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ABSTRACT

This dissertation introduces the DIverse MultiPLEx Generalized Dot Product Graph (DIMPLE-

GDPG) network model where all layers of the network have the same collection of nodes and

follow the Generalized Dot Product Graph (GDPG) model. In addition, all layers can be par-

titioned into groups such that the layers in the same group are embedded in the same ambient

subspace but otherwise all matrices of connection probabilities can be different. In common par-

ticular cases, where layers of the network follow the Stochastic Block Model (SBM) and Degree

Corrected Block Model (DCBM), this setting implies that the groups of layers have common com-

munity structures but all matrices of block connection probabilities can be different. For DCBM,

each group can also equip with nodes’ specific weights. We refer to this two versions as the DIM-

PLE model and the DIMPLE-DECOR model. While the DIMPLE-GDPG model generalizes the

COmmon Subspace Independent Edge (COSIE) random graph model, the DIMPLE model gener-

alizes a multitude of papers that study multilayer networks with the same community structures in

all layers (which include the tensor block model, the checker-board model as well as the Mixture

Multilayer Stochastic Block Model (MMLSBM) as particular cases). This dissertation introduces

novel algorithms for the recovery of similar groups of layers, for the estimation of the ambient sub-

spaces in the groups of layers in the DIMPLE-GDPG setting, and for the within-layer clustering in

the case of the DIMPLE model. We also consider applications of the DIMPLE models to real-life

data, and its comparison with the MMLSBM. And the DIMPLE model with its SBM-imposed

structures provided better descriptions of the organization of layers than the ones obtained on the

basis of the MMLSBM setting.
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CHAPTER 1: INTRODUCTION TO EXISTING MODELS

1.1 Network Theory

As a part of graph theory, network theory has become more and more popular and useful over the

past several year. Network is the study of graphs where connections are drawn between discrete

objects and has been applied in many disciplines, including but not limited to, statistical physics

(Cimini et al. (2019)), biology (Mason and Verwoerd (2007)), economics (Bates et al. (2014))

and neuroscience (Bassett et al. (2018)). A network refers to a graph consisting of nodes and

edges. Nodes are the objects in the network and edges are connections between each node. For

example, all computers can be nodes in a network and the wires or Internet connection between two

computers are the edges connecting them. Nodes in a network can be different and therefore have

different weights, and the edges between different nodes can be directed or undirected. Research

on relations between individuals in several communities is a popular network problem, and people

can be unweighted nodes in this network. Connections between people can be directed if research

cares about who initiates a connection, and undirected if not.

In this dissertation, we consider a multilayer network where individual layer networks are un-

weighted and undirected. For unweighted networks of n nodes without multiple connections, the

network structure can be represented by a n×n adjacency matrix A. The component Aij indicates

a connection from node j and to node i and Aij = 1, if there is an edge from node j to node i and

Aij = 0 otherwise.

Since we only consider undirected graph with no self-edges in this dissertation , Aii = 0 and

Aij = Aji, 1 ≤ i, j ≤ n . A common way to model adjacency matrix A is to assume that Aij

are independent Bernoulli variables for i < j, i.e., Aij ∼ Bernoulli(Pij), 1 ≤ i < j ≤ n.

1



P ∈ [0, 1]n×n is the matrix of connection probabilities between nodes in the network, i.e. Pij is the

connection probability between node i and node j.

1.2 Stochastic Block Model

In many studies of networks, one assumes that nodes are divided into communities that have simi-

lar properties. The stochastic block model (SBM) is a generatively used model in network theory

because of its simple analytic form and expressive power and has wide application to social net-

works, machine learning and computer science. According to Olhede and Wolfe (2014), SBM

provides a universal tool for the description of time-independent stochastic network data. In fact,

in the last few years, such models have been widely employed in brain research (see, e.g., Crossley

et al. (2013), Faskowitz et al. (2018), Nicolini et al. (2017), Sporns (2018)).

SBM is equipped with communities, which are disjoint subsets of nodes in the network, and proba-

bilities of connections between nodes are determined entirely by community membership of those

nodes belong to. Communities are assortative if probabilities of connections between nodes within

communities are higher than between communities. And they are disassortative if within commu-

nities connection probabilities are lower than between communities.

All nodes can be divided into communities in SBM, and the probability of connection between

a pair of nodes is determined by the communities, to which those nodes belong. Assume all n

nodes in the network can be partitioned into K communities, with each community to be Gk, k =

1, · · · , K and ∪K
k=1Gk = {1, · · · , n}. The probability of connection Pj1,j2 between nodes j1 and

j2 is associated with Bk1,k2 , where node j1 is in community Gk1 and node j2 is in community Gk2 .

Pj1,j2 = Bk1,k2 , if j1 ∈ Gk1 , j2 ∈ Gk2 , j1, j2 = 1, ..., n; k1, k2 = 1, ..., K. B ∈ [0, 1]K×K is the

matrix of block connection probabilities and Bi,j is the connection probability between community

2



Gi and community Gj . For undirected network we consider here, P = PT and B = BT .

We can estimate connection probabilities if we know clustering function z : {1, · · · , n} →

{1, · · · , K}. And the clustering matrix Z ∈ {0, 1}n×K corresponding to clustering function z,

Zjk = 1, if and only ifj ∈ Gk and Zjk = 0 otherwise. In this case, the matrix of probabilities of

connection can be expressed as

P = ZBZT .

One observes that the adjacency matrix Aij are independent Bernoulli variables for

Aij ∼ Bernoulli(Pij). The objective is to recover the community assignment matrix Z on the

basis of the observed adjacency matrix A.

One of typical statistical tasks in the study of SBM is to partition nodes into communities. And

this attracted a lot of attention of researchers in this field of SBM. Decelle et al. (2011) conjectured

phase transition for the community detection (a.k.a. weak recovery) problem. They used the cavity

method to obtain an analysis of the phase diagram and developed an algorithm for inferring the

group memberships of the nodes. Mossel et al. (2015) proved impossibility part of their prediction

for the algorithmic threshold of clustering for two symmetric communities situation. Massoulié

(2014) solved the positive part of the conjecture and recovered a weak form of the Ramanujan

property. Theoretical investigation in the symmetric case at 4 communities (Abbe and Sandon

(2018), Abbe and Sandon (2015)) and crossing at 5 communities Banks et al. (2016) are also con-

sidered to obtain the scaling of threshold for a growing number of communities for weak recovery

problems.

Besides of weak recovery problem, partial recovery and exact recovery problems are concerned a

lot. Mossel et al. (2014) obtained a result on the partial recovery of the communities. They devel-

oped an algorithm, which reconstructed sparse symmetric block models with two blocks under a

general restrict, to achieve the optimal fraction of nodes labeled correctly. Deshpande et al. (2015)

3



developed an information-theoretic view of SBM and established explicit expression of the mutual

information related to estimation-theoretic quantities in the case of two communities. Mossel and

Xu (2016) showed the average minimum fraction of misclassified vertices and attained it by a local

belief propagation algorithm. Abbe et al. (2015) identified a sharp threshold phenomenon for exact

recovery problems and proposed an algorithm based on a semidefinite programming (SDP), which

is proved to succeed in recovering the communities close to the threshold and another successful

algorithm using a partial recovery algorithm combined with a local improvement procedure. SDP

algorithm for community detection was extended by Perry and Wein (2017) by allowing for many

communities of different sizes and this algorithm achieves exact recovery of the latent communi-

ties. Spectral methods are also a general one to consider about for network problems and SBM

specifically. (see, e.g. McSherry (2001), Chin et al. (2015), Yun and Proutiere (2016)) For more

detailed development for recovery problems can refer to Abbe (2017).

Among all methods for community recovery, spectral clustering is one of the most widely applied

one in SBM for its easy implement and less computational cost qualities, and draw much attention

of researchers and studied recent years. Rohe et al. (2011) originally studied the eigenvectors of

random matrices and first showed that the eigenvectors of the normalized graph Laplacian asymp-

totically converge to the eigenvectors of a “population” normalized graph Laplacian. Su et al.

(2019) proved the strong consistency of several methods based on the spectral clustering tech-

niques for SBM. Lei and Rinaldo (2015) applied spectral clustering to the adjacency matrix of the

network and consistently recover hidden communities in SBM. Other recovery methods include

modularity maximization, likelihood methods, belief propagation and convex optimization, etc.

More research work and specific introduction for spectral clustering method can be found in Baek

and Kim (2021). And more topics on SBM can be referred to a detailed review of SBM in Lee and

Wilkinson (2019). Some variants and their inference methods are also introduced by Funke and

Becker (2019).
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1.3 Degree Corrected Stochastic Block Model

Though being a widely used and essential model, a serious shortcoming of the SBM is that it treats

all nodes in the same community as stochastically equivalent, which means that for nodes i and j

in the same community, i has the same probability of connecting with node r, as j does (Lee and

Wilkinson (2019)). On the contrary, in the real life networks, communities can have ”hubs”, which

are nodes with high degrees, and many nodes with lower degrees, i.e., probabilities of connections

are much more heterogeneous than the SBM allows. In order to address this shortcoming of SBM,

Karrer and Newman (2011) introduced the Degree Corrected Stochastic Block Model (DCBM)

which incorporates heterogeneous nodes’ degrees.

In DCBM, the probability of connection between a pair of nodes is not only associated with the

block connection probability, which, similarly to the SBM, is determined by the pair of communi-

ties, to which those nodes belong but also the nodes’ specific weights. That is to say, nodes equip

with the same weights in SBM are different and they can be equipped with different weights in

DCBM. Specifically, Θ is the diagonal matrix of the node weights with elements θi representing

the weights of node i in the network. Then the matrix of probabilities of connection in DCBM can

be expressed as

P = ΘZBZTΘT .

where Z is the clustering matrix. The adjacency matrix Aij are still independent Bernoulli vari-

ables for Aij ∼ Bernoulli(Pij). And in this dissertation we ignore the node degree parameters

and care more about recovering Z based on the observed adjacency matrix A in DCBM model.

DCBM, equipped with different nodes weights, have more parameters and wider application than

SBM, which attracted many researchers’ attention and derived various problems. Among all of

these problems, the community detection problems in DCBM are so important and more difficult
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because of various parameters for the nodes weights. Gao et al. (2018) derived asymptotic minimax

risks of the community detection problem for a misclassification proportion loss and proposed an

algorithm to perform consistent and even asymptotically optimal community detection in DCBMs.

Zhao et al. (2012) established general theory for checking consistency of community detection

for DCBM and compared several community detection criteria under both the standard and the

degree-corrected models. And they applied methods to a political blogs network, which is a very

famous and successful example in the application of DCBM. The nodes in the network are blogs of

US politics and edges are hyperlinks between these blogs. With different degrees for nodes setting

according to background of the blogs network, DCBM finds very similar partitions with the true

one while block model likelihood behaves like random guessing.

Various methods for recovering community structure for DCBM are studied by researchers and

spectral clustering is very popular among these methods in community detection problems for

DCBM. Gulikers et al. (2017) proposed a spectral clustering algorithm based on a suitably nor-

malized adjacency matrix, which consistently recovers the block membership of all but a vanishing

fraction of nodes. Lei and Rinaldo (2015) recovered the community structure using a spherical k-

median spectral clustering method which is an extension of its spectral clustering method to SBM.

Inspired variations on the spectral clustering algorithm were proposed by Amini et al. (2013) and

Chaudhuri et al. (2012), which artificially inflate the node degrees and improve statistical perfor-

mance. Following that, Qin and Rohe (2013) extends the algorithm method of Amini et al. (2013)

and Chaudhuri et al. (2012) more canonically by removing minimum degree assumption and pro-

viding guidance on the choice of tuning parameter.
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1.4 Generalized Random Dot Product Graph model

In addition, the recent years saw a substantial advancement in the latent position graphical models.

Specifically, the Random Dot Product Graph (RDPG) model of Athreya et al. (2018) and the

Generalized Random Dot Product Graph (GDPG) model of Rubin-Delanchy et al. (2022) turned

out to be very flexible and useful in applications.

RDPG is an special latent position graph, in which each node i is associated with a latent position

xi in a latent space X , and the probability of connection between two nodes is given by a kernel

function k: X ×X → [0, 1]. In RDPG, the latent space is an appropriately constrained subspace of

Euclidean space Rd, and the kernel function is given by the inner product of their latent positions.

The latent positions associated to n nodes can be represented by a matrix X ∈ Rn×d whose rows

are the latent positions, and the matrix of connection probabilities is given by P = XXT . The

adjacency matrix Aij are still independent Bernoulli variables for Aij ∼ Bernoulli(Pij).

However, RDPG produces a non-negative-definite connection probability matrix and cannot ex-

plain significant negative eigenvalues in the adjacency matrix A. In this way, we generalize the

GDPG model to the Generalized Random Dot Product Graph (GDPG) model, in which the connec-

tion probability between two nodes is given by the indefinite inner product of their latent positions.

Specifically, the matrix of connection probabilities can be expressed as

P = XIp,qX
T .

X is the latent position matrix whose rows are the latent positions, and Ip,q is a diagonal matrix

with p ones followed by q minus ones on its diagonal, and p ≥ 1 and q ≥ 0 are two integers

satisfying p+ q = d. Next, we replace X with VM, with V ∈ Rn×d to be the orthonormal matrix,

which is the eigenvector matrix of X. In this way, let Q = MIp,qM
T , then we can describe GDPG
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as

P = VQVT .

V is the latent structure of the graph with orthonormal columns and Q ∈ Rd×d is sysmetric and

representing a (generalized) inner product.

Following the description of GDPG, one can easily see that the Stochastic Block Model (SBM)

and the Degree Corrected Stochastic Block Model (DCBM) can be reprsented as GDPG in which

all nodes in the same community have the same latent positions. And P in GDPG, not like in SBM

and DCBM, doesn’t need to have any constant block structure.

Given a graph distributed as an RDPG, the natural task is to recover the latent positions X that gave

rise to the observed graph. Spectral embedding is a very popular method for this task. Athreya

et al. (2016) used the spectral embedding of the adjacency matrix to construct consistent estimates

for the latent positions, and showed that the scaled errors converge to a mixture of Gaussian ran-

dom variables. And Rubin-Delanchy et al. (2022) used the spectral embedding method to produce

uniformly consistent latent position estimates with asymptotically Gaussian error for the GDPG

model. Other than the spectral embedding method, Xie and Xu (2021) proposed a one-step pro-

cedure (OSE) to estimate the latent positions in RDPG. Compared to the spectral methods, the

asymptotic sum of squares error of OSE is not higher but the asymptotic covariance matrix of the

corresponding row of OSE dominates those of the spectral embeddings in spectra.

1.5 Multiplex Networks

As the real world works with more complex system, not just single layer network in most cases,

multilayer networks help us understand the structure and process of the world better. However,

it is not natural to extend the theory of single layer network to the multilayer network, letting go
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considering layers not just communities among nodes, research on multilayer networks has been

flourished in recent several years. Nowadays, Internet affects the world dramatically and people

relying on Internet to build and keep relationship becomes more and more popular. The application

of multilayer networks in the social relationship draws a lot of researchers’ interest. (Borondo

et al. (2015); Oro et al. (2018)). Much more situation can be modeled by multilayer networks like

transportation systems (Criado et al. (2007); Cardillo et al. (2013)), animal behaviour detection

(Finn et al. (2019)) and global trading (A. Alves et al. (2018)), etc.

In a multiplayer network, each layer is equipped with nodes and edges. Nodes in each layer can be

different and they can connect with the same layer nodes or different layers’. The following figures

show multilayer networks with different nodes in two layers on the left and with same nodes in

three layers on the right.

