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Abstract: Fibre-reinforced cementitious composites are highly effective for construction due to their
enhanced mechanical properties. The selection of fibre material for this reinforcement is always
challenging as it is mainly dominated by the properties required at the construction site. Materials
like steel and plastic fibres have been rigorously used for their good mechanical properties. Academic
researchers have comprehensively discussed the impact and challenges of fibre reinforcement to
obtain optimal properties of resultant concrete. However, most of this research concludes its analysis
without considering the collective influence of key fibre parameters such as its shape, type, length,
and percentage. There is still a need for a model that can consider these key parameters as input,
provide the properties of reinforced concrete as output, and facilitate the user to analyse the optimal
fibre addition per the construction requirement. Thus, the current work proposes a Khan Khalel
model that can predict the desirable compressive and flexural strengths for any given values of key
fibre parameters. The accuracy of the numerical model in this study, the flexural strength of SFRC,
had the lowest and most significant errors, and the MSE was between 0.121% and 0.926%. Statistical
tools are used to develop and validate the model with numerical results. The proposed model is easy
to use but predicts compressive and flexural strengths with errors under 6% and 15%, respectively.
This error primarily represents the assumption made for the input of fibre material during model
development. It is based on the material’s elastic modulus and hence neglects the plastic behaviour
of the fibre. A possible modification in the model for considering the plastic behaviour of the fibre
will be considered as future work.

Keywords: steel fibre; plastic fibre; reinforced concrete; mechanical properties

1. Introduction

The construction industry uses a wide range of composite materials, the most common
of which is concrete. Concrete offers good strength and durability in constructing structures,
but is brittle in nature [1,2]. This is better for structures working under compressive loads.
However, in applications where structures are under bending or tension, it is deemed
necessary to reinforce concrete with materials that can provide the required ductility and
not reduce the most needed compressive strength [3–5]. Due to this reason, academic
and industrial domain researchers have used fibres of small sizes with good flexural
and tensile properties as a constituent of concrete [4,6–11]. In the past, steel fibres (SF)
were added to recycled aggregate concrete (RAC) and demonstrated an increase in tensile
strength, elastic modulus, and post-cracking behaviour [12,13]. The researchers found that
SFRC suits the structures that experience loads over the serviceability limit state in shear,
bending, and impact or dynamic forces under seismic or cyclic activity [14,15]. It was found
that the percentage of fibre by volume has little effect on compressive strength [15,16].
Utilizing fly ash and/or PVA fibre refines the pore structure, thereby enhancing frost
resistance. In contrast, MgO and SRA are less effective than PVA fibre and fly ash at
refining the pores, resulting in smaller and relatively weakened frost resistance [17]. There
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is no correlation between the compressive strength and abrasion resistance of hydraulic
concretes containing MgO and/or PVA fibre and the pore structure parameters and pore
surface fractal dimensions [18].

Granulated blast furnace slag was used as a fibre, and the obtained properties were
plotted using multivariable linear regression. It was observed that the percentage of fibre
by weight significantly impacts compressive strength [19–23]. According to a statistical
study, the synergistic effect of the linear term of the R-ratio has a significant impact on
early compressive strength [24]. Hamed et al. employed statistical tools to predict the
thermo-mechanical properties of concrete reinforced with rubber aggregate. They used
the Taylor diagram and meant absolute errors to discuss the obtained properties [25–31].
Other fibres were tested for the tensile strength of reinforced concrete, and multiple linear
regression was used to model the test findings [32–35]. According to the published statistical
analysis, fibre hybridization positively influences flexural strength, depending on the fibre
type and volume fraction [36]. The ANN model and the regression model achieved a
good prediction of the IST strength of SFRC in evaluation [37]. Deng et al. proposed
an empirical constitutive model to describe the stress-strain relationship and damage
accumulation in hybrid fibre-reinforced concrete (HFRC). The concrete was subjected to
uniaxial cyclic tensile load and the model used volume fraction and aspect ratio of fibre as
inputs. They also discussed plastic strain, stiffness deterioration, and damage index of the
reinforced concrete with the help of their model. The model predictions agreed with the test
results [38–40].

The fibre reinforcement was also modelled with numerical methods to determine
its influence on the reinforced concrete. Lee and Fenves proposed a model of concrete
damage plasticity, which is considered the fundamental contribution to analyses of the
concrete properties with and without fibre reinforcement [41,42]. Later, researchers used
this model in Abaqus and evaluated the concrete properties under shear loads in column
construction [43]. Revanna et al. applied a CDP-based FEA model to validate a specific
reinforced concrete beam experiment, concluding that the behaviour of the beam could
be predicted [44]. When using the CDP model (CDPM) in Abaqus, it has been recom-
mended to use two stress-strain curves under compressive and tensile behaviour. The
suggested material model can also explain the propagation of cracks and the post-cracking
behaviour of reinforced concrete structures [45–48]. Other studies have presented empirical
and numerical models for predicting the flexural behaviour and compressive strength of
fibre-reinforced polymer (FRP)-reinforced concrete. However, these models are highly
complex [49–53]. MLR and CDP have recently been utilized to forecast the behaviour of
reinforced concrete (RC) elements, mainly where code requirements are unavailable. MLR
outperforms CDP because it can create accurate prediction models with a limited database.

However, most of the above-mentioned research concludes their analysis without
considering the collective influence of key fibre parameters such as its shape, type, length,
and percentage. There is still a need for a model that can consider these key parameters
as input, provide the properties of reinforced concrete as output, and facilitate the user to
analyze the optimal fibre addition per the construction requirements. Thus, the current
work proposes a Khan Khalel model that can predict the desirable compressive and flexural
strengths for any given values of key fibre parameters. Statistical tools are used to develop
and validate the model with numerical results. The proposed model is easy to use but
predicts compressive and flexural strengths with errors under 6% and 15%, respectively.
This error primarily represents the assumption made for the input of fibre material during
model development. It is based on the material’s elastic modulus and hence neglects the
plastic behaviour of the fibre. A possible modification in the model for considering the
plastic behaviour of the fibre will be considered as future work.
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2. Materials and Methods
2.1. Materials

Portland EMC II composite cement and normal coarse and fine aggregates were used
in this study. Sieve examination of the aggregates utilized demonstrated that the aggregate
is suitable for creating the concrete mixture. Flowed SCC superplasticizer was added to
improve the workability of the concrete so that it would have good usability and flowability.
The concrete was extremely workable, with excellent cohesiveness, no segregation, and low
bleed water [54]. Novocon® FE-1050 steel fibres, Novocon® XR-1050 steel fibres, Enduro®

Fiber high-performance polymer, and Enduro® Mirage (which is 100% virgin copolymer
fibre) were employed. The fibres were added to concrete in a range of percentages (0.5%, 1%,
1.5%, and 2%) and lengths (20 mm, 30 mm, and 40 mm). Table 1 shows the characteristics
of the various fibre types, the reason for choosing these fibres to find the optimal value of
the fibre by using different shapes and percentage. Figure 1 presents images of the different
types of fibres used in this study.

