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Abstract—Interest in autonomous driving (AD) and intelligent
vehicles (IVs) is growing at a rapid pace due to the convenience,
safety, and economic benefits. Although a number of surveys have
reviewed research achievements in this field, they are still limited
in specific tasks and lack systematic summaries and research
directions in the future. Our work is divided into 3 independent
articles and the first part is a Survey of Surveys (SoS) for total
technologies of AD and IVs that involves the history, summarizes
the milestones, and provides the perspectives, ethics, and future
research directions. This is the second part (Part I for this
technical survey) to review the development of control, computing
system design, communication, High Definition map (HD map),
testing, and human behaviors in IVs. In addition, the third part
(Part II for this technical survey) is to review the perception and
planning sections. The objective of this paper is to involve all the
sections of AD, summarize the latest technical milestones, and
guide abecedarians to quickly understand the development of AD
and IVs. Combining the SoS and Part II, we anticipate that this
work will bring novel and diverse insights to researchers and
abecedarians, and serve as a bridge between past and future.
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I. INTRODUCTION

A
UTONOMOUS driving (AD) and intelligent vehicles

(IVs) have recently attracted significant attention from

academia as well as industry because of a range of potential

benefits. Surveys on AD and IVs occupy an essential position

in gathering research achievements, generalizing entire tech-

nology development, and forecasting future trends. However, a

large majority of surveys only focus on specific tasks and lack

systematic summaries and research directions in the future.

As a result, they may have a negative impact on conducting

research for abecedarians. Our work consists of 3 independent

articles including a Survey of Surveys (SoS) and two surveys

on crucial technologies of AD and IVs. Here is the second part

(Part I of the survey) to systematically review the development

of control, computing system design, communication, High

Definition map (HD map), testing, and human behaviors in

IVs. Combining with the SoS and the third part (Part II of the

survey on perception and planning), we expect that our work

can be considered as a bridge between past and future for AD

and IVs.

We provide the common definitions of AD and IV. AD

refers to the technology of making the vehicle capable of

sensing its environment and operating without human involve-

ment. IV refers to a vehicle that owns the above technology

to enable partial or fully automated functions. Depending

on the different tasks in AD, we divide them into 8 sec-

tions, perception, planning, control, computing system design,

communication, High Definition map (HD map), testing, and

human behaviors in IVs. The perception section assists IVs to

have the capability to gather information from the environment

and extract external features. The planning section helps IVs

make more reasonable strategies from the starting point to the

destination, and the IVs can avoid obstacles and continuously

optimize their driving behaviors to ensure safety as well

as comfort for passengers. The control section makes the
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intelligent system the ability to control the vehicle smoothly.

Perception, planning, and control are sequential and form the

main body of AD technology. The computing system design

acts as a crucial role in AD and IVs, which guarantees safety,

security, energy saving, and communication efficiency. The

communication module is a crucial tool for interaction with

the outside world such as other vehicles, pedestrians, and

smart transportation systems. The HD map is a guide for IVs,

providing richer scene and location information just like the

navigation application for human drivers. The testing module

is an integral part of the process before IVs can operate on

real roads. And human behaviors in IVs are a key part of

current AD development, as understanding human behaviors

can contribute to rational strategies for vehicles.

The Society of Automotive Engineers (SAE) provides a tax-

onomy with detailed definitions of vehicle driving automation

systems for six levels of driving automation, ranging from no

driving automation (L0) to full driving automation (L5). We

emphasize that the above partition method is based on the

automated level, which is different from the definition of AD.

Some researchers hold the idea that only motion platforms

with L5 can be called AD vehicles. Some believe that L3

- L5 belongs to AD, while others hold with L1 - L5. We

think that this difference may be due to the difference between

academia and industry, and exists at the different development

stages. However, there is no unified definition at present, and

in this paper, we take the last view to collect articles, analyze

characteristics and summarize methodology. Fig. 1 shows the

controlled mode and the main functions that can be achieved

by the vehicle under different intelligence levels and a more

detailed description could be found in Chapter VII human

behaviors in intelligent vehicles.

In this paper, we consider 6 sub-sections as independent

chapters, and each of them includes task definition, functional

divisions, novel ideas, and a detailed introduction to milestones

of AD and IVs. The most important thing is that the research

of them have rapidly developed for a decade and now entered

a bottleneck period. We wish this article could be considered

as a comprehensive summary for abecedarians and bring novel

and diverse insights for researchers to make breakthroughs.

We summarize three contributions of this article:

1. We provide a more systematic, comprehensive, and

novel survey of crucial technology development with mile-

stones on AD and IVs.

2. We introduce a number of deployment details, testing

methods, and unique insights throughout each technology

section.

3. We conduct a systematic study that attempts to be a

bridge between past and future on AD and IVs, and this article

is the second part of our whole research (Part I for the survey).

II. CONTROL

Vehicle motion control is an important duty for enhanced

driver assistance features. Many control tasks, such as lateral

stability control and driving at the limits for accident avoid-

ance, must be considered in the context of IVs. This section

summarizes some of the major advancements in IV control

Fig. 1. The structure of autonomous driving with the function, methodology,
and application scenes

during the previous few years. We will introduce the function

of vehicle motion control, provide a comprehensive discussion

on control strategies and discuss the state-of-the-art validation

methods of control strategies.

A. Categories of Vehicle Motion Control

We categorize vehicle motion control into two sub-parts,

longitudinal vehicle control, and lateral vehicle control.

1) Longitudinal Vehicle Control: Longitudinal control man-

ages the acceleration of the vehicle through the vehicle’s

throttle and brake to keep a safe distance behind another

vehicle, maintain the desirable velocity on the road and apply

the brake as quickly as possible to avoid rear-end collisions

in emergencies [1].

Longitudinal control strategies have been investigated in

various scenarios, including platooning for connected IVs

[2], speed harmonization [3], trajectory smoothing [4], and

speed management on signalized arterials [5]. Local and string

stability are crucial aspects of platoon longitudinal controllers.

Local stability refers to a vehicle’s capacity to maintain an

equilibrium state under the condition of disturbance. String

stability refers to the magnitude of a disturbance that reduces

or remains constant as it propagates through a platoon of

vehicles. The control strategies for speed harmonization aim

to determine the speed policy of the vehicles to prevent traffic

breakdowns and mitigate the loss of highway performance.

The fundamental idea of trajectory smoothing is to improve

traffic flow stability and efficiency through the longitudinal

control strategy of connected IVs. On signalized arterials,

speed management systems aim to adjust signal timing to

reduce stops at signalized crossings while smoothing vehicle

trajectories. Common longitudinal control strategies include

Fuzzy logic [6], Proportional–Integral–Derivative (PID) [7],

model predictive control (MPC) [8], game theory [9], sliding

mode control (SMC) [10], Fuzzy inference system (FIS)

[11], Lyapunov-based adaptive control approaches [12], and

AI-approaches [13]. The challenges dealing with within the

design of the longitudinal control system include string-stable

operation with tiny headway, execution of longitudinal split,

and join maneuvers subject to communication limitations [14].
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TABLE I
CONTROL METHODOLOGY WITH ADVANTAGES AND DISADVANTAGES

Method Advantages Disadvantages

PID

1.Simple structures
2.Easy implementation
3.Non-mathematical mode

1.Parameters tuning
2.Non-optimal performance
3.Weak robustness

Game
1.Learning by imitation
2.Optimal strategies

High complexity

Fuzzy
1.Non-mathematical mode.
2.Humanoid control actions

1.Parameter optimization
2.Prior knowledge

MPC
1.Control efficiency
2.Multiple factors

1.Inadequate for non-convex
2.High complexity

SMC
1.Robustness
2.Suitable for unknown space

Heavy dependence on models

LPV 1.Linear controller Advanced knowledge

AI

1.No system knowledge
2.No manual setting
3.Strong adaptability

1.Hard to validate
2.Poor interpretation

2) Lateral Vehicle Control: Lateral vehicle control systems

focus on the vehicle’s position in the lane. The major function

of the lateral vehicle control system is to keep the vehicle

in the current lane (lane-keeping), drive the vehicle to the

adjacent lane (lane change), or avoid collisions with its pre-

ceding vehicle [15]. The control tasks for lateral control are

to minimize the lateral displacement and the angular error

with regard to the reference trajectory [16]. Various linear and

nonlinear controllers have been reported in the literature to

control the motion of the vehicle including Game theory-based

approaches [17], PID [18], MPC [19], H∞ robust control

[20], Lyapunov-based adaptive control approaches [21], Linear

Parameter Varying Controllers [22], SMC [23], Fuzzy logic

[24] and deep learning-based approach [25].