(a) Wang and Zou (2017) shows a schematic rep-
resentation of multilayer networks with two lay-
ers, where each layer has different five nodes and
interlayer links can connect different nodes on
different layers.

(b) Hernandez Nopsa et al. (2015) introduces a
stored-grain system multiplex network, in which
nodes in each layer are all the same and there is
no connection between nodes in different layers.

Figure 1.1: Multiplex networks examples with connection between layers(left penal) and no con-
nection between layers(right penal)
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Although there are many different ways of modeling a multilayer network (see, e.g., an excellent

review article of Kivela et al. (2014)), in this dissertation, we consider the case where all layers

have the same set of nodes, and all the edges between nodes are drawn within layers, i.e., there

are no edges connecting the nodes in different layers. Many authors, who work in a variety of

research fields, study this particular version of a multilayer network (Aleta and Moreno (2019),

Durante et al. (2017), Han and Dunson (2018), Kao and Porter (2017), MacDonald et al. (2021)).

MacDonald et al. (2021) called this type of multilayer network models the Multiplex Network

Model and argued that it appears in a variety of real life situations.

For example, the multiplex network models include brain networks where nodes are associated

with brain regions, and edges are drawn if signals in those regions exhibit some kind of similarity

(Sporns (2018)). In this setting, the nodes are the same for each individual network, and there is

no connection between brain regions of different individuals. Another type of multiplex networks

are trade networks between a set of countries (De Domenico et al. (2015)), where nodes and layers

represent, respectively, various countries and commodities in which they are trading. In this case,

edges are drawn if countries trade specific products with each other.

1.6 COmmon Subspace Independent Edge (COSIE) random graph model

As a very popular case of multiplex network models, Arroyo et al. (2021) and Zheng and Tang

(2022) introduced the COmmon Subspace Independent Edge (COSIE) random graph model which

extends the RDPG and the GDPG to the multilayer setting. The COSIE model describes L random

graphs in which each matrix of connection probability can be written as

P(l) = VQ(l)VT , l = 1, ..., L.
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Q(l) is a low-dimensional matrix for different connectivity patterns for each graph and V is a

matrix with orthonormal columns describing a shared latent structure on the nodes. The Q(l)

matrices need not be diagonal, and can vary with each graph. In particular, each graph can have a

different distribution.

It is a natural idea to recover the common subspace V after fitting this model. Arroyo et al.

(2021) proposed a joint spectral embedding of adjacency matrices (MASE) to estimate the com-

mon subspace V and the score matrices Q(l). And they also infer that the COSIE model and the

MASE embedding can be deployed for a number of subsequent network inference tasks. Jones and

Rubin-Delanchy (2020) estimated V by jointly embedding the associated adjacency matrices into

a suitable latent space. Zheng and Tang (2022) studied parameters estimations using the proce-

dure proposed in Arroyo et al. (2021), for both the undirected case (as considered in Arroyo et al.

(2021)) and directed case (Jones and Rubin-Delanchy (2020)). Nielsen and Witten (2018) and

Wang et al. (2019) proposed estimation procedures for the common subspace V using alternating

gradient descent. And for the case of the connectivity patterns Q(l) being scalars, they provide

bounds for the accuracy of the resulting estimation.

1.7 Organization of this Dissertation

This dissertation focuses on the research of multiplex networks where layers can be partitioned

into groups with the common subspace structures or community assignments, and all matrices of

block connection probabilities can be different. The objective is to recover the clustering function

between layers and find the subspace structures or community patterns within layer in the model.

In Chapter 2, this dissertation reviews related work and introduces DIMPLE, DIMPLE-GDPG and

DIMPLE-DECOR models. We also explain why introduction of the DIMPLE and the DIMPLE-
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GDPG models is imperative, and why analysis of those models requires development of new algo-

rithms. Following it, Section 2.3 introduce notations, required for construction of the algorithms

and their subsequent analysis.

Chapter 3 introduces more details about fitting the network models. We develop between layer

clustering algorithm to cluster all L layers into M groups based on the construction of the adja-

cency matrix in each layer and then find the common subspace structures, or cluster n nodes into

Km communities within each group of layers. In particular, Section 3.1 proposes a between-layer

clustering algorithm for both the DIMPLE, the DIMPLE-DECOR and the DIMPLE-GDPG mod-

els. Section 3.2 talks about estimation of invariant subspace matrices V(m) in the groups of layers

in the DIMPLE-GDPG model in (2.1). Section 3.3 provides within-layer clustering procedures in

the case of the DIMPLE and the DIMPLE-DECOR network.

Chapter 4 is dedicated to theoretical developments. Specifically, Section 4.2 introduces assump-

tions that guarantee the between-layer clustering error rates, the within-layer clustering error rates

for the DIMPLE and the DIMPLE-DECOR model and the subspace fitting errors in groups of lay-

ers in the DIMPLE-GDPG model, that are derived in Sections 4.3, 4.5 and 4.4, respectively. And

we show that they tend to zero at a high rate under very simple and intuitive assumptions.

The simulation study in Chapter 5 confirm that the algorithms deliver high precision in a finite pa-

rameter settings mainly with the number of nodes n varying or number of layers L varying while

keeping other parameters still. We also compare the performance of between layer clustering algo-

rithms for Algorithm 1 and a popular algorithm for MMLSBM in the setting of different matrices

of block connection probabilities in different layers, and our algorithm performed much better in

this setting.

In Chapter 6, the clustering algorithms are applied to the Worldwide Food Trading Network Data

6.1 and Airline Data 6.2. The former successfully separates meat and fruit/vegetable food accord-
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ing to the trading community patterns among countries for foods and the latter forms naturally

geographical areas distribution from where the flights are originated after clustered into groups.

Chapter 7 concludes the paper with the discussion of its results. Finally, Section 7 contains proofs

of the statements in the paper and also provides additional simulations.
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CHAPTER 2: INTRODUCTION TO OUR GENERALISED MODELS

2.1 DIverse MultiPLEx (DIMPLE) network models frameworks

This dissertation considers an L-layer network on the same set of n vertices [n] = {1, · · · , n},

where the tensor of probabilities of connections P ∈ [0, 1]n×n×L is formed by layers P(l), l ∈

[L], that can be partitioned into M groups with the common subspace structure or community

assignment. We consider a multiplex network with L layers of M types, so that there exists a

label function c : [L] → [M ]. We assume that the layers of the network follow the Generlized

Dot Product Graph (GDPG) model of Rubin-Delanchy et al. (2022), where each group of layers is

embedded in its own ambient subspace, but otherwise all matrices of connection probabilities can

be different. Specifically, P(l), l ∈ [L], are given by

P(l) = V(m)Q(l)(V(m))T , m = c(l), l ∈ [L], m ∈ [M ], (2.1)

where Q(l) = (Q(l))T and V(m) are matrices with orthonormal columns, such that all entries of

P(l) are in [0, 1]. We shall call this model the DIverse MultiPLEx Generalized Dot Product Graph

(DIMPLE-GDPG).

In a common particular case, where layers of the network follow the Stochastic Block Models

(SBM), (2.1) implies that the groups of layers have common community structures but matrices of

block connection probabilities can be all different. Then, the matrix of probabilities of connection

in layer l can be expressed as

P(l) = Z(m)B(l)(Z(m))T , m = c(l), l ∈ [L], m ∈ [M ], (2.2)
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where Z(m) is the clustering matrix in the layer of type m = c(l) and B(l) = (B(l))T is a matrix

of block probabilities, l ∈ [L]. In order to distinguish this special case, we shall refer to (2.2) as

simply the DIMPLE model.

Another particular case, where layers of the network follow the Degree Corrected Stochastic Block

Models (DCBM), degree paramters supply more generalized application than SBM. the matrix of

probabilities of connection in layer l can be expressed as

P(l) = Θ(m)Z(m)B(l)(Z(m))TΘ(m), m = c(l), l = 1, ..., L, m = 1, ...,M (2.3)

Matrix Θ(m) is the diagonal matrix of the node weights with elements θ(m)
i , i = 1, . . . , n. We shall

refer to this model as the DEgree CORrected DIverse MultiPLEx model (DIMPLE-DECOR).

In all models, one observes the adjacency tensor A ∈ {0, 1}n×n×L with layers A(l) such that

A(l)(i, j) = A(l)(j, i) and, for 1 ≤ i < j ≤ n and l ∈ [L], where A(l)(i, j) are the Bernoulli

random variables with P(A(l)(i, j) = 1) = P(l)(i, j), and they are independent from each other.

The objective is to recover the layer clustering matrix C, as well as the community assignment

matrices Z(m) in the case of model (2.2), or the subspaces V(m) in the case of model (2.1).

Note that, since the SBM and DCBM are particular cases of the GDPG, (2.2) and (2.3) are particu-

lar cases of (2.1) (see Section 3.1 for further explanations). Nevertheless, the problems associated

with (2.1) and (2.2) and (2.3) are somewhat different. While recovering matrices V(m) is an esti-

mation problem, finding communities in the groups of layers, corresponding to clustering matrices

Z(m), is a clustering problem. For this reason, we study all models, (2.1), (2.2) and (2.3), in this

dissertation.

This dissertation makes several key contributions.
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1. It is the first one that considers the SBM-equipped multiplex network, where both the proba-

bilities of connections and the community structures can vary. And it considers the DCBM-

equipped multiplex network with degree corrected parameters. In this sense, This disserta-

tion generalizes both the models, where the community structure is identical in all layers,

and the ones, where there are only M types of the matrices of the connection probabilities,

so that the probability tensor has collections of identical layers. Those models correspond,

respectively, to M = 1, and to B(l) = B(m) with m = c(l) in (2.2).

2. This dissertation generalizes the COmmon Subspace Independent Edge (COSIE) random

graph model of Arroyo et al. (2021) and Zheng and Tang (2022), which corresponds to

M = 1 in (2.1).

3. This dissertation develops a novel between-layer clustering algorithm that works for all net-

work models, DIMPLE, DIMPLE-GDPG and DIMPLE-DECOR, and derive expressions for

the clustering errors under very simple and intuitive assumptions. Our simulations confirm

that the between-layer and the within-layer clustering algorithms deliver high precision in a

finite parameter settings. In addition, if M = 1, our subspace recovery error compares fa-

vorably to the ones in Arroyo et al. (2021) and Zheng and Tang (2022), due to employment

of a different algorithm.

4. Since the DIMPLE model generalizes two types of popular SBM-equipped multiplex net-

works models, this dissertation opens a gateway for testing/model selection. In particular,

one can test whether communities persist throughout the layers of the network, or whether

layers can be partitioned into groups for which this is true, which is equivalent to testing the

hypothesis that M = 1 in (2.2). Alternatively, one can test the hypothesis that all matrices

B(l) in a group of layers are the same that reduces to B(l) = B(m) with m = c(l) in (2.2).

One can test similar hypotheses in the case of the DIMPLE-GDPG network model.
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2.2 Justification of the model and related work

In the last few years, a number of authors studied multiplex network models. The vast majority

of the paper assumed that all layers of the network follow the Stochastic Block Model (SBM).

The latter is due to the fact that the SBM, according to Olhede and Wolfe (2014), provides a

universal tool for description of time-independent stochastic network data. It is also very common

in applications. For example, Sporns (2018) argues that stochastic block models provide a powerful

tool for brain studies. In fact, in the last few years, such models have been widely employed in

brain research (see, e.g., Crossley et al. (2013), Faskowitz et al. (2018), Nicolini et al. (2017),

among others).

While the scientific community considered various types of multiplex networks in general, and the

SBM-equipped multiplex networks in particular (see e.g., Brodka et al. (2018), Kao and Porter

(2017), Mercado et al. (2018) among others), the theoretically inclined papers in the field of statis-

tics mainly have been investigating the case where communities persist throughout all layers of

the network. This includes studying the so called “checker board model” in Chi et al. (2020),

where the matrices of block probabilities take only finite number of values, and communities are

the same in all layers. The tensor block models of Wang and Zeng (2019) and Han et al. (2021)

belong to the same category. In recent years, statistics publications extended this type of research

to the case where community structure is preserved in all layers of the network, but the matrices

of block connection probabilities can take arbitrary values (see, e.g., Bhattacharyya and Chatterjee

(2020), Lei et al. (2019), Lei and Lin (2022), Paul and Chen (2016), Paul and Chen (2020) and ref-

erences therein). The authors studied precision of community detection, and provided theoretical

and numerical comparisons between various techniques that can be employed in this case.

The recent years saw the latent position graphical models are with much wider applications and

they were extended to the COSIE random graph model for the multilayer setting. However, COSIE
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postulates that the layer networks are embedded into the same invariant subspace, which is very

similar to the assumption of persistent communities in all layers of a multiplex network. Neverthe-

less, there are many real life scenarios where the assumption, that all layers of the network have

the same communities or are embedded into the same subspace is too restrictive. For example, it is

known that some brain disorders are associated with changes in brain network organizations (see,

e.g., Buckner and DiNicola (2019)), and that alterations in the community structure of the brain

have been observed in several neuropsychiatric conditions, including Alzheimer disease (see, e.g.,

Chen et al. (2016)), schizophrenia (see, e.g., Stam (2014)) and epilepsy disease (see, e.g., Munsell

et al. (2015)). In this case, one would like to examine brains networks of the individuals with and

without brain disorder to derive the differences in community structures. Similar situations oc-

cur when one examines several groups of networks, often corresponding to subjects with different

biological conditions (e.g., males/females, healthy/diseased, etc.)

One of the possible approaches here is to assume that both, the community structures and the

probabilities of connections in the network layers, will be identical under the same biological con-

dition and dissimilar for different conditions. This type of setting, called the Mixture MultiLayer

Stochastic Block Model (MMLSBM) assumes that all layers can be partitioned into a few dif-

ferent types,such that each distinct type of layers is equipped with its own community structure

and a unique matrix of block connection probabilities, and that both are identical within the same

type of layers. In the context of a GDPG-based multiplex network, this extension leads directly to

low-rank tensor estimation, the problem that received a great deal of attention in the last five years.

Specifically, if M = 1, then the DIMPLE model (2.2) reduces to the multiplex models in Bhat-

tacharyya and Chatterjee (2020), Lei et al. (2019), Lei and Lin (2022), Paul and Chen (2016),

Paul and Chen (2020) with the persistent communities, and it becomes the MMLSBM of Stanley

et al. (2019), Jing et al. (2021) and Fan et al. (2021), if B(l) takes only M distinct values, i.e.,

B(l) = B(m) for c(l) = m. Similarly, if M = 1, the DIMPLE-GDPG model in (2.1) reduces to
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the COSIE model in Arroyo et al. (2021) and Zheng and Tang (2022), and it reduces to a low rank

tensor estimation of Luo et al. (2021) and Zhang and Xia (2018a) if all matrices Q(l) are identical

within a group of layers.

In essence, the conclusion of the discussion above is that so far authors considered two comple-

mentary types of settings for multiplex networks. In the first of them, all layers of the network are

embedded into the same subspaces in the case of the GDPG, or have the same communities if the

layers of the network are equipped with SBMs. In the second one, the layers may be embedded

into different subspaces, but the tensor of connection probabilities has a low rank, which reduces

to MMLSBM if layers follow the SBM.

Hence, the natural generalization of those two scenarios would be the setting, where the layers of

the network can be partitioned into groups, each with the distinct subspace or community structure.