Table 1. Properties of the fibres used in the study.

Type of Fibre Shape Diameter (mm) Length of Fibre
(mm)

Tensile Strength
of Fibre (N/mm2) Supplier

SFRC-1 Indented 1 (20, 30, 40) 1150 Sika
SFRC-2 dumbbell 1.45 (20, 30, 40) 690 Sika
PFRC-1 Macro/Monofilament 0.95 (20, 30, 40) 465 Sika
PFRC-2 Crimped 0.92 (20, 30, 40) 552 Sika
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(c) indented and (d) dumbbell.

2.2. Sample Preparation

A slump target in the range from 3 cm to 6 cm and a specific strength of 30 N/mm2

for 28 days were set (see Appendix A, Figure A1). The prepared concrete blend had a
water-cement (w/c) ratio of 0.52. The amounts for mixing 1 m3 of control concrete are
shown in Table 2. Reinforced concrete mixers were created using a one-axis horizontal
mixer. This study included 49 FRC mixes, together with a control mix. For instance, type-1
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fibre (S1) was used to generate 12 concrete mixtures with varying lengths of fibre (20 mm,
30 mm, and 40 mm), each length accounting for a different percentage (0.5%, 1%, 1.5%,
and 2%) of fibres that replaced the cement in the concrete mix. The test components were
submerged in a water tank for 28 days at ambient temperature (20 ± 5 ◦C). According
to the UK Department of the Environment (DoE1975) method for the “Design of Normal
Concrete Mixes” [55], the technique adhered to the standard 28-day hardening requirement
for concrete. Figure 2 presented the comprehensive schematic for the experimental plan.

Table 2. Mixing percentages of the control concrete.

Quantity Cement (kg) Water (kg) Fine Aggregate (kg) Coarse Aggregate (kg)

Per m3 427 213 679 1061
Trial mix 0.017 m3 7.26 3.62 11.54 18.037

Super-plasticizer (0.5% of cement) 0.0363 kg for trial mix
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Figure 2. Experimental scheme.

2.3. Mechanical Tests

Fresh-state and mechanical property tests to observe the impact of FRC, including its
compressive, and flexural strengths, were carried out in this study.

2.3.1. Compressive Strength Test

The compressive strength test of cube samples is typically performed in the laboratory
by placing concrete cube specimens under a controlled hydraulic pressure machine and
utilizing a Universal Hydraulic Test Machine to test the compressive strength at three-time
intervals, as shown in Figure 3a. A Universal Hydraulic Test Machine was used to perform
the compressive test using load control by a displacement of approximately 5 mm. For
each concrete mixture, the average of three cubes for treatment periods (28 curing days)
was tested by EN 12390-3:2009 specifications, which was confirmed by the Standard (BS
EN 12390-4:2000) [56]. The test for compressive strength is the most critical performance
indicator for measuring concrete’s strength. Essential characteristics of concrete include the
pressure’s strength and the material’s durability.
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2.3.2. Flexural Strength Test

The test for flexural strength is the most critical performance indicator for measuring
concrete strength. Essential characteristics of concrete include the bending strength. The
flexural strength test of beam samples is typically performed in the laboratory by placing
concrete prism specimens under a controlled hydraulic pressure machine and utilizing a
Universal Hydraulic Test Machine to test the flexural strength at three-time intervals, as
shown in Figure 3b. A Universal Hydraulic Test Machine was used to perform the flexural
test using load control by a displacement of approximately 5 mm. The flexural strength test
to performed by BS EN 12390-5:2009 and the flexural strength was determined from the
average of the three specimens [57].

2.4. Pre-Processing the Data for the Empirical Model
Multiple Linear Regression Method

Identifying the relationship between two or more variables is a common task in engi-
neering. Using statistical regression aids in forming mathematical equations for observable
phenomena, and MLR is widely used to express the relationship between several inde-
pendent variables and a dependent variable. The dependent variable, which has multiple
equivalent coefficients, is determined by the number of parameters [58,59]. When there are
more than two independent variables, multiple regression is performed. MLR evaluates
the relationship between two or more input variables by adapting a linear equation to the
observed data [57,60]. Regression analysis can be used to estimate the relationship between
the variables. Modelling and analysing one dependent variable and one or more indepen-
dent variables are the mainstays of this technique [61]. The goal of regression is to minimize
the difference between experimental and predicted results using the principle of least
squares [62]. The procedure entails selecting an appropriate initial form for the equation
that closely resembles the correlation between the independent and dependent variables.
An MLR model was used to explore and compare the effect of the input parameters (i.e.,
the type, shape, length, and percentage).

Ŷ = b0 + b1X1 + b2X2 + b3X3 + b4X4 (1)

where, X1 indicates the type, X2 represents the shape, X3 represents the length, X4 repre-
sents the percentage of fibres, and b0 is the predicted regression coefficient that represents
the association between the dependent variable Ŷ and parameters X. The current work
proposes a Khan Khalel model that can predict the desirable compressive and flexural
strengths for any given values of key fibre parameters. The Khan Khalel model used four
dependent parameters to predict the compressive and flexural strengths of FRC. First,
we considered the effect of fibre type on the elastic modulus because the modulus varies
according to the fibre. The second parameter is shape, as the value of tensile strength
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differs for the different fibre shapes for the same type of fibre. The third parameter is the
percentage of fibres, whereby four different proportions were used in this study: 0.5%,
1%, 1.5%, and 2%. Finally, the fourth parameter, length, was assessed according to three
lengths: 20 mm, 30 mm, and 40 mm as shown in Table 1. To eliminate the influence of
variances in properties, such as dimension and order of importance between variables, the
input parameters for the FRC were transformed from their original values in Table 1 into
standardized dimensionless values. This allowed the effect sizes of different variables to be
compared. Matlab© multi linear regression command is used in our paper to generate the
relevant coefficients for developing the proposed Khan Khalel model discussed in Section 5.

2.5. Methods for Evaluating the Accuracy of the Prediction Model

In general, when evaluating the implementation of a prediction method, it is critical to
employ a variety of assessment criteria to determine the performance of the model. In this
study, four metrics are used to check the predictive accuracy: MAPE, MSE, and R2. The
metrics are as follows:

• Mean absolute percentage error (MAPE): this is one of the most common metrics used
to measure the forecasting accuracy of a model, as shown in Equation (2). The purpose
of the MAPE formula is to gauge how different the measured value is from the exact
value [63].

MAPE = (1/n)× Σ(|actual− forecast|/|actual|)× 100 (2)

where, Σ is sum, n is the sample size, actual is the actual data value, and forecast is the
data value forecast.

• Mean squared error (MSE) is another common metric used to measure the prediction
accuracy of a model [64]. MSE is calculated as shown in Equation (3):

MSE = (1/n)× Σ
(

actual− forecast)2 (3)

where, Σ is sum, n is the sample size, actual is the actual data value, and forecast is the
data value forecast.

