
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2020-

2023

Mapping the Focal Points of WordPress: A Software and Critical Mapping the Focal Points of WordPress: A Software and Critical

Code Analysis Code Analysis

Bryce Jackson
University of Central Florida

 Part of the Programming Languages and Compilers Commons

Find similar works at: https://stars.library.ucf.edu/etd2020

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2020- by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Jackson, Bryce, "Mapping the Focal Points of WordPress: A Software and Critical Code Analysis" (2023).
Electronic Theses and Dissertations, 2020-. 1581.
https://stars.library.ucf.edu/etd2020/1581

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd2020
https://network.bepress.com/hgg/discipline/148?utm_source=stars.library.ucf.edu%2Fetd2020%2F1581&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd2020
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd2020/1581?utm_source=stars.library.ucf.edu%2Fetd2020%2F1581&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

MAPPING THE FOCAL POINTS OF WORDPRESS: A SOFTWARE AND CRITICAL CODE
ANALYSIS

by

BRYCE JACKSON
B.S. University of Central Florida, 2004
M.A. University of Central Florida, 2014

A dissertation submitted in partial fulfillment for the requirements
for the degree of Doctor of Philosophy
in the College of Arts and Humanities

at the University of Central Florida
Orlando, Florida

Spring Term 2023

Major Professor: Rudy McDaniel

ii

© 2023 Bryce Jackson

iii

ABSTRACT

Programming languages or code can be examined through numerous analytical lenses.

This project is a critical analysis of WordPress, a prevalent web content management system,

applying four modes of inquiry. The project draws on theoretical perspectives and areas of study

in media, software, platforms, code, language, and power structures. The applied research is

based on Critical Code Studies, an interdisciplinary field of study that holds the potential as a

theoretical lens and methodological toolkit to understand computational code beyond its

function.

The project begins with a critical code analysis of WordPress, examining its origins and

source code and mapping selected vulnerabilities. An examination of the influence of digital and

computational thinking follows this. The work also explores the intersection of code patching

and vulnerability management and how code shapes our sense of control, trust, and empathy,

ultimately arguing that a rhetorical-cultural lens can be used to better understand code’s

controlling influence.

Recurring themes throughout these analyses and observations are the connections to

power and vulnerability in WordPress’ code and how cultural, processual, rhetorical, and ethical

implications can be expressed through its code, creating a particular worldview. Code’s emergent

properties help illustrate how human values and practices (e.g., empathy, aesthetics, language,

and trust) become encoded in software design and how people perceive the software through its

worldview. These connected analyses reveal cultural, processual, and vulnerability focal points

and the influence these entanglements have concerning WordPress as code, software, and

iv

platform. WordPress is a complex sociotechnical platform worthy of further study, as is the

interdisciplinary merging of theoretical perspectives and disciplines to critically examine code.

Ultimately, this project helps further enrich the field by introducing focal points in code,

examining sociocultural phenomena within the code, and offering techniques to apply critical

code methods.

v

This dissertation is dedicated to the memory of Frank and Lora Lou Jackson, Ross and Patti
Nelson, Richard Wilburt Jackson, and Dakota James Allen. And, to my parents, Jim and Pam

Jackson, for always patiently believing in me. Thanks to you, I’m standing tall.

vi

ACKNOWLEDGMENTS

I want to express my appreciation to my committee for bringing their wisdom, expertise,

and feedback. Professor Rudy McDaniel, thanks for putting up with me all these years and still

being willing to serve as my chair. Professor Anastasia Salter, I sincerely appreciate your

commitment and enthusiasm toward my success, introducing me to theory and research about

code and software beyond its function, and for connecting me to Professor Marino. Professor

Jonathan Beever, thanks for sense of humor and discussions about digital ethics, societal

responsibility, and reflexive principlism. Professor Mark Marino, thank you for ushering in the

concepts, vocabulary, and methods of code that provided a foundation to this project and my

voice. Lastly, thank you to all the professors and staff who were part of my learning journey and

academic success through the Texts and Technology program. I am truly standing on the

shoulder of giants.

Without the love, encouragement, and bonds of family and friends, this project and my

life would not be as good as it is. A special thank you to Monica Mayer for her almost endless

patience, listening, suggestions, and general tolerance of my fits of despair and frustration. I am

deeply grateful to all my family, friends, and colleagues who have supported me on this journey,

among many others. I especially want to acknowledge the Brewer, Dunn, and Harris families for

being there in the best and worst of times and providing a much-needed balance to my world.

Thanks to everyone who took even a moment to believe in me.

vii

TABLE OF CONTENTS

LIST OF FIGURES .. xii

LIST OF TABLES ... xiii

CHAPTER 1: INTRODUCTION ... 1

Motivation and Purpose .. 1

Overview ... 4

CHAPTER 2: LITERATURE REVIEW AND THEORETICAL LENSES 8

Introduction ... 8

Media, Software, and Platforms.. 8

Media .. 8

Software .. 18

Digital Platforms ... 27

Code and Language... 39

Location of Code... 39

Emergent Properties .. 41

Language ... 51

Power Structures ... 64

Summary ... 73

CHAPTER 3: METHODOLOGY .. 75

viii

Introduction ... 75

Research Question .. 75

Context .. 80

WordPress Popularity ... 80

Vulnerabilities and Vulnerability Management .. 82

A Brief History of PHP ... 84

Approach ... 85

The Stack .. 85

Code and WordPress as Text .. 87

Poetics and Hermeneutics ... 90

Transdisciplinary... 92

WordPress Data and Collection Methods ... 101

WordPress as Software ... 101

Source Code .. 101

Profiling Processes .. 103

Vulnerabilities ... 104

WordPress Analysis Methods ... 105

WordPress as Software ... 105

Source Code .. 106

ix

Profiling Processes .. 112

Vulnerabilities ... 115

Summary ... 117

CHAPTER 4: SOFTWARE ANALYSIS AND FINDINGS ... 118

Introduction ... 118

Origins and Evolution ... 118

From the Forked Ashes of b2/cafelog ... 120

“My Hacks,” Hacks, Plugins, and Extendibility ... 125

“capital_P_dangit” .. 129

WordPress.org and the WordPress Community ... 131

Automattic and WordPress.com ... 133

WordPress as Platform .. 137

WordPress Foundation .. 143

Poetry and All That Jazz ... 145

Open Source, Copyright, and Licensing ... 148

WordPress Vulnerability and Security Management .. 150

“Phoning Home” ... 152

“Entering Your Front Door While You Sleep” ... 153

Summary ... 154

x

CHAPTER 5: CRITICAL CODE ANALYSIS AND FINDINGS ... 156

Introduction ... 156

Source Code .. 157

Comparison of Lines, Files, and Release Dates through Version History.............. 160

“Nina Simone” .. 167

Profiling Processes – The Space of Flows .. 178

Identifying the Focal Points .. 181

Backtracing and Mapping the Code Focal Points ... 186

Vulnerabilities ... 189

Backtracing of Vulnerability from Introduction to Patch 192

Mapping to Code Focal Points .. 214

Summary ... 217

CHAPTER 6: CONSIDERATIONS AND APPROACHES WITH CODE AND IN THE

DIGITAL .. 219

Considerations of the Distributed Digital ... 219

Computational Thinking ... 221

Sense of Risk and Vulnerability ... 226

Approaches in Patchwork Code .. 231

Treatment of Vulnerabilities ... 233

xi

Code Arrangement and Language Aesthetic .. 240

Encoding/Decoding and Framing/Enframing of Code ... 253

Summary ... 263

CHAPTER 7: FUTURE WORK AND CONCLUSION .. 264

Future Work .. 264

Blue Skies and Thunderclouds.. 264

Ethics and Empathy of Green Computing and Code .. 265

Code Sentiment ... 267

Conclusion .. 268

Encoding of Code ... 269

Grayness of Platforms and Intermediaries .. 273

Compromise and Collaboration Between the Binary ... 275

APPENDIX A: WORDPRESS DOWNLOAD SCRIPT ... 280

APPENDIX B: CALLGRIND DATA EXCERPT ... 282

REFERENCES ... 285

xii

LIST OF FIGURES

Figure 1: Berry and Fagerjord's Digital Humanities Stack ... 86

Figure 2: WordPress Dashboard Page with the Hello Dolly Plugin ... 146

Figure 3: Added, Removed, and Modified PHP Lines of Code across Major Releases 163

Figure 4: Delegated PHP Code Differences Between Major Releases by LOC......................... 165

Figure 5: Code Differences Between .71 and Major Release by LOC at Logarithmic Scale..... 166

Figure 6: Call Graph of "apply_filters" Function with Call Frequency 185

Figure 7: Map of Top 20 Source Code Files by Processual Calls .. 187

Figure 8: WordPress NVD Published Vulnerabilities from 2004 to 2022 by Year 191

Figure 9: Map of Top 20 Source Code Files by Published Vulnerabilities 194

Figure 10: Mean WordPress Vulnerability Scores by Year .. 201

https://knightsucfedu39751-my.sharepoint.com/personal/brycejackson_knights_ucf_edu/Documents/Academic/Dissertation/Dissertation.docx#_Toc126536734

xiii

LIST OF TABLES

Table 1: Four Programming Languages in WordPress and their Distribution 158

Table 2: WordPress Version History .. 161

Table 3: Top 10 WordPress Prescriptive Code Call Counts and Percentages 183

Table 4: Mapping of Code Files and Revisions to Code Entry Points with Call and Use Data . 188

Table 5: Top 10 Files and Entry Points Involving Vulnerabilities ... 196

Table 6: Nina Simone Security Releases, with associated CVE IDs, Versions Affected, Files

Involved, and Entry Points .. 202

Table 7: Mapped Processual and Vulnerability Focal Points. .. 215

CHAPTER 1: INTRODUCTION

Motivation and Purpose

I have been fascinated by programming languages, code, and information technology

from an early age, thanks to the TRS-80 my parents purchased. Information technology and code

have always been part of my professional and academic career. Early in my Texts and

Technology program coursework, I took a digital ethics course in which I presented and led the

class discussion on transparency. Looking for a way to include a practical element, I developed a

simple transparency “game” by developing a web interface that would respond to different

values based on the values of a QR Code. Each participant was provided five pre-made and

personalized QR Codes. Each QR Code was mapped to the participant and included a negative or

positive score value. When a participant scanned a QR Code (with no discernable human way to

know which QR Code had what score values), the web interface would collect and store the

participant and the score value to calculate a running score tally. Each scan would also generate a

good or bad scenario that would happen to the participant based on their current score, display it

to the participant, and store the scenario along with the other data. The web interface showed the

latest scenarios and summarized each participant’s good and bad events. I was surprised by the

willingness of many participants to start scanning before an explanation was provided. Although

not a new concept, I was struck by the notion that people adopt and use information

technologies, like a QR Code, without fully understanding what they are or how they work. More

so, people were eager to interact with the QR Codes using their smartphones, a very personal and

intimate device, with little to no concern of harm. From that point, I continued to think about

2

more complex forms of code and interaction, such as the internet, platforms, and software, and

the interplay between them and between people.

Signs and messages surround us. Billboards, road signs, magazines, newspapers, books,

and other physical media express language. Information technologies extend sign and media

expression into smartphones, cars, computers, software, and other electronic and digital media.

As technology has become more advanced and multi-tiered, the process of expressing language

and messages has thickened and become more complex than ink and paper. In electronic or

digital media, code has become a dominant participant in the processing and mediating to

express, display, produce, and store messages. As we continue to live hybrid physical and digital

lives, blurring our sense of networked selves, code influences every aspect of communication

and expression in new media. We have an evolving and adapting relationship with media and

technology as people continue to make changes to it. As the internet became mainstream and

used for more types and modes of communication, “it became a place in which things happened,

in which users’ actions separated from their bodies, and in which local standards became

impossible to determine” (Chun, Control and Freedom 38). Web 2.0 ushered a new surge of

creativity and development of services, software, and standards to harness new forms of

interaction and participation. WordPress and its predecessors were software responses to

controlling Web 2.0.

WordPress, initially blogging software, is a web content management system that, as of

November 2022, powers 43% of all known websites, or 64.1% of the global market share

(W3Techs, “Usage Statistics and Market Share of Content Management Systems”). The platform

has over 60,000 plugins, 10,000 themes, and an estimated 2020 global economy of $596.7 billion

3

(WordPress.org, “WordPress Plugins”; WordPress.org, “WordPress Themes”; Selig). In 2011,

Marc Andreessen prophesied, “software is eating the world,” and WordPress is an archetype of

the slow, iterative eating process, spanning almost two decades of change and influence over

communications and web publishing (“Why Software Is Eating The World” 1). WordPress’

popularity creates more significant exposure and concern for risks of failure, vulnerabilities,

harmful hacking activities, and the control, power, and influence it has on the web and people

using the software. Adding to this exposure vector, WordPress’ functionality can also be

extended by installing any of the over 70,000 plugins and themes available. Although the latest

version of WordPress is usually considered the most secure from vulnerabilities, bugs and

vulnerabilities have persisted across multiple versions of the software. In 2018, Catalin Cimpanu

reported that WordPress made up 90% of all hacked websites for the year, with 64% of the

WordPress-powered websites running the latest version (“WordPress Accounted for 90”

“WordPress Accounted for 90 Percent”). WordPress takes on a different form of platform than

Google or Facebook; mainly, it is less obvious web software and rather ordinary in terms of

functionality. This slippage into the ordinary presents an attention challenge toward the overtness

of its ability to influence and control.

Inspired by Anastasia Salter’s and John Murray’s examination of Flash (RIP), this

project attempts to “look at how a software platform subsists between creators and their

audience, shaping a user’s relationship with computer hardware by enabling certain experiences

on it and attempting (and often failing) to facilitate others” (Salter and Murray 9). Their project

creates a foundational driving force toward why it is critical to study software and hardware and

their influence and connection to people. As a product of Web 2.0, WordPress makes publishing

4

websites rapid and relatively easily, pulling the person closer to the machine and distributing

their ideas to a global audience. Kitchin and Dodge state that “blogging has significantly

empowered many people to express their opinions and to engage in constructive dialog with

others who would not have been willing or able to do so otherwise” (127). The rise of WordPress

and its associated sense of empowerment and free expression create an ongoing tension with

WordPress’ control and influence as a global marketplace software and web content publishing

platform.

In Cutting Code, Adrian Mackenzie states that software and code are an “analytical

challenge for prevalent understandings of social or cultural processes based on concepts of

language, meaning, discourse, communication and media” (16). This project attempts to take on

this challenge by looking at WordPress’ source code, albeit a small chunk of it. At the broadest

levels, code can be examined through many analytical lenses and levels of abstraction. The goal

of this project was to examine WordPress through critical code studies methods, broadly looking

at “meaning, implication, and connotation” from code’s “broader social contexts” that stem from

its functioning (Marino, “Critical Code Studies” 40). My goal is to further enrich media,

software, and critical code studies through a) introducing focal points, intersections or locations

in code, to examine vulnerability, ethical and rhetorical decision-making, movements of logic,

and other relevant sociocultural phenomena, and b) offering techniques to apply critical code

methods.

Overview

Chapter 2 is a literature review and overview of theoretical lenses. The review examines

the main theoretical perspectives and areas of study in media, software, platforms, code,

5

language, and power structures. Each section looks at the critical perspectives on these topics and

explores the connections between people, media, technology, software, platforms, power, and

code. The scaffolding effect highlights how code is shaped by the broader contexts of media,

networked software, and platforms, focusing on language and power structures.

Chapter 3 details the four modes of critical inquiry used to analyze WordPress. The first

section sets the research question in the context of prior research. It then provides background

information on the project and its significance for understanding code, software, and platforms,

including a brief overview of WordPress, its popularity, vulnerabilities, and the primary

programming language of WordPress, PHP. Three significant contributions to the methodology

are outlined, including the placement of code, software, and platform within the field of digital

humanities and related areas of study, the recognition of code as text, and the integration of

poetics and hermeneutics. The chapter also explains the transdisciplinary foundations of the

methodology. The last two sections of the chapter describe the data, collection methods, and

exploratory analysis methods used to study WordPress.

Chapter 4 outlines critical events and impacts in the history of WordPress as software.

The first section looks at the origins and nearly two decades of development of WordPress,

including its inception, the hacker ethos, jazz aesthetic, commercialization through Automattic,

and intellectual property and licensing. The section also briefly discusses two cases of

WordPress as a sociotechnical platform that reflects values, analyzing the "de-platforming" of

"The Conservative Treehouse" and the Automattic Inc. v. Steiner case. The final section of the

chapter assesses the vulnerability and security of WordPress by examining Automattic's and the

WordPress community's approach to vulnerability management. It also highlights some

6

controversial changes made to WordPress to improve security and the efforts to ensure the

smooth operation of the software. This chapter and Chapter 5 are companion chapters that

examine WordPress as software and code, which combined offer a view of WordPress as a

complex, powerful, and gray sociotechnical platform.

Chapter 5 is a critical code analysis, using the source code of WordPress as the primary

source. Building on Chapter 4’s software analysis of WordPress, the analysis revisits some of the

cultural elements mentioned in the analysis by looking at them from a code perspective and tying

them to the code of "Nina Simone." The recurring theme throughout the analysis is the

connection between power and vulnerability, exploring the cultural, processual, rhetorical, and

ethical implications expressed through the code. The chapter has three sections of analysis that

progressively examine code from a general to a more specific perspective. The "Source Code"

section analyzes WordPress and its history through its code, then examines "Nina Simone" and

some of its enduring cultural elements. The "Profiling Processes" section studies the code by

examining its processual state and linking these movements to the code. Finally, the

"Vulnerabilities" section outlines the history of vulnerabilities across WordPress. Then it traces

the history of selected vulnerabilities in "Nina Simone," mapping them to the code and the

changes made, providing context for their introduction and treatment as vulnerability points.

Chapter 6 explores three different theoretical perspectives and ways of approaching code

and the choices made in its design and development, which leads to rhetorical, security, and

cultural interconnections or entanglements. Centering on these focal points as essential points of

reflection, the discussion draws on the results of software and code analyses from the previous

two chapters and existing research to offer general insights about code and coding practices. The

7

properties that arise from code help show how concepts like empathy, aesthetics, language,

transparency, and trust become established and embedded in software design and how people

perceive the software through its representation. The first section examines the impact of digital

and computational thinking and the risk and security implications of code and its properties. The

second section explores the relationship between patching code and managing security

vulnerabilities and how language and code shape control, trust, and empathy. The last section

looks at coding through a combined rhetorical and cultural lens to understand better how code (at

all levels) is shaped by its representation and encoding, which ultimately affects its creation,

perception, and use through its ongoing digital and dynamic representation.

Chapter 7 wraps up the project by briefly looking at a few future research ideas around

code that build upon the research of this project, looking at cloud computing, the ethics and

empathy of green computing, and the emotional expressions of code. The chapter concludes with

three final observations about WordPress and encoding, the grayness of platforms, and calling

for a compromise and collaboration between the way to view code, software, and platforms.

8

CHAPTER 2: LITERATURE REVIEW AND THEORETICAL LENSES

Introduction

The chapter comprises two primary sections about media and code, with additional

sections and sub-sections. The first primary section evaluates how media, software, and

platforms construct a foundational lens of WordPress. The second primary section reviews the

concepts of source code and language, including surveying the rich meaning of code, some

emergent properties of code, its relationship to language, and power structures concerning code,

software, and platforms and the cultural significance of their influence in present-day living. As

Chapter 1 briefly introduces WordPress, the literature review maintains a generalized view of

software, platforms, and code, with some specific WordPress examples. Chapters 4 and 5 offer a

software and critical code analysis of WordPress, while Chapter 3 outlines the approach,

background, and methodology for the subsequent software and code analyses. The chapter

finishes with a summary of the main ideas outlined.

Media, Software, and Platforms

Media

Media, software, and platforms are not necessarily interchangeable terms; each offers a

different vantage point of examination. The notion of media presents an all-encompassing view

that situates software, platforms, and code within its body of research. For this project, the view

of media narrows to digital media created through and with computers, which places software as

media that also executes on and through media. To further complicate the self-referential

properties of media and instantiations of media, software, in combination with the hardware

9

media, can be viewed as a platform or networked software, which computer source code

constitutes by traversing through the self-referential layers of abstraction within a computer or

network of computers. Media instantiated as software brings forward specific media

characteristics, which software instantiated as software platform or part of a more expansive

notion of platform brings forth other characteristics or further extends those within media.

Source code’s influence is entrenched and distributed throughout digital media, software, and

platform. Alternatively, software and platforms are subsets of media, and platforms can be a

subset of software, which code establishes through the people who design and construct them.

The following section initiates this undertaking by examining media as technology, positioning it

as a technologically layered ecology or ecosystem, and highlighting the influences of media’s

ability to be distributed or its distributedness.

Technology

Marshal McLuhan offers a broad theoretical foundation of media, defining it as “any

technology whatever that creates extensions of the human body and senses, from clothing to

computer” (56). McLuhan’s wide-ranging classification allows media to act upon and through

any human invention. While this view disperses and attaches technology and media across

almost all realized and unrealized material means, McLuhan centers it within the human as its

origin. Elaborating on this view, McLuhan offers:

All media, from the phonetic alphabet to the computer, are extensions of man that cause

deep and lasting changes in him and transform his environment. Such an extension is an

intensification, an amplification of an organ, sense or function, and whenever it takes

place, the central nervous system appears to institute a self-protective numbing of the

10

affected area, insulating and anesthetizing it from conscious awareness of what's

happening to it. (54)

McLuhan’s notion arranges technology and media as an embodied system in which the

system’s distinct properties and functions present degrees of efficacy, speed, influence, and a

spectrum of interaction or participation. As N. Katherine Hayles states, “there would be no

media without humans to invent them, and no purpose to them without humans to give them

meaning and significance” (My Mother Was a Computer 35). McLuhan employs a temperature

analogy of hot and cool to describe the range of participation or active involvement, describing

cool media as high in participation and identifying hot media as a “complete filling in of data by

the medium without intense audience participation” (61). McLuhan’s and Hayles's treatment of

media as a human-made technology calls attention to other observations associated with

technological determinism, specifically its influence on society and culture —how we think.

Ecology

The expansive view of media can be slightly girded by identifying media’s relationships

to technology, writing, and their intersections and interactions within a digital system.

Interactions and intersections include but are not limited to processes, procedures, code, and

through the use and design and development of such systems. Matthew Fuller’s observations of

media ecology underlay this project’s theoretical positioning, offering media ecology is the

“most expressive [term]…to indicate the massive and dynamic interrelation of process and

objects, beings and things, patterns and matter” (Media Ecologies 2). Though, circling back to

McLuhan’s view—that our awareness of media is insulated and anesthetized when media

materializes—suggests the term “ecosystem” may offer a way to describe the decayed or long-

11

standing digital layers, the heated core, often examined less than the dynamic and ever-shifting

cool layers above. Nonetheless, this work draws from the three views of media ecology Fuller

identifies similarly.

Fuller establishes media ecology generally within “informational roles in organizations

and in computer-supported collaborative work [that] implies an interrelationship with knowledge

and time management processes, intellectual property regimes, database and software design,

content control, access structuring, [and] metadata” (Media Ecologies 2). Fuller’s second view

draws from Neil Postman, McLuhan, Walter Ong, and others, placing ecology as a study of the

sustainability of culture and media as environment or environmentalism and less on the patterns

or process (Media Ecologies 2). Lastly, Fuller connects media ecology to literary studies, citing

Hayles’ and Friedrich Kittler’s projects that demonstrate how literature is a “subset of media”

that makes “electronic or code-based logical composition and developed theorization of

interaction come into play with cultural analysis and production” (Media Ecologies 4). This

triumvirate view of media ecology paints a broad landscape across WordPress and its multiple

communities, the development and expansion of WordPress as software, the surrounding

discussions, people, and technology sustaining and supporting it, and WordPress and its code as

a focus toward media-specific analysis and study. Media, media ecology, and technology warrant

further assembling to show the relationship between technology and media.

In Orality and Literacy, Walter Ong establishes that writing is a technology. In Ong’s

examination, Ong parallels computers with early criticism of writing, observing people complain

about computers as Socrates (via Plato) criticizes writing in The Phaedrus (78–79). Ong

identifies four parallel technological detractors of writing and computers. Ong observes criticism

12

of writing and computers as “outside the mind…a manufactured product;” a memory destroyer;

unresponsive or unable to respond to variance or change, “garbage in, garbage out;” and

defenseless, passive, unable to “defend itself as the natural spoken word can” (78). In identifying

these four properties, Ong reinforces a critical linkage between technology and media and

common perceptions towards new media when introduced. Ong situates writing as one of the

first forms of persistent media, a lasting imprint of the word. As technological extensions of self,

media inherits the same properties of writing and computers in that “writing and print and the

computer are all ways of technologizing the word” (Ong 79). While McLuhan offers a way to

describe the scale of interaction or tensions of attention with hot and cool media, Ong and

McLuhan posit that technology can embed and encode itself within our lives and ways of living

almost to the point of failing to recognize it as a technology. David M. Berry adds that “technical

devices are delegated performative and normative capabilities which they prescribe back onto

humans and non-humans” (The Philosophy of Software 121). Media’s complexity and

temperature disrupt the recognition of technology and its influences. Further advancements in

technologized media help accelerate the eventual subsuming of media as microchips become

smaller and faster, devices become physically smaller and more commonplace (or less

disruptive), and the media and mediation become denser and more embedded. Technology

eventually enfolds itself back on ourselves through iterative, ascending feedback and abstraction

loops that feed the vastitude of media’s surface area and layers of human interface.

In Technopoly, Neil Postman promotes caution and a call to examine technologies’

effects, especially within new media. New media, specifically computing digital media, have

several differentiating properties or principles from older media that underscore Postman’s

13

argument. In The Language of New Media, Lev Manovich outlines five principles of new media:

numerical representation, modularity, automation, variability, and transcoding (27–45).

Manovich observes that due to new media’s numerical representation or digital code

composition, “media becomes programmable” and allows it to be structured or modular to any

scale. (Manovich 27, 30). The modularity of new media signals Ong’s and McLuhan’s view that

new media can retain its initial “passive” or now “hot” or “garbagey” properties while creating

independent discrete blocks of writing through software and hardware that can be programmed

or added to work within (almost) infinite media layers or modules. In “The Ambivalent Ontology

of Digital Artifacts,” Jannis Kallinikos and colleagues add, “modularity and granularity furnish

the generative matrix of the attributes of editability, interactivity, openness, and distributedness,”

where granularity focuses on the “stuff of which these blocks are made” (“The Ambivalent

Ontology of Digital Artifacts” 361, 360). Media’s numerical representation and modularity

generate repeatability or consistency of existing media, while its programmability allows for

alterability.

Media’s digital persistence creates occasions of stasis or unresponsiveness in Ong’s

sense. Media as software can generate and reproduce the same set of stacked and embedded

media responses through its execution, distribution, and installation, creating multiple instances

of repeatable “passive” responses to the same action. Software, such as WordPress, has a

predictable series of events and responses when acted upon for any given version of it. The

repeatable and predictable behavior holds narrowly to only one version or might persist across

every version, which Manovich offers as one mode of variability of new media.

14

For WordPress qua media, each version released and distributed has variability, such as

“Miles Davis” (1.0) or “Ella Fitzgerald” (2.1), with the inclusion or exclusion of plugins and

themes, and other changes to source code or configuration also demonstrate variability. As

stacked layers of media, the software, operating system, and hardware enacted below WordPress

add an indefinite degree of variability to any instance of WordPress. Any WordPress release,

plugin, theme, and configuration combination creates a fixed and dominant collection of

processes that control and normalize the experience and interactions across and throughout the

media layers. In What Algorithms Want, Ed Finn cautions, “our interaction with the technology

of the written word not only changed the medium of thought… but it also changed the mode of

thought” (38). Additionally, in “Encoding/Decoding,” Stuart Hall’s communication theory,

which is discussed later in this chapter, offers a framework to describe multiple aspects of

WordPress and reinforce McLuhan’s and Ong’s view of media and technology as an

undergirding extension within any given instance with both immediate and long-lasting effects.

The focus here is on the level of disruption to one invariable instance that is distributed and takes

root within other systems. A change within that instance persists and influences across its

lifespan as a smooth, quiet interlocutor or a disruptor until the change becomes an expected

norm, changed again, or “fixed.” For instance, every WordPress version of “Nina Simone” (5.6)

distributed contains a series of constants and variables that all versions share until something in

that particular media environment changes. Postman warns, “technological change is neither

additive nor subtractive. It is ecological…one significant change generates total change” (18).

The total change builds upon the momentary fixed media objects (source code, software,

operating system, and hardware) specific to that instance’s digital environment. At the same

15

time, variability creates shared and isolated opportunities of experience or interaction within that

instance of the software and its surrounding environment.

Hayles offers that studying digital media interactions requires a framework to describe its

density, dynamics, and variability “in which objects are seen not as static entities that…remain

the same throughout time but rather are understood as constantly changing assemblages in which

inequalities and inefficiencies in their operations drive them toward breakdown, disruption,

innovation, and change” (How We Think 13). The variability and ever-shifting permutations of

code present a duality of preventing and creating inequalities and inefficiencies within the future

iterations of the wider network of source code used to compile or assemble software. The

innovation and changes are represented in software as versions with new features and

enhancements, while breakdowns and disruptions become flaws, bugs, vulnerabilities, and

backward incompatibilities. The total change described by Postman is further complicated by

media’s ability to distribute and be distributed.

Distributedness

Computer or digital media takes on a broader role and capability than previous (paper-

based) media through its ability to self-distribute, reference, replicate, and communicate without

losing the originating self-object due to its numerical representation of itself and the objects

contained within it. Kallinikos and co-authors include the concepts of self-referential and

reflexive to describe this multiplexed happening where “digital objects can only be accessed,

assembled and acted upon by other digital objects [and]…presuppose and steadily beget other

digital objects, often distributed across settings” (“The Ambivalent Ontology of Digital

Artifacts” 366). Media stored and transmitted and operating as numerical representations, or

16

patterned sequences, present a robust and infinite combination of potential digital objects that,

through a networked (Internet) distribution, becomes infinitely boundless in reach and

replication.

In The Rhetorical Nature of XML, J.D. Applen and Rudy McDaniel describe one

distributional property as “the function performed by software that allows…data to be distributed

from one computer to another, or from a content author to her audience(s) in a computer-

mediated fashion” (4). Kallinikos and co-authors identify other distributedness properties within

digital objects, such as being borderless and transfigurable and the ability of assembling

procedures to create peaks and valleys of prominence and influence when digital objects or

modules are stitched and embedded into a more extensive, complex system (“A Theory of

Digital Objects,” para.9). Jonathan Beever and colleagues add, “distributedness marks a

fundamental and novel property of the digital…[where] distribution is a function of two

attributes: reproducibility and transferability” (65). The distributedness of digital media is

predominately governed by layers of software, protocols, and hardware that reside below and

beside each other, creating co-dependencies and interdependencies among objects. Johanna

Drucker explains that “any digital ‘entity’ is dependent on servers, networks, software, hosting

environments and the relations among them just as sure as a biological entity depends upon

atmospheric and climatic conditions” (para.21). Many of these layers or digital objects are built

upon homogenous and standardized protocols and generally agreed-upon, stabilized, and

repeatable architecture of logic and computational instructions down to the level of circuitry.

The hardware or platform media levels are socially and technologically homogenized,

bounded, and maintained, allowing the layers and objects above to be distributed across a stable

17

and predictable series of media objects. The stabilization generates the capacity to create shared

experiences through complex digital objects, such as computers, smartphones, and the Internet,

while simultaneously contributing to economic livelihood and the global market of related goods

and services surrounding them. As William Melody observed in 1999, economic factors

influence new media’s development and consumption more than previous media forms, and

conversely, new media more significantly influences an information economy (39). These

technological, social, and economic factors create a constant fast and slow churning of digital

layers and objects as they are distributed and re-distributed through continuous rounds of re-

swathing and recapitulating media as digital objects. Observing the constant change of digital

layers and objects, Kallinikos and co-authors state, “these fundamental conditions are implicated

in the formation of larger digital ecosystems that never settle, as the artifacts by which they are

made undergo steady change and the architecture of technical and organizational relations to

which they belong shift” (“The Ambivalent Ontology of Digital Artifacts” 366). The plurality of

shifts and influences points to Manovich’s observation of differences in new media.

Manovich sees the location of computer media as more than distribution and display. For

Manovich, the storage and creation or production are equal to distribution and display in the

conceivable influence of changing “existing cultural languages…the shift of all of our culture to

computer-mediated forms of production, distribution and communication” (43). Media,

specifically computer or digital media, technologically affords an extension of ourselves beyond

the ephemeral utterance of a word or the singular instance of a book, impelling a multi-layered,

ever-shifting, self-referencing representation of self.

18

Examining media presents a foundation of generalizable properties and behaviors that

more specific forms of media, like platforms and software, inherit and exhibit alongside their

own more distinctive set of properties. The following two sub-sections examine software and

platforms and their emergent traits.

Software

Adrian Mackenzie opens Cutting Code by defining software, citing Oxford Reference

Online, as “components of a computer system that are intangible rather than physical…programs

executed by a computer…both symbolic and executable forms for such programs,” setting the

tone of examining “software as a social object and process” (1). In Code/Space, Rob Kitchin and

Martin Dodge describe software as “lines of code—instructions and algorithms that, when

combined and supplied with appropriate input, produce routines and programs capable of

complex digital functions” that “transforms social and economic relations and formations, and

creates new horizons for cultural activity” (3). Kitchin and Dodge further describe software as

the “product of a sociotechnical assemblage of knowledge, governmentality, practices,

subjectivities, materialities, and the marketplace, embedded within contextual, ideological, and

philosophical frames” (247). Software is the digitalization and digitized media enclosed within

computer systems that, along with hardware components and their processual movement, open

and restrict views of seeing, doing, and being within and throughout the media ecosystem. Luca

Possati urges for a more comprehensive definition of software beyond that of only an algorithm

or series of algorithms (1). Fuller offers that “software is computation, which…gains its power as

a social or cultural artifact and process by means of a better and better accommodation to

behaviors and bodies which happen on its outside” (“Introduction” 5). Drawing from Geoffrey

19

Bowker and Susan Leigh Star’s Sorting Things Out, Mackenzie adds, “the production of new

media largely depends on the creation of software that remains largely invisible or somewhat

infrastructural” (3). The three sub-sections below examine some software traits and several

software distinctions from other media types.

Processual and Computational

Manovich sees the demarcation of media studies to software studies by incorporating

computer science to bring forward new vocabulary and theory that can more aptly describe

programmable new media (48). The two-sided approach divides or chunks the view of media

into human and machine sides like an iceberg. Wendy Hui Kyong Chun argues that this view of

software, expressly transcoding, privileges “software as readable text; it ignores the significance

of hardware and extramedial representation” (Control and Freedom 18). Although Manovich

does not directly address the role of hardware within the five principles, Manovich describes

transcoding as media’s translatability into another format (47). Still, Chun’s evaluation

highlights one limitation of a narrow view of software, which platform studies undertakes a more

holistic cultural view of the vertical of media and media systems from circuitry to interface. Paul

Dourish explains that Manovich outlines what software (and software studies) could be, a

recognition that “procedural and data-driven systems” are “a new cultural form” and a medium

by which culturally significant work is accomplished (The Stuff of Bits 53). The programmable,

procedural, and data-driven media turns software through computational and processual

movement. Fuller and Andrew Goffey explain, “media here become less about the movement of

signs that refer to other things but active as tangible, biddable things in their own right” (2).

Kitchin and Dodge, hinting at platforms and interactivity, add, “software is itself a medium for

20

intellectual work and invention. Unlike spoken language and conventional writing, software is

computational and executable, and can thus create products that themselves afford creativity”

(112). The vectorization of media creates a massive, frenzied swarm of programmed gateways

and communication pathways for play, creativity, and control traversing electrical signifiers that

are patterned and structured as logic, data, and instruction—software.

Software is processual and programmable. Software designers and developers design

software with two primary intentions: to control the machine and present a sense of controlled

stability of affordance to the subsequent immediate media layers. One distinction of software is

its movement through hardware as a human-made product of infinite loops of discrete

imperatives and protocols. Connecting software to its source code, Chun adds, “software

emerged as a thing—as an iterable textual program—through a process of commercialization and

commodification that has made code logos: code as source, code as true representation of action,

indeed, code as conflated with, and substituting for, action” (Programmed Visions 19). Software

movement is observable yet unobservable, the trappings of an iceberg but more like ocean

currents. Berry observes that society has always relied on undercurrent or background

bureaucracy in communication and information processes; however, Berry distinguishes that

software and code have increased the rate and quantity of processes (The Philosophy of Software

2). Software’s empirical movement manifests as output, interface, or data transformation. The

surface movement is a full emergence from the submerged rapid undertaking churning massive

ordered and logically-architectured bits of protocol and program.