Such multiplex network can be viewed as a concatenation of several multiplex networks that follow

COSIE model or Stochastic Block Models with persistent community structure. On the other hand,

such networks will reduce to a low rank tensor or the MMLSBM if networks in the group of layers

have identical probabilities of connections.

We feel that the above extension is imperative for a variety of reasons. As one can easily see, the

existing models are complementary in nature and are usually adopted without any consideration of

the alternatives. The DIMPLE-GDPG and the DIMPLE models allow to forgo this choice. They

also open the gate for testing this alternatives and adopting the one which better fits the data. Our

real data examples show that in real life situations the DIMPLE or the DIMPLE-GDPG model

provides a better summary of data than the MMLSBM.

The new DIMPLE-GDPG model requires development of new algorithms, since the probability

tensor P associated with the DIMPLE-GDPG model in (2.1) does not have a low rank, due to the

fact that all matrices Q(l) are different. For this reason, techniques and theoretical assessments

19



developed for low rank tensors do not work in the case of the DIMPLE-GDPG model. Similarly,

since the matrices of the block connection probabilities take different values in each of the layers,

techniques employed in Jing et al. (2021) and Fan et al. (2021) cannot be applied in the new

environment of DIMPLE.

Indeed, the TWIST algorithm of Jing et al. (2021) is based on the alternating regularized low rank

approximations of the adjacency tensor, which relies on the fact that the tensor of connection prob-

abilities is truly low rank in the case of MMLSBM. This, however, is not true for the DIMPLE

model, where the matrices of block connection probabilities vary from layer to layer. On the other

hand, the ALMA algorithm of Fan et al. (2021) exploits the fact that the matrices of connection

probabilities are identical in the groups of layers with the same community structures. This is no

longer the case in the environment of the DIMPLE model, where matrices of connection proba-

bilities are all different for different layers. Specifically, Section B compares the MMLSBM and

the DIMPLE model introduced in this paper and shows that, while algorithms designed for the

DIMPLE model work well for the MMLSBM, the algorithms designed for the MMLSBM display

poor performance if data are generated according to the DIMPLE model.

2.3 Notations

For any integer n, we denote [n] = {1, ..., n}. We denote tensors by calligraphy letters and matrices

by bold letters. Denote by MN,K the set of the clustering matrices for N objects partitioned into

K groups

MN,K =
{
X ∈ {0, 1}N×K , X1 = 1, XT1 ̸= 0

}
,

where X ∈ MN,K are such that Xi,j = 1 if node i is in cluster j and and Xi,j = 0 otherwise. For

any matrix X, denote the Frobenius, the infinity and the operator norm by ∥X∥F , ∥X∥∞ and ∥X∥,
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respectively, and its r-th largest singular value by σr(X). Let ∥X∥2→∞ = sup
∥z∥=1

∥Xz∥∞.

The column j and the row i of a matrix Q are denoted by Q(:, j) and Q(i, :), respectively. Denote

the identity and the zero matrix of size K by, respectively, IK and 0K (where K is omitted when

this does not cause ambiguity). Denote

On,K =
{
X ∈ Rn×K : XTX = IK

}
, On = On,n. (2.4)

Let vec(X) be the vector obtained from matrix X by sequentially stacking its columns. Denote

by X ⊗ Y the Kronecker product of matrices X and Y. Denote n-dimensional vector with unit

components by 1n. Denote diagonal of a matrix A by diag(A). Also, denote the M -dimensional

diagonal matrix with a1, ..., aM on the diagonal by diag(a1, ..., aM).

For any matrix X ∈ Rn1×n2 , denote its projection on the nearest rank K matrix by ΠK(X), that

is, if σk are the singular values, and uk and vk are the left and the right singular vectors of X,

k = 1, ..., r, then

X =
r∑

k=1

σkukv
T
k =⇒ ΠK(X) =

min(r,K)∑
k=1

σkukv
T
k .

For any matrices X ∈ Rn1×n2 and U ∈ On1,K , K ≤ n1, projection of X on the column space of

U and on its orthogonal space are defined, respectively, as

ΠU(X) = UUTX, ΠU⊥(X) = (I− ΠU)X.

Following Kolda and Bader (2009), we define the following tensor operations. For any tensor

X ∈ Rn1×n2×n3 and a matrix A ∈ Rm×n3 , their product X ×3 A along dimension 3 is a tensor in
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Rn1×n2×m with elements

[X ×3 A](i1, i2, j) =

n3∑
i3=1

A(j, i3)X (i1, i2, i3), j = 1, ...,m.

If Y ∈ Rm×n2×n3 is another tensor, the product between tensors X and Y along dimensions (2,3),

denoted by X ×2,3 Y , is a matrix in Rn1×m with elements

[X ×2,3 Y ](i1, i2) =

n2∑
j2=1

n3∑
j3=1

X (i1, j2, j3)Y(i2, j2, j3), i1 = 1, ..., n1, i2 = 1, ...,m.

The mode-3 matricization of tensor X ∈ Rn1×n2×n3 is a matrix M3(X ) = X ∈ Rn3×(n1n2) with

rows X(i, :) = [vec(X (:, :, i))]T . Please, see Kolda and Bader (2009) for a more extensive discus-

sion of tensor operations and their properties.

We use the sinΘ distances to measure the separation between two subspaces with orthonormal

bases U ∈ On,K and Ũ ∈ On,K , respectively. Suppose the singular values of UT Ũ are σ1 ≥ σ2 ≥

... ≥ σK > 0. Then

Θ(U, Ũ) = diag
(
cos−1(σ1), ..., cos

−1(σK)
)

are the principle angles. Quantitative measures of the distance between the column spaces of U

and Ũ are then

∥∥∥sinΘ(U, Ũ)
∥∥∥ =

√
1− σ2

min(U
T Ũ) and

∥∥∥sinΘ(U, Ũ)
∥∥∥
F
=

√
K − ∥UT Ũ)∥2F (2.5)

Some convenient characterizations of those distances can be found in Section 8.1 of Cai and Zhang

(2018a).

Finally, we shall use C for a generic positive constant that can take different values and is indepen-

dent of L, n, M , K and graph densities.
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CHAPTER 3: FITTING THE MODELS

In this dissertation, we consider a multiplex network with L layers of M types, where Lm is the

number of layers of type m, m ∈ [M ]. Let C ∈ M(L,M) be the layer clustering matrix. A

layer of type m has an ambient dimension Km. In the case of model (2.2), a layer of type m has

Km communities, and nk,m is the number of nodes of type k in the layer of type m, k ∈ [Km],

m ∈ [M ], so that

D(m)
z = (Z(m))TZ(m) = diag(n1,m, ..., nKm,m). (3.1)

For DIMPLE-DECOR, we denote

Θ(m)
z = (Z(m))T (Θ(m))2(Z(m)), γ

(m)
k =

∑
z(m)=k

(θ
(m)
i )2, (3.2)

and observe that

Θ(m)
z = (Θ(m)Z(m))T (Θ(m)Z(m)) = diag(γ

(m)
1 , . . . , γ

(m)
K ). (3.3)

Here γ
(m)
k is the squared norm of the node weights in class k in the layer of type m.

3.1 Between-layer clustering

First, we show that model (2.2) is a particular case of model (2.1). Indeed, denote U
(m)
z =

Z(m)
(
D

(m)
z

)−1/2

, where matrices D
(m)
z are defined in (3.1). For DIMPLE-DECOR, U(m)

z =

Θ(m)Z(m)(Θ(m)
z )−1/2. Since U

(m)
z ∈ On,Km in both DIMPLE and DIMPLE-DECOR, matrices
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P(l) in (2.2) and (2.3) can be written as

P(l) = U(m)
z B

(l)
D (U(m)

z )T , (3.4)

Here, B(l)
D =

√
D

(m)
z B(l)

√
D

(m)
z for DIMPLE model and B

(l)
D =

√
Θ(m)

z B(l)

√
Θ(m)

z for DIMPLE-

DECOR model. Therefore, (2.2) and (2.3) are particular cases of (2.1) with V(m) = U
(m)
z and

Q(l) = B
(l)
D . For this reason, we are going to cluster groups of layers in the more general setting

(2.1) of DIMPLE-GDPG.

In order to find the clustering matrix C, observe that matrices P(l) in (2.1) can be written as

P(l) = V(m)O
(l)
Q S

(l)
Q (O

(l)
Q )T (V(m))T , l ∈ [L] (3.5)

where

Q(l) = O
(l)
Q S

(l)
Q (O

(l)
Q )T , l ∈ [L], (3.6)

is the singular value decomposition (SVD) of Q(l) with O
(l)
Q ∈ On,Km , m = c(l), and diagonal

matrix S
(l)
Q . In order to extract common information from matrices P(l), we consider the SVD of

P(l)

P(l) = UP,lΛP,l(UP,l)
T , UP,l ∈ On,Km , l ∈ [L], m = c(l) (3.7)

and relate it to expansion (3.5). If, as we assume later, matrices Q(l) are of full rank, then O
(l)
Q ∈

OKm , so that O(l)
Q (O

(l)
Q )T = (O

(l)
Q )TO

(l)
Q = IKm , m = c(l). Therefore, V(m)O

(l)
Q ∈ On,Km , and

expansion (3.5) is just another way of writing the SVD of P(l). Hence, up to the Km-dimensional

rotation O
(l)
Q , matrices V(m) and UP,l are equal to each other when c(l) = m .

Since matrices O(l)
Q are unknown, we introduce alternatives to UP,l:

UP,l(UP,l)
T = V(m)O

(l)
Q (V(m)O

(l)
Q )T = V(m)(V(m))T , m = c(l), (3.8)
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Algorithm 1: The between-layer clustering
Input: Adjacency tensor A ∈ {0, 1}n×n×L; number of groups of layers M ; ambient
dimension K(l) of each layer l ∈ [L]; parameter ϵ
Output: Estimated clustering matrix Ĉ ∈ ML,M

Steps:
1: Find the SVDs ΠK(l)(A(l)) = ÛA,lΛ̂P,l(ÛA,l)

T , l ∈ [L]

2: Form matrix Θ̂ ∈ Rn2×L with columns Θ̂(:, l) = vec(ÛA,l(ÛA,l)
T )

3: Construct the SVD of Θ̂ using (3.12) and obtain matrix Ŵ = W̃(:, 1 : M) ∈ OL,M

4: Cluster L rows of Ŵ into M clusters using (1 + ϵ)-approximate K-means clustering.
Obtain estimated clustering matrix Ĉ

which depend on l only via m = c(l) and are uniquely defined for l ∈ [L]. The latter implies that

the between-layer clustering can be based on the matrices UP,l(UP,l)
T , l ∈ [L], or rather on their

vectorized versions. Denote

Dc = CTC = diag(L1, ..., LM), W = C(Dc)
−1/2 ∈ OL,M (3.9)

Consider matrices Ψ ∈ Rn2×M and Θ ∈ Rn2×L with respective columns

Ψ(:,m) = vec(V(m)(V(m))T ), Θ(:, l) = vec
(
V(c(l))(V(c(l)))T

)
= vec(UP,l(UP,l)

T ),

where m ∈ [M ], l ∈ [L]. It is easy to see that

Θ = ΨCT , Ψ = ΘCD−1
c , (3.10)

so that clustering assignment can be recovered by spectral clustering of columns of an estimated

version of matrix Θ.

For this purpose, consider layers A(l) = A(:, :, l) of the adjacency tensor A and construct the SVDs
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of their rank Km projections ΠKm(A
(l)):

ΠKm(A
(l)) = ÛA,lΛ̂P,l(ÛA,l)

T , ÛA,l ∈ On,Km , m = c(l), l ∈ [L]. (3.11)

Then, replace matrix Θ by its proxy Θ̂ with columns Θ̂(:, l) = vec(ÛA,l(ÛA,l)
T ). The major

difference between Θ and Θ̂, however, is that, under assumptions in Section 4.2, rank(Θ) = M

while, in general, rank(Θ̂) = L >> M . If the SVD of Θ̂ is

Θ̂ = ṼΛ̃W̃ , Ṽ ∈ On2,L, W̃ ∈ OL, (3.12)

then, we can form reduced matrices

V̂ = Ṽ(:, 1 : M) ∈ On2,M , Ŵ = W̃(:, 1 : M) ∈ OL,M , (3.13)

and apply clustering to the rows of Ŵ rather than to the rows of W̃ . The latter results in Algo-

rithm 1. We use (1+ϵ)-approximate K-means clustering to obtain the final clustering assignments.

There exist efficient algorithms for solving the (1 + ϵ)−approximate K-means problem (see, e.g.,

Kumar et al. (2004)). We denote

D̂c = ĈT Ĉ, Ŵ = ĈD̂−1/2
c ∈ OL,M (3.14)

Observe that clustering procedure above relies on the knowledge of the ambient dimension Km,

which is associated with the unknown group membership m = c(l). Instead of assuming that Km

are known, as it is done in Jing et al. (2021) and Fan et al. (2021), we assume that one knows

the ambient dimension K(l) of the GDPG in every layer l ∈ [L] of the network. This is a very

common assumption and is imposed in almost every paper that studies latent position or block

model equipped networks (see, e.g., Athreya et al. (2018), Rubin-Delanchy et al. (2022), Gao et al.

26



(2018), Gao et al. (2017)). In this case, one can replace Km in (3.11) by K(l). We further discuss

this issue in Remark 2.

Remark 1. Unknown number of layers. While Algorithm 1 assumes M to be known, in many

practical situations this is not true, and the value of M has to be discovered from data. Identifying

the number of clusters is a common issue in data clustering, and it is a separate problem from the

process of actually solving the clustering problem with a known number of clusters. A common

method for finding the number of clusters is the so called “elbow” method that looks at the fraction

of the variance explained as a function of the number of clusters. The method is based on the

idea that one should choose the smallest number of clusters, such that adding another cluster does

not significantly improve fitting of the data by a model. There are many ways to determine the

“elbow”. For example, one can base its detection on evaluation of the clustering error in terms

of an objective function, as in, e.g., Zhang et al. (2012). Another possibility is to monitor the

eigenvalues of the non-backtracking matrix or the Bethe Hessian matrix, as it is done in Le and

Levina (2015). One can also employ a simple technique of checking the eigen-gaps of the matrix

Λ̃ in (3.12), as it has been discussed in von Luxburg (2007), or use a scree plot as it is done in Zhu

and Ghodsi (2006).

Remark 2. Unknown ambient dimensions. In this paper, for the purpose of methodological

developments, we assume that the ambient dimension K(l) of each layer of the network is known

(which corresponds to the known number of communities in the case of the DIMPLE model). This

is a common assumption, and everything in the Remark 1 can also be applied to this case. Here,

K(l) = Km with m = c(l). One can, of course, can assume that the values of Km, m ∈ [M ],

are known. However, since group labels are interchangeable, in the case of non-identical subspace

dimensions (numbers of communities), it is hard to choose, which of the values corresponds to

which of the groups. This is actually the reason why Jing et al. (2021) and Fan et al. (2021), who

imposed this assumption, used it only in theory, while their simulations and real data examples are
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all restricted to the case of equal number of communities in all layers Km = K, m ∈ [M ]. On

the contrary, knowledge of K(l) allows one to deal with different ambient dimensions (number of

communities) in the groups of layers in simulations and real data examples.

Of course, if Km are all different, e.g., M = 3, K1 = 2, K2 = 3 and K3 = 4, this seems to imply

that one can use this information for clustering of layers. However, this is not true in general. Also,

in practice, the values of K(l) are estimated, so precision of the clustering procedure based entirely

on the ambient dimensions of layers is questionable at best.

