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A B S T R A C T   

The rapid development of machine learning algorithms provides new solutions for predicting the quantity of 
recycled end-of-life products. However, the Stacking ensemble model is less widely used in the field of predicting 
the quantity of recycled end-of-life products. To fill this gap, we propose a Stacking ensemble model that utilizes 
support vector regression, multi-layer perceptrons, and extreme gradient boosting algorithms as base models, 
and linear regression as the meta model. The k-nearest neighbor mega-trend diffusion method is applied to avoid 
overfitting problems caused by a small sample data set. The grid search and time series cross validation methods 
are utilized to optimize the proposed model. To verify and validate the proposed model, data related to China’s 
end-of-life vehicles industry from 2006 to 2020 is used. The experimental results demonstrate that the proposed 
model achieves higher prediction accuracy and generalization ability in predicting the quantity of recycled end- 
of-life products.   

1. Introduction 

In recent years, traditional supply chain management has trans-
formed into sustainable supply chain management due to growing 
ecological awareness and legal regulations (Masoumi et al., 2019). 
Efficient management of the reverse supply chain plays a significant role 
in sustainable management (Lenort et al., 2021). To design an effective 
system for reverse supply chain management, it is important to manage 
end-of-life (EOL) products (Rashid et al., 2021). EOL products can be 
considered a vital source of secondary raw materials through recycling, 
reusing, and remanufacturing (Numfor et al., 2021). In fact, the amount 
of EOL products generated each year is increasing at an alarming rate. 
For example, the world currently generates around 50 million tons of 
waste electrical and electronic equipment (WEEE) (Andeobu et al., 
2021) and 2.01 billion tons of municipal solid waste (MSW) (Namoun 
et al., 2022) yearly. It is challenging to manage EOL products due to 
their uncertainty in quality, quantity, and return time (Hao et al., 2018). 
If the quantity of EOL products can be predicted in advance, accurate 
information will help decision-makers and practitioners effectively 
regulate the resources necessary for designing the reverse supply chain. 

There have been considerable conventional methods designed for 
predicting the quantity of EOL products, including the population 

balance model (Lin et al., 2018), the market supply method (Jain and 
Sareen, 2006), the distribution delay method (Polák and Drápalová, 
2012), the structural equation model (Agrawal and Singh, 2019), the 
time series model (Ochotnicky et al., 2017), the gray model (Ene and 
Öztürk, 2017), the graphical evaluation and review technique (Zhou 
et al., 2016), etc. Machine learning (ML) methods currently stand out for 
their superior accuracy in predicting EOL products due to their superior 
performance with unstable nonlinear data samples and large feature 
sizes (Ni et al., 2021). In the field of ML, ensemble models have attracted 
much interest and have proven to be highly predictive in a variety of 
applications (Cui et al., 2021). However, the Stacking ensemble model is 
relatively underutilized in predicting the quantity of recycled EOL 
products. 

To address the gap, we propose a novel Stacking-based ensemble 
model to predict the quantity of EOL products. Our approach combines 
multiple machine learning algorithms to improve prediction accuracy 
and generalization ability, leading to better management of sustainable 
reverse supply chains and increased sustainability of recycling industry. 

The paper is organized in the following way. Section 2 includes a 
detailed literature review of related research. Section 3 proposes a 
Stacking-based prediction model. Section 4 details the empirical study of 
the proposed model and the experimental results. Finally, the conclusion 
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and future research directions are shown in Section 5. 

2. Literature review 

In this section, the ML-based predictive methods for the quantity of 
EOL products are reviewed. The EOL products in this research refer to 
end-of-life vehicles (ELVs), medical waste (MW), MSW, and WEEE. Be-
sides, the ML methods applied to predict EOL product recycling mainly 
include artificial neural network (ANN), support vector regression 
(SVR), k-nearest neighbor (KNN), decision tree (DT), gradient boosting 
regression tree (GBRT), extreme gradient boosting (XGBoost), and 
random forest (RF). 