To describe the motion of software, Noah Wardrip-Fruin proposes expressive processing

to label what computational processes express in and through multiple design states and their

21

history, and the concept of operational logics as patterns of the interplay among “data, process,

surface, interaction, author, and audience” (4–5, 13). Although Wardrip-Fruin’s model places

code already in motion as internal and external processes, it presents a foundation for

recognizing the interactions between people and external processes and their relationships with

internal processes. As Berry conceptualizes, “software is a tangle, a knot, which ties together the

physical and the ephemeral, the material, and the ethereal, into a multi-linear ensemble that can

be controlled and directed” (The Philosophy of Software 3). Wardrip-Fruin simplifies the

entanglement into operational logics, facilitating a phenomenological analysis of experiencing

software.

Wardrip-Fruin identifies the Eliza, Tale-Spin, and SimCity effects through the view of

expressive processing and operational logics. A brief introduction of the effects helps frame how

to view WordPress from a processual level of abstraction and life-like animation, most notably

the Tale-Spin and SimCity effect. Wardrip-Fruin describes software that “fail[s] to represent their

internal system richness on their surfaces” or the inverse of the Eliza effect as the Tale-Spin

effect, and software that “shape[s] their surface experience to enable the audience to build up an

understanding of their internal structure, especially a relatively complex one” as the SimCity

effect (16). Regardless of software’s logical complexity, its movement exhibits anthropomorphic

qualities people personify as they focus primarily on surface interactions. Geoff Cox explains,

“as software becomes ubiquitous it becomes ever more connected to external processes, and

programs no longer encode pure logic but human social behavior too” (26). Cox continues,

“systems are embedded in larger language systems where meanings are produced through social

practices” (27). Fuller takes a similar view by stating, “one thing that is compelling about

22

software is how it contains models of involvement with processes rather than simply with static

elements,” suggesting how collaborative software, such as WordPress, becomes “part of wider

suites of processes” (Behind the Blip 14). Cox further highlights the anthropomorphic traits of

software by connecting the Eliza effect to software’s emergent social behavior characteristics

through Joseph Weizenbaum’s allusion to George Bernard Shaw’s Pygmalion and the Greek

myth, which, in this case, Venus breathes life into media (30). James J. Brown adds about

Wardrip-Fruin’s processual analysis that “at the level of code and at the level of output presents a

way for us to conceptualize the relationships between data, process, and interface” (143).

Wardrip-Fruin’s processual descriptions also help expound the cultural significance of the

movement or execution of code that can create output and interface and a means to interact.

Interface and Interaction

In “‘Can We Name the Tools?’ Ontologies of Code, Speculative Techné and Rhetorical

Concealment,” Steven Holmes observes that software studies emerged partly as opposition to

media aesthetics. Recognizing Nick Montfort’s and Peter Lunefeld’s critiques through their

conceptions of screen essentialism and vapor theory, respectively, Holmes sees software studies

as a means to reveal “the technical (denominative or literal) meaning of code and its

corresponding manner of execution” (n.p). Many scholars have argued against focusing solely on

the human interface and the surface texture, advocating more emphasis on computation, code,

and more media-specific analysis to reveal the cultural undertaking of media and the people

creating it (Brown 153; Sample, para.2; Berry, The Philosophy of Software 4; Montfort et al. 3).

For Montfort and Ian Bogost, platform studies is a response to screen essentialism. The interface

remains a critical factor within media and software studies.

23

Interface affords the most direct influence on one experiencing it, and user experience is

vital to the acceptance and success of any software or platform. Nevertheless, the human

interface is a thin veneer—the tip of the iceberg—among the layers of media, which aims at

simplicity as a form of seduction and aesthetic abstraction from the invisible labor and control

below, luring humans towards interaction. Wardrip-Fruin observes, “the surface of a work of

digital media is what the audience experiences; the output of the processes operating on the data,

in the context of the physical hardware and setting, through which any audience interaction takes

place” (10). The interface is a valuable intersection of negotiation and exchange of data, and

cultural and societal values, with its interactions directly with humans or other media layers.

Wardrip-Fruin defines interaction as a “change to the state of the work—for which the

work was designed—that comes from outside the work…[and] takes place through the surface of

the work” (11). The “change to the state” is the basis of interaction, communication, and

exchange among and throughout media systems, including its most outer and inner layers. The

exchange has two divergent views: 1) the programmed media acting upon and imposing control

on the human or another media layer, or 2) the human seemingly acting upon or constructing the

programmed and programmable media. The exchange is not neutral or ever the same, as the

changing states continuously traverse the ever-hotter media layers to its core of permanently

inscribed stasis of circuited logic gates. Observing the human factor of media influence, Cox

states that a “user’s thoughts and actions are some what determined by the operating system or

graphical user interface recalls the ways the user is interpellated in the Althusserian sense to

demonstrate how ideology calls us to order through its God-like commands and procedures” (2).

Software’s fixed processual repeatability of the same code permits or eases multiple iterations of

24

interpellation through its media layers that have software developers and designers negotiate into

a fixed product and version. Chun notes, “user control dwindles as one moves down the software

stack; software itself dwindles since everything reduces to voltage differences as signifiers.

Although one codes software…one cannot see software” (Control and Freedom 19). Developers

and designers, although users themselves, focus on controlling media shaping the actions and

aesthetics of software within the confines of a given computational environment. Taina Bucher

elucidates this bi-directional influence by observing, “software and algorithms do not simply

operate in isolation or exercise power in any unidirectional way…their capacity to produce

sociality always already occurs in relation to other elements, and as part of an assemblage

through which these elements take on their meaning in the first place” (If...Then 153). Interface

and interaction become an exchange of control.

Michael L. Black, in “A Textual History of Mozilla,” illustrates that the user interface is a

self-representation, making it a capricious intersection of inquiry since developers can present

any visual layout, concealing or de-emphasizing affordance levels while embellishing others. In

some cases, as Black demonstrates with the Firefox web browser software, the interface shows

little change over more than a decade of significant code changes (para.8). Black shows how an

interface has a malleability to adapt to changes in aesthetic or cultural norms without changes to

the underlying system. In Lingua Fracta, Collin Brooke turns the rhetoric of new media towards

the interface. Brooke’s view of interface indirectly attributes interface with processual effects by

proposing interfaces possess a configurable and flexible awareness or recognition of their

surroundings (24). Cognizant of Matthew Kirschenbaum’s caution of bringing in art historian

and media theorist W.J.T. Mitchell’s view, Brooke states, “interfaces are those ‘ever-elastic

25

middles’ that include, incorporate, and indeed constitute their ‘outside’” (24). Manovich

augments this view of interface with the argument that we interact with “culture encoded in

digital form” or a cultural interface when a computer presents or makes evident the affordances

programmed within and throughout (70). The cultural interfaces or “ever-elastic middles” “try to

create their own language…[and] negotiate between metaphors and ways of controlling a

computer” (Manovich 92–93). Ultimately, each layer of media within a system presents (or

mediates with) an interface of self-represented abstractions to serve up programmatic

interactions of control.

Abstraction and Metaphor

Abstraction and the use of metaphor is a critical techno-rhetorical device within software.

Paul Dourish observes that software “reflects an uncountable number of philosophical

commitments and perspectives without which it could never be created…[It] depends inevitably

on our ideas about representation and reality” (The Stuff of Bits viii). Programmed abstractions

construct layers of smoothed-out notions of interfaces to construct, build, or interact further.

Bucher notes that people must make sense of technologies to interact with them and attempt to

do so through “visualizations, analogies to more familiar domains, or by the use of metaphors”

(If...Then 97). Many metaphors and abstractions have emerged as a way to interact with the

complexity of digital media platforms at the human interface levels (command lines, terminals,

and menu structures), including software that can run, execute, start, crash, catch viruses, be told

to be nice, and kill and be killed. While these basic examples demonstrate simple human

interactions of software’s processual effects, many hardware and software layers employ

significant and complex abstraction and metaphor, particularly in larger systems. Google,

26

Facebook, Twitter, and WordPress are examples of complex, monolithically branded networked

software and platforms that employ abstraction and metaphor throughout their digital

ecosystems. Finn adds, the “most prevalent set of metaphors seems to be that of code as

structure: platforms, architectures, objects, portals, gateways [that] depesonif[ies] software,

diluting the notion of software agency….and reifying code as an objective construct, like a

building, that exists in the world” (6). Indeed, Mackenzie, observes “software itself…looks

increasingly like a neighborhood rather than an intangible, abstract formalism” (3). Software

works through layers of primitive and abstractive exchanges, which create more of an

infrastructuring or structural ecosystem that reaches beyond the functionality of its form and

technique to build a sociotechnical platform that invites further building and creation. There is a

considerable processual and data exchange among media layers across geography, hardware, and

software to construct a singular view of a human interface. Berry and Anders Fagerjord explain,

“computation has compressive effects and generates flattening metaphors, and the visual

language of computation tends towards an encounter…to transform time from a diachronic to a

synchronic experience and often into a discrete output” (14).

In “There is No Software,” Friedrich Kittler argues that hardware, specifically the first

processor, was the last act of writing, and all the layers and interfaces atop are indirect and

abstracted forms of writing, “an infinite series of self-similarities discovered by fractal

geometry” that “we can simply no longer know what our writing is doing, and least of all when

we are programming” (“There Is No Software” 221). Kittler sees software as a distancing from

the machine that could potentially have almost infinite levels and layers of abstraction from the

top-most level of software to the hardware. However, Berry identifies a benefit of abstraction

27

and layering for solving computational problems; abstraction generates “a digital ‘universe’ in

which digital entities are created as having discrete spatial characteristics, both in terms of

occupying specific three-dimensional physical memory locations…[and] abstracting upon this

physical space, a model of space that may have multiple dimensions” (The Philosophy of

Software 138). Finn, bolstering this view, states “abstraction itself is one of the most powerful

tools the Church-Turing thesis—and computation in general—gives us, enabling platform-

agnostic software and the many metaphors and visual abstractions we depend on” (25). Despite

its existential neuroticism given to software by Kittler, software does exist. It takes shape

through its processual effects and layering of interface and abstractions. Software’s movement

through its processing and distribution permeates the modern world. Finn, drawing from Chun,

describes that “the “thing” that software has become is the cultural figure of the algorithm:

instantiated metaphors for effective procedures” (33). Metaphor use helps conceptualize the

internal action and recognize the creative practices within and the output or interfaces from

within software. Software becomes the ultimate metaphor—the metaphor of metaphors to build

upon and extend with metaphor.

Digital Platforms

As a most-generic descriptor, a platform calls forth a sense of a foundation or grounding

elevated above the surrounding dynamics to create a stability of uniformity to build upon

figuratively, literally, politically, creatively, theatrically, physically, or digitally. In “The Politics

of ‘Platforms,’” Tarleton Gillespie identifies computational, architectural, figurative, and

political as four semantic categories located in the fifteen definitions of a platform that are

dependencies of one definition of platform absent to describe “digital media intermediaries”

28

(“The Politics of ‘Platforms’” 349–50). Platforms present innumerable general affordances by

visualizing media as a multi-layered stack of interworking performative and cultural objects and

processes. The layers above interact and taper into highly controlled or specialized hardware,

platform, software, or experience. Bucher illuminates the conceptualization of media by stating,

“platforms act as performative intermediaries that participate in shaping the worlds they only

purport to represent” (If...Then 1). Bogost and Montfort define a platform as a “hardware and

software framework that supports other programs” that “in its purest form is an abstraction,

simply a standard or specification…[that] must manifest itself materially…to be used by people

and to take part in our culture directly” (“New Media as Material Constraint: An Introduction to

Platform Studies” 176). Bogost and Montfort draw forth examples of platforms ranging from

integrated circuits and hardware components to operating systems and programming languages

or environments (“Platform Studies” 3–4; “New Media as Material Constraint: An Introduction

to Platform Studies” 176). From this view, platforms qua media can stack, interact, integrate,

enmesh, or embed themselves with or within other platforms. Gillespie observes that a

“‘platform’ emerges not simply as indicating a functional shape: it suggests a progressive and

egalitarian arrangement, promising to support those who stand upon it” (“The Politics of

‘Platforms’” 350). Examining a platform requires identifying and isolating the individual

platforms as layers or components within the more extensive platform system (or system of

platforms), treating each platform as a micro-ecosystem bounded by its framework of full

particulars to and from the layers designed above and below.

While Bogost, Montfort, Gillespie, and Bucher present a broad notion of a platform that

offers a rich opportunity to examine WordPress, the following sub-sections focus on digital

29

platforms and people’s pervasive engagement with them as it relates to platforms’ sense of being

political, personal, controlled, and controlling. Gillespie identifies four sociotechnical properties

of platforms. Two of Gillespie’s properties thread throughout the following sub-sections.

Platforms “host, organize, and circulate users’ shared content or social interactions for

them,…[and are] built on an infrastructure, beneath that circulation of information, for

processing data for customer service, advertising, and profit” (Custodians of the Internet 18).

Furthermore, the review focuses on some properties, behaviors, and characteristics that digital

platforms exhibit as media and software.

Political and Personal

In Ethical Programs, James J. Brown observes, “software on the network cannot avoid

questions of ethics and hospitality, and this is because the network is based upon the assumption

that others will arrive” (6). As Manovich explores cultural media creation software in Software

Takes Control, Brown examines MediaWiki and Twitter as two platforms and how they “enact

ethical programs and express arguments about how best to contend with hospitality” through

“rules, procedures, and heuristics about how (or whether) interactions should happen” (6).

Software and platforms necessitate a measure of welcoming or recognition of affordance for

human interaction and continued engagement.

Nick Srnicek observes that the platform arose as a new business model that came out of

the inevitability of controlling data and creating “efficient way[s] to monopolise, extract,

analyse, and use the increasingly large amounts of data” (43). Srnicek’s view incorporates the

view grounded by Gillespie, Montfort, and Bogost while narrowing the focus to networked

software or infrastructure and extending the properties of platforms by identifying capitalist

30

marketplace influences that organize platforms into categories like advertising, cloud, industrial,

product, and lean based on their generalized behavior (49). Srnicek describes platforms as

“digital infrastructures that enabled two or more groups to interact, [which] position themselves

as intermediaries that bring together…customers, advertisers, service providers, producers,

suppliers, and even physical objects,…with a series of tools that enable their users to build their

own products, services, and marketplaces” (43). From this view, platforms are critical multi-

layered mediators, networkers, and gatekeepers of potentially commodifiable data that marks a

pivotal shift from earlier concepts of non-networked digital platforms, such as early operating

systems and hardware systems that focused less directly on people as data or indirect

commodity. Arwid Lund and Mariano Zukerfeld add, “platforms are widely heterogeneous in

terms of variables like their size, the type of service or product they deliver, whether they are

non-profit or for-profit, their business model, [and] the social actors involved” (82). Srnicek’s

five platform types offer a framework view but do not fully identify the properties of platforms.

Lund and Zukerfeld identify additional properties such as open or free versus closed or

paywalled, nor do the types consider monetary compensation of “produsers” or content creators

and distinguish between non-profit and for-profit platforms (83). For Lund and Zukerfeld, this

exclusion misses out on the “tension between commodities and commons, as well as the dynamic

interplay between for-profit and not-for-profit platforms,” which WordPress as open-source

software and Automattic and WordPress.com as for-profit enterprises exhibit (83). Regardless of

the platform categorization and properties it exhibits through its design and development,

platforms remain dependent on direct or indirect consumption models to thrive. Srnicek

observes, “digital platforms produce and are reliant on ‘network effects’: the more numerous the

31

users who use a platform, the more valuable that platform becomes for everyone else” (45). The

type of network effect or network externalities can be direct or indirect based on how the

platform garners “value” from the people using it (de Reuver et al. 125). Gillespie best

summarizes digital platforms' sense of political and personal engagement, stating they

“constitute a fundamentally new information configuration, materially, institutionally,

financially, and socially….they echo and extend traditional forms of communication and

exchange, they do so by being, like computer themselves, ‘universal machines’ for many

different kinds of information exchange” (Custodians of the Internet 207).

Controlled and Controlling Affordance

Platforms are controlled and controlling systems. There is an intrinsic and extrinsic flow

of control throughout the stacked media, presenting physical, electrical, and mechanical

limitations. Voltage regulation, form factors, and other human-imposed standards control

hardware to coerce or promote a level of interoperability that extends “upward” into software.

Amrit Tiwana and colleagues, using Apple iOS and Mozilla Firefox as examples, explain “the

extensible codebase of a software based system that provides core functionality shared by the

modules that interoperate with it and the interfaces through which they interoperate” (675).

Interoperation is a critical component of platforms' pervasiveness, distribution, and how we

might engage with them.

Hardware, such as power supplies, CPUs, circuit boards, and hard drives, are designed

with cybernetic feedback loops and mechanisms to construct a predictable and stable substrate to

build upon that minimizes human creativity within those layers. Human creativity comes from

these physical layers through more efficient designs and reconfigurations of transistors and

32

circuitry. The intrinsic affordances are built upon and inherited by the physical limitations of the

layers stacked below. The demarcation of extrinsic flows of control may very well align with

Manovich’s view of media and software. Once an electro-mechanical platform of generalizable

computing stabilizes, the focus of control shifts from controlling hardware to controlling

hardware, software, and human. As Wardrip-Fruin explains about media and software, linking

back to interface, “the goals are no longer general-purpose. The authoring of media is instead

precisely the presentation of “someone’s idea” of something” (108). For de Reuver and co-

authors, control and its arrangement distinguish digital platforms from infrastructures, “which

may be anchored in an organisation or consortium of firms that owns the core platform

technologies” (127).

The shift and focus of control bring a more meaningful way to identify the cultural and

hegemonic influences. This is not to say that the hardware layers offer no meaning or are devoid

of cultural or social influences; these influences are more difficult to draw direct inferences about

influences and affordances. As Mark Sample notes, “each of these individual components offers

affordances — capabilities that are both enabling and limiting” (para.3). For example, the history

and evolution of power and voltage levels in the microcomputer design might highlight a heavy

US-centric influence and how it could underscore what future global green computing initiatives

originate and frame future designs. A recent example is Intel’s decision to remove the CPU

instruction, Software Guard Extensions (SGX), in its latest processors (Intel). Without the

instruction set, computers with the newest processors are unable to play high-definition 4K Blu-

rays because of the dependence on the programmed safeguards of protecting content on the

instruction set. Intel has created a forward-compatibility problem and positions Intel as

33

influencing the future of Blu-ray discs as a medium. Chun summarizes the hardware below the

shifting fold by stating, “control systems reduce a diverse array of mechanical, electrical, and

electromechanical configurations—and human situations—into indistinguishable black box

diagrams.” (Control and Freedom 40). Hardware layers of a computing system are influenced,

programmed, and controlled by social and cultural influences, which, in turn, influence and

constrain further development and design of hardware or software layers built adjacent to or atop

them. While employing “layer” as a helpful metaphor for describing the stack of media

components or artifacts, the notion of media layers extends vertically and horizontally

throughout media, systems of media, and ecosystems of networked platforms—the computer and

its “amalgamation of hardware and the range of operating system choices and software that

extend [its] core functionality” (Salter and Murray 2). Vertical and horizontal layering occurs

within a singular computer system or network of systems and a singular software package or

software distributed across multiple systems. Drucker summarizes the complexity at length:

The distributed concept requires attention to the many layers and relationships of

hardware, software, bandwidth, processing, storage, memory, and other factors. The

distributed approach registers a shift from materiality grounded in a single feature or

factor an approach based on multiple systems of interrelated activity. Each of these is

supported by technical things—substrates, wiring, chips, circuits, etc.—and relations. By

its very character, distributedness disturbs assumptions of singularity or stability. A

quality, materiality, whose identity depends on contingencies cannot be mistaken for a

self-evident object. (para.21)

34

Control and the oscillating control of digital systems' layering, stability, and distribution

emphasize the more significant socio-economic and technical dynamics that can influence digital

platforms and networked software.

Bogost and Montfort note that software is a platform in itself or a component of a

platform (“Platform Studies” 2). Marc Andreessen’s view of software platforms, like Srnicek,

highlights some distinct technical properties of networked software. In “The Three Kinds of

Platforms You Meet on the Internet,” Andreessen describes a platform as a “system that can be

programmed and…customized by outside developers—users—and in that way, adapted to

countless needs and niches that the platform’s original developers could not have possibly

contemplated, much less had time to accommodate,” emphasizing its extensibility attributed to

its ability to distributed and connect. (“Blog.Pmarca.Com,” para.4). Though, Mackenzie might

call Andreessen’s view of a platform a meta-platform, or “a space lifted out from” another

platform, with a focus on the developer (99). Andreessen continues to describe access

application programming interface (API), plug-in API, and runtime environment as three levels

of networked platforms that progressively become more difficult to develop, yet once created,

yield the most potential benefit in terms of flexibilities, openness, and potential profitability

(Andreessen, “Blog.Pmarca.Com,” para.11,14,23,44). Brown adds, “as networked platforms

proliferate, APIs offering developers and users the capacity to build third-party applications have

become more and more prevalent. They provide users and programmers with ways to access

certain information and functions while also allowing companies to protect” (73–74). Platforms

require control and protection mechanisms through means of abstraction, access, affordance, and

35

interface to safeguard data and the platform from the anticipatory actions, across the spectrum of

intentionality, that people might take when interacting with the system.

Wardrip-Fruin delineates affordances into authorial and interpretive affordances as the

two ways software and platforms present affordances to creators and users, respectively (274).

The distinction of affordances highlights two general approaches and tensions of platforms and

technology as the controller or user. However, Salter and Murray observe that “a number of

different platforms and affordances are at work that are impossible to isolate — and their various

affordances have fundamentally shaped the web as a space of discourse, creativity, and

interactivity” (2). Salter and Murray, drawing on Donald Norman’s view of affordance, add

“affordances are not just properties of a platform: they become suggestions and frame works for

the works built upon them” (2). Salter and Murray illustrate the complex duality of authorial and

interpretative affordances within platforms where people are both the controller or author and the

controlled user working through the stacked layers of prescribed interface. While some layers

present liberal, creative control and openness towards what can be accomplished within it,

facilitating use and consumption, the limitations and constraints remain from the layers below

without further confrontation and changes to them. Chun declares, “new media spaces…are

fundamentally unnavigable. Users may navigate and control software interfaces, but this control

compensates for, if not screens, the lack of control they have over their data’s path” (Control and

Freedom 46). Furthermore, Kitchin and Dodge state, “software also regulates and disciplines.

The freedom to participate and do certain kinds of work only exists if an application’s underlying

calculative algorithms and communicative protocols are encoded to support such actions” (133).

The tension within the duality of affordances leads to constant renegotiation and reconfiguration

36

of platforms and underlying programmed media layers that continually shift the openness and

controlled exchange of data and process and where and how it takes place. De Reuver and

colleagues summarize these tensions as a paradoxical relationship of both change and control.

The paradox of change suggests digital platforms need to “simultaneously remain stable to form

a solid foundation…and yet to be sufficiently flexible in order to support seemingly unbounded

growth,” and the paradox of control underlines the “opposing logic of digital platforms

simultaneously being governed by centralised and distributed control” (de Reuver et al. 126).

The number of individuals and organizations involved with the development and distribution of

media layers further complicates the change and control paradox, which (eventual) compromise

is made by creating open standards, protocols, and licensing and use agreements.

Pervasive Engagement

Networked software platforms stem from the premise of the openness and participatory

culture of Web 2.0, where “the power to speak would be more widely distributed, with more

opportunity to respond and deliberate and critique and mock and contribute” (Gillespie, “The

Politics of ‘Platforms’” 15). The general technical acumen of people using the web and access

make it challenging to navigate the web, let alone participate in creating and designing content.

For-profit and non-profit organizations designed early web services to “‘solve’ some of the

challenges of navigating the open web” in that they “substantially simplified the tools needed for

posting, distributing, sharing, commenting” inexpensively to a larger, global audience, and they

created network effects as previously described by Srnicek and de Reuver and co-authors.

(Gillespie, Custodians of the Internet 15). As early web services evolved into platforms and

became more advanced, they seized and capitulated control and power, shifting the levels of

37

immersive engagement and embeddedness through direct and indirect use. The chaos of massive

data and information on the web was cajoled into standards and entangled with new hierarchies

and taxonomies to harness the information overload that helped create dampers throughout the

interconnected web systems that continued to saturate the internet. Gillespie explains about the

evolution that “platform is a slippery term…because its meaning has changed over time…it

equates things that nevertheless differ in important and sometimes striking ways…and…it gets

deployed strategically, by both stakeholders and critics” (Custodians of the Internet 18).

Before tracing more characteristics of platforms, two short examples help illustrate

platforms and their pervasiveness. Java and Flash and their respective paired programming

languages, Java and ActionScript, are two examples of software as platforms released in the mid-

1990s that have heavily influenced the notion of platform. Salter and Murray observe, “as a

software platform of incredible range and influence, Flash has absolutely permeated through our

culture and media, both through its stronghold on the computers it was designed for and in its

aesthetic legacy and the altered expectations that resulted from it” (11). Oracle purports, “Java is

the #1 programming language and development platform…[that] continues to be the

development platform of choice for enterprises and developers” (Oracle, Java Software). Oracle,

the current organization that owns Java, reports that, in 2016, 15 billion devices had Java

running and, in 2017, 38 billion active Java Virtual Machines (platform), with 21 billion of them

cloud-connected (Oracle, Moved by Java Timeline | Oracle). Salter and Murray describe Flash as

“a multimedia platform that started as a simple animation package and grew to offer an

incredible range of opportunities to author media experiences on the web” (3). Salter and Murray

observe that Flash’s ease of entry for beginner programmers and access to a community of

38

knowledge were fundamental to its popularity, citing the 2009 report from the firm Millward

Brown (now Kantar) that stated Flash had reached “99 percent of Internet viewers as opposed to

Java’s 81 percent” (9). Mackenzie observes about Java (and more generally any software) that it

“is not so much a single thing, object or media, but an unfolding, bifurcating, loosely held

ensemble of practices, imaginings, logos, knowledges and artifacts” (95). The assemblage of

controlling vectors coalesces into highly distributable and distributed platforms invites further

participation and interaction through the layers most accessible to people’s everyday use.

Platform governance and influential structures exist internal and external to a system,

with localized political and cultural practices and values impelling platform use and adoption.

Policy, rulemaking, and governing outside the technicity of code and software create a middling

dynamic of control, personal use and value, and capitalizing on a platform’s consumption.

Software and digital platforms become and represent moderation and middle-ground of the

controller and controlled, which extends through approaches like open source releases,

community versions, and third-party markets that consider the network effect required for a

platform’s vibrancy. The organizations creating platforms become more than data and

information intermediaries; they become market and community intermediaries that exercise

power over maximizing engagement across the platform. For Srnicek, “platforms are also

designed in a way that makes them attractive to its varied users…presenting themselves as empty

spaces for others to interact on, they in fact embody a politics. The rules of product and service

development, as well as marketplace interactions, are set by the platform owner” (46–47).

Drawing on Brown, platforms must provide a level of hospitality; they require a degree of

39

persuasion of welcoming and control to those using it while maintaining power and control.

Gillespie maintains that platforms are derived from:

the available cultural vocabulary by stakeholders with specific aims, and carefully

massaged so as to have particular resonance for particular audiences inside particular

discourses. These are efforts not only to sell, convince, persuade, protect, triumph or

condemn, but to make claims about what these technologies are and are not, and what

should and should not be expected of them. (“The Politics of ‘Platforms’” 359)

Code and Language

Location of Code

Influenced by nineteenth-century telegraphy use and generalized use as a collection of

rules, modern computer code or source code is saturated with perceived abilities, capabilities,

and intentions across all its manifestations of meaning (Oxford English Dictionary). Ada

Lovelace, in Sketch of the Analytical Engine, articulates the foundations of general computing

code capabilities beyond simple calculations, describing that by “combin[ing] together general

symbols, in successions of unlimited variety and extent, a uniting link is established between the

operations of matter and the abstract mental processes of the most abstract branch of

mathematical science” (19). Computer code emerged in the mid-twentieth century as a helpful

way to describe the symbols and rules to control and program computers.

Friedrich Kittler, observing code’s becoming into computing, states, “codes are not a

peculiarity of computer technology or genetic engineering; as sequences of signals over time

they are part of every communications technology, every transmission medium” (“Code” 40).

40

Kittler builds further upon code’s origination, with “codes became conceivable and feasible only

after true alphabets…had become available for the codification of natural languages” (“Code”

40). Cox brings forward code’s etymological roots, traced by Kittler, using “codicilla” or “tablets

used for inscribing” and “codex” or “the bound book of the law” as part of code’s broad

boundaries (2). Cox describes how, for Kittler, the paired roots present code as command and

control, adding that “code also produces ambiguities and possibilities of recoding its prescriptive

and deterministic tendencies (the unwritten laws)” (3). Charles Petzold describes code as “a

system for transferring information among people and machines…[it] lets you communicate”

(5). Hayles notes, “code can be defined as a system of correspondences that relate the elements

of one symbol set to another symbol set” (My Mother Was a Computer 108). Similar to Hayles,

Mackenzie, drawing from Oxford References Online, places code as the “rule for transforming a

message from one symbolic form…into another,” adding that “the ‘symbolic’ forms are highly

variable and include programming languages, hardware platforms, styles of programming,

patterns of distributions and circulation, and functions or operations” (11). Kitchin and Dodge

define code as “a set of unambiguous instructions for the processing of elements…[that] is

essential for the operation of any object or system that utilizes microprocesses…[and]

constructed through programming—the art and science of putting together algorithms and

read/write instructions…and output an appropriate response” (24). While not a complete list of

the locations of code, a summarized definition suggests a commonality within code as a way to

translate, switch, or transform through language to another communicative form, which can also

be acted upon by or through code.

41

Emergent Properties

Code as an object of study has numerous properties and characteristics to consider and

analyze. The following section is divided into five selected emergent properties of code to

examine that further develop some of the introductory locations of code from the previous

section.

Enframing

In “The Enframing of Code,” Lucas Introna posits all code and encoding “frames and

enframes” in which “framing…allows for the extension of agency… [and] enframing…

performatively produces that which such agency assumes” (116). For Introna, enframing

describes how code influences and structures a worldview. Introna further articulates what

constitutes code and encoding as “normatively governed material enactments,” some of which

include logical gates on circuit boards, software code, grammar, social and moral codes,

protocols, technological scripts, and more (116). Florian Cramer adds, “code contaminates in

itself two concepts which are traditionally juxtaposed and unresolved in modern linguistics: the

structure, as conceived of in formalism and structuralism, and the performative, as developed by

speech act theory” (“Digital Code and Literary Text” 9). In this way, framing and enframing are

helpful constructs for describing the multiple framing and enframing dualisms structured and

performed by code, such as sender-receiver, statement-proclamation, structure-performance,

static-dynamic, controller-controlled, connector-gate keeper, writing-speech, potential-actual,

and passive-active (or aggressive).

Software code is bounded by its own formalized language rules and negotiating control

through the software and media layers, affording code as a programming language its residence

42

for interpretation, compilation, and execution. Code residing at one layer is influenced by the

enframing layers leading up to it, affording how the code can frame itself and enframe

subsequent layers and code. Mackenzie explains that “the process of backgrounding forms a

deep part of software and code” (12). Marino adds, “code is a unique expressive milieu that

operates like, but is still distinct from, other forms of communication primarily due to its relation

with hardware and other software systems” (Critical Code Studies 18). As explored in the

controlling affordances of platforms, code is an integral component in controlling the interactive

surface of a media layer that participates throughout the broader layered ecosystem in multiple

languages and states. As Cox points out, reinforcing Kittler’s assertion of software, the reader

(human or computer) and writer become part of the interpretation and controlling process

through the indeterminate stack and exchange of software, operating system, and hardware (2).

The multitude of layers or interfaces and the negotiations and communication enacted are

enframing codifications of protocol, algorithm, software, and control, which can be perceived as

being in control or being controlled.

As part of code's conceptual framing and enframing, Berry highlights code’s bonding

ability. Berry presses for code to be reimagined as a super-medium due to its unifying

capabilities of stitching mediums together within its structures, a digital, codified performative

likeness to Ong’s use of rhaps idein, a “weaving…to rhapsodize…to stitch songs together”

(Berry, The Philosophy of Software 10; Ong 13). Berry expands the super-medium and framing

and enframing notion of code, stating, “code is not a medium that contains the other mediums,

rather it is a medium that radically reshapes and transforms them into a new unitary form…[that]

acts as both a mediating and structuring frame” (The Philosophy of Software 10). Code structures

43

or frames within the development of a media layer, which then mediates and enframes

throughout its interface and interaction with other media. Code’s performativity of enframing

stitches mediums or media layers into larger structuring platforms.

Through its assumptive claim to agency, code's enframing or performativity directly

connects to the processual and computational unfolding of software and networked digital

platforms with multiple encoded layers. Hayles observes, “code that runs on a machine is

performative in a much stronger sense than that attributed to language,” clarifying performative

as “the kinds of actions…[language] ‘performs’ happen in the minds of humans,” like the phrase

“I declare bankruptcy!” (My Mother Was a Computer 50). Chun, reinforcing Hayles, describes

code as “an inhumanly perfect ‘performative’ uttered by no one…[it] almost always does what it

says because it needs no human acknowledgment” (Control and Freedom 66). Code framing and

enframing allow stasis within the codic text to flow through its own declaration of structure and

formalism. Observing the formalist processual properties of software, Mackenzie states, “it

isolates code from particular contexts and distills it down to relations and operations” (4). The

isolation through which framing and enframing occur emphasizes the code’s potential and actual

states. The potential or framing of code is created and situated in one context, and the actual code

is executed or experienced in another context that occurs separately, similar to the writing and

reading experience. Estee Beck illustrates that “the context of the production of code ruptures

from an authorial moment of creation...[and] …the regularity of the code’s application through

its command processes produces its own context in operation” (sec.“The Theory”). Introna,

focusing on extended agency, similarly states that code “allows for the repetition of the past (or

the elsewhere) to be actualized in the present (the here) or in an anticipated future (the not-yet),

44

but not as a simple copy but rather as a trace” (117). Mackenzie reinforces Introna’s view of

enframing code that assumes agency through enactment, stating “the shifting status of code—an

ideal expression of an operation, something to be written, something to be run, something to be

circulated, something to be upgraded or forgotten—attests to the involutions of agency attached

to software” (18). The framing and enframing of code demonstrate code’s property to pull itself

up from its bootstraps to formalize, isolate, and structure to then enact within the larger

ecosystem. The framing and enframing of code also gesture to the power and assumed agency

within code that can espouse ideology within and throughout their framing and enactment.

Ideal-Types

Berry, responding to Hayles’ call for media-specific analysis, offers a preliminary

grammatology of code by categorizing code into seven discrete ideal-types: digital data structure,

digital stream, delegated code, prescriptive code, commentary code, code object, and critical

code (“A Contribution Towards a Grammar of Code,” para.4). Focusing on delegated and

prescriptive code, terms borrowed from Bruno Latour, Berry argues that code has a dual

existence, as “delegated code residing in a human-readable frozen state… ‘source code’ and as

prescriptive code that performs operations and processes” (“A Contribution Towards a Grammar

of Code,” para.9). Timothy R. Colburn describes the duality of software similarly to Berry,

distinguishing “software's medium of description and its medium of execution” (6). Delegated

and prescriptive code offers terminology to describe, in part, the framing and enframing of code.

From this view, prescriptive code also connects with Wardrip-Fruin’s notion of operational

logics as a means to examine processes and patterns prescriptive code creates through the

interplay of data, processes, interactions, and interfaces.

45

Furthermore, Berry identifies pseudocode as a subordinate ideal-type of delegated code,

referring to it as pre-delegated code, adding, “algorithms allow the process to be described in a

platform/language independent fashion” (“A Contribution Towards a Grammar of Code,”

para.9). Berry further formulates the Max Weber-inspired ideal-types of code by identifying

comments or commentary code as another type of code that “assist[s] both the programmer and

others wishing to understand the programming code” and “demonstrate[s] authorship, list[s]

collaborators and document[s] changes” (The Philosophy of Software 54). Cox adds that using

comments helps “to distinguish the voice of the program from that of the programmer” (23).

Although disagreeing with the subordinating treatment, Cox identifies comments, variable

names, spatial arrangement of code, and formatting as collectively called secondary notation,

signaling the computer as the primary reader and the human as the secondary reader (23).

Berry’s ideal-types insert a much-needed vocabulary to enumerate code by its states of being and

any distinctions within that state.