As the lateral control system can change the vehicles’ lance

safely and perform evasive maneuvers, it can offer potential

benefits in reducing accidents and enhancing driving safety.

However, full implementation of lateral vehicle control re-

mains a real-world difficulty in lance changes and evasive ma-

neuvers. For example, environmental factors such as weather

conditions, road curves, and other various disturbances may

affect the control performance, and a proper lateral control

strategy is needed.

B. Control Methodology

We introduce several common methodologies in vehicle

control as Table I.

1) Proportional–Integral–Derivative (PID) Control: The

generic applicability of the PID controller can make it out-

perform other control approaches to in-vehicle control for IVs

[7]. A nested PID steering control is developed for lateral

control of IVs in the condition of unknown route curvature

[26]. PID control has the advantages of simple structures, easy

implementation, and no need to know in-depth knowledge of

the behavior of the system. However, PID parameters tuning

is a challenge, and no optimal performance is guaranteed. In

addition, it is hard for PID controllers to be adaptive and robust

to unknown and changeable external environments [27].

2) Game-theoretic Approaches: In game theory approaches

the vehicles are regarded as game participants, and traffic

rules are considered in the respective decision models. The

decision models can mimic human behaviors by interact-

ing with surrounding drivers, extract information from the

interaction and generate the optimal control strategies, e.g.

when and how to change the lane [17]. One advantage of

the game-theoretical approaches is the consideration of the

mutual influence of traffic participants, which can increase the

reliability of decision-making. However, the dimension of the

game can be highly increased by involving more participants,

and the high dimensionality of the coupled game system may

result in high computational complexity.

3) Fuzzy Logic Control: Similar to PID controller, Fuzzy

logic control doesn’t require the mathematical model of the

plant allowing the controller to adequately deal with nonlinear

vehicle dynamics. Another benefit is their humanoid control

actions because of the human-like rules. Using membership

functions, the input variables are translated into linguistic

variables. The controller’s output is determined by fuzzy rules

that take the form of ”if-then” statements. [28] presents a

neuro-fuzzy controller with the aim to regulate the speed in

order to maintain a safe distance with respect to the vehicle in

front. [29] designs a fuzzy feedback controller to optimize the

parameters of membership functions and rules in order to track

the reference trajectories under different driving conditions.

However, parameter optimization is challenging, and fuzzy

inference rules with a lot of expert knowledge are also required

for fuzzy logic control [30].

4) Model Predictive Control: MPC is extremely popular

for vehicle control, see longitudinal control [2], lateral control

[26], and integrated control [31]. The principle of MPC is to

find a predictive motion solution over a longer horizon period

by solving the problem at each sample time and applying

the first sequence of actions. In this way, MPC simulates a

receding horizon control and changes the solution set to remain

accurate to upcoming information [32]. [19] proposes an MPC-

based path-tracking controller that incorporates the dynamic

characteristics of the steering actuation system to ensure

accurate and smooth tracking. The main advantage of MPC

algorithms is their ability to consider multiple performance

criteria of control efficiency, ride comfort, fuel consumption,

and their constraint handling capability on vehicles’ physi-

cal limits and safety. However, they are still inadequate for

non-convex and high-complexity issues. Excessive computing

difficulties may impede their real-time applications.

5) Sliding Mode Control-based Approaches: SMC offers

the capacity to adapt to unknown disturbances and matched

uncertainties. A series of path-following controllers based on

SMC is proposed in [10] and simulation results show that the

SMC controllers are robust to disturbances and provide proper

path-tracking performance. However, the model uncertainties

and the disturbances are time-varying in the realistic scenario

and the model accuracy greatly influences the control perfor-

mance. The control performance may be degraded due to the

modeling errors [33].

6) Linear Parameter Varying Control: The LPV controller

is a linear controller and has been designed together with

predictive control for lateral control [20] and integrated system

control [34]. This method requires advanced knowledge of

a plant model as well as real-time signals from all states
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during driving. A state observer is required because this is

not provided by default.

7) AI-guided Driving Policy Learning: Research on artifi-

cial intelligence algorithms is progressing rapidly because of

the commonplace of big data. Compared to traditional control

systems, AI-guided vehicle systems do not require any system-

level knowledge and have shown great potential to optimize

nonlinear systems in complex and dynamic environments [13].

Instead of designing explicit hand-engineered algorithms for

lane detection, obstacle detection, path planning, and control

law design separately, the AI-guided vehicle systems can

combine all efforts within one framework and teach the system

to perform well and generalize to new environments through

learning [32]. [35] investigates a road-following system using

reinforcement learning. The testing results show that the

proposed algorithm can use previous driving experiences to

learn how to drive in new environments and improve road-

following performance through online learning. [36] uses Deep

Q-Network (DQN) to train a vehicle agent to learn automated

lane change behaviors. [37] presents a novel autonomous

braking system that uses deep reinforcement learning to intelli-

gently manage the vehicle’s velocity when a potential collision

is announced. [38] investigates an end-to-end controller based

on a convolutional neural network (CNN) to provide steering

commands without engineering each autopilot component.

The AI-guided control strategies are very powerful and their

capacity to generalize over a variety of similar scenarios makes

them fit for minor deviations in the driving conditions [39].

However, safety validation of these AI-guided systems is very

challenging due to the opaque nature of the methods and there

is no explanation for failure can be given. In addition, the

need for training data may hinder the research of AI-guided

systems.

The classic PID and sliding mode control method may fail

to adapt to complex environments and unknown disturbances.

The MPC and LPV are based on precise mathematical mod-

els, the uncertain and nonlinear mathematical model of the

vehicle during real-world driving may degrade the control

performance, especially in extreme maneuverings. The fuzzy

rules of the fuzzy logic systems are based on experience,

and there are no qualitative rules to refer to, making them

challenging to use in engineering applications. Due to the

high dimensionality of the coupled game system, the design

of game theory-based control strategies is challenging. The

AI-based method requires a significant amount of off-line

computation and training and more study into interpretability

and functional safety validation methodologies for AI-driven

vehicles is needed.

III. COMPUTING SYSTEM DESIGN

In this section, the computing system design of the IV

will be described from three essential aspects of IVs, namely,

the computing systems architecture, and sensor systems with

various applications.