3. Identification the Parameters of Numerical Model
3.1. Description of the Numerical Model

The cube and beam geometry design procedures of the experiments given in the pre-
vious part were created in this study using Abaqus software 2019 [65]. The concrete model
consisted of plain concrete (cube, beam), steel and plastic fibres, and loading/support.
Embedding the fibres in the concrete region is assumed to lead to a perfect bond between
the concrete and the fibres. It is worth mentioning that slipping behaviours have the same
bond idea for both beam and cube. Despite this, the perfect bonding assumption has been
widely utilized in the literature for concrete-like structures [66,67].

The concrete damage plasticity model (CDPM) is a constitutive model that can be
used to predict the behaviour of concrete in the numerical approach. It describes the
constitutive behaviour of concrete based on the introduction of scalar damage variables.
The four main components of the CDPM are damage evolution, yield criterion, law of
hardening/softening, and flow rule. CDPM characterizes the compressive and tensile
responses of concrete. The overall strain, ε, can be split into two components according
to the standard elastic-plasticity theory to reflect concrete nonlinearity and irreversible
deformation, as shown in Equation (4). The CDPM includes a scalar damage variable,
d, 0 ≤ d ≤ 1, and uniaxial compressive/tensile damage variables, dc and dt, for simulating
progressive material deterioration, as shown in Equations (5)–(8).

ε = εel + εpl (4)
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σij = (1− d)Del
ijkl

(
εij − ε

pl
ij

)
(5)

σc = (1− dc)E0

(
εc − ε

pl
c

)
(6)

σt = (1− dt)E0

(
εt − ε

pl
t

)
(7)

While it is given for uniaxial cyclic loading conditions as

d = 1− (1− stdc)(1− scdt) (8)

The yield surface specifies the crucial stress level at which plastic deformation is
predicted to begin. Many yield criteria have been proposed to account for strength evolution
under tension and compression. The CDPM finally adopted the classic criterion first
proposed by Lubliner et al. [68] and then refined by Lee and Fenves [42].

F =
1

1− α (q− 3αp + β(εpl)〈σmax〉 − γ〈−σmax〉)− σc(ε
pl
c ) = 0 (9)

α =
(σb0/σc0)− 1

2(σb0/σc0)− 1
; β =

σc0

(
ε

pl
c

)
σt0

(
ε

pl
t

) (1− α)− (1 + α)

γ =
3(1− Kc)

2Kc − 1

(10)

The hardening law describes the pre-peak behaviour when the elastic area ends,
whereas the softening law covers the post-peak behaviour throughout the plastic flow [69].
Anisotropic hardening is considered in Abaqus, as shown in the analogous plastic drives
as well as the strain evolution law, as shown in Equations (9) and (10).

εin
c = εc − σc/E0 (11)

εck
t = εt − σt/E0 (12)

The compressive and tensile inelastic strains are εin
c and εck

t , respectively. Plastic
deformation is determined by the flow rule, which is guided by a potential flow function
as shown in Equations (11) and (12). The CDPM uses a non-associated possible flow rule
due to the variations between metal and non-metal materials, and the possible function, G,
has a hyperbolic Drucker-Prager type form, as shown in Equations (13)–(15):

ε
pl
c = εin

c −
dc

(1− dc)

σc

E0
(13)

ε
pl
t = εck

t −
dt

(1− dt)

σt

E0
(14)

G =

√
(eσt0tan ψ)2 + q2 − ptan ψ = 0 (15)

The CDPM in Abaqus is utilized in this study to describe compressive strength in
normal concrete, assuming that the fibres are randomly distributed in the matrix and the
FRC is thus considered as a homogeneous material. The default settings of the model
parameters defining its operation in a complex stress state (ψ, f, e, Kc) [70] were used for the
numerical analysis of FRC beams and cubes, and are shown in Table 3. According to the
standard [71], the Poisson’s ratio of uncracked concrete is supposed to be 0.2. Tables 4 and 5
present a representative summary of the concrete characteristics of the Abaqus software,
as described by Shin et al. [72]. The effects on FRC were carefully monitored and mini-
mized in this research using concrete damage plasticity DCP models to obtain quasi-static
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behaviours from the Standard-Explicit model simulation. Readers are urged to look up
comprehensive discussions on quasi-static simulations using the Standard-Explicit model
in the literature [73–75]. A fixed boundary condition (BC) was used at the bottom of the
cube surface, with vertical displacement defined at the top. The BCs of the experiment
were simplified by employing a 50 mm diameter supporting and loading cell, as shown in
Figure 4. A fixed BC was used for the beam sample at the bottom of the supporting cell,
with vertical displacement defined at the top of the loading bars. As the finite element
(FE) simulations were run using the Standard-Explicit model, the vertical displacement
was applied smoothly and slowly to minimize any noticeable load effects. The function
“*AMPLITUDE, DEFINITION = SMOOTH STEP” was utilized to enforce the smooth and
slow displacement BC. The bulk viscosity option was chosen to limit the load effects on
the numerical results [65]. The constitutive plasticity rule was used to model the nonlinear,
elastic behaviour (containing four different fibre shapes) of the steel and plastic fibres.
The plasticity model assumed that steel and plastic fibres behaved similarly to the steel
reinforcement behaviour used in the literature [66,76,77]. Digimat-FE software 2019 was
used for the composite materials to obtain the random distribution of fibres inside the
concrete samples [78]. The fibre distribution and interaction between fibres and concrete
are shown in Figure 5. The small yellow square is the interaction between load and support
cells with the surface, and the small yellow circle is the interaction between fibre and
concrete as shown in Figure 5. Tensile tests, comprising elastic modulus, stress, and strain,
were used to provide the inputs for the plasticity model. The plasticity properties of the
fibres are shown in Tables 6 and 7.
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Table 3. Parameters of Concrete damage plasticity properties.

Dilation Angle Eccentricity fb0/fc0 K Viscosity Parameter

36◦ 0.1 1.16 0.67 0
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Table 4. Concrete compressive and tensile behaviour.

Young’s Modulus MPa 34984 Poisson’s Ratio 0.2
Compression Behaviour Concrete Compression Damage

Stress (MPa) Inelastic Strain Damage Parameter Inelastic Strain

16 0.000622996 0 0.000622996
20.01 0.000754057 0 0.000754057
24.00 0.014082286 0 0.014082286
28.01 0.015187781 0 0.015187781
32.02 0.015835257 0 0.015835257
36.00 0.017157429 0 0.017157429
38.93 0.020001589 0 0.020001589
38.72 0.021137714 0.005506698 0.021137714
35.89 0.022408446 0.078080053 0.022408446
26.70 0.024503275 0.314350292 0.024503275
15.60 0.028024185 0.599235637 0.028024185
7.79 0.033283509 0.799991781 0.033283509

Table 5. Concrete tensile behavior.

Tensile Behaviour Concrete Tension Damage
Stress (MPa) Cracking Strain Damage Parameter Cracking Strain

4.3678205 0.00014 0 0.00014
2.9118803 0.00042 0.333333333 0.00042
1.6379327 0.0008225 0.625 0.0008225
0.7279701 0.00147 0.833333333 0.00147
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Table 6. Properties of plastic fibers.