Ideologic and Intentional

Code is socially constructed. People are essential in all aspects of code, software,

platforms, and the environments that enact them. People who design and develop software and

hardware create their own values, culture, and practices towards their work and how it relates to

the world around them. As discussed in the “The Lows and Highs of Programming Languages”

section, Brock highlights how developers must defend their rhetorical choices and intentions

created through the source code’s development process. However, code “has been a means of

communication (and hence ideological),” speaking for itself as prescriptive code and digital

utterances of output and delegated code acting as text and narrative (Marino, Critical Code

46

Studies 17). Code’s sense of communicative agency imparts the intentionality of the immediate

developer's values, culture, and practice and the aggregate of all the developers, creators, and

organizations contributing to the platform.

Code is ideologic in its ability to express politically and rhetorically through the chains of

enactment that frame and enframe values, biases, and beliefs that ultimately affect people

interacting with software. Hayles adds that code “is permeated throughout with the politics and

economics of capitalism, along with the embedded assumptions, resistant practices, and

hegemonic reinscriptions associated with them” (My Mother Was a Computer 51). Bucher offers

some examples, stating that code that ranks, classifies, sorts, predicts, and processes data is

“political in the sense that they help to make the world appear in certain ways rather than others”

(If...Then 3). Bucher presents Facebook as a more complex example, stating, “there is a notion

that Facebook acts ideologically in that the platform is hiding something from people’s view”

that people expect to experience (“Want to Be on the Top? Algorithmic Power and the Threat of

Invisibility on Facebook” 1169). Despite people’s expectations and level of understanding, code

garners attraction and fascination as a fundamental underpinning to the backdrop of modern

digital living.

Like natural language, most programming languages are designed for stringing together

code to form statements, which in turn form functions, classes, objects, data structures, and

views, which eventually can be seen as an argument, dogma, or worldview through the collective

statements and prescriptive code. Goffey adds that “the concept of the statement acts as a

reminder that the categorical distinction between form and content is, paradoxically,

insufficiently abstract to grasp the intelligence of concretely singular constellations of language

47

in their effective existence” (17). Code’s string of statements are “sprawling assemblages

involving many forms of human labor, material resources, and ideological choices” (Finn 7). The

prescriptive and enframing performance of the sprawling assemblages known as software and

platforms becomes a vehicle for intention and ideology that extends dramatically beyond a

mathematical formula or single statement. Code has little occasion to be seen as harmless or

neutral within digital systems regardless of its simplicity, as even one mundane process could be

one step in a grander socially constructed culture machine capable of harm through its ideologic

enframing. Salter raises the importance of recognizing this ideologic culture machine, stating,

“the reluctance to ascribe intention to software and, indeed, to code itself rises from a bias

towards math as neutral, ignore the fact that algorithms have their own intentions and biases”

(para.7). Mackenzie, channeling Hall, highlights the power wielded by the culture machine that

cannot be disregarded, asserting code “naturalizes who does what to whom by subsuming

existing patterns and orderings of cognition, communication and movement” (44). The network

of code within a platform conveys a complex latticework of intentionality and ideology through

framing, enframing, encoding, and decoding (technically and communicatively). Code in its

prescriptive state takes on a duality of enframing, one of execution within the system and one of

engineered imposing ideological force, reinforced by the network of power structures developed

below the fold.

Material and Tactic

Hayles equates code or computation to speech and writing, specifying that they can create

worldviews that “imply distinctive ways of constituting communities, dealing with evolutionary

changes, accommodating technological interventions, and describing the operations of systems”

48

(My Mother Was a Computer 30). The worldviews are problematized through their “complex

and entangled” interactions or intermediation, which coproduce and coevolve connections from

and within themselves (My Mother Was a Computer 31). The prescriptive code of media layers

turned palimpsests work in concert to build a digital, enframing scaffolding of worldview and

technical underwriting. Mackenzie, channeling Nigel Thrift, explains, “software participates in a

more general invisibility of technical infrastructures and enters into a certain historically specific

‘technological unconscious’” in which the “social and material processes that organize and co-

ordinate movement and perception within…cultures actively render software invisible” (12). The

software-generated worldviews are less evident through the technical complexity of interwoven

layers and a general social quiescence or acceptance of the developing technological enframing.

The underlying structures and abstractions incorporated within code to represent worldviews

permit sustaining or reimagining a particular view while maintaining the previous manifestation

of structure.

Digital data structure and code objects describe, in part, how code is material and tactic.

Berry labels a digital data structure as the “static form of data representation within the storage

systems of a computer system” (The Philosophy of Software 54). Berry uses the example of

analog music translated and “quantized into discrete ‘chunks’” as an entryway into the vast

complexity of the power within digital data structures related to constituting, framing, and power

structure. The digitalization of the infinite analog and its discrete representations as a digital data

structure highlight a common, isolating, applied layer of abstraction of lossy and irreversible

simulation throughout all digital media, software, and code.

49

Berry’s notion of digital data structure inherits and reinforces Manovich’s media

principles of numerical representation and modularity. Digital data structures store “the

simplification and standardization of the external world” so code can manipulate and enact upon

them (The Philosophy of Software 54). As a further level of abstraction afforded in the newer

generation of programming languages, Berry defines code objects as a distancing from the digital

data structure yet with similar constraints (The Philosophy of Software 55–56). Code objects

describe, represent, and structure ordinary “things” or concepts within a programming language.

Mackenzie explains that “the process of backgrounding forms a deep part of software and code”

(12). For most programming languages, code written in this style is known as object-oriented

programming, where the code object is “used as a monad containing a protected internal state,

methods, and interfaces to its external environment” (The Philosophy of Software 56). Following

its media properties, code and software become self-protective and self-referential, which

Mackenzie attributes to the “effects of involution of agency in code” that still requires code to

communicate outwardly or externally but “tends toward self-identity” because of the involution

of agency (182). As Dourish observes, “code…is a site of material, textual, and representational

production” (“Algorithms and Their Others: Algorithmic Culture in Context” 3). From this view,

“technical and social, and material and symbolic simultaneously” are other dualisms of code

(Berry, The Philosophy of Software 36). Prescriptive code enacts the structures designed through

its delegated code to simulate and control the infinite breadth of analog materials and processes

generated by culture and society.

50

Cultural and Communicative

Manovich, focusing on the interface as code, adds how code is material and tactic with

cultural worldview-building by stating, “code may also provide its own model of the world, its

own logical system, or ideology; subsequent cultural messages or whole languages created with

this code will be limited by its accompanying model, system, or ideology” (64). Manovich’s

view situates code and language with the continuous ability to communicate, influence, and

control any subsequent code reliant upon it. Focusing less on how prescriptive code enframes,

the delegated code offers a focal point on its general development and evolution within a system.

As Mark Marino explains, “code is not just a list of instructions for the computer. It is a layer of

discourse, a text to be accessed by computers, programmers, and many others, and more

important, code is a text with connotations that are in conversation with its functioning” (“Why

We Must Read the Code: The Science Wars, Episode IV” 139). The production and development

of delegated code necessitate coordination and communication. In other words, existing

delegated code communicates and presents a worldview that facilitates a community that

generates and maintains a collection of ethos, social norms, values, and attitudes about a specific

programming language, software, or platform, and more generally about code, computation, and

computing. Marino specifies, “these cultures emerge around coding paradigms, languages, roles,

and specializations, but also from an ethos or ideology,” and they have “rituals, discourse

conventions, meetings grounds (virtual or in real life), et cetera” and “shared texts, shared values

and norms, shared vocabularies, and shared tools” (Critical Code Studies 31–32).

The communicative property of code includes its ability to communicate to multiple

audiences or targets all at once or asynchronously and distributed. Code can be read and written

51

or experienced in real-time and at the moment or read and experienced iteratively and

historically. Mackenzie explains, “code can be read as permeated by all the forms of

contestation, feeling, identification, intensity, contextualizations and decontextualizations,

signification, power relations, imaginings and embodiments that comprise any cultural object”

(5). One set or version of source code presents a static representation of worldviews and

decision-making that also isolates the code to a specific place in time, which also enfolds cultural

and societal values, influences, and technical and knowledge limitations into its framing and

enframing. Marino observes that code “is located within a broader communication exchange, one

that is bound to time as marked by developments in programming paradigms, languages,

hardware, and networks” (Critical Code Studies 8). In analyzing Donald Knuth’s observations,

Marino further states, “by identifying code as a means of communicating not just with machines

but also with other humans, Knuth contextualizes code as a mode of discourse, emphasizing the

roles of clarity and style in its legibility, in its ability to communicate its purpose” (Critical Code

Studies 41). Code’s communicative properties are twofold—they invite communities of interest

and professionalism and a space of academic inquiry across multiple disciplines.

Language

In describing the combining all-purpose symbols across a wide-ranging scope and

arrangement, Lovelace conceptualizes “a new, a vast, and a powerful language…for the future

use of analysis, in which to wield its truths so that these may become of more speedy and

accurate practical application for the purposes of mankind than the means hitherto in our

possession have rendered possible” (19). Since the significant proliferation of programming

languages of the 1950s, as Manovich outlines, the language of new media has shifted

52

conversations into the grammatology of code, software, hardware, and platform. The hardware,

software, and code languages have slowly penetrated commonplace conversations, like a

genericization of brands and terms. As discussed about software, metaphors have crossed over to

describe and further intermingle contemporary technology and new media within modern society

and cultural production. Hayles observes that “language alone is no longer the distinctive

characteristic of technologically developed societies; rather, it is language plus code” (My

Mother Was a Computer 16). Code and written and spoken languages have a richer history and

span of analysis than this project can examine.

This project focuses on predominately human- and computer-used language comparisons,

using ‘natural language’ to distinguish non-programming languages from programming

languages. The lexicons of many high-level programming languages have been penetrated by

natural language vocabulary, especially English, as Chun observes, remarking on the high

concentration of programming jobs in English-speaking countries (Control and Freedom 152).

While the mix of languages highlights the use of metaphor in developing a programming

language, bringing it closer to a human-readable level, the following section avoids exploring the

origins of languages. It focuses mainly on the generalities of high-level programming languages

and natural language.

The following section focuses on language and its relationship with contemporary

computing code and examines some code as a programming language; thus, code and

programming language are used interchangeably. The section is divided into three subsections

comparing natural and programming languages. The subsections describe some limitations of

53

both, examine encoding and decoding as part of the communication process, and briefly outline

some cultural views of programming languages.

Comparisons and Limits

Finn remarks, “language has always operated at the troubled boundary between reality

and the description of reality. The more structured, abstract, and esoteric an idea, the less likely

we are to divine its substance without first gleaning a name to call it by” (Finn 1). Programming

languages operate at the same boundary while edged by a third boundary of its performative and

enframing reality. Delegated and commentary code frames and describes a reality, while

prescriptive code generates an enframing reality that not only presents a description of reality but

imposes it upon the receiver participant.

Kittler’s view of programming languages suggests code has comparable properties to

natural languages, acting to further categorize and identify signs into more meaningful or more

efficient means, a compression or conflation of meaning into symbolic code. Code is a reductive

language based on systematic ordering or categorizing, such as phonetic, semantic, or technical.

Kittler suggests that sophisticated programming code has more output than the code itself,

asserting that code is compressed or packed with further meaning and value (“Code” 43). Kittler

argues that as programming languages build atop other languages and become more prominent,

the language operates as an asymmetric one-way cryptographic function, pushing back on the

layers below. In this way, code becomes stacked upon itself, “a Tower of Babel” that descends

unidirectionally into the depths of hardware (Kittler, “There Is No Software” 221). Each code

layer contains its own codified regime that establishes its own languages and rules that push back

and constrain outward. Highlighting the Tower of Bable of programming languages, alluded to

54

by Kittler, Mackenzie explains, “code has dispersed into a cacophony of different coding

languages, sometimes hierarchically related, sometimes not,” which this manner of “spawning,

mutating and cloning of different idioms of code, and indeed of different versions of similar

software applications or “solutions” generates code babble” (24–25). The source code of

software presents a two-dimensional etymologic history, one of the languages that constitute the

software through its versions and another of the programming languages incorporated in the

software. Both dimensions offer the potential to reveal through the babble the influences and

power of code in the design and development of programming languages and the software and

platforms that encompass them.

Brushing up against Introna’s conceptual framing and enframing of code, Hal Abelson

and co-authors see programming languages as more than a means of interfacing with the

computer. A programming language “serves as a framework within which we organize our ideas

about processes,” which Abelson and colleagues call for further attention “to the means that the

language provides for combining simple ideas to form more complex ideas” (6). Abelson and co-

workers observe that stratified design is pervasive in the design and development of complex

systems, where the design is “structured as a sequence of levels that are described using a

sequence of languages. Each level is constructed by combining parts that are regarded as

primitive at that level, and the parts constructed at each level are used as primitives at the next

level” (190). The language employed at each layer is designed to enact in three ways, as

“primitives, means of combination, and means of abstraction appropriate to that level of detail”

(Abelson et al. 190). Many popular languages used today, such as PHP, C, JavaScript, and

Python, are structured to express complexity through these means. Fuller and Goffey describe a

55

similar lamination more from a sociotechnical lens, identifying abstraction layers as what can

unfold or turn through the design and development process or the executing software (87). Fuller

and Goffey describe abstraction layers as a boundary of “conception and transmission in the

layers of a program that are staged as a means of filtering the quantity or complexity of

information required for a particular decision to be made or state to be reached” (87). Fuller and

Goffey go on to explain that abstraction layers “derive from differentiating the logic or

functional description of a system from its physical form [and] this process of differentiation

continues through the development of operating systems, languages, interfaces, applications,

[and] class libraries” (87). Abelson and colleagues and Fuller and Goffey demonstrate how the

stratification or babbling of code language can occur as part of software's design and decision-

making process. From a different level of abstraction, Kitchin and Dodge elucidate the

constitution of programming, stating it “varies depending on how structured a language is, the

scope and scale of action available to the programmer, and the extent to which the language is

talking directly…to the hardware rather than through an interpreter or compiler” (25).

Programming language takes on multiple roles within a layer and often changes to another

language in a different layer of abstraction not only to interact but to clarify, constrain,

differentiate, coalesce, connect, and abstract, analogous to the specificity and level of detail used

to describe a tree, from a tree to conifer to redwood to Sequoioideae to Sequoia sempervirens.

Finn observes that “all symbolic systems, all languages, contain a particular logic of

possibility, a horizon of imagination that depends on the nature of representation and semantic

relationships” (55). Programming languages confront the logic of control and being controlled to

present common ground or an attempt to homogenize and stabilize the level of abstraction or

56

specificity that the language meets through its design. Petzold observes that programming

languages are “more deliberate conceptions” than the evolution of natural languages (352). In

other words, modern computers are not monolingual; each layer is built upon a language

designed to create bureaucratic filtering and control, presenting an interface to the immediate

adjacent media layers. However, the reality of media layers interaction is not that simplified.

Programming languages can bootstrap themselves from their own code to become software, as is

the case with the GNU Compiler Collection, which is mainly written in C and C++ and has the

primary function of compiling C and C++ programming languages. Chun observes that “code

can be owned and parsed in a manner unprecedented for any other language product” (Control

and Freedom 67). Programming languages have more deliberation or intentionality than natural

languages within their evolution of function and language constructs. As with the GNU Compiler

Collection example, the evolutionary changes of the programming languages must conform to a

set of owned standards and constraints to compile successfully and then function as a compiler to

the evolved programming language. Programming languages must maintain their level of

abstraction within a media layer to maintain functionality. Marino observes that “as computer

languages distance themselves from the binary of the machine and the hardware-dependent

assembly, as they develop syntax and vocabularies that resemble the language of everyday

interaction, the sources of meaning, attending the code, proliferate” (Critical Code Studies 131).

Marino highlights not the evolution of a single programming language but the elevation of

programming languages designed to be more human-writeable and readable—high-level

languages. Petzold highlights the trade-off of using high-level languages, stating, “although a

high-level language might make a processor easy to use, it doesn’t make it more powerful…a

57

high-level language can only reduce the capabilities of a processor” (353). Berry and Fagerjord,

offering a counter view, observe that different programming languages exist to solve or meet “a

specific requirement of a problem domain…[and the] languages are of different levels, again

demonstrating the layering of abstractions so typical of computational thinking” (52). The

reduction or abstraction of the processor manifests itself immediately with the first intimate

manipulations of the lowest-level software focused on harnessing the massive flow of bits

through logic gateways. Hayles explains that the worldview of code requires a level of ambiguity

that is not present at the binary level, and “as the system builds up levels of programming

languages…they develop functionalities that permit increasingly greater ambiguities in the

choices permitted or tolerated” (My Mother Was a Computer 46). Harnessing the binary, a

system ecologically evolves within which the network of languages elevates to a level of

recognizable metaphor and abstraction for human creativity and sociality—everyday human

interactions—far above the architecture inscribed upon CPUs and circuitry.

Similarly, the programming language employed has its own set of limitations of

meanings and ability to understand and tolerance margins towards “trying to understand” and

processing the coded statements and constructs. Marino highlights there is a “difference between

understanding and parsing and processing, and the…amount of ambiguity tolerated in natural

languages exchanges…meaning proliferates in the flow between connotation and denotation”

(Critical Code Studies 150). Programming languages prepared and parsed for running or

becoming prescriptive code coalesce the functional, logical, and contextual into a strict, formal

syntactical form. However, the function, logic, and context can have gaps, which human

receivers (readers and listeners) might better infer and fill in, while the compiler or interpreter

58

moves forward, unaware of the gaps, generating unexpected run-time results. Third-generation

languages now conflate and compact functionality and obscure the meaning of their own

language, moving away from the one-to-one connotation of its vocabulary and tokens.

Ultimately, the interpretation must drive the statement to a machinic one-to-one, leading to the

intersection of misinterpretations between the programmer’s understanding of language and the

authorial understanding of how the language should be interpreted. Programming languages

designed to control some contextual processing scenarios and less-structured data types present

openings of risk and vulnerability because of misinterpretation and misuse. Paralleling natural

languages in this respect, programming languages and their application of structure, style, and

grammar can build a world constructed on faulty and unstable grounds of assumptions, misuse,

abuse, and complex alternative motives.

Different programming languages frame not only through their application as written

code but also the decision-making of which language to use, influencing decision-making,

design, and coding style and aesthetic. Object-oriented programming, Berry’s object code ideal-

type, demands language or code constructs that support the ideological and instantiated code

logic as objects of manipulation and control. Programming languages are constrained and shaped

by overarching ideologies. Marino observes that “code is a social, semiotic system employing

grammar and rhetoric” (Critical Code Studies 41). The syntax and grammar of keywords and

constructs of a programming language also have their own etymologies and evolution of power

and vulnerability within its introduction and existence of the codified language and delegated

code that employs it. Finn, offering an overall view of language and computing, describes

“language as a special case of the relationship between humanities and technology precisely

59

because it plays an ontological role in constructing the world as we perceive it” (39). Language

holds a vital role in the code discussion through its circular and self-referential nature as a

language, which frames, enframes, and encodes the code employed by and used to describe the

babbling tower of code.

Encoding

Hayles and Hall offer critical considerations of how encoding and programming

languages can significantly naturalize or become accepted across time through the large codified

systems, such as Google or other platforms that mediate and abstract the language, discourse,

and complexity among computers, humans, and reality. The tireless ability of autonomous

systems to influence is rooted in the complex, distributed technical infrastructures and

algorithmic power of endlessly looping code, which continue to opacify the “black box” effect

and the ability to determine where ethical and rhetorical confrontations might exist.

Hall describes communication and mass communication as a “‘complex structure in

dominance,’ sustained through the articulation of connected practices,” linked moments within

the sender-message-receiver communication model (117). The encoding-producing and

decoding-receiving messages are constructed and deconstructed by structures of meaning that

define them. For Dourish, Hall sees “media as a site of appropriation and meaning making on the

part of people otherwise framed as consumers” (The Stuff of Bits 48). These structures are framed

or constrained through discursive actions of the encoder-producer and influence and frame the

message for the decoder-receiver. Encoding and decoding are similar to Introna’s conceptual

framing and enframing code. In Hall’s sense of encoding and decoding, natural or programming

languages are subject to encoding and decoding, highlighting the deepening and compounding

60

influence prescriptive code can have. Safiya Noble adds, “code is a language full of meaning and

applied in varying ways to different types of information” (26). Hall further describes the process

of encoding and decoding as the ability to both distort meaning and sustain or naturalize specific

values and meanings of the message through its structures of meaning (120–21). Hall explains, at

length:

reality exists outside language, but it is constantly mediated by and through

language…‘knowledge’ is the product not of the transparent representation of the ’real’

in language but of the articulation of language on real relations and conditions. Thus

there is no intelligible discourse without the operation of a code. (121)

Hayles’ intermediation also comes forward through Hall’s encoding. Hayles, favoring

intermediation over David Bolter’s and Richard Grusin’s remediation, describes it as the

“interactions between systems of representations, particularly language and code, as well as

interactions between modes of representation…and also mediating interfaces connecting humans

with the intelligent machines” (My Mother Was a Computer 33). Furthermore, connecting to

Hall’s encoding and decoding, Hayles states, “in the progression from speech to writing to code,

each successor regime reinterprets the system(s) that came before, inscribing prior values into its

own dynamics” (My Mother Was a Computer 40). Through delegated and prescriptive code,

software and digital platforms generate large sets of distinct repeatable intermediations that

experience multiple acts of encoding and decoding for each software version and modification.

Adding to Hayles and Hall, Cox observes, “humans and machines increasingly converse with

other humans and machines, making our languages ever more codified, but the meanings

61

produced through them are ever more prone to misunderstanding—in the confused spaces

between the encoding and decoding of the utterance” (1).

As programming languages generationally evolve, they retain some of the technical and

social encoding and traits from their predecessors and previous iterations and implementations of

themselves. Furthermore, employed programming languages within the code stack retain some

social encoding and traits enframed by the layers of abstraction below. Technological

advancements in processing and connectivity speeds and storage capacities are also constrained

by and retain previous generations of protocol, control, and instructional capability. Hardware

and software typically labeled backward compatible are indicators of deep-rooted encoding that

forever complicates software and digital platform development to garner wider social acceptance

of massive changes in platform architecture. Similarly, Marino observes that previous

generations of programming languages used “English-like tokens,” of which “new programming

languages adopted similar attributes to render themselves legible” (Critical Code Studies 151).

The cultural encoding remains less visible as it is brought forth through abstractions, which

mask, distort, or suppress the ethical, social, and cultural embeddedness or milieu below the fold

of the current layer and language completely. Finn offers a final observation on code, language,

and encoding, stating, “language occupies a special status as an intellectual technology [due to]

its role as an epistemological layer or medium…[that] in the context of code, language can

reformat the world and the mind” (4).

The Lows and Highs of Programming Language

The human and computer relationship presents a complex communication, interaction,

and intermediation scenario. It generates an ecosystem situated within media, cultivated,

62

maintained, and expressed through communication and creativity, and controlled by undulating

levels of control and abstraction between humans and the layers of the machine. While the lower

levels are not static, human expressiveness is less apparent through the rapid flow of electronic

signifiers turned binary that initiates the prescriptive journey upwards through an interface to

offer progressively more human-recognizable spaces of expression. Hayles observes that the

“flexibility and the resulting mobilization of narrative ambiguities at a high level depend upon

rigidity and precision at a low level. The lower the level, the closer the language comes to the

reductive simplicity of ones and zeros, and yet it is precisely the ability to build from this

reductive base that enables high-level literariness to be achieved” (My Mother Was a Computer

53–54). A machine has more control as it communicates more intimately with itself, its circuitry

and instruction sets, baked-in and codified immutable logic with little awareness of human

intention, which the layers of interface and code enacted above bidirectionally abstract. Kitchin

and Dodge explain, “although code in general is hidden, invisible inside the machine, it produces

visible and tangible effects in the world” (4). Code is influential throughout the sociotechnical

forces within the ecosystem of networked communication, interfaces, and stack of codified

objects. A programming language’s level of intimacy and invisibility relates to its generative

position within the platform and the level of abstraction currently prescribing and enframing.

Petzold explains that a low-level language is a programming language closer to the

machine or inner sanctum of hardware, almost always attributed to assembly language (352). A

high-level language is any other programming language, with some languages considered higher

or generationally higher than others (352). It is generally accepted that there are currently five

generations of programming languages, in which the generations do not necessarily represent a

63

chronology: machine-level or binary, assembly, machine-independent (C, C++, Python, Java,

PHP, and many others), specific problem domains (SQL, R, Shell), and problem-solving and

declarative (Mercury, Prolog). The third generation of languages, where delegated code takes on

a more “humanized level of abstraction…[and] can become extremely expressive and further

abstraction is made easier” (Berry, “A Contribution Towards a Grammar of Code”). Bringing

forward programming languages closer to natural languages has tradeoffs in control,

interpretation, and sense of power and vulnerability.

The ascending affordance of expression and abstraction also generates the potential for

misinterpretation leading to forking paths of logical or syntactic fallacy and missteps, creating

flaws, bugs, and vulnerabilities within the software. Hayles explains that as high-level

programming languages “move closer to natural languages, the processes of intermediation by

which each affects the other accelerate and intensify” (My Mother Was a Computer 60). The

intermediation allows for vulnerabilities and flaws to be abstracted by code affecting the

immediate-adjacent layers, silently suppressing confrontations of error and uncertainty to

maintain stability or an aesthetic level. Vulnerability takes on multiple vectors of meaning within

the digital ecosystem and its community. Prescriptive code can disrupt safeguards that protect

assumed private data or the stability of an overall system. It can also generate digital spaces

susceptible to abuse and harassment through its human-level interfaces, especially for sociability

and human interaction platforms. Social factors or organizational pressures on the functionality

and features of software influence the intended design, along with the sociotechnical factors

within the code and choices of programming language. Kevin Brock explains, at length:

64

Each developer often takes a position where they must defend the rhetorical choices

made in composing a particular piece of the overall software program under discussion,

and the arguments made in that defense bring to light a number of values possessed by

that developer regarding: the program and its purpose(s); the language(s) upon which the

program is built; the development team and its goals; and even the broader perspective

that the developer may possess about what is possible in code and how it can be made

possible within the constraints of that particular project. (71–72)

The constructs and abilities of a specific programming language and the design decision-making

about which programming languages to employ profoundly impact interpretation and the

creation of intended or unintended risk and vulnerability within software and its management

and mitigation throughout the stack.

Power Structures

As explored through the location and emergent properties of code, humans generate

platforms, software, or culture machines through the combination of framing and enframing

code; encoding and decoding language; and infusing ideology and intentionality within the code

design through the decision-making. The following section focuses on three selected power

structures that materialize through code.

The Distributed Decidedness

In The People’s Platform, Astra Taylor argues that the internet and the web are not a new

space for cultural democracy. Taylor asserts that there is no division between online and offline

regarding the ability to express prejudice and uphold power (108). While the internet and the

65

web are not interchangeable, they are both networks comprised of media layers and protocols.

Taylor observes that “networks do not eradicate power: they distribute it in different ways,

shuffling hierarchies and producing new mechanisms of exclusion” (108). The global collective

web—the world wide web—as network and general platform sits heavily atop the Internet,

inheriting many of its properties, enframed protocols, and encoded language. The World Wide

Web Foundation’s “The Case for the Web” reports that while more than half the world is not

connected to the Internet, “nearly two billion websites today” exist, although not necessarily

active (4–5). The report highlights that 90% of searches go through Google’s search application,

and Amazon provides more than 50% of the world’s cloud services (5). As Brown discusses in

Ethical Programs, networked software and platforms produce a sense of welcoming and

democratic access and distribution while essentially being controlled and regulated by powerful

technology corporations and highly regulating governments. Furthermore, the World Wide Web

Foundation underscores the further normalization of web and online use, highlighting that

“online decisions with serious real-life consequences are increasingly being made by algorithms

and machines that are replicating biases and reinforcing inequalities found offline” (5). Ruha

Benjamin, Noble, John Cheney-Lippold, Frank Pasquale, Bucher, Siva Vaidhyanathan, Hannah

Fry, Gillespie, and many other scholars have focused on codic algorithms and the surrounding

context of their creation, use, and immediate and long-term effects. Concerning code design and

decision-making, Gillespie identifies the “cycles of anticipation” and the “evaluation of

relevance” as two dimensions through which to view distributed decision-making in code.

Gillespie uses “cycles of anticipation” to describe the “implications of algorithm providers’

attempts to thoroughly know and predict their users, and how the conclusions they draw can

66

matter” and “the evaluation of relevance” as “the criteria by which algorithms determine what is

relevant, how those criteria are obscured from us, and how they enact political choices about

appropriate and legitimate knowledge” (“The Relevance of Algorithms” 168). Prescriptive code

can act as “powerful gatekeepers, playing an important role in deciding who gets to be seen and

heard and whose voices are considered less important” (Bucher, If...Then 8). Prescriptive code’s

decision-making ability on a global scale presents a duality, pervasive across most media,

between being controlled and controlling, with oscillating results that reveal the utility and

ideologic intentionality within code’s power.

The allure of using code to create software and platforms is due to its framing and

enframing properties. Software and platforms depend on designers to frame their worldview

through a series of logical, ideological, and personal statements. Introna observes that “once

encoded, these design decisions (or rather the outcomes of the initial hacking and tweaking)

embedded in these multifarious encoding entanglements withdraw into the background and are

hardly ever revisited—even if they break down, patching and workarounds normally suffice”

(115). Enacted code carries the workload of designers attempting to develop and stabilize a

platform that depends on and demands fixed and predictable value decisions on every layer.

Madeleine Akrich observes, “many of the choices made by designers can be seen as decisions

about what should be delegated to a machine and what should be left to the initiative of human

actors” (216). Akrich’s observation underscores, in part, the encoding and framing that develop

within code through what the designer initially expresses and writes (216). Emphasizing the

significance of code’s articulacy, Dourish states, “it is in how that expressiveness comes to stand

between human understanding on one side and machine processing on the other, and how the

67

temporalities, spatialities, and specificities of its expressiveness play a role in how settings of

human affairs are organized in parallel with digital ones” (The Stuff of Bits 57). For Mackenzie,

software is “a set of permutable distributions of agency between people, machines and

contemporary symbolic environments carried as code. Code itself is structured as a distribution

of agency” (19). Code produces the repeatability and predictability of a narrow gamut of value

decisions and worldviews to produce a controlling and controllable environment through which

to welcome interaction.

Obscured Logic of Control and Knowledge

Code has shifting opacity and obscured logic through its ability to cross software and

platform boundaries and embed itself within the framing and enframing of a media layer. The

environments and specific programming languages place constraints on code and design

decisions. Code’s framing might change the ordering and “flow” of steps, like translating a

natural language and re-arranging syntax and parts of speech. The most apparent constraint of

digital media and software is its existence as digital in the binary sense, which imposes a strict

formalism and structuring throughout its layers of constructing logic. Environments and

platforms designed for specific knowledge domains further apply reductive views of abstractive

functioning that influence code's framing and enframing capabilities. Kitchin and Dodge explain,

“software has, at a fundamental level, an ontological power, it is able to realize whole systems of

thought…with respect to specific domains” (26). However, platforms are typically designed to

anticipate a wide range of input and conditions, in which layers are built as a distancing from the

machine to a nearness of humans through transliteration and transcreation that nevertheless

68

constrain and formalize. From a holistic perspective, software and platforms are ecosystems of

controlled logic and data enacted through the framing and enframing of code.

The exchange or transformation of primitive to abstractions within language and media

layers, described by Abelson and co-authors and Fuller and Goffey as abstraction layers,

highlight control and a sense of interpretation and anticipation within that specific layer for

further interaction. Fuller and Goffey explain, “abstraction layers imply a relation to other

entities, moves of presence or nonpresence, and the interplay of performances of openness,

closure, and answerability” (88). Fuller and Goffey identify three control characteristics of

abstraction layers that “rearticulate the technics of contemporary power” as “freedom of

interpretation, maneuver, and operation within a bounded set of conditions;” “the provision of

conditions for free development;” and the ad-hoc nature of creating additional abstraction layers

that “may occur when an aspect of a system or assemblage migrates across implementations”

(88). The constraints of the surrounding media environment and code’s language heavily

influence the logic used throughout the software layers to calculate, retrieve, present, and

continuously anticipate data and types of data. Gillespie explains, “algorithmic assessment of

information, then, represents a particular knowledge logic, one built on specific presumptions

about what knowledge is and how one should identify its most relevant components” (“The

Relevance of Algorithms” 168). Yet, Butcher draws attention to how code can “constitute

something of a cultural logic…drifting into the ways in which people think and talk about

everything from the economy to knowledge production to culture” (If...Then 39). Code, code

arrangement, and logic, embedded within an abstraction layer as an algorithmic step and code,

are deeply encoded, naturalized, and situated. No layer of code completely escapes the influence

69

and power of the prescriptive code that came before or beside it. From this view, media

abstraction layers possess an obscured logic of control through which power circulates and re-

circulates.

Embeddedness

Code has ideology embodied within them that necessitates multiple examination

approaches. Code seems harmless from a basic utilitarian view of sorting or ranking primitive or

“atomic” data types like logical, numeric, and character. While yielding power as a form of

delegated work, simple code rarely is the ends of software design; it is a means to a broader and

more complex view of control and modeling. Finn personifies prescriptive code as carrying out

delegated code’s most innate and straightforward purpose—to achieve something. Finn states,

“computation encodes at its heart an intuitive notion of ‘effective’: achievable in a finite number

of steps, and reaching some kind of desired result,” in which code is motivated, embedded, and

“encoded [with] a particular kind of abstraction, the abstraction of the desire for an answer”

(25). Prescriptive code incites the embedded, perhaps unknown, dormant, or unrealized

ideologies by decoding, interpreting, and re-interpreting through the computational chains of

influence that create active interfaces and intersections of exchange and confrontation. Kitchin

and Dodge, drawing from Nigel Thrift and Stephen Graham, state, “software is embedded into

objects and systems in often subtle and opaque ways, it largely forms a technological

unconscious that is noticed only when it performs incorrectly or fails” (5). Failures in function

and performance— Hosanagar’s rogue algorithms—are catastrophic, tragic, costly, and

damaging on multiple scales, partly due to the depth of which failure can and does occur within

70

the interpretation, logic, and assumption of agency prescriptive code expends (8). Prescriptive

code is an active agent that is autonomous and discrete.

A platform’s hardware circuitry, firmware, and software logic generate and amplify its

agential power while bootstrapping its own ideology and influence upon it—a scaffolding

technical echo chamber building function, control, and interface. Delegated code is undeniably

language. However, it is both a subset and superset of its textual self, declaring itself by

statements, in the technical sense and as described by Goffey, that are embedded with ideologic

worldviews, which, when enacted, become performative in the sense Hayles describes. As

delegated code, it acts as text, and as prescriptive code, it acts as speech, challenging both

notions of code. Cox suggests that “If code undermines the distinctions between speech and

writing and exceeds them, it is because it is a special kind of human-machine writing that makes

things happen; in other words, it acts like speech” (35). While the notion of code acting as text

and speech participates in the obscured logic of code, it also highlights embeddedness in a

broader view of the framing, enframing, and encoding of code as speech acts and text. Code’s

embeddedness within software and platforms generates multidimensional grounds for Hall’s

encoding and decoding of language, value, and culture and Introna’s framing and enframing to

come into being and develop fractally.

Encoding and enframing are saturated throughout media and abstraction layers. The

rhetorical power of code through its structures, illuminated by Beck and Tara McPherson,

demonstrates how early design decisions in code create logical and persuasive vectors within and

throughout code across its lifespan. McPherson offers two examples, the UNIX operating system

and object-oriented programming. One of many critical observations McPherson makes is how

71

“the structures of…UNIX function by hiding internal operations, skewing ‘clarity’ in very

particular directions,” citing a privileging of “common sense” through the view of Antonio

Gramsci (Feminist in a Software Lab 60). McPherson states, “common sense is a historically

situated process, the way in which a particular group responds to ‘certain problems posed by

reality which are quite specific’ at a particular time” (Feminist in a Software Lab 60). The

“common sense” applied in the development of UNIX (and other software) is embedded within

the design of functionality and operability. McPherson explains that programmers were

“necessarily lodged in their moment, deploying common sense and notions about simplicity to

justify and explain their innovations in code” (Feminist in a Software Lab 60). As a second

example, McPherson demonstrates the embedded imaginary of object-oriented programming and

its perceived boon to programming by designing a conceptual separation of the “how” from

“what.” McPherson observes that the “unit of code [making up the “how” of the object] pretends

to autonomy, wrapped up tightly in its module, but the programmer is in there,” which can

ignore and abstract the political, context, essence, and framing and enframing through “what” the

object now represents (Feminist in a Software Lab 88, 90). McPherson declares, “the fantasy of

modularity, of the unit, object, or thing cut free, is a fantasy under the control of the

programmer…an abstraction” (Feminist in a Software Lab 88). McPherson demonstrates two

critical examples of embeddedness within prominent and lasting software, UNIX (and its

similarly designed clone Linux) and WordPress (heavily arranged and implemented in object

orientation). Hayles adds, “the more the worldview of code is accepted, the more ‘natural’ the

layered dynamics of revealing and concealing code seem” (My Mother Was a Computer 55).