A. Computing System Architecture

The computing system plays a vital role in IVs to guarantee

safety, security, energy, and communication efficiency. For a

Fig. 2. Typical computing architecture for IVs [40, 42, 43]

typical IV which usually can be equipped with a large number

of onboard sensors, including Lidar, cameras, Radar, com-

munication module, and Global Navigation Satellite System

(GNSS), etc., the data generated per minute can be huge. To

ensure the efficient processing and fusing of heterogeneous

information, the computing system must be well-designed to

process the information in real time and maintain safe AD.

According to [40], there are two basic types of computing

architecture that are widely used in IVs, which are the modular

design method and the end-to-end design method. The modular

design approach decouples the functional units into separate

modules which can be easier for system implementation,

fault diagnosis, and module update. Based on the modular

design approach, the computing architecture of IV can be

separated into the following key modules (as shown in Fig.

2), including computation, communication, storage, security

and privacy, and power management. While the end-to-end

computing architecture is largely motivated by current artificial

intelligence and mainly relay on learning-based approaches to

process the sensing data and generate control output directly

[41]. Considering the modular design approach is much more

widely used and mature for computing architecture design

on IVs, the following concepts of computing systems are

reviewed based on this branch.

1) Computing Hardware: There is multiple powerful com-

puting hardware to support the real-time computation capa-

bility of IVs. Typically, the Central Processing Unit (CPU),

Graph Processing Unit (GPU), Field Programmable Gate

Array (FPGA), Digital Signal Processor (DSP), Application

Specific Processor Unit (ASIC), and its custom-developed

deep learning-oriented Tensor Processing Unit (TPU) are the

widely used computing hardware on IVs nowadays [43].

Specifically, Nvidia published the Nvidia Drive series to

support IV technology with powerful GPU support [44]. Xil-

inx released the Zynq UltraScale+MPSoC automotive-grade

processor based on FPGA, which achieved more energy-

saving performance (14 images/W) than Nvidia Tesla K40

GPU (4 images/W) [45]. The Mobile EyeQ6 series and
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TPUv4 are the leading ASIC-based solution for IVs, which

show significant improvement in the computation power and

energy efficiency [46]. Huawei published its Mobile Data

Centre (MDC) solution for real-time computing on L4 IVs.

The MDC is equipped with a Huawei Ascend AI chipset

which is capable of up to 352 TOPS of computing power,

and industry-leading 1 TOPS/W energy efficiency. Horizon

Robotics also published their cutting-edge automotive system-

on-a-chip (SoC) processor, Horizon Robotics Journey 5, which

is a particular design for optimizing the runtime execution of

onboard vision and Lidar-based perception tasks. The HRJ-5

features up to 128 TOPS processing capabilities for a single

processor and supports neural computing from 16 sensors.

2) Operating System: Real-time operating system (RTOS)

is a key module for the computing systems on IVs that enables

resource management and real-time perception, planning,

decision-making, and control autonomously at a fast speed

[43]. OS on IVs should support real-time resource allocation,

networking, filing, communication, etc. Two common RTOS

kernels are QNX and VxWorks [47]. The QNX is widely

used in the automotive industry that contains CPU scheduling,

interprocess communication, interrupt redirection, and timer

[47]. VxWorks is a monolithic kernel and is designed for real-

time embedded systems and also can be used for safety and

security [48]. It is designed with a shared memory architecture

and it supports multiple architectures like Intel, POWER, and

ARM.

3) Middleware: In the middle of RTOS and application

layers, the middleware layer is needed to bind the multiple

AD services together to manage the application communica-

tion and schedule the sensing and computing resources. In

[49], three influential middleware architectures, namely Robot

Operating System (ROS1), ROS2, and Cyber are evaluated

regarding the communication latency for AD applications.

The Inter-Process Communication mechanism in ROS1 pro-

vides high compatibility and extensibility [50]. ROS2 shows

efficient performance in real-time distributed systems based

on the Data Distribution Service (DDS)-based communica-

tion scheme [51]. Then, the Cyber is a recently published

middleware architecture by Baidu Apollo, which is primarily

designed for AD.

[49] summarised the three architectures based on a compar-

ison study, it was found that 1) the communication through a

shared memory mechanism is the optimal solution considering

the performance and reliability of IVs; 2) Data copy and seri-

alization/deserialization operation in the middleware layer are

the main attributes of communication overhead. 3) Optimiza-

tion in communication characteristics can bring significant

benefits to computation efficiency. 4) the higher the perfor-

mance of the platform, the more likely the communication

becomes the bottleneck for processing speed. 5) Additional

latency can be introduced if the publishing frequency and

corresponding processing time are not well calibrated.

In sum, middleware can be a contributor to the end-to-end

latency and to avoid becoming the performance bottleneck

for the overall computing system, the communication and

management in the middleware should be carefully designed.

TABLE II
METRICS FOR COMPUTING SYSTEMS FOR IVS [40]

Metric Description

Accuracy
Usually evaluate the difference between the predicted value
and ground truth regarding the precision, recall, and other
metrics.

Timelines

Evaluate the inference and processing speed of the com-
puting system to ensure the computation can be finished
before the deadline and minimize latency and tail latency,
etc.

Power
Evaluate the power usage of the computing system and
analysis its impact on the energy, mileage, and comfort
issues for IVs.

Cost
Mainly refer to the financial cost for the computing system
toward board deployment.

Reliability
To guarantee the safety of the IVs, the worst-case execution
time, interruption or emergency stop capabilities, and fault-
tolerant should be considered.

Privacy

To protect the privacy of all the road users including both
in-cabin and surrounding users’ private data. Also, the
acquisition, storage, and communication privacy should be
further considered.

Security
The onboard security can be mainly divided into sensing
security, communication security, data security, and control
security.

4) Metrics for Computing Systems on IVs: In [42], the

authors identified seven evaluation metrics for the computing

system on AV, which are accuracy, timelines, power, cost,

reliability, privacy, and security. A brief summary of the

characteristics of these metrics is demonstrated in Table II.

5) Constraints for Computing Systems on IVs: Though

computing systems on IVs have achieved significant improve-

ment in recent years, there are still several essential constraints

that exist in the hardware, software, and sensor layers, etc.

which can delay the wide deployment of commercial IVs. For

example, In [42], five major design constraints of the com-

puting system, namely, performance constraints, predictability

constraints, storage constraints, thermal constraints, and power

constraints for IVs are identified and analyzed. Therefore,

in this section, we will jointly summarize and analyze these

challenges that exist in the different layers of the computing

system.

Specifically, performance constraints mainly exist at the ap-

plication level as shown in Fig. 2. In terms of the fundamental

functions of IVs, including perception, planning and decision-

making, and control, the gap between machine and human

performance still exists. It is stated that the frame rate and

processing latency are the two main performance constraints

for the IVs. The human driver can react to an event with the

action within 100-150ms, therefore, for safety concerns, the

vehicle should react even faster than the human driver within

a latency of 100ms at a frequency of at least once every 100ms

as well [42].

Predictability is another constraint that is defined from

both the temporal aspects (meeting the time deadline) and

functional aspects (making the correct decision). Despite the

conventional mean latency metric, the tail latency (99.99th-

percentile latency) should also be used to satisfy the stringent

predictability requirement [42].

The storage constraint is an essential aspect and bottleneck

for energy-saving and computing performance on IVs. It is
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shown that one IV can generate 2 to 40 TB of data per day

[40]. The tens of TBs of storage space per day would require

high storage speed and space for the vehicle. Besides, real-

time data storage and transfer would also require a significant

boost in energy and power usage.

