome.  For  each  grid  cell,  the  percentage  of  trials  classified  to 

 position,  distance  or  aperiodic  coding  was  calculated  for  each  trial  outcome.  To  test  the 

 influence  of  trial  outcome  on  the  occurrence  of  a  particular  coding  scheme,  a  one-way 

 ANOVA  was  computed  across  the  percentage  encoding  for  the  position  coding  scheme 

 (beaconed,  DF  =  32,  P  =  0.6,  F  =  0.51;  non-beaconed,  DF  =  76,  P  <  1e-7,  F  =  20.2;  shown  in 

 figure),  Consistent  with  positional  but  not  distance  or  aperiodic  coding  being  beneficial  for 

 path  integration  behaviours,  quantifying  the  influence  of  the  trial  outcome  on  the  occurrence 

 of  distance  and  aperiodic  coding,  showed  distance  coding  was  detrimental  to  accurate  path 

 integration  but  not  beaconing  (beaconed,  DF  =  32,  P  =  0.08,  F  =  2.6;  non-beaconed,  DF  = 

 76,  1  <  1e-6,  F  =  16.8;  not  shown  in  figure),  while  aperiodic  coding  was  not  found  to  be 

 linked  to  trial  outcomes  (beaconed,  DF  =  32,  P  =  0.14,  F  =  2.1;  non-beaconed,  DF  =  76,  P  = 

 0.6, F = 0.51; not shown in figure). 

 164 



 4.4 Discussion 

 Following  the  identification  of  grid  cell  firing  on  the  virtual  reality  track,  I  asked  what  coding 

 scheme  was  being  utilised  throughout  the  linear  location  task.  I  found  the  vast  majority  of 

 recorded  grid  cells  (97.1  %;  100/103)  demonstrated  periodic  spatial  firing  which  could  either 

 be  assigned  to  a  positional  firing  scheme  (68/103),  which  corresponds  to  periodic  firing  that 

 was  anchored  and  reset  by  features  of  the  track  or  a  distance  encoding  firing  scheme 

 (32/103),  which  corresponds  to  periodic  firing  that  did  not  anchor  or  reset  with  features  of  the 

 track.  The  first  recordings  of  grid  cells  on  virtual  tracks  suggested  all  grid  cells  would  anchor 

 to  salient  features  of  the  track  (Domnisoru,  Kinkhabwala,  and  Tank  2013)  ,  however  my 

 findings  are  the  first  to  demonstrate  grid  cells  are  not  strictly  anchored  to  track  cues  but 

 rather  remap  between  position  and  distance  codes.  The  remainder  of  grid  cells  did  not 

 demonstrate  any  periodic  firing  signal  (2.9  %;  3/103).  Whether  this  small  percentage  reflects 

 a  true  subset  of  grid  cells  that  lose  periodic  firing  properties  when  recorded  in  a  virtual  linear 

 location  estimation  task  is  unclear.  These  cells  might  reflect  a  subset  of  false  positive  grid 

 cells,  or  may  indeed  be  true  grid  cells.  Recording  from  more  grid  cells  either  with  high  density 

 probes  or  in  greater  numbers  of  mice  will  add  power  to  address  whether  grid  cells  can  lose 

 their  periodic  firing  in  virtual  environments.  Alternatively,  an  altered  experimental  design 

 could  be  employed  whereby  an  open  field  recording  session  takes  place  before  and  after  the 

 linear  location  task.  Only  cells  that  qualify  as  grid  cells  in  both  open  field  sessions  would  be 

 considered  true  grid  cells.  This  conservative  classification  would  more  likely  eliminate  false 

 positive grid cells and afford an analysis of the periodic firing of true grid cells. 

 Of  the  grid  cells  that  exhibited  periodic  firing,  the  majority  (64  %;  64/100)  were  found  to 

 remap  between  position  and  distance  codes  (<85  %  of  the  session  occupied  by  a  single 

 coding  coding  scheme)  while  the  remainder  were  found  to  maintain  the  same  coding  scheme 

 throughout  the  session  (>85  %  of  the  session  occupied  by  a  single  coding  coding  scheme). 

 Whether  this  remapping  occurs  in  open  field  settings  is  less  clear  as  many  more  salient  cues 

 are  available.  Accumulations  of  grid  coding  errors  away  from  boundaries  of  open  field  arenas 

 (Hardcastle,  Ganguli,  and  Giocomo  2015)  may  reflect  a  loss  of  cues  in  which  to  anchor  to, 

 which  in  turn  may  reflect  the  distance  coding  scheme  observed  in  this  chapter.  In  virtual  track 

 studies,  Low  et  al.  (2021)  employed  a  similar  task  analogous  to  the  beaconed  linear  location 

 task  shown  in  this  thesis.  They  found  cells  in  the  entorhinal  cortex  remapped  between 

 multiple  stable  position  coding  schemes  and  also  unstable  coding  schemes  which  may  have 

 been  the  observed  distance  coding  scheme.  The  authors  reported  the  remapping  events 

 were  instigated  by  changes  in  running  speed.  Contrary  to  their  findings,  I  found  remapping 

 between  position  and  distance  coding  schemes  was  consistent  with  the  level  of  task 
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 engagement  for  the  non-beaconed  trials  but  not  beaconed  trials.  As  the  task  used  by  Low  et 

 al.  (2021)  lacked  non-beaconed  trials,  the  authors  could  not  look  at  the  same  path 

 integration-specific  behaviours.  Low  et  al.  (2021)  also  found  remapping  events  occurred  at 

 the  same  time  for  concurrently  recorded  entorhinal  cells.  Consistent  with  these  results,  I 

 found  grid  cell  pairs  recorded  together  remap  at  the  same  time.  Taken  together,  these  results 

 are  consistent  with  the  coherent  spatial  firing  properties  of  individual  grid  modules,  however 

 whether  individual  grid  modules  can  remap  independently  of  other  modules  remains  to  be 

 seen  as  this  requires  high  density  neural  probes  to  record  from  numerous  grid  cells  that  span 

 across  different  modules.  This  was  not  addressed  by  Low  et  al.  (2021)  but  could  easily  be 

 looked at within the high density probe dataset they collected. 

 4.4.1 Technical challenges 

 I  came  across  several  issues  during  the  analysis  described  in  this  chapter  which  warrants 

 discussion  for  any  researcher  looking  to  build  upon  these  analyses.  To  address  the  spatial 

 firing  properties  of  grid  cells  during  the  linear  location  task,  mice  were  trained  in  the  linear 

 location  task  and  placed  in  an  open  field  arena  to  freely  explore.  After  this,  I  required  a 

 method  of  identifying  neurons  across  these  environments  following  spike  sorting.  I  added  a 

 feature  to  the  electrophysiology  analysis  pipeline  established  by  Sarah  Tennant  and  Klara 

 Gerlei,  to  concatenate  and  spike  sort  any  number  of  recording  sessions  together.  Spikes 

 were  assigned  to  clusters  across  all  recording  sessions  which  avoided  the  need  for 

 parameterized methods of cluster-matching. 

 Once  all  grid  cells  were  identified  and  their  spatial  firing  properties  could  be  analysed  on  the 

 virtual  track,  a  method  was  required  to  classify  the  coding  scheme  utilised.  Jacob  et  al., 

 (2019)  devised  an  analysis  to  classify  grid  cells  to  either  allocentric  firing  or  integrated  firing 

 analogous  to  the  position  and  distance  codes  discussed  in  this  chapter.  This  method 

 required  calculating  a  correlation  value  of  the  firing  rate  profile  across  trials  to  compute  the 

 allocentric  firing  correlation  and  comparing  this  to  a  egocentric  firing  correlation  which  is 

 calculated  by  computing  a  firing  correlation  with  a  recomputed  length  of  each  trial  which  is 

 consistent  with  the  period  between  firing  fields.  I  looked  to  simplify  the  classification  between 

 position  and  distance  coding  by  employing  commonplace  statistics  in  the  study  of  periodicity, 

 such  as  quantifying  periodicity  by  estimating  the  Fourier  transform  of  the  periodic  signal.  I 

 found  computing  periodic  signals  that  were  anchoring  to  specific  track  locations  would  reflect 

 sinusoid  components  of  the  Fourier  transform  which  were  close  to  integer  values,  consistent 

 with  fields  that  perfectly  repeated  each  trial.  To  classify  between  position  and  distance 

 coding,  the  maximum  of  the  estimated  Fourier  transform  was  used  as  a  metric  for  the  best 
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 fitting  sinusoid.  A  maximum  peak  above  chance  level  significantly  away  from  an  integer 

 value  was  deemed  sufficient  to  classify  a  cell  as  distance  encoding.  This  significance  value 

 was set at 0.05, and might require further investigation to validate the method described. 

 4.4.2 Behavioural and computational roles 

 Analysing  the  spatial  coding  on  a  trial-by-trial  basis  revealed  grid  cells  switch  between 

 position  and  distance  coding  schemes  regularly.  It  was  found  that  when  grid  cells  were 

 positional  coding,  mice  performed  better  than  when  grid  cells  were  distance  encoding.  This 

 was  only  the  case  for  non-beaconed  trials  but  not  beaconed  trials  suggesting  the  positional 

 coding  of  grid  cells  is  beneficial  to  path  integration  but  not  beaconing  behaviours.  Consistent 

 with  findings  from  Gil  et  al.  (2018)  who  showed  grid  cells  were  disrupted  in  a  group  of  mice 

 that  performed  worse  at  a  path  integration  task  but  not  at  a  beaconed  variation  of  the  same 

 task,  the  finding  in  this  chapter  links  positional  coding  of  grid  cells  to  accurate  path 

 integration.  Tennant  et  al.  (2018)  also  found  deficits  in  path  integration  behaviours  in  the 

 linear  location  task  following  the  inactivation  of  stellate  cells  in  the  MEC,  which  are  one  of  the 

 anatomical  cell-type  of  grid  cells  (Domnisoru,  Kinkhabwala,  and  Tank  2013)  .  As  grid  cells 

 were  not  directly  recorded,  it  remains  unclear  what  spatial  firing  properties  were  disrupted  to 

 cause the impaired spatial behaviours. 

 Based  on  the  findings  to  date,  this  thesis  provides  evidence  that  anchoring  of  grid  fields 

 specifically  enhances  stopping  behaviour  on  path-integration  but  not  beaconing-based 

 navigation.  I  hypothesise  the  positional  coding  scheme  exhibited  by  grid  cells  is  the  default 

 coding  scheme  while  the  animal  is  actively  engaged  in  a  path  integration  behaviour.  Under 

 this  scheme,  the  mouse  takes  notice  of  salient  features  of  the  environment  to  anchor  the  grid 

 code  and  provide  a  consistent  phase  code  across  multiple  grid  modules  from  which  an 

 accurate  location  estimate  can  be  readout.  One  might  expect  mice  to  perform  equally  well 

 using  a  distance  encoding  grid  code  as  distance  information  is  stored  within  the  periodicity  of 

 a  distance  code,  however  anchoring  of  this  grid  code  appears  to  be  important  for  accurate 

 path  integration.  When  not  actively  engaged  in  path  integration,  the  grid  code  maintains 

 periodic  firing  but  is  not  anchored  to  salient  features  of  the  track.  A  high  accuracy  is  still 

 possible  on  beaconed  trials  as  no  position  estimate  needs  to  be  readout  from  the  grid  system 

 to  receive  a  reward.  Instead,  mice  simply  need  to  associate  the  reward  zone  cue  with  the 

 reward. 

 167 

https://www.zotero.org/google-docs/?ONj7r3
https://www.zotero.org/google-docs/?MmR0lC
https://www.zotero.org/google-docs/?t4h0kl


 4.5 Appendix 

 4.5.1 Tetrode localisation 
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 Figure  63.  Tetrode  localisation.  Micro-CT  images  used  for  assessment  of  tetrode  locations 

 in  nine  mice.  For  each  animal,  sagittal  slices  are  presented  lateral  to  medial  from  left  to  right 

 and  the  classification  of  the  tetrodes  target  is  shown  at  the  top  left.  This  classification  is 

 based  on  the  terminal  location  of  the  tetrode  and  the  distance  travelled  during  the  experiment 

 (see  Methods).  Mouse  M4  was  processed  from  cresyl  violet  staining  and  tetrode  track 

 localisation  however  had  no  visible  tetrode  tracks  in  any  slice  and  are  not  shown.  Two  further 

 mice  M10  and  M15  sustained  significant  damage  duration  preparation  for  microCT  imaging 

 and  were  not  imaged.  Mouse  M12  was  imaged  without  the  headpost  (and  tetrodes)  attached, 

 no  negative  trace  of  the  tetrode  tracks  were  clearly  seen.  In  all  images  red  triangles  point  to 

 the putative tetrode tracks. Scale bar denotes 1 mm. 
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 Mouse  N cells  N sessions  N grid cells (%)  Tetrode location 

 M1  53  11  3 (5.7)  MEC 

 M2  24  9  0 (0)  Deep MEC 

 M3  258  26  7 (2.7)  MEC 

 M4  23  17  0 (0.0)  Unclassified 

 M6  233  21  1 (0.4)  MEC 

 M7  202  23  4 (2.0)  MEC 

 M10  67  16  1 (1.5)  Unclassified 

 M11  573  35  53 (9.2)  MEC 

 M12  118  21  1 (0.8)  Unclassified 

 M13  172  25  7 (4.1)  MEC 

 M14  298  37  26 (8.7)  MEC 

 M15  42  11  0 (0.0)  Unclassified 

 Average  171.9. ± 152.2  21.0 ± 8.6  15.1 ± 8.6  (2.9 ± 3.2) 

 Total  2063  252  103 

 Table  5.  Summary  of  recorded  grid  cells  and  estimated  tetrode  locations.  Tetrode 

 locations  were  estimated  from  microCT  images  as  in  Figure  63  .  For  average  measurements, 

 standard deviations are provided. 
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 Spatial representation by ramping activity of neurons 

 5.1 Introduction 

 While  grid  cells  are  thought  to  play  a  key  role  in  path  integration  computations,  how  an 

 animal  can  plausibly  read  this  coding  scheme  into  an  unambiguous  self-location 

 representation  is  less  clear.  Current  models  suggest  a  representation  of  space  can  be 

 recalled  from  the  activity  of  collective  modules  of  grid  cells  (Stemmler,  Mathis,  and  Herz 

 2015;  Fiete,  Burak,  and  Brookings  2008;  Bush  et  al.  2015)  ,  however  such  models  require 

 previously  unobserved  intermediate  spatial  representations.  One  such  cell  type  is  predicted 

 to  represent  space  with  a  firing  rate  proportional  to  the  distance  to  a  goal  location  (Stemmler, 

 Mathis,  and  Herz  2015;  Fiete,  Burak,  and  Brookings  2008;  Bush  et  al.  2015)  .  If  such  cells  do 

 exist,  they  would  appear  as  cells  with  ramping  firing  rate  profiles  in  the  VR  linear  location 

 estimation  task  detailed  in  Chapters  2  and  3.  This  chapter  will  investigate  these  prospective 

 ramp cells and their possible role in spatial representation. 

 The  first  question  to  ask  is  do  these  ramping  firing  rate  profiles  exist  in  spatial  cortices?  And 

 if  so,  do  these  representations  reflect  a  relationship  with  location?  These  representations 

 were  found  in  roughly  40  %  of  the  recorded  cell  population  in  the  medial  entorhinal  cortex, 

 parasubiculum  and  presubiculum.  Within  this  population,  the  majority  of  cells  were  most 

 strongly  influenced  by  position.  These  positional-encoding  ramp  cells  were  found  to  encode 

 reward  locations  uniquely  from  non-rewarded  parts  of  the  track  through  an  interruption  of  the 

 ramping  activity.  This  was  maintained  in  trials  where  the  cue  was  not  visible  and  also  when 

 the  mouse  was  not  engaged  in  the  task  suggesting  this  interruption  represents  a  spatial 

 memory  of  the  reward  zone  that  can  be  recalled  while  the  mouse  is  path  integrating  towards 

 the  goal.  These  cells  were  found  to  be  largely  non-overlapping  with  populations  of  classically 

 defined  spatial-modulated  cell  types  (grid,  border,  head  direction  cells),  suggesting  a 

 collaborative role with useful representations during the task (such as grid cells). 

 Work  detailed  in  this  chapter  was  a  collaboration  between  the  authors  of  the  publication 

 “Spatial  representation  by  ramping  activity  of  neurons  in  the  retrohippocampal  cortex” 

 (Tennant et al. 2022)  . I contributed to all parts  of the analysis detailed in this chapter. 
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 5.2 Methods 

 5.2.1 Subjects 

 13  male  wild  type  C57BL/6NCrl  mice  were  obtained  (Charles  River)  and  surgically  implanted 

 between  the  ages  of  10-15  weeks.  Two  mice  were  excluded  as  tetrodes  were  found  to  be 

 within  visual  cortices  and  not  the  targeted  retrohippocampal  regions.  Of  these  11  mice,  1 

 mouse was trained by Sarah Tennant, 2 by Junji Hua, 2 by Wannan Yang and 6 from myself. 

 5.2.2 Data analysis 

 Preprocessing,  spike  sorting,  and  post-processing  was  completed  as  detailed  in  Chapter  2: 

 Methods  and  Materials.  Analysis  of  the  spatial  firing  properties  was  performed  in  Python  3.8. 

 Statistical analysis and population-level analysis was performed in R (v 4.1.2). 

 5.2.3 Measuring ramp-like spatial codes 

 5.2.3.1 Possible coding schemes 
 Neural  coding  for  space  was  discovered  in  place  cells  (O’keefe  and  Nadel  1978)  as  a  subset 

 of  hippocampal  cells  were  shown  to  fire  when  a  rat  was  at  a  particular  location  within  its 

 environment.  As  the  rat  moved  away  from  the  place  cell’s  firing  field,  the  cell’s  firing  rate 

 dropped  to  zero.  This  discrete  coding  scheme  has  also  been  observed  in  dorsal  MEC 

 neurons  with  multiple  firing  fields  (Fyhn  et  al.  2004)  and  in  grid  cells  of  the  MEC  and 

 pre/parasubiculum  (Hafting  et  al.  2005;  Boccara  et  al.  2010)  .  Discrete  coding  schemes 

 provide  a  solution  to  self-localisation  within  an  environment  when  there  are  sufficient  neurons 

 to  tile  the  available  space.  The  combination  of  firing  rates  within  this  population  can  then 

 provide  a  position  estimate  (Fiete,  Burak,  and  Brookings  2008;  Stemmler,  Mathis,  and  Herz 

 2015;  Bush  et  al.  2015)  .  In  contrast,  a  continuous  code  scheme  can  theoretically  be  used  to 

 encode  using  a  single  neuron.  Such  representations  have  been  observed  in  striatal  neurons 

 which  ramp  in  anticipation  of  reward  locations  (Howe  et  al.  2013)  .  Continuous  coding 

 schemes  might  also  be  a  key  component  to  the  readout  of  location  from  grid  modules 

 (Stemmler,  Mathis,  and  Herz  2015;  Fiete,  Burak,  and  Brookings  2008;  Bush  et  al.  2015)  .  In 

 these  models,  an  intermediate  spatial  cell  fires  proportionally  to  the  distance  to  a  goal 

 location.  In  the  linear  location  task,  this  would  appear  as  distinct  ramp  codes  occurring  up  to 

 the  reward  zone,  with  some  configuration  occurring  at  the  reward  zone.  These 

 representations  are  illustrated  in  Figure  63  showing  ramp-like  codes  increase  or  decrease 

 their firing rates up to the reward zone, before switching the polarity or resetting the ramp. 
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 Figure  64.  Neural  codes  for  location.  (A)  Discrete  and  (B)  continuous  coding  schemes  on 

 a  linear  track.  (C)  Schematic  of  the  virtual  reality  linear  track.  (D)  Spatial  behaviour  from  an 

 example  training  session,  showing  from  top  to  bottom,  the  stop  raster,  stop  histogram  and 

 average speed profile. Shaded regions indicate the standard error of the mean across trials. 
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 5.2.3.2 Classifying spatial ramp-like neural activity 
 To  investigate  whether  ramp-like  firing  profiles  exist  in  spatial  cortices,  linear  regression  was 

 performed  on  the  unsmoothed  trial-averaged  firing  rate  profiles  from  neurons  of  mice 

 performing  the  linear  location  task.  The  analysis  initially  focused  on  trials  in  which  the  mouse 

 received  a  reward  on  beaconed  trials.  Linear  regression  was  calculated  on  pre-reward  zone 

 and  post-reward  zone  regions  of  the  track  (0-60  cm,  80-140  cm  respectively)  separately.  To 

 statistically  determine  whether  modal  fits  were  consistent  with  spatial  ramping  properties, 

 each  neuron  was  compared  to  a  shuffled  dataset  generated  from  a  trial-independent  cyclic 

 shuffling  procedure,  as  detailed  in  Figure  64  .  A  cyclic  shuffle  implemented  at  the  trial  level 

 was  necessary  as  it  was  found  a  standard  cyclic  shuffle  (typically  used  to  classify  spatial 

 cells  in  the  open  field,  see  2.8.2  )  did  not  appropriately  remove  the  spatial  correlations 

 between  trials,  presumably  because  trial  times  can  be  similar  within  a  session.  Moreover,  it 

 was  found  that  the  process  of  smoothing  firing  rate  maps  introduced  false-positive  ramping 

 neurons  (not  shown).  As  a  consequence,  all  analysis  performed  in  this  chapter  is  done  using 

 unsmoothed  firing  rates  in  both  space  and  time.  Where  firing  rate  profiles  are  illustrated  in 

 figures, the smoothed firing rate maps are shown. 