Artificial Neural Network (ANN) The NN algorithm consists of input 
neurons, middle neurons, and output neurons. The relationships be-
tween various input data can be built by the NN algorithm by simulating 
the human brain. This algorithm has a simple structure with a fast- 
training speed, but it is easy to fall into local optimality. ANN 
(Puntarić et al., 2022) is commonly employed in EOL product quantity 
prediction, which includes several algorithms such as feed forward 
neural network (FFNN) (Abbasi and El Hanandeh, 2016), back propa-
gation neural network (BPNN) (Oguz-Ekim, 2021), deep neural network 
(DNN) (Nguyen et al., 2021), general regression neural network (GRNN) 
(Sodanil and Chatthong, 2014), adaptive network-based fuzzy inference 
system (ANFIS) (Golbaz et al., 2019), Elman neural network (ENN) 
(Meza et al., 2019), recurrent neural network (RNN) (Li and Ma, 2019), 
long short-term memory (LSTM) (Wang et al., 2022), and nonlinear 
autoregressive (NAR) (Kumar and Kumar, 2021). Multi-layer percep-
trons (MLP) (Coskuner et al., 2021), which is a special type of FFNN with 
a more complex structure and stronger expressive power, have been put 
forward to predict EOL products. Additionally, a hybrid forecasting 
model based on autoregressive integrated moving average (ARIMA) 
methodology and ANN was proposed to predict ELVs in Brazil (de Souza 
et al., 2022). Further, several artificial intelligent algorithms were used 
to improve the performance of ANN models, including Bayesian opti-
mization (BO), particle swarm optimization (PSO) (Elshaboury et al., 
2021), artificial bee colony (ABC) (Xin et al., 2018), structural break 
(SB) analysis (Adamović et al., 2017), and genetic algorithm (GA) (Tian 
et al., 2013). Moreover, other methods such as principal component 
analysis (PCA) (Liu et al., 2022), gray model (GM) (Hao et al., 2018), 
triple exponential smoothing (TES) (Hao et al., 2021), and discrete 
wavelet theory (DWT) (Soni et al., 2019) were employed to assist the 
ANN models. 

Support Vector Regression (SVR) The sample is mapped to high- 
dimensional space by the kernel function, and the hyperplane is used 
for regression. This algorithm has a high learning capacity for high- 
dimensional small sample data, but it is overly reliant on the kernel 
function (Zhang et al., 2022). A hybrid model of fuzzy information 
granulation (FIG), GA, and SVR was proposed to predict the MSW 
generation per capita for Hubei province in China (Dai et al., 2020). 
Further, the SVR optimized by the wavelet transform (WT) was used to 
forecast weekly MSW in Tehran and Mashhad (Abbasi et al., 2014). 

K-Nearest Neighbor (KNN) As a nonparametric and instance-based 
lazy learning algorithm, KNN is known for its stability in the presence 
of noise. The weighted KNN algorithm has been developed and suc-
cessfully applied to forecast MSW generation in Australia (Abbasi and El 
Hanandeh, 2016). 

Decision Tree (DT) As a supervised ML algorithm, DT consists of root 
nodes, internal nodes, and leaf nodes. This algorithm shows great 
interpretability. DT has been employed to evaluate MSW generation in 
the city of Bogota, providing a possible decision-making strategy for 
waste disposal (Kannangara et al., 2018). 

Gradient Boosting Regression Tree (GBRT) Based on the boosting 
strategy, the GBRT algorithm makes a joint decision by iterating mul-
tiple trees; that is, each tree gets its predicted value by learning the 
conclusions and residuals of all previous trees. This algorithm has strong 
robustness to outliers but is unsuitable for high-dimensional sparse data 

(Lu et al., 2022). The combination of GBRT and ANN was applied to 
predict building-level MSW generation in New York (Kontokosta et al., 
2018). 

Extreme Gradient Boosting (XGBoost) The XGBoost algorithm gener-
ates a tree according to feature splitting and continuously adds trees to 
fit the residual of the last prediction, so as to obtain new functions and 
improve model performance through gradual iteration. This algorithm 
can prevent overfitting effectively but is unsuitable for processing high- 
dimensional feature data and unstructured data (Zhang et al., 2022). 

Random Forest (RF) RF is one of the classification and regression tree 
(CART) models based on Bagging integration. This algorithm has high 
accuracy in training results and good parallelism, but it performs poorly 
on small data sets (Nguyen et al., 2021). 