3.2 Fitting invariant subspaces in groups of layers in the DIMPLE-GDPG model

If we knew the true clustering matrix C and the true probability tensor P ∈ Rn×n×L with layers

P(l) given by (2.1), then we could average layers with identical subspace structures. Precision of

estimating V(m), however, depends on whether the eigenvalues of Q(l) with c(l) = m add up.

Since the latter is not guaranteed, one can alternatively add the squares G(l) = (P(l))2, obtaining

∑
c(l)=m

G(l) =
∑

c(l)=m

(P(l))2 =
∑

c(l)=m

V(m) (Q(l))2 (V(m))T , m ∈ [M ]

In this case, the eigenvalues of (Q(l))2 are all positive which ensures successful recovery of matri-

ces V(m).

Note that, however, (A(l))2 is not an unbiased estimator of (P(l))2. Indeed, while E((A(l))2)i,j =

((P(l))2)i,j for i ̸= j, for the diagonal elements, one has

E((A(l))2)i,i = (P(l))2i,i +
∑
j

[
(P(l))i,j − (P(l))2i,j

]
.

Therefore, following Lei and Lin (2022), we evaluate the degree vector d̂(l) = A(l)1n and form
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Algorithm 2: Estimating invariant subspaces
Input: Adjacency tensor A ∈ {0, 1}n×n×L; number of groups of layers M ; ambient
dimensions Km, m ∈ [M ], of each group of layers; estimated clustering matrix Ĉ ∈ ML,M

Output: Estimated invariant subspaces V̂(m), m ∈ [M ]
Steps:
1: Construct tensor Ĝ with layers Ĝ(l) given by (3.15), l ∈ [L]

2: Construct tensor Ĥ using formula (3.16)

3: Construct the SVDs of layers Ĥ(m) = Ũ
(m)

Ĥ
Λ̂

(m)

Ĥ (Ũ
(m)

Ĥ
)T , m ∈ [M ]

4: Find V̂(m) = Ũ
(m)

Ĥ
(:, 1 : Km) = ΠKm(Ũ

(m)

Ĥ
), m ∈ [M ]

diagonal matrices diag(d̂(l)) with vectors d̂(l) on the diagonals. We construct a tensor Ĝ ∈ Rn×n×L

with layers Ĝ(l) = Ĝ(:, :, l) of the form

Ĝ(l) =
(
A(l)

)2 − diag(d̂(l)), l ∈ [L] (3.15)

Subsequently, we combine layers of the same types, obtaining tensor Ĥ ∈ Rn×n×M

Ĥ = Ĝ ×3 Ŵ
T , (3.16)

where Ŵ is defined in (3.14). After that, V(m), m ∈ [M ], can be estimated using the SVD. The

procedure is described in Algorithm 2.

Remark 3. Estimating invariant subspaces by averaging adjacency matrices. If one knew

that all matrices Q(l), l ∈ [L], in (2.1) have only positive eigenvalues, then estimation of invariant

subspaces V(m) could have been done by averaging adjacency matrices of the graphs, since

∑
c(l)=m

P(l) = V(m)

 ∑
c(l)=m

Q(l)

 (V(m))T , m ∈ [M ]

Indeed, the accuracy of spectral clustering relies on the relationship between the ratio of the largest
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and the smallest nonzero eigenvalues. The largest eigenvalues of matrices P(l) are always positive

due to the Perron-Frobenius theorem (see, e.g., Rao and Rao (1998)) and, hence, add up. However,

the same may not be true for the smallest nonzero eigenvalues that can be positive or negative, so

that their sum may not be large enough. In this situation, in the case of one-group (M = 1) SBM-

equipped multilayer network, simulation studies in Paul and Chen (2020) show that averaging of

the adjacency matrices may not lead to improved precision of community detection in groups of

layers. Furthermore, we studied averaging of the adjacency matrices in the DIMPLE model under

the assumption that all eigenvalues of matrices P(l) are nonnegative. However, even in the presence

of this assumption, averaging of adjacency matrices does not substantially improve the accuracy

in comparison with the bias-adjusted spectral clustering in Algorithm 2, while performing signifi-

cantly worse when this assumption does not hold. For this reason, we shall avoid presentation of

this algorithm in our exposition.

3.3 Within-layer clustering in the DIMPLE and DIMPLE-DECOR multiplex network

Algorithm 3: The within-layer clustering
Input: Adjacency tensor A ∈ {0, 1}n×n×L; number of groups of layers M ; number of
communities Km, m ∈ [M ]; estimated clustering matrix Ĉ ∈ ML,M ; parameter ϵ
Output: Estimated community assignments Ẑ(m) ∈ Mn,Km , m ∈ [M ]
Steps:
1: Construct tensor Ĝ with layers Ĝ(l) given by (3.15), l ∈ [L]

2: Construct tensor Ĥ using formula (3.16)

3: Construct the SVDs of layers Ĥ(m) = Ũ
(m)

Ĥ
Λ̂

(m)

Ĥ (Ũ
(m)

Ĥ
)T , m ∈ [M ]

4: Find V̂(m) = Ũ
(m)

Ĥ
(:, 1 : Km) = ΠKm(Ũ

(m)

Ĥ
), m ∈ [M ]

5: Cluster rows of V̂(m) into Km clusters using (1 + ϵ)-approximate K-means clustering.
Obtain clustering matrices Ẑ(m), m ∈ [M ]

After the matrices V(m) have been estimated, one can find clustering matrices Z(m) in (2.2) and

(2.3) by approximate K-means clustering. Indeed, up to a rotation, V(m) is equal to U
(m)
z =
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Z(m)(D
(m)
z )−1/2 for DIMPLE and U

(m)
z = Θ(m)Z(m)(Θ(m)

z )−1/2 for DIMPLE-DECOR, where

Z(m) is the clustering matrix of the layer m. Hence, there are only Km distinct rows in the matrix

V(m), and clustering assignment can be obtain using Algorithm 3.

Remark 4. k-means versus k-medians clustering. In Algorithm 3, one can replace the (1 + ϵ)-

approximate k-means clustering by (1 + ϵ)-approximate k-medians clustering. While the former

procedure is simpler, the latter is more common for networks obeying the DCBM. In the simulation

section we shall provide the comparison between the two methods for DIMPLE-DECOR.

31



CHAPTER 4: THEORETICAL ANALYSIS

4.1 Definitions

In this section, we study the between-layer clustering error rates of the Algorithm 1, the error of

estimation of invariant subspaces for the DIMPLE-GDPG model of Algorithm 2, and the within-

layer clustering error rates of Algorithm 3. Since the clustering is unique only up to a permutation

of cluster labels, denote the set of K-dimensional permutation functions of [K] by ℵ(K) and the

set of K ×K permutation matrices by F(K). The misclassification error rate of the between-layer

clustering is then given by

RBL = (2L)−1 min
P∈F(M)

∥Ĉ−CP∥2F . (4.1)

Similarly, the local community detection error in the layer of type m is

RWL(m) = (2n)−1 min
Pm∈F(Km)

∥Ẑ(m) − Z(m) Pm∥2F , m ∈ [M ]. (4.2)

Note that, since the numbering of layers is defined also up to a permutation, the errors RWL(1), ...,

RWL(M) should be minimized over the set of permutations ℵ(M). The average error rate of the

within-layer clustering is then given by

RWL =
1

M
min
ℵ(M)

M∑
m=1

RWL(m) =
1

2M n
min
ℵ(M)

M∑
m=1

[
min

Pm∈F(Km)
∥Ẑ(m) − Z(m) Pm∥2F

]
(4.3)

We shall measure the differences between the true and the estimated subspace bases matrices V(m)

and V̂(m) using the average sinΘ distances defined in (2.5). Here, again we need to seek the
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minimum over permutations of labels. We measure the errors as RS,max and RS,ave where

RS,max = min
ℵ(M)

max
m∈[M ]

∥∥∥sinΘ(
V(m), V̂(ℵ(m))

)∥∥∥
F

(4.4)

RS,ave =
1

M
min
ℵ(M)

M∑
m=1

∥∥∥sinΘ(
V(m), V̂(ℵ(m))

)∥∥∥2

F
(4.5)

4.2 Assumptions

In order the layers are identifiable, we assume that matrices V(m) in (2.1) or Z(m) in (2.2) and (2.3)

correspond to different linear subspaces for different values of m. Furthermore, the performances

of Algorithms 2 and 3 depend on the success of the between-layer clustering in Algorithm 1,

which, in turn, relies on the fact that matrices V(m)(V(m))T in (2.1) or Z(m)(Z(m))T in (2.2) and

(2.3), m ∈ [M ], are not too similar to each other for different values of m.

For the between layer clustering errors and the accuracy of the subspaces recovery, we develop

our theory for the general case of the DIMPLE-GDPG model (2.1). Subsequently, we derive the

within-layer clustering errors for the DIMPLE model (2.2). Denote

K =
1

M

M∑
m=1

Km, K = max
m∈[M ]

Km (4.6)

Consider matrix Z ∈ Rn×MK , which is obtained as horizontal concatenation of matrices V(m) ∈

Rn×Km , m ∈ [M ]. Let the SVD of Z be

Z = [V(1)|...|V(M)] = UD V
T
, U ∈ On,r,V ∈ OMK,r, r ≥ M + 1 (4.7)

Here, r is the rank of Z, and D is an r-dimensional diagonal matrix. In the case of the DIMPLE
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model (2.2) and the DIMPLE-DECOR model (2.3), one has Z = [U
(1)
z |...|U(M)

z ]. Since matrices

V(m) represent different subspaces, one has M + 1 ≤ r < n.

We impose the following assumptions.

A1. Clusters of layers are balanced, so that there exist absolute positive constants CK , c and c̄

such that

CKK ≤ Km ≤ K, cL/M ≤ Lm ≤ c̄L/M, m ∈ [M ] (4.8)

where Lm is the number of networks in the layer of type m. In the case of the DIMPLE model (2.2)

and the DIMPLE-DECOR model (2.3), local communities are balanced, so that

cn/K ≤ nk,m ≤ c̄n/K, k ∈ [Km],m ∈ [M ]

where nk,m is the number of nodes in the k-th community in the layer of type m.

A2. For some absolute constant κ0, one has σ1(D) ≤ κ0σr(D) in (4.7).

A3. The layers P(l) of the probability tensor P in (2.1) are such that, for some absolute constant

Cρ

P(l) = ρn,l P
(l)
0 , ∥P(l)

0 ∥∞ = 1, min
l∈[L]

ρn,l ≥ Cρ n
−1 log n, l ∈ [L] (4.9)

In the case of the DIMPLE model (2.2) and the DIMPLE-DECOR model (2.3), (4.9) reduces to

B(l) = ρn,l B
(l)
0 , ∥B(l)

0 ∥∞ = 1.

A4. Matrices Q(l) in (2.1) are such that, for some absolute constant Cλ ∈ (0, 1), one has

min
l=1,....L

[
σKm

(
Q(l)

)
/σ1

(
Q(l)

)]
≥ Cλ, m = c(l). (4.10)

In the case of the DIMPLE model and the DIMPLE-DECOR model, (4.10) appears as
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min
l∈[L]

[σKm(B
(l)
0 )/σ1(B

(l)
0 )] ≥ Cλ for m = c(l).

A5. There exist absolute constants cρ and c̄ρ such that

cρ ρn ≤ ρn,l ≤ c̄ρ ρn with ρn = L−1

L∑
l=1

ρn,l (4.11)

A6. For some absolute constant C0,P one has

∥P(l)
0 ∥2F ≥ C2

0,P K−1 n2 (4.12)

Assumptions above are very common and are present in many other network papers. Specifically,

Assumption A1 is identical to Assumptions A3 and A4 in Jing et al. (2021), or Assumption A3 in

Fan et al. (2021). Assumption A2 is identical to Assumption A2 in Jing et al. (2021). Assump-

tion A3 is present in majority of papers that study community detection in individual networks (see,

e.g. Lei and Rinaldo (2015)). It is required here since we rely on similarity of the sets of eigen-

vectors in the groups of similar layers, and, hence, need the sample eigenvectors to converge to the

true ones. Assumption A4 is equivalent to Assumption A1 in Jing et al. (2021), Assumption A4 in

Fan et al. (2021) and an equivalent assumption in Zheng and Tang (2022). Finally, Assumption A5

requires that the sparsity factors are of approximately the same order of magnitude. The latter

guarantees that the discrepancies between the true and the sample-based eigenvectors are similar

across all layers of the network. Hypothetically, Assumption A5 can be removed, and one can trace

the impact of different scales ρn,l on the clustering errors. This, however, will make clustering error

bounds very complicated, so we leave this case for future investigation.

Assumption A6 postulates that matrices P
(l)
0 have enough of non-negligible entries. Assump-

tion A6 naturally holds in the case of the balanced DIMPLE model (2.2). Indeed, in this case,
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∥P(l)
0 ∥2F ≥ c2n2K−2 ∥B(l)

0 ∥2F . Due to Assumption A3, one has 1 = ∥B(l)
0 ∥∞ ≤ ∥B(l)

0 ∥ and, there-

fore, by Assumptions A1 and A4

∥B(l)
0 ∥2F ≥ Km σ2

Km
(B

(l)
0 ) ≥ C2

λ Km ∥B(l)
0 ∥2 ≥ C2

λ CK K,

which implies ∥P(l)
0 ∥2F ≥ Cn2/K.

Remark 5. Extra assumptions for DIMPLE-DECOR For DIMPLE-DECOR, assumptions for

the degree corrected parameters are required. Specifically, there exist absolute constants cθ and c̄θ

such that for the elements θ(m)
i of Θ(m) one has

cθ ≤ θ
(m)
i ≤ c̄θ, i = 1, ..., n, m = 1, ...,M. (4.13)

In addition, it follows from B1 that Cn/K ≤ γ
(m)
k ≤ Cn/K with C = c̄(c̄θ) and C = c(cθ).

Note that Assumption A3 implies that n → ∞. In what follows, we assume that L can grow at

most polynomially with respect to n, specifically, that for some constant τ0

L ≤ nτ0 , 0 < τ0 < ∞ (4.14)

Condition (4.14) is hardly restrictive. Indeed, Jing et al. (2021) assume that L ≤ n, so, in their

paper, (4.14) holds with τ0 = 1. We allow any polynomial growth of L with respect to n.
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4.3 The between-layer clustering error

Evaluation of the between-layer clustering error relies on the Tucker decomposition of the tensor

with layers UP,l(UP,l)
T , l ∈ [L]. Consider tensor S ∈ Rn×n×L with layers

S(:, :, l) = UP,l(UP,l)
T = V(m)(V(m))T , m = c(l), l ∈ [L] (4.15)

and its clustered version U ∈ Rn×n×M of the form

U = S×3 [C(Dc)
−1]T , (4.16)

where Dc is defined in (3.9). Here, tensor U has layers identical to the set of distinct layers of

tensor S, so that U(:, :,m) = V(m)(V(m))T , m ∈ [M ].

Recall that, according to (4.15) and (4.16), one has S = G ×3 C. Then, using matrix Z in (4.7),

one can rewrite S as S = B ×1 Z ×2 Z ×3 C, where B ∈ RKM×KM×M is the core tensor with

layers

B(:, :,m) = diag(0K1 , ...,0Km−1 , IKm ,0Km+1 , ...,0KM
) ∈ {0, 1}KM×KM

Using the SVD in (4.7) and the definition of W in (3.9), we obtain

S = F ×1 U×2 U×3 W, F = R×1 D×2 D×3 D
1/2
c , R = B ×1 V

T ×2 V
T
, (4.17)

where F ,R ∈ Rr×r×M . Now, in order to use representation (4.17) for analyzing matrix Θ in

(3.10), note that Θ is the transpose of mode 3 matricization of S, i.e., Θ = ST
(3). Using Proposi-

tion 1 of Kolda and Bader (2009), obtain

Θ = (U⊗U)FWT , F = FT
(3) ∈ Rr2×M . (4.18)
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Here, by (3.9) and (4.7), W = CD
−1/2
c ∈ OL,M and U ∈ On,r. The following statement explores

the structure of matrix F in (4.18).