 Neurons  were  classified  as  having  ramping  activity  with  positive  or  negative  slopes  if  the 

 linear  model  was  significant  (corrected  P  <  0.01),  and  the  slope  was  outside  the  5-95  % 

 intervals  of  the  shuffled  data.  P  values  obtained  from  the  linear  model  were  corrected  for 

 multiple  comparisons  using  the  Benjamini  &  Hochberg  method  (Benjamini  and  Hochberg 

 1995).  Neurons  not  meeting  these  criteria  were  allocated  to  the  unclassified  group.  This 

 yielded  six  possible  combinations  of  ramping  before  the  reward  zone  with  subsequent 

 classifications after the reward zone (+ +, + -,  +un, - -, - +, -un). 
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 Figure  65.  Trial-dependent  cyclic  shuffle  procedure.  (i)  A  neuron’s  spike  times  are  binned 

 in  1  cm  spatial  bins  and  firing  rates  calculated  as  the  number  of  spikes  divided  by  the  time 

 spent  in  the  bin.  Firing  rates  are  averaged  across  trials  to  produce  a  firing  rate  profile  across 

 the  200  cm  track.  (ii)  The  same  procedure  is  applied  1000  times  to  generate  shuffled  rate 

 maps.  For  each  shuffle,  a  single  random  time  between  20-580  seconds  is  drawn  for  each 

 trial  and  added  to  spike  times  in  that  trial.  (iii)  The  pre-reward  zone  or  post-reward  zone 

 regions  of  the  firing  rate  profile  are  modelled  with  a  linear  regression  for  the  cell  and  the 

 corresponding  shuffles.  (iv)  If  the  cell’s  linear  regression  p  value  is  less  than  0.01  and  the 

 slope  is  outside  the  5-95  th  percentile  of  the  shuffled  distribution,  the  cell  is  classified  as 

 ramping based on the sign of the cell’s slope. 
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 5.2.4 Generalised linear mixed effect model for position, speed and acceleration 

 For  each  neuron,  all  variables  were  binned  into  100  ms  blocks  and  bins  when  the  animal’s 

 speed  was  <  3  cm/s  were  removed  (Góis  and  Tort  2018)  .  The  average  speed  and 

 acceleration  of  the  animal  across  the  whole  recording  was  calculated,  and  bins  in  which 

 speed  or  acceleration  was  3  standard  deviations  above  or  below  the  average  for  that 

 variable  were  removed.  This  step  was  done  to  remove  unrealistic  speeds  or  accelerations 

 that  were  caused  as  a  consequence  of  calculating  speed  around  the  track  teleport.  A 

 Poisson  GLMER  model  with  the  configuration  ‘Rate  ~  Position  +  Speed  +  Acceleration  +  (1  + 

 Position  |  Trials)’  and  log  linker  function  was  fit  using  the  lme4  package  (version  1.1-12)  in  R 

 (Bates  et  al.  2015  ;  Figure  70  A).  The  ANOVA  function  provided  by  the  car  package  (version 

 3.0-9)  was  used  to  calculate  significance  values  for  each  model  coefficient  (Fox  and 

 Weisberg  2019)  .  To  classify  neurons  as  being  modulated  by  position  (P),  speed  (S), 

 acceleration  (A),  or  a  combination  thereof,  a  significance  threshold  of  0.01  was  used  and 

 corrected  for  multiple  comparisons  using  the  Benjamini  &  Hochberg  method  (Benjamini  and 

 Hochberg  1995)  .  For  example,  a  neuron  with  corrected  P  <  0.01  for  position  and  acceleration 

 and ≥ 0.01 for speed coefficients was classified as a PA neuron. 

 5.2.5 Measuring theta index and local field potentials 

 Theta  index  was  calculated  following  methods  in  (Kornienko  et  al.  2018)  .  Spike  times  were 

 transformed  into  instantaneous  firing  rates.  A  power  spectrum  was  then  estimated  using 

 Welch’s method. The theta index was defined as 

 𝑇    =     θ    −    𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 
 θ    +    𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 

 where  θ  is  the  mean  theta  band  power  (6-10  Hz)  and  baseline  is  the  mean  power  of  two 

 adjacent  frequency  bands  (3-5  and  11-13  Hz).  Local  field  potential  was  calculated  by 

 estimating  the  power  spectrum  across  the  raw  voltage  trace  from  each  channel  using 

 Welch’s  method.  This  power  spectrum  was  averaged  across  all  16  channels  to  produce  an 

 average power spectrum. 
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 Figure  66.  Measuring  the  theta  index  of  a  neuron’s  spike  timing  (A)  Schematic 
 illustrating  the  procedure  for  calculation  of  the  theta  index.  Firing  indices  were 

 transformed  into  instantaneous  firing  rates  from  which  a  power  spectrum  was  estimated 

 using  Welch’s  method.  The  theta  index  was  defined  as  (θ-baseline)/(θ+baseline),  where  θ  is 

 the  mean  power  in  the  theta  band  (6-10  Hz)  and  baseline  (b)  is  the  mean  power  of  two 

 adjacent  frequency  bands  3-5  Hz  (b  1  )  and  11-13  Hz  (b  2  ).  (B)  Autocorrelograms  (left)  and 

 power  spectra  (right)  for  three  simultaneously  recorded  neurons  that  exemplify  strong  (top), 

 moderate (middle) and low (bottom) theta indices. 
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 5.3 Results 

 5.3.1 Encoding of location by ramping activity 

 Slopes  before  and  after  the  reward  zone  were  calculated  and  compared  to  the  corresponding 

 shuffled  data.  Only  sessions  with  more  than  30  successful  trials  were  included  in  all  further 

 analysis  and  initially  only  reward  beaconed  trials  were  included.  Following  this  behavioural 

 criterion,  1395  neurons  were  identified  after  spike  sorting  from  187  sessions  (196.5  ±  7.7 

 trials  /  session,  17  sessions  /  mouse,  range  6-25).  Out  of  the  1395  neurons,  546  neurons  (39 

 %)  had  significant  ramping  activity  before  the  reward  zone  (224  +ve  sloping,  322  -ve 

 sloping).  Of  the  shuffled  data,  only  2  %  of  the  firing  rate  maps  showed  significant  ramping 

 slopes  before  the  reward  zone  (n  =  28235  /  1395000).  Neurons  with  ramping  activity  were 

 found in all animals with similar proportions (mean: 60.7 ± 4.99 %, range: 45.8 - 77.4 %). 

 It  was  possible  that  ramping  activity  manifested  from  drifting  discrete  firing  fields  and 

 subsequent  averaging  over  trials.  To  rule  this  out,  the  ramp  slopes  and  average  firing  rate 

 profiles  were  calculated  for  the  first  and  second  half  of  the  session.  For  ramping  neurons, 

 slopes  and  firing  rate  profiles  correlated  highly  between  half  sessions  (pre-reward  zone 

 slope,  r  2  =  0.88,  post-reward  zone  slope,  r  2  =  0.77;  firing  rate  profile,  r  2  =  0.47  ±  0.28). 

 Neurons  without  any  ramping  slope  pre  or  post  reward  zone  had  significantly  lower 

 half-session  correlations  (pre-reward  zone  slope,  r  2  =  0.25,  post-reward  zone  slope,  r  2  = 

 0.21;  firing  rate  profile,  r  2  =  0.23  ±  0.26,  respectively:  DF  =  1,  P  <  1e-14,  F  =  164.4,  ANOVA; 

 DF = 1, P < 1e-14, F = 63.0, ANOVA; DF = 1103, P < 1e-15, T = 14.6, T-test). 

 Several  examples  are  shown  in  Figure  67  for  neurons  with  significant  ramping  activity  before 

 and  after  the  reward  zone.  Firing  rates  from  each  cell  were  z-scored  and  averaged  across 

 cells  within  ramping  classifications  to  show  the  average  firing  rate  profile  for  a  ramping 

 group.  A  heat  map  for  all  neurons  within  each  ramp  group  is  shown  in  Figure  68  .  Depending 

 on  how  the  ramp  codes  might  be  utilised  in  the  brain,  ramp  codes  that  reset  might 

 predominate  over  ramp  codes  that  switch  polarity,  or  vice  versa.  Of  the  six  ramp  groups 

 based  on  ramping  activity  before  and  after  the  reward  zone  (+  +,  +  -,  +un,  -  -,  -  +,  -un),  each 

 of  these  groups  were  well  represented  with  no  clear  bias  of  a  single  ramping  group 

 predominating.  Furthermore,  ramp  slopes  before  the  reward  zone  did  not  predict  ramp 

 slopes  after  the  reward  zone  (  Figure  69  ).  This  suggests  all  ramp-like  codes  are  represented 

 in the brain. 
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 Figure  67.  Example  ramp  cells  and  population  averaged  ramp  cells.  From  left  to  right, 

 spike  rasters  and  average  firing  rate  maps  for  example  neurons  from  four  ramp  classes  (+  +, 

 +  -,  -  -,  -  +),  and  the  corresponding  population  averaged  firing  rate.  Shaded  regions  indicate 

 the standard of error across trials (example cells) and cells (population-averaged). 
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 Figure  68.  Normalised  firing  rate  maps  of  all  ramping  neurons.  The  black  box  regions  of 

 the  track  are  not  shown.  Neurons  are  ordered  hierarchically  by  ramp  category,  ramp  score 

 and the brain area in which the neurons were recorded from. 
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 Figure  69.  Pre-reward  zone  slope  as  a  function  of  post-reward  zone  slope.  Dashed  lines 

 indicate  points  at  which  slopes  would  be  identical  on  both  track  segments  or  with  a  flipped 

 sign. 
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 5.3.2 Interruption of ramp-like firing profiles encode rewarded locations 

 For  ramp-like  codes  that  maintain  the  same  ramp  direction  on  each  track  segment  (+  +  and  - 

 -  groups),  firing  rates  at  the  reward  zone  may  either  deviate  from  the  sloping  trajectory  or 

 continue  along  the  same  ramping  trajectory.  By  looking  at  the  example  neurons  and  z-scored 

 firing  rate  maps,  it  was  clear  some  level  of  resetting  of  the  firing  rate  was  taking  place.  To 

 quantify  this,  the  firing  rate  slope  before  the  reward  zone  was  extrapolated  to  the  beginning 

 of  the  post-reward  zone  region  to  predict  the  firing  rate  of  ramping  neuron  based  on  its 

 pre-reward  zone  ramping  activity.  This  was  compared  with  the  y  intercept  of  the  post-reward 

 slope  to  generate  an  offset  (predicted  -  measured  firing  rate).  For  both  -  -  and  +  +  ramp 

 groups,  the  offset  was  significantly  non-zero  suggesting  ramping  activity  was  being  reset  at 

 the  reward  zone  (+  +:  P  <  1e-12  n  =  67;  -  -:  P  <  1e-15,  n  =  109,  one  sample  T-test  vs  mean  = 

 zero)  .  This  is  consistent  with  a  ramp  code  that  encodes  portions  of  a  journey  up  to  salient 

 landmarks  or  features  of  an  environment,  like  visual  cue  or  reward.  This  interruption  of  the 

 firing rate may encode the location of reward locations within the environment. 

 Figure  70.  Interruption  of  ramp  codes  around  the  reward  zone.  (A)  Pre-reward  zone 

 slopes  are  extrapolated  to  predict  the  firing  rate  at  the  beginning  of  the  post-reward  zone 

 region  and  used  to  compute  an  offset  by  comparing  the  predicted  fit  based  on  the  pre-reward 

 zone  slope  and  measured  fit  from  the  post-reward  zone  slope.  (B)  Histogram  of  offsets  for  + 

 +  and  -  -  ramping  neurons  .  Coloured  bars  indicate  individual  neurons  for  which  the  offset  was 

 outside 99 % confidence of intervals of the neuron’s predicted value. 
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 5.3.3 Differential influence of position, speed and acceleration 

 Does  ramping  activity  of  the  firing  rate  encode  position  along  the  track?  To  address  this,  it 

 was  important  to  consider  all  possible  kinematic  variables  as  the  encoded  variables  by  the 

 ramping  neurons.  For  example,  speed  and  position  are  tightly  coupled  in  this  experiment  as 

 a  mouse  performing  the  task  will  run  fast  and  slow  down  to  stop  within  the  reward  zone.  The 

 speed  profile  of  this  mouse  would  ramp  similarly  to  location  on  the  track.  To  determine  what 

 influence  position,  speed  and  acceleration  have  on  ramping  neurons,  firing  rates  in  the 

 pre-reward  zone  region  were  fitted  with  a  generalised  linear  mixed  effect  model  that  included 

 position, speed and acceleration as fixed effects and trial number as a random effect. 

 For  the  majority  of  ramping  neurons,  firing  rates  could  be  best  accounted  solely  by  position 

 or  conjunctively  with  position  as  the  dominant  coefficient  alongside  speed  and  /  or 

 acceleration  (n  =  340/546  neurons  with  ramping  activity  before  the  reward  zone;  Figure 

 70  C).  For  both  negative  and  positive  ramping  neurons,  the  position  coefficients  were  larger 

 than  those  for  acceleration  (P  <  1e-15,  Bonferroni  corrected  paired  T-test)  and  speed  (P  < 

 1e-16, Bonferroni corrected paired T-test). 

 Interestingly,  all  possible  combinations  of  position,  speed  and  acceleration  encoding  neurons 

 were  present  in  the  ramping  and  non  ramping  populations.  Example  neurons  from  the 

 position  or  conjunctive-position  encoding  groups  are  shown  in  Figure  71  .  It  is  important  to 

 note,  that  while  the  GLMER  fit  unsmoothed  kinematic  variables  to  unsmoothed  firing  rates, 

 smoothed firing rates are visualised below. 
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 Figure  71.  (A)  Generalised  linear  mixed  effect  models  that  include  speed  (S), 
 acceleration  (A)  and  position  (P)  as  fixed  effects  were  fit  to  the  firing  rate  in  the  track 
 region  approaching  the  reward  zone.  The  track  region  over  which  the  model  was  fitted  is 

 indicated  by  the  blue  shaded  bar.  Trial  number  was  included  as  a  random  effect.  (B) 

 Standardised  coefficients,  which  index  the  relative  strength  of  each  fixed  effect  variable, 

 obtained  from  the  model  fits  for  neurons  with  negative  (upper)  and  positive  (lower)  ramp 

 slopes  on  the  track  segment  before  the  reward  zone.  (C)  Proportions  of  neurons  for  which 

 each  combination  of  P,  A  and  S  coefficients  were  significant  at  a  threshold  of  P  <  0.01 

 (Wald’s  chi  squared  test)  for  neurons  classified  as  having  a  positive  slope,  negative  slope  or 

 as unclassified. 
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 Figure  72.  Distribution  of  standardised  coefficients  (upper  row)  and  example  data 
 (lower  rows)  for  neurons  with  positive  (+ve)  or  negative  (-ve)  ramp  slopes  and 
 classified  as  modulated  solely  by  position  (P),  by  position  conjunctively  with  speed 
 (PS),  and  position  conjunctively  with  speed  and  acceleration  (PSA).  Example  data 

 shows  firing  rate  as  a  function  of  position  (second  row),  running  speed  (third  row)  and 

 acceleration  (lower  row).  Firing  rates  as  a  function  of  position  are  colour  coded  by  speed 

 (cm/s)  while  firing  rates  as  a  function  of  speed  or  acceleration  are  colour  coded  by  position 

 along the track (0 - 60 cm). 
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 5.3.4 Ramp codes across trial outcomes 

 The  ramping  activity  shown  up  to  this  point,  has  been  from  neural  activity  recorded  on 

 beaconed  trials  in  which  mice  have  received  a  reward  and  have  therefore  stopped  within  the 

 reward  zone.  This  begs  the  question,  is  ramping  activity  related  to  the  spatial  behaviour  of 

 the  animal.  To  address  this,  trials  were  split  up  by  behavioural  outcomes  including  hit,  try  and 

 run  trials,  as  previously  detailed  in  3.2.4  .  On  hit  trials,  mice  receive  rewards  by  registering  a 

 stop  within  the  reward  zone.  Unrewarded  trials  are  split  based  on  the  average  speed 

 recorded  in  the  reward  zone  into  try  trials,  in  which  the  reward  zone  speeds  were  close  to  hit 

 trials  or  run  trials,  in  which  the  reward  zone  speeds  were  distant  from  reward  zone  speeds 

 observed  on  hit  trials.  Figure  72  shows  the  average  speed  profile  of  hit,  try  and  run  trials 

 across  mice.  A  high  speed  is  maintained  throughout  the  track  for  run  trials  consistent  with  the 

 animal  ignoring  the  reward  zone  on  that  particular  trial.  Try  trials  exhibit  an  initial  decrease  in 

 speed  but  do  not  reach  the  minimum  observed  in  hit  trials.  This  is  consistent  with  the  spatial 

 behaviour  of  a  mouse  either  missing  the  reward  zone  or  slowing  down  with  the  intention  of 

 stopping but not. 