Time, higher adoption of technological use, and the compressive nature of using software and

72

platforms from a view of their “what” expediate the forgetting and compacting of encoding,

control, and power exerted upon an individual and society.

The popularity of networked software and platforms has climbed sharply without pause

to reflect on how the embedded decidedness distributed within a system is genuinely formulated.

Noble highlights the lack of transparency and alternative options to Google’s search engine,

declaring, “discrimination is also embedded in computer code and, increasingly, in artificial

intelligence technologies that we are reliant on, by choice or not” (1). The persistent repeatability

of digital processes and obscured logic presents a sense of indefatigable reinforced decidedness

(the “what”), with software and platforms emerging as infinite, tireless streams of code

collecting and creating data from particular and protected ideologies—the “how” we think.

Bucher enumerates that code is “always built and embedded into the lived world, at the level of

institutional practice, individual behavior, and human experience” (If...Then 120). Mike Ananny

takes a similar view as Bucher and echoes Hosanagar’s and Kitchin’s and Dodge’s observations

of failure. Ananny states that code is “embedded within the sociotechnical structures; they are

shaped by communities of practice, embodied in standards, and most visible when they fail”

(98). Software and platforms rely on the processes and protocols of infrastructure and the stack

of code distributed horizontally and vertically within the computation network. The failures

across infrastructure and code help reveal and disembody some of the enframing and framing

encoded assumptions that influence and affect almost every socio-techno-economical-political

dynamic participating within a system. The assumptive acts of software and platforms are

embedded and influenced by multiple facets of social, technical, and cultural views (among

others) that lead to varying degrees of failure across the same factors. As Akrich points out in

73

observing the design and development of a power grid in Burkina Faso, the economic and

technical views clashed due to the “naturalization effect, which occurs when technical systems

are completely integrated into the social fabric” (222). Channeling Foucault’s arguments about

situated and embedded societal ways of thinking made in The Order of Things, Akrich argues

that “only when the script set out by the designer is acted out—whether in conformity with the

intentions of the designer or not—that an integrated network of technical objects and (human and

nonhuman) actors is stabilized” (222). Modern society’s reliance on technology is steeped in

code’s embeddedness that is constantly at odds with the stabilization and destabilization of

software and platforms as systems change is becoming more frequent, branched, derived, and

distributed. The stabilization efforts are attempts to address the failures. They re-configure the

embeddedness to extend and reframe into a more modern sociotechnical acceptance, which will

subsequently require further stabilization over time, creating an infinite loop of power dynamics

and change across the stack of media, code, and algorithms across the digital ecosystem.

Summary

Media, like language and writing, are extensions of humans. In the communication and

rhetorical sense, media is a technology and techne that exhibits several properties and

characteristics in its digital manifestation. Media’s several properties allow it to extend, self-

reference, distribute, and be distributed into digital ecologies and ecosystems, software,

networked software, and digital platforms. As software and digital platforms, media becomes

layers of interface that stack together in a controlled and controlling manner to invite interaction

through a discrete and computational mindset of code. Code expresses two significant states of

framing and enframing, or statement and speech, which encodes and situates cultural values,

74

rhetorical and ethical decision-making, and ideology through software development and layers of

media. The assumptive role of software traverses all colors, sizes, and popularity of software and

platforms, with code a common and primary influence throughout its fabric. The enacted and

embedded ideology within code engenders power structures and prescribes a particular

worldview, affecting how we think and experience the world.

75

CHAPTER 3: METHODOLOGY

Introduction

The chapter outlines the methodology of the four modes of critical inquiry employed to

analyze WordPress. The first primary section presents the research question within existing

scholarship. Next, the chapter stages the context of the project and its importance to

understanding code, software, and platforms as it relates to WordPress and its popularity,

vulnerabilities, and PHP, the primary programming language of WordPress. The chapter

continues in the next primary section by outlining some approaches to this methodology,

including situating code, software, and platform within digital humanities and the rich fields of

study within it and surrounding it; establishing code as text; combining poetics and

hermeneutics; and further articulating the methodology’s transdisciplinary groundings. The

chapter’s last two primary sections identify and describe the data, collection methods, and

exploratory analysis methods, based on applying critical code studies methodology, used to

examine WordPress.

Research Question

Three concepts of code inspire the primary research question. Similar to what Montfort

and colleagues accomplished in 10 PRINT CHR $(205.5+ RND (1));: GOTO 10 of analyzing

and expounding one line of BASIC, the underlying premise of exploring the research question

treats code as a “cultural text reflecting the history and social context of its creation” as the basis

of analysis of WordPress’ source code (3). Furthermore, Kitchin and Dodge view software

studies as a means to focus on the etiology of code—“causes, origins, evolution, and

76

implications” and “how code makes digital technologies what they are and shapes what they do”

(13). A primary research motivation of this project is exploring ways we might detect how code

speaks, shapes, and sustains rhetorical and ethical values and ideology. Lastly, Mackenzie, in

discussing the “interpenetrating contexts of code,” questions: “what nexus of norms and

authority does something like an operating system entail today” (35–36). The primary research

question shifts Mackenzie’s question from an operating system to an open-source web publishing

software, WordPress, and narrows the intersectional search to mainly its source code. The

primary research question is: What does code reveal about the developers’ rhetorical and ethical

decision-making within WordPress’ open-source software system? The primary research

question exploration includes and applies critical code studies. Marino offers fundamental

methodology questions that intersect with the primary question, such as “how does the

implementation of the code (inside) reflect or contrast the functioning of the software

(outside)…Where do its core ideas lie? Who wrote the code? When and why? In what language

was the code written? How did the code change over time?” (Critical Code Studies 28). Brown

offers two questions that also attend to the primary research question and assist in the general

framing of the project: “how hackable are computational spaces? What kinds of ethical

assumptions and arguments are made by software platforms?” (177). Applying Marino’s

questions through the primary research question is contextualized and inspired by a

transdisciplinary approach to merge and mix methods that are further discussed below.

The selected exploratory application of mixed methods is derived from blending two

concepts: 1) code as text and 2) design and development practices of software. The design,

development, and programming practices concept focuses on debugging software’s source code,

77

such as code review, program slicing, tracing, and looking for code smells (characteristics in

delegated code that signal more considerable coding, logic, and security flaws) all help locate

bugs, faults, crashes, errors, vulnerabilities, and optimization opportunities (or failures), among

other rhetorical and ethical confrontations situated within the commentary and delegated ideal-

types of code in a codebase. The concept of code as text is examined further as an approach in

the next section and extends Chapter 2’s section “Code and Language.” As it relates to the

research question, Black argues that “placing source code within a cultural context allows us to

see how programmers respond to particular cultural moments in ways that studying user

experience cannot” (para.7). Treating code as a multilingual text paired with design and

development practices allows structuring, organizing, and referencing code by file, line, software

version, algorithm, process, class, and ideal-type through its multiple states as a conceptual

object or a specific textual instance of examination of those “particular cultural moments”

(Black, para.7).

Kallinikos and colleagues maintain that “digital artifacts and operations as objects singles

out the intersection between technology and human practices as the appropriate level of

analysis…digital objects entail a closer focus on practices and digital content dynamics than

standards or design and governance of digital ecosystems” (“The Ambivalent Ontology of

Digital Artifacts” 367). Kallinikos and co-authors further clarify how employing digital objects

helps in examining a codebase as sizeable and long-standing as WordPress. Kallinikos and

colleagues explain it “enables investigating how collective rationalities (e.g., archiving mutable

objects; finding, creating, and displaying content on the Web) are tied to or accommodated by

the key attributes of digital objects (editability, interactivity, openness, distributedness) recurring

78

at the intersection with social practices” (“The Ambivalent Ontology of Digital Artifacts” 367).

Adding to the concept of digital object within the context of this project, Fuller and Goffey

identify a boundary object as having “opportunities and affordances” that “provides a way of

exploring and exploiting potentially antagonistic practices” within media or a media ecology (8).

Fuller and Goffey see boundary objects within media coming into being without fulling knowing

or reconciling, echoing Introna’s sense of code enframing the anticipated future and Gillespie’s

cycles of anticipation. Fuller and Goffey explain, at length:

Marking and negotiating the frontiers between different territories, whether conceptual or

material, such objects, like the components that produce an “imagined community,”

would seem to envelop degrees of variation in their capacity to unify differences, never

quite accomplishing the mental standardization of a meeting of minds, but achieving only

resonances, coordination, and points and counterpoints of contact between groups. (8)

Gloria Anzaldua’s use of codification of language in Borderlands offers an analog to delegated

code intended to be read by a digital machine and people and its relationship to language, media,

communication, and culture. Code becomes both a digital boundary object and a means to

navigate between boundaries, with WordPress’ source code becoming a larger compound

boundary object. WordPress as a digital object is bountiful and has a vibrant community who

have archived and shared much of its history as an open-source software and platform as it has

grown in popularity over the years.

The methods used are generalizable and applicable to other open-source software. They

might help identify spatial and temporal locations within source code that have a higher potential

79

to be examined as focal points in design and development practices, code reviews, and future

revisions. Focal points are intersections of ethical, cultural, processual, and rhetorical

considerations of potential risk, power, and vulnerability that can be identified in code. The focal

points are built and refined by multiple metrics, such as the new code’s temporal and spatial

introduction point, its changes over time, the socio-cultural context of the changes, and the

software’s or platform’s reliance and use of the code within its prescriptive, processual state(s).

Risk and vulnerabilities warrant additional exploration into the roots of risk and vulnerability and

broader ethical applications within platforms, and they are further discussed in future chapters.

While the overall project includes a brief software studies analysis of WordPress, the

focus is on code constructed and committed by WordPress contributors. In other words, the

concentration is on commentary and delegated code intended by its designers to become

prescriptive code within the WordPress platform. From Postman’s view, no matter the size of a

code change, each change can alter the overall state of vulnerability and stability, thereby

introducing risk and tension within the code and across the entire platform’s codebase. There is a

level of “acceptable risk” that developers, users, and organizations either explicitly or implicitly

understand with developing and providing software. The Internet Engineering Task Force (IETF)

defines acceptable risk as what is “tolerated by a system’s user, operator, owner, or

accreditor…because the cost or difficulty of implementing an effective countermeasure for the

associated vulnerability exceeds the expectation of loss” (Shirey 10). While risk and

vulnerability are essential analysis factors, the project analyzes WordPress’ code both broadly

and critically, examining the “meaning, implication, and connotation” from the code’s “broader

social contexts” that stem from its functioning (Marino, Critical Code Studies 40). The project

80

builds upon this framework through multiple methods, and ultimately examines the

“extrafunctional significance…growing out of” code by tracing backward from moments of

vulnerability and other sociocultural intersections where code has broken down profoundly or

created a conflict of expectations and ideology (Marino, Critical Code Studies 40). Before

describing the data, collection, and analysis methods used, the following sections frame the

approaches and context of the overall methodology.

Context

WordPress Popularity

WordPress describes itself as a means to democratize publishing, creating “software

designed for everyone, emphasizing accessibility, performance, security, and ease of use”

(WordPress.org, “About Us: Our Mission”). Despite its democratizing claims, there were three

contextualizing factors in selecting WordPress for this project: being released as open-source,

having a long history, and having a sizeable codebase. WordPress was selected because of 1) its

unassumingness or how it acts as gray media (in its enacted state), 2) its current ubiquity and

sheer popularity as a web content publishing platform, and 3) its presence in the professional

career marketplace.

Nevertheless, WordPress has had little critical research interest as a digital object and

cultural platform. There is a need for more critical inquiry into software ecosystems and

platforms, like WordPress, that are stacks of “ever-elastic middles” Brooke describes and how

they influence how we communicate and consume on multiple levels. In Evil Media, Fuller and

Goffey introduce the concept of gray media. WordPress appears to be “gray media”—

“databases, group-work software…media forms, and technologies that are operative far from the

81

more visible churn of messages about consumers, empowerment, or the questionable wisdom of

the information economy” (1). WordPress has become a quiet and almost-mundane digital

publishing tool that “seamlessly and quietly” sits in service to do the bidding of its consumers as

a fast, easy-to-use, and free way to publish a website while packed with encoded corporate and

developer ideologies and surrounded by a vast commercial enterprise and marketplace.

The mundanity and quiet utilitarian omnipresence of WordPress exhibits a sense of

presence and non-presence—WordPress is gray media. Gray media have a “certain recessiveness

[that] is often a crucial aspect of their efficacy, and that recessiveness is what makes them of

practical interest” (Fuller and Goffey 12). While WordPress does not retrieve web pages from

scouring the web like Google, nor is it as socially driven as Facebook or Twitter, as of November

2022, all the instances of WordPress manage and influence the design, content, and function of

43% of the world’s known websites (W3Techs, “Usage Statistics and Market Share of Content

Management Systems”). WordPress is not as prolific as Microsoft’s Office suite, yet it has more

open-source and extendable software distribution capabilities than Office. While this project’s

aim is not to be critical of people who use WordPress as a software solution, WordPress’

popularity and general sense of being a quiet, unassuming content management system (CMS)

that even a grandmother could love and use warrants critical exploration of its code. Platforms

differ “in ways that matter both for the influence they can assert over users and for how they

should be governed.” (Gillespie, Custodians of the Internet 20). Other networked software and

platforms, such as Google, Facebook, and Twitter, have more scholarship (Google Scholar

reports more results for each platform by at least a factor of five over WordPress). In many

ways, Google, Facebook, and Twitter manifest a more overt and extensive array of algorithmic

82

and programmed ethical and rhetorical confrontations than WordPress. Lastly, as Kitchin and

Dodge observe, “code creates products that themselves afford creativity and some software

applications have permeated creative practice so thoroughly…that being proficient in their use

has become an essential prerequisite to success in these professions” (113). WordPress is no

exception, with job posting sites such as Indeed and LinkedIn listing thousands of jobs

mentioning “WordPress” across the US (LinkedIn; Indeed). While the next chapter offers

additional software analysis of WordPress and its surrounding community and practices,

WordPress’ grayness, popularity, and professional standing establish its selection within this

project.

Vulnerabilities and Vulnerability Management

This project employs WordPress’ technological vulnerabilities as one entryway to discuss

vulnerability in a wider cultural, ethical, and rhetorical context. A vulnerability is “a weakness in

the computational logic (e.g., code) found in software and hardware components that, when

exploited, results in a negative impact to confidentiality, integrity, or availability" (MITRE

Corporation, “CNA Rules”). WordPress’ vulnerabilities and generally most software

vulnerabilities are introduced through the construction and arrangement of its core source code,

extensions of its code, code libraries that bring additional functionality and abstraction to

existing code layers, and employing the incorporated programming languages and their

arrangement of logic and functionality.

Multiple programs, organizations, and government entities are involved with the

management and classification of vulnerabilities. In the United States, the Department of

Commerce and the Department of Homeland Security are two key departments that manage

83

software and hardware vulnerabilities through the National Institute of Standards and

Technology (NIST) and the Cybersecurity and Infrastructure Security Agency (CISA) operating

under them. The MITRE Corporation, a non-profit organization, operates the common

vulnerabilities and exposures (CVE) program CISA sponsors. The CVE program’s mission is to

“identify, define, and catalog publicly disclosed cybersecurity vulnerabilities,” in which one

CVE record is created for each vulnerability (MITRE Corporation, Overview | CVE). A CVE

record contains the affected product, affected or fixed versions, an I.D., description, at least one

public reference to the vulnerability, and minimally the vulnerability type, root cause, or impact

(MITRE Corporation, “CNA Rules”). NIST hosts the National Vulnerability Database (NVD)

and stores and indexes the CVE list, combining and enhancing it with multiple other products

and programs. Some of the other US agency products and programs referenced below and in the

following chapters include the Common Platform Enumeration (CPE) Dictionary, Common

Vulnerability Scoring System (CVSS), and Common Weakness Enumeration (CWE). A general

framework of vulnerability assessment and management of the assessment involves a

combination of all the aforementioned products and the standards and specifications from which

they are derived. Organizational vulnerability management practices generally rely on

vulnerability assessments and other vulnerability management practices to mitigate

vulnerabilities in the products the organization consumes or creates. Chapter 4 examines some

organizational practices of vulnerability assessment and management with the WordPress

codebase, and Chapter 5 contains analyses of vulnerabilities by CVE, CVSS, and CWE to help

locate the focal points within WordPress’ codebase to analyze further and to backtrace the

origins of the vulnerabilities within the codebase.

84

A Brief History of PHP

Rasmus Lerdorf first released PHP in June 1995 as a small set of tools written in the C

programming language to enhance the functionality of the University of Illinois Urbana-

Champaign’s National Center for Supercomputing Applications (NSCA) web server software,

one of the world’s first web servers developed. Apache’s web server software, also written in C,

was initially released in 1995, and it quickly gained popularity over NSCA’s web server.

Apache’s web server software was extensible and provided APIs, so other developers could hook

into the software’s functionality more easily without modifying the server’s core codebase.

Apache’s web server popularity and other factors led Lerdorf to significantly expand PHP’s

ability which required the tools to be “brought together better and integrated into the web server”

for improved performance (Lerdorf et al. 6). Lerdorf released the next version in 1996, calling

PHP a scripting language that was the “most likely the fastest and simplest tool available for

creating database-enabled web sites” (Lerdorf et al. 6). By the fourth release in 2000, PHP had

undergone significant changes, including “abstracting the layer between the language and the

web server,” which ushered in a two-stage parsing and execution of PHP (Lerdorf et al. 6). As of

April 2022, PHP is reported to be used by 77.6% of all the websites whose server-side

programming language is known or detectable (W3Techs, “Usage Statistics and Market Share of

PHP for Websites, April 2022”). PHP remains a popular language solution and evolving

language product, with seven major versions released since 1995.

The PHP language resembles C in syntax, language constructs, arrangement, code logic,

and flow construction. This close relationship to C creates many parallel structures and language

constraints. Some functions and constructs have the same name in both languages. At the same

85

time, differences also highlight Lerdorf’s initial intentions and goal to make programming for the

web more straightforward and faster than writing directly in C. Mackenzie explains that

“pastiche is not unusual in programming language design. New languages often explicitly cite

features from older, well-known programming languages to make the new languages easier to

learn” (104). PHP’s and many other programming languages’ extensibility permits this crossover

or intersection to other languages, alternative overlays, or overrides within the same language.

Approach

The Stack

WordPress is software and a digital platform that functions through code that a machine

has translated, transliterated, and transcreated through multiple media layers of the machine, the

operating system, itself, and multiple other software that control and communicate over the

entire system. Fuller, referencing Richard Feynman’s Lectures on Computation, urges an

understanding of computers as layers or levels of assemblages from circuity to surface, which

have since grown in layers through “various protocols of interface, licensing, network, [and] the

ways in which computation has been coded and styled for various markets” (Behind the Blip 21).

The layers are abstract and carry forth abstraction, which necessitates further clarification. Stack

is a helpful term to describe software as a digital object from multiple levels of abstraction.

Software is not a self-contained digital object; it necessitates interdependency to function,

operate, and invite. Stack describes the software as packaged and distributed (as-is). It describes

the ecosystem of dependent and co-dependent digital objects required for the software to operate

and function within a given machine environment. Stack and its layers of abstraction can also

describe a networked view of a digital platform and describe how clusters and regions of

86

hardware systems come together to present a platform (a la Facebook, Google, Microsoft Azure,

Twitter, Amazon AWS). Berry and Fagerjord present a descriptive and effective representation

of the layers of abstraction related to digital humanities research as recreated in Figure 1 (19).

Figure 1: Berry and Fagerjord's Digital Humanities Stack

The project approaches WordPress’ stack from the interplay of interface, systems, shared

structures, code, and computational thinking layers that Berry and Fagerjord outline. It mainly

focuses on what Berry labels as the mechanism layer underneath the commodity or interface

layer in Berry’s model of computational system structures. The mechanism layer is “accessible

via source code text, which contains the mechanisms and functions ‘hidden’ in the

software…and can be thought of as the substructure for the overlay of commodities and

consumption…[and] usually delegated within the code layer, and thus hidden from the

interaction” (Berry and Fagerjord 129). The exploratory approach throughout the stack helps

construct the foundational application of critical code studies for the backtracing and analysis of

WordPress vulnerabilities and other focal points. Berry and Fagerjord’s descriptive stack

Computational Thinking
Algorithms Abstraction Decomposition

 Critical Technical Practice Programming

Knowledge Representation
OCR/Scans Databases Encoding HTML
XML/TEI Ontologies Design Patterns

Research Infrastructures
Centers Labs Clouds Spaces Streams

Digital Methods Digital Archives Metadata

Methods Libraries APIs Linked Data

Platforms

Critical /
Cultural Critique

Projects Tools and Apps Publications INTERFACE

SYSTEMS

SHARED
STRUCTURES

CODE /DATA

INSTITUTIONS

ENCODING and
EDUCATION

87

grounds the project’s approach in digital humanities, while the specific supporting methods cross

over multiple disciplines, such as computer science, culture, media, software, platform, and

critical code studies, among others.

Code and WordPress as Text

We are confronted by varying degrees of tension and resistance in our interactions with

media, specifically software and hardware. Fuller and Goffey observe that “increasingly more

diverse and numerous things, habits, and roles are becoming media or are being activated as

mediation” (1). Sometimes, software and hardware coax us with romantic gestures of efficiency,

function, connectivity, and aesthetics or force us down a dark path riddled with repeated opaque

design and organizational decision loops. Fast-forwarding from Plato’s Phaedrus and Thamus’

flawed assessment of writing as a harmful technology, diminishing our sense and ability of

memory, digital media is steeped in writing. Comprised of layers of codified digital statements,

asserting and compressing decision-making on function, interactivity, and marketability,

software systems are multifaceted ecosystems that continue to draw attention to how they

operate, communicate, and influence us.

Pushing for going below the screen and against screen essentialism, McPherson states,

“our screens are cover stories, disguising deeply divided forms of both machine and human

labor” (“U.S. Operating Systems at Mid-Century” 256). While the modern screen can reveal the

code that generates the image, the code that operates anTd enacts algorithms throughout a

system’s stack offers a direct human entry point with its commentary and delegated code. Finn

argues that the interest in the interface is more on the why than the how, and he places code at the

fore as the “mechanism of translation” (35). Nevertheless, code remains embodied within the

88

textual layers of abstraction and metaphor and constantly shifts and traverses between them

through framed primitives and abstractions. Montfort and colleagues insist that “code should be

valued as text with machine and human meanings, something produced and operating within

culture” (8).

WordPress as enacted processual software or prescriptive code presents a problematic

point of inquiry. The output of the processual logic and function of WordPress acts continuously

and (mostly) harmoniously across its layers of APIs. As Finn reminds us, “it’s much harder to

question a set of ideas when they are assembled into an interconnected structure…a seemingly

complete and consistent expression of a system of knowledge [that] offers no seams, no points of

access” (10). The source code imparts an opening to the structure and is seemingly closer to the

machine through stretches of code that turn into processual logic. In this way, source code,

especially commentary and delegated code, acts as a primary text and data source, with the

prescriptive code acting as supporting text that helps trace the processual space of the delegated

code. WordPress includes other paratextual sources that build its multilingual corpora at the

border of commentary code, such as release announcements, revision logs, changesets, and

community commentary about all three. While Brock cautions, “it is necessary to investigate

code…as rhetorically significant and powerful forms of text as well as of practice,” the

combination provides a richer view of the decision-making and history of a version of delegated

code (116). Thus, the bordering paratextual sources and source code “offers a hermeneutic and

historical record in commentary code in addition to the processing capabilities of the explicitly

delegated code” (Berry, The Philosophy of Software 54). Furthermore, each release of a

89

WordPress version alters the source code, complicating and challenging a singular interpretation

while creating additional texts in the overall corpus of WordPress.

One of Marino’s significant arguments in Critical Code Studies is that code is a cultural

object of inquiry that can be read or treated as text (Critical Code Studies 31). Berry carries a

similar view, stating, “code needs to be approached in its multiplicity, that is, as a literature, a

mechanism, a spatial form (organization), and as a repository of social norms, values, patterns

and processes” (The Philosophy of Software 36). Although, Mackenzie pushes back on analyzing

code as text due to the difficulty of discerning the meaning of a text that “can be contested,

resisted or revised,” calling attention to the mutability and processual capability of delegated

code where each software version or code change alters the text (15). However, Mackenzie

further details that “the readability of code relates to execution, to how it circulates, how quickly

it can be read and understood by other programmers, and how it affords revisions, modulations,

and modifications” (15). Code as text necessitates recognizing the influences that the

programming languages employed within the body of text have on the text’s ability to create

meaning through its functional, syntactical, and grammatical properties and all its ideologic

capabilities and situatedness throughout the digital platform ecosystem. Berry asserts that

“following the code and its textuality and structure, we can focus on the pragmata of code and

hence on its materiality” (The Philosophy of Software 39). Delegated code offers its own set of

considerations for textual and rhetorical analysis. PHP, the primary programming language of

WordPress, and other high-level programming languages can be subject to close and far reading

to discern potential flaws in logic, predispositions, or other potential ethical and rhetorical acts

language affords its readers. Capturing and profiling moments of enacted prescriptive code helps

90

locate and link code space to its delegated code text. It provides a holistic far reading of the

delegated code as its enacted, building and constructing assemblages, links, and stacks of

delegated code turned prescriptive. As Berry and Fagerjord argue, “we need to explore how to

negotiate between close and distant readings of texts and how micro-analysis and macro-analysis

can be usefully reconciled” (137). Examining the delegated and prescriptive code as text offers

insights into developers, communities of practice, and the design decisions that form the source

code's network of processual and encoded arguments.

Poetics and Hermeneutics

A multi-dimensional interpretation and reading of code can be achieved as a text. While

all the dimensions are essential to identify, two basic dimensions include interpretation by the

machine (instruction code, compiler, or interpreter) and by people. These two dimensions

broadly group code reading into examining arrangement or holistic experience and

understanding. These two types of reading highlight fundamental differences between computer

science and the humanities. For computer science, examining code through its arrangement, or

poetics, pulls the attention closer to the machine, looking at how code can be optimized and how

the computer reads the code and organizes and orchestrates it among its hardware and media

resources. Whereas for humanities, examining code through its poetics pulls attention closer to

the meaning and effect code’s arrangement has on people. Examining code through its holistic

understanding, or hermeneutics, points to a broader intervention of its effects alongside or

beyond its arrangement. Marino establishes critical code studies as “an approach to code studies

that applies critical hermeneutics to the interpretation of computer code, program architecture,

and documentation within a sociohistorical context” (Critical Code Studies 39). The two basic

91

interpretation approaches have limitations and advantages; however, they can also be combined

to bridge some of the limitations found in each.

Fuller, borrowing from Deleuze and Guattari, proposes a way to read software “as a form

of digital subjectivity” in that “software constructs sensoriums…ways of seeing, knowing, and

doing in the world that at once contain a model of that part of the world it ostensibly pertains to

and that also shape it every time it is used” (Behind the Blip 19). The digital subjectivity and

ways of knowing and doing within software can be better revealed and articulated through a

combination of reading and interpretation methods. Marino observes “code offers details and

foundations for those interpretations. Even very ordinary code designed to achieve some

everyday purpose, some practical goal, to produce some output or process, carries with it

meaning beyond what it does” (Critical Code Studies 17). However, Black offers caution about

effectively reading and holistic criticism towards modern software, asserting “any attempt to

critically read source code faces limitations of scale and code when applied to modern

application software that is comprised of dozens of modules and millions of lines of code”

(para.8). Black’s use of topic modeling to analyze Mozilla source code from a sociocultural

approach broadly demonstrates a poetic and hermeneutical approach. Black identifies a set of

foundational text-based facts, programming language tokens, from the code and then develops

further method and analysis through topic modeling (Black). Employing a poetic analytical basis

of the code offers a systematic, rough-hewn foundational commons that allows the comparison

of code within one or multiple versions of WordPress. For example, analyzing and quantifying

code elements, such as code structures, entry points (functions and methods), and lines of code

across versions and examining how these elements relate and connect through their delegated

92

and prescriptive states. This approach considers Black’s caution while building on a more

holistic interpretation through multiple textual approaches to build a more hermeneutic analysis.

Ramsay, comparing textual analysis with scientific approaches, states that any “text analysis

procedure that endeavors to expose the bare empirical facts of a text” can be designed similarly

(6). In this way, it is critical to establish a baseline of facts to build a holistic interpretation of

code as text. Snippets or lexia of code offer partial understandings for examples, but they are an

incomplete narrative when the code belongs to a more extensive interconnected system of source

code; a more holistic view is needed to move beyond the basic function of code. Ramsay adds

that “hermeneutically, such investigations rely upon a variety of philosophical positivism in

which the accumulation of verified, falsifiable facts forms the basis for interpretative judgment”

(6). Ultimately, combining poetics and hermeneutic analysis presents a means to “capture…[the]

far less concrete interpretative possibility connected with the experience of reading” than what

WordPress’ code “is” or “does” (Ramsay 10).

Transdisciplinary

This project takes a transdisciplinary approach toward code. The project attempts to span

the disciplinary divides to tie together methods that best capture the multiple academic

viewpoints of and about code. While the project incorporates code directly by example, making

it somewhat more technical, it is rooted in digital humanities concepts and critical code studies.

In looking at digital humanities’ multiple subfields, McPherson asserts that the “lack of

intellectual generosity across our fields and departments only reinforces the “divide and

conquer” mentality that the most dangerous aspects of modularity underwrite” (Feminist in a

Software Lab 105). To counter the isolating effect of disciplinary modularity, we “must develop

93

common languages that link the study of code and culture” and “historicize and politicize code

studies” (McPherson, Feminist in a Software Lab 105). Instead of positioning the project toward

one discipline, this project attempts to showcase the benefits of combining disciplines,

showcasing the strength of incorporating and acknowledging multiple disciplines to better

converge on code and its multiple dualistic states. The following sections provide a brief

overview of the project connecting the disciplines of computer science, digital humanities,

software, platform, and critical code studies.

Computer Science or Digital Humanities

Hayles observes that the distinctive differences between code and language have impeded

understanding because of the academic disciplinary divide between humanists and computer

science (My Mother Was a Computer 16). Wardrip-Fruin states that “there is little emphasis in

computer science education on considering algorithms and their relationships critically or

aesthetically—rather than in terms such as efficiency” (Wardrip-Fruin 17). Bucher adds that

while “computer scientists typically focus on designing efficient algorithms, a sociological or

cultural approach to algorithms is starting to emerge, focusing on what algorithms are actually

doing as part of situated practices” (If...Then 29). Hayles, Wardrip-Fruin, and Bucher highlight

the tensions among disciplines and approaches toward software, hardware, code, and algorithm

analysis, calling for multidisciplinary and interdisciplinary methodologies. McPherson highlights

how digital data can be “malleable and mutable” through interactions, creating new views and

representations (“Introduction: Media Studies and the Digital Humanities” 121). McPherson

explains that such a “multiperspectival quality…also has possibility for scholarly knowledge

production” (“Introduction: Media Studies and the Digital Humanities” 121). Similarly, code as

94

textual data is malleable by rendering it through different methods that help further substantiate

observations about code that offer potential research opportunities for computer science or digital

humanities. Though, Mackenzie pushes back some on traditional humanities approaches, stating,

“the concepts of signification and meaning that have guided much work in social sciences and

humanities for decades lack purchase on the structures, patterns, relations, and operations that

constitute code objects” (15). Akrich reminds us, “we have to move constantly between the

technical and the social. We also have to move between the inside and the outside of technical

objects” (206). The necessity of investigating digital objects internally and externally because of

their malleability, changeability, and processuality reveals a common thread throughout

software, platform, and code studies, which is “permeated with theoretical insights into the

performative dimension of digital processing…[that] add certain strains of “new” materialisms,

the emergent systems-thinking approaches coming from ecologies of semiotics and information”

(Drucker, para.11).

Software Studies

Montfort and colleagues offer a comprehensive view of software studies and its soft

boundaries. Montfort and co-authors state that “software studies uses and develops cultural,

theoretical, and practice-oriented approaches to make critical, historical, and experimental

accounts of (and interventions via) the objects and process of software” (xi). Furthermore, the

discipline “proposes histories of computational cultures and works with the intellectual resources

of computing to develop reflexive thinking about its entanglements and possibilities” (Montfort

et al. xi). Berry and Fagerjord further connect software studies with algorithms and digital

computation as part of the object of study, observing that software studies “uses a number of

95

techniques to ‘read’ algorithms…[including] close engagement with code and software as text,

understanding software, and critically examining algorithms’ affordances, structure and political

economy” (18). From the view of media studies, Possati criticizes the overemphasis of

software’s role in communication “without tackling seriously the technical aspects and

underlying philosophical questions,” citing flaws in the views of Kittler, Chun, and Manovich

(2). Possati asserts that computer science approaches to software studies are also problematic by

the overzealous reduction of software to a mathematical function and structure (3). Possati

highlights the difficulty within software studies and the duality of software, leveraging Colburn’s

term “concrete abstraction” to assert the importance of examining software as text and that

“technologies have to be understood in terms of the relations human beings have with them, not

as entities ‘in themselves’” (Possati 3, 6). Software studies recognizes the cultural and social

influences within software and that are expressed through software while maintaining a wide-

ranging approach to its complexity. Software studies broadly approaches the cultural and social

intersections of software, appropriating traditional humanities, social science, and computer

science views and methodologies to present a more holistic analysis.

Platform Studies

Ian Bogost and Montfort introduced platform studies as a material constraint, in

physicality and significance, to new media in 2007, emphasizing the relationship between the

hardware systems and the design and development of software within them. Dourish describes

platform studies as “detailed examinations of the specific materialities of particular digital

platforms, with a concomitant explanation of how platforms can realize particular digital

experiences” (The Stuff of Bits 55). Platform studies expand the lens of technology for tracing

96

ideology, power, and cultural and social influence, embracing the often ignored, invisibly

laboring layers below software’s designed human interfaces. Tying rhetorical code studies to

platforms studies, Brock adds that the “critical investigation into the relationship between code,

design, user experience, and technological infrastructure” is part of its goal (24). The broader

lens of platform studies also introduces a scope and scale problem to analyze and isolate areas

within a platform that can offer areas of stability and concentrative research efforts. de Reuver

and colleagues observe that platforms’ distributed nature and generativity increase the challenge

of studying platforms wherein platforms produce “exponentially growing… ecosystems,…

creating research objects that are several orders of magnitude larger than any traditional…

system” (125). The modern platform, in more significant part due to its networked capability and

ability to rewrite itself virtually at every layer of media, can change features and functionality at

a much more rapid pace than before these capabilities were introduced. The continuous changing

of a platform is also a recognized problem within platform studies. Although some cases, like

WordPress as a software platform, can be “frozen” and examined through one snapshot or

instance and version, this does not represent all of what can be experienced and examined about

a platform. Observing the shortage of understanding of platform dynamics, de Reuver and co-

authors argue that “the dynamics of digital platforms and ecosystems can only be observed

within a sufficiently long time horizon” and call for “longitudinal studies on the evolution of

digital platforms and ecosystems” (128). Dourish explains that much of the criticism of platform

studies stems from the difficulties in performing “a historical study of platforms that are

essentially still in (cultural) formation” (The Stuff of Bits 52). Platform studies recognizes the

embodiment of ideology and influence throughout and within the media layers of hardware and

97

software despite the constant re-configuration and re-construction. It elevates the notion of

platform as a means to navigate through it and reveals its complex stability as a space and place

to interact.

Critical Code Studies

Distinguishing it from software studies, Berry observes that critical code studies

judiciously approaches code, whereas software studies approaches compiled source code or “the

use of software to study other things” (“Iteracy”). Berry also suggests that both studies

correspond to “the broader definition of digital Bildung, more specifically as methods and

approaches related to critical inquiry of computationality or the post-digital society” (“Iteracy”).