Plastic Fibres
Young’s Modulus MPa 800

Poisson’s Ratio 0.33
Stress MPa Strain

5.26 0.000064
20.00 0.000254
60.01 0.00073

100.13 0.001218
160.14 0.001948
200.10 0.002434
240.05 0.00292

274 0.003332

Table 7. Properties of plastic fibers.

Steel Fibres

Young’s Modulus MPa 200,000

Poisson’s Ratio 0.3

Stress MPa Strain

98 0

195 0.0214844

309 0.022461

407 0.0234376

505 0.0385742

602 0.0551758

716 0.0703126

798 0.083496

3.2. Concrete Mesh Convergence Analysis

The process of mesh convergence entails reducing the element size and analyzing the
effect of this reduction on the solution’s precision. The smaller the mesh size, the more
precise the solution, as the behaviour of the design or product is sampled more precisely
across its physical domain. The accuracy of numerical results is generally highly dependent
on the mesh size utilized in the numerical model. More accurate results can be produced
using a smaller mesh size, but this is more computationally expensive and requires greater
computer capacity. The smallest mesh dimension is not viable for the CDPM due to software
and computer limitations. As a result, performing a mesh convergence study to identify
the ideal mesh size is critical. Four concrete cubes with varying mesh sizes (10 mm, 8 mm,
6 mm, 4 mm, and 3 mm) were utilized in the CDPM for the mesh convergence analysis to
establish the ideal element size of the concrete model. The conductivity signatures derived
from the four concrete cubes are compared in Figure 6. The results reveal a considerable
difference in conductance mesh size between the 10 mm, 8 mm, and 6 mm elements.
However, the difference between the 4 mm and 3 mm elements is relatively modest. In
this study, a mesh size of 5 mm was employed to represent the concrete cube for concrete
disaster response assessments, when considering process time and computer memory. The
same mesh convergence analysis steps were performed for the four beam sizes for flexural
strength, as shown in Figure 7.



Materials 2023, 16, 3700 11 of 31Materials 2023, 16, x FOR PEER REVIEW 11 of 31 
 

 

 

Figure 6. Mesh convergence analysis of FRC cube. 

 

Figure 7. Mesh convergence analysis of FRC beam. 

4. Results and Discussion  

4.1. Influence of Fibres Parameters on Compressive Strength 

As shown in Figure 8, the compressive strength of the control concrete was greater 

than that of the fibre-containing concrete. The results indicate that steel and plastic fibres 

were added, resulting in a weak composite with low compressive strength. However, flex-

ural strength properties were increased. The results indicate that the compressive strength 

of concrete increased slightly for two lengths of PFRC2 fibre in the concrete mix (20 mm 

and 30 mm). However, as indicated in Figure 8, there were no compressive impacts over 

a length of 40 mm. The compressive strength dropped slightly when the percentage of 

SFRC1 was increased by adding fibres of 20 mm, 30 mm, and 40 mm to the concrete mix. 

In contrast, this slight compression was higher than the concrete mixture’s planned com-

pression level of 30 MPa. The compressive strength increases as the proportion of SFRC2 

at 40 mm in the concrete mix increases. However, at lengths of 20 mm and 30 mm, no 

compressive influence was seen. In past, researchers tested the compressive strength of 

the FRC and discovered that the fibres enhanced stress resistance. Similarly, other re-

searchers [79,80] substituted coarse and fine particles with fibres to improve the mechan-

ical properties of concrete. Other research suggested that the use of steel and e-plastic 

reduces compressive strength because the aggregate is replaced by steel and plastic fibres 

[81–86]. 

As shown in Figure 8, the compressive strength of concrete has a minimum and max 

standard deviation between 0.17 and 2.5 MPa. It shows that the data points are tightly 

Figure 6. Mesh convergence analysis of FRC cube.

Materials 2023, 16, x FOR PEER REVIEW 11 of 31 
 

 

 

Figure 6. Mesh convergence analysis of FRC cube. 

 

Figure 7. Mesh convergence analysis of FRC beam. 

4. Results and Discussion  

4.1. Influence of Fibres Parameters on Compressive Strength 

As shown in Figure 8, the compressive strength of the control concrete was greater 

than that of the fibre-containing concrete. The results indicate that steel and plastic fibres 

were added, resulting in a weak composite with low compressive strength. However, flex-

ural strength properties were increased. The results indicate that the compressive strength 

of concrete increased slightly for two lengths of PFRC2 fibre in the concrete mix (20 mm 

and 30 mm). However, as indicated in Figure 8, there were no compressive impacts over 

a length of 40 mm. The compressive strength dropped slightly when the percentage of 

SFRC1 was increased by adding fibres of 20 mm, 30 mm, and 40 mm to the concrete mix. 

In contrast, this slight compression was higher than the concrete mixture’s planned com-

pression level of 30 MPa. The compressive strength increases as the proportion of SFRC2 

at 40 mm in the concrete mix increases. However, at lengths of 20 mm and 30 mm, no 

compressive influence was seen. In past, researchers tested the compressive strength of 

the FRC and discovered that the fibres enhanced stress resistance. Similarly, other re-

searchers [79,80] substituted coarse and fine particles with fibres to improve the mechan-

ical properties of concrete. Other research suggested that the use of steel and e-plastic 

reduces compressive strength because the aggregate is replaced by steel and plastic fibres 

[81–86]. 

As shown in Figure 8, the compressive strength of concrete has a minimum and max 

standard deviation between 0.17 and 2.5 MPa. It shows that the data points are tightly 

Figure 7. Mesh convergence analysis of FRC beam.

4. Results and Discussion
4.1. Influence of Fibres Parameters on Compressive Strength

As shown in Figure 8, the compressive strength of the control concrete was greater than
that of the fibre-containing concrete. The results indicate that steel and plastic fibres were
added, resulting in a weak composite with low compressive strength. However, flexural
strength properties were increased. The results indicate that the compressive strength of
concrete increased slightly for two lengths of PFRC2 fibre in the concrete mix (20 mm and
30 mm). However, as indicated in Figure 8, there were no compressive impacts over a length
of 40 mm. The compressive strength dropped slightly when the percentage of SFRC1 was
increased by adding fibres of 20 mm, 30 mm, and 40 mm to the concrete mix. In contrast,
this slight compression was higher than the concrete mixture’s planned compression level
of 30 MPa. The compressive strength increases as the proportion of SFRC2 at 40 mm in
the concrete mix increases. However, at lengths of 20 mm and 30 mm, no compressive
influence was seen. In past, researchers tested the compressive strength of the FRC and
discovered that the fibres enhanced stress resistance. Similarly, other researchers [79,80]
substituted coarse and fine particles with fibres to improve the mechanical properties of
concrete. Other research suggested that the use of steel and e-plastic reduces compressive
strength because the aggregate is replaced by steel and plastic fibres [81–86].