 To  assess  whether  ramping  activity  was  present  on  unrewarded  trials,  ramp  slopes  and 

 offset  were  calculated  for  the  average  firing  rate  profiles  of  position-encoding  neurons  (P,  PS, 

 PA,  PSA)  on  try  and  run  trials  and  compared  with  the  ramping  activity  on  hit  trials  (  Figure 

 73  ).  Position-encoding  neurons  from  each  ramping  group  showed  similar  ramping  properties 

 across  all  trial  outcomes  in  both  example  neurons  and  in  the  population-averaged  firing  rate 

 profiles  (  Figure  72  D).  Trial  outcome  had  no  significant  effect  on  either  pre-reward  zone  slope 

 or  post-reward  zone  slope  (pre-reward  zone  +ve  slopes:  DF  =  2,  164,  P  =  0.12,  F  =  2.1; 

 pre-reward  zone  -ve  slopes:  DF  =  2,  308,  P  =  0.93,  F  =  0.069;  post-reward  zone  +ve  slopes: 

 DF  =  2,  308,  P  =  0.04,  F  =  3.2;  post-reward  zone  -ve  slopes:  DF  =  2,  164,  P  =  0.65,  F  = 

 0.427;  repeated  measures  ANOVA)  and  all  pre-reward  zone  slopes  maintained  a  non-zero 

 slope  across  all  trial  outcomes  (P  <  1e-9,  Bonferroni  corrected  one  sample  T-test  vs  mean  = 

 zero  ).  Offsets  in  the  firing  rate  profile  around  the  reward  zone  were  affected  by  the  trial 

 outcome  for  +  +  and  -  -  ramp  groups.  (+  +:  DF  =  2,  56,  P  <  1e-4,  F  =  12.4;  -  -:  DF  =  2,  102,  P 

 <  1e-7,  F  =  21.9),  but  for  all  outcomes  the  offsets  differed  from  zero  (P  <  1e-6,  Bonferroni 

 corrected T-test). 
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 Figure  73.  Ramping  activity  as  a  function  of  trial  outcome.  (A)  Population  average  of 

 mean  running  speed  as  a  function  of  position  for  each  trial  outcome  across  all  animals  (n  = 

 11).  Shaded  regions  correspond  to  the  standard  error  of  the  mean  across  animals.  (B)  Trial 

 level  distribution  of  mean  running  speeds  within  the  reward  zone  for  hit,  try  and  run  trial 

 outcomes.  (C)  Examples  of  running  speed  (upper)  and  firing  rate  (lower)  as  a  function  of 

 track  position.  Note  that  for  some  animals  the  average  running  speed  in  the  hit  group  can  be 

 greater  than  zero  because  the  stopping  location  varies  between  trials.  Shaded  regions 

 correspond  to  the  standard  error  of  the  mean  across  trials.  Neurons  were  classified  (+  +,  +  -, 

 -  -,  -  +)  according  to  their  firing  rate  profiles  on  beaconed  trials.  (D)  Population  averaged 

 firing  rates  as  a  function  of  position  on  hit,  try  and  run  through  trials  for  positionally 

 modulated  neurons  (P,  PS,  PA,  PSA  groups).  The  neurons  were  classified  on  hit  trials  as 

 having  +  -,  -  +,  +  +  and  -  -  firing  rate  profiles.  Shaded  regions  correspond  to  the  standard 

 error of the mean across cells. 
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 Figure  74.  Ramping  slopes  and  slope  offsets  as  a  function  of  trial  outcome.  (A) 

 Pre-reward  zone  slopes  of  neurons  that  had  a  positive  and  negative  ramp  in  the  pre-reward 

 zone  region  of  the  track.  (B)  Post-reward  zone  slopes  of  the  same  neurons.  (C)  Offsets  of  a 

 subset of the ramping neurons (+ + or - - groups). 
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 5.3.5 Ramp codes across trial types 

 Are  ramp  codes  related  to  the  available  cues  on  the  track?  If  so,  ramping  slopes  and  offsets 

 would  be  diminished  with  the  removal  of  track  cues.  If  ramp  slopes  and  offsets  are 

 maintained  when  cues  are  removed,  they  may  result  from  recall  of  a  spatial  memory  of  the 

 track  structure.  The  track  on  probe  trials  had  no  visible  reward  zone  and  no  reward  was 

 dispensed  for  a  stop  within  the  reward  zone  (  Figure  74  ).  Probe  trials  were  interleaved 

 between  beaconed  trials,  1/10  trials  were  probe  trials,  following  a  repeating  pattern  of  4 

 beaconed  trials,  1  non-beaconed  trial,  4  beaconed  trials  and  1  probe  trial.  Mice  registered 

 more  stops  within  the  reward  zone  (  Figure  74  B)  than  the  rest  of  the  track  on  beaconed  trials 

 but less so than on probe trials. 

 To  assess  whether  ramping  activity  was  present  on  probe  trials,  ramp  slopes  and  offset  were 

 calculated  for  the  average  firing  rate  profiles  of  position-encoding  neurons  (P,  PS,  PA,  PSA) 

 on  probe  trials  and  compared  with  the  ramping  activity  on  beaconed  trials.  Position-encoding 

 neurons  from  each  ramping  group  showed  similar  ramping  properties  across  trial  types  in 

 both  example  neurons  and  in  the  population-averaged  firing  rate  profiles  (  Figure  74  D).  Trial 

 type  had  a  significant  effect  on  pre-reward  zone  slopes  (  Figure  76  A,  +ve  slopes:  DF  =  36,  P 

 =  0.03,  T  =  2.3;  -ve  slopes:  DF  =  45,  P  =  0.01,  T  =  -2.6;  paired  Student’s  T-tests)  and  some 

 effect  on  post-reward  zone  slopes  (  Figure  76  B,  +ve  slopes:  DF  =  36,  P  =  0.09,  T  =  -1.7;  -ve 

 slopes:  DF  =  45,  P  =  0.0007,  T  =  -3.7;  paired  Student’s  T-tests).  Regardless,  pre-reward 

 zone  slopes  were  significantly  non-zero  (P  <  0.0001,  Bonferroni  corrected  one  sample  T-test 

 vs  mean  =  zero).  Furthermore,  slopes  were  well  correlated  between  trial  types  (pre-reward 

 zone:  adjusted  r  2  =  0.50,  P  <  1e-14;  post-reward  zone:  adjusted  r  2  =  0.45,  P  <  1e-12).  This 

 was  also  seen  at  for  ramp  offsets  of  +  +  and  -  -  ramp  groups,  offsets  were  significantly 

 affected  by  trial  type  (+  +:  DF  =  2,  56,  P  =  0.0003,  F  =  12.4;  -  -:  DF  =  2,  102,  P  <  1e-7,  F  = 

 21.9)  but  were  significantly  non-zero  (+  +:  P  =  0.04;  -  -:  P  =  0.0008,  Bonferroni  corrected 

 one  sample  t-test  vs  mean  =  zero).  Offsets  between  trial  types  were  again  well  correlated 

 (adjusted  r  2  =  0.3938,  P  <  1e-10).  Results  suggest  track  cues  do  play  some  role  in  setting 

 the  firing  rate  slopes  and  offsets,  although  are  not  required  for  ramping  activity  and  the 

 corresponding  offsets  at  suspected  rewarded  locations.  This  is  consistent  with  ramping 

 neurons  encoding  position  from  a  recalled  track  structure  with  cues  reinforcing  the  recalled 

 memory when available. 
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 Figure  75.  Ramping  activity  as  a  function  of  trial  type.  (A)  Schematic  of  track 

 configuration.  Beaconed  trials  contain  two  cues  on  the  track,  the  visual  cue  of  the  reward 

 zone  and  the  reward  itself.  Probe  trials  contain  neither.  (B)  Population  mean  of  behaviour 

 from  trained  mice  on  beaconed  and  probe  trials,  showing  the  mean  stops  (per  cm)  as  a 

 function  of  position  on  the  track.  Shaded  regions  correspond  to  the  standard  error  of  the 

 mean  across  animals.  (C)  Examples  from  beaconed  trials  (black)  and  probe  trials  (blue)  of 

 stop  histogram  (upper  row)  and  mean  firing  rate  (lower  row)  as  a  function  of  track  position. 

 Shaded  regions  correspond  to  the  standard  error  of  the  mean  across  trials.  Neurons  were 

 classified  (+  +,  +  -,  -  -,  -  +)  according  to  their  firing  rate  profiles  on  beaconed  trials.  (D)  Mean 

 firing  rates  as  a  function  of  track  position  on  beaconed  trials  and  probe  trials  for  the 

 populations of neurons classified with + +, + -, - -, - + firing rate profiles. 
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 Figure  76.  Ramping  slopes  and  slope  offsets  as  a  function  of  trial  type.  (A)  Pre-reward 

 zone  slopes  of  neurons  that  had  a  positive  and  negative  ramp  in  the  pre-reward  zone  region 

 of  the  track.  (B)  Beaconed  slopes  as  a  function  of  probe  slopes  in  the  pre-reward  zone 

 region  of  the  track.  (C)  Post-reward  zone  slopes  for  the  same  neurons.  (D)  Beaconed  slopes 

 as  a  function  of  probe  slopes  in  the  post-reward  zone  region  of  the  track  (E)  Offsets  of  a 

 subset  of  the  ramping  neurons  (+  +  or  -  -  groups).  (F)  Beaconed  offsets  as  a  function  of 

 probe  offsets.  For  B,D,F:  Grey  dashed  line  indicates  unity,  red  dashed  line  indicates  the  line 

 of best fit. 
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 5.3.6 Ramp cells in the open field 

 Do  ramp  cells  overlap  with  spatial  modulated  cell  types  such  as  grid  or  border  cells?  As  ramp 

 cells  increase  or  decrease  their  firing  rate  proportional  to  the  distance  to  a  goal  location,  it's 

 possible  that  ramping  neurons  are  in  fact  a  subset  of  border  cells  with  defined  border  fields 

 at  salient  points  on  the  track  (Campbell  et  al.  2018)  ,  or  grid  cells  with  grid  spacings  and  field 

 locations  reminiscent  of  a  ramp-like  code,  possibly  tuned  to  rewarded  locations  (Butler, 

 Hardcastle,  and  Giocomo  2019)  .  To  address  this,  mice  performed  the  linear  location  task 

 before  completing  a  free  exploration  task  in  an  open  field  to  record  activity  of  neurons  in  both 

 spatial  paradigms.  Electrophysiological  recordings  were  concatenated  and  spike  sorted 

 together  to  track  the  neural  firing  between  set  ups  (see  2.8  ).  If  ramp  cells  were  in  fact  a 

 subset  of  the  border,  grid  or  any  other  spatial  cell  population,  neurons  would  show  significant 

 ramping  activity  on  the  linear  track  while  also  classifying  as  grid,  border,  or  other  spatial  cells 

 based  on  their  spatial  firing  properties  in  the  open  field.  All  11  mice  undertook  both  the  linear 

 location  task  and  open  field  recordings  daily,  however  only  cohort  7  (C7)  is  used  within  this 

 analysis  as  electrophysical  noise  levels  from  the  open  field  recordings  in  previous  cohorts 

 were  not  suited  for  the  concatenated  sorting  procedure  used  to  identical  clusters  in  both 

 settings.  This  was  because  all  other  cohorts  were  recorded  before  low  noise  levels  were 

 achieved with the open field setup. 

 Of  the  340  positionally-encoding  cells,  201  of  these  cells  had  a  corresponding  open  field 

 recording.  Only  10  of  these  cells  classified  as  border  cells,  7  as  grid  cells  and  18  as  head 

 direction  cells.  The  vast  majority  overlapped  with  non-specific  spatial  cells  (145/201)  and  a 

 small  proportion  was  classified  as  non-spatial  in  the  open  field  (21/201).  Examples  from  each 

 ramp  group  (+  +,  +  -,  -  +,  -  -)  are  shown  in  Figure  77  .  These  cells  show  features  of  spatial 

 firing  properties  but  do  not  fall  into  any  classically  defined  spatial  firing  category  consistent 

 with  the  large  proportion  of  ramping  cells  classified  as  spatial.  Conversely,  examples  of 

 classically  defined  spatial  cells  (grid,  border,  narrowly-tuned  head  direction  and 

 broadly-tuned  head  direction)  are  shown  with  their  spatial  firing  properties  on  the  virtual 

 linear  track.  To  quantify  this,  the  overlap  between  cell  classifications  in  the  open  field  and 

 virtual  linear  track  was  measured  by  calculating  the  proportion  of  cell-types  in  the  VR  that 

 corresponded  with  a  particular  cell-type  in  the  open  field,  and  vice  versa.  Figure  79  A  shows 

 the  proportion  of  border,  grid  and  pure  head  direction  cells  were  similar  among  ramping  and 

 non-ramping  neurons  while  Figure  79  B  shows  the  proportion  of  ramping  and  non-ramping 

 neurons  were  similar  among  each  open  arena  cell  type.  This  data  suggests  ramp  cells  are 

 largely  non-overlapping  with  grid  and  border  populations  but  do  correspond  to  spatial  cells  in 

 the open field. 
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 Figure  77.  Examples  of  the  open  field  spatial  firing  properties  of  ramping  neurons. 
 From  top  to  bottom  shows  spatial  firing  of  (i)  +  +,  (ii)  +  -,  (iii)  -  -  and  (iv)  -  +  ramping  neurons 

 in  the  virtual  linear  track  and  the  open  field.  Panels  show  (from  left  to  right):  average  firing 

 rate  profiles  on  the  virtual  track  as  a  function  of  position;  spatial  heat  maps  of  firing  rates  in 

 the  open  arena;  spatial  autocorrelograms  of  the  open  arena  firing  rate;  firing  rate  in  the  open 

 arena  as  a  function  of  speed;  and  polar  plots  of  average  firing  rate  in  the  open  arena  as  a 

 function  of  head  direction  (red)  and  movement  (black).  Maximal  firing  for  which  the  spatial 

 heat maps are normalised up to are shown above the spatial heat maps. 
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 Figure  78.  Examples  of  the  virtual  linear  track  spatial  firing  properties  of 
 classically-defined  spatially  modulated  cell  types.  From  top  to  bottom  shows  spatial  firing 

 of  a  (i)  grid  cell,  (ii)  border  cell,  (iii)  narrowly-tuned  head  direction  cell  and  a  (iv)  broadly-tuned 

 head  direction  cell  in  the  virtual  linear  track  and  the  open  field.  Panels  show  (from  left  to 

 right):  spike  locations  as  a  function  of  position,  average  firing  rate  profiles  on  the  virtual  track 

 as  a  function  of  position;  spatial  heat  maps  of  firing  rates  in  the  open  arena;  spatial 

 autocorrelograms  of  the  open  arena  firing  rate;  firing  rate  in  the  open  arena  as  a  function  of 

 speed;  and  polar  plots  of  average  firing  rate  in  the  open  arena  as  a  function  of  head  direction 

 (red)  and  movement  (black).  Maximal  firing  for  which  the  spatial  heat  maps  are  normalised 

 up to are shown above the spatial heat maps. 
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 Figure  79.  Proportions  of  overlap  between  cell  types  in  the  virtual  linear  task  and  open 
 field.  (A)  Proportion  of  each  open  arena  cell  type  (border,  grid,  head  direction,  non-spatial, 

 other  spatial)  among  neurons  with  activity  on  the  linear  virtual  track  classified  as 

 position-dependent  ramping  (P,  PA,  PS,  PSA-encoding  with  positive  or  negative  ramps  in  the 

 pre-reward  zone  region),  other  ramping  (S,  A,  SA-encoding  with  positive  or  negative  ramps 

 in  the  pre-reward  zone  region),  and  non-ramping  (no  positive  or  negative  ramps  in  the 

 pre-reward  zone  region).  (B)  Proportion  of  neurons  classified  on  the  linear  virtual  track 

 classified  as  position-dependent  ramping,  other  ramping,  and  non-ramping  among  neurons 

 classified  as  border,  grid,  head  direction,  non-spatial,  other  spatial.  In  (C)  and  (D),  boxes 

 show  the  median,  25  th  and  75  th  percentiles,  and  whiskers  extend  to  the  largest  value  1.5 

 times the interquartile range from the box. Points outside this range are plotted individually. 
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 5.3.7 Ramp cells are found within the retrohippocampus 

 Where  are  ramping  cells  found  in  the  hippocampal  formation?  For  the  purpose  of  this  thesis, 

 only  mice  with  tetrodes  localised  to  this  area  were  analysed.  To  determine  the  location  of 

 tetrodes,  brains  were  processed  and  imaged  using  Micro-CT  based  imaging  or  cresyl  violet 

 staining  (see  2.6  ).  Tetrodes  were  assigned  either  to  the  MEC  (n  =  5  mice),  the 

 pre/parasubiculum  (n  =  2),  or  when  the  location  was  ambiguous  between  these  areas  to 

 retrohippocampal  cortex  (n  =  3;  Figure  80  ).  Presubiculum  and  parasubiculum  were  not 

 differentiated  as  the  borders  between  these  regions  are  not  well  defined.  Localisation  of  the 

 tetrodes  to  the  retrohippocampal  region  was  confirmed  by  a  clear  theta  modulation  of  the 

 local  field  potential  and  theta-locked  firing  consistent  with  previous  findings  from  these  areas 

 (  Figure  81  ,  82  ;  Chrobak  and  Buzsáki  1998;  Colgin  et  al.  2009)  .  The  animal  from  which  we 

 were  unable  to  localise  the  tetrodes  anatomically,  but  had  strong  theta-modulation  of  the 

 local field potential and theta-locked firing was assigned to the retrohippocampal group. 
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 Figure  80.  Tetrode  localisation.  Cresyl  violet  stained  brain  sections  used  for  assessment  of 

 tetrode  locations  in  three  mice  and  Micro-CT  images  used  for  assessment  of  tetrode 

 locations  in  six  mice.  For  each  animal,  sagittal  slices  are  presented  lateral  to  medial  from  left 

 to  right  and  the  classification  of  the  tetrodes  target  is  shown  at  the  top  left.  This  classification 

 is  based  on  the  terminal  location  of  the  tetrode  and  the  distance  travelled  during  the 

 experiment  (see  Methods).  Two  mice  had  no  visible  tetrode  tracks  in  any  slice  and  are  not 

 shown.  In  all  images  red  triangles  point  to  the  putative  tetrode  tracks.  The  number  of  neurons 

 recorded  in  each  mouse  was:  C2  245:  47  neurons;  C3  M1:  181  neurons;  C3  M6:  56  neurons; 

 C4  M2:  314  neurons;  C4  M3:  48  neurons;  C5  M2:  21  neurons;  C7  M3:  266  neurons;  C7  M6: 

 243  neurons;  C7  M7:  204  neurons.  No  histology:  C5  M1:  31  neurons;  C7  M4:  23  neurons. 

 Scale bar denotes 1 mm. 
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 Figure  81.  Heat  maps  of  the  local  field  potential  as  a  function  of  training  day.  Mouse 

 IDs  and  tetrode  localisation  are  given  above.  Colours  denote  the  magnitude  of  the  LFP 

 power. 
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 Figure  82.  Theta  indices  of  recording  neurons.  (A)  Histogram  of  the  theta  index  across  all 

 cells  (top)  and  (B)  scatter  plots  showing  the  theta  index  grouped  by  tetrode  location  (left)  and 

 mouse  (right).  Cells  were  classified  as  having  theta-rhythmic  firing  (red  in  the  histogram) 

 when their theta index was > 0.07  (indicated by a  black dashed line; Kornienko et al. 2018)  . 
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 5.3.8 Ramping activity is similar across retrohippocampal regions 

 Ramping  neurons  were  found  in  both  MEC  and  pre/parasubiculum  areas,  all  with  similar 

 proportions.  In  both  regions  there  was  a  slight  bias  towards  negatively  ramping  neurons.  Of 

 the  ramping  neurons,  position-encoding  neurons  were  abundant  in  each  region.  Less 

 conjunctive  position  encoding  neurons  were  found  in  pre/parasubiculum  areas  however  this 

 region  was  not  as  well  sampled  as  MEC  neurons.  Slopes  were  also  similar  for  ramping 

 neurons. 

 Figure  83.  Summary  of  ramping  activity  in  the  retrohippocampus.  (A)  Proportions  of 

 cells  classified  as  having  positive,  negative  or  unclassified  slopes  in  the  pre-reward  zone 

 region  for  MEC,  PS  and  RH  neurons.  (B)  Proportion  of  ramping  neurons  (positive  or  negative 

 slopes  in  the  pre-reward  zone  region)  for  which  each  combination  of  P,  A  and  S  coefficients 

 were  significant  at  a  threshold  of  P  <  0.01  (Wald’s  chi  squared  test)  as  a  function  of  tetrode 

 location.  (C)  Distribution  of  pre-reward  zone  ramp  slopes  for  ramping  neurons  for  MEC,  PS 

 and RH neurons. 
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 5.3.9 Theta modulation of ramp cells 

 The  theta  oscillation  (4–12  Hz)  in  local  field  potentials  in  the  hippocampal  formation  is  closely 

 associated  with  spatial  functions.  Individual  neurons  show  phase  precession  in  place  and 

 grid  cells  (John  O’Keefe  and  Recce  1993;  Hafting  et  al.  2005)  .  Whether  ramp  cells  show 

 similar  theta-modulated  firing  would  suggest  whether  these  cells  are  implicated  in  similar 

 spatial-coding  networks.  Theta  indices  were  calculated  for  each  neuron  as  detailed  in  5.2.5  . 