Lemma 1. Matrix F can be presented as F = (D ⊗ D)RD
1/2
c where R = (V ⊗ V)TR and

R = BT
(3). Here, rank(F) = M , and, under Assumptions A1–A6, one has

σ2
min(F) = σ2

M(F) ≥ c

c̄ κ4
0M

∥F∥2F ≥ cCK K L

c̄ κ4
0M

(4.19)

Let the SVD of F be of the form F = UFΛFVF , where UF ∈ Or2,M and VF ∈ OM . Then, the

SVD of Θ in (4.18) can be written as

Θ = VΛW , V = (U⊗U)UF ∈ On2,M , W = WVF ∈ OL,M , Λ = ΛF (4.20)

Representation (4.20) allows one to bound above the between-layer clustering error.

Theorem 1. Let Assumptions A1–A6 and (4.14) hold. Then, for any τ > τ0, there exists a constant

C that depends only on τ , CK , κ0, c̄, c, c̄ρ and cρ in Assumptions A1–A6, such that the between-

layer clustering error, defined in (4.1), satisfies

P
{
RBL ≤ CK2

nρn

}
≥ 1− Ln−τ ≥ 1− n−(τ−τ0) (4.21)

4.4 The subspace fitting errors in groups of layers in the DIMPLE-GDPG model

In this section, we provide upper bounds for the divergence between matrices V(m) and their

estimators V̂(m), m ∈ [M ]. We measure their discrepancies by RS,max and RS,ave defined in,

respectively, (4.4) and (4.5).
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Theorem 2. Let Assumptions A1–A6 and (4.14) hold, and matrices V̂(m), m ∈ [M ], be obtained

using Algorithm 2. Let

lim
n→∞

MK2

nρn
= 0. (4.22)

Then, for any τ > 0, there exists a constant C that depends only on constants in Assumptions

A1–A6, and a constant Cτ,ϵ which depends only on τ and ϵ, such that the subspace estimation

errors RS,max and RS,ave defined in, respectively, (4.4) and (4.5), satisfy

P
{
RS,max ≤ C

K5/2M
√
n ρn

(
1 +

√
log n√
LM

+
K

√
log n

√
nρn

)}
≥ 1− Cτ,ϵ Ln1−τ (4.23)

P
{
RS,ave ≤ C

K5M

nρn

(
1 +

log n

L
+

K2 log n

nρn

)}
≥ 1− Cτ,ϵ Ln1−τ (4.24)

Note that, due to condition (4.14), if τ > τ0 + 1, then the upper bounds in (4.23) and (4.24) hold

with probability at least 1− C̃τ,ϵ n
−(τ−τ0−1).

Remark 6. Subspace estimation error for a homogeneous multilayer GDPG. Consider the

case when M = 1, so that all layers of the network can be embedded into the same invariant

subspace. Since the dominant terms in (4.23) and (4.24) are due to clustering of layers, it follows

from the proof of Theorem 2 in Section A.2, where ∥Ĥ(m) − H(m)∥ is replaced with ∆
(m)
1 , m =

M = 1, that

∥∥∥sinΘ(
V̂,V

)∥∥∥
F
≤ C

K5/2
[
ρ
3/2
n n3/2

√
log n+ ρ2n n

√
L
]

n2 ρ2n
√
L

= C K5/2

[ √
log n√
n ρn L

+
1

n

]

Consequently, one has much smaller subspaces estimation error

P
{
RS,max ≤ C K5/2

[ √
log n√
n ρn L

+
1

n

]}
≥ 1− C̃τ,ϵ Ln1−τ (4.25)

39



4.5 The within-layer clustering error

Since the within-layer clustering for each group of layers is carried out by clustering rows of the

matrices V̂(m), the upper bound for RWL defined in (4.3) can be easily obtained as a by-product of

Theorem 2. Specifically, the following statement holds.

Corollary 1. Let assumptions of Theorem 2 hold. Then, for any τ > 0, there exists a constant C

that depends only on constants in Assumptions A1–A6, and Cτ,ϵ which depends only on τ and ϵ,

such that for the DIMPLE model

P
{
RWL ≤ C

K4M

nρn

(
1 +

log n

L
+

K2 log n

nρn

)}
≥ 1− Cτ,ϵ Ln1−τ (4.26)

For the DIMPLE-DECOR model,

P
{
RWL ≤ C

K4M

nρn

(
log n

L
+K2

)}
≥ 1− Cτ,ϵ Ln1−τ (4.27)

Note that in the case of M = 1 for DIMPLE, Corollary 1 yields, with high probability, that

RWL ≤ C K4

[
log n

n ρn L
+

1

n2

]
(4.28)
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CHAPTER 5: SIMULATION STUDY

5.1 Simulations settings

In order to study performances of our methodology for various combinations of parameters, we

carry out a limited simulation study with models generated from DIMPLE, DIMPLE-DECOR and

DIMPLE-GDPG. We use Algorithm 1 for finding the groups of layers and Algorithms 2 and 3,

respectively, for recovering the ambient subspaces in the DIMPLE-GDPG setting, and for finding

communities in groups of layers for the DIMPLE and DIMPLE-DECOR models.

To obtain a multilayer network that complies with our assumptions in Section 4.2, we fix n, L,

M , K, the sparsity parameters c and d, the assortativity parameter w, the Dirichlet parameter α

used for generating a DIMPLE-GDPG network, and the degree parameters t1 and t2 in each degree

corrected matrix for generating a DIMPLE-DECOR network. We use the multinomial distribution

with equal probabilities 1/M to assign group memberships to individual networks.

In the case of the DIMPLE model, we generate K communities in each of the groups of layers using

the multinomial distribution with equal probabilities 1/K. In this manner, we obtain community

assignment matrices Z(m), m ∈ [M ], in each layer l with c(l) = m, where c : [L] → [M ] is

the layer assignment function. Next, we generate the entries of B(l), l ∈ [L], as uniform random

numbers between c and d, and then multiply all the non-diagonal entries of those matrices by w.

In this manner, if w < 1 is small, then the network is strongly assortative, i.e., there is a higher

probability for nodes in the same community to connect. If w > 1 is large, then the network is

disassortative, i.e., the probability of connection for nodes in different communities is higher than

for nodes in the same community. Finally, since entries of matrices B(l) are generated at random,

when w is close to one, the networks in all layers are neither assortative or disassortative. After the
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community assignment matrices Z(m) and the block probability matrices B(l) have been obtained,

we construct the probability tensor P with layers P(:, :, l) = Z(m)B(l)(Z(m))T , where m = c(l),

l ∈ [L].

As for DIMPLE-DECOR, we also generate the degree parameters Θ(m) in each group of layers

as uniform random numbers between t1 and t2. And then with the same generating ways with

DIMPLE, after Z(m) and B(l) have been obtained, we construct the probability tensor P with

layers P(:, :, l) = Θ(m)Z(m)B(l)(Z(m))TΘ(m), where m = c(l), l = 1, ..., L.

In the case of the DIMPLE-GDPG setting, we obtain matrices X(m) ∈ [0, 1]n×K , m ∈ [M ],

with independent rows, generated using the Dirichlet distribution with parameter α. We obtain

matrices B(l), in exactly the same manner as in the case of the DIMPLE model and construct P

with layers P(:, :, l) = X(m)B(l)(X(m))T , where m = c(l), l ∈ [L]. In this case, the matrices

V(m) are obtained from the SVD X(m) = V(m)Λ
(m)
X W

(m)
X of X(m). Matrices Q(l) are defined as

Q(l) = Λ
(m)
X W

(m)
X B(l)(W

(m)
X )TΛ

(m)
X in (2.1), l ∈ [L].

After the probability tensor P is generated, the layers A(l) of the adjacency tensor A are obtained

as symmetric matrices with zero diagonals and independent Bernoulli entries A(l)(i, j) for 1 ≤

i < j ≤ n. Subsequently, we use Algorithm 1 for finding the groups of layers for all models,

followed by Algorithm 2 for estimating matrices V(m) in the case of the DIMPLE-GDPG network,

or Algorithm 3 for clustering nodes in each group of layers of the network into communities for

the DIMPLE and DIMPLE-DECOR models.

In cases of DIMPLE-GDPG and DIMPLE, we have two sets of simulations, one with fixed L and

varying n, another with the fixed n and varying L. In all simulations, we set M = 3 and Km = 3

for m = 1, 2, 3, and study two sparsity scenarios, c = 0, d = 0.8 or c = 0, d = 0.5, with four

values of assortativity parameter w = 0.6, 0.8, 1.0 and 1.2. In all simulations, we set α = 0.1.

In the case of DIMPLE-DECOR, we set c = 0, d = 0.8 and consider either fixed assortativity
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parameter w = 0.5, or varying one: w = 0.5, 0.75, 1, 1.25. In addition, we look at four settings for

the pairs of parameters t1 and t2:

1. t1 varying, t2 fixed: t1 = 0.2, 0.4, 0.6, 0.8 and t2 = 1.11 (Figure 5.5 and Figure 5.10)

2. t1 fixed, t2 varying: t1 = 0.2 and t2 = 0.65, 0.8, 0.95, 1.11 (Figure 5.6 and Figure 5.11)

3. both t1 and t2 are varying: (t1, t2) = (0.2, 0.65); (0.4, 0.8); (0.6, 0.95); (0.8, 1.11) (Figure

5.7 and Figure 5.12), or (t1, t2) = (0.2, 1.11); (0.4, 0.95); (0.6, 0.8) (Figure 5.8 and Figure

5.13)

4. both t1 and t2 are fixed: t1 = 0.2, t2 = 1 (Figure 5.9 and Figure 5.14)

We report the average between-layer clustering errors RBL defined in (4.1), and also the average

within-layer clustering error RWL defined in (4.3) in the case of the DIMPLE setting and the

average sinΘ distance RS,ave defined in (4.5) between the true and the estimated subspaces in the

case of the DIMPLE-GDPG network. We first present simulations results for the DIMPLE model

and the DIMPLE-GDPG model, followed by the study of DIMPLE-DECOR.

5.2 Simulations Results

Simulations results for the DIMPLE and DIMPLE-GDPG models are summarized in Figures 5.1–

5.2 and Figures 5.3–5.4, respectively. Note that, while the between-layer clustering errors (left

panels in Figures 5.1–5.4), as well as the within-layer clustering errors (right panels in Figures 5.1–

5.2) are between 0 and 1, the average errors of estimation of subspaces RS,ave defined in (4.5) (right

panels in Figures 5.3–5.4) lie between 0 and K, so they are on a different scale.

As it is expected, both estimation and clustering are harder when a network is more sparse, there-

fore, all errors are smaller when d = 0.8 (top panels) than when d = 0.5 (bottom). Figures 5.1–5.4
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Figure 5.1: The between-layer clustering error rates of Algorithm 1 (left) and the within-layer error rates of
Algorithms 3 (right), averaged over 500 simulation runs, for the DIMPLE model with c = 0, d = 0.8 (top)
and c = 0, d = 0.5 (bottom), L = 50 and n = 20, 25, 30, 40, 50, 60, 75, 100. The entries of B(l), l ∈ [L],
are generated as uniform random numbers between c and d. All the non-diagonal entries of those matrices
are subsequently multiplied by w.

show that the value of the assortativity parameter does not play a significant role in the between-

layer clustering. Indeed, as the left panels in all figures show, the smallest between-layer cluster-

ing errors occur for w = 1.2 followed by w = 1.0. The latter confirms that the difficulty of the

between-layer clustering is predominantly controlled by the sparsity of the network. The results

are somewhat different for the community detection errors and the subspace estimation errors in,

respectively, the DIMPLE and the DIMPLE-GDPG models. Indeed, as the right panels in Fig-

ures 5.1–5.4 show, the smallest errors occur in the more assortative/disassortative models with

w = 0.6 and w = 1.2.

One can see from Figures 5.1 and 5.3 that, when n grows, all errors decrease. The influence of L

on the error rates is more complex. As Theorem 1 implies, the between-layer clustering errors are
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Figure 5.2: The between-layer clustering error rates of Algorithm 1 (left) and the within-layer
error rates of Algorithms 3 (right), averaged over 500 simulation runs, for the DIMPLE model
with c = 0, d = 0.8 (top) and c = 0, d = 0.5 (bottom), n = 100 and L =

5, 10, 15, 20, 25, 30, 40, 50, 60, 75, 100, 150, 200, 250, 300, 350, 400. The entries of B(l), l ∈ [L], are gen-
erated as uniform random numbers between c and d. All the non-diagonal entries of those matrices are
subsequently multiplied by w.

of the order (nρn)−1 for fixed values of M and K. This agrees with the left panels in Figures 5.2

and 5.4 where curves exhibit constant behavior for when L grows (small fluctuations are just due

to random errors). For the right panels in Figures 5.2 and 5.4 this, however, happens only when L

is relatively large.

The explanation for such behavior lies in the fact that the between-layer clustering error (corre-

sponding to the left panels in Figures 5.2 and 5.4) is of the order K2 (nρn)
−1 and is independent of

L. On the other hand, for fixed K and M , the errors RWL and RS,ave (corresponding to the right

panels in, respectively, Figures 5.2 and 5.4) are of the order (n ρn)
−1 + log n (n ρn L)

−1. While

L is small the second term is dominant but, as L grows. the first term becomes dominant and the
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Figure 5.3: The between-layer clustering error rates of Algorithm 1 (left) and the sinΘ distances RS,ave of
Algorithms 2 (right), averaged over 100 simulation runs, for the DIMPLE-GDPG model with α = 0.1, c =
0, d = 0.8 (top) and c = 0, d = 0.5 (bottom), L = 50 and n = 20, 25, 30, 40, 50, 60, 75, 100, 120, 140, 160.
The entries of B(l), l ∈ [L], are generated as uniform random numbers between c and d. All the non-
diagonal entries of those matrices are subsequently multiplied by w.

errors stop declining as L grows.

Simulation results for DIMPLE-DECOR are summarized in Figures 5.5–5.14. One can see from

these figures that, when n and L grow while the other stays the same, clustering errors follow

similar trends with DIMPLE and DIMPLE-GDPG.

The node weight parameters t1 and t2 have multiple effects on the error rates of both the between-

layer and the within-layer clustering. In particular, the value of ρn is proportional to (t1 + t2)/2,

the average of t1 and t2. Therefore, when t1 becomes larger in Figures 5.5 and 5.10, or t2 becomes

larger in Figures 5.6 and 5.11, both error rates decrease. Figures 5.7 and 5.12 exhibit the similar

effect.
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Figure 5.4: The between-layer clustering error rates of Algorithm 1 (left) and the sinΘ distances
RS,ave of Algorithms 2 (right), averaged over 100 simulation runs, for the DIMPLE-GDPG model
with α = 0.1, c = 0, d = 0.8 (top) and c = 0, d = 0.5 (bottom), n = 100 and L =

5, 10, 15, 20, 25, 30, 40, 50, 60, 75, 100, 150, 200, 250, 300, 350, 400. The entries of B(l), l ∈ [L], are gen-
erated as uniform random numbers between c and d. All the non-diagonal entries of those matrices are
subsequently multiplied by w.