The thermal constraints of the IVs can be a serious consid-

eration as well. There are two typical aspects of the thermal

constraints which are 1) the temperature to keep the computing

system working at operational range, and 2) the heat generated

by the computing system should lead to limited impact on the

vehicle thermal profile [42]. It is shown that without the cool-

ing system, every 1 kW power consumption by the computing

system would increase the in-cabin temperature up to 10°C per

minute [52]. Therefore, usually, the computing system should

be implemented in a climate-controlled area which means an

additional cooling system is needed to mitigate the thermal

impact of the computing system [52].

Last, power constraint is another critical aspect that can

significantly influence the capability of IV. According to [42],

the power constraint of the computing system contains three

major aspects which are power consumption of the computing

system, consumption of the storage, and cooling overhead.

The computing consumption and additional energy consump-

tion for storage and cooling would dramatically decrease the

millage of IVs, especially the electric IVs. For instance, the

miles per gallon (MPG) rate can be reduced by one for every

additional 400 W energy usage, and an energy-hungry system

like GPUs can reduce the fuel efficiency by up to 11.5% [42].

Therefore, more energy-efficient computing systems and green

AI techniques are extremely expected for IVs in the future.

B. Sensor Systems

Sensor systems on IVs provide essential sensing and detec-

tion data to the computation units. Common onboard sensors

for IVs include Lidar, Radar, cameras, ultrasonic, IMU, GNSS,

etc. Dues to the large uncertainty properties during driving,

IVs should rely on multiple sensor fusion to guarantee driving

safety. Hence, in this part, the characteristics of common

sensors are reviewed.

1) Sensors in IVs: De Jong et al. classified the sensors on

IVs into smart sensors and non-smart sensors according to

the internet-of-things concept in [53]. Smart sensors on IVs

refer to those that can provide extra detection or perception

information, such as object detection/tracking, and other event

description from the camera, Lidar, or Radar systems. On the

contrary, non-smart sensors are those which only provide raw

data for processing. The study of characteristics of onboard

sensor systems has been widely studied in [53]. The typical

sensor fusion methods are shown in Fig. 2, and can refer to

[53, 54] for more detailed discussion. A brief description of

the different sensors and selected review studies are shown in

Table III.

2) Computing System Design for IVs with Various Appli-

cation Scenarios: The computing system design of IVs is

also heavily dependent on the application scenarios, policies,

and regulations. Nowadays, the most commonly used standard

for IVs regarding safety, communication, and design can be

found in [67]. The standard roadmap in [67] covers the current

and ongoing standards for safety and assurance, perception,

decision-making, data, security, infrastructures, and human

factors. It should also be noticed that the design of the IV shall

consider the specific application domains as well. For exam-

ple, the autonomous mining truck and its testing techniques

have been summarized in [68], which shows significantly

different considerations compared to passenger cars. Other

successful applications of IVs at airports, harbors, and for

logistic purposes can be found in [69]. Clearly, each specific

IV requires significantly different concerns in the overall

computing system design and should respect the specific real-

world application environment.

Another emerging research areas for sensor systems in

IVs are the design of the explainable interface for IVs. On-

board explanation of the perception, localization, decision-

making, and control based on the multi-modal signals from the

sensor systems is an essential design requirement for future

IVs to enhance the human trust and acceptance of the IVs

for worldwide commercialization [70]. The Explainability of

IVs can be further divided into interpretability and complete-

ness. Further, interpretability has two main branches, namely,

transparency and post-hoc explanation [71]. Meanwhile, local

explanation and global explanation also requires different

computing system design for the IVs [71]. In sum, the design

criteria for an explainable interface of IVs will contribute

to the societal and legal requirements of the IVs, and more

importantly enable safer, transparent, public-approved, and

environmentally friendly IVs [72].

IV. COMMUNICATION

Facing the complex traffic environment, the perception of

an individual IV is blinded by obstacles and severe weather,

which affects the safety of AD. On the other hand, the

decision-making capability of an individual vehicle is limited

by the onboard computing and storage resources, which makes

it difficult to cope with the challenges of the large density and

mixed traffic flow environment. Therefore, IVs not only need

to optimize their intelligence level but also need to expand

their sensing and decision-making capabilities by obtaining

external information and resources through wireless commu-

nication technologies. Different from the mobile terminals

in traditional cellular networks, the high-speed movement

of vehicles leads to rapid changes in network topology and

frequent switching of communication links. Meanwhile, the

complex and variable driving environment of vehicles leads

to the multipath effect and interference from other signals for

vehicular communication. In addition, safety-related applica-

tions such as collision avoidance and platooning of IVs require

networks to meet the stringent requirements of low latency

and ultra-high reliability, which are difficult to achieve with

traditional wireless networks. Therefore, it is necessary for

IVs to adopt dedicated communication technologies to ensure

efficient and stable interactions between vehicles and other

vehicles, infrastructure, and cloud platforms.

As a powerful extension of the perception capabilities of

AD and IVs, the communication of IVs not only involves the
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TABLE III
COMPARATIVE STUDY FOR COMMON SENSOR SYSTEMS ON IVS.

Sensors Advantages Disadvantages Review Studies

Lidar

1.Support high-resolution 3D point cloud
2.Larger and wider sensing range
3.Accurate object and distance detection
4.Robust to lightning

1.High Cost
2.Poor performance to harsh weather
3.A large amount of data stream

1.Point Cloud and networks [55]
2.SLAM [56]
3.Sensor design [57]

Camera
1.Cost-effective
2.Visual recognition and texture extraction

1.Easily affected by lighting and weather.
1.Perception and networks [58]
2.Fusion [54]

Radar
1.Support extreme long sensing range
2.Resilient to various environmental conditions

1.Smaller data size
2.Indistinguishable from static targets

1.Detection and perception [59]
2.Radar Communication [60–62]

GNSS
1.Low cost and stable
2.Non-accumulation error for GNSS

1.Relative low accuracy for GNSS and IMU
2.Slow update frequency
3. Requiring an unobstructed view

1.Localization & navigation [63, 64]

Ultrasound

1.Low cost
2.High accuracy for close range
3.Resilient to adverse weather conditions

1.Short-range detection
2.Inapplicable for high speed

1.A systematic review [65]
2.All-weather conditions [66]

vehicles themselves, but also involves a variety of infrastruc-

ture and technical elements of transportation, communication,

and other systems, and is a focused area for the integration and

convergence of automotive, transportation, communication,

information, and other industries. Vehicular communication

technology originated from academic research and demonstra-

tion projects conducted in Europe and the United States at

the end of the 20th century that focused on vehicle-to-vehicle

(V2V) and vehicle-to-infrastructure (V2I) communications,

which was known as vehicular ad-hoc network (VANET)

[73] or vehicular network at that time. With the development

of novel information and communication technologies, the

connection and cooperation of all elements in transportation

systems have been further strengthened to form a connected

and cooperative AD, the concept of VANET was extended

to the Internet of vehicles and it has gained wide attention

due to its supporting role for industries such as intelligent

transportation and AD.

With the expansion of the concept, the vehicular commu-

nication technology has evolved from the VANET that con-

nects vehicles and infrastructure to the vehicle-to-everything

(V2X) [74] that connects various elements of the transporta-

tion system such as vehicles, infrastructures, pedestrians and

clouds. Specifically, V2X contains two types of technologies,

dedicated short-range communication (DSRC) standardized

by IEEE and cellular V2X (C-V2X) standardized by the

3rd Generation Partnership Project (3GPP) [75]. In terms of

communication methods, V2X communication can be subdi-

vided into V2V, V2I, vehicle-to-pedestrian (V2P), and vehicle-

to-cloud/network (V2C/N) communication as shown in Fig

3. Therefore, vehicular networks can realize real-time and

efficient information interaction among pedestrians, vehicles,

infrastructures, and clouds, and support the massive data

transmission of AD and IVs.