Ensemble Model Ensemble learning is a type of hybrid ML model in 
which different or the same type of algorithm can be added multiple 
times to form a more powerful prediction model (Dasarathy and Sheela, 
1979; Tan et al., 2019). Ensemble learning has three main ensemble 
models, namely Boosting, Bagging, and Stacking. Boosting has a strong 
dependence between individual learners and a serialization method that 
must be generated sequentially; that is, the next learner needs to delete a 
learner to learn, which cannot be parallelized (Freund and Schapire, 
1997). Bagging is a parallelization method that can be generated 
simultaneously without strong dependence between individual learners 
(Breiman, 1996). Stacking is a parallel, phased ensemble method that 
adds a meta model layer to multiple heterogeneous base models and 
then outputs the prediction results. A decomposition-ensemble-based 
model integrating variational model decomposition (VMD), an expo-
nential smoothing model (ESM), and GM was proposed for e-waste 
quantity prediction (Wang et al., 2021). Moreover, an ensemble voting 
regression algorithm based on RF, gradient boosting machine (GBM), 
and adaptive boosting (AdaBoost) was developed to predict the medical 
waste for Istanbul in Turkey (Erdebilli and Devrim-İçtenbaş, 2022). 

Bagging and Boosting often choose the same model as the base 
models. The correlation between the models is greater, and the over-
fitting problem is easy to occur. In contrast, Stacking selects different 
models as base models to capture the correlation between the predicted 
results and the actual data more effectively. However, Stacking is less 
widely used in the field of sustainable reverse supply chains. Thus, to 
solve the disadvantage of a single model with weak generalization 
ability in the recycling field, this research proposes a novel Stacking 
ensemble model to predict the quantity of EOL products. 

3. Method 

The proposed method is described in this section. First, socioeco-
nomic influence factors for EOL products are summarized from previous 
studies. The historical data for these variables is processed by z-score 
standardization and data augmentation (Section 3.1). Second, the pro-
posed optimized Stacking ensemble model is developed (Section 3.2). 
Finally, three evaluation metrics, namely mean absolute error (MAE), 
mean square error (MSE), and R-squared (R2), are used to evaluate the 
prediction performance of the proposed model (Section 3.3). Anaconda- 
based Python programming (version 3.8) is used to analyze data and 
build ML-based predictive models. 

3.1. Data preprocessing 

To eliminate the influence of the data’s various attributes, the orig-
inal values x and y will be standardized based on the mean (μ) and 
standard deviation (σ), as shown in Eqs. (1) and (2). 

x
′

=
xi − μx

σx
=

xi − 1
n

∑n
i=1xi

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n−1

∑n
i=1(xi − μx)

2
√ (1)  
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y
′

=
yi − μy

σy
=

yi − 1
n

∑n
i=1yi

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n−1

∑n
i=1

(
yi − μy

)2
√ (2) 

To avoid overfitting of a small sample data set, data is augmented 
using the K-nearest neighbor mega-trend diffusion (KNNMTD) method 
(Sivakumar et al., 2022). By increasing the number of samples and 
expanding the data set, the limited data can be effectively utilized to the 
maximum extent, and the generalization of the ML model can be 
improved. 

Consider the data point X(i,j), which means the instance i has j at-
tributes. First, the KNN algorithm iteratively finds the nearest neighbors 
of X(i,j), which serves as the input for mega-trend diffusion (MTD). Then, 
to obtain the subsample domain ranges, the diffusion coefficient is 
calculated as Eq. (3). 

h(i,j)
set =

ŝ2
x

k
=

∑k
i=1(xi − xk)

2
/

(k − 1)

k
(3)  

Where the superscript (i,j) represents the MTD parameter values that 
correspond to the jth attribute of the ith instance, ŝ2

x represents the 
sample variance, and k represents the sample size. 