The difference t2 − t1 also influences the error rates. In the one-layer network, increase in the

heterogeneity between nodes’ degrees usually leads to the decline in clustering precision. However,

in the case of the DIMPLE-DECOR, the dynamics is different. When t2 − t1 becomes larger, the

layers become more diverse, which is beneficial for the accuracy of Algorithm 1. Specifically, as

Figures 5.8 and 5.13 demonstrate, when t2 − t1 grow with the same average, the error rates of the

between-layer clustering become smaller which, in turn, leads to the decrease of the within-layer

clustering errors. For this reason, the best precision of the between and within-layer clustering

occurs when the difference between t2 and t1 is the largest.

Figures 5.9 and 5.14 study the impact of assortativity parameter w and confirm that it significantly
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Figure 5.5: The between-layer clustering error rates of Algorithm 1 and the within-layer error rates
of Algorithms 3 for c = 0, d = 0.8, w = 0.5, t1 = 0.2, 0.4, 0.6, 0.8, t2 = 1.11, L = 50 and
n = 20, 30, 40, 50, 60, 70, 80, 90, 100. Results are averaged over 100 simulation runs.

Figure 5.6: The between-layer clustering error rates of Algorithm 1 and the within-layer error rates of
Algorithms 3 for c = 0, d = 0.8, w = 0.5, t1 = 0.2, t2 = 0.65, 0.8, 0.95, 1.11, L = 50 and n =

20, 30, 40, 50, 60, 70, 80, 90, 100. Results are averaged over 100 simulation runs.

Figure 5.7: The between-layer clustering error rates of Algorithm 1 and the within-layer error rates of
Algorithms 3 for c = 0, d = 0.8, w = 0.5, (t1, t2) = (0.2, 0.65); (0.4, 0.8); (0.6, 0.95); (0.8, 1.11), L = 50

and n = 20, 30, 40, 50, 60, 70, 80, 90, 100. Results are averaged over 100 simulation runs.
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Figure 5.8: The between-layer clustering error rates of Algorithm 1 and the within-layer error rates of
Algorithms 3 for c = 0, d = 0.8, w = 0.5, (t1, t2) = (0.2, 1.11); (0.4, 0.95); (0.6, 0.8), L = 50 and
n = 20, 30, 40, 50, 60, 70, 80, 90, 100. Results are averaged over 100 simulation runs.

Figure 5.9: The between-layer clustering error rates of Algorithm 1 and the within-layer error rates
of Algorithms 3 for c = 0, d = 0.8, w = 0.5, 0.75, 1, 1.25, t1 = 0.2, t2 = 1, L = 50 and
n = 20, 30, 40, 50, 60, 70, 80, 90, 100. Results are averaged over 100 simulation runs.

Figure 5.10: The between-layer clustering error rates of Algorithm 1 and the within-layer error rates
of Algorithms 3 for c = 0, d = 0.8, w = 0.5, t1 = 0.2, 0.4, 0.6, 0.8, t2 = 1.11, L =

50, 100, 150, 200, 250, 300, 350, 400 and n = 100. Results are averaged over 100 simulation runs.
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Figure 5.11: The between-layer clustering error rates of Algorithm 1 and the within-layer error rates
of Algorithms 3 for c = 0, d = 0.8, w = 0.5, t1 = 0.2, t2 = 0.65, 0.8, 0.95, 1.11, L =

50, 100, 150, 200, 250, 300, 350, 400 and n = 100. Results are averaged over 100 simulation runs.

Figure 5.12: The between-layer clustering error rates of Algorithm 1 and the within-layer error rates of
Algorithms 3 for c = 0, d = 0.8, w = 0.5, (t1, t2) = (0.2, 0.65); (0.4, 0.8); (0.6, 0.95); (0.8, 1.11),
L = 50, 100, 150, 200, 250, 300, 350, 400 and n = 100. Results are averaged over 100 simulation runs.

affects the within-layer clustering error rates. Indeed, if one had just one layer, then parameter w

would be directly proportional to the signal-to-noise ratio in the DCBM (Gao et al. (2018)). Hence,

the errors are larger when the value of w is closer to one. On the other hand, the between-layer

clustering errors are less affected by the value of w since the algorithm relies on the differences

between clustering assignments.
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Figure 5.13: The between-layer clustering error rates of Algorithm 1 and the within-layer error rates
of Algorithms 3 for c = 0, d = 0.8, w = 0.5, (t1, t2) = (0.2, 1.11); (0.4, 0.95); (0.6, 0.8), L =

50, 100, 150, 200, 250, 300, 350, 400 and n = 100. Results are averaged over 100 simulation runs.

Figure 5.14: The between-layer clustering error rates of Algorithm 1 and the within-layer error
rates of Algorithms 3 for c = 0, d = 0.8, w = 0.5, 0.75, 1.0, 1.25, t1 = 0.2, t2 = 1, L =

50, 100, 150, 200, 250, 300, 350, 400 and n = 100. Results are averaged over 1000 simulation runs.

5.3 Comparison of k-means and k-medians algorithms for community detection for

DIMPLE-DECOR

Traditionally, community detection in the one-layer DCBM is carried out using the k-median clus-

tering algorithm (Gao et al. (2018)), however, we use k-means clustering in Algorithm 3. This

section serves as justification for this choice. In particular, we compare performances of the within-

layer clustering in Algorithm 3, where in Step 5, k-means and k-medians algorithms are used for

clustering. We report results in Figures 5.15–5.20. Specifically, Figures 5.15–5.17 consider fixed
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Figure 5.15: The comparison of the k-means and k-medians for Algorithm 3 for c = 0, d = 0.8, w = 0.8,
t1 = 0.4, 0.6, 0.8, t2 = 1.11, and L = 100, n = 25, 50, 75, 100, 150, 200. Results are averaged over 100
simulation runs.
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Figure 5.16: The comparison of the k-means and k-medians for Algorithm 3 for c = 0, d = 0.5, w = 0.5,
(t1, t2) = (0.4, 1), (0.6, 1.2), (0.8, 1.4), and L = 100, n = 25, 50, 75, 100, 150, 200. Results are averaged
over 100 simulation runs.

L = 100 and varying values of n, while Figures 5.18–5.20 display errors for n = 100 and varying

values of L.

Our simulations show that, for small values of n (n ≤ 50), k-means and k-medians have very

similar precision. However, as n grows, k-means algorithm leads to significantly smaller errors.
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Figure 5.17: The comparison of the k-means and k-medians for Algorithm 3 for c = 0, t1 = 0.6,
(d,w, t2) = (0.4, 0.4, 1.58), (0.6, 0.6, 1.29), (0.8, 0.8, 1.11), and L = 100, n = 25, 50, 75, 100, 150, 200.
Results are averaged over 100 simulation runs.
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Figure 5.18: The comparison of the k-means and k-medians for Algorithm 3 for c = 0, d = 0.8, w = 0.8,
t1 = 0.4, 0.6, 0.8, t2 = 1.11, and L = 50, 100, 150, 200, 300, 400, n = 100. Results are averaged over 100
simulation runs.
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Figure 5.19: The comparison of the k-means and k-medians for Algorithm 3 for c = 0, d = 0.5, w =

0.5, (t1, t2) = (0.4, 1), (0.6, 1.2), (0.8, 1.4), and L = 50, 100, 150, 200, 300, 400, n = 100. Results are
averaged over 100 simulation runs.
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Figure 5.20: The comparison of the k-means and k-medians for Algorithm 3 for c = 0, t1 = 0.6,
(d,w, t2) = (0.4, 0.4, 1.58), (0.6, 0.6, 1.29), (0.8, 0.8, 1.11), L = 50, 100, 150, 200, 300, 400, n = 100.
Results are averaged over 100 simulation runs.
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CHAPTER 6: APPLICATION TO REAL WORLD DATA

In this section, we consider applications of the DIMPLE and the DIMPLE-GDPG models to real-

life data, and its comparison with the MMLSBM. Note that the between-layer clustering is carried

out by Algorithm 1 for both the DIMPLE and the DIMPLE-GDPG models, so one can decide

which of the models to use later in the analysis.

In our examples, the DIMPLE model with its SBM-imposed structures provided better descriptions

of the organization of layers in each group than its GDPG-based DIMPLE-GDPG counterpart.

Furthermore, we compared our between layer clustering partitions with the ones obtained on the

basis of the MMLSBM setting.

6.1 Worldwide Food Trading Network Data

In this subsection, we consider applying our clustering algorithms to the Worldwide Food Trading

Networks data collected by the Food and Agriculture Organization of the United Nations. The

data have been described in De Domenico et al. (2015), and it is available at https://www.

fao.org/faostat/en/#data/TM. The data includes export/import trading volumes among

245 countries for more than 300 food items. These data can be modeled as a multiplex network,

in which layers represent different products, nodes are countries, and edges at each layer repre-

sent trading relationships of a specific food product among countries. A part of the data set was

analyzed in Jing et al. (2021) and Fan et al. (2021).

Similarly to Jing et al. (2021) and Fan et al. (2021), we used data for the year 2010. We start with

pre-processing the data by adding the export and import volumes for each pair of countries in each

layer of the network, to produce undirected networks that fit in our model. To avoid sparsity, we
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select 104 countries, whose total trading volumes are higher than the median among all countries.

We choose 58 meat/dairy and fruit/vegetable items and constructed a network with 104 nodes and

58 layers.

While pre-processing the data, we observe that global trading patterns are different for the meat/dairy

and the fruit/vegetable groups. Specifically, the trading volumes in meat/dairy group are much

smaller than the trading volumes in the fruit/vegetable group. For this reason, we choose the

thresholds that keep similar sparsity levels for the adjacency matrices. In particular, we set thresh-

old to be equal to 1 unit for the meat/dairy group and 300 units for the fruit/vegetable group, and

draw an edge between two nodes (countries) if the total trading volume between them is at or above

the threshold.

We scramble the 58 layers and apply Algorithm 1 for the between-layer clustering. Since the food

items consist of a meat/dairy and a fruit/vegetable group, we set M = 2. Due to the fact that there

are five food regions (continents) in the world, Asia, America, Europe, Africa and Australia, we

start with the number of communities in each layer to be K = 5. However, the latter leads to an

unbalanced community structure, specifically, two communities that consists of only one country.

For this reason, after experimenting, we set K = 3. Results of the between-layer clustering are

presented in Figure 6.1. As it is evident from Figure 6.1, Algorithm 1 separates the food items into

the meat/dairy and the fruit/vegetable groups.

Furthermore, we investigate the communities of countries that form trade clusters in each of the

two layers. We use Algorithm 3 in the paper, and exhibit results of the within-layer clustering in

Figure 6.2. The left panels in Figure 6.2 show the number of nodes (countries) in communities 1,2

and 3 in the meat/dairy and the fruit/vegetable group, respectively. The right panels in Figure 6.2

project those countries onto the world map. Here, the red color is used for community 1, the yellow

color for community 2 and the green color for for community 3. Since we only select 104 countries
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Figure 6.1: Results of clustering of food networks layers into M = 2 clusters by Algorithm 1 in
the paper

Figure 6.2: Trading communities for the meat/dairy (top) and the fruit/vegetable (bottom) groups. Left
panels: community sizes; right panels: community memberships
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Figure 6.3: Results of clustering of food networks layers into M = 2 clusters by ALMA algorithm
of Fan et al. (2021)

to be a part of the network, some regions in the map are colored grey.

In order to justify application of the DIMPLE model, we also carry out data analysis assuming that

data were generated using the MMLSBM. Specifically, we applied ALMA algorithm of Fan et al.

(2021) for the layer clustering with the same parameters M = 2 and K = 3. Results are presented

in Figure 6.3. It is easy to notice that ALMA algorithm places some of the meat/dairy items into

the fruit/vegetable group. We believe that this is due to the fact that MMLSBM is sensitive to the

probabilities of connections rather than connection patterns.

6.2 Global Flights Network Data

In this section, we applied our clustering algorithms to the Global Flights Network data collected

by the OpenFlights. As of June 2014, the OpenFlights Database contains 67663 routes between

58



3321 airports on 548 airlines spanning the globe. It is available at https://openflights.

org/data.html#airport.

These data can be modeled as a multiplex network, in which layers represent different airlines,

nodes are airports where airlines depart and land, and edges at each layer represent existing routes

of a specific airline company between two airports. To avoid sparsity, we selected 224 airports,

where over 150 airline companies have rights to depart and land in. Furthermore, we chose 81

airlines that have at least 240 routes between those airports, constructing a network with 224 nodes

and 81 layers.

We scrambled the 81 layers and applied Algorithm 1 for the between-layer clustering. After ex-

perimenting with various values of M and K, we partitioned the airlines into M = 4 groups, and

used the ambient dimension K = 3 for each of the groups. Results of the between-layer clustering

are presented in Table 6.1.

We also partitioned airports in each of the groups of airlines into communities. Results are pre-

sented in Figure 6.4.

It is easy to see that in Table 6.1, the airlines are naturally grouped by geographical areas from

where the flights are originated. Group 1 is constituted by Chinese airline and one Japanese airline

which has flights predominantly in Far East. Group 2 consists of airlines that belong to countries

in Asia, such as India, Japan, South Korea and Vietnam, Australia and New Zealand, and few

big airlines in Gulf States (Saudi Arabia, United Arab Emirates, Qatar) that have a large number

of flights to both Asia and Australia. Group 3 is formed by airlines originated from Europe and

North Africa while Group 4 is comprised of airlines that fly in or from North or South America.

Not surprisingly, this group includes two big European airlines, KLM and Air France, since those

airlines are members of the SkyTeam alliance and share many flights originated in USA with Delta

airlines.
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Figure 6.4: Communities for the four airlines groups. Group 1: airlines originated in China. Group 2: airlines
originated in Asia, Australia,New Zealand, and Gulf States. Group 3: airlines originated in Europe and North Africa.
Group 4: airlines originated in North or South America.