Marino offers critical code studies as an answer to Hayles’ call for media-specific analysis,

describing it as “the examination of an artifact with specific attention to the affordances and

limitations of the particular medium in which that object has been created and presented” (“Why

We Must Read the Code: The Science Wars, Episode IV” 140). Marino further elaborates that

critical code studies includes the “act of interpreting culture through computer source code,”

which positions code “as a unique semiotic form of discourse, the meaning of which requires

specific techniques that are still being developed” (Critical Code Studies 18). Critical code

studies focuses on the media layers of code within software and platforms, “situated within an

array of emerging approaches, such as software studies, platform studies, media archaeology,

and media forensics” (Marino, “Field Report for Critical Code Studies, 2014”). Like Brock and

platform studies, Douglas Eyman connects critical code studies to rhetoric, seeing that critical

code studies “relies explicitly on rhetorical methods” and “aims to examine the infrastructure

behind the software by examining the code itself” (57). For Eyman, critical code studies could be

98

situated under digital rhetoric, taking “code as its central object of study” (58). Beck describes

critical code studies as an approach for critical theorists to “investigate computer code’s

relationship with cultural, social, and political content through hermeneutical analysis [where]

code is a lingual mode for humanities scholars and researchers to examine” (Beck). Critical code

studies draws from multiple critical, rhetorical, and ethical approaches within the larger backdrop

of humanities, social sciences, and computer science, recognizing that code as text’s “meaning

grows out of the functioning of the code but is not limited to the literal processes the code enact”

(Marino, Critical Code Studies 39).

Marino presents critical code studies as a methodology that “applies critical hermeneutics

to the interpretation of computer code, program architecture, and documentation within a socio-

historical context” (Critical Code Studies 39). Part of applying critical theory to code is “to

explicate meaning in excess of its functionality and claims that this meaning warrants analysis on

more than an aesthetic of efficiency” (Marino, Critical Code Studies 39). Critical code studies

incorporates media, software, and platform studies, converging and joining what Manovich

describes as the cultural and computer layers of software studies (The Language of New Media

46). At this convergence, the code and languages at work give way to the ethical and rhetorical

interpretations of humans and machines (designed by humans). Brock remarks that this intense

focus on code “implicitly…suggests that a given body of code, and its author(s), have something

meaningful to offer to its reader, whether that meaning is provided intentionally or not” (49).

Furthermore, Salter observes that code studies, software studies, and platform studies “offer

opportunities to critique the underlying binaries and assumptions of systems which often would

go unseen: feminist and queer code analysis in particular have the potential to disrupt our

99

reliance on unchallenged systems” (para.7). Critical code studies offers a framework to interpret

and reveal both broadly and acutely code’s meaning and the developers’ intentionality and

decision-making from code’s initial inception to the latest change within a codebase.

Using critical code studies as a methodology framework recognizes the importance of

focusing on the meaning, implication, and connotation that the limited and constrained system of

a programming language and environment creates. Marino explains, at length:

Rather than trying to make ambiguous language behave according to the systematic

standards of programming languages, critical code studies seeks the ambiguous (and

unverifiable) connotations of programming languages as they interact with and travels

through other systems of meaning read by humans and machines, or what Bruno Latour

calls actor-networks. (Critical Code Studies 160)

This recognition includes the significance of the movement within the social-surface experience,

interaction, and engagement generated by the prescribed code. Nevertheless, delegated code

emphasizes humanness within the language layers of code choice, arrangement, and style.

Furthermore, delegated code offers a way to discern organization and design intentions. When a

codebase repository is available, its code commit history and changelogs help highlight how the

intentions change over time; yet, it may not always reveal why these changes were made except

through bug fixes or enhancements made by the developers. Beck observes that digital rhetoric is

equipped with the methodology to analyze the “embedded social and cultural values in

algorithms [and code]—how they operate, and how they affect change in machine and human

behaviors” (Beck). The first release of delegated code offers a glimpse into the initial biases and

100

influences that inform future changes and enhancements, potentially amplifying or obscuring

such biases.

Critical code studies is a collaborative intersection of computer science and digital

humanities, drawing broadly from both disciplines while narrowing and enriching through

media, software, and platform studies. Critical code studies reveals code's meaning beyond its

function by applying critical theory, interpretive, empirical, and exploratory methods. Marino

points out that “what irks some programmers about CCS is not its highfalutin language, but the

politics that the ideological language of critical theory brings to the putatively pure, functional

language (computer source code). Such programmers are invested in a vision—a fantasy, CCS

would suggest—of their work as apolitical, completely outside the context of social and political

culture” (“Why We Must Read the Code: The Science Wars, Episode IV” 142). Delegated code

speaks beyond its prescriptive code state, allowing one to reflectively assess its conceptual

function as an expression and reflection of culture and society. Marino argues that “rather than

bracketing the code, we should read it, beginning with the tools of semiotic and cultural analysis

and continuing by developing new methods particularly suited to code” (Critical Code Studies

19). Berry and Fagerjord suggest using “exploratory data analysis and data mining” as a general

term “for a variety of techniques that are meant to gain insight into a data set” and reveal other

structures, connections, and relationships that would otherwise go unnoticed (106). This project's

collection methods and analyses are an exploratory application and response to Marino’s call to

look beyond the code.

101

WordPress Data and Collection Methods

The following section describes the data sources and how the data was collected,

processed, and formatted. All collection methods except the software studies analysis depend on

WordPress’ core source code. The processes, profiling, and vulnerabilities methods of analysis

rely on the source code by direct reference of the file name containing the lines of source code,

line number(s), or the function, class, construct, or variable name, as well as indirectly through

changing the code state for further analysis.

WordPress as Software

The software studies analysis, Chapter 4, is the result of examining paratextual data

concerning the source code. Data sources included published and archived websites, articles,

books, and speech transcripts. Data sources also included source code and changesets (as

described in the following section). The sources were focused on the history, evolution, features,

and functions of WordPress as an open-source web publishing platform. Additional sources

focused on select sociotechnical and cultural dynamics of WordPress and its relationship with

Automattic (the most prominent private corporate contributor to WordPress). Lastly, sources

concentrated on WordPress as software and a community as well as its sense and positioning of

creativity, organizational and cultural identity, and sense of security and privacy.

Source Code

WordPress source code is considered the primary data of this project. The source code

can be accessed from multiple online resources. For people who directly contribute to the core

code changes, the version control systems (VCS) Subversion (SVN) and Git (via Github)

concurrently manage and track the changes to WordPress’ codebase. Accessing the source code

102

from a VCS has advantages over a packaged release version, such as the additional files and data

included in a VCS repository created through tracking and controlling changes like commit logs,

revision history, changeset or revision numbers, and timestamps. One release of WordPress can

contain hundreds to thousands of revisions. The WordPress “Releases” webpage offers all the

distributable packaged releases for public download as a single archive file organized for

immediate unpackaging and installation, whereas the codebase repository through SVN and Git is

not organized this way.

For this project, WordPress’s codebase was obtained using SVN to replicate the whole

repository and downloads of the packaged releases. As changes and releases were published,

maintaining the replicated repository and packaged releases was automated using an SVN client

and scripting (see Appendix A: WordPress Download Script). Although the codebase repository

is available online, replicating the repository and downloading every version was necessary to

facilitate further data analysis across the methods, further discussed in the “WordPress Analysis

Methods” section below. The project principally focuses on the “Nina Simone” (5.6) release and

source code version. “Nina Simone” (5.6) was selected namely for four reasons, 1) its initial

release date of December 2020 suggested it would continue to receive security and bug-fix

updates over the upcoming months (WordPress officially supports only the latest major release),

2) it is not the oldest or newest release, offering a snapshot of code where changes can be

referenced and compared both through previous and future releases, 3) it is the first release

announced that starts preparing the core WordPress code for PHP 8, resulting in significant

changes (32% of all its files), and 4) the release marked the first release by an all-women and

non-binary identifying team.

103

Profiling Processes

Prescriptive code can be profiled to capture its points of originating delegated code.

Using system tools to read prescriptive code calls and processes, profiling prescriptive code

offers a way to catalog processes and connections within its delegated code. While profiling code

is often used as a tool for assisting with optimizing, debugging, and improving the performance

of code, the purpose of profiling WordPress is to create a frequency mapping to focal points in

delegated code (including function, method, class, or construct name, lines of code, and source

code file) that are most frequently called when WordPress is enacted.

WordPress has two main sets of prescriptive code, one enacted through a web browser

and one enacted through a server, which, upon request, prescribes and transmits through a

network a set of delegated code to a web browser to then enact and present as a human interface

or web page. WordPress has many dependencies and technical requirements for both sets of

prescriptive code to function that are not the project's primary focus. The project focuses on the

server-enacted code, largely PHP, and profiling PHP also has specific technical requirements,

configuration of additional software, and additional software needed.

Profiling data was collected from “Nine Simone” (5.6.8) by installing WordPress and

creating a mock website consisting of six pages, including the home page, with textual content

on each page and one that displayed an image. No other modifications were made to the

installation except that it was configured not to update to maintain the version and operate in a

default manner. While it is possible to enact WordPress code on a server through means other

than a web browser, a web browser was used to enact the code by navigating to the mock

website. To simulate regular website visitations, each page was visited through the web browser

104

five times, enacting and capturing the server-side prescriptive code each time. The profiling data

was captured in multiple files in a format called “Callgrind,” a text-based format that captures

prescriptive code events, callees, callers, and the number of calls and processing time for each

callee. Callees or callers are mapped back to the delegated code by the function, method, or

programming language construct name and the file name and line of code where it resides (see

Appendix B: CallGrind Data Excerpt).

Vulnerabilities

Vulnerability data was collected across multiple sources, including the published

WordPress changesets, revision logs, changelogs, announcements, and the publicly reported and

verified vulnerabilities available through the NVD. For every WordPress release, the community

publishes a web page announcing the release and new feature sets, along with the technical

changes and formal revisions to the code, files, database, and functionality. The NVD offers a

web-based API to query and retrieve an enhanced CVE list that can include each CVE record’s

associated CVSS vectors and metrics and matching CPEs and versions affected by the

vulnerability. The NVD also offers a web-based API to retrieve CPE information that can

include the associated CVEs. The combination of CPE and CVE queries provides a means to

obtain all published vulnerability data attributed to any version of WordPress.

The changesets and revision logs were captured by replicating the repository, including

the changesets and revision logs as text-based files. Multiple enumerated data sets were created

from NVD data and published WordPress documents. Every WordPress version, release date,

musician, database version of the release, last revision number of the release, and web URLs to

WordPress’ published pages on the support version details, the release announcement, and the

105

changelog of files were collected, stored, and maintained in a database throughout the project.

The most recent complete NVD CVE list containing only CVE records was downloaded from

the NVD website and reformatted as a searchable and filterable file. Regardless of status, all

published vulnerabilities were collected from the NVD CVE API under the WordPress vendor or

WordPress product, including all additional associated CVSS and CPE data, using both CVE and

CPE queries and then further cleaned and reformatted to ensure consistency of data and labeling

of it. An NVD statistics query by the vendor (“WordPress”) was also used to verify the number

of published vulnerabilities. Altogether, with analysis, these sources assemble fundamental data

and information to discuss the ethical and rhetorical intersections within code.

WordPress Analysis Methods

WordPress as Software

Including a software analysis of WordPress as part of the overall analysis was to

approach WordPress outside of its code and examine how central cultural, societal, and

organizational values are emplaced in how WordPress is discussed in relation to what

WordPress does as functional software. As part of the hermeneutical approach to critical code

studies to contextualize code, Marino includes paratext as additional data sources for the cultural

analysis, including but not limited to software history, authorship, programming languages

employed, and funding sources of its development (Critical Code Studies 44). The analysis

examined WordPress’ origins and evolution as software and commercial entity through

Automattic and how the community views and treats code, vulnerabilities, functionality,

licensing, open-source, and WordPress as a platform, which helps highlight and establish the

overall community ethos towards WordPress. Although WordPress is open-source, Brown warns

106

that code cannot be the sole object of analysis and highlights the broader software landscape of

proprietary software and systems closed off from code analysis (144). The analysis also focused

on interesting points where code surfaced into the paratextual and moments where organizational

positioning noticeably influenced coding practices or decision-making within the code; these

points of interest became cultural focal points later examined in the source code.

With WordPress being such a popular web publishing platform, it is critical to “unpick

and lay out the historical, cultural, and discursive backdrop that makes the program ‘make sense’

in context, ” so no WordPress release was excluded as part of the analysis (Dourish, The Stuff of

Bits 54). The study is a constructed impression of WordPress from outside its code but about its

code and its reflexive view of and about itself through the people developing, using, and

capitalizing on it. The constructed view of WordPress provides a foundation to then approach

code more critically by having a better “understanding of the structure, dynamics, and

strategy/behaviour of platforms and associated organisations in the ecosystems around digital

platforms” (de Reuver et al. 131). The fuller understanding of WordPress through a non-code

reflexive analysis of itself situates the decision-making about code against this view and opens

the ability to invert the analysis by looking at code reflexively against its non-code reflexive

view. In other words, it permits a two-way or bi-directional reflexive analysis to examine the

non-code claims about WordPress against the code and the statements of code against the non-

code claims of WordPress.

Source Code

A WordPress version presents a complete software that generates a predictable,

normalized, and expected experience at the time of release. It is released as a set of files digitally

107

frozen and archived that represent a snapshot of its developers' changes, beliefs, and intentions

on what they see as the best experience the software can offer to those using it. While “all code

represents only one iteration of work in progress,” each version creates a different presentation

and instance of the envisioned standard and shared—the default—core experience (Marino,

Critical Code Studies 3). Brooke suggests that for new media, “criticism depends on the shared

experience of a text…[and] the absence of shared experience can become part of the

infrastructure of a text” (11). In reading “Nina Simone” (5.6), highlighting these absences from

delegated code is essential to demonstrate the attention or inattention towards the cultural and

community values conveyed about it, essentially a reflexive analysis examining the statements of

code against the non-code claims specific to the version or WordPress at-large.

WordPress has an almost two-decade release history, which offers the opportunity to

examine it from multiple directions and degrees of depth or scopes. While cross-sectional and

longitudinal approaches present familiar research terms to borrow, “horizontal” and “vertical”

are more aligned with software and platform studies. de Reuver and colleagues offer vertical as a

descriptor for “choosing the appropriate level of the technical architecture for studying

platforms,” whereas horizontal is the “variety of application domains covered by the platform to

be taken into consideration” (128). Deviating from de Reuver and colleagues, vertical analysis of

WordPress might examine the stack of media layers that comprises one release or one instance

of WordPress. An instance of WordPress differs from a WordPress release by broadening the

analysis vertically or horizontally to include layers of media below and above the WordPress

layers or widening it to include WordPress themes and plugins that alter the shared experience

and can integrate so fully within WordPress as to be considered vertical, although not the

108

“default” experience. Although plugins and themes might be considered part of the horizontal

analysis, one kind of horizontal analysis of WordPress is a far reading over time that can be

combined with an in-depth vertical analysis. This project utilized vertical and horizontal analysis

as part of the scaffolding for analyzing WordPress vulnerabilities. As Marino observes about

reading code critically, “one must establish its context and its functioning and then examine its

symbols, structures, and processes, particularly the changes in state over the time of its

execution” (Critical Code Studies 23). The horizontal analysis constructed a rudimentary

understanding of the complexity of the WordPress code by quantifying specific properties for

each named release. From the context of the horizontal analysis, the vertical analysis built a

closer understanding of the structures and arrangement of code and source code files.

Code determines and reveals the actions on a multitude of layers among the electrical

signifiers to an interface, acting as the ultimate textual intermediary and connector between often

disparate layers of computing focus or abstraction. MacKenzie argues that the influences of

software, how it “performs, circulates, changes and solidifies,” cannot be understood without

including the source code (2). While all releases and instances vary in the amount of code that

influences the overall WordPress experience (for humans or machines), the focus of this project

is the PHP code of one release, “Nina Simone” (5.6). Across the history of releases, WordPress

has incorporated multiple programming languages. Of the 2,463 files packaged with the “Nina

Simone” (5.6) release, 79% contain programming or markup languages, and 41% of its

commentary and delegated code is written in PHP. PHP code makes up roughly 56% of all code

across all versions up to “Arturo O’Farrill” (6.0.3). Ultimately, WordPress and, generally, most

software “exists more in code than in discussions about its code,” which motions toward

109

examining code as evidence of its cultural and ideological power and influence (Brock 116).

With source code a prominent focus for all the later stages of analysis, how the source was

examined warrants introduction.

Kitchin offers three ways to examine delegated code concerning algorithms that can be

broadly applied to software and not solely an algorithm. Kitchin offers 1) “deconstruct[ing]…

source code, teasing apart the rule set to determine how the algorithm works to translate input to

produce an outcome,” 2) “map[ping] out a genealogy of how an algorithm mutates and evolves

over time as it is tweaked and rewritten across different versions of code,” and 3) “examin[ing]

how the same task is translated into various software languages and how it runs across different

platforms” (22). While deconstruction and “teasing apart” every algorithm embedded within

WordPress would be a project in itself, major “traffic” areas within the source code can be

identified and deconstructed to see how they influence the chain of outcomes that eventually

result in some change to either WordPress’ client-side code and how it renders or its internal

database. Similarly, mapping the genealogy or evolution of every algorithm within WordPress

might be a lifelong project, while mapping a broad evolution of the source code over time

presents an entry point to then vertically pinpoint locations within the source code by function,

method, or class that has become most changed or atrophied into obscurity yet remain over time.

Lastly, examining the translation of WordPress across different languages and platforms offers

some additional considerations. WordPress has not been translated into other programming

languages; however, it has evolved alongside the radical changes of the PHP language over time,

which has influenced the code and technical requirements of PHP WordPress must meet to

operate. Combining these three methods offers a way for the changes of PHP and other

110

technologies to be viewed alongside changes in WordPress as software, “situating both within a

particular cultural and historical context that can help us understand the decisions made to

develop both, along with the implications those decisions may have had on the construction of

subsequent technologies” (Brock 31). These combined analysis methods offer a way to examine

code, which, when combined with further profiling processes analysis, helps maintain a

contextualization of WordPress and broader sociotechnical dynamics.

Comparison of Lines, Files, Release Dates, and Size through Version History

Part of the hermeneutical and poetics approach includes considering and examining what

Berry and Fagerjord observe about computational technology's compressing effect, where

interactions with technology shift to a synchronic mode or focus and diminish or compress the

horizontal or diachronic opportunity or view (14). Synchrony and diachrony present

complementary code approaches that can be applied through multiple lenses. While a synchronic

view might examine the code of one instance or release, a diachronic view examines changes

over time and through multiple versions, including the use and changes of language by choice or

compulsion due to other technological changes and how the present “current” version represents

the past necessary changes. Though a synchronic view of one version can offer a “hermeneutic

and historical record” through its commentary code by documenting authors, collaborators, and

code changes, a view of a larger span of development time of the software might offer a more

holistic diachronic view (Berry, “A Contribution Towards a Grammar of Code”). To create a

rudimentary diachronic view of WordPress, the number of commentary and delegated PHP code

lines, number of files, release dates, and overall size of WordPress by named release were

calculated and compared, which acts more like a distant or far reading. Berry and Fagerjord

111

remind us that a “coarser distant reading makes it possible to gain other kinds of knowledge and

answer other questions” (61). The knowledge gleaned from the calculated data helps indicate the

code changes over time, pinpoints dates to specific local circumstances and global events, and

quantifies the code to capture its fortitude as a meaningful and expanding cultural object through

its increase in size and code.

Close Reading of “Nina Simone”

The treatment of “Nina Simone” acknowledges that “Nina” is only one release of many

versions and instances WordPress can express. A synchronic examination of a single version is

at risk of not capturing the holistic sociocultural essence or the diachrony and history of the

entire scope of software, its delegated code, or algorithms embedded within it (Kitchin 21;

Bucher, “Want to Be on the Top? Algorithmic Power and the Threat of Invisibility on Facebook”

1178; Black 1). However, parallel with software or paratextual analysis, some boundaries and

references must be established for such a codified ecosystem of politics and ideology that may

never be revealed without a close examination of delegated code. Delegated code offers a rich

source to examine “actual symbols…procedures, structures, and gestures…paradigmatic choices

made in the construction of the program, methods chosen over others and connotations” (Marino,

Critical Code Studies 44). A close reading of the code “slows down” the compressive processual

effects of enacted prescriptive code to identify better how the coding structures, symbols,

procedures, and organization influence its operative ideology.

Hayles revisits ways of reading texts. Like Eyman, Hayles describes hyper reading as

“skimming, scanning, fragmenting, and juxtaposing texts,” which leads to only text fragments

being read directly (Hayles, How We Think 12). Hyper reading is also like how prescriptive code

112

is read by a computer with its delegated code, scanning and cataloging the hooks and calls to

jump through the iterations of structures and procedures across multiple source files. By

comparison, a critical close reading “correlates with a deep attention, [which] focuses on a single

cultural object for a relatively long time” (Hayles, How We Think 12). Examining code by

reading and analyzing it both ways can be helpful “to explore the significance of the specific

symbolic structures of the code and their effects over time if and when they are executed (after

being compiled, if necessary), within the cultural moment of their development and deployment”

(Marino, Critical Code Studies 23). While the “WordPress Processes and Profiling” analysis

method section below discusses how prescriptive code was read and explored, it is vital to

emphasize how code “connects to culture, affecting it and being influenced by it” and that it “can

be traced by examining the specifics of programs by reading the code itself attentively”

(Montfort et al. 3). This analytical shifting from what to how “changes the analysis of material

evidence from iconographic reading to indexical reading, leading us into the lifecycle of

production, use, control, resource consumption, labor, cost, [and] environmental impact,” which

helps point to the structural and cultural aboutness of a single WordPress version and flag it as a

snapshot of cultural motion in and across time that depends on the interdependencies within its

ecosystem (Drucker, para.11).

Profiling Processes

Profiling WordPress’ prescriptive code enacted through a server offers a way to index the

overall movement dynamics and the notable leaps the machine makes across the delegated code

through its hyper reading of code lexia. Profiling is “an attempt to follow the logic of code

through a form of code ethnography, observing and watching how code functions” (Berry, The

113

Philosophy of Software 94). Profiling requires additional software that is “aware” of

programming languages and the surrounding system, specifically PHP, a WordPress instance,

web server software, and other server-related layers. Some limitations of profiling WordPress,

specifically “Nina,” through this method are similar to close reading in that a) it did not capture

all interactions that would enact different WordPress code (no “Dashboard” or administrative

pages were visited, visited pages did not have complex content, and no plugins were activated)

and b) it is synchronic in the sense of analyzing only one “Nina” instance across a very brief

time. However, profiling the code “Nina” offers a generalizable processual snapshot of the

modern WordPress code structuring, and it reveals the most and least influential or called upon

lexia of code and locates both where the code is called upon or from within the source code files.

Drawing together the data from a copy of the WordPress code repository, all the release

versions, a single WordPress release and instance, and profiling the instance allows for a

bridging of diachronic and synchronic analysis of code. Enacted prescriptive code creates a

synchronic scenario in its processual state, further compressing the language interactions.

However, it is not impossible to find value in its synchronic state and decompress or deconstruct

some of its actions back to its delegated state by tracing the motions of computational logic

across the networked lexia of code. In describing some of the difficulties of observing

prescriptive code, Berry explains, “the first step is to look at how the code runs, through a

method of slowing down the code to a human time frame, secondly, using a device to examine

the running code from a distance” (The Philosophy of Software 94). This slowing down, in

effect, allows, through the profiling process, for the prescriptive code to be turned into a human-

readable focal point that, although not code, can be read like a close reading of code. The

114

processual focal point now includes a series of logical mappings affixed to the code, showing

direct relationships between code lexia as well as providing a sense of popularity within the

code, showing what code is called upon the most, calling prescriptive code’s process further

along with its functional mission of completion.

Examining and confronting rhetorical and ethical predicaments and intersections requires

inspecting code and mapping back to its overarching processes or interplay of intentions and

outcomes of code—Noah Wardrip-Fruin’s operational logics (Wardrip-Fruin 13). Identifying

potential predicaments becomes immensely more complicated and challenging as software’s

source code increases in the number of lines, dependencies, and other code libraries. In contrast,

closed source or proprietary software and platforms create a much more difficult challenge to

tracing code in its processual state (though the hacker ethos and culture from the 1970s pushes

back on this notion of proprietary software through the present day, expressing much of the same

attitudes and views as people researching vulnerabilities).

The processual analysis follows Wardrip-Fruin’s expressive processing to a certain

degree. The analysis interprets the processes through specific constructs of the programming

language while the prescriptive code is in computational motion, essentially “a problem of

agency, as a problem of who or what does what to whom or what” (Mackenzie 7). In this

context, the operations of WordPress were examined to identify focal points within the design

that generate the most processual complexity and have the most popularity from within the

delegated code that executes through some of WordPress’ typical operations, specifically

generating the web browser delegated code to display a page. As Wardrip-Fruin points out,

“interpreting the specific text of code is like studying the choice and properties of materials used

115

for the parts of a mechanism” and “studying processes…focuses on the design and operation of

the parts of the mechanism” (Wardrip-Fruin 164). Separating and performing only one of these

methods limit a hermeneutic approach to code and has the potential to not fully bring to light the

materiality of code or the processes the code creates. Indeed, Wardrip-Fruin remarks, “these

activities are not mutually exclusive, nor does one subsume the other…they complement one

another---and some investigations may require undertaking of both” (Wardrip-Fruin 164). As

part of the scaffolding of methods used to build an overall methodology, this analysis identified

crude processual focal points based on a quantified reliance or use of functional code entry

points (constructs, functions, classes, and methods) created within PHP and WordPress. While

many other data byproducts and visualization opportunities are created through profiling

WordPress source code, which are helpful in discussing the overall analysis, the primary

outcome of the analysis is locating focal points within the code to build upon their introduction

point and any changes across its WordPress code history, and then map to WordPress

vulnerabilities to determine if any relationships can be identified. Consequently, two mappings

occurred, the first in refining the focal points and backtracing them to “who or what does what to

whom or what” within the code, and the second in mapping the locations of vulnerable code

lexia discussed below to the code focal points identified through the profiling processes analysis.

Vulnerabilities

Berry emphasizes the relationship between code’s materiality and its social practices to

help understand code (The Philosophy of Software 64). Determining and locating the materiality

of code is especially critical for understanding when and how software vulnerabilities are

introduced through its code. Mackenzie insists that “code needs to be followed as it moves across

116

a terrain where the different forces, formations, dynamisms, knowledges, bodily habits and

embodied expertise, institutions, practices, micropolitics, networks, techniques and things

associated with code are situated” (10). One such location is at the entanglement of vulnerability

and functionality within WordPress code. Using Gillespie’s view of algorithmic entanglement

more broadly as software and its code, vulnerability and functionality are a multi-dimensional

entanglement between a WordPress instance and the ways people use it, in which the

entanglement is not “a one-directional influence, but as a recursive loop between the

calculations” of WordPress and the “‘calculations’ of people” (“The Relevance of Algorithms”

183). Discovering where and how the entanglements of vulnerability and functionality occur

within WordPress and code is at the root of this project. Before moving into the analyses and

discussion chapters, the last steps of the methodology include two main analyses that incorporate

all the data collected, reformatted, and analyzed so far, a close read and backtracing of published

WordPress vulnerabilities, like the mapping performed through the profiling analysis, and a

relationship mapping of the vulnerabilities’ code locations to code focal points.

Finn argues that the “reading of complex computational cultural objects requires its own

effective procedure, one that operates in the space of implementation between critical theory,

computation logic, and cultural understanding” (52). The combination of analysis methods

attempts to operate in this space to locate and reveal the ethical and rhetorical entanglements

within WordPress through its code. The combined analyses are generalizable and can be applied

to other open-source software and platforms. The software analysis presents a cultural and social

overview of the attitudes and history of WordPress, and the critical code analysis, through

multiple diachronic-horizontal and synchronic-vertical approaches—close and far readings—

117

presents a codified layer and foundation through which the software analysis enfolds. Building

on these layers, the processual analysis generates another layer of data that depends on the

cultural and technical foundations as indices to code locations, code changes, points of time, and

socio-cultural events that have influenced code. The focal points in the processual analysis are

potential markers of ethical and rhetorical entanglements that need further refinement by

backtracing and mapping their development within the code. The WordPress vulnerabilities

analysis follows the same approach as locating the focal points except for the primary qualifier.

The focal points identified through the processual analysis are based on the popularity of code

use, and the vulnerability focal points are based on known vulnerabilities. The vulnerabilities

that relate directly to WordPress’ code are recognized intersections of ethical and rhetorical

considerations of potential risk and vulnerability in code, whereas the focal points identified

through the processual analysis are potential intersections. Mapping the two sets of focal points

is the last part of the analysis, which determines and maps any relationship between them based

on locations in the code.

Summary

The project used four modes of inquiry with WordPress to explore the research question

by applying critical code studies methodology. The transdisciplinary methods were designed to

construct layers of data and analysis from code to build into a scaffolding of greater

understanding of the sociocultural influences and technical foundations of WordPress as a digital

object, specifically as software and platform and code and text. The following two chapters

contain WordPress analyses and findings; Chapter 4 is a software analysis, and Chapter 5 is a

critical code analysis.

118

CHAPTER 4: SOFTWARE ANALYSIS AND FINDINGS

Introduction

This chapter outlines some key moments and influences in WordPress’ history. The first

section examines WordPress’ origins and almost two decades of development. The section is

organized by some of the significant influences of WordPress, such as its beginnings, hacker

ethos, jazz aesthetic, commercialization through Automattic, and intellectual property and

licensing. The section also briefly examines three examples of WordPress as a sociotechnical

and commercial platform that expresses values, reviewing two recent events, the “de-

platforming” the “The Conservative Treehouse” and the Automattic Inc. v. Steiner case, as well

as the commercialized platform freedom espoused by Automattic through its premium features.

The chapter’s last section examines WordPress’s vulnerability and security posture by outlining

vulnerability management from the perspective of Automattic and the WordPress community. It

also highlights some controversial changes to WordPress designed to mitigate vulnerability and

the efforts to secure the software’s smooth functioning. The chapter wraps up with a summary of

the main observations.

Origins and Evolution

WordPress requires distinguishing form, function, and organizational entities as a primer.

WordPress often refers to the open-source software and related resources on WordPress.org. The

WordPress Foundation holds the trademark for the WordPress name and logo. As part of the

commercial venture of the company Automattic, WordPress.com hosts a modified version of

WordPress, which offers a range of services and price structures (including free) for people and

119

other commercial ventures to consume. Automattic, a pun on the founder Matt Mullenweg’s

name, is the company that now owns multiple subsidiaries and heavily influences the

functionality and features of WordPress through its services and workforce dedicated to it.

At its simplest, WordPress is “open source software you can use to create a beautiful

website, blog, or app” (WordPress.org, “Blog Tool, Publishing Platform, and CMS”). WordPress

is a feature-rich web content management system that affords the ability to publish through the

web with a relatively low barrier of entry. An exemplar of Web 2.0 tenants, WordPress is rooted

in the 2000’s shifting cultural paradigm towards participation and interaction with the web. In

1999, Darcy Dinucci presciently declared, “this concept of interactive content universally

accessible through a standard interface has proved so successful that a new industry is set on

transforming it, capitalizing on all its powerful possibilities” (32). In 2004, Tim O’Reilly

proclaimed Web 2.0 as a platform with no boundaries but possessing a “gravitational core” (2).

With the 2000’s rise in blogging and Web 2.0, WordPress focused on self-publishing websites

for hobbyists. The WordPress community describes WordPress as a means to democratize

publishing, creating “software designed for everyone, emphasizing accessibility, performance,

security, and ease of use” (WordPress.org, “About Us: Our Mission”). The software has

expanded to become one of the world's most used content management systems for the web due

in part to its extendibility and thriving open-source community. Its use has extended beyond

personal use and blogging to large media companies through WordPress.com and WordPress

VIP services. Corporations and organizations like the New York Times Company, CNN, Forbes,

Routers, Sony, Best Buy, UPS, The Rolling Stones, TechCrunch, Mashable, and Microsoft News

all use WordPress as part of their web publishing and communication efforts (WordPress.com,

120

“Notable WordPress Users”). The open-source community, which has a strong sense of

openness, publicness, and transparency, has heavily influenced WordPress’ evolution. In The

Year Without Pants, Scott Berkun explains that “every discussion WordPress contributors had

was public: every discussion, decision, bug fix, and feature idea was listed out in the open” (34).

Despite the WordPress community’s high level of participation and engagement, the following

sections highlight several other influences on WordPress’ development and the growing tension

and conflicts among the values and principles held throughout the community and the changes to

WordPress as open-source software and commercial platform.

From the Forked Ashes of b2/cafelog

WordPress was reborn from the dormant open-source project b2/cafelog created by

Michel Valdrighi. Valdrighi started developing b2 in June 2001 as an alternative to Blogger and

Greymatter (Milestones: The Story of WordPress 22). Greymatter was an active, free, open-

source blogging software written in Perl that Noah Grey started developing in November 2000.

Evan Williams and Meg Hourihan launched Blogger in August 1999, and it was one of the first

closed-off blogging services that offered a free-tier service, which Google acquired in 2003.

Valdrighi’s decision to use PHP as the primary development language and MySQL as the

database management system for b2 has cemented WordPress’ relationship and development

with these two open-source projects. Although an unexperienced developer, Valdrighi made

decisions besides PHP and MySQL that continue to influence WordPress and its development

history, such as licensing, free distribution, open source, and, according to Valdrighi, “weird”

coding style (Milestones: The Story of WordPress 23). Like blogging software at the time, which

121

were few, Valdrighi’s approach was bottom-up, with new features developed as needed to

improve the convenience for Valdrighi or anyone with less knowledge to publish to the web.

Valdrighi’s coding efforts did not go without criticism. The authors of The Story of

WordPress describe Valdrighi’s coding as a “stream-of-conscious fashion outside best

practices,” which complicates the ease other developers can extend the code, a dogma of the

open source community (26). The code was written with multiple code interdependencies that

were not modularized or organized; changing one line of code would often break unrelated

features. Despite its lack of elegant coding approaches, its simplicity, ease of use, and features

made it well-liked. Reflecting on the b2/cafelog source code, Alex King, an early WordPress

developer and b2 user, commented in an interview that “it was beautiful because it was so

simple…It wasn’t elegant but it was straightforward and accessible” (King). In 2002, Valdrighi

struggled with multiple personal battles, including depression and other health issues, that took

focus away from b2/cafelog. In the same year, Matt Mullenweg and Mike Little installed and

used b2/cafelog for the first time; however, by early 2003, many believed the development of

b2/cafelog had ended, and Valdrighi was not returning to the community.

In January 2003, Mullenweg posted a blog entry, contemplating forking b2/cafelog to

stitch together the “flexibility of MovableType, the parsing of TextPattern, the hackability of b2,

and the ease of setup of Blogger” that someone else could continue if Matt “fell off the face of

the planet” (Mullenweg, “The Blogging Software Dilemma”). François Planque, an ex-Blogger

user who moved to b2/cafelog in December 2002, responded that many forks of the last version

of b2/cafelog, 0.6.1, had already been created, such as b2++; however, Planque decided to create

a b2/cafelog fork that transformed into b2evolution (Planque, “Evolution of B2, 180° from

122

WordPress!”). Forking is an “adjustment in a project’s existence [that] reflects a dynamic shift in

the social makeup of the development community” (Brock 105). Four days before the first

release of WordPress, on May 23, Planque posted a blog entry about the future of WordPress,

b2/cafelog, and b2evolution, remarking, “Michel Valdrighi…posted some news today…after

more than 6 months of silence…regarding the future of b2, it seems that Michel plans to leave it

up to WordPress” (Planque, “News from the B2 World”).

In April 2003, Mullenweg created a new fork of b2, naming it WordPress. The first

significant changeset, changeset 4, changed only one file to alter some of the HTML output to

add more semantic value. As discussed in the “Source Code” sections in the methodology

chapter, many developers and software organizations use software version control and repository

solutions to keep a history of and track all changes made to source files associated with the

software. Changesets are not the same as a changelog. A changelog is usually a list of aggregated

or multiple changesets, whereas a changeset or revision number tracks a file or files and the lines

changed within them. With most major releases of WordPress, support and release

announcements, as well as changelogs, are published. The changelog and support release focus

on more technical and detailed changes, including bug fixes and security patches, while the

release announcement lists more generalized highlights of new features and gives “props” to all

the contributors to the release by listing their names. Many of the first changesets by Mullenweg

and Little were minor, like changeset 4, changing the HTML structures and output to be

XHTML 1.1 compliant (changeset 5), and improving the semantics of the HTML elements used,

replacing b, I, and strike elements with strong, em, and del (changeset 11).