A. Standardization of V2X Communication

To achieve efficient communication and interaction between

heterogeneous vehicles, it is necessary to establish unified

protocols and standards covering the physical layer to the

application layer. As mentioned above, based on different

radio access technologies, there are two major types of V2X

communication standards, namely DSRC and C-V2X. In this

Fig. 3. Elements of vehicle-to-everything (V2X) for vehicular communication

section, we briefly present the status and development of these

two types of standards.

1) DSRC: Strictly speaking, DSRC is a radio access tech-

nology for vehicular communication, but it is also used to

broadly refer to vehicular communication based on this ra-

dio access technology. Currently, the technology is relatively

mature, and several organizations for standardization, such as

IEEE, Society of Automotive Engineers (SAE), and European

Telecommunications Standards Institute (ETSI), have worked

on DSRC-related standards [74]. Here we take the standard of

the United States as an example to describe its standardization.

In the United States, IEEE has developed the IEEE 802.11p

and IEEE 1609 standards for the 5.9 GHz spectrum and

formed the WAVE protocol stack [76]. IEEE 802.11p is

a communication protocol expanded from the IEEE 802.11

standard to support vehicular communication in a mobility en-

vironment [77]. The IEEE 1609 protocol family is a high-level

protocol for WAVE, including 1609.1, 1609.2, 1609.3, 1609.4,

etc. [78, 79]. Specifically, 1609.1 is a standard on resource

management at the application layer of WAVE, 1609.2 defines

secure message formats and their processing, 1609.3 defines

routing and transport services, and 1609.4 mainly provides a

communication standard for multi-channel cooperation. It is

worth noting that the Federal Communications Commission

(FCC) has already reallocated the 70 MHz dedicated spectrum

for DSRC in 2019 and dedicated 20 MHz of that band for C-

V2X technology. In 2020, the FCC added another 10 MHz to
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the previous proposal, formally allocating 30 MHz of spectrum

to C-V2X communications and dropping support for DSRC

communications [80].

2) C-V2X: The standardization of C-V2X technology by

3GPP can be divided into two phases, LTE-V2X and NR-

V2X, which complement each other and are designed with

forwarding and backward compatibility considerations [81].

C-V2X mainly includes two types of communication meth-

ods, cellular mobile communication (using Uu interface) and

sidelink communication (using PC5 interface) [82]. The stan-

dardization of LTE-V2X was initially completed in 3GPP

Release 14, and its main application scenario was safety-

oriented services for intelligent driving assistance. Release

15 enhanced the LTE-V2X technology and supported some

enhanced applications of vehicular communication. To support

the requirements of advanced V2X services and AD, 3GPP

Release 16 and 17 carried out research on NR-V2X and

enhanced the PC5 and Uu interfaces based on 5G NR, and

the related standards are frozen now [75]. LTE-V2X, based on

4G cellular communication, is the first C-V2X communication

technology, which defines the basic architecture and technical

principle of C-V2X combining cellular mobile communication

and sidelink communication methods [83]. NR-V2X, based on

5G communication, is an evolutionary version of LTE-V2X.

It follows the system architecture and key technical principles

of combining the Uu and PC5 interfaces defined in LTE-V2X.

Meanwhile, to support a series of enhanced V2X services such

as platooning, extended sensors, and remote driving for the

future, NR-V2X is enhanced with novel technologies of 5G

NR on the PC5 interface to provide higher data rate, low

latency, and ultra reliable communication services. In terms

of key technologies, NR-V2X supports unicast and multicast

communication modes in addition to broadcast, and adaptive

improvements have been made to resource allocation and

synchronization mechanisms [84].

B. Innovative Studies of Vehicular Communication

Facing the stringent requirements of AD and IVs for vehic-

ular communication, researchers have proposed improvements

and optimizations for the existing vehicular communication

methods in several research directions of communication and

networks [85]. In this part, we briefly present innovative

studies for vehicular communication in terms of the physical

layer, media access control, routing, and security.

1) Physical Layer: The physical layer is one of the im-

portant parts that affect the performance of vehicular com-

munication, which enables the transmission of vehicle and

traffic data through radio channels [86]. Currently, orthog-

onal frequency division multiplexing (OFDM) is the major

modulation technology in vehicular communication [87], thus

many studies are devoted to optimizing OFDM parameters to

ensure reliable and efficient data transmission [88]. In addition,

facing the requirement of data rate for communication in AD

and IVs, millimeter-wave communication [89] and visible light

communication (VLC) [90] in the vehicular environment have

become emerging research directions.

2) Congestion Control: Since the bandwidth of vehicular

communication is limited, with large-scale deployment of

vehicles, the access of massive terminals can lead to channel

congestion and cause delay or even failure of data transmission

[91]. Congestion control avoids the congestion in the channel

and improves the stability and reliability of data transmission

through power-based, rate-based, hybrid, priority-based, and

cross-layer approaches [92].

3) Resource Allocation: Facing the dynamic channel ac-

cess and multi-user interference caused by the high mobil-

ity of massive vehicles, vehicular communication maximizes

the system performance by optimizing the allocation of re-

sources such as channels, bandwidth, and transmit power [85].

For DSRC, various studies have proposed schemes such as

medium access control (MAC) parameter allocation, channel

allocation, and rate allocation [93]. For C-V2X, resources

are efficiently utilized through centralized schemes based

on clustering, cloud computing, non-orthogonal multiple ac-

cess (NOMA) and semi-persistent scheduling, and distributed

schemes based on location, sensing, and enhanced random-

ization [94]. In addition, machine learning, especially deep

reinforcement learning, as a powerful analytical technique

for complex problems, has become an important scheme for

resource allocation and optimization [95].

4) Routing: In vehicular communication, the range of one-

hop communication between vehicles and other units (vehicles

or infrastructure) is limited, so routing is needed to achieve

long-distance data interaction between vehicles and vehicles

or roadside infrastructures [96]. However, facing the fre-

quently changing topology and unstable connections caused by

the high-speed movement of vehicles, the traditional routing

methods in wireless communication are no longer applicable

[97]. Therefore, many studies have proposed enhanced routing

schemes in vehicular communication to achieve efficient and

stable data exchange, which include position-based, topology-

based, geocast-based, broadcast-based, and cluster-based rout-

ing protocols [98]. Various routing protocols improve the qual-

ity of service (QoS) of vehicular communication by optimizing

the delay, distance, reliability, energy consumption, or security

of routing [99]. In addition, with the development of machine

learning, learning-based routing protocols have also attracted

more attention [100].

5) Security: IVs interact with traffic systems through ve-

hicular communication to improve driving safety and traf-

fic efficiency [82]. In this environment, attacks such as re-

play attacks, man-in-the-middle attacks, impersonation attacks,

spoofing attacks, and malicious third-party attacks threaten

the information security and even driving safety of vehicles

[81]. Therefore, facing the security requirements of vehicular

communication, various studies prevent malicious attacks in

terms of authentication, authorization, confidentiality, data

integrity, and availability [81]. In addition, machine learning-

based attack detection and blockchain-based consensus and

tamper-proof have become emerging research directions [101].

V. HD MAP

HD Maps are an integral part of modern AD. The informa-

tion from the map supports several functions of AD, including
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localization, perception, planning, control, and systems man-

agement. Different from the navigation maps from commercial

applications, HD maps serve the AD system instead of human

drivers. Besides, HD maps could achieve a high level of

precision within a centimeter involving multiple elements in

the road such as street signs, signal lights, bridges, road

guardrails, trees, corners, motion objects, etc.