 Ramping  neurons  were  found  in  both  non-rhythmic  and  theta  rhythmic  cell  populations,  all 

 with  similar  proportions.  In  both  groups  there  was  a  slight  bias  towards  negatively  ramping 

 neurons.  Of  the  ramping  neurons,  position-encoding  neurons  were  abundant  in  each  group. 

 Slopes were also similar for ramping neurons. 

 Figure  84.  Summary  of  theta  modulation  in  ramping  neurons.  (A)  Proportions  of 

 non-rhythmic  (NR)  cells  and  theta  rhythmic  (TR)  cells  as  having  positive,  negative  or 

 unclassified  slopes  in  the  pre-reward  zone  region.  (B)  Proportion  of  ramping  neurons 

 (positive  or  negative  slopes  in  the  pre-reward  zone  region)  for  which  each  combination  of  P, 

 A  and  S  coefficients  were  significant  at  a  threshold  of  P  <  0.01  (Wald’s  chi  squared  test)  as  a 

 function  of  theta  modulation.  (C)  Distribution  of  pre-reward  zone  ramp  slopes  for 

 non-rhythmic and theta rhythmic neurons. 
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 5.4 Discussion 

 These  results  show  retrohippocampal  neurons  exhibit  ramping  neural  activity  on  a  virtual 

 linear  track  while  mice  perform  a  spatial  memory  task.  Ramping  activity  changes  around  the 

 rewarded  location  with  a  reset  of  the  ramp  or  a  switch  in  polarity.  From  these  ramping 

 neurons,  it  was  found  position  was  the  most  influential  kinematic  variable  over  speed  and 

 acceleration.  Ramping  activity  might  still  be  explained  by  time  however  a  time  analysis 

 revealed  most  ramping  neurons  could  be  better  explained  by  position  rather  than  time 

 (Tennant  et  al.  2022)  .  These  ramp  slopes  were  not  generally  affected  by  the  spatial 

 behaviour  of  the  mouse  on  any  given  trial  but  offsets  in  the  ramp  code  were,  suggesting  the 

 encoded  reward  location  is  reinforced  by  the  reward.  Without  a  visual  cue  or  reward  present, 

 ramp  slopes  and  offsets  were  maintained  albeit  at  reduced  magnitudes,  again  suggesting 

 track  cues  play  a  role  in  strengthening  position  representations  along  the  track,  possibly  by 

 anchoring  the  code  to  a  salient  landmark  which  over  many  trials  is  more  consistent  present 

 at the same locations and therefore stronger. 

 5.4.1 Technical challenges 

 I  came  across  several  issues  during  the  analysis  described  in  this  chapter  which  warrants 

 discussion  for  any  researcher  looking  to  develop  upon  these  analyses.  When  putting 

 together  a  statistical  method  for  classifying  a  ramp-like  firing  rate  profile,  a  standard  tool  for 

 the  interpreting  neuroscientist  is  a  well  designed  shuffle  analysis.  A  common  shuffling 

 procedure  is  the  cyclic  shuffle,  which  generates  shuffled  data  per  neuron  by  drawing  a  single 

 random  time  interval  and  adding  this  to  all  spike  timestamps  to  generate  new  spatial  firing 

 profiles  while  maintaining  temporal  dynamics.  This  works  in  environments  where  time 

 additions  do  not  frequently  correspond  to  predictable  locations  like  open  field  arenas  when 

 the  animal  is  randomly  foraging.  However,  on  a  linear  track  I  found  the  implementation  of  a 

 cyclic  shuffle  procedure  reproduced  ramp-like  profiles  in  shuffled  datasets  suggesting  the 

 random  addition  of  a  single  value  onto  each  timestamp  did  little  to  break  the  ramp-like 

 profiles  across  trials.  A  mouse  running  similar  trial  times  could  account  for  this  and  this 

 prompted  me  to  adjust  the  cyclic  shuffling  procedure  by  drawing  a  random  time  interval  for 

 each  trial.  This  alone  did  not  remove  significant  ramp-like  profiles  in  the  trial-averaged  firing 

 rate  map.  I  found  the  process  of  smoothing  with  a  Guassian  kernel  systematically  created 

 false  positive  ramp-like  profiles.  With  this  in  mind,  I  altered  the  entire  analysis  by  removing  all 

 Guassian smoothing except from visualisation in the presented plots and figures. 

 To  address  whether  ramp  cells  overlapped  with  well  characterised  spatial  cells  like  grid  and 

 border  cells,  similarly  to  Chapter  3,  mice  were  trained  in  the  spatial  memory  task  and  placed 
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 in  an  open  field  arena  to  freely  explore.  Electrophysiological  recordings  were  concatenated 

 and  spike  sorted  together.  All  mice  reported  in  this  chapter  completed  tasks  in  the  two 

 different  environments,  however  unlike  Chapter  4,  electrophysiological  noise  was  much 

 higher  in  open  field  sessions  compared  to  VR  sessions  in  all  but  one  cohort  because  these 

 cohorts  were  recorded  from  a  suboptimal  open  field  setup,  in  terms  of  electrical  shielding. 

 Due  to  this,  only  this  one  cohort  was  used  to  compare  the  spatial  firing  properties  in  both 

 environments.  In  the  open  field  recordings  with  high  noise  level,  very  few  spatial-modulated 

 cells  were  found  even  though  tetrode  identification  revealed  the  recording  location  was 

 localised  in  retrohippocampal  regions.  This  suggested  the  noise  levels  were  too  high  to 

 capture these cells and it was decided to leave these cohorts out of the open field analysis. 

 5.4.2 Relationship to neural activity in other brain areas 

 Is  there  evidence  for  ramp  codes  in  other  regions  of  the  brain?  LaChance,  Todd,  and  Taube 

 (2019)  found  cells  in  the  postrhinal  cortex  to  encode  the  distance  to  the  centre  of  an  open 

 field  arena.  This  resembled  a  continuous  code  unlike  discrete  codes  observed  in  place  and 

 head  direction  cells.  Ramping  activity  has  also  been  observed  in  the  striatum  that  signals  the 

 time  to  receive  a  reward  in  rats  and  monkeys  (Lavoie  and  Mizumori  1994;  Fiorillo,  Tobler, 

 and  Schultz  2003,  respectively)  and  scales  to  reward  magnitude  (Howe  et  al.  2013)  .  I  found 

 ramps  were  insensitive  to  the  presence  of  a  reward  although  no  experiments  were  done  to 

 evaluate  if  rewards  were  critical  to  the  formation  of  the  positional  ramps.  In  the  prefrontal 

 cortex  (PFC),  ramping  activity  was  also  shown  to  encode  expected  reward  (Watanabe  1996; 

 Hikosaka  2000;  Kobayashi  et  al.  2002)  which  scales  with  reward  magnitude  (Leon  and 

 Shadlen  1999)  .  In  persistent  firing  neurons  of  the  PFC,  this  code  can  be  multiplexed  with 

 stimulus-dependent  encoding  such  that  neurons  represent  the  memory  of  the  stimulus.  For 

 example,  Brody  (2003)  showed  persistent  neurons  encoded  the  frequency  of  a  motor  stimuli 

 presented  to  macaques  as  a  function  of  firing  rate  during  stimuli  presentation  and  over  the 

 course  of  a  delay,  which  resembled  a  similar  ramp  code.  Taken  together,  ramp  codes  serve 

 as  a  useful  representation  to  signal  the  progression  to  a  salient  feature  or  response  within  a 

 task, whether this is a location or a stimulus associated or not with a reward. 
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 5.4.3 Behavioural and computational roles 

 Are  these  neural  representations  utilised  to  solve  the  spatial  memory  task?  The  results  show 

 that  positional  representations  are  encoded  within  ramping  neurons  which  could  benefit  the 

 animal  during  path  integration.  However,  direct  evidence  for  their  causal  role  in  spatial 

 navigation  will  require  targeted  manipulation  of  these  cells  or  a  closed-loop  task  design 

 which  can  interrogate  the  activity  of  ramping  neurons  in  real  time.  One  possible  experiment 

 might  involve  manipulating  the  gain  of  the  VR  to  probe  how  the  ramping  activity  maps  to 

 track  locations  while  the  proprioceptive  input  is  placed  in  conflict  with  the  visual  features  of 

 the  track.  If  ramping  activity  could  be  entrained  to  ramp  up  or  down  to  rewarded  locations 

 either  marked  by  a  visually-defined  reward  location  or  a  distance-defined  reward  location, 

 this  would  provide  direct  evidence  for  the  utility  of  ramping  representations  driving 

 navigation.  Indirect  evidence  for  their  function  has  been  provided  by  Ian  Hawes  who  created 

 an  artificial  reinforcement  learning  agent  with  a  recurrent  neural  network  architecture. 

 Ramping  units  (artificial  neurons  within  the  network)  emerged  in  the  recurrent  layers  of  an 

 agent  trained  to  learn  a  similar  task.  Performance  was  disrupted  upon  lesioning  the  output  of 

 ramping  units  but  performance  was  preserved  upon  lesioning  outputs  of  non-ramping  units 

 (Tennant  et  al.  2022)  .  These  simulations  suggest  ramping  units  are  more  useful 

 representations than non-ramping units in an analogous linear location task. 

 Whether  these  representations  manifest  over  the  course  of  training  or  are  present  from  the 

 beginning  may  further  address  issues  of  causality.  This  was  not  possible  to  address  within 

 the  current  task  design.  Tetrodes  were  lowered  over  the  course  of  training  towards  the 

 targeted  retrohippocampal  areas  so  it  was  difficult  to  address  whether  ramps  were  not  found 

 for  reasons  of  learning  or  tetrode  locations.  Future  experiments  with  high-density  silicon 

 probes will help elucidate the manifestation of this ramping activity. 

 Current  theories  support  ramping  position  codes  as  intermediate  outputs  to  grid  cells  by 

 providing  a  metric  of  travelled  distance  from  salient  landmarks  (Stemmler,  Mathis,  and  Herz 

 2015;  Bush  et  al.  2015;  Fiete,  Burak,  and  Brookings  2008)  .  Under  these  circumstances,  the 

 learned  track  structure  is  stored  within  synaptic  weights  onto  grid  cells.  As  discussed  in 

 1.4.4  ,  positional  ramping  neurons  can  be  utilised  as  a  readout  system  from  the  grid  code 

 during  vector  navigation.  If  this  is  the  case,  investigating  the  activity  of  grid  and  ramp  cells  in 

 conjunction  will  address  whether  these  cell  types  are  part  of  a  coherent  internal  model  of 

 location  estimation.  For  example,  if  ramp  codes  are  associated  with  grid  cells,  spatial 

 information  would  be  lower  during  distance-encoding  epochs  compared  to  position-encoding 

 epochs.  Unfortunately,  grid  cells  were  not  recorded  in  great  numbers  within  the  experiment. 
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 To  that  end,  further  experiments  included  in  this  thesis  have  recorded  greater  grid  cell 

 numbers and will be the main focus of the next chapter. 
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 Discussion 

 The  aim  of  the  thesis  was  to  investigate  the  coding  schemes  of  grid  cells  and  putative 

 readout  cells  while  a  mouse  navigated  using  beaconing  and  path  integration-based 

 self-localisation  strategies.  To  address  this  aim,  tetrode  neural  implants  were  targeted  to 

 retrohippocampal  regions  in  mice.  These  mice  performed  a  linear  location  task  that  required 

 either  beaconing  and  path  integration-based  navigation  to  solve.  Grid  cells  were  found  in  the 

 MEC  while  ramp  cells  were  found  all  throughout  retrohippocampal  areas  including  the  MEC, 

 presubiculum  and  parasubiculum.  A  range  of  behaviours  were  captured  which  covered 

 different  trial  outcomes  of  a  linear  location  task  that  required  both  beaconing  and  path 

 integration  to  solve.  This  allowed  for  an  analysis  of  the  neural  activity  in  which  I  could  ask,  to 

 what  extent  can  spatial  coding  be  explained  in  terms  of  active  engagement  of  beaconing  and 

 path  integration-based  behaviours?  I  modified  our  lab's  existing  analysis  pipeline 

 (  https://github.com/MattNolanLab/in_vivo_ephys_openephys  )  to  accommodate  spike  sorting 

 across  multiple  sessions.  With  this  modification,  cells  could  be  tracked  across  sessions 

 recorded  on  the  same  day.  This  allowed  the  investigation  of  spatial  cells  identified  in  the 

 open field session to be studied in the virtual reality session and vice versa. 

 Grid  cells  were  found  to  fire  periodically  on  the  linear  track,  as  predicted  by  grid  firing  in  open 

 field  arenas,  which  reflected  an  allocentric  code  for  position.  However,  it  was  clear  grid  cells 

 were  not  consistently  anchored  to  track  cues.  This  inspired  me  to  develop  an  analysis  which 

 could  classify  whether  a  cell’s  periodicity  was  consistent  with  anchoring  to  track  cues  or  not. 

 If  the  periodic  firing  fields  anchored  to  track  cues,  the  firing  fields  appeared  at  roughly  the 

 same  locations  on  each  trial.  If  the  periodic  firing  fields  did  not  anchor  to  track  cues,  the  firing 

 fields  appeared  at  different  locations  on  each  trial.  When  grid  firing  is  locked  to  track  cues, 

 the  grid  code  can  convey  a  reliable  allothetic  estimate  of  position  within  the  environment.  On 

 the  other  hand,  when  grid  firing  is  not  locked  to  track  cues,  the  grid  code  can  convey  an 

 egocentric  metric  of  distance  travelled  information  (  Figure  48  ).  Are  either  or  both  position  and 

 distance  coding  schemes  compatible  with  navigation  using  beaconing  and  path  integration 

 behaviours?  I  found  grid  cells  frequently  remap  between  these  two  coding  schemes  but  the 

 position  code  is  more  frequently  utilised  when  the  mouse  is  successful  in  trials  that  require 

 path  integration  but  not  necessarily  beaconing.  The  findings  are  consistent  with  previous 

 studies  linking  grid  cell  activity  to  path  integration  behaviours  (Allen  et  al.  2014;  Kunz  et  al. 

 2015;  Gil  et  al.  2018;  Tennant  et  al.  2018)  .  More  specifically,  I  show  accurate  path  integration 

 and  not  beaconing  is  associated  with  the  positional  coding  of  grid  cells,  consistent  with 

 findings  of  Gil  et  al.  (2018)  ,  who  showed  disrupted  grid  representations  in  mice  coincides 

 with a poor performance of a path integration but not beaconing. 
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 The  experiments  in  this  thesis  also  contributed  to  the  characterisation  of  recently  discovered 

 ramping  representations  of  location  by  retrohippocampal  neurons.  This  previously 

 undiscovered  cell  type  in  the  retrohippocampus  fired  proportionally  as  a  function  of  distance 

 from  a  salient  location  on  the  track  and  was  shown  to  encode  position  along  the  track  by  the 

 cell’s  instantaneous  firing  rate.  This  continuous  coding  scheme  contrasts  the  discrete  coding 

 schemes  found  in  similar  regions  of  the  brain  such  as  place  and  grid  cells.  Ramp-like  codes 

 were  maintained  independently  of  trial  outcome  and  trial  type  suggesting  that  the  ramp  code 

 results  from  memory  recall  of  the  track  structure.  These  positional  ramp  cells  were  largely 

 non-overlapping  with  previously  defined  cell-types  in  the  open  field  setting,  being  most 

 defined  as  non-specific  spatial  cells,  but  no  more  frequently  than  non-positional  ramp  cells. 

 As  these  cells  did  not  overlap  with  grid  cell  populations,  it  remains  possible  that  ramp  cells 

 offer  a  solution  to  the  readout  of  positional  estimates  from  the  theorised  population  code  for 

 location  conveyed  by  the  grid  cell  system  (Fiete,  Burak,  and  Brookings  2008;  Stemmler, 

 Mathis, and Herz 2015)  . 

 In  the  following  discussion,  I  will  detail  the  implications  and  limitations  of  the  thesis  findings 

 and  put  forward  experiments  that  will  address  the  next  steps  towards  understanding  the 

 neural systems of self-localisation. 
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 6.1 What role do grid cells play in self localisation? 

 The  analysis  in  Chapter  4  provides  evidence  that  grid  cell  firing  is  associated  with  the 

 behaviour  of  mice  while  performing  path  integration-based  but  not  beaconing  navigation 

 strategies.  This  corroborates  the  long-standing  hypothesis  that  grid  cells  are  utilised  in  path 

 integration  for  the  purpose  of  self-localisation  (Hafting  et  al.  2005;  McNaughton  et  al.  2006)  . 

 Grid  cells  were  found  to  fire  in  a  spatially-periodic  fashion  when  recorded  from  mice  on  a 

 linear  track.  Spatially-periodic  firing  of  grid  cells  could  either  be  anchored  to  the  virtual  track, 

 in  which  case  the  grid  cell  encoded  position  in  an  allocentric  frame  of  reference,  or  it  could 

 be  independent  of  track  position,  in  which  case  the  grid  cell  encoded  distance  in  an 

 egocentric  reference  frame  (  Figure  48  ,  55  ).  Both  schemes  are  consistent  with  active  path 

 integration  computations,  with  both  presumably  requiring  sufficient  velocity  input  integrated 

 over  time  to  evoke  the  next  firing  field,  although  positional  coding  alone  was  found  to  be 

 more beneficial to mice engaging in trials that required path integration-based navigation. 

 What  distinguishes  position  and  distance  coding  is  the  ability  to  anchor  spatial  firing  to 

 external  salient  cues.  What  role  does  grid  anchoring  play  in  path  integration?  In  order  to  stop 

 at  specific  locations  along  the  linear  track  with  path  integration,  distance  travelled  must  be 

 tracked  over  time  from  a  starting  point.  As  path  integration  is  prone  to  accumulating  errors, 

 reducing  the  distances  that  need  to  be  tracked  by  resetting  this  starting  point  greatly  reduces 

 the  size  of  the  error  in  the  distance  travelled  estimate.  If  grid  fields  anchor  to  salient 

 landmarks  of  the  track  when  they  are  available,  these  errors  are  reset.  This  resetting  is 

 compatible  with  experiments  in  which  the  availability  of  cues  were  reduced  and  grid  cell 

 activity  compared.  Chen  et  al.  (2016)  showed  grid  cells  were  less  spatially  stable  and 

 periodic  in  darkness  than  in  illuminated  environments,  whereas  Pérez-Escobar  et  al.  (2016) 

 showed  removing  visual  landmarks  from  a  linear  track  greatly  reduced  the  spatial  periodicity 

 of  recorded  grid  cells.  This  thesis  suggests  that  the  grid  position  code  is  associated  with 

 accurate  path  integration  and  that  the  distance  code  may  not  be  required  for  accurate  path 

 integration.  Consequently,  it  becomes  apparent  that  central  to  accurate  path  integration  is  in 

 fact  grid  anchoring.  Without  anchoring  the  grid  code  to  salient  cues,  grid  fields  tend  to  drift 

 spatially  as  path  integration  errors  grow.  External  spatial  input  is  thus  required  to  stabilise 

 grid  representations  as  has  been  found  in  path  integration  models  (Pastoll  et  al.  2013; 

 Solanka,  Van  Rossum,  and  Nolan  2015;  Shipston-Sharman,  Solanka,  and  Nolan  2016)  .  In 

 the  context  of  grid  vector  population  codes  (Fiete,  Burak,  and  Brookings  2008;  Stemmler, 

 Mathis,  and  Herz  2015)  ,  anchoring  ensures  locations  are  encoded  with  the  same  vector  code 

 across  trials,  without  phases  within  the  vector  changing  their  mapping  to  specific  locations 

 across  trials.  Without  anchoring,  the  location  of  grid  fields  fluctuates  across  trials.  This  results 
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 in  the  phase  vector  code  varying  across  trials  even  when  the  mouse  is  at  the  same  track 

 location  on  different  trials.  This  would  be  difficult  to  be  read  out  by  downstream  neurons 

 without  dedicated  neural  circuits  that  could  track  phase  changes  across  trials.  Further,  if 

 phases  from  individual  grid  modules  change  at  different  rates,  this  vector  becomes  even 

 more  difficult  to  decode.  To  test  the  role  of  grid  anchoring  in  accurate  path  integration  against 

 the  allocentric  grid  position  code,  I  propose  an  altered  version  of  the  linear  location  task  that 

 puts  the  two  in  conflict.  In  this  task,  a  dynamically  positioned  cue  defines  the  starting  point  of 

 which  to  path  integrate  to  a  non-cued  goal  location.  If  grid  anchoring  is  critical  to  accurate 

 path  integration,  trials  in  which  the  mouse  stops  at  the  correct  reward  location  will  coincide 

 with  trials  in  which  the  grid  code  is  anchored  to  this  dynamically  positioned  starting  cue.  On 

 the  other  hand,  if  the  allocentric  grid  position  code  is  critical  to  accurate  path  integration, 

 accurate  path  integration  trials  will  coincide  with  trials  in  which  the  grid  code  is  anchored  to 

 all  track  cues  except  the  dynamically  positioned  starting  cue.  Similar  to  the  current  task, 

 beaconed  trials  could  be  used  to  initialise  the  association  between  the  distance  and  the 

 rewarded  locations  as  well  as  control  for  the  differences  in  neural  activity  during  beaconing 

 and path integration-based navigation. 