We also analyzed the airline data under the assumption that they follow the MMLSBM. To this end,

we applied ALMA algorithm of Fan et al. (2021) for the layer clustering, with the same parameters

M = 4 and K = 3. Results are presented in Table 6.2. It is easy to see that while the DIMPLE

model ensures a logical geography-based partition of the airlines, the MMLSBM does not. Indeed,

the MMLSBM lumps almost all airlines into Group 1, placing few Chinese airlines into Group 2,

few United States owned airlines together with Air France, Alitalia and KLM into Group 3, and

Ryanair (Ireland), Transavia and Air Bourbon (France), easyJet and Jet2.com (United Kingdom)

into Group 4. On the contrary, Algorithm 1 associated with the DIMPLE model delivers four

balanced (similar in size) groups. This is due to the fact that MMLSBM groups airlines by the

volume of operation rather than the structure of roots.
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Table 6.1: Airlines Groups obtained using Algorithm 1 with K = 3 and M = 4

Airlines Groups under the DIMPLE-GDPG Model
Group 1 Group 2

China Hainan Airlines New Zealand Air New Zealand
China Air China Republic of Korea Korean Air
China Sichuan Airlines Singapore Singapore Airlines
China Shenzhen Airlines Australia Qantas
China China Southern Airlines Vietnam Vietnam Airlines
China Shandong Airlines India Air India Limited
China China Eastern Airlines India IndiGo Airlines
China Xiamen Airlines Australia Virgin Australia
Japan Japan Air System South Africa South African Airways

Group 3 Indonesia Garuda Indonesia
Germany Lufthansa Republic of Korea Asiana Airlines

Russia Ural Airlines Malaysia Malaysia Airlines
Switzerland Swiss International Air Lines India Jet Airways

Morocco Royal Air Maroc Japan Japan Airlines
Norway Norwegian Air Shuttle Japan All Nippon Airways
Ireland Ryanair Qatar Qatar Airways
Turkey Turkish Airlines Saudi Arabia Saudi Arabian Airlines
Greece Aegean Airlines United Arab Emirates Emirates
Algeria Air Algerie United Arab Emirates Etihad Airways
Ethiopia Ethiopian Airlines Group 4

United Kingdom Jet2.com United States JetBlue Airways
United Kingdom Flybe United States US Airways

Russia Transaero Airlines United States Alaska Airlines
Germany Condor Flugdienst United States Southwest Airlines
Germany TUIfly United States Delta Air Lines
Sweden Scandinavian Airlines United States AirTran Airways
Portugal TAP Portugal United States Spirit Airlines
France Transavia France United States United Airlines

United Kingdom British Airways United States American Airlines
Russia S7 Airlines United States Frontier Airlines
Ireland Aer Lingus Canada Air Canada

Germany Germanwings Canada WestJet
Egypt Egyptair Mexico AeroMexico

Austria Austrian Airlines Chile LAN Airlines
Spain Iberia Airlines Brazil TAM Brazilian Airlines

Germany Air Berlin South America Avianca
Italy Alitalia Netherlands KLM Royal Dutch Airlines

Hungary Wizz Air France Air France
Finland Finnair
Russia Aeroflot
France Air Bourbon

Netherlands Transavia Holland
United Kingdom easyJet
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Table 6.2: Airlines Groups obtained using ALMA algorithm of Fan et al. (2021) with K = 3 and
M = 4

Airlines Groups under the MMLSBM
Group 1 Group 2

Japan Japan Air System China Hainan Airlines
China Sichuan Airlines China Air China
China Shandong Airlines China Shenzhen Airlines
China Xiamen Airlines China China Southern Airlines

Republic of Korea Korean Air China China Eastern Airlines
Singapore Singapore Airlines Group 3
Vietnam Vietnam Airlines Italy Alitalia

India Air India Limited France Air France
United States US Airways United States Delta Air Lines

Australia Qantas United States AirTran Airways
Mexico AeroMexico United States Southwest Airlines
India IndiGo Airlines United States American Airlines

South Africa South African Airways Netherlands KLM Royal Dutch Airlines
Indonesia Garuda Indonesia Group 4

Republic of Korea Asiana Airlines Ireland Ryanair
Saudi Arabia Saudi Arabian Airlines United Kingdom easyJet
Hong Kong Cathay Pacific United Kingdom Jet2.com

South America Avianca France Air Bourbon
Japan Japan Airlines France Transavia France
Qatar Qatar Airways Group 1: Continuation

Australia Virgin Australia United States United Airlines
Japan All Nippon Airways New Zealand Air New Zealand

Malaysia Malaysia Airlines United States Frontier Airlines
India Jet Airways Canada WestJet

United Arab Emirates Etihad Airways United Arab Emirates Emirates
Germany Lufthansa Russia Ural Airlines
Turkey Pegasus Airlines Morocco Royal Air Maroc

Switzerland Swiss International Airlines Turkey Turkish Airlines
Norway Norwegian Air Shuttle Ethiopia Ethiopian Airlines
Greece Aegean Airlines Algeria Air Algerie

United Kingdom Flybe Germany Condor Flugdienst
Germany TUIfly Sweden Scandinavian Airlines
Portugal TAP Portugal United Kingdom British Airways
Russia S7 Airlines Austria Austrian Airlines
Ireland Aer Lingus Spain Iberia Airlines

Germany Germanwings Russia Aeroflot
Egypt Egyptair Germany Air Berlin

Hungary Wizz Air Russia Transaero Airlines
Finland Finnair United States Alaska Airlines

Netherlands Transavia Holland Brazil TAM Brazilian Airlines
United States JetBlue Airways United States Spirit Airlines

Chile LAN Airlines Canada Air Canada
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CHAPTER 7: DISCUSSION

In this dissertation, we introduce the GDPG-equipped DIMPLE-GDPG multiplex network model

where layers can be partitioned into groups with similar ambient subspace structures while the

matrices of connections probabilities can be all different. In the common case when each layer

follows the SBM and DCBM, the latter reduces to the DIMPLE and DIMPLE-DECOR models,

where community affiliations are common for each group of layers while the matrices of block con-

nection probabilities vary from one layer to another. The DIMPLE-GDPG model generalizes the

COmmon Subspace Independent Edge (COSIE) random graph model of Arroyo et al. (2021) and

Zheng and Tang (2022), while the DIMPLE model generalizes a multitude of the SBM-equipped

multiplex network settings. Specifically, it includes, as its particular cases, the Mixture MultiLayer

Stochastic Block Model (MMLSBM) of Stanley et al. (2016), Jing et al. (2021) and Fan et al.

(2021), and the multitude of papers that assume that communities persist in all layers of the net-

work (see, e.g., Bhattacharyya and Chatterjee (2020), Lei and Lin (2022), Lei et al. (2019), Paul

and Chen (2016), Paul and Chen (2020)).

Our real data examples in Chapter 6 show that our models deliver more understandable description

of data than the MMLSBM, due to the flexibility of the DIMPLE model.

If M = 1, the DIMPLE-GDPG reduces to COSIE model, and we believe that our paper pro-

vides some improvements due to employment of a different algorithm for the matrix V estimation.

Indeed, Arroyo et al. (2021) showed that

E
∥∥∥sinΘ(V̂,V)

∥∥∥ ≤ C

[
K3/2

√
n ρn L

+
K5/2

n ρn

]
, (7.1)

while Zheng and Tang (2022), who use a different technique for recovery of V, state that, with high
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probability, ∥ sinΘ(V̂,V)∥2→∞ ≤ C Kn−1
√
log n/

√
ρn. The latter leads to ∥ sinΘ(V̂,V)∥F ≤

C K
√

(nρn)−1 log n. Thus, the upper bound (7.1) is similar to our upper bound (4.25), which

is derived for the (larger) Frobenius norm and holds not only in expectation but with the high

probability. The upper bound of Zheng and Tang (2022) is larger (if one uses the Frobenius norm)

and, in addition, does not decline when L grows.

As our theory (Theorems 1 and 2, and also Corollary 1) the simulation results imply, when K and

M are fixed constants, the clustering precision in both algorithms cease to decrease for a given

number of nodes n when L grows:

RBL ≲ Cρ−1
n n−1, RS,max ≍ RS,ave ≍ RWL ≲ C

(
ρ−1
n n−1 + n−1 L−1 ρ−1

n log n
)

We believe that this is not caused by the deficiency of our methodology but is rather due to the

fact, that the number of parameters in the model grows linearly in L for a fixed n. Indeed, even in

the case of the simplest, SBM-based DIMPLE model, the total number of independent parameters

in the model is O(K2L + Mn logK + L logM), since we have L matrices B(l), M clustering

matrices for the SBMs in the groups of layers, and a clustering matrix of the layers, while the

total number of observations is O(n2L). The latter implies that, while for small values of L,

the term (Mn logK)/(n2L) may dominate the error, eventually, as L grows, the term L(K2 +

logM)/(n2L) becomes larger for a fixed n.

Incidentally, we observe that a similar phenomenon holds in the MMLSBM, where the block

probability matrices are the same in all layers of each of the groups. While Stanley et al. (2016)

does not produce relevant theoretical results, Jing et al. (2021) simply assume that L ≤ n, which

makes the issue of error rates for a growing value of L inconsequential. Similarly, the ALMA
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clustering error rates in Fan et al. (2021)

RALMA
BL ≲ C

(
ρ−1
n n−2 + ρ−2

n n−2 [min(n, L)]−1
)
,

RALMA
WL ≲ C

(
n−1 L−1 ρ−1

n + ρ−1
n n−2 + ρ−2

n n−2 [min(n, L)]−1
)
,

imply that, for given n and ρn, as L grows, the clustering errors flatten.

Our simulation study also exhibits similar dynamics. In particular, the between-layer clustering

errors flatten when n is fixed and L grows, while the errors of subspace estimation and of the

within-layer clustering, for a fixed n, decrease initially and then stop decreasing as L become

larger and larger.

We remark that, unlike the ALMA methodology in Fan et al. (2021) or the TWIST algorithm

in Jing et al. (2021), all three algorithms in this paper are not iterative. It is known, that if one

needs to recover a low rank tensor, then the power iterations can improve precision guarantees.

This has been shown in the context of estimation of a low rank tensor in, e.g., Zhang and Xia

(2018b), and in the context of the clustering in the tensor block model in Han et al. (2021). While

both ALMA and TWIST are designed for the MMLSBM, which results in a low rank probability

tensor, the DIMPLE model does not lead to a low rank probability tensor. Therefore, it is not

clear whether iterative techniques are advantageous in the DIMPLE setting. Our very limited

experimentation with iterative algorithms did not lead to significant improvement of clustering

precision. Investigation of this issue is a matter of future research.
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APPENDIX A: PROOF FOR DIMPLE MODEL
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A.1 Proof of Theorem 1

Use notations of the paper, note that

∥∥∥ÛA,l(ÛA,l)
T −UP,l(UP,l)

T
∥∥∥2

F
= 2

∥∥∥sinΘ(UP,l, ÛA,l)
∥∥∥2

F

where ÛA,l and UP,l are defined in (3.11) and (3.7), respectively. By Davis-Kahan Theorem,

∥∥∥ÛA,l(ÛA,l)
T −UP,l(UP,l)

T
∥∥∥
F
≤

2
√
Km

∥∥A(l) −P(l)
∥∥

σKm(P
(l))

, m = c(l)

By Theorem 5.2 of Lei and Rinaldo (2015), if nρn ≥ Cρ log n, then, for any τ > 0, there exists a

constant Cτ , such that

P
{
∥A(l) −P(l)∥ ≤ Cτ

√
nρn

}
≥ 1− n−τ

Then

P
{
max
l∈[L]

∥A(l) −P(l)∥ ≤ Cτ
√
nρn

}
≥ 1− Ln−τ

In order to construct a lower bound for σKm(P
(l)), note that under Assumptions A1–A6, one has

σKm(P
(l)) = σKm(Q

(l)) ≥ Cλ K
−1/2
m ∥Q(l)∥ ≥ cρCλK

−1/2 ρn ∥P(l)
0 ∥ ≥ cρCλC0,P n ρnK

−1

(A.1)

Combining the formulas and taking into account that

∥Θ̂−Θ∥2F ≤ Lmax
l∈[L]

∥∥∥ÛA,l(ÛA,l)
T −UP,l(UP,l)

T
∥∥∥2

F
,

obtain

P
{∥∥∥Θ̂−Θ

∥∥∥2

F
≤ C

LK3

nρn

}
≥ 1− Ln−τ
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Also, by Davis-Kahan Theorem,

∥ sinΘ(Ŵ ,W)∥F ≤

∥∥∥Θ̂−Θ
∥∥∥
F

σM(Θ)

By formula (4.18) and (4.19),

σM(Θ) ≥
√

c

c̄

1

κ2
0

∥Θ∥ ≥
√

c

c̄

1

κ2
0

∥Θ∥F√
M

≥
√

c

c̄

√
KL

κ2
0

√
M

Hence,

P
{∥∥∥sinΘ(Ŵ ,W)

∥∥∥2

F
≤ CK2M

nρn

}
≥ 1− Ln−τ

Use Lemma C.1 of Lei and Lin (2022):

Lemma 2. ( Lemma C.1 of Lei and Lin (2022)). Let X be an m × d matrix with K distinct

rows and minimum pairwise Euclidean norm separation γ. Let X̂ be another (m× d) matrix and

(Θ̂, Q̂) be an (1 + ϵ)-approximate solution to K-means problem with input X . Then, the number

of errors in Θ̂ as an estimate number of errors in Θ̂ as an estimate of row clusters of X is no larger

than Cϵ

∥∥∥sinΘ(X̂,X)
∥∥∥2

F
γ−2, where Cϵ depends only on ϵ.

Since the row separation of W is at least 1/
√
Lm ≥

√
M/(c̄

√
L), the number of errors is bounded

above by CK2L (nρn)
−1, with probability at least 1−Ln−τ . The latter, in combination with (4.14),

implies (4.21).

A.2 Proof of Theorem 2

The proof requires the following lemma.

Lemma 3. Let W and Ŵ be defined as in (3.9) and (3.14), respectively. Let assumptions of
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Theorem 2 hold. Then, on the set Ω, with P(Ω) ≥ 1− Ln−τ , on which (4.21) holds, one has

0.5L−1
m ≤ L̂m ≤ 2L−1

m , m ∈ [M ] (A.2)

|L̂−1/2
m − L−1/2

m | ≤ C(nρn
√

Lm)
−1MK2, m ∈ [M ] (A.3)

min
P∈F(M)

∥Ŵ −WP∥2F ≤ C(nρn)
−1MK2 (A.4)

Consider tensors G ∈ Rn×n×L and H = G ×3 W
T ∈ Rn×n×M with layers, respectively, G(l) =

G(:, :, l) and H(m) = H(:, :,m) of the forms

G(l) = (P(l))2, H(m) = L−1/2
m

∑
c(l)=m

G(l), l ∈ [L], m ∈ [M ] (A.5)

In order to assess RS,max and RS,ave, one needs to examine the spectral structure of matrices H(m)

and their deviation from the sample-based versions Ĥ(m) = Ĥ(:, :,m). We start with the first task.

It follows from (3.5) and (3.6) that

H(m) = V(m)Q
(m)

(V(m))T with Q
(m)

= L−1/2
m

∑
c(l)=m

(
Q(l)

)2
(A.6)

Here, by (3.5), one has (Q(l))2 = O
(l)
Q (S

(l)
Q )2(O

(l)
Q )T , so that all eigenvalues of (Q(l))2 are positive.