1) Composition and Generation process: The production

steps of HD maps can be divided into four main loops, data

acquisition, map generation, semi-automated correction, and

validation. After the sensors (LiDAR, camera, radar, GNSS,

odometry, etc.) installment, calibration, and synchronization,

the collection platform could drive around the target region and

store the sensor data. Then the clear, concatenation method,

detection, and segmentation algorithms are utilized to generate

a coarse base map. Introducing semi-automated correction and

artificial verification, lane traffic signs, and logical information

could be added to the map. Through a series of testing

and validation processes, the HD map could be released and

employed in the AD system on IVs. And the HD map could

be updated and removed when road elements and the region

are changed.

2) Types and Standards: According to the update rate of

the elements, the HD map can be divided into five layers: base

map, geometric map, semantic map, map priors, and real-time.

The geometric map is composed of raw sensor data on the

base map (initial map). The semantic map is constructed upon

the former layer by introducing static semantic information

such as lane boundaries, intersections, parking spots, stop

signs, traffic lights, etc. The map priors layer contains dynamic

information and human behavior information such as the

change order of traffic lights, the average wait times, the

probability of a vehicle at a parking spot, the average speeds

of vehicles at parking spots, etc. Autonomy algorithms com-

monly consume these priors in models as inputs or features

and are combined them with other real-time information. The

real-time knowledge layer is the topmost layer in the map that

is dynamically updated with real-time traffic information.

Geographic Data File (GDF) has been released by ISO/TC

204 which provides a basic version for the storage and ex-

change of map information. GDF-5.1 obey the Local Dynamic

Map (LDM) standard and involves a number of informa-

tion such as the weather, traffic conditions, static elements,

etc. Open AutoDrive Forum (OADF) actively promotes the

standardization of HD maps as a cross-domain platform.

Traveller Information Services Association (TISA) attempts to

increase HD map accuracy by introducing the Transport Pro-

tocol Experts Group (TPEGTM). Advanced Driver Assistance

Systems Interface Specification (ADASIS) Forum releases the

V3 protocol to support the distribution function within IVs. In

addition, Navigation Data Standard (NDS) and OpenDRIVE

are two major industrial standards for the generation of HD

maps.

3) Data quality: There are 5 measuring standards to evalu-

ate the quality of AD maps: 1) accuracy, 2) precision, 3) com-

pleteness, 4) consistency, and 5) timeliness. Accuracy is the

deviation between actual and mapped values. Precision means

the smallest discernible unit of a map. Completeness refers to

Fig. 4. The figure shows the appearance of IVs. The left vehicle is the test
autonomous platform of Xi’an Jiaotong University. The right vehicle is the
autonomous mining truck at an open-pit mine in China.

whether the map contains all the real-world features. Consis-

tency indicts the logical rules of data structure, attributes, and

relationships. Timeliness means the difference in time between

construction and use. In order to increase data quality, Wong

and Ellul [102] proposed geometry-based metrics as part of the

fitness assessment for 3D maps. Javanmardi et al. [103] defined

four criteria to evaluate the vehicle location capability of maps,

from the view of the layout, feature adequacy, presentation

quality, and local similarity. Murphy and Pao [104] proposed

a method for detecting unmapped or mismapped roads and

parking lots in the context of map matching, resulting in a

system that is more robust and can even correct errors in the

underlying map. From a similar but alternative perspective,

Yang and Huang [105] studied how to make IV systems more

resistant to malicious attacks on their sensor.

VI. TESTING

Vehicle testing has become a popular research topic in the

field of IVs since 2016. On one hand, several companies

that produce IVs encountered vehicle accidents during testing

or running, which rises urgent demand to identify causes of

accidents and fix complicated IV systems. On the other hand,

researchers are increasingly interested in intelligence testing

of generalized intelligent systems. (Artificial Intelligence Test

A Case Study of IVs; Parallel Testing of Vehicle Intelligence

via Virtual-Real Interaction).

A. Testing Platforms

To verify vehicle algorithms, especially for the motion

control algorithms, a series of testing should be designed for

control strategy validation. In terms of testing patterns, the

validation type can be divided into simulation studies and

experimental tests. Testing in the actual world can be costly

in terms of time, labor, and money. Simulation studies, in

contrast, are much less expensive, faster, more adaptable, and

can be used to create scenarios that are difficult to replicate

in real life [36].

1) Simulation Platforms: Simulation has become a more

dominating approach with the increased accuracy and speed of

simulation tools. National instruments’ LabVIEW, which is a

graphical computing platform, is widely used in the simulation

program for testing and measurement [24]. To model vehicle

dynamics, the commercial tools Carsim [33] with ADAMS

[29], CARLA [106], PreScan [37] and Matlab/Simulink [107]

have been utilized by researchers for simulating car behavior.
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SCANeR Studio coupled with Matlab/Simulink is used to

provide realistic driving conditions for testing of IV motion

controllers [107]. Microscopic traffic simulation tools VISSIM

10.0 [108] and AutonoVi-Sim [109] are utilized for modeling

traffic situations and implementing IV control. It should be

noticed that the model errors should be considered through

the verification and validation process and an inaccurate model

may result in infeasible evaluation performance.

2) Vehicles Platforms: Some researchers set simulation

studies as a first step for performance validation and conduct

experimental tests for further validation. In the literature,

the experimental tests can be conducted by a small and

lightweight vehicle [41], and an on-road vehicle [24]. A small

and lightweight vehicle is rugged and low-cost and can be

carried by a single person for testing in various environmental

conditions. In addition, the small and lightweight vehicle can

travel at a high speed without the worry of injuring people

and property. The main disadvantage is its small payload,

which is insufficient to hold the computing power required for

computing. On-road vehicles as Fig. 4 in contrast, can vali-

date the control performance in diverse lighting and weather

conditions, but the approval of testing such as ethical approval

is needed.

B. Testing Methods

As the research progresses, researchers gradually build a

framework for conducting research. They summarize effective

methods and focused on several key works [110].

1) Testing Partition: Researchers divide the testing into

three sub-tasks, including function, performance, and intelli-

gence testing. Function testing focuses on whether the vehicle

or its component can obtain the required output for a specific

input under given particular conditions (for example, can the

Lidar give an output of more than 3 cloud points for a 1m*1m

object located 200m away?). Performance testing focuses on

whether the vehicle can obtain the required output for a

specific range of inputs under a given range of conditions.

Intelligence testing further requires vehicles to perform reason-

able and intelligent perception, planning, and control strategies

for broader and more abstract driving scenarios [111].

2) Testing Scenarios: For the intelligence testing of IVs,

currently, most of the researchers conduct analysis from the

view of behavioral intelligence of artificial intelligence. They

believe that if an IV drives successfully and smoothly under

a given traffic scenario, then it is equipped with driving

intelligence of such a scenario. As a consequence, it is a hot

research topic on how to determine the necessary scenarios

for testing. Addressing this need, the International Organi-

zation for Standardization proposes an international standard

for functional safety (ISO 26262) aiming to point out what

functional outputs should the vehicle obtain for a particular

scenario with specific inputs. Furthermore, in order to reduce

the dangers of unacceptable risks due to a lack of relative

functions of the system (inadequate design or performance

limitation) or foreseeable human error, the International Orga-

nization for Standardization proposes the estimated functional

safety standard (ISO 21448) for functional testing of those

functions that are affected by the external environment, such as

automatic emergency braking (AEB) system, lane keeping sys-

tem and other advanced driving assistance systems (ADAS).