The estimated range of the diffused sample set is shown as Eqs. (4)– 
(8). 

a(i,j) = u(i,j)
set − Skew(i,j)

L ×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−2 × ŝ2
x

/
N(i,j)

L × ln
(
10−20

)
√

(4)  

b(i,j) = u(i,j)
set + Skew(i,j)

U ×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−2 × ŝ2
x

/
N(i,j)

U × ln
(
10−20

)
√

(5)  

u(i,j)
set =

(
min(i,j) + max(i,j)

)/
2 (6)  

Skew(i,j)
L = N(i,j)

L

/(
N(i,j)

L + N(i,j)
U

)
(7)  

Skew(i,j)
U = N(i,j)

U

/(
N(i,j)

L + N(i,j)
U

)
(8)  

Where N(i,j)
L is the number of data points that are smaller than u(i,j)

set , N(i,j)
U 

is the number of data points that are larger than u(i,j)
set , and the minimum 

and maximum value of the neighboring subsamples of (i,j)th instance 
are represented by min(i,j) and max(i,j), respectively. 

When ŝ2
x = 0, the range are estimated as Eqs. (9) and (10). 

a(i,j) = min(i,j)
/

5 (9)  

b(i,j) = max(i,j) × 5 (10)  

When a and b exclude the minimum and maximum values, the lower 
bound (LB) and upper bound (UB) are calculated as Eqs. (11) and (12). 

LB(i,j) =

{
a(i,j) if a(i,j) ≤ min(i,j)

min(i,j) if a(i,j) > min(i,j)
(11)  

UB(i,j) =

{
b(i,j) if b(i,j) ≥ max(i,j)

max(i,j) if b(i,j) < max(i,j)
(12) 

The membership function (MF) is calculated as Eq. (13). 

MF
(

x′

(i,j)

)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x′

(i,j) − LB(i,j)

u(i,j)
set − LB(i,j)

if x′

(i,j) ≤ u(i,j)
set

UB(i,j) − x′

(i,j)

UB(i,j) − u(i,j)
set

if x′

(i,j) > u(i,j)
set

(13) 

To measure the performance between actual data and artificial vir-
tual data, the pairwise correlation difference (PCD) is calculated using 
the Frobenius norm as Eq. (14). 

PCD = ‖ corr(Xr) − corr(Xs) ‖F (14)  

Where Xr is the actual data matrices, Xs is the artificial virtual data 
matrices, and corr is the Pearson correlation matrices of Xr and Xs. 

3.2. Model building 

As a parallel ensemble learning strategy, Stacking contains multi- 
layer learning structures. It is essentially about training different ML 
algorithms on data from various data spaces and data structure per-
spectives. The Stacking ensemble model structure consists of two 
learning layers: the first one is the base model, comprising multiple 
heterogeneous ML models, while the second one is the meta model. The 
first layer employs the entire training set to train various base models 
and obtain the predicted values. On the other hand, the second layer 
trains the true values and predicted values obtained by the base models. 
Stacking can resolve the insufficient upper limits of a single model’s 
learning ability, avoid the redundancy of the prediction model, and 
ensure prediction accuracy. 

The goal of parameter optimization is to find a set of parameters that 
brings the model’s generalization error as close to zero as possible. The 
generalization of a model can be negatively affected if it is too complex, 
resulting in overfitting and a high generalization error, and vice versa. In 
this research, a combination of time series cross validation and the grid 
search method is used to find the optimal parameter group of the 
Stacking model. Firstly, the grid search method enumerates all the 
model parameter combinations through the set of parameter values. 
Then, the model parameter combination with the highest average 
generalization ability score value is output by using time series cross 
validation.  

(1) Grid search 

The commonly ML-based method usually adjusts parameters use 
random search, Bayesian optimization, and grid search. Random search 
allows for manual control over the number of searches, but each search 
may yield different results. Bayesian optimization can record the pre-
vious search results for the next search, but it is easy to fall into the trap 
of local optimization instead of global optimization. In comparison, grid 
search, although the most time-consuming, can be exhaustive of all 
possible results, and the results are the same every time. 