As shown in Figure 8, the compressive strength of concrete has a minimum and max
standard deviation between 0.17 and 2.5 MPa. It shows that the data points are tightly
clustered around the mean value. This means that there is not much difference between
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the compressive strengths of the concrete samples in the collection. Together, these two
numbers tell us a lot about the compressive strength of the components of concrete in the
dataset. The low standard deviation shows that the samples of concrete are all about the
same, and the mixing shows the strength of all samples on average.
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Overall, the compressive strength of FRC decreased when compared to the compres-
sive strength of standard concrete. Moreover, fibre length has a negative effect on the
compressive qualities when considering how the fibre content influences them, signifi-
cantly when the length is increased, as evidenced by the results, which showed a drop in
compressive strength.

4.2. Influence of Fibres Parameters on Flexural Strength

A flexural load was applied to 98 prisms of FRC samples with various lengths, forms,
and fibre volume percentages. Figure 9 illustrates the influence of fibre type, shape, and
percentage on flexural strength after 28 days for different fibre types. The flexural strength
increased somewhat when the percentage of plastic-1 fibre in the concrete mix with lengths
of 20 mm, 30 mm, and 40 mm increased. Compared to conventional concrete, Plastic-2 FRC
showed excellent ductility for all used fibre lengths and percentages. The flexural strength
increased significantly with the steel fibre percentage for steel-1 in the concrete mixture. All
mixture samples with various fibres have higher flexural strength than the control concrete.
Furthermore, when the amount of fibre increases, so does the transverse deformation of
the sample. The stress induced by the external load is effectively communicated between
the steel fibre and concrete matrix, allowing the steel and plastic fibres to completely
utilize their flexural strength and compensate for the FRC matrix’s lower tensile capacity.
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Steel fibre can bridge large cracks because the interface between steel, plastic fibre, and
concrete has a specific bond strength. Therefore, the specimen will not have a severe
fracture because the cracks are constantly growing. However, the number of cracks will
increase significantly during this procedure, as will the crack width. As a result, the crack
expands dramatically, causing the transverse deformation of the specimen to increase.
Previous research findings have validated the technique of enhancing flexural strength by
increasing polypropylene fibre content, as it demonstrated improved flexural performance
in both equivalent durability and flexural strength with an increase in the percentage of SF
used [87,88]. The increase in flexural strength is much more significant than the increase
in compressive strength. As a result, the impact of fibre content on flexural characteristics
is substantial when the length of the fibre is increased as shown in Figure 9. The more
significant the reduction in cement usage, the greater the reduction in eCO2 and the further
the realization of sustainable growth in the construction industry.

As shown in Figure 9, the flexural strength of concrete has a minimum and max
standard deviation between 0.04 and 0.27 MPa. It shows that the data points are tightly
clustered around the mean value. This means that there is not much difference between the
flexural strengths of the concrete samples in the collection. Together, these two numbers
tell us a lot about the flexural strength of the components of concrete in the dataset. The
low standard deviation shows that the samples of concrete are all about the same, and the
mixing shows the flexural strength of all samples on average.
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In general, FRC’s flexural strength increases compared to standard concrete’s flexural
strength. Moreover, fibre length negatively influences the flexural strength when consid-
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ering how the fibre content affects them, significantly when the length is increased, as
evidenced by the results, which showed a decrease in flexural strength.

4.3. Numerical Model
4.3.1. Numerical Analysis of Flexural Strength

In numerical model, the samples were notched in the centre and failed in their flex-
ural capacity, with a substantial crack down the length of the beam. The typical failure
mechanisms of the 48 beams are shown in Figures 10 and 11. Although the beam ge-
ometry, boundary, and loading conditions were all symmetric, the cracks in several of
the beams were slightly convoluted and strayed from the centre beamlines. This is due
to the random distribution and orientation of the steel and plastic fibres [89,90], which
increases the crack-tip stress fields and the extremely heterogeneous local tensile strength
and fracture toughness, as in ordinary concrete where aggregates behave similarly to steel
fibres [91]. This cannot be accurately represented by the homogeneous models used in
this investigation and can only be simulated by models that directly or indirectly consider
random heterogeneity [22,92,93]. According to the CDPM, two failure processes for flexural
strength were observed in this study. When a vertical crack propagates from the corners
of the opening to the applied load and support, the first mode is a diagonal splitting
failure. When a diagonal fracture forms in the shear span, it causes high strains inside
the compression chord of the apertures next to the site of the loads. Figure 10 shows how
the damage to concrete plasticity in the simulation creates failures consistent with actual
observations. There were noticeable differences between the numerical and experimental
data for the mechanical properties in previous research, including flexural and cracking
tensile strength [94–96]. The-max load in the middle and max displacement of SFRC-2
beams obtained from the numerical model, and that load was used to calculate the flexural
strength according to BS EN 12390-6 (2009). This is comparable to the experimental results
obtained from the specimens in this study, as shown in Table 1 with different lengths,
shapes, and percentages of fibre. The contour plots in Figure 10 and show the damage
levels in various colours, ranging from the most severe to the least, in red, yellow, green,
and blue. The images show that the crack propagation of beam distribution is equal along
the middle axis, similar to the beam in the experimental observation. The estimation of
the flexural strength for all the beams is also acceptable in terms of agreement with the
experimental results.
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4.3.2. Numerical Analysis of Compressive Strength

The CDPM output can provide information on the damage distribution and character-
istics of the concrete cube at various stages through numerical analysis. The concordance
between the estimates from the suggested formula and the findings of the numerical anal-
ysis demonstrates compressive strength [97,98]. The max load applied on the cube of
SFRC-1 at 1% and max displacement obtained from the numerical model, and that load
was used to calculate the compressive strength according to BS EN 12390-4 (2000). This
is comparable with the experimental results obtained from the specimens, as shown in
Figure 12b. Figure 12c–e shows the damage contours of the three views (YX, ZX, and YZ)
in Figure 12a. The contour plots show damage levels in various colours, ranging from the
most severe to the least, in red, yellow, green, and blue. The images show that the damage
distribution is equal along the middle axis, like the experimental observation. Furthermore,
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by observing the damage shapes derived by CDP and testing, it is discovered that the top
and bottom surfaces of the concrete cubes stay relatively intact. Figure 12c,d shows that the
damage modes at the YX and ZX portions of the specimen are X-shaped (d). The concrete
mixture peeled off on four edges in all three concrete cube tests, and the samples were in
a dumbbell shape at the end of the test. As a result, the numerically simulated damage
contours of the sample correlate well with the experimental observations. The CDPM can
be used in the compressive strength check and damage evaluation.
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4.4. Comparison between the Numerical Model and Experimental Results
4.4.1. Compressive Strength

Compressive strength is one of concrete’s most important mechanical qualities when
designing a structure. The Figure 13 shown the comparison of steel and plastic fibre
reinforced concrete influence on compressive strength between experimental results and
numerical simulations. The compressive strength of the samples ranged from 39.17 to
48.4 MPa, as indicated in Table 8. According to Figure 13, the compressive strength agrees
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well with the CDPM outcomes. The CPD model in this study might be an effective tool to
validate the compressive strength of FRC, rather than conducting laboratory experiments
based on material properties such as mechanical properties, length, and fibre percentage
of fibre, concrete damage plasticity (CDP) behaviour. The CDP model has the highest
accuracy in forecasting compressive strength, with a determination coefficient has good
bond. According to the MAPE-evaluated tool results, only four of the numerical values
in the CDP model showed an error (9.61%, 8.34, 8.67, 6.84%) between all experimental
concrete strength output values (48 experimental findings).