However, for the intelligence testing of IVs, the necessary

scenarios are numerous. So far, it is hard to efficiently and

reliably test the intelligence of vehicles by the method of

finding the ideal relationship between inputs and outputs based

on human expert-specified testing scenarios [112].

3) Learning-based Approaches: Considering the difficulty

of constructing scenarios and the trend of data-driven ma-

chine learning modeling in most artificial intelligence systems,

researchers propose several algorithms to generate scenarios

semi-automated or fully automated by learning from naturalis-

tic driving data. Especially, researchers are strongly interested

in two problems. One of the problems is how to quickly

identify difficult testing scenarios, so as to avoid wasting

time in simple testing scenarios which does not help improve

vehicle performance [113–115]. The other problem is how to

cover all possible scenarios as much as possible, so as to avoid

IV encountering untested scenarios that are hard to deal with

[116, 117]. Apparently, it is difficult to balance those two

problems, and it remains unsolved. It is helpful to reveal the

intelligence limitation of IVs by finding corner cases, which

is worth to be studied further [118].

4) Parallel Testing: As it is time-consuming to conduct

real tests, most researchers focus on virtual tests based on

simulation [119–121]. The experience of some famous com-

panies such as Waymo [122] and Nvidia [123] shows that well-

designed virtual tests can effectively identify the weakness of

vehicles and provide useful modification solutions. Currently,

relevant research is focused on how to ensure the intrinsic

behavioral rationality and external manifestation variety of

simulated objects in simulation systems. For example, some

researchers discuss how to mimic human drivers’ behavior by

learning from daily collected driving data, so that interactions

between manned and unmanned vehicles can be correctly

reproduced in simulation systems [124]. How to transform

images by deep learning models, and obtain rarely seen special

scene images from transforming daily driving collected scene

images has been favored by many researchers [125, 126].

So far there are still many difficulties that need to be

solved in the field of IVs testing. It can be forecasted that

the development of testing will drive into a crucial stage in

the next decade.

VII. HUMAN BEHAVIORS IN INTELLIGENT VEHICLES

Human behaviors and human factor issues are important

topics for IVs, as they determine the widespread acceptance

of IVs. Modeling and understanding human behaviors can also

contribute to the establishment of mutual understanding and

mutual trust between humans and vehicles. However, human

is a highly complex system and a unified human behavior

modeling framework still need to be investigated further [127].

In this section, the human behavior and human factor issues

will be discussed according to the level of autonomy (SAE

J3016) as the differences in human behavior can be significant

[128].
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A. Driver Assistance and Partial Driving Automation (L1-L2)

On L1 or L2 AD vehicles, human drivers are still inside the

vehicle control loop and suppose to drive (mental drive) even if

the feet or hands are off the pedals and steering wheel. In this

case, the human driver can benefit from a series of ADAS such

as lane departure warning (LDW) [129], lane departure assis-

tant (LDA) [130], adaptive cruise control (ACC) [131], and

lane-keeping assistance (LKA) [132], etc. To provide accurate

assistance to human drivers, several popular research areas

were developed, including fatigue (muscle/mental)/drowsiness

detection [133], driver intention inference [134], attention

[135], workload [136], emotion [137], and distractions [138].

Such assistance systems usually can be separated into two fun-

damental groups, which are physical (physiological)-behavior

and psychological behavior-based methods.

B. Conditional Driving Automation (L3)

On L3 AD vehicles, a human driver can further engage

in secondary tasks, and long-term monitoring is no longer

required. The human driver is only required to be present and

capable of taking over the control at any time, especially if an

emergency occurs due to system malfunction and surrounding

context uncertainty. However, one of the famous drawbacks

of L3 automation is the human driver cannot guarantee to

provide quality and safe take-over control especially facing the

time-constrained decision-making situation [139]. Therefore,

the most widely studied points for L3 regarding human factors

issues are the design of take-over control algorithms, resuming

control, and smooth switching of the control authority [140].

C. High/Fully Driving Automation (L4-L5)

With higher-level automation, human drivers are no longer

expected to maintain a proper situation awareness level in case

to control the vehicle when necessary. However, complex is-

sues can arise as well, one of which is how humans understand

and partner with the autonomous system. To enable acceptance

and behavior adaptation to higher-level IVs, driver trust should

be developed.

Driver trust is currently a major reason for the generalization

and commercialization of AD and IVs. As shown in [141],

human trust in the IVs largely depends on the automation’s

driving performance considering the safety, comfortability,

predictability, and ethical response to critical situations. A

recent study [142] supported that the initial introduction of

self-driving cars will cause unexpected reactions and situa-

tions, which may affect the level of trust the public has in

the new technique. Choi et al. surveyed 552 drivers on their

attitudes toward AD; it was shown that trust in autonomy is

the most dominant factor [143]. According to an investigation

of 162 Tesla drivers on their trust in Autopilot and Summon

systems [144], it was found that high levels of initial trust in

the systems could be established if an excellent introduction

to the system capability is provided, and the frequency of

system usage will increase over time, regardless of whether

participants experienced an automation failure.

D. Human-Machine-Interface (HMI)

The AD techniques make the design of HMI even more

complex as the HMI system for AD vehicles relies on human-

centered design approaches [145] to ensure safety awareness,

mutual trust, pleasure, and comfort [146]. Currently, the HMI

system becomes the main module that enables the collabora-

tion between driver and vehicle. The design of the HMI system

is a system engineering task [147], and this section focuses on

the introduction of in-cabin and out-cabin HMI design.

For L4/L5, vehicle autonomy is expected to be fully re-

sponsible for the driving tasks, and human drivers are even

no longer required to maintain driving knowledge and skills.

Hence, it is hard to require the human occupier to understand

the context properly. Instead, only safety-related information

for the vehicle behaviors and future planning has to be

reported and displayed [148]. A satisfactory classification for

various types of HMI on highly AD vehicles was proposed in

[149]. Specifically, the onboard HMI system can be divided

into five categories, namely, dynamic HMI, automation HMI,

information HMI, vehicle HMI, and external HMI. Three rec-

ommended HMI design factors were introduced in [150]. First,

a head-up display can avoid the distraction of the human driver.

Second, HMI systems should assist with time-constrained

maneuvers and decisions. Last, the driver monitoring system

is needed to help understand the human states for high-quality

visualization and explanation. An expert evaluation study for

the design of HMI was discussed in [151]. According to the

expert evaluation, the two most essential functions of HMI

are 1) to present the automation availability, navigation, and

environmental information, and 2) to improve the driver’s

attention through speech instruction, LED bar light, and seat

oscillation.

E. Intelligent Cockpit Systems

Intelligent cockpit (IC) design for IVs is another emerging

topic in recent years. Indeed, some of the conventional IC

techniques for low autonomy vehicles, such as driving be-

havior monitoring techniques can be adapted [152]. However,

more challenging technologies are keen to be developed in

case to satisfy the stricter requirement in safety, security,

comfortability, HMI, and entertainment on IVs. Regarding

the safety issue, as discussed in [128], an efficient mutual

communication mechanism should be developed for IVs in

case human intervention is needed in a critical situation.