To improve the prediction accuracy, grid search method is selected 
to adjust parameter for Stacking model in this research since the 
experimental data are not very large. The steps of the grid search method 
are as follows: 

Step 1: Initialize the mesh size, set the step distance, and define the 
parameter initial values; 
Step 2: Loop through each set of parameter combinations; 
Step 3: The parameter values of each parameter combination are 
used to train the Stacking model in combination with the time series 
cross validation, respectively. The R-squared value of the model is 
obtained, and the parameter value of the parameter combination is 
defined as the best; 
Step 4: If a better combination of hyperparameters is found, replace 
the previous best; 
Step 5: Combine the best hyperparameters to obtain the optimal 
parameter set, train the final model, and output the optimal Stacking 
model.  

(2) Time series cross validation (TSCV) 

To prevent overfitting and improve generalization ability, while also 
considering the temporal sequence of the dataset, the base model of the 
Stacking model should be trained by combining time series cross 
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validation (see Fig. 1), and then the output results will be used to train 
the meta model. The steps are as follows: 

Step 1: Assume that the original data set is (X, Y), the training set is F 
= (X_train, Y_train), and the test set is T = (X_test, Y_test). Firstly, the 
original training data set F was split into five consecutive and non- 
overlapping subsets: Fi (i = 1,2,… 5) based on time order; 
Step 2: One of Fi is the test set, and the remaining four subsets are the 
training set for training the base model Mi. The trained model Mi is 
obtained, and the model Mi is used to predict the test set Fi to get the 
result Pii (i = 1,2… 5), and the prediction result of the base model Mi 
to the original test set T is denoted as Ri (i = 1,2… 5); 
Step 3: The obtained prediction results Pii are then concatenated in 
chronological order to obtain the training data set P of the second 
layer meta model, which has the same number of samples as the 
original training data set F; 
Step 4: To predict the result Ri and calculate the mean value to get the 
test set R of the meta model. 

3.3. Statistical measures for model evaluation 

This research uses the following three metrics to evaluate the effect 
and prediction error of the proposed model, which is mean absolute 
error (MAE), mean square error (MSE), and R-squared (R2), as shown in 
Eqs. (15)–(17). 

MAE =
1
n

∑n

i=1
|ŷi − yi| (15)  

MSE =
1
n

∑n

i=1
(ŷi − yi)

2 (16)  

R2(yi, ŷi ) = 1 −

∑n
i=1(yi − ŷi )

2

∑n
i=1(yi − yi)

2 (17)  

yi and yi are the original value and average value of variable Y, 
respectively, and ŷi represents the predicted value of variable Y. 

4. Empirical study 

To verify and validate the effectiveness of the proposed model, we 
use the data related to China’s ELVs industry from 2006 to 2020. This 
research involves simulating recycled ELVs generation using seven 
different ML models, namely SVR, XGBoost, light gradient boosting 
machine (LGBM), RF, MLP, GBRT, and DT, in order to find the best 
predictive base models with less correlation. Before commencing the 
modeling process, we use grid search and time series cross validation to 
determine the best structure for each base model by obtaining model 
parameters. These parameters vary according to each model theory as 
discussed above. We develope Stacking ensemble models by combining 
the optimal base models with the meta model. Our main objective is to 
validate the prediction performance of our proposed Stacking model 
through empirical analysis, and compare it to other proposed models. 
The overall framework of this empirical study comprises five steps, as 
shown in Fig. 1. 

4.1. Data collection 

In general, to build a prediction model or make decisions for a 
problem, ML algorithms develop the relationships between input vari-
ables and output variables based on empirical data (Erkinay Ozdemir 
et al., 2021). Based on previous studies (Hao et al., 2018; Hu and Kur-
asaka, 2013; Ochotnicky et al., 2017; Xin et al., 2018; Yano et al., 2015), 
eight socioeconomic factors that influence the quantity of recycled ELVs 
are selected, including the number of auto production, passenger 

turnover, population, vehicle drivers, recycled material price, income of 
per urban resident, highway mileage, and the number of ELVs enter-
prise. These historical data on a monthly basis were extracted from the 
China Association of Automobile Manufacturers, the China National 
Resources Recycling Association, and the China National Bureau of 
Statistics. 