 What  mediates  cue  anchoring  of  grid  cells?  Spatial  input  from  place  cells  is  sufficient  to 

 stabilise  grid  representations  in  path  integration  models  (Pastoll  et  al.  2013;  Solanka,  Van 

 Rossum,  and  Nolan  2015;  Shipston-Sharman,  Solanka,  and  Nolan  2016)  .  Furthermore, 

 inactivation  of  the  hippocampus  has  been  shown  to  disrupt  grid  cell  periodicity  (Bonnevie  et 

 al.  2013)  supporting  the  idea  that  place  cells  provide  the  spatial  input  critical  for  cue 

 anchoring.  In  the  scenario  that  alternative  cells  perform  path  integration,  grid  cells  might  be 

 used  to  interface  between  these  path  integrators  and  the  sensory  information  that  anchors 

 the  incoming  path  integration  input.  To  date,  no  studies  have  yet  to  show  a  closeup  analysis 

 of  the  spatial  input  to  grid  cells,  leaving  the  door  open  to  the  possibility  for  another  putative 

 path  integrator  to  facilitate  the  operation  before  synapsing  onto  grid  cells.  More  broadly,  cue 

 anchoring  might  be  mediated  by  the  visual  attention  of  the  animal.  Increased  attention  is 

 associated  with  an  increase  in  the  signal-to-noise  ratio  of  neurons  that  represent  the 

 attended  stimuli  (Lindsay  2020)  as  well  as  increased  spiking  coherence  in  the  gamma  band 

 (Fries  et  al.  2008)  .  Long  silicon  probes  targeted  to  both  visual  regions  and  the  MEC  (which  is 

 possible  due  to  their  proximity  in  mice)  could  be  used  to  measure  these  signals  against  grid 

 anchoring dynamics during the linear location task. 

 How  might  this  grid  positional  coding  afford  an  accurate  self-localisation  estimate?  Unlike  the 

 distance  coding  scheme,  position  encoding  grid  cells  can  confer  a  reliable  estimate  of 

 location  using  the  phase  vector  population  code  (Fiete,  Burak,  and  Brookings  2008; 
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 Stemmler,  Mathis,  and  Herz  2015)  ,  as  described  in  1.4.4  .  With  the  grid  phase  vector 

 encoding  position,  self-location  estimates  can  be  readout  and  compared  to  the  grid  phase 

 vector  corresponding  to  the  reward  location  to  guide  stopping  behaviour  through  vector 

 navigation  (Bush  et  al.  2015)  .  Mechanistically,  grid  cells  have  themselves  the  machinery 

 necessary  to  perform  path  integration  operations  (Burak  and  Fiete  2009;  McNaughton  et  al. 

 2006)  .  However,  in  an  alternative  scenario  suggested  by  Bush  et  al.  (2015)  , 

 positional-decoding  might  be  carried  out  by  other  cells  that  convey  spatially  periodic 

 information  such  as  band  cells  (Bush  et  al.  2015)  or  VCOs  (Burgess,  Barry,  and  O’Keefe 

 2007)  .  Interestingly,  the  non-grid  cell  population  presented  in  4.3.1  (  Figure  56  )  also 

 contained  distance  encoding  cells  which  are  consistent  with  the  periodicity  signature  of  band 

 cells  and  VCOs.  If  grid  cells  were  to  receive  input  from  these  putative  path  integrator  cells,  a 

 close  look  at  the  information  flow  between  simultaneously  recorded  pairs  of  periodic  grid  and 

 non-grid  cells  could  be  used  to  address  this  possible  scenario.  Under  either  of  these 

 frameworks,  individual  grid  cells  or  upstream  cells  perform  path  integration  with  updates  of 

 their  firing  in  accordance  with  self-motion  signals  which  results  in  the  translation  of  the  grid 

 phases  for  individual  grid  modules.  These  phases  form  a  population  phase  vector  code 

 across  modules  that  is  then  readout  into  a  self-location  estimate  from  which  goal-directed 

 navigation can be guided. 

 To  summarise,  this  thesis  further  provides  evidence  that  grid  cells  bear  the  fruit  of  path 

 integration  operations  but  it  remains  unclear  whether  grid  cells  actively  perform  path 

 integration  or  are  downstream  of  cells  that  facilitate  path  integration  operations.  Accurate 

 path  integration  during  positional  grid  coding  support  models  proposing  grid  cells  convey  an 

 allothetic  representation  of  space.  What  is  clear  is  that  anchoring  dynamics  that  separates 

 periodic  grid  coding  into  a  position  and  distance  code  appears  to  mediate  accurate 

 self-localisation  when  path  integration  is  required.  The  majority  of  computational  models 

 (both  hand-designed  or  trained)  support  grid  cells  as  the  sole  actuator  in  path  integration 

 operations  without  the  need  for  intermediate  periodic  components  (McNaughton  et  al.  2006; 

 Burak  and  Fiete  2009;  Sorscher  et  al.  2020)  ,  however  without  further  investigation  into  the 

 exact  inputs  received  by  grid  cells,  little  can  be  concluded  to  pinpoint  the  illusive  path 

 integrator. 
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 6.2 What role do ramp cells play in self localisation? 

 Chapter  5  detailed  the  discovery  of  putative  readout  cells  in  the  form  of  a  continuous  code  for 

 location,  which  resembled  ramping  firing  activity  that  mapped  onto  locations  along  segments 

 within  the  linear  track.  These  representations  were  maintained  across  trial  types  and  different 

 levels  of  task  engagement  such  that  ramp  slopes  were  greater  than  chance-level.  This 

 suggested  the  representation  reflected  a  recalled  structure  of  the  track,  which  could  in  theory 

 be  used  by  the  mouse  to  readout  self-location  estimates  and  guide  navigation.  However, 

 slopes  were  found  to  be  significantly  smaller  during  probe  trials  compared  to  beaconed  trials. 

 This  suggests  that  at  least  for  some  neurons,  sensory  information  from  the  reward  zone 

 improves  the  ramp  profile  over  both  key  regions  of  the  track.  Slopes  did  not  change  in 

 respect  to  the  trial  outcome  on  beaconed  trials,  while  this  was  not  investigated  on 

 non-beaconed  trials  because  of  low  trial  numbers.  This  invariance  to  trial  outcome  suggests 

 that  the  track  structure  remained  embedded  as  a  spatial  memory  regardless  of  whether  the 

 mouse  actively  engaged  in  the  task  or  not.  Slope  offsets  between  sloping  groups  -  -  and  +  + 

 were  influenced  by  both  trial  type  and  trial  outcome.  If  offsets  are  aligned  to  stopping  location 

 on  a  trial-by-trial  basis,  the  increased  variability  in  stopping  locations  across  trial  outcomes 

 would  explain  such  differences.  This  could  also  help  explain  similar  changes  in  slope  offset 

 found  between  trial  types  as  trial  outcome  was  not  controlled  for  in  this  comparison.  This 

 could  easily  be  tested  by  calculating  the  best  fitting  slopes  on  each  trial  and  asking  whether 

 intersections  of  these  slopes  align  to  stopping  locations.  Taken  together,  ramp  cells  reflect  a 

 representation  of  self-location  that  is  compartmentalised  to  specific  regions  of  the  linear  track 

 and  is  improved  by  sensory  cues  similarly  to  grid  cells  on  linear  tracks  (Pérez-Escobar  et  al. 

 2016)  . 

 Whether  these  representations  are  actively  recruited  in  self-localisation  behaviours  still 

 remains  unclear.  Beaconing  behaviour  does  not  strictly  require  a  self-location  readout  if  mice 

 utilise  a  cue-response  strategy  to  stop.  As  ramp  slopes  are  influenced  by  the  presence  of  the 

 beaconing  cue,  any  self-location  estimate  encoded  in  the  ramp  cell  representation  could  be 

 corrected  upon  first  sight  of  the  cue  regardless  of  engagement.  Under  this  scenario,  ramp 

 cells  encode  the  self-location  estimate  but  do  not  dictate  whether  the  mouse  actively 

 chooses  to  use  it  (at  least  in  the  case  for  beaconing).  As  for  path  integration  behaviours, 

 these  were  not  well  captured  within  the  cohorts  recorded  in  the  study.  Addressing  how  these 

 cells  responded  to  different  levels  of  task  engagement  on  non-beaconed  trials  (and  thus 

 during  path  integration  behaviours)  was  not  possible  due  to  relatively  low  numbers  of 

 non-beaconed  trials  in  the  experimental  design  used.  Nevertheless,  evidence  linking  ramping 

 activity  to  path  integration  behaviour  comes  in  the  form  of  computational  modelling 
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 performed  by  Ian  Hawes,  who  showed  when  an  artificial  neural  network  was  trained  to 

 complete  a  similar  version  of  the  linear  location  task,  network  units  were  found  to  hold  very 

 similar  ramping  profiles  (Tennant  et  al.  2022)  .  This  suggested  the  formation  of  spatial 

 memories  by  ramping  representations  of  space  offers  a  solution  to  the  readout  of  path 

 integration  computations.  Removal  of  the  outputs  from  these  ramping  units  disrupted 

 accurate  path  integration  behaviours.  While  this  evidence  supports  the  claim  that  ramp  cells 

 facilitate  path  integration  behaviours,  whether  the  ramp  network  is  truly  a  solution  to  path 

 integration  or  an  artefact  of  a  highly  selective  hyperparameter  space  (Schaeffer,  Khona,  and 

 Fiete  2022)  requires  an  extensive  meta  analysis  to  determine  if  this  solution  is  singular  and 

 or  rare.  To  address  the  relationships  between  ramping  activity  and  path  integration 

 behaviours,  further  in  vivo  experimentation  is  needed  with  a  focus  on  collecting  data  from 

 more  non-beaconed  trials,  which  is  now  possible  with  the  improvements  discussed  in 

 Chapter 3, and was implemented in the cohorts used in Chapter 4. 

 How  might  ramps  contribute  to  accurate  path  integration?  Although  not  addressed 

 empirically  within  the  study,  an  allocentric  self-localisation  estimate  (e.g.  from  the  grid  code) 

 is  consistent  with  accurate  path  integration.  It  follows  that  ramping  code  could  convey  a 

 self-location  estimate  to  guide  stopping  behaviour  in  the  linear  location  task.  Unlike  the  grid 

 readout  mechanisms  involving  ramp-like  cells,  I  found  ramp  cells  were  compartmentalised  to 

 segments  of  the  track,  consistent  with  encoding  proximity  to  event  boundaries  like  in  the  bat 

 hippocampus  (Sarel  et  al.  2017)  .  To  test  this,  the  same  ramp  analysis  could  be  performed  on 

 similar  neural  recording  experiments  from  mice  on  linear  tracks  to  see  if  neural  ramps  align 

 with  event  boundaries  (e.g.  track  segments  between  salient  cues  or  rewards).  For  cells  that 

 maintained  their  slope  sign  across  each  region  of  the  track,  these  cells  resembled  cells  in  the 

 striatum  that  encoded  the  expected  reward  as  a  function  of  proximity  to  the  reward  (Howe  et 

 al.  2013)  .  To  test  if  the  expected  reward  plays  a  role  in  the  mediation  of  neural  ramps,  reward 

 size  can  be  altered  or  removed  entirely.  Furthermore,  mice  start  the  experiment  without  a 

 reward-bias  for  the  reward  zone.  Recording  the  evolution  of  neural  ramping  over  the  course 

 of  the  experiment  would  reveal  how  these  ramps  emerge  as  a  consequence  of  learning  with 

 or  without  a  reward.  To  achieve  this,  switching  to  chronically  implanted  silicon  probes  over 

 tetrode  implants  offer  the  possibility  to  record  a  large  neural  population  and  importantly  from 

 the same brain regions over the course of the experiment. 
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 6.3 Joint grid-ramp system for self-localisation? 

 Whether  grid  cells  and  ramp  cells  functionally  interact  within  the  same  neural  architectures 

 remains  to  be  seen.  The  discovery  of  ramp  cells  aligns  with  the  theorised  presence  of 

 readout  cells  for  the  grid  cell  system  (Fiete,  Burak,  and  Brookings  2008;  Bush  et  al.  2015; 

 Stemmler,  Mathis,  and  Herz  2015)  .  In  these  models,  input  from  grid  cells  drive  ramping 

 activity.  Alternatively,  ramping  activity  might  arise  independently  of  grid  firing.  For  example, 

 ramp  cells  emerged  without  grid-like  activity  in  the  recurrent  neural  network  of  a 

 reinforcement  learning  agent  trained  in  the  analogous  linear  location  task  (see  5.4.3  ;  Tennant 

 et al. 2022)  . 

 If  grid  cells  do  indeed  communicate  positional  information  to  ramp  cells,  ramping  activity 

 would  be  affected  by  the  disruption  of  the  grid  code.  Selective  manipulations  of  grid  cells 

 could  be  used  to  identify  this  link.  From  an  analysis  perspective,  relationships  between  the 

 ramp  and  grid  cells  might  already  be  possible  from  available  neural  recordings.  In  the  grid 

 vector  phase  model  of  encoding  location,  grid  cells  are  required  to  encode  position  rather 

 than  distance  nor  aperiodically.  This  predicts  ramping  activity  would  be  impaired  while  grid 

 cells  are  not  actively  encoding  position  (as  defined  in  4.2.3.2  ).  If  however,  ramping  activity  is 

 not  coupled  to  positional  coding  of  grid  cells,  this  will  support  the  alternative  hypothesis  for 

 the  independent  emergence  of  positional  ramping  activity.  Moreover,  in  the  case  grid  cell 

 input  drives  ramping  activity  before  error-correction  properties  of  the  grid  population  code 

 take  effect  (Sreenivasan  and  Fiete  2011;  Stemmler,  Mathis,  and  Herz  2015)  ,  it  can  be 

 predicted  that  ramping  activity  would  exhibit  correlated  trial-by-trial  variability  with  grid  cells. 

 Correlating  the  variability  in  grid  fields  across  trials  or  ‘jitter’  with  the  trial-to-trial  variability  of 

 ramp  cells  would  be  a  simple  test  to  address  this,  similarly  to  how  grid  cell  jitter  has  been 

 shown  to  be  correlated  with  other  jointly  recorded  grid  cells  (Nagele,  Herz,  and  Stemmler 

 2020)  . 

 Are  ramp  and  grid  cells  found  at  the  same  anatomical  locations  in  the  retrohippocampus? 

 Here  I  have  shown  ramp  cells  are  located  at  multiple  locations  across  the  retrohippocampus. 

 Grid  cells  have  also  been  recorded  at  all  anatomical  locations  where  ramp  cells  reside  (MEC, 

 presubiculum  and  parasubiculum;  Hafting  et  al.  2005;  Boccara  et  al.  2010)  .  Similar 

 anatomical  localisation  supports  the  hypothesis  that  grid  cells  are  well  placed  to  convey 

 positional  information  to  ramp  cells.  However,  whether  grid  and  ramp  cells  are  anatomically 

 colocalized  remains  to  be  seen.  Neural  recordings  from  this  thesis  are  available  to  address 

 this  question.  If  they  are  anatomically  local,  positional  ramp  cells  should  be  found  on  the 

 same tetrode as jointly recorded grid cells. 
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 To  better  understand  the  interconnectivity  of  ramp  and  grid  cells  as  a  coherent  neural 

 network,  several  lines  of  analysis  have  been  suggested.  Analysis  looking  at  the  joint  activity 

 of  ramp  and  grid  populations  is  currently  limited  within  the  current  data  available.  This  is 

 because  of  the  relatively  few  cells  that  can  be  jointly  recorded  with  a  16-channel  tetrode 

 array.  Future  experiments  will  employ  more  channels  with  the  aspiration  to  (1)  record  both 

 ramp  and  grid  cells  and  (2)  within  large  enough  numbers  and  across  multiple  locations  to 

 make inferences with regards to population activity. 
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 6.4 Wider applications of the research findings 

 6.4.1 Models for self-localisation and beyond 

 Arriving  at  a  computational  model  of  how  mammals  navigate  in  complex  environments  is  a 

 long  term  objective  for  the  neuroscience  community.  Discoveries  to  date  have  delivered  a 

 platter  of  neurons  that  facilitate  metrics  for  speed,  place,  heading  and  border  information 

 (O’keefe  and  Nadel  1978;  Solstad  et  al.  2008;  Lever  et  al.  2009;  J.  Taube,  Muller,  and  Ranck 

 1990;  Kropff  et  al.  2015)  as  well  as  algorithmic  solutions  to  self-location,  path  integration  and 

 vector  navigation  (Hafting  et  al.  2005;  McNaughton  et  al.  2006;  Fiete,  Burak,  and  Brookings 

 2008;  Burak  and  Fiete  2009;  Bush  et  al.  2015;  Stemmler,  Mathis,  and  Herz  2015)  .  The  major 

 gap  in  knowledge  currently  stands  in  reconciling  these  cells  and  mechanisms  with  task 

 specific  behaviours  and  measuring  the  predictions  spawned  from  the  mechanistic  solutions 

 to  self-localisation  and  navigation  in  general.  This  thesis  provides  a  clear  proof  of  concept  for 

 using  the  linear  location  task  to  appropriately  capture  spatial  cells  while  animals  engage  (or 

 not)  in  path  integration  or  beaconing  behaviours.  This  task  is  invaluable  for  future 

 experiments  that  seek  to  close  the  loop  between  behaviour  and  neural  activity.  Further,  this 

 thesis  provides  a  biological  constraint  to  grid-based  navigation  models  or  at  least  a  testable 

 prediction  with  respect  to  the  grid  anchoring  relationship  with  path  integration  performance. 

 With  further  validation  of  ramping  representations  providing  a  readout  mechanism  of  a  grid 

 code,  this  may  also  be  added  as  a  biological  constraint  onto  state-of-the-art  models  that 

 propose  grid  cells  as  a  general  solution  to  self-localisation.  While  artificial  networks  can  be 

 trained  to  decode  grid  codes  directly  (Fiete,  Burak,  and  Brookings  2008)  ,  closer  realisations 

 of biological networks will require a separate readout mechanism. 