Applying the Theorem in Complement 10.1.2 on page 327 of Rao and Rao (1998) and Assump-

tions A1–A6, obtain

σKm(H
(m)) = σKm

(
Q

(m)
)
≥ L−1/2

m

∑
c(l)=m

σKm

(
(Q(l))2

)
≥ C2

λ L
−1/2
m K−1

m

∑
c(l)=m

∥Q(l)∥2F ≥ C2
λ L

−1/2
m K−1

∑
c(l)=m

ρ2n,l ∥P
(l)
0 ∥2F

≥ C2
λ c

2
ρC

2
0,P L−1/2

m K−2 n2 ρ2n Lm
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so that

σKm

(
H(m)

)
≥ C (K2

√
M)−1 n2 ρ2n

√
L (A.7)

Using Davis-Kahan theorem, Lemma 1 of Cai and Zhang (2018b) and formula (A.7), obtain

∥∥∥sinΘ(
V̂(m),V(m)

)∥∥∥
F
≤ 2

√
2Km ∥Ĥ(m) −H(m)∥

σKm(H
(m))

≤ C K5/2M1/2 ∥Ĥ(m) −H(m)∥
n2 ρ2n

√
L

(A.8)

Recall that H(m) = [G ×3 W
T ](:, :,m) and Ĥ(m) = [Ĝ ×3 Ŵ

T ](:, :,m). Denote

G
(m)

=
∑

c(l)=m

G(l) =
√

Lm H(m), Ĝ
(m)

=
√

Lm

[
Ĝ ×3 W

T
]
(:, :,m) =

∑
c(l)=m

Ĝ(l) (A.9)

Observe that

∥Ĥ(m) −H(m)∥ ≤ ∆
(m)
1 +∆

(m)
2 ,

M∑
m=1

∥Ĥ(m) −H(m)∥2 ≤ 2(∆1 +∆2) (A.10)

where

∆
(m)
1 = L−1/2

m

∥∥∥∥Ĝ(m)

−G
(m)

∥∥∥∥ , ∆
(m)
2 =

∥∥∥[Ĝ ×3 (Ŵ −W)T ](:, :,m)
∥∥∥ ,

∆i =
∑

(∆
(m)
i )2, i = 1, 2

To upper-bound ∆
(m)
1 and ∆

(m)
2 , we use the following lemma that modifies upper bounds in Theo-

rem 3 of Lei and Lin (2022) in the absence of the sparsity assumption ρnn ≤ C:

Lemma 4. Let Assumptions A1–A6 hold, G(l) = (P(l))2 and Ĝ(l) = (A(l))2−diag(A(l)1), where

c(l) = m, l ∈ [L̃]. Let

G =
L̃∑
l=1

G(l), Ĝ =
L̃∑
l=1

Ĝ(l)
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Then, for any τ > 0, there exists a constant C that depends only on constants in Assumptions

A1–A6, and a constant C̃τ,ϵ which depends only on τ and ϵ, such that one has

P
{
∥Ĝ−G∥ ≤ C

[
ρ3/2n n3/2

√
L̃ log(L̃+ n) + ρ2nnL̃

]}
≥ 1− C̃τ,ϵn

1−τ (A.11)

Applying Lemma 4 with L̃ = Lm and taking into account that, by assumption (4.14), one has

log n ≤ log(L + n) ≤ (1 + τ0) log n, obtain that, with probability at least 1 − C̃τ,ϵn
1−τ , one has

∆
(m)
1 ≤ C̃[ρ

3/2
n n3/2

√
log n+ ρ2n n

√
Lm]. Therefore,

P
{
max
m∈[M ]

∆
(m)
1 ≤ C

[
ρ3/2n n3/2

√
log n+ ρ2n n

√
L/M

]}
≥ 1− C̃τ,ϵ M n1−τ (A.12)

and ∆1 ≤ C[ρ
3/2
n n3/2M

√
log n+ ρ2n n

√
LM ] with the same probability.

In the case of ∆(m)
2 , we start with an upper bound for ∆2. Note that, by Cauchy inequality and

Lemma 3, with probability at least 1− Ln−τ , one has

∆2 =
M∑

m=1

∥∥∥∥∥
L∑
l=1

Ĝ(l)(Ŵl,m −Wl,m)

∥∥∥∥∥
2

≤
M∑

m=1

[
L∑
l=1

∥∥∥Ĝ(l)
∥∥∥ ∣∣∣Ŵl,m −Wl,m

∣∣∣]2

≤ ∥Ŵ −W∥2F
L∑
l=1

∥Ĝ(l)∥2 ≤ C(nρn)
−1M K2

L∑
l=1

∥Ĝ(l)∥2 (A.13)

In order to obtain an upper bound for the sum of ∥Ĝ(l)∥2, use Lemma 4 with L̃ = 1. Derive

P
{
max
l∈[L]

∥Ĝ(l) −G(l)∥2 ≤ C
[
ρ3nn

3 log n+ ρ4nn
2
]}

≥ 1− C̃τ,ϵLn1−τ

On the other hand,

∥G(l)∥ ≤ ∥P(l)∥2 ≤ C−2
λ [σKm(P

(l))]2 ≤ C−2
λ K−1

m ∥P(l)∥2F ≤ C−2
λ C−1

K K−1(nρn)
2
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Since ∥Ĝ(l)∥ ≤ ∥G(l)∥+ ∥Ĝ(l) −G(l)∥, with probability at least 1− C̃τ,ϵLn1−τ , obtain

max
l∈[L]

∥Ĝ(l)∥2 ≤ C
(
K−2 n4 ρ4n + ρ3nn

3 log n+ ρ4nn
2
)
≤ CK−2 n4 ρ4n

(
1 + (nρn)

−1K2 log n
)

Plugging the latter upper bound into (A.13), obtain

P
{
∆2 ≤ Cn3ρ3n LM

(
1 + (nρn)

−1K2 log n
)}

≥ 1− C̃τ,ϵ Ln1−τ (A.14)

To complete the proof, combine formulas (A.8), (A.10), (A.12) and (A.14) take into account that

∆
(m)
2 ≤

√
∆2 for any m ∈ [M ].

A.3 Proof of Corollary 1

To find the clustering errors for each group of clusters, we again use Lemma 2 which yields that

the number of clustering errors in the layer m ∈ [M ] is bounded above by

Cϵ

∥∥∥sinΘ(V̂(m),V(m))
∥∥∥2

F
γ−2
m , where γm is the minimum pairwise Euclidean norm separation

between rows of matrix V(m). It is easy to see that under Assumptions A1–A6, one has

γ2
m ≥ 2min(n−1

k,m) ≥ 2CK K/(c̄ n), (A.15)

so that the total number of errors is bounded above by CM K−1 nRS,ave where RS,ave is given

by (4.24). Then, the average within layer clustering error is bounded above by K−1RS,ave, which

completes the proof for the situation of the DIMPLE model. For the DIMPLE-DECOR model,

as the bounds of the degree parameters are associated with some constants, we may need some

changes for the constants in the process of proof and then we get (4.27).
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A.4 Proof of supplementary lemmas

Proof of Lemma 1 Note that, due to the structure of the tensor B, for some s > 0, one has

σmin(R) = σmax(R) = s, so that

σ1(F) ≤ σ2
1(D) s

√
max
m∈[M ]

Lm, σM(F) ≥ σ2
M(D) s

√
min
m∈[M ]

Lm.

Then, by Assumptions A1 and A4, σ2
1(F) ≤ κ4

0σ
2
M(F)c̄/c. Therefore, the first inequality in (4.19)

holds. To prove the second inequality, observe that

∥Θ∥2F = Tr(FFT (U
T
U⊗U

T
U)) = ∥F∥2F

and, on the other hand,

∥Θ∥2F =
L∑
l=1

∥UP,l(UP,l)
T∥2F =

M∑
m=1

Lm∥V(m)(V(m))T∥2F =
M∑

m=1

LmKm ≥ CKKL, (A.16)

which together complete the proof.

Proof of Lemma 3 Note that, for m ∈ [M ], |L̂m − Lm| ≤ LRBL ≤ C(nρn)
−1 LK2. Then,

∣∣∣∣ 1

L̂m

− 1

Lm

∣∣∣∣ = |L̂m − Lm|
L̂m Lm

≤ CMK2

nρn

1

L̂m

Then, due to assumption (4.22), the coefficient in front of L̂−1
m is bounded by 1/2 and, hence, (A.2)

holds. Inequality (A.3) follows directly from the upper bound on |L̂m − Lm| and (A.2).
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To prove (A.4), recall that formulas (3.9) and (3.14) imply that

∥Ŵ −W∥2F ≤
∥∥∥Ĉ(D̂ĉ)

−1/2 −C(Dc)
−1/2

∥∥∥2

F
(A.17)

≤ 2
∥∥∥Ĉ(D̂ĉ)

−1/2
∥∥∥2 ∥∥∥IM − (D̂ĉ)

1/2(Dc)
−1/2

∥∥∥2

F
+ 2

∥∥∥Ĉ−C
∥∥∥2

F

∥∥(Dc)
−1/2

∥∥2

where Dc = diag(L1, ..., LM) and D̂ĉ = diag(L̂1, ..., L̂M). It is easy to see that ∥Ĉ(D̂ĉ)
−1/2∥ = 1

in (A.17), and that, by Assumption A1, ∥(Dc)
−1/2∥2 ≤ (minLm)

−1 ≤ M/(c L). Also, ∥Ĉ −

C∥2F ≤ 2L RBL, and

∥IM − (D̂ĉ)
1/2(Dc)

−1/2∥2F = Tr(IM + D̂ĉD
−1
c − 2(D̂ĉ)

1/2(Dc)
−1/2)

=
M∑

m=1

(
L̂
1/2
m − L

1/2
m

)2

Lm

≤
M∑

m=1

|L̂m − Lm|
Lm

≤ M

cL

M∑
m=1

|L̂m − Lm|,

due to Assumption A1, and (
√
a−

√
b)2 ≤ |a− b| for any a, b > 0. Since

∑
|L̂m − Lm| is domi-

nated by the number of clustering errors LRBL, plugging all components into (A.17), obtain (A.4).

Proof of Lemma 4 Let X(l) = A(l) − P(l), l = 1, ..., L̃. With some abuse of notations, for

any square matrix Q, let diag(Q) be the diagonal matrix which diagonal entries are equal to the

diagonal entries of Q, while for any vector q, let diag(q) be the diagonal matrix with the vector q

on the diagonal. Then, Ĝ−G = S1 + S2 + S3 where

S1 =
L̃∑
l=1

(P(l)X(l) +X(l)P(l)), S2 =
L̃∑
l=1

[
(X(l))2 − diag((X(l))2)

]
,

S3 =
L̃∑
l=1

[
diag((X(l))2)− diag(A(l)1)

]

Therefore, ∥Ĝ−G∥2 ≤ 3(∥S1∥2 + ∥S2∥2 + ∥S3∥2).
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To bound above ∥S1∥2, ∥S2∥2 and ∥S3∥2, apply Theorems 2 and 3 of Lei and Lin (2022) with

v1 = v2 = 2c̄ρρn, R1 = R2 = R′
2 = 1 and v′2 = 2c̄2ρρ

2
n. Using Theorems 2 with m = r = n and

t2 = τ c̄2ρCρρ
3
nn

3L̃ log n, obtain

P
{
∥S1∥2 ≤ C̃ρ3nn

3L̃ log n
}
≥ 1− 4n1−τ

The first part of Theorem 3 yields that, due to Assumption A3,

P
{
∥S2∥2 ≤ C̃ρ2nn

2L̃ log2(n+ L̃)
}
≥ 1− C(n+ L̃)1−τ

Now, ∥S3∥ ≤ ∥S3 − E(S3)∥ +max
i

|(ES3)(i, i)|, since S3 is a diagonal matrix. Applying second

part of Theorem 3 with σ2 = 1 and σ′
2 =

√
L̃n, obtain

P
{
∥S3 − E(S3)∥2 ≤ C̃ρnnL̃ log2(n+ L̃)

}
≥ 1− C(n+ L̃)1−τ

Finally,

|(ES3)(i, i)| =

∣∣∣∣∣∣
L̃∑
l=1

[
E

n∑
j=1

[X(l)(i, j)]2 −
n∑

j=1

P(l)(i, j)

]∣∣∣∣∣∣ =
L̃∑
l=1

n∑
j=1

[P(l)(i, j)]2 ≤ ρ2nnL̃,

which completes the proof.
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APPENDIX B: SIMULATIONS FOR COMPARISON OF DIMPLE WITH

MMLSBM
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As we have previously mentioned, in this paper we consider the DIMPLE model, which is a more

general model than the MMLSBM. Specifically, the MMLSBM has only M types of layers in

the tensor and, therefore, results in a low rank tensor. On the other hand, all tensor layers in the

DIMPLE model can be different and, therefore, the tensor is not of low rank. In this section, we

carry out a limited simulation study, the purpose of which is to convince a reader that, while our

algorithms work in the case of the MMLSBM, the algorithms designed for the MMLSBM produce

poor results when data are generated according to the DIMPLE models.

In particular, in both scenarios, we first fix n, L, M , K and generate M groups of layers using

the multinomial distribution with equal probabilities 1/M . Similarly, we generate K communities

in each of the groups of layers using the multinomial distribution with equal probabilities 1/K.

In this manner, we obtain community assignment matrices Z(m), m = 1, ...,M , in each layer l

with c(l) = m, where c : [L] → [M ] is the layer assignment function. Next, we choose sparsity

parameters c and d and assortativity parameter w.

In order to generate data according to the DIMPLE model, we obtain the entries of B(l), l =

1, ..., L, as uniform random numbers between c and d, and then multiply all the non-diagonal en-

tries of those matrices by w. Therefore, if w < 1 is small, then the network is strongly assortative,

i.e., there is higher probability for nodes in the same community to connect.

The next four figures present simulation results for K = 5, M = 3 and various values of L,

n, c, d and w. We present only the between layer clustering errors since, in the presence of the

assortativity assumption, the within-layer clustering in the MMLSBM and the DIMPLE model can

be carried out in a similar way. We compare the performances of Algorithm 1 in this paper with

the Alternative Minimization Algorithm (ALMA) of Fan et al. (2021).

As our simulations show, when data are generated according to the DIMPLE model, Algorithm 1

in our paper allows to reliably separate layers of the network into M types, while ALMA fails to
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Figure B.1: The between-layer clustering error rates of Algorithm 1 and Alternative Minimization Algo-
rithm of Fan et al. (2021). Data are generated using DIMPLE model with L = 50, c = 0, d = 0.8 (top) and
c = 0, d = 0.5 (bottom), and w = 0.7 (left panel) or w = 1 (right panel).

do so. The reason for this is that ALMA expects the matrices of probabilities to be identical in

those layers, although, in reality, they are not. As a result, when n grows, the clustering errors do

not tend to zero but just flatten.

Next, we generate data according to the MMLSBM. Note that the main difference between the

MMLSBM and the DIMPLE model is that in MMLSBM one has only M distinct matrices B(l),

since B(l) = B(c(l)), l = 1, ..., L. So, in order to generate MMLSBM, we generate M matrices

B(m), m = 1, ...,M , and then set B(l) = B(c(l)), l = 1, ..., L. Figures B.1–B.4 exhibit results

of application of Algorithm 1 and ALMA of Fan et al. (2021) to the generated data sets. As it is

expected, for small values of n, ALMA of Fan et al. (2021) leads to a better clustering precision.

The latter is due to the fact that Algorithm 1 relies on the SVDs of the layers of the adjacency

tensor A, that are not reliable for small values of n. In addition, Algorithm 1 cannot take into
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Figure B.2: The between-layer clustering error rates of Algorithm 1 and Alternative Minimization Algo-
rithm of Fan et al. (2021). Data are generated using DIMPLE model with L = 100, c = 0, d = 0.8 (top)
and c = 0, d = 0.5 (bottom), n = 20, 40, 60, 80, 100, 120, 140, 160 and w = 0.7 (left panel) or w = 1

(right panel).

account that the probability tensor is of a low rank since this is not true for the DIMPLE model.

However, these advantages become less and less significant as n grows. As Figures B.1–B.4 show,

both algorithms have similar clustering precision for larger values of n, specifically, for n ≥ n0,

where n0 is between 60 and 100, depending on a particular simulations setting.
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Figure B.3: The between-layer clustering error rates of Algorithm 1 and Alternative Minimization Algo-
rithm of Fan et al. (2021). Data are generated using MMLSBM with L = 50, c = 0, d = 0.8 (top) and
c = 0, d = 0.5 (bottom), n = 20, 40, 60, 80, 100, 120, 140, 160 and w = 0.7 (left panel) or w = 1 (right
panel).
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Figure B.4: The between-layer clustering error rates of Algorithm 1 and Alternative Minimization Algo-
rithm of Fan et al. (2021). Data are generated using MMLSBM with L = 100, c = 0, d = 0.8 (top) and
c = 0, d = 0.5 (bottom), and w = 0.7 (left panel) or w = 1 (right panel).
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