4.2. Data augmentation 

Augmented data are generated by integrating the original data set 
with artificial virtual samples in order to improve the generalization 
ability of ML models and prediction performance for small sample data 
sets. The artificial virtual samples are generated using the KNNMTD 
method. The artificial virtual sample size is set at 100 (Li et al., 2013). 
This is because an unreasonable increase in the artificial virtual sample 
size may lead to irrational virtual samples. The PCD with varying values 
of k = [3, 10] is calculated, and the appropriate k value is 4. The eval-
uation results of MAE, MSE, and R2 predicted by ML models with and 
without the use of KNNMTD method are presented in Table 1. 

4.3. Stacking ensemble model 

Based on the literature review analysis, the selected base models of 
Stacking mainly include SVR, XGBoost, LGBM, RF, MLP, GBRT, and DT. 
The optimal combination of parameters for these single ML algorithms 
with the use of the KNNMTD method is found by using grid search and 
time series cross validation, as shown in Table 2. 

The Stacking ensemble model requires that the base model select 
heterogeneous single ML algorithms with excellent learning perfor-
mance. This is because the smaller the correlation between the base 
models, the lower the variance of the Stacking model. The meta model of 
Stacking model requires strong robustness and generalization ability. To 
prevent model overfitting and improve prediction accuracy, the linear 
regression (LR) algorithm is selected as the meta model. 

Besides, Table 1 shows that these single ML algorithms have a strong 
learning ability to predict the quantity of ELVs. Even though XGBoost, 
LGBM, GBRT, DT, and RF have different algorithm principles, they are 
all tree-based models with a similar data processing method. Thus, these 
tree-based models have a high correlation with each other. SVR and MLP 
are fundamentally different from these tree-based models, so the cor-
relation between SVR, MLP, and other models is low. Therefore, the base 
model of the Stacking ensemble model is developed by SVR, MLP, and 
five other tree-based models, respectively. The final prediction perfor-
mance of each Stacking model is shown in Table 3 and Fig. 2. 

Considering the accuracy and difference in ML models, this research 
selects the Stacking 1 model, namely SVR, MLP, and XGBoost, as the 
base models and LR as the meta model to construct the Stacking 
ensemble model. 

To further evaluate the performance of the proposed model, we 
utilize the learning curve to identify potential overfitting. In general, the 
learning curve plots the model’s performance on both training data and 
testing data at different training set sizes. The learning curve usually 
consists of two lines representing loss of training data and loss of testing 
data, which is measured by the value of the MSE in our research. When 
drawing the learning curve, the training examples are set as the hori-
zontal coordinate, and the MSE of the training set and verification are set 
as the vertical coordinate, as illustrated in Fig. 3. After data pre-
processing, the generalization ability of our proposed Stacking model 
without using KNNMTD method is shown in Fig. 3(a), while the 
generalization ability of the proposed Stacking model after data 
augmentation is demonstrated in Fig. 3(b). 

5. Discussion 

The aim of this research is to develop a Stacking-based ensemble 
model to predict the quantity of recycled EOL products for a sustainable 
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Fig. 1. The overall framework of the empirical study.  
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reverse supply chain. The data related to China’s ELVs industry from 
2006 to 2020 is used to validate the proposed optimized Stacking model. 
Thus, the main research results are analyzed as follows. 

First, the performance evaluation of seven ML models, namely SVR, 
XGBoost, LGBM, RF, MLP, GBRT, and DT, shows that they achieved good 
results in predicting the quantity of EOL products after using the 

KNNMTD method and optimizing parameters through grid search and 
time series cross validation (see Table 1). Note that GBRT and MLP 
perform better, which indicates that the relationship between the 
quantity of EOL products and its socioeconomic variables tends to be 
complex and nonlinear. 

Second, the Stacking 1 ensemble model, which uses SVR, MLP, and 
XGBoost as the base models and LR as the meta model, performs best in 
predicting the quantity of EOL products. Table 3 shows the predictive 
performance of the Stacking model under different base learner com-
binations. The MAE and MSE of the Stacking 1 model are 0.0305 and 
0.0016, respectively, which are lower than the other Stacking models. 
Besides, the values predicted by the Stacking ensemble model overall are 
moving in the same direction as the real values, as demonstrated in 
Fig. 2. The predictions of some points with large fluctuations can also be 
accurately predicted. 