 As  discussed  in  1.3.4  ,  the  grid  cell  system  may  not  simply  operate  within  a  feature  space  of 

 physical  distances  but  rather  encodes  states  within  continuous  feature  spaces  however 

 abstract.  An  extension  of  this  work  would  predict  ramp-like  codes  would  exist  as  a  potential 

 readout  mechanism  in  these  abstract  feature  spaces.  This  would  be  testable  with  the  neural 

 recording  and  ramping  analysis  of  retrohippocampal  cells  while  mice  perform  a  continuous 

 choice  task  similar  to  the  linear  location  task,  such  as  the  frequency  choice  task  (Aronov, 

 Nevers,  and  Tank  2017)  .  My  findings  suggest  that  anchoring  of  grid  codes  to  salient  features 

 of  an  environment  would  be  required  for  successful  performance  of  abstract  tasks.  To  test 

 this,  an  experiment  can  be  designed  in  which  a  mouse  performs  a  task  in  an  abstract  2D 

 feature  space  while  recording  grid  activity.  This  experimental  design  extends  from  similar 

 experiments  in  humans,  whereby  grid-like  representations  were  observed  while  humans 

 performed  navigated  2D  abstract  feature  spaces  (Constantinescu,  O’Reilly,  and  Behrens 

 2016)  .  A  possible  experiment  would  see  a  mouse  head-fixed  in  a  virtual  reality  setup, 

 217 

https://www.zotero.org/google-docs/?3t5kbQ
https://www.zotero.org/google-docs/?3t5kbQ
https://www.zotero.org/google-docs/?G1Y3M4
https://www.zotero.org/google-docs/?G1Y3M4
https://www.zotero.org/google-docs/?rEsXF4
https://www.zotero.org/google-docs/?RmY2h6
https://www.zotero.org/google-docs/?RmY2h6
https://www.zotero.org/google-docs/?DseoJ3
https://www.zotero.org/google-docs/?DseoJ3


 however  the  projected  environment  could  be  made  of  2  coaxial  variables,  such  as  the  size  of 

 a  projected  bar  in  the  X  and  Y  dimensions.  A  continuous  change  of  the  length  of  these  two 

 variables  would  be  synonymous  to  movement  through  a  2D  environment.  If  a  reward  was 

 released  at  only  certain  coordinates  in  this  feature  space,  a  similar  mapping  of  grid 

 representations  would  theoretically  emerge  with  neural  recording  of  grid  cells  and  sufficient 

 sampling  of  the  feature  space.  Results  from  this  thesis  would  predict  that  when  the  mice  was 

 not  actively  licking  for  a  reward  in  the  correct  location  of  the  feature  space,  the  grid  structure 

 would  not  be  readily  seen  in  a  session-wide  rate  map,  but  would  be  present  if  the  mouse  was 

 doing  well  at  the  task  as  the  positional  locking  would  be  present  and  thus  more  grid-like  that 

 a non-anchored representation. 

 Artificial  intelligence  may  also  benefit  from  these  findings,  as  researchers  seek  to  build 

 artificial  agents  and  robots  to  self-reliantly  navigate  complex  spaces.  Modern  artificial 

 intelligence  has  taken  a  leaf  out  of  the  book  of  neuroscience  by  employing  features  of 

 neurons  or  network-wide  arrangements  of  neurons  such  as  deep  learning,  which  employs 

 the  compartmentalised  function  of  single  neuron  activity  in  receiving  and  propagating  signals 

 as  well  as  how  these  neurons  are  arranged  in  numerous  functional  layers  within  distinct 

 neural  systems.  Robots  and  artificial  agents  suffer  much  the  same  sensory  deficits  as 

 humans,  without  appropriate  or  insufficient  sensory  stimuli,  they  are  blinded  and  must  make 

 best-guesses  to  inform  their  future  actions  until  more  informative  sensory  information  is 

 available.  As  has  been  proposed  by  Banino  et  al.  (2018)  ,  grid  cells  may  form  a  unique 

 solution  to  navigating  novel  environments.  My  findings  suggest  accurate  navigation  in 

 sensory-poor  environments  warrants  an  environment-locked  grid  code.  Should  artificial 

 intelligence  researchers  pursue  future  grid  cell  models  of  navigation,  systems  which  query 

 the  environment  locking  of  grid  cells  may  be  required.  Furthermore,  while  it  is  well  within  the 

 capabilities  of  artificial  agents  to  decode  position  directly  from  the  grid  code,  the  discovery  of 

 ramp  cells  suggests  a  designated  readout  might  be  beneficial  to  downstream  operations  in 

 the action-observation cycle key in all artificial agents. 

 6.4.2 Diagnosis of Alzheimer’s disease 

 My  finding  that  positional  coding  of  grid  cells  is  associated  with  accurate  path  integration 

 behaviours  sheds  new  light  on  the  links  between  navigational  deficits  observed  in  patients 

 suffering  from  Alzheimer’s  disease  (Coughlan  et  al.  2018)  .  Degraded  grid  representations 

 which  have  been  reported  in  Alzheimer’s  model  in  mice  (Fu  et  al.  2017;  Jun  et  al.  2020) 

 might  be  explained  by  early  neural  atrophy  found  in  the  entorhinal  cortex  that  either  reduces 

 the  population  of  grid  cells  or  removes  vital  connectivity  that  provides  the  important 

 anchoring  dynamics  required  for  positional  coding  in  grid  cells,  or  indeed  both.  In  either 
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 context,  my  finding  provides  a  crucial  validation  of  the  long  suspected  links  between  grid  cell 

 activity  and  path  integration.  Researchers  have  been  developing  navigational  tasks  in  hope 

 of  providing  diagnostic  markers  for  the  early  detection  of  AD  before  short-term  memory 

 deficits  are  observed  (Coughlan  et  al.  2018)  .  For  example,  performance  in  the  supermarket 

 task  whereby  patients  are  played  a  video  of  a  first-person  route  around  a  supermarket  before 

 choosing  the  direction  to  the  starting  location  was  shown  to  be  a  highly  indicative  marker  of 

 AD  compared  with  other  forms  of  dementia  (Tu  et  al.  2015)  .  Patients  with  mild  cognitive 

 impairment  (MCI)  with  other  biomarkers  for  AD  (MCI+)  were  well  distinguished  from  MCI 

 patients  without  these  biomarkers  (MCI-)  in  a  simple  triangulation  task  in  virtual  reality 

 (Howett  et  al.  2019)  .  Discrimination  between  MCI  and  AD  patient  groups  has  also  been 

 reported in a similar triangulation task in real world navigation  (Mokrisova et al. 2016)  . 

 My  results  suggest  path  integration  accuracy  can  be  explained  by  grid  cell  activity  on  a  1D 

 linear  track  task  and  need  not  require  navigation  in  2D  environments  to  differentiate  between 

 impaired  or  unimpaired  path  integration.  Implementation  of  the  linear  location  task  described 

 in  this  thesis  might  offer  a  simpler  and  more  high  throughput  test  for  path  integration 

 behaviour.  As  the  environment  is  simple  and  minimal  in  terms  of  sensory  cues,  it  offers  no 

 alternative  strategies  for  completion  other  than  path  integration  by  estimation  of  self-location 

 from  a  set  reference  point.  Furthermore,  the  task  benefits  from  being  simple  to  explain  and 

 control  for  the  participant  which  is  imperative  when  assaying  elderly  patients/participants. 

 Early  studies  from  our  lab  have  looked  into  the  implementation  of  a  joystick-controlled 

 version  of  this  linear  location  task  using  the  Oculus-Rift  head  mounted  virtual  reality  system 

 and  has  been  demonstrated  to  be  achievable  from  many  participants  who  have  volunteered 

 for a number of undergraduate research projects looking into the suitability of the task. 

 The  discovery  of  ramp-codes  in  the  retrohippocampus  also  suggests  neural  atrophy  of  the 

 entorhinal  cortex  might  affect  this  population  of  spatial  cells.  If  these  cells  are  indeed  used  in 

 combination  with  grid  cells  to  encode  self-location,  disruption  of  these  representations  should 

 be  expected  in  AD  mice  models  similarly  to  degradation  in  grid  representations  (Fu  et  al. 

 2017;  Jun  et  al.  2020)  .  If  grid  cells  do  lie  at  the  heart  of  the  atrophy  that  presents  the  earliest 

 symptomatology  of  Alzheimer’s  disease,  the  connections  that  provide  the  vital  cue  anchoring 

 signals  might  explain  the  observed  degraded  grid  representations.  If  these  connections  were 

 disrupted  first,  continuous  attractor  dynamics  would  remain  relatively  intact  and  could  be 

 tested  for  with  a  test  that  assays  spatial  periodicity  rather  than  estimation  of  absolute 

 locations. 
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 Conclusions 

 This  thesis  extends  the  field  of  self-localisation  by  demonstrating  how  spatially-modulated 

 cell  types  in  the  retrohippocampus  encode  representations  of  positional  estimates  within  an 

 environment.  Grid  cells  were  found  to  encode  either  a  position  or  distance  code,  with  the 

 former  encoding  more  frequently  while  animals  were  actively  engaged  in  path  integration 

 behaviours  but  not  beaconing.  A  possible  readout  cell,  the  ramp  cell,  was  found  in  all 

 retrohippocampal  regions  where  grid  cells  are  also  found.  Ramp  cells  were  found  to  encode 

 a  rate-coded  continuous  representation  of  space  encoding  position  on  segments  of  the  linear 

 VR  track.  The  representation  was  maintained  across  trial  types  and  different  levels  of  task 

 engagement  suggesting  the  representations  reflect  recall  of  the  track  structure.  My  results 

 indicate  grid  cells  play  a  key  role  in  path  integration  in  order  to  update  self-location  estimates 

 in  the  brain,  while  ramp  cells  might  provide  a  clear  readout  of  self-location  estimates  by 

 downstream  brain  areas.  Future  studies  will  need  to  consolidate  these  claims  by  addressing 

 grid  and  ramp  codes  at  the  population  level  and  the  network  interactions  between  these  two 

 cell  types,  possibly  with  the  forthcoming  availability  of  stable  and  high  density  neural  probes 

 (Steinmetz et al. 2021)  . 

 220 

https://www.zotero.org/google-docs/?Pd2oK7


 Bibliography 

 Ainge, James A., Matthijs A.A. van der Meer, Rosamund  F. Langston, and Emma R. Wood. 

 2007. ‘Exploring the Role of Context-Dependent Hippocampal Activity in Spatial 

 Alternation Behavior’.  Hippocampus  17 (10): 988–1002. 

 https://doi.org/10.1002/hipo.20301  . 

 Allen, Kevin, Mariana Gil, Evgeny Resnik, Oana Toader, Peter Seeburg, and Hannah 

 Monyer. 2014. ‘Impaired Path Integration and Grid Cell Spatial Periodicity in Mice 

 Lacking GluA1-Containing AMPA Receptors’.  The Journal  of Neuroscience  34 (18): 

 6245–59.  https://doi.org/10.1523/JNEUROSCI.4330-13.2014  . 

 Aronov, Dmitriy, Rhino Nevers, and David W. Tank. 2017. ‘Mapping of a Non-Spatial 

 Dimension by the Hippocampal-Entorhinal Circuit’.  Nature  . 

 https://doi.org/10.1038/nature21692  . 

 Baluev, Roman V. 2007. ‘Assessing Statistical Significance of Periodogram Peaks’. 

 https://doi.org/10.48550/ARXIV.0711.0330  . 

 Banino, Andrea, Caswell Barry, Benigno Uria, Charles Blundell, Timothy Lillicrap, Piotr 

 Mirowski, Alexander Pritzel, et al. 2018. ‘Vector-Based Navigation Using Grid-like 

 Representations in Artificial Agents’.  Nature  . 

 https://doi.org/10.1038/s41586-018-0102-6  . 

 Barry, C., and N. Burgess. 2017. ‘To Be a Grid Cell: Shuffling Procedures for Determining 

 “Gridness”’. Preprint. Neuroscience.  https://doi.org/10.1101/230250  . 

 Barry, Caswell, Robin Hayman, Neil Burgess, and Kathryn J Jeffery. 2007. 

 ‘Experience-Dependent Rescaling of Entorhinal Grids’.  Nature Neuroscience  10 (6): 

 682–84.  https://doi.org/10.1038/nn1905  . 

 Bates, Douglas, Martin Mächler, Ben Bolker, and Steve Walker. 2015. ‘Fitting Linear 

 Mixed-Effects Models Using  Lme4  ’.  Journal of Statistical  Software  67 (1). 

 https://doi.org/10.18637/jss.v067.i01  . 

 221 

https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1002/hipo.20301
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1523/JNEUROSCI.4330-13.2014
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/nature21692
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.48550/ARXIV.0711.0330
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/s41586-018-0102-6
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1101/230250
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/nn1905
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.18637/jss.v067.i01
https://www.zotero.org/google-docs/?xDfjIR


 Behrens, Timothy E.J., Timothy H. Muller, James C.R. Whittington, Shirley Mark, Alon B. 

 Baram, Kimberly L. Stachenfeld, and Zeb Kurth-Nelson. 2018. ‘What Is a Cognitive 

 Map? Organizing Knowledge for Flexible Behavior’.  Neuron  . 

 https://doi.org/10.1016/j.neuron.2018.10.002  . 

 Benjamini, Yoav, and Yosef Hochberg. 1995. ‘Controlling the False Discovery Rate: A 

 Practical and Powerful Approach to Multiple Testing’.  Journal of the Royal Statistical 

 Society: Series B (Methodological)  57 (1): 289–300. 

 https://doi.org/10.1111/j.2517-6161.1995.tb02031.x  . 

 Betts, Holly C., Mark N. Puttick, James W. Clark, Tom A. Williams, Philip C. J. Donoghue, 

 and Davide Pisani. 2018. ‘Integrated Genomic and Fossil Evidence Illuminates Life’s 

 Early Evolution and Eukaryote Origin’.  Nature Ecology  & Evolution  2 (10): 1556–62. 

 https://doi.org/10.1038/s41559-018-0644-x  . 

 Bjerknes, Tale L., Edvard I. Moser, and May Britt Moser. 2014. ‘Representation of Geometric 

 Borders in the Developing Rat’.  Neuron  82 (1): 71–78. 

 https://doi.org/10.1016/j.neuron.2014.02.014  . 

 Blatchley, Willis Stanley. 1896.  Indiana Caves and  Their Fauna.  21st Annual Report. Indiana 

 Department of Geology and Natural Resources. 

 Boccara, Charlotte N, Francesca Sargolini, Veslemøy Hult Thoresen, Trygve Solstad, Menno 

 P Witter, Edvard I Moser, and May-Britt Moser. 2010. ‘Grid Cells in Pre- and 

 Parasubiculum’.  Nature Neuroscience  13 (8): 987–94. 

 https://doi.org/10.1038/nn.2602  . 

 Bonnevie, Tora, Benjamin Dunn, Marianne Fyhn, Torkel Hafting, Dori Derdikman, John L 

 Kubie, Yasser Roudi, Edvard I Moser, and May-Britt Moser. 2013. ‘Grid Cells Require 

 Excitatory Drive from the Hippocampus’.  Nature Neuroscience  16 (3): 309–17. 

 https://doi.org/10.1038/nn.3311  . 

 Brody, C. D. 2003. ‘Timing and Neural Encoding of Somatosensory Parametric Working 

 Memory in Macaque Prefrontal Cortex’.  Cerebral Cortex  13 (11): 1196–1207. 

 https://doi.org/10.1093/cercor/bhg100  . 

 222 

https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1016/j.neuron.2018.10.002
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/s41559-018-0644-x
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1016/j.neuron.2014.02.014
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/nn.2602
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/nn.3311
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1093/cercor/bhg100
https://www.zotero.org/google-docs/?xDfjIR


 Brun, Vegard Heimly, Stefan Leutgeb, Hui-Qiu Wu, Robert Schwarcz, Menno P. Witter, 

 Edvard I. Moser, and May-Britt Moser. 2008. ‘Impaired Spatial Representation in CA1 

 after Lesion of Direct Input from Entorhinal Cortex’.  Neuron  57 (2): 290–302. 

 https://doi.org/10.1016/j.neuron.2007.11.034  . 

 Buchler, E.R., and S.B. Childs. 1981. ‘Orientation to Distant Sounds by Foraging Big Brown 

 Bats (Eptesicus Fuscus)’.  Animal Behaviour  29 (2):  428–32. 

 https://doi.org/10.1016/S0003-3472(81)80102-9  . 

 Burak, Yoram, and Ila R. Fiete. 2009. ‘Accurate Path Integration in Continuous Attractor 

 Network Models of Grid Cells’.  PLoS Computational  Biology  . 

 https://doi.org/10.1371/journal.pcbi.1000291  . 

 Burgess, Neil, Caswell Barry, and John O’Keefe. 2007. ‘An Oscillatory Interference Model of 

 Grid Cell Firing’.  Hippocampus  17 (9): 801–12.  https://doi.org/10.1002/hipo.20327  . 

 Bush, Daniel, Caswell Barry, Daniel Manson, and Neil Burgess. 2015. ‘Using Grid Cells for 

 Navigation’.  Neuron  .  https://doi.org/10.1016/j.neuron.2015.07.006  . 

 Butler, William N., Kiah Hardcastle, and Lisa M. Giocomo. 2019. ‘Remembered Reward 

 Locations Restructure Entorhinal Spatial Maps’.  Science  363 (6434): 1447–52. 

 https://doi.org/10.1126/science.aav5297  . 

 Buzsáki, György, and Edvard I Moser. 2013. ‘Memory, Navigation and Theta Rhythm in the 

 Hippocampal-Entorhinal System’.  Nature Neuroscience  16 (2): 130–38. 

 https://doi.org/10.1038/nn.3304  . 

 Campbell, Malcolm G., Alexander Attinger, Samuel A. Ocko, Surya Ganguli, and Lisa M. 

 Giocomo. 2021. ‘Distance-Tuned Neurons Drive Specialized Path Integration 

 Calculations in Medial Entorhinal Cortex’.  Cell Reports  36 (10): 109669. 

 https://doi.org/10.1016/j.celrep.2021.109669  . 

 Campbell, Malcolm G., Samuel A. Ocko, Caitlin S. Mallory, Isabel I.C. Low, Surya Ganguli, 

 and Lisa M. Giocomo. 2018. ‘Principles Governing the Integration of Landmark and 

 Self-Motion Cues in Entorhinal Cortical Codes for Navigation’.  Nature Neuroscience 

 21 (8): 1096–1106.  https://doi.org/10.1038/s41593-018-0189-y  . 

 223 

https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1016/j.neuron.2007.11.034
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1016/S0003-3472(81)80102-9
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1371/journal.pcbi.1000291
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1002/hipo.20327
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1016/j.neuron.2015.07.006
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1126/science.aav5297
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/nn.3304
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1016/j.celrep.2021.109669
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/s41593-018-0189-y
https://www.zotero.org/google-docs/?xDfjIR


 Chen, Guifen, Daniel Manson, Francesca Cacucci, and Thomas Joseph Wills. 2016. 

 ‘Absence of Visual Input Results in the Disruption of Grid Cell Firing in the Mouse’. 

 Current Biology  26 (17): 2335–42.  https://doi.org/10.1016/j.cub.2016.06.043  . 

 Chrobak, J. J., and G. Buzsáki. 1998. ‘Gamma Oscillations in the Entorhinal Cortex of the 

 Freely Behaving Rat’.  The Journal of Neuroscience  18 (1): 388–98. 

 https://doi.org/10.1523/JNEUROSCI.18-01-00388.1998  . 

 Chung, Jason E., Jeremy F. Magland, Alex H. Barnett, Vanessa M. Tolosa, Angela C. Tooker, 

 Kye Y. Lee, Kedar G. Shah, Sarah H. Felix, Loren M. Frank, and Leslie F. Greengard. 

 2017. ‘A Fully Automated Approach to Spike Sorting’.  Neuron  95 (6): 1381-1394.e6. 

 https://doi.org/10.1016/j.neuron.2017.08.030  . 

 Colgin, Laura Lee, Tobias Denninger, Marianne Fyhn, Torkel Hafting, Tora Bonnevie, Ole 

 Jensen, May-Britt Moser, and Edvard I. Moser. 2009. ‘Frequency of Gamma 

 Oscillations Routes Flow of Information in the Hippocampus’.  Nature  462 (7271): 

 353–57.  https://doi.org/10.1038/nature08573  . 

 Constantinescu, Alexandra O., Jill X. O’Reilly, and Timothy E. J. Behrens. 2016. ‘Organizing 

 Conceptual Knowledge in Humans with a Gridlike Code’.  Science  352 (6292): 

 1464–68.  https://doi.org/10.1126/science.aaf0941  . 

 Coughlan, Gillian, Jan Laczó, Jakub Hort, Anne-Marie Minihane, and Michael Hornberger. 

 2018. ‘Spatial Navigation Deficits — Overlooked Cognitive Marker for Preclinical 

 Alzheimer Disease?’  Nature Reviews Neurology  . 

 https://doi.org/10.1038/s41582-018-0031-x  . 