As demonstrated in this study, the CPD model can predict the optimal fibre with
acceptable accuracy to obtain a compressive strength adequate for usage in a structure.
This may stimulate the use of the concrete damage plasticity model in forecasting the
compressive properties of concrete generated by different fibre materials in the future. To
assess the accuracy of the numerical model in this study, the compressive strength of SFRC
had the lowest and most significant errors, and the MAPE was between 0.52% and 5.53%;
Figure 14 shows the MAPE results for the experimental and numerical models. Table 8
shows the evaluations used to analyses the results output of compressive strength. As
shown in Figure 15 the selected linear polynomial seems a poor fit, but it is fine to predict
the values of compressive s as the standard deviation is within a range of (0.03 to 2.6) and
(0.04 to 0.8) MPa.
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Figure 13. Comparison of steel and plastic fibre reinforced concrete influence on compressive
strength between experimental results and numerical simulations. (a) the compressive strength of
SFRC-1, (b) the compressive strength of SFRC-2, (c) the compressive strength of PFRC-1 and (d) the
compressive strength of PFRC-2.
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Table 8. Shows evaluates the accuracy of predicting the compressive strength of fibre-reinforced concrete.

Mixes of
Concrete

Elastic
Modulus of
Fibre Types

(MPa)

Tensile Strength
of Different
Type Shape

(MPa)

Fibres
Length
(mm)

Percentage
of Fibre (%)

Compressive
Strength Ex-
perimental

Compressive
Strength

Numerical
(MPa)

(MSE)
Numerical
and Experi-

mental

(MAPE)
Numerical
and Experi-

mental(MPa)

SFRC-1 200,000 800 20 0.5 42.33 44.53 1.48 4.94
SFRC-1 200,000 800 20 1 44.7 45.84 1.07 2.49
SFRC-1 200,000 800 20 1.5 39.73 43.50 1.94 8.67
SFRC-1 200,000 800 20 2 39.8 42.50 1.64 6.35
SFRC-1 200,000 800 30 0.5 43.67 45.02 1.16 3.00
SFRC-1 200,000 800 30 1 42.13 44.00 1.37 4.25
SFRC-1 200,000 800 30 1.5 41.63 44.00 1.54 5.39
SFRC-1 200,000 800 30 2 42.47 43.36 0.94 2.05
SFRC-1 200,000 800 40 0.5 47.47 46.34 1.06 −2.44
SFRC-1 200,000 800 40 1 43.33 44.40 1.03 2.41
SFRC-1 200,000 800 40 1.5 41 43.40 1.55 5.53
SFRC-1 200,000 800 40 2 43.2 42.00 1.10 −2.86
PFRC-1 7000 465 20 0.5 43.63 45.00 1.17 3.04
PFRC-1 7000 465 20 1 43.63 44.91 1.13 2.85
PFRC-1 7000 465 20 1.5 40.33 43.29 1.72 6.84
PFRC-1 7000 465 20 2 39.24 43.41 2.04 9.61
PFRC-1 7000 465 30 0.5 45.3 46.87 1.25 3.35
PFRC-1 7000 465 30 1 46.23 47.09 0.93 1.83
PFRC-1 7000 465 30 1.5 46.37 46.00 0.61 −0.80
PFRC-1 7000 465 30 2 41.1 43.37 1.51 5.23
PFRC-1 7000 465 40 0.5 44 44.60 0.77 1.35
PFRC-1 7000 465 40 1 41.67 42.62 0.97 2.23
PFRC-1 7000 465 40 1.5 41 42.71 1.31 4.00
PFRC-1 7000 465 40 2 42.7 43.00 0.55 0.70
PFRC-2 7000 552 20 0.5 45 46.04 1.02 2.26
PFRC-2 7000 552 20 1 45 45.60 0.77 1.32
PFRC-2 7000 552 20 1.5 46.33 46.00 0.57 −0.72
PFRC-2 7000 552 20 2 40.33 44.00 1.92 8.34
PFRC-2 7000 552 30 0.5 45.01 45.90 0.94 1.94
PFRC-2 7000 552 30 1 48 45.17 1.68 −6.27
PFRC-2 7000 552 30 1.5 47.1 47.45 0.59 0.74
PFRC-2 7000 552 30 2 43.77 44.00 0.48 0.52
PFRC-2 7000 552 40 0.5 43.67 44.20 0.73 1.20
PFRC-2 7000 552 40 1 42.17 43.15 0.99 2.27
PFRC-2 7000 552 40 1.5 40.9 42.20 1.14 3.08
PFRC-2 7000 552 40 2 41 43.42 1.56 5.57
SFRC-2 200,000 1150 20 0.5 44 44.58 0.76 1.30
SFRC-2 200,000 1150 20 1 46 45.04 0.98 −2.13
SFRC-2 200,000 1150 20 1.5 45 45.50 0.71 1.10
SFRC-2 200,000 1150 20 2 40 41.30 1.14 3.15
SFRC-2 200,000 1150 30 0.5 45 46.26 1.12 2.72
SFRC-2 200,000 1150 30 1 47 47.04 0.20 0.09
SFRC-2 200,000 1150 30 1.5 45 45.54 0.73 1.19
SFRC-2 200,000 1150 30 2 39.67 42.05 1.54 5.66
SFRC-2 200,000 1150 40 0.5 45 45.00 0.00 0.00
SFRC-2 200,000 1150 40 1 43 43.08 0.28 0.19
SFRC-2 200,000 1150 40 1.5 43.77 44.58 0.90 1.82
SFRC-2 200,000 1150 40 2 43 43.33 0.57 0.76
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Figure 15. Relationship between compressive strength results for the experimental and numeri-
cal models.

4.4.2. Flexural Strength

As shown in Table 9, the experimentally determined mean values for flexural strength
fall agree with the value of flexural strength obtained by the numerical models. Figure 16
shows the comparison of steel and plastic fibre reinforced concrete influence on compressive
strength between experimental results and numerical simulations.
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Table 9. Shows the flexural strength of fibre-reinforced concrete.