Third, reduced error and R-squared, as seen in Tables 1 and 3, clearly 
advocate for the superiority of the proposed Stacking 1 model over a 
single base model. Compared with the worst single model SVR, the 
Stacking 1 model decreased MAE and MSE by about 0.0471 and 0.0050, 
respectively, and increased R2 by 0.0864. This indicates that the pro-
posed Stacking model integrates the strengths of single ML models to 
capture information, reducing the influence of a variable environment 
and multiple operating conditions and improving the overall prediction 
accuracy and generalization ability. Note that even with the introduc-
tion of SVR with slightly lower precision, the performance of the 
Stacking 1 model remains superior to other base models. There are three 
main reasons for this. Firstly, SVR has unique advantages in handling the 
regression problems with high dimensions and small samples. Secondly, 
XGBoost, as a single model, exhibits strong prediction performance, 
ensuring the prediction accuracy of the Stacking model. Finally, using 
algorithms with low correlation as the base models allows the Stacking 1 
model to fully utilized the strengths of each algorithm, reducing the risk 
of falling into the local optimal, and providing robust prediction 
performance. 

Fourth, for a small sample data set, data augmentation can help make 
more robust and accurate predictions. The learning curves in Fig. 3 
demonstrate that the error value of the testing data set is higher than 
that of the training data set. However, the learning curve of the testing 
data set is far from that of the training data set, suggesting that the 
Stacking 1 model is slightly overfitting based on the original data set (see 
Fig. 3(a)). To address the issue, we use the KNNMTD method to generate 
artificial virtual data and integrate it with the original dataset to create a 
new expanded dataset for model training. After training on the 
expanded new data set, the training error and the testing error tend to 
converge and approach each other, indicating that the generalization 
ability of the ensemble learning prediction model is improved by the 
KNNMTD method, as shown in Fig. 3(b). This means data augmentation 
can effectively reduce the overfitting risk caused by small sample 
datasets. 

In theory, this study contributes to prediction techniques for small 
sample data sets. This research proposes a novel Stacking ensemble 
model for predicting the quantity of EOL products, which uses SVR, 
MLP, and XGBoost as base models and LR as a meta model. This research 
conducts data augmentation using the KNNMTD method to avoid the 
overfitting caused by the small sample data set and improve the 
generalization ability of the proposed model. 

Table 1 
Prediction results of single ML algorithms.  

Model MAE MSE R2 

N = 180 N = 280 N = 180 N = 280 N = 180 N = 280 

SVR 0.1215 0.0776 0.0181 0.0066 0.4518 0.8651 
XGBoost 0.0748 0.0620 0.0092 0.0054 0.7194 0.8901 
LGBM 0.0782 0.0513 0.0101 0.0051 0.6931 0.8950 
RF 0.0773 0.0556 0.0110 0.0054 0.6652 0.8896 
MLP 0.1137 0.0528 0.0195 0.0042 0.4103 0.9138 
GBRT 0.0962 0.0446 0.0129 0.0034 0.6086 0.9294 
DT 0.0520 0.0371 0.0045 0.0051 0.8631 0.8952  

Table 2 
Hyperparameter description and optimization.  

Model Parameter Description Optimization 

SVR Kernel kernel function ’RBF’ 
gamma coefficients of the kernel function 0.1 
C regularization parameter 1.5 
epsilon error tolerance of insensitive loss 

function 
0.1 

XGBoost max_depth maximum depth of each tree 5 
learning_rate learning rate 0.03 
min_child_weight minimum weight sum of child 

nodes 
10 

gamma threshold of controller node 
splitting 

0 

colsample_bytree subsample ratio of columns per 
tree 

1 

subsample subsample ratio of each tree 1 
LGBM n_estimators number of boosting iterations 120 

learning_rate learning rate 0.04 
max_depth maximum depth of each tree 5 
colsample_bytree subsample ratio of columns per 

tree 
1 

min_split_gain minimum gain required to split a 
node 

0.01 

subsample subsample ratio of each tree 0.5 
num_leaves maximum number of leaf nodes 

on a tree 
10 

RF n_estimators the number of trees in the forest 20 
max_depth maximum depth of each tree 5 
max_features the number of features when 

fitting 
3 

min_samples_leaf minimum sample number of leaf 
node 

1 

min_samples_split minimum sample number to split 
a node 

3 

MLP hidden_layer_sizes number of neurons in the hidden 
layer 

40 

alpha L2 penalty parameter 0.001 
learning_rate_init initial learning rate used 0.01 