123

On May 27, 2003, after committing 109 changesets, Mullenweg announced the first

release of WordPress, version 0.70. While most releases’ source code is available, the first

release is one of the only non-published versions; however, as one of its features, Mullenweg

stated WordPress is compliant with XHTML 1.1 standards (WordPress.org, “WordPress Now

Available”). XHTML 1.1, at the time, was the recommended standard for what version of

HyperText Markup Language to use when constructing web pages, which normalized the

language’s structure and arrangement as extensible markup language (XML). As Applen and

McDaniel explain, “the semantic power of XML…can be harnessed in order to create more

humanistic and compelling frameworks for information and knowledge exchange” (1). The

World Wide Web Consortium (W3C), the international organization that publishes web

recommendations, touted XHTML as having more extendability and interoperability than other

HyperText Markup Language versions available at the time (W3C, “XHTML 1.0”). Fuller and

Goffey observe that embracing standardizations is often employed and undetected in gray media,

stating that “standardized specification of elements of information considered pertinent for

describing anything…can become an important strategic agent…in the shifting constellations of

power relations” (93–94). Little and Mullenweg’s goal of compliance with web standards and

drive towards improving the semantic HTML structures signal a deliberation of credibility and

seriousness towards the design of WordPress and how contending blogging software and the

web community would perceive it. In Mullenweg’s “State of the Word 2016” address, when

asked about the WordPress community’s lack of participation and membership with W3C,

Mullenweg responded that “W3C…was…very important at the beginning of WordPress…one of

our big differentiators was, we validated, and we produced valid code which very few CMSs did

124

at the time” (Matt Mullenweg). According to the W3C, validation was a sign of professionalism,

adding “professionals…take pride in creating Web content using semantic and well-formed

markup” and a “future-proof quality check” for web browsers and their developers’

interpretation of standards in how browsers would render HTML and XHTML structures and

content (W3C, “Why Validate?”). Validating with XHTML gestured to the community that

WordPress was serious and quality software while attempting to maintain WordPress’ easy-to-

install aesthetic and hacker ethos. Mullenweg and Little were embracing the “weirdness” of

Valdrighi’s stream-of-consciousness code and slowly taming it into the controlled chaos of code,

which continued throughout the releases as more developers joined the WordPress developer

community. Mackenzie observes, at length:

Developers inscribe internal boundaries in the system that derived less from technical,

operational or geographical problems than from a vision of flexibility and configurability

attached to imported protocols, models, and architectures. These imported models,

architectures and protocols, moreover, are subject to fashion, are evaluated as “cool” or

“uncool,” and can therefore be seen as bearers of contemporary collective imaginings of

flexible, configurable and intercommunicating code processes from outside the process—

from the standards committees. (132)

Mackenzie’s general observations about software developers offer insight into Mullenweg and

Little's design intentions early in WordPress development.

125

“My Hacks,” Hacks, Plugins, and Extendibility

WordPress is, as b2/cafelog was, popular for its ease of use and “hackability,” or the

ability for someone to change or add new functionality by adding their files and code. WordPress

design followed a similar software extendibility concept and strategy employed by PHP and

Apache’s web server developers, indicating a design movement towards modularization,

moderation, and middling or graying. Two WordPress features have helped lower the technical

entry point for people to extend the functionality of WordPress, the my-hacks.php file (“My

Hacks”) and the plugin architecture.

In January 2004, the my-hacks option was included with “Miles Davis” (1.0), the first

named release, although its functionality was not announced with the release. Mullenweg

announced this new feature on December 15, offering it as a way for hackers to organize all the

code changes and instructions in one location with the benefit to users to implement the “hack”

by adding the code to the my-hacks.php file and not individual WordPress source code files

(Matt Meullenweg). Upgrading WordPress overwrites many source code files, and any “hacked”

changes to individual files are lost in the process. Turning on this option meant that WordPress

would load any code stored in the my-hacks.php file at the tail end of execution so that the code

could act upon any existing code structures and functionality. The “My Hacks” feature created a

convenient entryway for developers to add personal changes and override almost any aspect of

WordPress, including changing the web interface and dashboard layout, adding new data fields

and manipulating them, translating output to other natural languages, or patching bugs or errors

that were not fixed in the core code.

126

The “My Hacks” feature and the plugin architecture mainly offer the same ability to

extend functionality within WordPress. The WordPress community distinguishes plugins as

separate from the core code of WordPress, stating that the core “provides the primary

functionality for publishing content and managing users” while plugins “extend the

functionality…enhance…or add new features” to the core (WordPress.org, “Managing Plugins”).

This distinction has blurred over WordPress’ evolution, with functionality and features shifting

in and out of WordPress’ core and plugins. For example, the now-excommunicated Press This

plugin was once part of WordPress’ core code. Furthermore, some plugins dramatically supplant

WordPress’ primary functionality, compressing and backgrounding its core into the gray middle,

such as the Yoast SEO plugin, which focuses on search engine optimization of content, and the

WooCommerce plugin, which is a popular e-commerce solution discussed further below. The

WordPress community curates many plugins for compatibility, security, and popularity by

tracking the activations and downloads. Of the 60,251 plugins tracked by the WordPress

community, many popular plugins have an excess of one million active installations

(WordPress.org, “WordPress Plugins”). Of the ten plugins listed as having more than five

million active installations, Automattic develops three of them, Jetpack, Akismet, and

WooCommerce (WordPress.org, “WordPress Plugins”). WordPress’ formalization of plugins and

transition away from the “My Hacks” feature marked a shift of control. People no longer had to

“hack” but develop plugins using new control structures framed by the many hooks into all of

WordPress’ core functionality that such an architecture requires.

The plugin architecture was introduced as part of the “Charles Mingus” (1.2) release in

2004, which added the control structures for WordPress to manage and formalize the “hacks,” an

127

underlying understated impellent towards formalizing code around the larger mass and core of

the WordPress code. Brazell describes the plugin architecture as WordPress’ “first game-

changing release” in making it more accommodating and flexible. The gesture of the plugins’

architecture created a more recognizable affordance into how users, not developers, could “hack”

their desires and will into their instance of WordPress in a controlled and constrained way. Alex

King, who contributed significantly to the plugin architecture, saw it as democratizing, recalling

in a 2013 interview: “I think it made the customization level, or the ability to customize a site,

much more accessible to people…the hacks were things that developers or tinkerers could do”

(King). Nevertheless, “My Hacks” remains in the most current version of WordPress as an

unadvertised, more free-range, and unrestricted functionality that, after the insertion of the plugin

architecture, slowly faded from the attention of the WordPress community for the most part but

not without some moments of disruption and controversy.

In the discussion about some challenges and progress about Calypso, a new

WordPress.com software interface, Mullenweg, in the “State of the Word 2016” address, shared

that the code to support “My Hacks” was still in WordPress (Matt Mullenweg). Mullenweg

explained, “when WordPress started…you were literally manually patching things…WordPress’

big innovation was putting all those patches in a single file called my-hacks...they are the plugin

interface that we know and love today” (Matt Mullenweg). Between the development of “Billie

Holiday” (4.3) and “Clifford Brown” (4.4), an enhancement ticket (33741) was submitted on

September 15, 2015, to remove the remaining references to my-hacks within the source code

(WordPress.org, “Remove References to My-Hacks.Php and the Hack_file Option”). As part of

the ticket rationale, the description noted that the WordPress documentation stated that my-hacks

128

was no longer supported since “Chet Baker” (2.8) when the “My Hacks” option from

WordPress’ admin settings was removed (WordPress.org, “Remove References to My-

Hacks.Php and the Hack_file Option”). The documentation referenced in the ticket has since

changed; however, the 2015 version of the documentation retained a section on how to use the

my-hacks, despite being “not recommended…and seldom necessary” since “Billy Strayhorn”

(1.5) release (WordPress.org, Hacking WordPress « WordPress Codex). As part of the “Billy

Strayhorn” release, the internal API was expanded, allowing plugin developers to “use by

hundreds of ‘hooks’ into the very deepest parts of WordPress [and] plugins…[to] integrate with

the rest of the administration interface easily” (WordPress.org, “Announcing WordPress 1.5”).

The initial ticket submission and subsequent developer’s post, titled “my-hacks.php no longer

supported,” generated 58 comments and changes, as well as two changesets to the source code.

Finally, changeset 34291, added on September 18, 2015, removed the lasting my-hacks

code references, and changeset 35688, added on November 18, 2015, reverted the first

changeset, placing the code back into the source code. The comments ranged from technical

concerns about the removal, surprise that the feature existed, nostalgia over its early use,

alternatives, including creating a plugin to read the my-hacks.php file, to the importance of

deprecating functionality without better warning than ten years (WordPress.org, “Remove

References to My-Hacks.Php and the Hack_file Option”; Jorbin). Ultimately, the ticket was

closed with a “wontfix” status on November 18, 2015. Aaron Jorbin, a core committer and the

person assigned to the ticket, stated, about the ticket resolution, “I really want to kill my-hacks. I

really want to show that WordPress does actually revert or remove deprecated things. Even more

so, I don’t want to break sites” and included a YouTube link to Metallica’s “Sad but True,” which

129

includes such lyrics as “I’m your life…I’m the one who takes you there…I’m forever there”

(WordPress.org, “Remove References to My-Hacks.Php and the Hack_file Option”). The

oscillation from user-focused to developer-focused, from optimized and modular to hacked and

bottom down, from nostalgia to leanness, and from control to freedom throughout the changes of

the “My Hacks” feature exhibits some of the influences and power dynamics shaping WordPress

as software. By remaining in the software, “My Hacks” offers a middle-ground between worlds.

It offers a form of wistfulness and longing towards the early days of the borderlands of “hacker”

and professional, entrepreneurial spirit and controlled business decisions, and the discovery of

new lands and claiming it as territory that may, indeed, be characteristic of an open source

project running parallel with a capital venture that relies on the same sources.

“capital_P_dangit”

As a goal for 2009, Mullenweg stated he wanted to “Get people to capitalize WordPress

correctly” (“Twenty-Five”). With the release of “Thelonious Monk” (3.0) on June 17, 2010, a

few lines of new source code created disagreement within the WordPress community of

developers and users. The function “capital_P_dangit” was introduced, as Matt Cohen observed,

“to be an attempt at brand continuity…[which] to the founders and team, [is] a seemingly

important piece of the brand’s identity and status” (Cohen). For anyone who upgraded to

“Thelonious Monk,” the new code changed existing WordPress content as the function was

called during the processing to display any blog post content or title, comment, or widget by

default.

The introduction of this function into the core of “Thelonious Monk” produced enormous

and extreme criticism, unlike its introduction on WordPress.com, which had occurred over two

130

years earlier. Numerous bug and feature tickets and negative comments were generated across

the WordPress community, calling it a bug and defect and requesting its removal due to breaking

case-sensitive content. One particular bug ticket (#13971), submitted the day after “Thelonius’”

release, generated 113 changes and comments to its status, with such extreme views such as

suggesting the need to fork WordPress to avoid code introductions into WordPress’ core code,

warnings of racism, and claims of censorship and the trampling of rights (WordPress.org,

“‘Wordpress’ Being Turned into CamelCase ‘WordPress’ Breaks URLs”). The debate ultimately

led to changes that provided a “more judicious Wordpress-to-WordPress correction,” which was

added for release with “Thelonius Monk” (3.0.1) on July 29, 2010 (WordPress.org, “Changeset

15377”). From a community-developer view, the committing of changeset 15377 created a

settling of discourse; however, as “Thelonius Monk” became a more predominant WordPress

version, the larger community recognized the change as more than trivial.

The community noticed the introduction and capitalization for more than a changing of a

“P” in both “Thelonius” and WordPress.com. On January 29, 2009, Brian Carnell criticized the

changes through a blog post, “Do NOT Use WordPress.com to Host Your Blog.” In the post,

Carnell acknowledges the spelling from a trademark perspective but finds fault in how

Automattic forces content to fit its views (Carnell). Carnell states that the change, made without

much discussion from the community, “suggests a culture at the company that you certainly

don’t want to trust your data with” (Carnell). Furthermore, a blogger by the name of Sordello

posted a reaction, “Code isn’t poetry – ou ‘Do que eu não gosto do Wordpress,’” on a now-

defunct website on March 3, 2009, which asserts the “fascistóide [fascist]” action of changing

the capitalization demonstrates disrespect to the users and opens the motives of Mullenweg to

131

question (Sordello). Despite the community’s initial disapproval and “Thelonius’” initial release

disrupting and breaking content, the function persists as a form of passive-aggressive assertion of

will towards what might be considered trivial protection of aesthetic, capitalization, or trademark

protection no matter the unanticipated consequences. Drawing from economics and sociology,

Hosanagar terms “unanticipated consequences” as unforeseen benefits, perverse results, and

unexpected drawbacks (45). Unlike the nostalgic concerns of breaking backward compatibility

with removing “My Hacks,” the capitalization breaking feature was defended and upheld to

compel people to a specific view. The assertion of view required people using WordPress to

rename image files to comply with the automatic capitalization transformation or “hack” their

instance of WordPress to remove the applied default filters. WordPress.com users have no

alternatives except advanced HTML entity techniques that bypass the simple replacement string

check. The design decisions placed the WordPress contributor community at odds with the

broader WordPress community, farther from the machine and core.

WordPress.org and the WordPress Community

The community is organized into many teams based on the focus areas of the software.

While the people using WordPress for publishing make up the largest community, under the

make.wordpress.org website, focusing on development, the community identifies the following

teams: core, design, mobile, accessibility, polyglots, support, community, training, meta,

documentation, plugins, themes, test, TV, command line (CLI), hosting, marketing, Tide, which

focuses on automated tests run against every plugin, and theme (WordPress.org, “Make

WordPress”). There is no specific team focused on security by direct name. The representatives

from each team report weekly updates via Makes’ project-wide blog for all the internal-focused

132

activities, distinguishing itself from the WordPress News website that focuses on public-facing

and external communication.

WordPress.org and its subsites situate themselves as the WordPress community. Each

team offers ways for people to engage and communicate with the team. Anyone can participate

and attend team meetings. In describing the success of the community, Brazell identifies its

diversity as what “makes the WordPress community one of the strongest and most vibrant

communities on the Web” (6). In Milestones, the authors explain that “[t]he community is the

garden in which the software grows and matures. Community members submit patches, fix

issues, support users, and write documentation to help a free software project flourish” (30).

Although not a strong indicator of engagement, the number of subscribers to each team’s blog

surpasses the number of Automattic’s employees, which presents an extension of interest and

engagement well beyond Automattic’s self-interests toward the well-being of WordPress source

code and its surrounding support. Brazell observes that the WordPress Codex, the online manual

powered by the open-source software MediaWiki, is the “most thorough, organized online

documentation for WordPress..maintained by the WordPress community” (58). The Codex

Community Portal offers a view of the volume of participation in the wiki documentation, citing

4,650 articles, 24,917 pages, 173,873 page edits, and 177,931 registered users (WordPress.org,

“Codex: Community Portal”). The quantity and quality of contributions from the community

make evident the level of popularity and passion for WordPress, which, while some actions and

decisions from Automattic create tension and disagreement within the community, the

community seemingly continues to grow parallel to the size of Automattic and the code base.

133

Automattic and WordPress.com

Automattic is a privately held, for-profit, highly distributed company founded in 2005. In

Milestones, the authors state that its formation was to cover the costs and provide a business

structure around WordPress.com and Akismet, a spam protection plugin that requires a

subscription for commercial use (118). Automattic started with four employees who were all

previously heavily involved with the WordPress developer community. As of 2020, Automattic

declares it has 1,302 employees or Automatticians who speak 95 different languages and live and

work across 77 countries (“About Us”). On Automattic’s “About Us” webpage, the company

likens itself to be unlike other well-known technology companies, such as Google, Amazon,

Twitter, and Facebook. Automattic displays comparisons of the number of web visitors (to

WordPress.com) and the number of employees, showing Automattic’s low employee-to-visit

ratio.

Throughout its existence, Automattic has mirrored much of the behavior and values

exhibited in the WordPress community. Automattic states, “we’re committed to diversity, equity,

and inclusion, and our common goal is to democratize publishing so that anyone with a story can

tell it, regardless of income, gender, politics, language, or where they live in the world” (“About

Us”). Openness, flexibility, autonomy, freedom, and focus on function and progress remain

primarily embedded within the company’s culture. Berkun explains that in 2010, the

organizational structure was horizontal, with all employees reporting to the CEO and founder,

Matt Mullenweg. Berkun, who worked at Automattic as employee #58 for two years, was hired

by trial or audition, as all Automattic employees were (9). The company does not offer

traditional interviews as the sole means of hire. Automattic states that all jobs with the company

134

involve a project or list of objectives to complete as part of the potential employee’s assessment,

which is anywhere from 25-40 hours to four to five weeks, depending on the role being pursued

(“What to Expect During a Trial”).

In the 2014 Harvard Business Review article, “The CEO of Automattic on Holding

"Auditions" to Build a Strong Team,” Mullenweg explains that the aim of the project or audition

is to provide candidates “genuine job responsibilities and relationships…[so Automattic] can hire

smarter, retain strong employees longer, and reduce terminations and turnover” (“The CEO of

Automattic on Holding ‘Auditions’ to Build a Strong Team.” 39). For Mullenweg, the emphasis

is on what an employee creates and not how a person compares to the norms of a “good

employee” (“The CEO of Automattic on Holding ‘Auditions’ to Build a Strong Team.” 40).

Mullenweg calculates that a third of work time is consumed by reviewing résumés and

personally interviewing most applicants, noting, as a university dropout, he does not care much

about the education level of the applicant (Mullenweg, “The CEO of Automattic on Holding

‘Auditions’ to Build a Strong Team.” 41). In Alessandra Vecchi’s work on examining global

work arrangements in the virtual enterprise, Vecchi concludes that “Automattic implements an

effective retention whereby thanks to employees’ engagement with their work and the

organization, they are likely to have greater job satisfaction, have a positive opinion of their

employer, are less likely to voluntarily leave, have greater customer loyalty, and have high levels

of performance” (326). While having a high retention rate, Automattic has also gone through

multiple rounds of investment funding, as well as investments and acquisitions of other firms,

building its workforce and services around WordPress.

135

Automattic has been involved with multiple financial transactions over the years,

including multiple investing rounds, investments, acquisitions, and one acquisition offer.

Crunchbase reports Automattic has had 22 investors, with Manhattan Venture Partners, Insight

Partners, and Salesforce Ventures being the latest in Series D funding (Crunchbase). Automattic

has made 20 acquisitions, notably Zero BS CRM (now Jetpack CRM), Code for the People (now

part of VIP or Enterprise WordPress.com), Woo (creators of WooCommerce, a popular e-

commerce plugin), Atavist (multimedia publishing platform), and Tumblr for $3 million, in 2019,

as reported by Dan Primack of Axios via Twitter (Primack). Sarah Krouse of the Wall Street

Journal reported that Mullengweg is a long-time user of Tumblr and that Automattic has no

plans to change the ban on adult content, which its previous owner Verizon placed on it

(Krouse). Two known investments Automattic has made are with WordPress Engine and with

New Vector. In November 2011, Automattic invested $4.6 million in WordPress Engine, a

company offering similar services to WordPress.com and VIP WordPress.com that reports 66%

of its leadership are women, 33% of its employees are people of color, and 8% of its employees

identify as LGBTQ (Crunchbase; WP Engine). In May 2020, Automattic invested $4.6 million in

New Vector, which has developed an open, decentralized communication ecosystem and set of

standards called Matrix, as well as a Slack rival, called Riot that the French government and

German military use (Lomas). In October 2007, after Automattic had acquired Gravatar, an

avatar and profile service, Michael Arrington reported that Automattic declined a $200 million

acquisition offer, which included $100 million in cash (Arrington). There was speculation that

Automattic might have been holding off for a higher valuation or considering going public. In

“The History of WordPress, its Ecosystem and Community,” the authors report that the $160

136

million investment from 2014 valued Automattic at over $1 billion (Kinsta). According to

TechCrunch, the Salesforce Ventures investment valuated Automattic at $3 billion when it took

place in September 2019, adding that from 2014 to 2019, WordPress went from running 22% of

the world's top 10 million websites to 34% (Dillet).

Automattic has multiple revenue sources, most apparent in its relationship to WordPress.

Berkun identifies four revenue streams for Automattic: upgrades (more storage, domains,

themes), advertising (all the WordPress.com blog traffic is approximately fifteenth highest

though “less than 1 percent” of visited pages have ads), WordPress VIP services (premier

enterprise support), and partnerships (186–87). Additional revenue sources are from the premium

services offered through acquired plugins, like WooCommerce and JetPack. Mullenweg

announced WordPress VIP on September 25, 2006, which initially required an application where

not everyone who applied would be accepted to use (and pay for) the premium services

(Mullenweg, “WordPress.Com VIP”). Currently, the pricing for WordPress VIP clearly creates a

demarcation for hobbyists, offering plans starting at $25,000 a year (WordPress.com,

“WordPress Cost | WordPress Price | Compare Our Plans”). Many companies using WordPress

are VIP partners, such as People, Microsoft, Time, and Facebook. The WordPress VIP services

offer a more evident pursuit of revenue generation than through earlier designs of

WordPress.com, which, in 2010, Berkun observed were less noticeable, stating the portal to the

upgrade store is a “small text button…tucked inside a long list on the left edge of the dashboard”

(187). Among the revenue streams, Automattic seems to focus on higher dollar revenue streams

and recurring subscription-based services while managing to balance the values and voices of the

WordPress open-source community and customers of WordPress.com. Automattic further

137

stabilizes the balance by creating a walled garden through WordPress.com. The software running

WordPress.com and WordPress VIP is not the same WordPress software available for download.

The shadows of software as a service darken the ability to see the differences between the

software; however, it is evident that one of Automattic’s fundamental focuses is the well-being

of WordPress core and its perceptions as an open-source platform. The greater WordPress

community and the surrounding multisided market help sustain Automattic and its position

toward open-source software. Automattic remains a “platform company [that] is a broker,

profiting by bringing together sellers and buyers, producers and audiences, or those in charge of

tasks those with the necessary skills to accomplish them” (Gillespie, Custodians of the Internet

21). While the division of control and freedom is more evident between WordPress.com and

WordPress as open-source software, the shared code architecture frames a larger, more subtle

sociotechnical platform across all instances of WordPress, regardless of hosting or the hacks,

plugins, or themes applied to an instance, that expresses influence and yields power. While not a

balanced power dynamic, Automattic’s intimate connection to WordPress obliges Automattic to

recognize the power of WordPress as a platform.

WordPress as Platform

WordPress was called a platform as early as 2006 when it was seen chiefly as blogging

software (Battelle). Similarly, the WordPress community and Automattic situate WordPress as a

platform, calling it the “platform of choice for over 43% of all sites across the web”

(WordPress.org, “About Us: Our Mission”). Furthermore, the WordPress community arranges

WordPress plugins and significant features as platforms within their own merits, which further

substantiates plugins' ability to overtake or invert roles with WordPress’ core. The community

138

recently described the newest iteration of its media and content editor, Gutenberg, as a

“development platform…[that] is not only building a better editor for WordPress but also

creating a platform to build upon” (WordPress.org, “Gutenberg as a Development Platform |

Block Editor Handbook”). Like Matryoshka dolls, “platforms contain other platforms, just as

McLuhan’s notion of a medium contains other media” (Bogost and Montfort, “Platform Studies”

4). The “infrastructuralising” or framing of platforms is a strategy employed to create

interdependency and blurring or graying of the platform to offer freedom and creativity for the

dominant platform within a digital ecosystem (de Reuver et al. 130). The walled garden

differences between WordPress.com and WordPress as open-source software further complicate

the overarching WordPress platform. The actions taken by Automattic on its hosted

WordPress.com illustrate a break in how WordPress as a platform expresses its social and

cultural values.

WordPress.com and WordPress, as open-source software, have a complex duality of

platform characteristics and behaviors. Automattic requires additional terms of use and

agreement about content much different from the open-source software version. While the basic

publishing functionality exists between both, the published content receives stark differences in

treatment (except with the capitalization of “WordPress”). Gillespie explains that platforms must

moderate to protect people or groups of people from the “offensive, vile, or illegal” and, in doing

so, dispels the potent fantasy of a “truly ‘open’ platform…resonating with deep utopian notions

of community and democracy” (Gillespie, Custodians of the Internet 5). WordPress, as open-

source software, has no terms or conditions on published content, and it is mainly perceived as

an “open, impartial, and noninterventionist” platform, which allows it to slip below view and

139

into the gray space of media (Gillespie, Custodians of the Internet 7). While Automattic is

motivated for legal reasons to have additional terms for websites hosted on WordPress.com, it is

also motivated to distance itself from WordPress and its perceived view as an open and inviting

platform. The following three examples illustrate WordPress’ complex duality and tensions as a

platform.

“De-platforming” the “The Conservative Treehouse”

Automattic was recently accused of de-platforming “The Conservative Treehouse,”

which CBS identifies as a right-wing blog (Quinn). In The WordPress Tavern, a website

dedicated to WordPress, Sarah Gooding reports that multiple sources have examined the blog

and determined it primarily publishes misinformation (Gooding). A segment on One America

News Network aired based on a blog post from “The Conservative Treehouse” that alleged a 75-

year-old man, who had been filmed being pushed down by Buffalo police officers, was an Antifa

operative (Oh). Gooding reports that Automattic’s explanation to “The Conservative Treehouse”

was a violation of terms of service, including prohibited content for Automattic Ads Terms of

Service and the user guidelines that prohibit calls of violence (Gooding). Lastly, Gooding

explains that the prominent blogger of “The Conservative Treehouse” believes the notification

from Automattic was prompted by a post about COVID-19, which ended with an image of a

knife with “resist” superimposed on it (Gooding). One blog post in “The Conservative

TreeHouse” that announced the “de-platforming” starts with, “the big tech control mechanism to

shut down speech & assembly has now arrived on our doorstep,” which offers a glance into the

rhetoric used throughout the blog (Sundance). Automattic’s actions seem counter to the

democratization of publishing the WordPress community espouses, yet Automattic separates

140

itself from the WordPress community in this way. Automattic is about “making the web a better

place” (Automattic, “About Us”), which presents an ideology and subjectivity quite differently

than the democratization of publishing. The actions allow the disassociation of the blog for

Automattic while allowing the website to remain part of the larger WordPress community

through other hosting services, which appears to be the case at the time of this writing. The

operators of “The Conservative Treehouse” may be ironically unaware of the cognitive

dissonance of continuing to use software so heavily influenced and maintained by the

corporation that “de-platformed” them. The continuation of use also demonstrates the power of

WordPress as a platform and the difficulty in genuine disengagement from it, whether no longer

using it for personal use or navigating to a website currently most likely uses it.

Automattic Inc. v. Steiner

Automattic has seldom sued someone. Automattic and its customer Oliver Hothman, a

British blogger and journalist, sued the representative of a British organization called Straight

Pride UK. The case involved Hothman publishing content collected from an interview with

Straight Pride UK, which the court considered to be prepared press releases for Hothman to use.

After Hothman published the article, the organization sent a takedown notice under the Digital

Millennium Copyright Act (DMCA) to Automattic, which initially acted on the request by

temporarily making it inaccessible while it reviewed the website. After Hothman published

additional content, the organization sent new takedown notices. Automattic and Hothman sued

Nick Steiner, the representative for the organization, as the legal team was able to successfully

argue that creating an account and signing into WordPress.com meant Steiner had agreed to the

terms of having an account, which included a venue selection clause that designated California.

141

Automattic sued under section 512(f) or the “Safe Harbor” provision of the DMCA, which

includes the provision that persons making false copyright claims can be held liable for damages

and associated legal fees. In The Guardian, Alex Hern’s article “WordPress Pulls Interview with

Anti-gay Group Straight Pride UK,” Paul Sieminiski, Automattic’s general counsel, is quoted as

stating, "we think this was a case of abuse of the DMCA and we don't think that taking it down

was the right result. It's censorship using the DMCA" (Hern). Automattic won the case by

default, as the defendant was a no-show. In a blog entry on the Technology & Marketing Law

Blog, Eric Goldman remarks on the difficulty of winning a case by the provision, citing one other

case, and, while the case is unlikely helpful for setting precedence due to a default judgment and

probability of collecting damages, the case still has merit towards meaningful copyright reform

(Goldman). The court awarded $25,084, with $960 awarded to Hothman, $1,860 awarded to

Automattic, and the remaining $22,264 awarded toward attorney fees.

Automattic’s actions showcase a type of behavior and an embraced set of values to

position itself as an organization. In their article “The Nature and Management of Ethical

Corporate Identity,” the authors describe corporate identity as “the signature that runs through

the core of all a corporation does and communicates” (Balmer et al. 8). In this sense, Automattic

appears to create a corporate identity that transcends the company and its products, a form of

virtue ethics embedded within its actions. Automattic generates a subtle protective stance around

its brand, community, and company beyond the trappings of technology and commercial

services. The company defends its customers and itself from perceived threats to the corporate

ideology while still asserting control over the capitalizing opportunities and espousing freedom

to the larger WordPress community.

142

Platform of Commodified Freedom and Control

Automattic and other enterprising organizations employ an infrastructuralizing or

middling strategy to create a quiet interdependence and blurring between the notion of free and

freedom to create and publish content and commodification of the control of content and

interaction with it. While the two previous examples highlight some differences between the

Automattic’s positioning between WordPress.com and WordPress as open-source software,

Automattic follows the same middling strategy for both platforms, capitalizing on plugins and

premium services that extend outwardly from its open-source core. Furthermore, Automattic

acquires and creates plugins, like Jetpack and Akismet, that act against the publishing affordance

WordPress exhibits to protect a site’s content. Jetpack, Akismet, and WordFence, another

popular security plugin, boast millions of installations (WordPress.org, “WordPress Plugins”).

While these plugins offer protection from some forms of malevolent behavior, their necessity

highlights the tension between the freedom of expression and control and protection (and efforts)

to maintain the integrity and aesthetic of the expression as content. All three plugins offer tiered

premium services for additional protection and quicker response to preventing the unwanted

engagement, eclipsing Brown’s notion of software’s hospitality. Gillespie reminds us, at length:

 “A platform is a product of the company that runs it, so there is a certain logic that it

should be the company’s values and interests that determine what is acceptable and what

should be removed…[and] must find a way to make a profit, reassure advertisers, and

honor an international spectrum of laws. For social media platforms, what ends up

standing as “our values” is not some moral core that exists beneath these many competing

143

pressures. It is whatever solution can resolve those pressures—perhaps presented in a

language of “the right thing to do” (Custodians of the Internet 12).

Automattic and its WordPress.com platform approach this solution by ungluing and decoupling

the sense of democratization and freedom from WordPress as an open-source software.

WordPress as open-source software remains free and democratizing, to a degree, while its

formalized extendibility through plugins and WordPress.com-hosted version create a sharp

divide on its perceived motivations, intentions, and underlying moral core. In effect, the platform

benefits from a view of democratic and openness that is traded-off by indirect and unrealized

additional efforts or costs to control content, especially in mass scale, in ways that are

intentionally not designed within WordPress’ core to commodify and capitalized on the value of

these publishing affordances. In the next chapter, WordPress is analyzed through its code for

further indications of this tension and its influence on the design of the code. As a platform,

WordPress arouses an impression of empowerment toward web publishing while trivializing the

efforts to maintain and control the content and capitalizing on WordPress’ standardizing core

extendibility through plugins to blend and blur premium services behind the transparency of the

open-source ethos.

WordPress Foundation

According to Milestones, the WordPress Foundation started in January 2010 and had the

WordPress trademarks transferred from Automattic to it in September (217). Automattic initially

registered the trademarks in 2006. As part of the agreement, the foundation granted Automattic

use of WordPress.com, and Mullenweg was granted WordPress.org and WordPress.net

(Milestones: The Story of WordPress 218). The WordPress Foundation originated as a

144

mechanism to separate and protect the WordPress trademark from Automattic or any other for-

profit company. In response to trademarks moving to the foundation, Mullenweg declared that

the “most central piece of WordPress’ identity, its name, is now fully independent from any

company” (“A New Home for the WordPress Trademark”). According to the foundation, part of

its mission is to protect “WordPress, WordCamp, and other related trademarks” (WordPress

Foundation). As part of its actions to help protect the WordPress trademark, multiple domains

have been registered and redirected to WordPress.com, WordPress.net, or language- or country-

specific versions of the website. One noticeable pair of exceptions are WordPress.uk and

WordPress.co.uk do not redirect to WordPress.org or WordPress.com; these domains are run by

WordPress’ co-founder Mike Little, as perhaps a lasting vestige of involvement with the

software.

The foundation must serve, by law, other purposes than holding trademarks. The

foundation states its purpose is to “further the mission of the WordPress open source project,”

and it “pursues a charter to educate the public about WordPress and related open source

software” (WordPress Foundation). In a blog entry, Mullenweg envisioned the foundation as “a

structure where for-profit, non-profit, and not-just-for-profit could coexist and balance each other

out” (“A New Home for the WordPress Trademark”). Non-profit organizations require having

more purpose than holding a trademark, so initially, all WordCamp activities were moved into

and managed by the foundation. WordCamps are educational conferences about all aspects of

WordPress. The annual keynote address, “State of the Word,” is coordinated by WordCamp, and

Mullenweg usually gives them at the primary WordCamp US event. The “State of the Word”

addresses are recorded and published on WordPress.tv. From the “State of the Word 2016”

145

address, Mullenweg announced that the WordPress Foundation brought in $4.3 million, mainly

from WordCampus and sponsorship (Matt Mullenweg). He also announced that WordCamp

operations would be moved to a new subsidiary of the WordPress Foundation as a public benefit

corporation called WordPress Community Support (Matt Mullenweg). Mullenweg’s

announcement provided a way for the foundation to be further protected from legal issues

involving WordCamps and to remain relatively low-cost to maintain. With WordPress

Community Support taking ownership of the organization and logistics of WordCamps, the

foundation changed its focus. In the same address, Mullenweg announced the foundation would

be “doing major-to-us grants to hack the hood, Internet Archive, and Black Girls Code…[as well

as] run some educational workshops, in developing countries, [and] promote hackathons to help

build websites for nonprofits and NGOs” (Matt Mullenweg).

Poetry and All That Jazz

The WordPress developer community has created a sense of appreciation towards the

music and creative arts by naming major releases after jazz musicians, due to the tradition started

by Mullenweg, and maintaining the tagline and motto, “Code is Poetry” (Brazell 5). As well as

being a software developer, Mullenweg played the jazz saxophone in high school (Berkun 31).

Perhaps, Mullenweg was aware and equally moved by Michel Valdrighi’s lyrical naming

inspiration of b2/cafelog with Mullenweg’s decision to dedicate each major release of

WordPress after a jazz musician. Valdrighi explained, during a speech he gave at WorldCamp

Paris 2011, that b2/cafelog was a permutation of “blog” and the musical group Blur’s “Song 2,”

which he listened to regularly while developing the software (Les origines de WordPress). The

146

musical influence and gestures of poetry extend beyond WordPress’ major releases and are an

embedded theme in the design and development of WordPress and its plugins.

The first WordPress plugin Hello Dolly was developed by Mullenweg and included in the

release of “Mingus” (1.2). As part of the plugin's description, Mullenweg declared, “this is not

just a plugin, it symbolizes the hope and enthusiasm of an entire generation summed up in two

words sung most famously by Louis Armstrong” (“Hello Dolly”). The plugin, when activated,

displays lyrics to the song in the administrator dashboard (see Figure 2).

Figure 2: WordPress Dashboard Page with the Hello Dolly Plugin

The plugin remains bundled with every release of WordPress. Despite Mullengweg’s

positive sentiment and grand enthusiastic gesturing and the plugin's utilitarian example as a

plugin primer for new developers, the plugin has a three-star rating with 122 five stars and 128

one stars, with some recent one-star reviews stating, “Serves nothing. Should in no way shape or

form be bundled with WordPress;” “Grow up and drop this useless plugin from preinstallation;”

and “Useless and pretentious. No reason for this to be in the defaults” (Mullenweg, “Hello

Dolly”). The inclusion of Hello Dolly and “My Hacks” offer two mainstays to the early passion,

nostalgia, and sense of community it most certainly creates for the contributors who began

WordPress.