Mixes of
FRC

Elastic
Modulus of
Fibre Types

(MPa)

Tensile Strength
of Different
Type Shape

(MPa)

Fibres
Length
(mm)

Percentage
of Fibre (%)

Flexural
Strength Ex-
perimental

Flexural
Strength

Numerical

(MSE) Ex-
perimental

and
Numerical

(MAPE)
Experimental

and
Numerical (%)(MPa) (MPa)

SFRC-1 200,000 800 20 0.5 5.36 6.00 0.80 10.67
SFRC-1 200,000 800 20 1 5.50 6.10 0.77 9.84
SFRC-1 200,000 800 20 1.5 5.70 6.25 0.74 8.80
SFRC-1 200,000 800 20 2 5.30 6.00 0.84 11.67
SFRC-1 200,000 800 30 0.5 5.00 5.90 0.95 15.25
SFRC-1 200,000 800 30 1 6.10 6.30 0.45 3.17
SFRC-1 200,000 800 30 1.5 6.30 6.40 0.32 1.56
SFRC-1 200,000 800 30 2 5.50 6.05 0.74 9.09
SFRC-1 200,000 800 40 0.5 6.04 6.40 0.60 5.63
SFRC-1 200,000 800 40 1 5.31 6.10 0.89 12.95
SFRC-1 200,000 800 40 1.5 5.50 6.40 0.95 14.06
SFRC-1 200,000 800 40 2 5.73 6.36 0.79 9.91
PFRC-1 7000 465 20 0.5 5.30 6.36 1.03 16.67
PFRC-1 7000 465 20 1 5.80 6.50 0.84 10.77
PFRC-1 7000 465 20 1.5 5.78 6.40 0.79 9.69
PFRC-1 7000 465 20 2 5.30 6.06 0.87 12.54
PFRC-1 7000 465 30 0.5 5.70 6.47 0.88 11.90
PFRC-1 7000 465 30 1 5.43 6.20 0.88 12.42
PFRC-1 7000 465 30 1.5 5.57 6.29 0.85 11.45
PFRC-1 7000 465 30 2 6.00 6.45 0.67 6.98
PFRC-1 7000 465 40 0.5 5.20 6.10 0.95 14.75
PFRC-1 7000 465 40 1 5.10 6.05 0.97 15.70
PFRC-1 7000 465 40 1.5 5.50 6.00 0.71 8.33
PFRC-1 7000 465 40 2 5.30 5.95 0.81 10.92
PFRC-2 7000 552 20 0.5 5.21 6.05 0.92 13.88
PFRC-2 7000 552 20 1 5.70 6.45 0.87 11.63
PFRC-2 7000 552 20 1.5 6.20 6.41 0.46 3.28
PFRC-2 7000 552 20 2 5.05 5.90 0.92 14.41
PFRC-2 7000 552 30 0.5 5.92 6.47 0.74 8.50
PFRC-2 7000 552 30 1 5.40 6.15 0.87 12.20
PFRC-2 7000 552 30 1.5 5.50 6.20 0.84 11.29
PFRC-2 7000 552 30 2 5.73 6.50 0.88 11.85
PFRC-2 7000 552 40 0.5 5.56 6.34 0.88 12.30
PFRC-2 7000 552 40 1 5.50 6.25 0.87 12.00
PFRC-2 7000 552 40 1.5 5.75 6.30 0.74 8.73
PFRC-2 7000 552 40 2 5.60 6.38 0.88 12.23
SFRC-2 200,000 1150 20 0.5 5.42 6.10 0.82 11.15
SFRC-2 200,000 1150 20 1 5.50 6.28 0.88 12.42
SFRC-2 200,000 1150 20 1.5 5.40 6.12 0.85 11.76
SFRC-2 200,000 1150 20 2 5.20 6.00 0.89 13.33
SFRC-2 200,000 1150 30 0.5 5.10 5.95 0.92 14.29
SFRC-2 200,000 1150 30 1 6.10 6.29 0.44 3.02
SFRC-2 200,000 1150 30 1.5 6.30 6.40 0.32 1.56
SFRC-2 200,000 1150 30 2 5.90 6.10 0.45 3.28
SFRC-2 200,000 1150 40 0.5 6.04 6.27 0.48 3.67
SFRC-2 200,000 1150 40 1 5.21 6.10 0.94 14.59
SFRC-2 200,000 1150 40 1.5 5.50 6.15 0.81 10.57
SFRC-2 200,000 1150 40 2 5.73 6.25 0.72 8.32
Average 0.8 10.31

The match between the numerical data and experimental outcomes is significantly
high as shown in Figure 16. This enables the prediction of the flexural strength of fibre-
reinforced concrete using the Abaqus software’s concrete damage plasticity.
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Figure 16. Comparison of steel and plastic fibre reinforced concrete influence on flexural strength
between experimental results and numerical simulations. (a) the flexural strength of SFRC-1, (b) the
flexural strength of SFRC-2, (c) the flexural strength of PFRC-1 and (d) the flexural strength of PFRC-2.

As shown in Figure 17, the selected linear polynomial seems a poor fit, but it is fine to
predict the values of flexural strength as the standard deviation is within a range of (0.04 to
0.8) MPa.

According to the MAPE evaluated tool results, only four of the numerical values in
the CDP model showed an error (16.67%, 15.70, 14.75%, 14.59%) between all experimental
concrete flexural strength output values (48 experimental findings). As demonstrated in
this study, the CPD model can predict the optimal fibre with acceptable accuracy to obtain
a flexural strength adequate for using in a structure. This may stimulate the use of the
concrete damage plasticity model in forecasting the flexural strength properties of concrete
generated by different fibre materials in the future. To assess the accuracy of the numerical
model in this study, the flexural strength of SFRC had the lowest and most significant
errors, and the MSE was between 0.32% and 1.03%. Figure 18 shows the MAPE results for
the experimental and numerical models.
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This simple model for evaluating the behaviour of FRP-reinforced concrete could
result in more engineers utilising this concrete form in actual applications. These results
indicated that the numerical model had an adequate predictive method between input
materials and output attributes.

5. Development of Khan Khalel Model

The compressive and flexural strength values on various combinations of fibre input
parameters were mentioned above. These results are presented in Tables 8 and 9. An
empirical model has been developed based on the discussed experimental values which
will help to estimate FRC properties based on material parameters such as elastic modulus,
tensile strength, fibre length, and fibre percentage. MLR as discussed in Section 2.4 is used
to develop the model that can examine the effect of fibre characteristics on compressive
and flexural strength as shown in Equations (16) and (17). The Khan-Khalel model indi-
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cates that an increase in the length and percentage of fibre reduces the overall value of
compressive strength.

ˆC.S = 40.72− (1.46× 10− 05) Elastic modulu o f f iber (MPa)
+(4.38× 10− 03) Tensile strength o f f iber (MPa)
+(0.000604) Length o f f iber (mm)
+(45.21) Percentage o f f iber (%)

(16)

where ˆC.S is compressive strength of fiber reinforced concrete.
The developed model indicates that an increase in the length and percentage of fibre

can increase the overall flexural strength.

ˆF.S = 5.3− (5.35× 10− 08) elastic modulus o f f iber (MPa)
+ (1.61× 10 + 03) Tensile strength o f f iber (Mpa)
+(0.002656) Length o f f iber (mm)
+ (5.88333) Percentage o f f iber (%) %

(17)

where ˆF.S is the flexural strength of fiber reinforced concrete.