 Davis, A. E., A. M. Gimenez, and B. Therrien. 2001. ‘Effects of Entorhinal Cortex Lesions on 

 Sensory Integration and Spatial Learning’.  Nursing  Research  50 (2): 77–85. 

 https://doi.org/10.1097/00006199-200103000-00003  . 

 Derdikman, Dori, Jonathan R Whitlock, Albert Tsao, Marianne Fyhn, Torkel Hafting, May-Britt 

 Moser, and Edvard I Moser. 2009. ‘Fragmentation of Grid Cell Maps in a 

 Multicompartment Environment’.  Nature Neuroscience  12 (10): 1325–32. 

 https://doi.org/10.1038/nn.2396  . 

 224 

https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1016/j.cub.2016.06.043
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1523/JNEUROSCI.18-01-00388.1998
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1016/j.neuron.2017.08.030
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/nature08573
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1126/science.aaf0941
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/s41582-018-0031-x
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1097/00006199-200103000-00003
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/nn.2396
https://www.zotero.org/google-docs/?xDfjIR


 Diehl, Geoffrey W., Olivia J. Hon, Stefan Leutgeb, and Jill K. Leutgeb. 2017. ‘Grid and 

 Nongrid Cells in Medial Entorhinal Cortex Represent Spatial Location and 

 Environmental Features with Complementary Coding Schemes’.  Neuron  94 (1): 

 83-92.e6.  https://doi.org/10.1016/j.neuron.2017.03.004  . 

 Doeller, Christian F., Caswell Barry, and Neil Burgess. 2010. ‘Evidence for Grid Cells in a 

 Human Memory Network’.  Nature  463 (7281): 657–61. 

 https://doi.org/10.1038/nature08704  . 

 Domnisoru, Cristina, Amina A. Kinkhabwala, and David W. Tank. 2013. ‘Membrane Potential 

 Dynamics of Grid Cells’.  Nature  .  https://doi.org/10.1038/nature11973  . 

 Eichenbaum, H, M Kuperstein, A Fagan, and J Nagode. 1987. ‘Cue-Sampling and 

 Goal-Approach Correlates of Hippocampal Unit Activity in Rats Performing an 

 Odor-Discrimination Task’.  The Journal of Neuroscience  7 (3): 716–32. 

 https://doi.org/10.1523/JNEUROSCI.07-03-00716.1987  . 

 Eichenbaum, H, C Stewart, and Rg Morris. 1990. ‘Hippocampal Representation in Place 

 Learning’.  The Journal of Neuroscience  10 (11): 3531–42. 

 https://doi.org/10.1523/JNEUROSCI.10-11-03531.1990  . 

 Erdem, Uğur M., and Michael Hasselmo. 2012. ‘A Goal-Directed Spatial Navigation Model 

 Using Forward Trajectory Planning Based on Grid Cells’.  The European Journal of 

 Neuroscience  35 (6): 916–31.  https://doi.org/10.1111/j.1460-9568.2012.08015.x  . 

 Erdem, Uğur M., and Michael E. Hasselmo. 2014. ‘A Biologically Inspired Hierarchical Goal 

 Directed Navigation Model’.  Journal of Physiology,  Paris  108 (1): 28–37. 

 https://doi.org/10.1016/j.jphysparis.2013.07.002  . 

 Etienne, Ariane S., and Kathryn J. Jeffery. 2004. ‘Path Integration in Mammals’. 

 Hippocampus  14 (2): 180–92.  https://doi.org/10.1002/hipo.10173  . 

 Fiete, I. R., Y. Burak, and T. Brookings. 2008. ‘What Grid Cells Convey about Rat Location’. 

 Journal of Neuroscience  .  https://doi.org/10.1523/JNEUROSCI.5684-07.2008  . 

 225 

https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1016/j.neuron.2017.03.004
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/nature08704
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/nature11973
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1523/JNEUROSCI.07-03-00716.1987
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1523/JNEUROSCI.10-11-03531.1990
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1111/j.1460-9568.2012.08015.x
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1016/j.jphysparis.2013.07.002
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1002/hipo.10173
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1523/JNEUROSCI.5684-07.2008
https://www.zotero.org/google-docs/?xDfjIR


 Fiorillo, Christopher D., Philippe N. Tobler, and Wolfram Schultz. 2003. ‘Discrete Coding of 

 Reward Probability and Uncertainty by Dopamine Neurons’.  Science  299 (5614): 

 1898–1902.  https://doi.org/10.1126/science.1077349  . 

 Fox, John, and Sanford Weisberg. 2019.  An R Companion  to Applied Regression  . 3rd ed. 

 Thousand Oaks, California: Sage. 

 https://socialsciences.mcmaster.ca/jfox/Books/Companion/index.html  . 

 Fries, P., T. Womelsdorf, R. Oostenveld, and R. Desimone. 2008. ‘The Effects of Visual 

 Stimulation and Selective Visual Attention on Rhythmic Neuronal Synchronization in 

 Macaque Area V4’.  Journal of Neuroscience  28 (18):  4823–35. 

 https://doi.org/10.1523/JNEUROSCI.4499-07.2008  . 

 Fu, Hongjun, Gustavo A. Rodriguez, Mathieu Herman, Sheina Emrani, Eden Nahmani, 

 Geoffrey Barrett, Helen Y. Figueroa, Eliana Goldberg, S. Abid Hussaini, and Karen E. 

 Duff. 2017. ‘Tau Pathology Induces Excitatory Neuron Loss, Grid Cell Dysfunction, 

 and Spatial Memory Deficits Reminiscent of Early Alzheimer’s Disease’.  Neuron  . 

 https://doi.org/10.1016/j.neuron.2016.12.023  . 

 Fuhs, Mark C., and David S. Touretzky. 2006. ‘A Spin Glass Model of Path Integration in Rat 

 Medial Entorhinal Cortex’.  Journal of Neuroscience  26 (16): 4266–76. 

 https://doi.org/10.1523/JNEUROSCI.4353-05.2006  . 

 Fyhn, Marianne, Sturla Molden, Menno P. Witter, Edvard I. Moser, and May-Britt Moser. 

 2004. ‘Spatial Representation in the Entorhinal Cortex’.  Science  305 (5688): 

 1258–64.  https://doi.org/10.1126/science.1099901  . 

 Gardner, Richard J., Erik Hermansen, Marius Pachitariu, Yoram Burak, Nils A. Baas, 

 Benjamin A. Dunn, May-Britt Moser, and Edvard I. Moser. 2022. ‘Toroidal Topology of 

 Population Activity in Grid Cells’.  Nature  602 (7895):  123–28. 

 https://doi.org/10.1038/s41586-021-04268-7  . 

 Gardner, Richard J., Li Lu, Tanja Wernle, May-Britt Moser, and Edvard I. Moser. 2019. 

 ‘Correlation Structure of Grid Cells Is Preserved during Sleep’.  Nature Neuroscience 

 22 (4): 598–608.  https://doi.org/10.1038/s41593-019-0360-0  . 

 226 

https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1126/science.1077349
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://socialsciences.mcmaster.ca/jfox/Books/Companion/index.html
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1523/JNEUROSCI.4499-07.2008
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1016/j.neuron.2016.12.023
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1523/JNEUROSCI.4353-05.2006
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1126/science.1099901
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/s41586-021-04268-7
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/s41593-019-0360-0
https://www.zotero.org/google-docs/?xDfjIR


 Geisler, Caroline, David Robbe, Michaël Zugaro, Anton Sirota, and György Buzsáki. 2007. 

 ‘Hippocampal Place Cell Assemblies Are Speed-Controlled Oscillators’.  Proceedings 

 of the National Academy of Sciences  104 (19): 8149–54. 

 https://doi.org/10.1073/pnas.0610121104  . 

 Gerlei, Klara. 2019. ‘Anatomical and Functional Investigation of the Deep Medial Entorhinal 

 Cortex’. University of Edinburgh. 

 Geva-Sagiv, Maya, Liora Las, Yossi Yovel, and Nachum Ulanovsky. 2015. ‘Spatial Cognition 

 in Bats and Rats: From Sensory Acquisition to Multiscale Maps and Navigation’. 

 Nature Reviews Neuroscience  16 (2): 94–108.  https://doi.org/10.1038/nrn3888  . 

 Gil, Mariana, Mihai Ancau, Magdalene I Schlesiger, Angela Neitz, Kevin Allen, Rodrigo J De 

 Marco, and Hannah Monyer. 2018. ‘Impaired Path Integration in Mice with Disrupted 

 Grid Cell Firing’.  Nature Neuroscience  21: 81–91. 

 https://doi.org/10.1038/s41593-017-0039-3  . 

 Góis, Zé Henrique T.D., and Adriano B.L. Tort. 2018. ‘Characterizing Speed Cells in the Rat 

 Hippocampus’.  Cell Reports  25 (7): 1872-1884.e4. 

 https://doi.org/10.1016/j.celrep.2018.10.054  . 

 Griffin, Amy L., Howard Eichenbaum, and Michael E. Hasselmo. 2007. ‘Spatial 

 Representations of Hippocampal CA1 Neurons Are Modulated by Behavioral Context 

 in a Hippocampus-Dependent Memory Task’.  The Journal  of Neuroscience  27 (9): 

 2416–23.  https://doi.org/10.1523/JNEUROSCI.4083-06.2007  . 

 Guanella, Alexis, Daniel Kiper, and Paul Verschure. 2007. ‘A Model of Grid Cells Based on a 

 Twisted Torus Topology’.  International Journal of  Neural Systems  17 (04): 231–40. 

 https://doi.org/10.1142/S0129065707001093  . 

 Hafting, Torkel, Marianne Fyhn, Tora Bonnevie, May-Britt Moser, and Edvard I. Moser. 2008. 

 ‘Hippocampus-Independent Phase Precession in Entorhinal Grid Cells’.  Nature  453 

 (7199): 1248–52.  https://doi.org/10.1038/nature06957  . 

 Hafting, Torkel, Marianne Fyhn, Sturla Molden, May Britt Moser, and Edvard I. Moser. 2005. 

 ‘Microstructure of a Spatial Map in the Entorhinal Cortex’.  Nature  . 

 https://doi.org/10.1038/nature03721  . 

 227 

https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1073/pnas.0610121104
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/nrn3888
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/s41593-017-0039-3
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1016/j.celrep.2018.10.054
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1523/JNEUROSCI.4083-06.2007
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1142/S0129065707001093
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/nature06957
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/nature03721
https://www.zotero.org/google-docs/?xDfjIR


 Hampson, Robert E., Charles J. Heyser, and Sam A. Deadwyler. 1993. ‘Hippocampal Cell 

 Firing Correlates of Delayed-Match-to-Sample Performance in the Rat.’  Behavioral 

 Neuroscience  107 (5): 715–39.  https://doi.org/10.1037/0735-7044.107.5.715  . 

 Hardcastle, Kiah, Surya Ganguli, and Lisa M. Giocomo. 2015. ‘Environmental Boundaries as 

 an Error Correction Mechanism for Grid Cells’.  Neuron  86 (3): 827–39. 

 https://doi.org/10.1016/j.neuron.2015.03.039  . 

 Hardcastle, Kiah, Niru Maheswaranathan, Surya Ganguli, and Lisa M. Giocomo. 2017. ‘A 

 Multiplexed, Heterogeneous, and Adaptive Code for Navigation in Medial Entorhinal 

 Cortex’.  Neuron  94 (2): 375-387.e7.  https://doi.org/10.1016/j.neuron.2017.03.025  . 

 Hartley, T., N. Burgess, C. Lever, F. Cacucci, and J. O’Keefe. 2000. ‘Modeling Place Fields in 

 Terms of the Cortical Inputs to the Hippocampus’.  Hippocampus  10 (4): 369–79. 

 https://doi.org/10.1002/1098-1063(2000)10:4  <369::AID-HIPO3>3.0.CO;2-0. 

 Hikosaka, K. 2000. ‘Delay Activity of Orbital and Lateral Prefrontal Neurons of the Monkey 

 Varying with Different Rewards’.  Cerebral Cortex  10  (3): 263–71. 

 https://doi.org/10.1093/cercor/10.3.263  . 

 Horner, Aidan J., James A. Bisby, Ewa Zotow, Daniel Bush, and Neil Burgess. 2016. 

 ‘Grid-like Processing of Imagined Navigation’.  Current  Biology  26 (6): 842–47. 

 https://doi.org/10.1016/j.cub.2016.01.042  . 

 Howe, Mark W., Patrick L. Tierney, Stefan G. Sandberg, Paul E. M. Phillips, and Ann M. 

 Graybiel. 2013. ‘Prolonged Dopamine Signalling in Striatum Signals Proximity and 

 Value of Distant Rewards’.  Nature  500 (7464): 575–79. 

 https://doi.org/10.1038/nature12475  . 

 Howett, David, Andrea Castegnaro, Katarzyna Krzywicka, Johanna Hagman, Deepti 

 Marchment, Richard Henson, Miguel Rio, John A King, Neil Burgess, and Dennis 

 Chan. 2019. ‘Differentiation of Mild Cognitive Impairment Using an Entorhinal 

 Cortex-Based Test of Virtual Reality Navigation’.  Brain  142 (6): 1751–66. 

 https://doi.org/10.1093/brain/awz116  . 

 228 

https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1037/0735-7044.107.5.715
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1016/j.neuron.2015.03.039
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1016/j.neuron.2017.03.025
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1002/1098-1063(2000)10:4
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1093/cercor/10.3.263
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1016/j.cub.2016.01.042
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/nature12475
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1093/brain/awz116
https://www.zotero.org/google-docs/?xDfjIR


 Huhn, Zsofia, Zoltan Somogyvari, Tamas Kiss, and Peter Erdi. 2009. ‘Extraction of Distance 

 Information from the Activity of Entorhinal Grid Cells: A Model Study’. In  2009 

 International Joint Conference on Neural Networks  ,  1298–1303. 

 https://doi.org/10.1109/IJCNN.2009.5178864  . 

 Jacob, Pierre Yves, Fabrizio Capitano, Bruno Poucet, Etienne Save, and Francesca 

 Sargolini. 2019. ‘Path Integration Maintains Spatial Periodicity of Grid Cell Firing in a 

 1D Circular Track’.  Nature Communications  10 (1). 

 https://doi.org/10.1038/s41467-019-08795-w  . 

 Jayakumar, Ravikrishnan P., Manu S. Madhav, Francesco Savelli, Hugh T. Blair, Noah J. 

 Cowan, and James J. Knierim. 2019. ‘Recalibration of Path Integration in 

 Hippocampal Place Cells’.  Nature  566 (7745): 533–37. 

 https://doi.org/10.1038/s41586-019-0939-3  . 

 Jones, Gareth, and Marc W Holderied. 2007. ‘Bat Echolocation Calls: Adaptation and 

 Convergent Evolution’.  Proceedings of the Royal Society  B: Biological Sciences  274 

 (1612): 905–12.  https://doi.org/10.1098/rspb.2006.0200  . 

 Jun, Heechul, Allen Bramian, Shogo Soma, Takashi Saito, Takaomi C. Saido, and Kei M. 

 Igarashi. 2020. ‘Disrupted Place Cell Remapping and Impaired Grid Cells in a 

 Knockin Model of Alzheimer’s Disease’.  Neuron  107  (6): 1095-1112.e6. 

 https://doi.org/10.1016/j.neuron.2020.06.023  . 

 Kobayashi, Shunsuke, Johan Lauwereyns, Masashi Koizumi, Masamichi Sakagami, and 

 Okihide Hikosaka. 2002. ‘Influence of Reward Expectation on Visuospatial 

 Processing in Macaque Lateral Prefrontal Cortex’.  Journal of Neurophysiology  87 (3): 

 1488–98.  https://doi.org/10.1152/jn.00472.2001  . 

 Kornienko, Olga, Patrick Latuske, Mathis Bassler, Laura Kohler, and Kevin Allen. 2018. 

 ‘Non-Rhythmic Head-Direction Cells in the Parahippocampal Region Are Not 

 Constrained by Attractor Network Dynamics’.  ELife  7: 1–25. 

 https://doi.org/10.7554/eLife.35949  . 

 Kropff, Emilio, James E. Carmichael, May Britt Moser, and Edvard I. Moser. 2015. ‘Speed 

 Cells in the Medial Entorhinal Cortex’.  Nature  523  (7561): 419–24. 

 https://doi.org/10.1038/nature14622  . 

 229 

https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1109/IJCNN.2009.5178864
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/s41467-019-08795-w
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/s41586-019-0939-3
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1098/rspb.2006.0200
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1016/j.neuron.2020.06.023
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1152/jn.00472.2001
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.7554/eLife.35949
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/nature14622
https://www.zotero.org/google-docs/?xDfjIR


 Krupic, Julija, Marius Bauza, Stephen Burton, Caswell Barry, and John O’Keefe. 2015. ‘Grid 

 Cell Symmetry Is Shaped by Environmental Geometry’.  Nature  . 

 https://doi.org/10.1038/nature14153  . 

 Kubie, John, and André Fenton. 2012. ‘Linear Look-Ahead in Conjunctive Cells: An 

 Entorhinal Mechanism for Vector-Based Navigation’.  Frontiers in Neural Circuits  6. 

 https://doi.org/10.3389/fncir.2012.00020  . 

 Kunz, Lukas, T.N. Schröder, H. Lee, C. Montag, B. Lachmann, R. Sariyska, M. Reuter, et al. 

 2015. ‘Reduced Grid-Cell– like Representations in Adults at Genetic Risk for 

 Alzheimer’s Disease’.  Science  .  https://doi.org/10.1126/science.aac8128  . 

 LaChance, Patrick A., Travis P. Todd, and Jeffrey S. Taube. 2019. ‘A Sense of Space in 

 Postrhinal Cortex’.  Science  365 (6449): eaax4192. 

 https://doi.org/10.1126/science.aax4192  . 

 Langston, Rosamund F., James A. Ainge, Jonathan J. Couey, Cathrin B. Canto, Tale L. 

 Bjerknes, Menno P. Witter, Edvard I. Moser, and May-Britt Moser. 2010. 

 ‘Development of the Spatial Representation System in the Rat’.  Science  328 (5985): 

 1576–80.  https://doi.org/10.1126/science.1188210  . 

 Lavoie, A.M., and S.J.Y. Mizumori. 1994. ‘Spatial, Movement- and Reward-Sensitive 

 Discharge by Medial Ventral Striatum Neurons of Rats’.  Brain Research  638 (1–2): 

 157–68.  https://doi.org/10.1016/0006-8993(94)90645-9  . 

 Leon, Matthew I., and Michael N. Shadlen. 1999. ‘Effect of Expected Reward Magnitude on 

 the Response of Neurons in the Dorsolateral Prefrontal Cortex of the Macaque’. 

 Neuron  24 (2): 415–25.  https://doi.org/10.1016/S0896-6273(00)80854-5  . 

 Lever, C., S. Burton, A. Jeewajee, J. O’Keefe, and N. Burgess. 2009. ‘Boundary Vector Cells 

 in the Subiculum of the Hippocampal Formation’.  Journal  of Neuroscience  29 (31): 

 9771–77.  https://doi.org/10.1523/JNEUROSCI.1319-09.2009  . 

 Light, Kenneth R., Brian Cotten, Talia Malekan, Sophie Dewil, Matthew R. Bailey, Charles R. 

 Gallistel, and Peter D. Balsam. 2019. ‘Evidence for a Mixed Timing and Counting 

 Strategy in Mice Performing a Mechner Counting Task’.  Frontiers in Behavioral 

 Neuroscience  13.  https://www.frontiersin.org/articles/10.3389/fnbeh.2019.00109  . 

 230 

https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/nature14153
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.3389/fncir.2012.00020
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1126/science.aac8128
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1126/science.aax4192
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1126/science.1188210
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1016/0006-8993(94)90645-9
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1016/S0896-6273(00)80854-5
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1523/JNEUROSCI.1319-09.2009
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.frontiersin.org/articles/10.3389/fnbeh.2019.00109
https://www.zotero.org/google-docs/?xDfjIR


 Lindsay, Grace W. 2020. ‘Attention in Psychology, Neuroscience, and Machine Learning’. 