In the “Strayhorn” (1.5) release announcement from February 2005, Mullenweg offered

some insight into the “code is poetry” motto. In the announcement, Mullenweg stated, at length:

147

We made significant improvements and optimizations to core pieces of WordPress code,

following our ‘Code is Poetry’ mantra...if you remove the extra templates we ship with

now, this release of WordPress is actually smaller than 1.2, despite adding dozens of new

features. Our testing team gave the code a thorough workout too — hundreds and

hundreds of bugs have been fixed since 1.2.2. WordPress is now leaner, faster, and more

secure then ever before, and we’re committed to continuing that trend. (WordPress.org,

“Announcing WordPress 1.5”)

For Mullenweg, the poetic movements within the code are removing the bugs and adding new

features, which perhaps lead to an overall more enhanced experience, like how the brain

responds to music. In “A Poetics of Computation: Critical Approaches to Reading and Writing

with Data,” Monica Monin and Astrid Lorange observe that “the phrase ‘code is poetry’ figures

as a kind of truism of programming; used by WordPress,..as a tagline in order to emphasi[z]e the

flexible back-end of its blogging software” (27). For Mullenweg, the WordPress source code

might be seen as one large jazz number that continues to be polished through improvising new

features and correcting the parts that do not flow, equating the code more to a musical expression

than to the execution of software.

As a conclusion to the “State of the Word 2016” address, Mullenweg read Elizabeth

Alexander’s poem, “Praise Song for the Day, ” which Alexander first recited at Barack Obama’s

Presidential Inauguration (Alexander). Mullenweg suggested it was related to the topic and

aligned with the “code is poetry” aesthetic (Matt Mullenweg). Through the reading of the poem,

perhaps WordPress is a means of expression where “[w]e encounter each other in words, words /

spiny or smooth, whispered or declaimed, words to consider, reconsider [where] anything can be

148

made, any sentence begun” (Alexander). However, Sordello criticizes “code is poetry” and

asserts code is functional and concise, stating “programming, as far as I know, has a function

which is to produce software that is functional and lean – lean because it has to weigh as little as

possible on any computer that runs it” (Sordello). The following chapter offers additional critical

code analysis through vulnerability, processual, and cultural focal points, like Hello Dolly and

the “capital_P_dangit” function.

Open Source, Copyright, and Licensing

Open source is a critical aspect of the ethos and success of WordPress. Brazell declares,

“open source is the cornerstone of WordPress and the WordPress community” (18). The

WordPress Foundation’s website cites the Free Software Foundation, Mozilla Foundation, and

Public Code as three other organizations that inspire the foundation's mission and purpose

(WordPress Foundation). The Open Source Initiative, which has the motto “Guaranteeing the ‘our’

in source…,” announced on October 6, 2014, that the WordPress Foundation joined the OSI as

an affiliate member (Opensource.org). The open-source view also extends into Automattic, stating

that most of its work is available under the General Public License (Automattic, “About Us”).

Berkun describes the transparency effect open-source software promises, stating, “people

behaved knowing that their actions would be visible to future contributors. And since there

would be no face-to-face meetings, how well you expressed yourself in words was critical to

earning a good reputation” (34). Fuller places free and open source software into the broader

term social software, which is “directly born, changed, and developed as the result of an ongoing

sociability between users and programmers in which demands are made on the practices of

coding that exceed their easy fit into standardized social relations” (Behind the Blip 24). As

149

open-source software, WordPress created a sense of transparency and connection for the

WordPress community and Automattic, which greatly influenced behaviors and approaches

within code and the conversations surrounding it, such as its copyright and licensing.

WordPress inherited the licensing set forth by Michel Valdrighi’s b2/cafelog. Initially,

Valdrighi distributed the software with a personal copyright notice, which, after a copyright

dispute, decided on GNU’s General Public License Version 2(GPLv2) (Milestones: The Story of

WordPress 27). One huge draw for Mullenweg to b2/cafelog, Berkun adds, was that Mullenweg

had “ethical differences with the makers of all competing programs [in that] they had restrictions

for what users could do with software, and that seemed wrong to Mullenweg” (Berkun 30). The

WordPress community and Automattic’s use of GPL have not gone without some level of

controversy, which the WordPress GNU Public license page alludes to regarding “some legal

grey area regarding what is considered a derivative work” (WordPress.org, “The GNU Public

License”).

During the development of WordPress, themes became part of the GPL debate. Themes

are a revenue stream for designers creating a premium or enterprise theme, which went against

GPL and what Mullenweg considered the spirit of GPL, which was about user empowerment and

the four freedoms the WordPress community asserts (to use, distribute, modify, and distribute

modifications) (Milestones: The Story of WordPress 250). Mullenweg requested that the

Software Freedom Law Center offer an opinion on themes to help quell the debate; however, the

opinion received from the center split themes into potentially two different licensing (Milestones:

The Story of WordPress 201–02). The center considered the HTML, CSS, and any images or

other non-PHP to be separate, which could then be licensed however the creator wanted because

150

it was not considered a derivative of WordPress, whereas the PHP code was considered a

derivative. The WordPress GNU Public license page ends with a more concrete approach

towards the licensing ambiguity by stating, “we feel strongly that plugins and themes are

derivative work and thus inherit the GPL license. If you disagree, you might want to consider a

non-GPL platform” (WordPress.org, “The GNU Public License”). Today, themes and plugins,

including those created by Automattic, offer premium or commercial services bundled and

integrated with them, which extend functionality and capability at seemingly arbitrary levels of

distinction of what constitutes premium services.

WordPress Vulnerability and Security Management

With the widespread popularity of WordPress, the range of considerations towards

vulnerabilities, privacy, transparency, and protection of an open-source project becomes an

incalculable exponential of potential exposure. WordPress vulnerabilities and catastrophic bugs

can present themselves through multiple software layers, from the operating system to a

WordPress plugin or theme. As part of the rigor involved with security, the WordPress

community explains that the project is set up like a meritocracy where a core leadership team

governs everything about the project. The core leadership team includes Mullenweg, five lead

developers, and over a dozen core developers with commit access; the team has “final authority

on technical decisions, and lead architecture discussions and implementation efforts”

(WordPress.org, “WordPress Is Secure”). The team has a weekly bug triage meeting, but security

vulnerabilities are promptly addressed (Cabot 90). Security and bug fixes are released as minor

releases, which apply to that major release, so many minor releases may exist that fix the same

bug across multiple major releases. The WordPress community stresses its commitment to

151

backward compatibility with themes, plugins, and functionality through updates (WordPress.org,

“WordPress Is Secure”). Compatibility plays a critical role in not creating bugs and potential

security flaws, although backward compatibility does not suggest that earlier releases did not

have bugs or security flaws that would new create breaking points when corrected.

The WordPress Community states that the security team has around 50 professionals,

including lead developers and security researchers, with half of the team employees of

Automattic (WordPress.org, “WordPress Is Secure”). The community frequently collaborates

with other security teams to address common vulnerabilities. Notably, the WordPress

community and Automattic outsource the security vulnerability reporting process to HackerOne,

which coordinates vulnerability handling and offers bug bounties. Through the portal to

HackeOne, vulnerability types are prioritized with rankings based on what WordPress domain or

service is involved with the vulnerability. For instance, the WordPress HackerOne program

covers the WordPress core, API, and WordPress.org, the WordPress editors (Gutenberg and the

Classic), WordCamp.org, and more (HackerOne, “WordPress - Bug Bounty Program”). While

the WordPress security team is comprised of Automattic employees, as well as others,

Automattic also has its HackerOne program page that covers Automattic’s assets such as

WordPress.com, Jetpack.com, VaultPress, WooCommerce, and Tumblr, with Tumblr currently

showing as the only in scope set of domains eligible for bounties (HackerOne, “Automattic - Bug

Bounty Program”). WordPress HackerOne program qualifies a vulnerability as “any

reproducible vulnerability that has a severe effect on the security or privacy of our users is likely

to be in scope for the program,” delineating cross-site scripting (XSS), cross-site request forgery

(CSRF), server-side request forgery (SSRF), remote code execution (RCE), database or SQL

152

injections, and privilege escalation as some examples (HackerOne, “WordPress - Bug Bounty

Program”). While not an exhaustive list, these types of vulnerabilities present severe threats to

any website regardless of if WordPress is in use. In the “State of the Word 2016” address,

Mullenweg positions WordPress as having an “update system [that] is relatively unique among

our peers in terms of being able to push out security updates quickly” and being “incredibly

secure,” evidenced by the “high end websites that run it” while still conceding WordPress will

never be “100% secure” even though (Matt Mullenweg). Automattic and the WordPress

community's efforts to mitigate vulnerabilities through automatic update features have had mixed

results across the years, with concerns of privacy, data breaches, and interfering with content

without notice. While vulnerabilities are discussed more in Chapters 5 and 6, the following

examples highlight some of these concerns from a software perspective.

“Phoning Home”

With the “Dexter Gordon” (2.3) release in September 2007, an update check and

notification feature was introduced to inform WordPress administrators when a new release was

available. In the announcement release, it stated that it sends the “blog URL, plugins, and version

information” to the new WordPress API service for comparison (“WordPress 2.3”). The feature

generated an enhancement ticket (5066) to anonymize the information sent to API, which, after

closing once reopened, spanning a little over three years and three months as much discussion

ensued (WordPress.org, “Anonymize Update Checking”). Many comments were concerned

about privacy, data sharing, and data breaches, while others were upset that the disclosure was

not more transparent; ultimately, the ticket closed with a resolution of “maybelater”

(WordPress.org, “Anonymize Update Checking”).

153

Plugins are one of the primary sources of vulnerabilities and security issues for

WordPress security. Although some safeguards are built into the core of WordPress, many

plugins have been developed to help with security and protection. The Akismet plugin, the first

commercial plugin developed by Automattic, helps prevent spam comments. Automattic has

purchased other plugins that are popular and successful at adding different angles of protection.

In 2014, Automattic acquired the BruteProtect plugin and service, which “protects your sites

from malicious logins” (WordPress.com, “Automattic Acquires BruteProtect”). After acquiring

it, Automattic merged it into its popular Jetpack plugin branding. BruteProtect’s functionality is

premium services called Jetpack Security Real-time and Jetpack Security Daily (WordPress.com,

“Automattic Acquires BruteProtect”). As discussed earlier, Automattic has acquired other

popular plugins and a potential for revenue that adds to the slow reveal of how Automattic is

slowly eating the prosumer aspects of the WordPress community and shifting it towards a

controlled consumer.

“Entering Your Front Door While You Sleep”

With the “Count Basie” (3.7) release in October 2013, WordPress received a new feature

that the release announcement labeled as “updates while you sleep,” which offered “the most

important architectural updates…made to date” that would take control and automatically, in the

background, apply maintenance and security updates (Wordpress.org, “WordPress 3.7 ‘Basie’”).

While the release announcement mentions that the update functionality had also been enhanced

to be more “reliable and secure, with dozens of new checks and safeguards,” the release

announcement and support announcement provides more detail on what types of catches were

developed for the overall feature.

154

In mitigating a plugin security vulnerability, the WordPress security team caused

controversy in the community in October 2020 when it used “Basie’s” “while you were

sleeping” update feature to force an update to the vulnerable Loginizer plugin. Catalin Cimpanu

reports that the vulnerable plugin, with over one million installations, contained an SQL injection

vulnerability that could allow a “hacker” to take over the website (Cimpanu, “WordPress

Deploys Forced Security Upgrade”). The Loginizer plugin is designed to help secure WordPress

sites with additional login features, such as “whitelist” and “blacklist,” two-factor authentication,

and other functionality (Softaculous). Cimpanu reports that while the Loginizer developer

reached 89% of the sites it is installed on, the forced use plugin update feature received public

backlash and complaints, with people alarmed about how the plugin updated without their

permission and acknowledgment. In Cimpanu’s article, Ryan Dewhurst, the founder of WPScan

(a WordPress vulnerability scanning service and company now owned by Automattic) at the

time, speculates that the WordPress team fears the “risks of pushing a broken patch to so many

users,” which is reinforced by Cimpanu’s inclusion of Andrew Nacin’s 2015 tweet that

quantifies its use to only five times. (Cimpanu, “WordPress Deploys Forced Security Upgrade”).

The automated disempowering effect people encountered through Automattic and the WordPress

community's efforts to mitigate vulnerabilities add to its designed unanticipated consequences,

and it reinforces the sociotechnical power and influence of WordPress as a platform.

Summary

WordPress originated from forking b2/cafelog, inheriting its attitude and early approach

to coding and software. WordPress’ hacker aesthetic and sense of wonderment of the web

continues through its bonds with jazz and poetry. However, as networked software, WordPress

155

has transitioned through its development into formalizing its control and instilling sociocultural

values within it. As a platform, WordPress has become an admired, formidable political and

social presence and influence that has unavoidably created tension and moments of conflict

among the open-source and WordPress communities and sub-communities. WordPress’ design

seeks a balance between the community and transparency of open-source with the

commercialization and controls it requires, as well as a balance between the quiet (but profitable)

role as gray media with all that jazz. The following chapter continues analyzing and observing

WordPress through its code.

156

CHAPTER 5: CRITICAL CODE ANALYSIS AND FINDINGS

Introduction

This chapter delves into additional findings through critical code analysis, using

WordPress’ source code as the primary source. Using the previous chapter’s software studies of

WordPress as the backdrop, the analysis revisits some of the cultural focal points referenced in

the software analysis through a code view and anchors the discussions to the code of “Nina

Simone.” The source code analysis and processual code profiling include descriptive statistics

and visualizations of the code and processes. As discussed in Chapter 3, the series of analyses

construct a scaffolding of data observations and analysis that lead to an analysis of vulnerabilities

discovered within WordPress’ core codebase. The common analytical threading connects power

and vulnerability through potential cultural, processual, rhetorical, and ethical entanglements

expressed through the code. The examination of entanglements incorporates examining the code

and the activities leading up to and after the code’s introduction.

The chapter is organized into three sections of analysis that progressively examine code

from a far-to-close reading through the source code, profiling processes, and vulnerabilities. The

“Source Code” section examines WordPress and its history through its code and then provides a

closer reading of “Nina Simone” and some of its lasting cultural focal points. The “Profiling

Processes” section examines code through a snapshot of its processual state and maps these

movements to the code. Lastly, the “Vulnerabilities” section sketches a history of vulnerabilities

across WordPress. Then it traces the history of select vulnerabilities in “Nina Simone” and maps

them to the code and its changes, identifying context to their introduction and patchwork as

157

vulnerability focal points. Chapters 4 and 5 build to Chapter 6, which discusses some theoretical

and applied considerations and approaches concerning coding, and the notions of digital,

encoding, framing, power, arrangement, and vulnerability in code.

Source Code

WordPress source code is the primary data of this project. Throughout the released

versions, multiple programming languages and file formats contribute to the functionality of

WordPress. The programming languages frame a time-bound reality marked by sociotechnical

limitations and some level of envisioned future evolution bounded only by imagination.

WordPress’ first release (.70) on May 27, 2003, marked a new reality for WordPress by taking

the b2/cafelog (.6.1) ashes of code and mindset and building upon it. The first available release

(.71) contains many remnants of b2/cafelog, including much of its nomenclature. Published on

June 9, 2003, WordPress’ release (.71) has five languages of delegated code, PHP, HTML, CSS,

SQL, and JavaScript, contained in multiple files. The developers’ selection of programming

language is critical for determining what can be expressed and function, influencing future

development. (Berry, The Philosophy of Software 34). When “Nina Simone” (5.6) was released

on December 8, 2020, WordPress doubled the number of languages involved, including PHP,

HTML, CSS, SQL, JavaScript, JSON, Sass, SVG, XML, and Markdown. Across the 17 years,

the number of source code files leaped from 59 to 1,948, with only two mentions of b2/cafelog

and Michel Valdrighi remaining.

The general shifts in what programming languages were employed and the increased

code suggest a design shift towards a more complex human interface. The increased amount of

JavaScript and CSS code shows how modern WordPress has constructed a distinct layering

158

between the prescriptive server and client code, taking advantage of hardware processing and

rendering speeds across many devices used to render WordPress’ human interface. Other

programming languages, like SQL, are embedded within PHP, demonstrating a programmatic

harmony or simpatico intertwining of code arrangement that works together to generate the next

layer of abstraction. Brock explains that “there are numerous levels of code, including

programming languages and systems of meaning as communicated through interfaces, and it is

rare that a software program will not make use of multiple levels in order to function as the

developer(s) and users desire” (115). Table 1 shows the four programming language differences

between version .71 and “Nina,” ignoring SQL and not listing the newer languages (though

including them in the total).

Table 1: Four Programming Languages in WordPress and their Distribution

Language Files Code Lines Files Percentage Code Lines
Percentage

 0.71 "Nina" 0.71 "Nina" 0.71 "Nina" 0.71 "Nina"
PHP 54 946 11,612 250,967 92% 49% 89% 35%
HTML 1 1 962 84 2% 0% 7% 0%
CSS 3 255 311 125,613 5% 13% 2% 17%
JavaScript 1 532 147 312,684 2% 27% 1% 43%
Total 59 1,948 13,032 724,225

The brief breakdown of these two WordPress versions is not an exhaustive comparison of

versions; however, the evaluation illustrates the complex shifts of code within the lineage of a

codebase that fully recognizes that a holistic analysis of code requires an approach that organizes

the code in manageable chunks and classifications. Despite PHP contributing to 35% of the

codebase in “Nina,” PHP has a 2,061% increase in lines of code over the .71 release, illustrating

a substantial back-end or server-side that logically controls the considerable front-side of

159

WordPress. PHP remains the predominant actant of controlling the content, processing, and

behavior of any instance of WordPress, particularly when categorizing the code by back-end and

front-end. WordPress’ PHP, in its enacted state and other server software, acts upon and

prescribes what delegated code is presented and pushed to the client to evaluate, execute, and

enframe into layers of abstraction that can also act back upon some layers of interface.

Every version of WordPress presents a level of sophistication, like jazz, which over time

becomes more formalized as code and embedded within the codebase. New features roll out that

reallocate and refocus where the work and control occur. Nevertheless, such “formalization

generate[s] their own inconsistencies and incoherence, and the history of efforts to implement

formalisms in programming languages, system protocols, and technologies of all kinds equally is

by no means seamless or without fault lines of its own, albeit of a kind that provide the pretext to

endless upgrades, patches, rewrites, and technology shifts” (Fuller and Goffey 18). The same

formalizations within programming languages and underlying layers generate unfixable fixed

points of hindrance or ease of software development. As Hayles illustrates, echoing and

reinforcing Hall’s observations on cultural encoding in communications, ASCII code and

teletype’s Baudot codes (and other codes as well) cannot be changed without dramatic and

catastrophic upheaval to modern technology, where the “technology functions like a rock strata,

with the lower layers bearing the fossilized marks of technologies now extinct” (My Mother Was

a Computer 57). This fossilization continues in software source code to varying degrees,

“encasement strategies” are a common approach to correcting deeply rooted formalizations

within source code despite the ability to remove them with much less impact than some of the

foundational system fossilizations founds within technology (Thompson 60). WordPress is no

160

exception to fossilization and encasement strategies, and the following sections illustrate this

through an analysis of WordPress’ source code. In these examination instances, the code—the

text—has its layers above and below it radically removed or reduced but not completely ignored.

By reductively treating each layer of media and code lexia within it as having a distinct set of

properties and power and acknowledging the two-way interface to adjacent media layers, the

source code layers become the fore of analysis opportunity to show that “source code is where

change and influence can be exerted by the programmer” (Krysa and Sedek 237).

Comparison of Lines, Files, and Release Dates through Version History

The first WordPress’ release was version .70 on May 27, 2003. The first named release,

“Miles Davis,” was released on January 3, 2004, although the distributed version is labeled

“platinum,” and the 1.0.1 release on January 25, 2004, is labeled “Miles.” To date, WordPress

has released 44 major jazz musician-named versions, starting with “Miles Davis,” with well over

650 maintenance, security, candidate, and beta releases; one maintenance and security release

was named “Ronan” after the first WordPress baby, and another was named “Art Blakey” (1.0.2)

(WordPress.org, “WordPress 2.0.5 – Ronan”; WordPress.org, “Version 1.0.2”). “Code is being

constantly superseded,” situating code as a constant point of revisionist activities that force a re-

evaluation of relationship with every change, which “both conceals and highlights the brittleness

of software” (Mackenzie 12). The changes overlay or conceal past flaws of logic and valuations

of security and functionality while simultaneously adding and removing functionality through

code. Any codebase requires a type of code terminal velocity in which a certain code threshold

must be written and arranged to generate functional prescriptive code. The amount of delegated

code required varies by the programming language, problem, and style of the solution or fix.

161

Quantifying the PHP code in WordPress over time demonstrates a significant increase in

delegated and commentary code involved in enacting all the functions and features of its

prescriptive state.

Using cloc, an open-source utility for counting code, comment, and blank lines, among

other tasks, Table 2 shows data derived from configuring it to count the number of files

containing PHP along with the number of lines of delegated and commentary code. Table 2

merges the quantified data with WordPress’ major releases, the musician name associated with

the release, and the release date.

Table 2: WordPress Version History
Sources: (WordPress.org, “WordPress Versions « WordPress Codex”; Danial)

Version Release Date Musician PHP Files PHP LOC Lines of
Comments

.71 6/9/2003 First Available Release 54 11,612 1,422
1 1/25/2004 Miles Davis 76 17,460 1,889
1.2 5/22/2004 Charles Mingus 100 20,305 2,004
1.5 2/17/2005 Billy Strayhorn 123 22,646 2,660
2 12/26/2005 Duke Ellington 138 27,619 2,841
2.1 1/22/2007 Ella Fitzgerald 176 33,809 3,364
2.2 5/16/2007 Stan Getz 182 38,136 4,644
2.3 9/24/2007 Dexter Gordon 209 41,785 5,417
2.5 3/29/2008 Michael Brecker 230 53,072 13,870
2.6 7/15/2008 McCoy Tyner 249 57,361 17,231
2.7 12/10/2008 John Coltrane 256 66,254 31,527
2.8 6/10/2009 Chet Baker 272 83,383 35,622
2.9 12/18/2009 Carmen McRae 276 88,186 36,904
3 6/17/2010 Thelonious Monk 289 96,493 41,088
3.1 2/23/2011 Django Reinhardt 345 100,422 44,294
3.2 7/4/2011 George Gershwin 377 102,899 45,033
3.3 12/12/2011 Sonny Stitt 374 105,618 46,125
3.4 6/13/2012 Grant Green 387 110,301 48,485
3.5 12/11/2012 Elvin Jones 425 112,632 52,966
3.6 8/1/2013 Oscar Peterson 442 128,285 58,109
3.7 10/24/2013 Count Basie 444 130,775 63,024

https://codex.wordpress.org/Version_1.0
https://codex.wordpress.org/Version_1.2
https://codex.wordpress.org/Version_1.5
https://codex.wordpress.org/Version_2.0
https://codex.wordpress.org/Version_2.1
https://codex.wordpress.org/Version_2.2
https://codex.wordpress.org/Version_2.3
https://codex.wordpress.org/Version_2.5
https://codex.wordpress.org/Version_2.6
https://codex.wordpress.org/Version_2.7
https://codex.wordpress.org/Version_2.8
https://codex.wordpress.org/Version_2.9
https://codex.wordpress.org/Version_3.0
https://codex.wordpress.org/Version_3.1
https://codex.wordpress.org/Version_3.2
https://codex.wordpress.org/Version_3.3
https://codex.wordpress.org/Version_3.4
https://codex.wordpress.org/Version_3.5
https://codex.wordpress.org/Version_3.6
https://codex.wordpress.org/Version_3.7

162

The volume and growth of delegated and commentary PHP code show WordPress’

evolution from a simple “hobby” or “hacker” project, created as a counter-culture solution to the

limitations and costs of early web publishing, to a large and robust ecosystem of code and

agential interdependency. Berkun describes WordPress as “filled with layers of distracting

complexity, a classic symptom of engineer-led design” that helped its popularity despite being

“predicated on appealing to programmers and organizations with technical demands, a different

ambition from achieving simplicity for bloggers themselves” (196). WordPress is rooted in

pushing against the roots of corporatization, invoking a “hacker” ethos within the code with “My

Version Release Date Musician PHP Files PHP LOC Lines of
Comments

3.8 12/12/2013 Charlie Parker 482 132,871 66,950
3.9 4/16/2014 Jimmy Smith 479 135,538 76,844
4 9/4/2014 Benny Goodman 481 138,455 79,813
4.1 12/17/2014 Dinah Washington 476 141,367 83,179
4.2 4/23/2015 Bud Powell 477 144,534 84,855
4.3 8/18/2015 Billie Holiday 480 148,631 92,362
4.4 12/8/2015 Clifford Brown 565 156,319 100,736
4.5 4/12/2016 Coleman Hawkins 575 159,065 104,081
4.6 8/16/2016 Pepper Adams 657 165,391 110,955
4.7 12/6/2016 Sarah "Sassy" Vaughan 700 175,913 116,870
4.8 6/8/2017 William John "Bill" Evans 704 178,583 118,744
4.9 11/15/2017 Billy Tipton 715 183,837 118,791
5 12/6/2018 Bebo Valdés 740 191,677 123,048
5.1 2/21/2019 Betty Carter 741 205,598 124,608
5.2 5/7/2019 Jaco Pastorius 842 228,765 136,383
5.3 11/12/2019 Rahsaan Roland Kirk 894 236,738 141,534
5.4 3/31/2020 Nat Adderley 882 238,578 143,281
5.5 8/11/2020 Billy Eckstine 917 246,843 148,725
5.6 12/8/2020 Nina Simone 946 250,967 151,700
5.7 3/9/2021 Esperanza Spalding 949 253,133 153,373
5.8 7/20/2021 Art Tatum 992 261,003 158,825
5.9 1/25/2022 Joséphine Baker 1,058 268,791 162,981
6.0 5/24/2022 Arturo O'Farrill 1,081 271,813 165,030
6.1 11/1/2023 Mikhail Alperin 1,073 274,459 167,010

https://codex.wordpress.org/Version_3.8
https://codex.wordpress.org/Version_3.9
https://codex.wordpress.org/Version_4.0
https://codex.wordpress.org/Version_4.1
https://codex.wordpress.org/Version_4.2
https://codex.wordpress.org/Version_4.3
https://codex.wordpress.org/Version_4.4
https://codex.wordpress.org/Version_4.5
https://codex.wordpress.org/Version_4.6
https://codex.wordpress.org/Version_4.7
https://codex.wordpress.org/Version_4.8
https://codex.wordpress.org/Version_4.9
https://codex.wordpress.org/Version_5.0
https://codex.wordpress.org/Version_5.1
https://codex.wordpress.org/Version_5.2
https://codex.wordpress.org/Version_5.3
https://codex.wordpress.org/Version_5.4
https://codex.wordpress.org/Version_5.5
https://wordpress.org/support/wordpress-version/version-5-6/
https://codex.wordpress.org/index.php?title=Version_5.7&action=edit&redlink=1

163

Hacks;” yet, the coding practices, features, and functionalities shift the ethos more from the

adolescent undertones, which are still very much embedded and perhaps forgotten by all but the

most fervent and involved user, to corporate and authoritarian overtones of control, tracking, and

positioning. The increases in size within the code do not represent only fixes. However, they

demonstrate a change of attitude towards the software and the control the code performs through

attempts to balance and maintain the demands of the open-source community, changes in

technology, corporate and free-market interests, and the overall ethos and aesthetic of WordPress

and its stakeholders. While Table 2 demonstrates an increase in code across major releases, it

does not illustrate the extent of code changes. Figure 3 demonstrates code changes by lines of

code that were added, removed, or modified by each major release across every major release.

Figure 3: Added, Removed, and Modified PHP Lines of Code across Major Releases

The collective changed code illustrated in Figure 3 helps articulate the magnitude of code

development with each release. The 4,124 lines of total lines of code over “Billy Eckstine” are

-17500

-7500

2500

12500

22500

32500

Modified Code Added Code Removed Code

164

the net result of 7,183 lines of added code and the removal of 3,059 lines of code from “Billy.”

Mackenzie’s observations about Linux, another open-source project, also apply to WordPress in

that “each new distribution and each successive release of an existing distribution incorporates

and repeats the conventions embodied” in the previous release but “adapts those conventions to a

slightly different situation” (80). The WordPress code changes show a crude accumulation of

agential force from the growth of features and functionality expressed through released versions.

Figure 3 also has limitations that are overcome by considering the evolution of the

delegated code from release to release. Software evolution is a process that incrementally and in

relatively small batches deprecates and removes code and features no longer suitable and adds

code to enhance or adapt to the changing sociotechnical environment (Lehman and Ramil 33).

The incremental changes offer a partial view of the broader horizontal view of delegated code

that must evolve to grow or adapt to environmental changes or other software dependencies. The

amassed remaining unchanged code across releases reinforces the accumulation of ideology and

agential force and the fossilization of code and technology identified by Hayles. Similarly,

Kitchin and Dodge summarize this point of view, observing that code has “accreted over time

with technological advances and political and economic decisions to employ digital

technologies…[however] they have not been planned in a comprehensive manner, but rather

have evolved, often in an ad hoc manner and in response to specific needs” (75). Figure 4 shows

WordPress’ accretion and fossilization of code by illustrating the differences in the delegated

code between each major release. The differences are calculated and categorized by lines of code

that have been added, removed, modified, and remain unchanged from one release to the next.

165

Figure 4: Delegated PHP Code Differences Between Major Releases by LOC

Figure 4 demonstrates mostly continual incremental changes and an increasing unchanged

codebase, except for “Bebo Valdés” (5.0) and “Betty Carter” (5.1) when a new content editor

was introduced in “Bebo” and heavily modified in “Betty” for improvements. The codebase

shifted to frame the radical conceptual change (for WordPress) in the platform's design, use, and

management of content. “Bebo” and “Betty” emphasize that, like “literary texts, the initial vision

for a software project can and often is revised according to the software’s changing role within

digital culture” (Black, para.13). They also help underscore a drawback to this particular view of

code. The view does not reveal much about the initial code release and its influence on

WordPress’ evolution. Black observes that “while early source code contributions are important

to understanding the general role envisioned for a piece of software, they cannot help us

understand how the changing circumstances of its development influenced its composition”

(para.13). Similar to Figure 4, Figure 5 illustrates WordPress’ differences in delegated code

0

50000

100000

150000

200000

250000

Same Code Modified Code Added Code Removed Code

166

between the first available release .71 and each major release. The differences are calculated and

categorized by lines of code that have been added, removed, modified, and remain unchanged

from .71 and the next release.

Figure 5: Code Differences Between .71 and Major Release by LOC at Logarithmic Scale

While Figure 5 does not directly help elucidate the social and cultural surroundings of

WordPress’ development, it highlights that very little code from the first release remains in

modern WordPress. It does reinforce Black’s observations about continuous changes in the

codebase, “with each successive version representing a fixed moment in that application’s

textual history” (para.9). Of the 11,612 lines, eight are unchanged, 45 have been modified, and

11,559 have been removed; however, one limitation of the approach used is it does not account

for code that has moved to a different file or the file name has changed. Nonetheless, all three

figures above are helpful horizontal signposts of WordPress’ evolution and highlight points of

1

10

100

1000

10000

100000

1000000

1.0 1.5 2.1 2.3 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8

Same Code Modified Code Added Code Removed Code

167

significant code changes over time. The following section shifts to a narrower and vertical

analysis of “Nina Simone,” examining some changes specific to the release and the lasting

effects of unchanged code.

“Nina Simone”

“Nina Simone” (5.6) is the 39th major named WordPress release. The release is named

after the American jazz singer, songwriter, and civil rights activist Nina Simone, who performed

songs like “Four Women” and “To Be Young, Gifted and Black.” “Nina” contains 2,463 files,

946 of which contain 250,967 lines of PHP delegated code and 151,700 lines of commentary

code. The PHP delegated code contains and frames 473 constants, 945,465 variables, 548

classes, and 8,953 functions. The PHP language affords transclusionary actions, like the C

language and #include (and other languages that use include or require or import), to pull in,

read, and interpret code from other source files to immediately reference in the current

enactment. Drawing a parallel to Roland Barthe’s notions of work and text, Marino reminds us

that “the visible code does not reveal all…and one of the many ways…[it] is always partial”

where “work is an individual, discrete object assigned to an author” and “text is an unlimited

continuum of discourse of which discrete objects…are only ever partial excerpts” (Critical Code

Studies 75). Across the 946 PHP source code files, “Nina” employs 1,136 transclusionary

actions. To date, “Nina” has had ten maintenance and security updates.

Changes

“Nina” ushered changes to the entire WordPress codebase, such as a new default theme,

improvements, and developer-specific updates. The WordPress codebase had 991 revisions

between the “Billy Eckstine” and “Nina” milestones, totaling 352 tickets across 46 components.

168

The new theme claims to contain more block patterns, which is an integral part of the new

content editor that “Bebo” introduced and focuses on content accessibility based on W3C

standards (WordPress.org, Nina Simone). Of the improvements and developer-specific updates,

the expansion of “auto-updates” is notable. The new editor and “auto-update” functionality had

previously been introduced in earlier releases, and these changes incrementally altered the

functionality from a code perspective yet dramatically altered the level of assertion on how

WordPress should be used. The changes in the editor and “auto-update” present a contrasting

positioning and framing of the code compared to the efforts made to ensure WordPress’ core

code was compatible with PHP 8 and “elevate the broader ecosystem to a state that is

compatible” at a heightened level that also “provides defenses against common problems seen in

the transition” to it. (WordPress.org, “WordPress and PHP 8.0”). One goal for “Nina” was to

anticipate and acknowledge the expected changes PHP 8 would herald, capitulating to its

backward incompatibilities that would break existing functionality while maintaining

compatibility of PHP 5.6.20 “until usage numbers who that the impact on users will be minimal”

although PHP 5.6 was no longer supported by its developers since January 2019 (WordPress.org,

“WordPress and PHP 8.0”). In most cases, “the development community is able to perceive the

value of each added functionality, experimenting with the possibilities provided without

necessarily demanding an overhaul of its purpose or of its code each time another contribution is

proposed.” (Brock 136) However, the changes mark a new de facto assumptive approach to

WordPress behavior and experiencing it.

WordPress could “auto-update” its core and some plugins since “Count Basie” (3.7) in

2013, which caused controversy by its inclusion and overreaching use, as discussed in the

169

previous chapter. The changes in “Nina” enframe the originally designed intentionality set in

“Basie” and the long-term goal of having the WordPress core continually updated despite the

minority of technical difficulties encountered and debated within the community

(WordPress.org, “WP5.6 | Auto-Update Implementation Change”). Changeset 49581 framed the

goal within the code across two files, schema.php and upgrade.php, adding 12 lines of delegated

and commentary code (and two blank lines) (WordPress.org, “Changeset 49581”). The file

schema.php had the following added to a growing array of default values across versions that are

populated when WordPress establishes and identifies itself within an instance:

538
539 // 5.6.0
540 'auto_update_core_dev' => 'enabled',
541 'auto_update_core_minor' => 'enabled',
542 // Default to enabled for new installs.
543 // See https://core.trac.wordpress.org/ticket/51742.
544 'auto_update_core_major' => 'enabled',

Upgrade.php had the following added, which is enacted when WordPress determines it is

upgrading itself to “Nina” or a newer version and the database is under a certain version:

2259 // When upgrading from WP < 5.6.0 set the core major auto-updates
option to `unset` by default.
2260 // This overrides the same option from populate_options() that is
intended for new installs.
2261 // See https://core.trac.wordpress.org/ticket/51742.
2262 update_option('auto_update_core_major', 'unset');

The experience defaults to automatically updating itself for new WordPress instances unless the

person has a deeper technical understanding of PHP and configuring WordPress at a code level.

For anyone who upgrades an existing WordPress instance, WordPress behavior remains as it was

before “Nina,” which could have been hand-coded to be on or off. The changes generated a silent

acquiescence for any existing instance being upgraded, accepting whatever the person had set

170

while firmly asserting a different experience for anyone starting with “Nina” or later on how core

updates occur.

“Nina” has received two maintenance and six security releases published from February

2021 to March 2022. The two maintenance releases addressed 45 bugs, one enhancement, and

three version updating tasks across 12 WordPress components, mainly around the theme and

editor. The six security releases address 11 vulnerabilities that were discovered, with the

majority of vulnerabilities found to exist in previous major versions as far back as “Count Basie”

(3.7), which are further analyzed in the “Vulnerabilities” section below. Software and code have

lifecycles. Regardless of when software is created, the code is under constant framing and

reframing beneath the veneer of the user interface. New features, fixes, and patches overwrite

and modify code that “slowly…grows old and decays…a moral depreciation of code” that no

longer functions safely or effectively within the constant revisionism occurring within

WordPress’ ecosystem of code (Berry, The Philosophy of Software 42). Nevertheless, in some

cases, code does not become overwritten or dramatically modified; it further calcifies and

remains buried deep within the codebase, quietly influencing and demanding ideological

behaviors and values. “Nina” contains numerous examples; however, three germane examples

are analyzed in the next section.