Validation of Khan Khalel Model with Numerical Results

The developed empirical model is validated on the arbitrary input values to observe
the accuracy for predicting the compressive and flexural strengths of FRC in general with
the help of numerical model. We validated the model on same material types and shapes
but on different lengths and percentages of fibres. The selected values were 25 mm, 35 mm,
1.25% and 1.75%, respectively. The obtained values of predicted compressive and flexural
strengths by Khan Khalel model were compared with numerical estimations as provided
in Tables 8 and 9. We have found a good agreement in between Khan Khalel and numerical
models. Additionally, as shown in Tables 10 and 11, mean absolute error and mean square
error were used to validate the results of flexural and compressive strengths.

The MSE results of the Khan Khalel and numerical model showed an error in the
range of (3.84–12%) between all flexural and compressive concrete strengths. The error in
estimation of compressive strength is under 10% and hence it determines the goodness of
prediction of the proposed model.

Table 10. Shows the validation of compressive strength.

Mixes of
Concrete

Elastic
Modulus of
Fibre Types

(MPa)

Tensile Strength
of Different
Fibres Shape

(MPa)

Fibres
Length
(mm)

Percentage
of Fibre

%

Compressive
Strength

Khan Khalel
(MPa)

Compressive
Strength

Numerical
(MPa)

(MSE)
Numerical
and Khan

Khalel

(MAPE)
Numerical

and
Khan Khalel

SFRC-1 200,000 1150 25 1.25 43.75 47.67 15 8.93
SFRC-2 200,000 800 25 1.25 41.98 45.90 15 8.75
PFRC-1 70,000 465 25 1.25 42.31 45.80 12 7.61
PFRC-2 7000 552 25 1.25 43.62 45.70 4 4.56
SFRC-1 200,000 1150 35 1.75 43.5 47.80 14 8.69
SFRC-2 200,000 800 35 1.75 42.11 45.27 10 6.97
PFRC-1 7000 465 35 1.75 43.47 45.70 5 4.89
PFRC-2 7000 552 35 1.75 43.85 45.60 3 3.84

The MSE results of the Khan Khalel values and numerical model showed an error in
the range of (0.36–0.86%) between all flexural concrete strength output of parameters that
were not used in the experimental. The error MAPE in estimation of compressive strength
is under 10% and hence it determines the goodness of prediction of the proposed model.
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Table 11. Shows validation of flexural strength.

Mixes of
Concrete

Elastic
Modulus of
Fibre Types

(MPa)

Tensile Strength
of Different
Type Shape

(MPa)

Fibres
Length
(mm)

Percentage
of Fibres (%)

Flexural
Strength

Khan Khalel
(MPa)

Flexural
Strength

Numerical
(MPa)

(MSE)
Numerical
and Khan

Khalel

(MAPE)
Numerical

and
Khan Khalel

SFRC-1 200,000 1150 25 0.0125 5.62 6.49 0.76 13.42
SFRC-2 200,000 800 25 0.0125 5.56 6.49 0.86 14.29
PFRC-1 70,000 465 25 0.0125 5.52 6.22 0.49 11.24
PFRC-2 7000 552 25 0.0125 5.53 6.30 0.59 12.20
SFRC-1 200,000 1150 35 0.0175 5.68 6.28 0.36 9.61
SFRC-2 200,000 800 35 0.0175 5.62 6.49 0.76 13.40
PFRC-1 7000 465 35 0.0175 5.58 6.30 0.53 11.54
PFRC-2 7000 552 35 0.0175 5.59 6.28 0.47 10.97

As demonstrated in this study, the Khan Khalel model can predict the optimal fibre
with acceptable accuracy to obtain a compressive strength adequate for usage in a structure.
This straightforward method for estimating the behaviour of concrete incorporating FRP
could lead to more engineers employing this form of concrete in actual applications. Com-
pared with previous studies, the collection of investigations reveals fascinating conclusions,
notably that variation in the stated test results has an accuracy, in some cases ranging from
1–10%. Moreover, This is due to extensive diversity in test specimens, materials, loading
configurations, experimental methodologies, and test arrangements [99,100].

6. Conclusions

This paper proposed the Khan Khalel model to predict the optimal fibre reinforcement
in concrete. The proposed model can take key fibre parameters as inputs and predict the
compressive and the flexural strengths of reinforced concrete as a result. The findings of
this investigation are as follows:

• The proposed model can facilitate the users in the construction industry to select
an optimal set of fibre properties during reinforcement. The model can be used to
predict concrete behaviour with elastic fibre properties and any given physical shape
and dimensions;

• The given results show a good agreement with a numerical model where error repre-
sents the challenges in reinforcement such as ideal mixing and distribution of fibres
in concrete, difficulty in finding the interfacial properties of fibres with concrete con-
stituents and difficulty in finding the plastic behaviour on compressive and flexural
testing machines;

• Compared to previous studies, interesting results are obtained. The overall variation
in the test results ranges from 3.84 to 12%. It is quite acceptable, especially in the
presence of extensive diversity in test specimens, materials, loading configurations,
experimental methodologies, and test arrangements [98,99];

• The empirical model prediction accuracy is measured with R2 = 0.997, MSE = 8.21,
and MAPE = 5.93%, and can be used as a compressive strength prediction tool for
FRC. In regard to flexural strength, existing literature models predict with a prediction
accuracy measured as R2 ranging from 0.78 to 0.87 and MAPE ranging from 6.15
to 17.9 [100]. However, our presented model can more accurately predict flexural
strength and its accuracy is measured as R2 = 0.996, MSE = 0.64 and MAPE = 12%;

• The proposed model has used elastic modulus for material input selection and hence
predominantly considers linear elastic behaviour in FRC during tests. However, a use
of plasticity correction on this input can represent the complex nonlinear relationship
between the various input variables and properties of FRC. The different shapes and
more dimensions of the fibre should also be considered. This will be considered as a
change to be implemented in future work.
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Abbreviations

ANN Artificial neural network
IST Inter-face shear transfer
SCC Self compacting concrete
PP Polypropylene
MLR Multiple Linear regression
SFRC-1 Steel fibre reinforced concrete (Straight): Novocon® XR-1050
SFRC-2 Steel fibre reinforced concrete (Crimped): Novocon® FE-1050
PFRC-1 Plastic fibre reinforced concrete (Macro/Monofilament): Enduro® Mirage
PFRC-2 Plastic fibre reinforced concrete (Crimped): Enduro® Fibre high-performance polymer (HPP)
εel, εpl Elastic and plastic strains
dc, dt Uniaxial compressive and tensile damage variables
σij Function of stress state
Del

ijkl Initial elasticity matrix
εij, ε

pn
ij Total and plastic strain tensor, respectively

q Mises equivalent effective stress
p Hydrostatic stress
σmax Maximum principal effective stress
σc0: σt0: Uniaxial compressive and tensile stresses
σb0 Equiaxial compressive yield stress
Kc Ratio of second stress invariant on the tensile meridian to that on the compressive one
ψ Dilation angle
e Eccentricity that defines the rate at which the function approaches the asymptote
G Potential flow function
E0 Elastic modulus
(C.S) Compressive strength
(F.S) Flexural strength
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