For full IVs, such information exchange is also important

in the IC so that human passengers maintain proper situa-

tional awareness and trust in the autonomy by visualizing

more time-critical traffic context information [153]. As more

advanced vehicular technologies, such as V2X, blockchain,

and federated learning have been introduced to IVs [154],

IVs are evolving into mobile information centers. In this

case, cyber-security proposed another dramatic challenge to

the IC as it is the essential requirement to protect the users’

privacy and safety to ensure a seamless journey and all the

onboard technologies satisfy the ethical and policy issues. The

comfortable consideration for IC on IVs is also different from

that on conventional vehicles. It was shown that HMI has
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the greatest impact on comfortability, followed by the thermal

environment, acoustic environment, and optical environment

[155]. Similar conclusions are also developed from recent

human motion sickness studies on IVs [156] as it is more

likely to get motion sickness on IVs and HMI can mitigate

such issues [157]. In sum, IC on IVs should not only consider

the entertainment functions but need to address a series of

safety, security, comfortability, human factor, and even energy

consumption challenges that are caused by the nature of IVs.

VIII. CONCLUSION

This article is the second part of our work(Part I for the

technology survey). In this paper, we provide a review of

wide introductions on research development with milestones

in AD and IVs. In addition, we introduce plenty of deployment

details, testing methods, and unique opinions. In combination

with the other two parts, we expect that our whole work will

bring novel and diverse insights to researchers and abecedar-

ians, and serve as a bridge between past and future.
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[76] R. A. Uzcátegui, A. J. De Sucre, and G. Acosta-Marum,
“Wave: A tutorial,” IEEE Communications Magazine, vol. 47,
no. 5, pp. 126–133, 2009.

[77] S. Zeadally, J. Guerrero, and J. Contreras, “A tutorial survey on
vehicle-to-vehicle communications,” Telecommunication Sys-
tems, vol. 73, no. 3, pp. 469–489, 2020.

[78] F. A. Teixeira, V. F. e Silva, J. L. Leoni, D. F. Macedo, and
J. M. Nogueira, “Vehicular networks using the IEEE 802.11
p standard: An experimental analysis,” Vehicular Communica-
tions, vol. 1, no. 2, pp. 91–96, 2014.

[79] M. Dibaei, X. Zheng, Y. Xia, X. Xu, A. Jolfaei, A. K.
Bashir, U. Tariq, D. Yu, and A. V. Vasilakos, “Investigating
the prospect of leveraging blockchain and machine learning to
secure vehicular networks: A survey,” IEEE Transactions on
Intelligent Transportation Systems, vol. 23, no. 2, pp. 683–700,
2022.

[80] “Use of the 5.850-5.925 GHz Band,” FCC 20-164, Federal
Communications Commission, 2020. [Online]. Available:
https://docs.fcc.gov/public/attachments/FCC-20-164A1.pdf

[81] S. Gyawali, S. Xu, Y. Qian, and R. Q. Hu, “Challenges
and solutions for cellular based V2X communications,” IEEE
Communications Surveys & Tutorials, vol. 23, no. 1, pp. 222–
255, 2021.

[82] M. Hasan, S. Mohan, T. Shimizu, and H. Lu, “Securing
vehicle-to-everything (V2X) communication platforms,” IEEE
Transactions on Intelligent Vehicles, vol. 5, no. 4, pp. 693–713,
2020.

[83] S. Chen, J. Hu, Y. Shi, and L. Zhao, “LTE-V: A TD-LTE-based

V2X solution for future vehicular network,” IEEE Internet of
Things Journal, vol. 3, no. 6, pp. 997–1005, 2016.

[84] G. Naik, B. Choudhury, and J.-M. Park, “IEEE 802.11 bd &
5G NR V2X: Evolution of radio access technologies for V2X
communications,” IEEE Access, vol. 7, pp. 70 169–70 184,
2019.

[85] E. Ahmed and H. Gharavi, “Cooperative vehicular networking:
A survey,” IEEE Transactions on Intelligent Transportation
Systems, vol. 19, no. 3, pp. 996–1014, 2018.

[86] L. Liang, H. Peng, G. Y. Li, and X. Shen, “Vehicular com-
munications: A physical layer perspective,” IEEE Transactions
on Vehicular Technology, vol. 66, no. 12, pp. 10 647–10 659,
2017.

[87] J. Wang, J. Liu, and N. Kato, “Networking and communica-
tions in autonomous driving: A survey,” IEEE Communications
Surveys & Tutorials, vol. 21, no. 2, pp. 1243–1274, 2019.

[88] S. Arslan and M. Saritas, “The effects of OFDM design pa-
rameters on the V2X communication performance: A survey,”
Vehicular Communications, vol. 7, pp. 1–6, 2017.

[89] K. Z. Ghafoor, L. Kong, S. Zeadally, A. S. Sadiq, G. Epiphan-
iou, M. Hammoudeh, A. K. Bashir, and S. Mumtaz,
“Millimeter-wave communication for internet of vehicles: Sta-
tus, challenges, and perspectives,” IEEE Internet of Things
Journal, vol. 7, no. 9, pp. 8525–8546, 2020.

[90] A. Memedi and F. Dressler, “Vehicular visible light com-
munications: A survey,” IEEE Communications Surveys &
Tutorials, vol. 23, no. 1, pp. 161–181, 2021.

[91] A. Paranjothi, M. S. Khan, and S. Zeadally, “A survey on
congestion detection and control in connected vehicles,” Ad
Hoc Networks, vol. 108, no. 102277, pp. 1–17, 2020.

[92] K. Rashmi and R. Patil, “Survey on cross layer approach for
robust communication in VANET,” Wireless Personal Commu-
nications, vol. 119, no. 4, pp. 3413–3434, 2021.

[93] M. Noor-A-Rahim, Z. Liu, H. Lee, G. M. N. Ali, D. Pesch,
and P. Xiao, “A survey on resource allocation in vehicular
networks,” IEEE Transactions on Intelligent Transportation
Systems, vol. 23, no. 2, pp. 701–721, 2022.

[94] T. T. T. Le and S. Moh, “Comprehensive survey of radio
resource allocation schemes for 5G V2X communications,”
IEEE Access, vol. 9, pp. 123 117–123 133, 2021.

[95] H. T. Nguyen, M. T. Nguyen, H. T. Do, H. T. Hua, and
C. V. Nguyen, “Drl-based intelligent resource allocation for
diverse QoS in 5G and toward 6G vehicular networks: a
comprehensive survey,” Wireless Communications and Mobile
Computing, vol. 2021, no. 5051328, pp. 1–21, 2021.

[96] J. Jeong, Y. Shen, T. Oh, S. Céspedes, N. Benamar, M. Wet-
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[127] M. Hasenjäger, M. Heckmann, and H. Wersing, “A survey of
personalization for advanced driver assistance systems,” IEEE
Transactions on Intelligent Vehicles, vol. 5, no. 2, pp. 335–344,
2019.

[128] Y. Xing, C. Lv, D. Cao, and P. Hang, “Toward human-
vehicle collaboration: Review and perspectives on human-
centered collaborative automated driving,” Transportation Re-
search Part C: Emerging Technologies, vol. 128, p. 103199,
2021.

[129] W. Wang and D. Zhao, “Evaluation of lane departure cor-
rection systems using a regenerative stochastic driver model,”
IEEE Transactions on Intelligent Vehicles, vol. 2, no. 3, pp.
221–232, 2017.

[130] W. Chen, L. Zhao, D. Tan, Z. Wei, K. Xu, and Y. Jiang,
“Human–machine shared control for lane departure assistance
based on hybrid system theory,” Control Engineering Practice,
vol. 84, pp. 399–407, 2019.

[131] M. Althoff, S. Maierhofer, and C. Pek, “Provably-correct and
comfortable adaptive cruise control,” IEEE Transactions on
Intelligent Vehicles, vol. 6, no. 1, pp. 159–174, 2020.
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