GBRT n_estimators number of boosting iterations 40 
max_depth maximum depth of each 

estimator 
5 

learning_rate learning rate 0.09 
min_samples_leaf minimum sample number of leaf 

node 
5 

max_features the number of features when 
fitting 

0.5 

subsample subsample ratio of each base 
learner 

0.5 

DT max_depth maximum depth of each tree 5 
min_samples_leaf minimum sample number of leaf 

node 
1 

min_samples_split minimum sample number of leaf 
node 

3  

Table 3 
Prediction results of stacking models.  

Stacking Model MAE MSE R2 

Stacking 1 (SVR+ MLP+ XGBoost) 0.0305 0.0016 0.9515 
Stacking 2 (SVR+ MLP+ LGBM) 0.0411 0.0027 0.9238 
Stacking 3 (SVR+ MLP+ RF) 0.0441 0.0030 0.9024 
Stacking 4 (SVR+ MLP+ DT) 0.0428 0.0028 0.8783 
Stacking 5 (SVR+ MLP+ GBRT) 0.0332 0.0019 0.9300  

H. Xia et al.                                                                                                                                                                                                                                      



Resources, Conservation & Recycling 197 (2023) 107073

7

Likewise, this research makes contributions to prediction applica-
tions for industry. Accurate predictions of recycling quantity can help 
decision-makers and practitioners design sustainable reverse supply 
chain and production plans, which can reduce environmental pollution 
and improve the competitiveness of enterprises. More specifically, the 
proposed Stacking ensemble model can achieve greater prediction ac-
curacy and generalization ability than single ML models, making it a 
valuable tool for decision-makers in the recycling industry. When 
dealing with small sample data sets, the application of the KNNMTD 
method is particularly significant. Overall, the research findings have 

substantial practical implications for the recycling industry’s manage-
ment and sustainability. 

In addition, the limitation of this research is that it is not efficient to 
try different base model combinations manually. In the future research 
direction, we will focus on the following aspects. Firstly, we plan to 
conduct more feature engineering on the input variables to generate 
problem-specific features. Secondly, we aim to establish a base model 
learning library and integrate it with the intelligent optimization algo-
rithm to build a more intelligent prediction system. Thirdly, we will 
compare the performance of the proposed Stacking ensemble model 

Fig. 2. The predicted values of stacking ensemble models.  
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with other ensemble models. Fourthly, we intend to incorporate factors 
such as policy and consumer preferences into the prediction model as 
they influence the quantity of EOL products. Lastly, if the data set be-
comes larger in the future, we may adopt distributed computing 
methods to improve calculation speed. 

6. Conclusions 

The accurate prediction of the quantity of recycled EOL products is 
an important prerequisite for making effective short-term and long-term 
decisions and monitoring the overspill of hazardous waste. To improve 
the prediction accuracy and generalization ability, we propose a 
Stacking-based ensemble prediction model for the quantity of recycled 
EOL products. In the process of data preprocessing, data augmentation is 
used to avoid the overfitting problem caused by small sample data sets. 
In the process of model training, based on the correlation and prediction 
abilities of the base models, a combination strategy of base models is 
proposed. In addition, the proposed model is validated with relevant 
data from China’s ELVs industry. The results indicate that, compared 
with other Stacking ensemble models and single ML models, the 
Stacking 1 model proposed in this research has better performance in 
prediction accuracy and stability. 

The application of the proposed Stacking-based model can be 
expanded to a global scope to examine the EOL product generation 
trends in different countries and regions. From a sustainability point of 
view, this research can be used by practitioners and decision-makers as 
the basis for the development of recycling programs, the construction of 
processing facilities, the optimization of resource allocation, as well as 
the establishment of waste management systems and sustainable reverse 
supply chains. Consequently, this research not only provides a new di-
rection for predicting EOL product recycling but also adds economic, 
technical, and social benefits to sustainable environmental conservation 
and the circular economy. 
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