 Frontiers in Computational Neuroscience  14 (April):  29. 

 https://doi.org/10.3389/fncom.2020.00029  . 

 Lomb, N. R. 1976. ‘Least-Squares Frequency Analysis of Unequally Spaced Data’. 

 Astrophysics and Space Science  39 (2): 447–62. 

 https://doi.org/10.1007/BF00648343  . 

 Lopes, Gonzalo, Niccola Bonacchi, Joao Frazao, Joana P. Neto, Bassam V. Atallah, Sofia 

 Soares, Lua s Moreira, et al. 2015. ‘Bonsai: An Event-Based Framework for 

 Processing and Controlling Data Streams’.  Frontiers  in Neuroinformatics  9 (April). 

 https://doi.org/10.3389/fninf.2015.00007  . 

 Low, Isabel I.C., Alex H. Williams, Malcolm G. Campbell, Scott W. Linderman, and Lisa M. 

 Giocomo. 2021. ‘Dynamic and Reversible Remapping of Network Representations in 

 an Unchanging Environment’.  Neuron  109 (18): 2967-2980.e11. 

 https://doi.org/10.1016/j.neuron.2021.07.005  . 

 Marr, David. 1982.  Vision: A Computational Investigation  into the Human Representation and 

 Processing of Visual Information  . San Francisco: W.  H. Freeman and Company. 

 McNaughton, Bruce L., Francesco P. Battaglia, Ole Jensen, Edvard I Moser, and May-Britt 

 Moser. 2006. ‘Path Integration and the Neural Basis of the “Cognitive Map”’.  Nature 

 Reviews Neuroscience  7 (8): 663–78.  https://doi.org/10.1038/nrn1932  . 

 Miao, Chenglin, Qichen Cao, Hiroshi T. Ito, Homare Yamahachi, Menno P. Witter, May-Britt 

 Moser, and Edvard I. Moser. 2015. ‘Hippocampal Remapping after Partial Inactivation 

 of the Medial Entorhinal Cortex’.  Neuron  88 (3): 590–603. 

 https://doi.org/10.1016/j.neuron.2015.09.051  . 

 Mittelstaedt, M. -L., and H. Mittelstaedt. 1980. ‘Homing by Path Integration in a Mammal’. 

 Naturwissenschaften  67 (11): 566–67.  https://doi.org/10.1007/BF00450672  . 

 Mokrisova, I, J Laczo, R Andel, I Gazova, M Vyhnalek, Z Nedelska, D Levcik, J Cerman, K 

 Vlcek, and J Hort. 2016. ‘Real-Space Path Integration Is Impaired in Alzheimer’s 

 Disease and Mild Cognitive Impairment’.  Behavioural  Brain Research  307: 150–58. 

 https://doi.org/10.1016/j.bbr.2016.03.052  . 

 231 

https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.3389/fncom.2020.00029
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1007/BF00648343
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.3389/fninf.2015.00007
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1016/j.neuron.2021.07.005
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/nrn1932
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1016/j.neuron.2015.09.051
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1007/BF00450672
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1016/j.bbr.2016.03.052
https://www.zotero.org/google-docs/?xDfjIR


 Morris, R. G. M., P. Garrud, J. N. P. Rawlins, and J. O’Keefe. 1982. ‘Place Navigation 

 Impaired in Rats with Hippocampal Lesions’.  Nature  297 (5868): 681–83. 

 https://doi.org/10.1038/297681a0  . 

 Moser, Edvard I. 2014. ‘Grid Cells and the Entorhinal Map of Space’. Presented at the Nobel 

 Prize in Physiology or Medicine. 

 https://www.nobelprize.org/uploads/2018/06/edvard-moser-lecture-slides.pdf  . 

 Nagele, Johannes, Andreas V.M. Herz, and Martin B. Stemmler. 2020. ‘Untethered Firing 

 Fields and Intermittent Silences: Why Grid-Cell Discharge Is so Variable’. 

 Hippocampus  30 (4): 367–83.  https://doi.org/10.1002/hipo.23191  . 

 O’Keefe, J., and J. Dostrovsky. 1971. ‘The Hippocampus as a Spatial Map. Preliminary 

 Evidence from Unit Activity in the Freely-Moving Rat’.  Brain Research  34 (1): 171–75. 

 https://doi.org/10.1016/0006-8993(71)90358-1  . 

 O’Keefe, John, and Lynn Nadel. 1978. ‘The Hippocampus as a Cognitive Map’. 

 O’Keefe, John, and Michael L. Recce. 1993. ‘Phase Relationship between Hippocampal 

 Place Units and the EEG Theta Rhythm’.  Hippocampus  3 (3): 317–30. 

 https://doi.org/10.1002/hipo.450030307  . 

 Osborne, Jason E., and Joshua T. Dudman. 2014. ‘RIVETS: A Mechanical System for In 

 Vivo and In Vitro Electrophysiology and Imaging’. Edited by Benjamin Arenkiel.  PLoS 

 ONE  9 (2): e89007.  https://doi.org/10.1371/journal.pone.0089007  . 

 Pastoll, Hugh, Lukas Solanka, Mark C W Van Rossum, and Matthew F Nolan. 2013. ‘Article 

 Feedback Inhibition Enables Theta-Nested Gamma Oscillations and Grid Firing 

 Fields’.  NEURON  77: 141–54.  https://doi.org/10.1016/j.neuron.2012.11.032  . 

 Pérez-Escobar, José Antonio, Olga Kornienko, Patrick Latuske, Laura Kohler, and Kevin 

 Allen. 2016. ‘Visual Landmarks Sharpen Grid Cell Metric and Confer Context 

 Specificity to Neurons of the Medial Entorhinal Cortex’.  ELife  5 (July): e16937. 

 https://doi.org/10.7554/eLife.16937  . 

 232 

https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/297681a0
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.nobelprize.org/uploads/2018/06/edvard-moser-lecture-slides.pdf
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1002/hipo.23191
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1016/0006-8993(71)90358-1
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1002/hipo.450030307
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1371/journal.pone.0089007
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1016/j.neuron.2012.11.032
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.7554/eLife.16937
https://www.zotero.org/google-docs/?xDfjIR


 Pettit, Noah L., Xintong C. Yuan, and Christopher D. Harvey. 2022. ‘Hippocampal Place 

 Codes Are Gated by Behavioral Engagement’.  Nature  Neuroscience  25 (5): 561–66. 

 https://doi.org/10.1038/s41593-022-01050-4  . 

 Porter, Steven L., George H. Wadhams, and Judith P. Armitage. 2011. ‘Signal Processing in 

 Complex Chemotaxis Pathways’.  Nature Reviews Microbiology  9 (3): 153–65. 

 https://doi.org/10.1038/nrmicro2505  . 

 Press, William H., and George B. Rybicki. 1989. ‘Fast Algorithm for Spectral Analysis of 

 Unevenly Sampled Data’.  The Astrophysical Journal  338 (March): 277. 

 https://doi.org/10.1086/167197  . 

 Russell, James C., David R. Towns, Sandra H. Anderson, and Mick N. Clout. 2005. 

 ‘Intercepting the First Rat Ashore’.  Nature  437 (7062):  1107. 

 https://doi.org/10.1038/4371107a  . 

 Sarel, Ayelet, Arseny Finkelstein, Liora Las, and Nachum Ulanovsky. 2017. ‘Vectorial 

 Representation of Spatial Goals in the Hippocampus of Bats’.  Science  355 (6321): 

 176–80.  https://doi.org/10.1126/science.aak9589  . 

 Sargolini, Francesca, Marianne Fyhn, Torkel Hafting, Bruce L. McNaughton, Menno P. Witter, 

 May Britt Moser, and Edvard I. Moser. 2006. ‘Conjunctive Representation of Position, 

 Direction, and Velocity in Entorhinal Cortex’.  Science  312 (5774): 758–62. 

 https://doi.org/10.1126/science.1125572  . 

 Savelli, Francesco, D. Yoganarasimha, and James J. Knierim. 2008. ‘Influence of Boundary 

 Removal on the Spatial Representations of the Medial Entorhinal Cortex’. 

 Hippocampus  18 (12): 1270–82.  https://doi.org/10.1002/hipo.20511  . 

 Scargle, J. D. 1982. ‘Studies in Astronomical Time Series Analysis. II - Statistical Aspects of 

 Spectral Analysis of Unevenly Spaced Data’.  The Astrophysical  Journal  263 

 (December): 835.  https://doi.org/10.1086/160554  . 

 Schaeffer, Rylan, Mikail Khona, and Ila Rani Fiete. 2022. ‘No Free Lunch from Deep 

 Learning in Neuroscience: A Case Study through Models of the 

 Entorhinal-Hippocampal Circuit’. Preprint. Neuroscience. 

 https://doi.org/10.1101/2022.08.07.503109  . 

 233 

https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/s41593-022-01050-4
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/nrmicro2505
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1086/167197
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/4371107a
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1126/science.aak9589
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1126/science.1125572
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1002/hipo.20511
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1086/160554
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1101/2022.08.07.503109
https://www.zotero.org/google-docs/?xDfjIR


 Schiller, D., H. Eichenbaum, E. A. Buffalo, L. Davachi, D. J. Foster, S. Leutgeb, and C. 

 Ranganath. 2015. ‘Memory and Space: Towards an Understanding of the Cognitive 

 Map’.  Journal of Neuroscience  35 (41): 13904–11. 

 https://doi.org/10.1523/JNEUROSCI.2618-15.2015  . 

 Shipston-Sharman, Oliver, Lukas Solanka, and Matthew F. Nolan. 2016. ‘Continuous 

 Attractor Network Models of Grid Cell Firing Based on Excitatory–Inhibitory 

 Interactions’.  Journal of Physiology  .  https://doi.org/10.1113/JP270630  . 

 Skagg, William, E, Bruce McNaughton L, Katalin Gothard M, and Etan Markus J. 1993. ‘An 

 Information-Theoretic Approach to Deciphering the Hippocampal Code’.  Proceedings 

 of the IEEE  , no. 1990: 1030--1037. 

 Solanka, Lukas, Mark C.W. Van Rossum, and Matthew F. Nolan. 2015. ‘Noise Promotes 

 Independent Control of Gamma Oscillations and Grid Firing within Recurrent Attractor 

 Networks’.  ELife  .  https://doi.org/10.7554/eLife.06444  . 

 Solstad, Trygve, Charlotte N. Boccara, Emilio Kropff, May-Britt Moser, and Edvard I. Moser. 

 2008. ‘Representation of Geometric Borders in the Entorhinal Cortex’.  Science  322 

 (5909): 1865–68.  https://doi.org/10.1126/science.1166466  . 

 Solstad, Trygve, Edvard I. Moser, and Gaute T. Einevoll. 2006. ‘From Grid Cells to Place 

 Cells: A Mathematical Model’.  Hippocampus  16 (12):  1026–31. 

 https://doi.org/10.1002/hipo.20244  . 

 Sorscher, Ben, Gabriel C Mel, Samuel A Ocko, Lisa Giocomo, Surya Ganguli, and Applied 

 Physics. 2020. ‘A Unified Theory for the Computational and Mechanistic Origins of 

 Grid Cells’, 1–41. 

 Squire, Larry R. 1992. ‘Memory and the Hippocampus: A Synthesis from Findings with Rats, 

 Monkeys, and Humans.’  Psychological Review  99 (2):  195–231. 

 https://doi.org/10.1037/0033-295X.99.2.195  . 

 Sreenivasan, Sameet, and Ila Fiete. 2011. ‘Grid Cells Generate an Analog Error-Correcting 

 Code for Singularly Precise Neural Computation’.  Nature  Neuroscience  14 (10): 

 1330–37.  https://doi.org/10.1038/nn.2901  . 

 234 

https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1523/JNEUROSCI.2618-15.2015
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1113/JP270630
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.7554/eLife.06444
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1126/science.1166466
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1002/hipo.20244
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1037/0033-295X.99.2.195
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/nn.2901
https://www.zotero.org/google-docs/?xDfjIR


 Steinmetz, Nicholas A., Cagatay Aydin, Anna Lebedeva, Michael Okun, Marius Pachitariu, 

 Marius Bauza, Maxime Beau, et al. 2021. ‘Neuropixels 2.0: A Miniaturized 

 High-Density Probe for Stable, Long-Term Brain Recordings’.  Science  372 (6539): 

 eabf4588.  https://doi.org/10.1126/science.abf4588  . 

 Stemmler, Martin, Alexander Mathis, and Andreas V.M. Herz. 2015. ‘Neuroscience: 

 Connecting Multiple Spatial Scales to Decode the Population Activity of Grid Cells’. 

 Science Advances  1 (11): 1–12.  https://doi.org/10.1126/science.1500816  . 

 Stensola, Hanne, Tor Stensola, Trygve Solstad, Kristian FrØland, May Britt Moser, and 

 Edvard I. Moser. 2012. ‘The Entorhinal Grid Map Is Discretized’.  Nature  492 (7427): 

 72–78.  https://doi.org/10.1038/nature11649  . 

 Stensola, Tor, Hanne Stensola, May-Britt Moser, and Edvard I Moser. 2014. 

 ‘Shearing-Induced Asymmetry in Entorhinal Grid Cells’.  Nature  518. 

 https://doi.org/10.1038/nature14151  . 

 Sun, Hong, and Tian-Ren Yao. 1994. ‘A Neural-like Network Approach to 

 Residue-to-Decimal Conversion’. In  Proceedings of  1994 IEEE International 

 Conference on Neural Networks (ICNN’94)  , 6:3883–87  vol.6. 

 https://doi.org/10.1109/ICNN.1994.374831  . 

 Taube, Jeffrey S. 2007. ‘The Head Direction Signal: Origins and Sensory-Motor Integration’. 

 Annual Review of Neuroscience  30 (1): 181–207. 

 https://doi.org/10.1146/annurev.neuro.29.051605.112854  . 

 Taube, Js, Ru Muller, and Jb Ranck. 1990. ‘Head-Direction Cells Recorded from the 

 Postsubiculum in Freely Moving Rats. I. Description and Quantitative Analysis’.  The 

 Journal of Neuroscience  10 (2): 420–35. 

 https://doi.org/10.1523/JNEUROSCI.10-02-00420.1990  . 

 Tennant, Sarah A. 2017. ‘An Investigation of Circuit Mechanisms of Spatial Memory and 

 Navigation in Virtual Reality’. University of Edinburgh. 

 235 

https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1126/science.abf4588
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1126/science.1500816
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/nature11649
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/nature14151
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1109/ICNN.1994.374831
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1146/annurev.neuro.29.051605.112854
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1523/JNEUROSCI.10-02-00420.1990
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR


 Tennant, Sarah A., Harry Clark, Ian Hawes, Wing Kin Tam, Junji Hua, Wannan Yang, Klara 

 Z. Gerlei, Emma R. Wood, and Matthew F. Nolan. 2022. ‘Spatial Representation by 

 Ramping Activity of Neurons in the Retrohippocampal Cortex’.  Current Biology  32 

 (20): 4451-4464.e7.  https://doi.org/10.1016/j.cub.2022.08.050  . 

 Tennant, Sarah A., Lukas Fischer, Derek L.F. Garden, Klára Zsófia Gerlei, Cristina 

 Martinez-Gonzalez, Christina McClure, Emma R. Wood, and Matthew F. Nolan. 2018. 

 ‘Stellate Cells in the Medial Entorhinal Cortex Are Required for Spatial Learning’.  Cell 

 Reports  .  https://doi.org/10.1016/j.celrep.2018.01.005  . 

 Trettel, Sean G., John B. Trimper, Ernie Hwaun, Ila R. Fiete, and Laura Lee Colgin. 2019. 

 ‘Grid Cell Co-Activity Patterns during Sleep Reflect Spatial Overlap of Grid Fields 

 during Active Behaviors’.  Nature Neuroscience  22 (4):  609–17. 

 https://doi.org/10.1038/s41593-019-0359-6  . 

 Tu, Sicong, Stephanie Wong, John R. Hodges, Muireann Irish, Olivier Piguet, and Michael 

 Hornberger. 2015. ‘Lost in Spatial Translation - A Novel Tool to Objectively Assess 

 Spatial Disorientation in Alzheimer’s Disease and Frontotemporal Dementia’.  Cortex  . 

 https://doi.org/10.1016/j.cortex.2015.03.016  . 

 Waaga, Torgeir, Haggai Agmon, Valentin A. Normand, Anne Nagelhus, Richard J. Gardner, 

 May-Britt Moser, Edvard I. Moser, and Yoram Burak. 2022. ‘Grid-Cell Modules 

 Remain Coordinated When Neural Activity Is Dissociated from External Sensory 

 Cues’.  Neuron  110 (11): 1843-1856.e6.  https://doi.org/10.1016/j.neuron.2022.03.011  . 

 Watanabe, Masataka. 1996. ‘Reward Expectancy in Primate Prefrental Neurons’.  Nature  382 

 (6592): 629–32.  https://doi.org/10.1038/382629a0  . 

 Wehner, R, and S Wehner. 1986. ‘Path Integration in Desert Ants — Approaching a 

 Long-Standing Puzzle in Insect’.  Monitore Zoologico  Italiano  20 (3): 309–31. 

 Welday, A. C., I. G. Shlifer, M. L. Bloom, K. Zhang, and H. T. Blair. 2011. ‘Cosine Directional 

 Tuning of Theta Cell Burst Frequencies: Evidence for Spatial Coding by Oscillatory 

 Interference’.  Journal of Neuroscience  31 (45): 16157–76. 

 https://doi.org/10.1523/JNEUROSCI.0712-11.2011  . 

 236 

https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1016/j.cub.2022.08.050
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1016/j.celrep.2018.01.005
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/s41593-019-0359-6
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1016/j.cortex.2015.03.016
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1016/j.neuron.2022.03.011
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/382629a0
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1523/JNEUROSCI.0712-11.2011
https://www.zotero.org/google-docs/?xDfjIR


 Williams, Timothy C., Janet M. Williams, and Donald R. Griffin. 1966. ‘The Homing Ability of 

 the Neotropical Bat Phyllostomus Hastatus, with Evidence for Visual Orientation’. 

 Animal Behaviour  14 (4): 468–73.  https://doi.org/10.1016/S0003-3472(66)80047-7  . 

 Wills, Tom J., Francesca Cacucci, Neil Burgess, and John O’Keefe. 2010. ‘Development of 

 the Hippocampal Cognitive Map in Preweanling Rats’.  Science  328 (5985): 1573–76. 

 https://doi.org/10.1126/science.1188224  . 

 Wood, Emma R., Paul A. Dudchenko, R.Jonathan Robitsek, and Howard Eichenbaum. 2000. 

 ‘Hippocampal Neurons Encode Information about Different Types of Memory 

 Episodes Occurring in the Same Location’.  Neuron  27  (3): 623–33. 

 https://doi.org/10.1016/S0896-6273(00)00071-4  . 

 Yoon, Ki Jung, Sam Lewallen, Amina A. Kinkhabwala, David W. Tank, and Ila R. Fiete. 2016. 

 ‘Grid Cell Responses in 1D Environments Assessed as Slices through a 2D Lattice’. 

 Neuron  .  https://doi.org/10.1016/j.neuron.2016.01.039  . 

 Yoon, KiJung, Michael A Buice, Caswell Barry, Robin Hayman, Neil Burgess, and Ila R Fiete. 

 2013. ‘Specific Evidence of Low-Dimensional Continuous Attractor Dynamics in Grid 

 Cells’.  Nature Neuroscience  16 (8): 1077–84.  https://doi.org/10.1038/nn.3450  . 

 237 

https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1016/S0003-3472(66)80047-7
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1126/science.1188224
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1016/S0896-6273(00)00071-4
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1016/j.neuron.2016.01.039
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://www.zotero.org/google-docs/?xDfjIR
https://doi.org/10.1038/nn.3450
https://www.zotero.org/google-docs/?xDfjIR

	Cover Sheet.pdf
	Thesis_with_corrections.pdf