Lasting Effects of “capital_P_dangit,” “My Hacks,” and Hello Dolly

“Nina” (and the most recent release “Mikhail Alperin” (6.1)) contains three cultural focal

points, distinctive code lexias that deeply connect it back to its jazz-loving co-founder, Matt

Mullenweg, and its foundational hacker ethos, the function “capital_P_dangit,” the continued

code support for including my-hacks.php and the first plugin Hello Dolly. Each lexia signals a

171

solid association to particular cultural and societal values and changes towards those values over

time, much like how “a flag salute, a kiss on cheek…[or] ritualistic conventions create a sense of

connection...Code is similarly marked by such affiliation” (Marino, Critical Code Studies 90).

The following brief analysis of each lexia offers examples that lead to much more serious

technosocial implications within the codebase through other design decisions, rhetorical choices,

and coding practices.

Programmers set the tone of delegated code through the style and language aesthetic in

which it is written and bring meaning to it by “applying models of human perception and by

trying to account for the ways that other social bodies are drawn into the process of meaning

production” (Cox and McLean 26). When employed as part of the software solution, the

programming language constraints are the few governances that influence nomenclatures and

writing styles within delegated code. Programmers and organizations often establish a styling

and naming guide or standard for many aspects of delegated code to help readability and

systematic checking processes. As discussed in Chapter 3, when “Thelonious Monk” (3.0) was

released on June 17, 2010, a new function was controversially introduced via changeset 14996

that self-identified in its commentary code as “violating our coding standards for a good function

name” (WordPress.org, “Changeset 14996”). The function “capital_P_dangit” has the sole

functionary purpose of changing the capitalization of any instance of “Wordpress” to

“WordPress” found in this case arrangement. Initially, the function was one line of code, a case-

sensitive string replacement. The function remains in “Nina Simone” (and newer versions) as a

default filter applied across all page and post titles, content, and widgets—almost all user-

172

generated content. The “Nina Simone” version of “capital_P_dangit,” contained in the

formatting.php file, is as follows:

5434 // phpcs:disable WordPress.WP.CapitalPDangit.Misspelled,
WordPress.NamingConventions.ValidFunctionName.FunctionNameInvalid -- 8-)
5435 /**
5436 * Forever eliminate "Wordpress" from the planet (or at least the little
bit we can influence).
5437 *
5438 * Violating our coding standards for a good function name.
5439 *
5440 * @since 3.0.0
5441 *
5442 * @param string $text The text to be modified.
5443 * @return string The modified text.
5444 */
5445 function capital_P_dangit($text) {
5446 // Simple replacement for titles.
5447 $current_filter = current_filter();
5448 if ('the_title' === $current_filter || 'wp_title' ===
$current_filter) {
5449 return str_replace('Wordpress', 'WordPress', $text);
5450 }
5451 // Still here? Use the more judicious replacement.
5452 static $dblq = false;
5453 if (false === $dblq) {
5454 $dblq = _x('“', 'opening curly double quote');
5455 }
5456 return str_replace(
5457 array(' Wordpress', '‘Wordpress', $dblq . 'Wordpress',
'>Wordpress', '(Wordpress'),
5458 array(' WordPress', '‘WordPress', $dblq . 'WordPress',
'>WordPress', '(WordPress'),
5459 $text
5460);
5461 }
5462 // phpcs:enable

The “capital_P_dangit” function demonstrates the default enactment of WordPress for

how user-generated content is processed, forcing and controlling the capitalization of itself. This

codified insistence on capitalization acts as a form of imperialization and colonization towards

something as trite as capitalization, which fails to act against all cases of capitalization, letting

“slip” lesser-used capitalizations such as “wordpress.” One ticket (#14219) suggested an

enhancement to the function that would replace other variations of the capitalization and styling

173

to “WordPress,” which was promptly closed and set to “wontfix” by Andrew Nacin, a

WordPress lead developer and author of the initial changeset 14996 that introduced the code into

the WordPress’ core, with Nacin recommending to develop a plugin to handle the other cases as

the team was “just looking to handle the uppercase P” (WordPress.org, “Making

Capital_P_dangit Completely Wpcamelcase.Com Compliant”). While the changesets 15377 and

15738 provided a “more judicious Wordpress-to-WordPress correction” for the “Thelonius

Monk” (3.0.1) release on July 29, 2010, and future releases, the original changeset was

challenged before the release of “Thelonius Monk” (3.0). When the changeset was first

introduced to the core code on May 27, 2010, ticket (#13583) was submitted within four hours,

labeling the change as a defect and bug, requesting it to be corrected to accommodate quotes or

remove it. The ticket was then initially closed and set to “wontfix” within three hours of its

submission by Matthew Mullenweg, the co-founder of WordPress and project lead who was

given “props” for changeset 14996 (WordPress.org, “WordPress Breaks Quotations”). In

Mullenweg’s response to the ticket closure, the comment included recommendations of ways

around it, adding, “it is impossible for the function to be perfect, and its cost goes up with any

attempt, so we have to embrace the imperfection of it, as with life,” which then Mullenweg

parenthetically added, “I realize that’s a funny thing to say when talking about a function whose

goal is to correct an imperfection itself” (WordPress.org, “WordPress Breaks Quotations”). The

comments continued, and the ticket’s status changed multiple times before being set closed and

“wontfix” for the final time over a month later by Andrew Nacin, despite the continued protest.

The persistence of “capital_P_dangit” highlights Mullenweg’s considerable influence

over coding decisions. While “dang” is a predominately Texan- and southern US-used word, and

174

Mullenweg was born, raised, and lives in Texas, the commentary code demonstrates the more

significant attitude and intent towards the purpose of the code (Sonnad). One line of commentary

code states, “Forever eliminate ‘Wordpress’ from the planet (or at least the little bit we can

influence)” (WordPress.org, Nina Simone formatting.php 5434). As part of its coding standards

practices, before publishing new releases, WordPress source code is examined through a PHP

code analyzer (PHP_CodeSniffer) with a set of published standard rules, or sniffs, for the

WordPress source code. The analysis produces warnings and errors based on the WordPress

community’s standards. Brown’s observations of MediaWiki’s approach to usernames and article

titles also apply to WordPress in how it “responds to the Law of hospitality by crafting a set of

laws, laws that use software to make arguments about how textual discussions should happen

and what information should be tracked” (177). For the function “capital_P_dangit,” additional

PHP code comments were added to the WordPress source code as directives to disable the code

analyzer from flagging the function for not following naming conventions established for

“wordpress” and function naming (the only exception across all of “Nina”’s codebase). The end

of the comment offers an ASCII emoji “8-)” to suggest the brazenness and additional steps taken.

These actions make publicly visible “the labour which is repressed from visibility under

proprietary software,” yet demonstrate that “it is still the case that whoever is “closest to the

machine” owns the space of possibilities which the relations have been established to explore”

(Fuller, Behind the Blip 26). Its continued existence demonstrates Mullenweg’s childlike

frustrated and impassioned authoritarian stance on capitalization. Despite a person’s ability to

remove the code, it requires coding literacy and knowledge of PHP. In addition, the file default-

filters.php references it, and removing it would require maintaining its future exclusion as future

175

core updates overwrite every core source file, repeating and reasserting its insistence with every

update.

As discussed in the previous chapter, the continued support of the coded transclusion of

my-hacks.php reinforces the tension between developer and user communities and the “hacker”

and developer ethos roots of WordPress. The support for its inclusion remains in “Nina” and the

latest releases through a few lines of code that, perhaps paradoxically, are placed in the function

that checks for what plugins are active and traverses through the requirements outlined for each

plugin. The following lines exist at the top of the function “wp_get_active_and_valid_plugins”

in the load.php file.

772.// Check for hacks file if the option is enabled.
773. if (get_option('hack_file') && file_exists(ABSPATH . 'my-
hacks.php')) {
774. _deprecated_file('my-hacks.php', '1.5.0');
775. array_unshift($plugins, ABSPATH . 'my-hacks.php');
776. }

Fuller describes that free software often spawns from resistance or rejection of corporate

culture surrounding proprietary software (Behind the Blip 25). Users-turned-developers set forth

initial defiance towards the distancing of the bloat of commercial software features and control.

The five lines of delegated code sharply cling to the defiance grounded in “Miles Davis,”

maintaining the “hacker” ethos, despite the 28 functions that formalize, control, and structure

plugins and their API, which have been introduced and modified since “Mingus” (1.2). This

“deliberate abdication of the imagination in dealing with the culture and structuration of all the

kinds of work that take place in offices” is exemplified through “My Hacks” and WordPress’

formalized flagging of deprecation via the “_depcrecated_file” function (Fuller, Behind the Blip

25). It draws attention that the embedded legacy ideology is the oldest feature, with its fixed and

176

hard-coded inclusion of my-hacks.php, remaining since “Miles Davis” and its formal deprecation

in “Billy Strayhorn” (1.5) among the 25 delegated uses of file deprecation flagging within the

“Nina” codebase. The continued inclusion of the “My Hacks,” currently instantiated and

maintained through the five lines of code, highlights 18 years of resistance and defiance towards

Berry’s moral depreciation of code to maintain and ossify the “hacker” ideology within the

codebase. Cox observes, “the act of coding becomes a prototype for action in broader terms,

which includes a critique of the commercial imperative of software development and also the

normative social relations associated with this” (63). For WordPress, the modern encasement of

“My Hacks” demonstrates its assessment of the corporatization and commercialization of

WordPress as open-source software regardless of the prominent market surrounding it,

attempting to appease the cultural divide openly.

As briefly outlined in the previous chapter, the Hello Dolly plugin was introduced and

bundled with the release of “Mingus” (1.2) to showcase the new plugin features and API

introduced and serve as a basic example for plugin development. The new plugin features

formalized and constrained the approach to “hacking” WordPress, partially diminishing the

practical value of supporting the blank canvas and openness of the my-hacks.php functionality.

The plugin features are a more checked yet approachable and user-friendly codified tactic for

people to hook and plug into WordPress’ platform and ecosystem of data through the moderated

framing and enframing of data and content. The Hello Dolly plugin has been packaged with

every WordPress release since “Mingus” despite its polarizing view of usefulness, copyright

permissions, and content.

177

The Hello Dolly plugin has three notable closed tickets associated with its ideological

existence and perceived cultural value. The first ticket (#11538) was opened in December 2009

as an enhancement request to unbundle Hello Dolly, which was promptly closed and set to

“closed” and “wontfix” by Mullenweg due to “rude comments” (Wordpress.org, “Unbundle

Hello Dolly”). Comments on the ticket continued to criticize the plugin, questioning how it

focused on users, its legality in including copyrighted lyrics, and, more recently, challenging it

from a “moral standpoint” based on its lyrics (Wordpress.org, “Unbundle Hello Dolly”). The

next ticket (#15769) followed a similar commentary pattern when it was opened in December

2010 as a bug defect, with 80 comments and changes focused on copyright permission,

alternative lyrics licensed under the GPL, and fair use, which was finally set to “closed” and

“wontfix” in December 2014 (WordPress.org, “WordPress Ships with Copyrighted ‘Hello,

Dolly!’”). The comments in both tickets follow similar discursive patterns in the

“capital_P_dangit” function discussion, with a general refusal for changes based on performance,

efficiency, and content ownership. However, when ticket #43555 was opened in March 2018, it

resulted in changes to the lyrics that were “inappropriate to display without any context” for

software seeking “to promote inclusivity for all” (WordPress.org, “Keep Hello Dolly from

Displaying Sexist Text”). The comments included leaving the lyrics intact and creating a filter to

hide certain lines, concerns about altering lyrics, lack of reliable sources for definitive lyrics, and

more calls to remove the plugin entirely. (WordPress.org, “Keep Hello Dolly from Displaying

Sexist Text”). The changesets 42839 and 42840 ushered in the updated lyrics into “Bebo Valdés”

(5.0) and into the maintenance release of “Billy Tipton” (4.9.5) with only the value change of

one string variable that stores the lyrics as multiple lines of text.

178

These cultural focal point examples and changes in “Nina” demonstrate how the meaning

of code “depends on context and how its cultural meaning grows not solely from what it does but

also how it is perceived by its varying audiences” (Marino, Critical Code Studies 115). The

arrangement or framing of code within the codebase allows for incremental changes that enframe

dramatic changes in and to user experience. Although other minor changes can be made, the

contributing changes must align and capitulate to the current ideology within the code and

surrounding it regardless of community standards and practices. This type of technical and social

backgrounding shows, with Mackenzie’s Latour-influenced statement, how “technical

mediations are at once intimately woven into the socio-material fabric of everyday life and yet

often not represented as such” (12). Any particular instance of delegated code presents the

dominant cumulative assertion and discrete summation of the community discussion—the code

speaks for itself until the next revision takes hold.

Profiling Processes – The Space of Flows

WordPress sits atop a networked platform and series of protocols, controlled through

negotiating algorithms, software, and hardware working aside, below, above, and within the

WordPress ecosystem. WordPress becomes enacted through a tightly bound intersection and

collaboration of webserver software, PHP interpretation software, a database management

system, and networking protocols. Barring any network blocking or other access enforcement,

WordPress “greets” every web browsing visitor with lines of delegated-turned-prescribed code

when enacted in its simplest form. The initial WordPress file read by the webserver software and

interpreted by the PHP interpreter defaults to index.php, heralding early webserver

infrastructuring and framing that hard-coded and compiled “index.html” as the default file to

179

read (WWW-Talk Apr-Jun 1993: NCSA Httpd Version 0.3). “Nina” has an index.php file that

contains 16 lines of commentary code and two lines of delegated code, with lines 14 – 17 as

follows.

14 define('WP_USE_THEMES', true);
15
16 /** Loads the WordPress Environment and Template */
17 require __DIR__ . '/wp-blog-header.php';

The two lines offer little direct insight into WordPress’ state of prescriptive code and processing.

It makes evident that the requisite transclusion of the wp-blog-header.php file does more of the

bootstrapping of WordPress than the index.php file; however, contrary to the commentary code,

stating that the “file doesn’t do anything,” it anchors itself (and WordPress) to the early

traditions and attitudes of the Web as a platform (WordPress.org, Nina Simone).

Prescriptive code is a series of independent and dependent non-hierarchical positioned

calling or reference points that can be hooked or called from any other calling point (including

the originating calling point), creating a latticework of referential calling points to which the

prescribed code creates sequential pathways among the points and carries varying payloads of

data, structure, and logic. Berry observes that “code lies on a plane of immanent connections and

consequently, no code is ‘bigger’ or ‘more important’ than another except to the extent that it has

a larger number of connections” (The Philosophy of Software 62). The latticework extends

beyond the immediate WordPress code into the larger digital ecosystem to establish connections

and exchanges of data and information through other enacted code. The code exists “within the

virtual space of a digital computer, that which [Manuel] Castells called ‘the space of flows’” in

which the code exists in multiple states that other software mediates through interpretation and

180

compilation (Berry, The Philosophy of Software 37). The motion and flow of code can generally

be mapped back to its delegated state through multiple approaches.

Four levels of prescriptive code analysis—hardware, software, network, and everyday—

call for different tools (Berry, The Philosophy of Software 97). While these levels offer distinct

approaches to analysis, there are also commonalties due to broader inheritances and layers of

abstraction from hardware to software and across to network. From hardware platform to

software platform and the layers of media between and above, Berry pinpoints the temporality of

code as one of those properties carrying over from hardware to software (The Philosophy of

Software 97). Berry views code’s execution limited by hardware’s processing clock speed, which

Berry contends is nevertheless “much faster than the temporality of the everyday,” reinforcing

the compressing effect (The Philosophy of Software 98). The speed at which code executes

becomes a critical point of attention for system architects and developers, and the focus on speed

remains deeply centered within the heart of computer science and the quest for optimization of

code and algorithms. The speed and compression also generate a blurring of the beginning and

end of code and system, darkening the space of flows and the cultural and power influences

within it. Mackenzie observes that “coding is an abstraction that spatiotemporally reorders

existing movements. Well-known code constructs such as loops, conditional tests and data

structures (arrays, queues, stacks, dictionaries) in popular programming languages afford this

concentration or intensification of movements” (57). Unblurring and slowing the flow is the

focus of the analysis. Capturing software’s processual flow through profiling or debugging tools

helps locate processual moments and lexia of code that perform the most drudgery in terms of

complexity or are called upon most frequently as a source of rhetorical intersection.

181

In analyzing software processes, the delegated and prescribed code require some level of

profiling, outlining, and linking, recognizing both states “not as something static, although it may

never change, but to be operating in participial terms” (Fuller, Behind the Blip 18). Fuller uses

‘participial,’ attributing it to Elaine Scarry, as a means to describe the duality of a digital object

(or code) as “a thing, and a motion” (Behind the Blip 34). For a fuller understanding of the

processes, delegated and prescribed code must be strongly coupled in examining the space of

flows in which the “thing” represents the delegated code, and the “motion” is the prescribed code

framed by the former. In essence, transforming the code creates a new set of metadata derived

directly from the code states and parallels the code’s structure. Although it does not wholly trace

the sequential flow of WordPress’ enframing logic, it helps disrupt the autopoietic nature of code

as a language to offer a different vantage point.

While the delegated code frames what source code files are to be read, interpreted, or

compiled to assemble prescriptive code, the file system and operating system conventions and

constraints bind the files in which the delegated code resides. When WordPress is enacted,

becoming prescriptive code, the delegated code contained within the files becomes a dormant

impression, creating a static mapping for prescriptive code in the same computational space,

bounded by a different set of computational limitations that intersect the architecture of the

underlying system and the interpretation of the architected delegated code. The following

analysis is based on this level of abstraction in the space of flows.

Identifying the Focal Points

Focal points are intersections of ethical, cultural, processual, and rhetorical

considerations of potential risk, power, and vulnerability that can be identified in code. Focal

182

points are locations in code combined with the timing and file location of the new code's

introduction, its evolution over time, the social and cultural context surrounding the changes, and

the extent of reliance on the code. Focal points are a tool to help organize and conceptualize

locations in code that manifest as intersections of inquiry. WordPress presents multiple types of

focal points, such as the cultural focal point examples disgusted above. One way to locate focal

points is through the reliance and frequency of code used within a codebase that can be profiled

through its prescriptive state. Reading and analyzing code in this way is parallel to debugging

software, which, when “further augmented by the many reading strategies and heuristics that

scholars have been developing for the interpretation of other kinds of texts,” presents a novel

means to read code contextually across two states (Marino, “Critical Code Studies” 31). These

focal points are determined by the connections, motion, and flow of prescriptive code and where

it maps back to delegated code.

Profiling the prescriptive code of Nina, captured and stored in a format called

“Callgrind.” Using webgrind and QCachegrind, open-source software that can read “callgrind”

file formats, Table 3 shows data derived from the data. To distinguish between built-in or

predefined language functions and constructions, the term “entry point” is used to distinguish

WordPress-derived functions and methods. Table 3 shows the top 10 WordPress entry points by

the number of calls and the percentage of the overall calls, including and excluding PHP function

calls. PHP functions were excluded from the top 10 list to focus on WordPress-derived

processes.

183

Table 3: Top 10 WordPress Prescriptive Code Call Counts and Percentages

The profiling process captured 1,336 distinct function calls totaling 97,648, with 73,104 calls

from WordPress entry points. The aggregated entry points, 55.7% of the calls, coalesce into four

types of code enactments within WordPress, translating user-facing interface content, filtering

(or changing process or content), caching content, or checking to see if WordPress is installing.

While these calls do not highlight the entire landscape of potential calls, “these events in

software, these processes and regimes that data is subject to and manufactured by, provide

flashpoints at which these interrelations, collaborations, and conflicts can be picked out and

analyzed for their valences of power, for their manifold capacities of control and production,

disturbance and invention” (Fuller, Behind the Blip 30). Including PHP function calls, the

functions in Table 3 generate 43.5% of the calls, with only “in_array” and “trim” functions

displacing the top 10. Combing the top 10 most called WordPress and PHP functions account for

56,262 (57.6%) of the total calls. The WordPress entry point “apply_filters” is called three times

more than any other function that can serve as an example for a brief deeper analysis.

Entry Points Call Count Call Percentage
 Including PHP Excluding PHP
apply_filters 14,062 14.4% 19.2%
get_translations_for_domain 4,568 4.7% 6.2%
_load_textdomain_just_in_time 4,568 4.7% 6.2%

NOOP_Translations->translate 4,560 4.7% 6.2%

translate 3,482 3.6% 4.8%

__ 3,320 3.4% 4.5%

wp_installing 2,218 2.3% 2.5%
WP_Object_Cache->_exists 1,940 2.0% 2.5%
WP_Object_Cache->get 1,856 1.9% 1.9%
wp_cache_get 1,806 1.8% 1.7%

184

The profiling data showed that the WordPress entry point “apply_filters” is called more

frequently than any other entry point of prescriptive code. The function was introduced in

WordPress with the first release (.71), and it is currently referenced by 1,263 other entry points

and references one other entry point within the codebase. The “WordPress Developer

Resources” state it “calls the callback functions that have been added to a filter hook,” which

means it is called in every instance where WordPress code has framed a method or event that can

be connected or hooked into by other code to alter the default behavior (WordPress.org,

“WordPress Developer Resources”). The “apply_filters” entry point has a strong relationship to

the “add_filter” entry point, which inserts the functionality into the hook or event, of which the

“appy_filters” then executes. For example, the delegated code related to “capital_P_dangit” uses

“add_filter” to frame and enframe the “capital_P_dangit” code within the WordPress process

that displays the content of a page, which includes calling “apply_filters.” In general, the

delegated code frames designed events that other framed code can then frame and enframe to

generate a different result and do so without end. It is programmed functions acting upon other

functions at key moments of enactment. As Derek Robinson observes, “the evidential traces or

signs of an event are convolutions (literally “enfoldings”) of the event with whatever objects or

medium its nth-order effects encounter and become mixed up with. The material imparts its own

intrinsic bias or twist…it acts like a filter or lens” (107). To further illustrate the processual

mapping of “apply_filters,” Figure 6 demonstrates a truncated call graph of functions that call

“apply_filters,” with the nodes as function names and edges as the processual pathway that led to

“apply_filters” being called; nodes were truncated to functions calling over 2% of the total

number of calls.

185

Figure 6: Call Graph of "apply_filters" Function with Call Frequency

Figure 6 indicates the relationships between functions and key moments of focus within

the processual code, which necessitates further analysis by mapping them to the delegated code

and backtracing the origins and changes to the delegated code involved. Hayles’ analysis of web

media underscores the interrelation between texts and communication, to which WordPress’

prescriptive and delegated code (as text) act similarly. Hayles observes that “texts cycle in

dynamic intermediation with one another…a cluster of related texts that quote, comment upon,

amplify, and otherwise intermediate one another” (My Mother Was a Computer 105). The

following section analyzes a small sample of backtracing and mapping that helps highlight the

dynamic intermediation.

WP_Hook->apply_filters
464×

_wp_specialchars
330×

8×

check_theme_switched
2×

2×

create_initial_post_types
4×

2×

create_initial_taxonomies
4×

2×

redirect_canonical
2×

2×

wp_default_scripts
2×

2×

wp_load_alloptions
734×

2×

get_option
730×

2×

__
3320×

148×

_x
1040×

100×

register_post_type
40×

40×

apply_filters
14062×

2×

44×8×

8×

php::array_map
108×

2×

4×

364×

_n
8×

8×22×

esc_url
130×

2×

WP_Hook->do_action
44×

44×

WP_Post_Type->__construct
40×

WP_Post_Type->set_props
40×

40×

40×

416×

translate
3482×

3320×

6964×

16× 736×

wpdb->get_results
30×

2×

translate_with_gettext_context
1078×

1040×

2156×

1460×

730×

wpdb->get_row
8×

6×

40×

do_action
210×

40×

38×

esc_attr
136×

136×

136×

130× wpdb->query
44×

8×

20×

wp_setup_nav_menu_item
10×

10×

40×

30×

44×

186

Backtracing and Mapping the Code Focal Points

In profiling code, using the network or geography of code as a metaphor helps emphasize

the processual complexity and effort occurring within enacted code. Profiling the spatial

movement of enacted code and mapping it back to its delegated code makes it more visible. For

Berry, “code is more visible the more connections it has,” linking the concepts of Gabriel Tarde

and Bruno Latour, that everything is an association or society of which “mapping the

connections” allows for analysis of the “attachments and solidarity that is formed between

software and hence trace the way in which it is materialized and made” (The Philosophy of

Software 66). Furthermore, Marino adds that how code is situated creates an oscillation of

ordering and meanings, a sign system within actor-networks of computers and machines that

develop meaning (Critical Code Studies 42). Profiling, tracing, and mapping the prescriptive and

delegated code helps generate and highlight the network of influence. In discussing the network,

Berry explains, “software and code may be connected to each other in quite counter-intuitive

ways; for example, code itself has an internal networked topology, that is, code is not ‘above’ or

‘below’ other code, rather code is added to other code as a connection” (The Philosophy of

Software 62). Efforts toward the portability of code seek to separate hardware and operating

software, but ultimately, the execution is intimately inseparable and bounded by the media which

created it. The remainder of this section focuses on the analysis of WordPress by linking its

prescriptive and delegated code states.

Mapping the prescriptive and the delegated code and its analysis can be approached in

multiple ways. As shown in Figure 6, the prescriptive code can map to the delegated code by the

function names that are processual entry points into the lexia of delegated code. To focus on the

187

delegated code, mapping the processual to entry points helps identify the contextual

neighborhood of code that surrounds the entry point and is classified, grouped, and contained by

its source code file. Focusing on the source code files also reveals the code's evolution or decay

of influence within specific regions or files of the codebase. The profiling data captured 73,104

calls WordPress-derived entry points across 256 of 946 delegated PHP code files, ranging from

two to 18,600 calls. Figure 7 maps the top 20 source code files by calls, accounting for 67,582.

Figure 7: Map of Top 20 Source Code Files by Processual Calls

Figure 7 draws attention to the repetition of function calls and the file locations where the

delegated code resides. Vital prescriptive code is frequently referred to and called upon in key

events of large enacted codebases (Brock 140). For WordPress, the source code files follow a

similar pattern as Table 4 illustrates, combining data from Table 3, Figure 7, and “WordPress

188

Developer Resources.” The table maps the file name to the delegated code entry point contained

within it, gives the number of revisions the file has undertaken from its introduction through

“Nina” (5.6.8), and includes the profiled call counts, what version the entry point was first

introduced to the WordPress codebase, how many other entry points reference or use it, and how

many other WordPress entry points it references or relies upon to function.

Table 4: Mapping of Code Files and Revisions to Code Entry Points with Call and Use Data

Table 4 and Figure 7 show the intense processual reliance on two files, demonstrating how

WordPress has categorized and aggregated code neighborhoods by the type of framing and

enframing it performs using file space. The plugin.php file contains 28 entry points within the

935 lines of delegated and commentary code that collectively provide the API for plugins, one of

WordPress’ most key and core features that affords and invites extendibility of most of

WordPress’ default code framing. The natural language localization file, l10n.php, that powers

File Revisions Entry Point Calls First
Intro.

Used
by

Uses

plugin.php 170
apply_filters 14,062 .71 1,263 2
Other entry points 4,034

l10n.php 235

get_translations_for_domain 4,568 2.8 5 1
_load_textdomain_just_in_time 4,568 4.6 1 2
translate 3,482 2.2 14 5
__ 3,320 2.1 1,342 1
Other entry points 2,662

load.php 240
wp_installing 2,218 4.4 45 0
Other entry points 676

pomo/translations.ph
p 32

NOOP_Translations->translate 4,560 0 0
Other entry points 10

class-wp-object-
cache.php 141

WP_Object_Cache->_exists 1,940 3.4 6 0
WP_Object_Cache->get 1,856 2.0 2 1
Other entry points 228

cache.php 139
wp_cache_get 1,806 2.0 53 1
Other entry points 152

189

the core translation API contains 70 entry points of functions and API hooks within its 1,714

lines of code. From the 168 revisions that involved plugin.php, the logs are a mix of bug fixes,

documentation updates, or code modifications to modernize stylistically or due to PHP changes.

Similarly, the 214 revisions to l10n.php address the same types of modifications. Of the six

neighborhood files that house the top 10 processual focal points, none of the revision logs

associated with them mention vulnerabilities directly; however, most reference a ticket number.

Examining the processual data helps highlight what WordPress does and locates where

and how often specific lexia of delegated code are enacted. The external mapping and tracing of

the prescriptive code also helps show the hypertextual reading and logic leaping performed by

machines when interpreting (or compiling) code and then mapping it into computational stack

space. The next and final section further builds on this analysis by introducing published code

vulnerabilities and their locations within the delegated code as a point and moment to backtrace

and map rhetorically.

Vulnerabilities

The NVD houses common vulnerabilities and exposures discovered in systems and

software. Vulnerabilities receive a calculated severity based on a common vulnerability scoring

system that identifies several exploitable and impact metrics that determine a severity score from

one to 10, with 10 being the most severe. In addition to a score, each vulnerability receives a list

of associated weaknesses through a simplified mapping of Common Weakness Enumeration

(CWE) hierarchical listing (National Institute of Standards and Technology, NVD - Vulnerability

Detail Pages). Like most software, WordPress’ vulnerabilities are introduced by the construction

and arrangement of its core source code, extensions of its code (plugins, themes, my-hacks.php),

190

code libraries that bring additional functionality and abstraction to existing code layers, and

employment of the programming languages and their arrangement of logic and functionality used

in its creation. These vulnerabilities connect to the community, design decision-making, and the

developers. This section mirrors the profiling processes analysis and extends it by examining

WordPress’ vulnerabilities by CVE, CVSS, and CWE to help locate the focal points by

vulnerabilities instead of processual call frequency. The analysis follows a similar pattern of

backtracing the vulnerability within the code in more detail.

The first release of WordPress (.70) is not available, and .71, labeled “gold,” was

released less than two weeks after the first release, citing multiple improvements and a security

fix for a vulnerability with a potential database injection (WordPress.org, “WordPress 0.71 Now

Available”). From the first release in 2003 to June 2022, the NVD has 616 published

vulnerabilities for WordPress, as shown in Figure 8. The vulnerabilities do not include the

numerous vulnerabilities published for themes and plugins; however, the list includes a

significant number (approximately 283) of vulnerabilities identified as not part of the core

codebase or distribution of WordPress. Their inclusion in the NVD’s published vulnerabilities

for WordPress is due to the CVE assignment process and how they are adopted into the database,

which has changed over time, becoming more formalized as WordPress has become more

prominent software.

191

Figure 8: WordPress NVD Published Vulnerabilities from 2004 to 2022 by Year

Patchstack, a cybersecurity company, published a 2020 annual report on security vulnerabilities

in the WordPress ecosystem that concludes that plugin and theme code is one of the most

significant threats to WordPress-powered websites (Slid, Security Vulnerabilities of WordPress).

Patchstack’s 2021 report states that plugin and theme vulnerabilities increased from 96.22% to

99.42% of the total vulnerabilities, with the core WordPress code making .58% of the

vulnerabilities (Slid, State Of WordPress Security In 2021). Furthermore, the report indicates that

76.76% of the vulnerabilities by CVSS severity were between 4.0 and 6.9, with 21.35% making

up 7 to 10, the most critical (Slid, State Of WordPress Security In 2021). Risked Based Security

Vulnerabilities, another cybersecurity company, observes that 10,359 vulnerabilities were

reported in plugins by the end of 2021, with 2,240 disclosed in 2021. Vulnerabilities are a central

concern for WordPress by the sheer volume of vulnerabilities, their criticality, where they occur,

and how exploitable they are across the web.

2
10 16

49
59

31

14

46

104

72

56

12

22

46

18
23 22

9 5

0

20

40

60

80

100

120

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Vulnerabilities

192

While WordPress as software is not compiled, it has its own set of tests performed before

a release to ensure certain levels of designed functionality, logical, and technical expectations are

achieved with the code without the PHP interpretation software failing or issuing warnings or

errors. Although the tests rarely reveal less obvious vulnerabilities within the code, lint checking,

unit testing, and sniffing code for style and standard violations are helpful tools for large

codebases. While lint utilities can check syntax, it does not check against logic or the concepts of

vulnerability as they might apply to software’s integrity as a holistic human-computer system.

Similarly, unit testing can help check for the reliability and readiness of small, delegated code

lexia through their processual entry points. From this view, compiled and interpreted delegated

code share the same problematic approaches to vulnerabilities — “all software is open to

unacknowledged or undiscovered vulnerabilities” (Brock 109). Much like a failed compilation of

delegated code, vulnerabilities and the treatment of vulnerabilities are a constant and continuing

problem at a much larger scale than the code itself, including community acknowledgment of the

vulnerability, establishing who or what is at risk, and identifying a course of action for mitigating

it. The following three sections analyze some of WordPress’ vulnerabilities, backtracing them

from their introduction to patch, mapping them to code focal points, and their overall treatment

as code.

Backtracing of Vulnerability from Introduction to Patch

Maintaining the concept of focal points as the intersections of considerations of potential

risk, power, and vulnerability in code, using known vulnerabilities as a starting location presents

a similar approach to identifying and examining focal points as processual and cultural focal

points discussed above. Published vulnerabilities of open-source software create an opportunity

193

to use the delegated code entry points of the vulnerability as acknowledgments of breaches or

collisions of rhetorical considerations in code. These entry points are an etiological starting point

in code to backtrace to its origins and draw comparisons to processual focal points that help

further locate and define focal points in code and generate further insight for future design and

development decisions and coding practices.

The 333 identified core WordPress vulnerabilities span every year of its software

lifetime. Several vulnerabilities span multiple named versions. “Basie” (3.7) and “Charlie

Parker” (3.8), some of the oldest WordPress versions that remain informally supported and

remotely controllable by Automattic, have 41 maintenance and security releases as recent as

2022. Many changesets and published vulnerabilities do not provide adequate information to

locate vulnerabilities definitively. Many published vulnerabilities’ descriptions do not include

locational information, such as file names, line numbers, parameters, or entry points. Most

WordPress’ changesets do not reference vulnerabilities directly, exacerbating the locational

mapping and making constructing a complete mapping problematic. Although not all

vulnerabilities were identified to their origins of involved source files or entry points, broadly

reviewing vulnerabilities in source code files, like with the processual focal points, reveals the

evolution or decay of influence of the code within certain regions or files of the codebase. The

data also helps inform a more in-depth and vertical analysis of select published vulnerabilities.

Figure 9 maps the top 20 source code files by all published vulnerabilities. There are a total of

234 distinct source code or asset files involved with vulnerabilities that WordPress released. Of

those 234 files, 190 are involved with two or more vulnerability occurrences, 88 are involved

194

with three or more, and 62 are involved with four or more.

Figure 9: Map of Top 20 Source Code Files by Published Vulnerabilities

Focusing on the origins and organization of the top 10 source code files, the files stabilize over

time to a seemingly reasoned taxonomy based on rebranding, component functionality, and code

volume or density. For instance, on December 10, 2003, “the great renaming” (changeset 601)

set the modern nomenclature for the source files, functions.php, wp-login.php, wp-

admin/post.php. Kses.php, added in 2003, houses a modified version of Ulf Harnhammar’s

HTML filter utility, kses, which is a recursive acronym, “KSES Strips Evil Scripts,” derived

from the vulnerability concept of cross-site scripting (“XSS”) and access (Vasquez). Its purpose

is to filter out potentially malicious input from user interactions. Formatting.php was also

introduced early with changeset 846 on February 9, 2004, “breaking out some of the formatting

195

functions” from functions.php. Pluggable.php was renamed with changeset 3862 on June 11,

2006, but it was born with changeset 2516 on April 4, 2005, with some code moving from

functions.php and comment-functions.php to it to group plugin functions together into one file.

Post.php was first introduced and named functions-post.php by Michael Valdrighi (one of the

214 revisions committed) in changeset 1353 and then renamed in changeset 3851 (Ticket #2525).

Default-filters.php was created with changeset 2240 on February 7, 2005. Ajax-actions.php was

created with Ticket #2561 and changeset 3660 on March 28, 2006, with the revision message

“cause you love it,” suggesting a cynical embrace of the asynchronous technologies burgeoning

in web applications at the time. Finally, wp-admin/includes/post.php was born with changeset

5542 on May 25, 2007, as part of re-organizing all the administrative functioning in WordPress.

All the top 10 files were created within the first four years of WordPress’ development.

The WordPress vulnerability data shows 164 distinct entry points involved with

vulnerabilities. There are 30 named entry points that have two or more vulnerability occurrences.

Only eight of those 30 entry points have three or more vulnerability occurrences. Combining

entry points with the file vulnerability data, table 5 presents an initial mapping and merging of

the top 10 entry points and source files related to vulnerability occurrences within WordPress.

Many source files and entry points have equal vulnerability occurrences, so the vulnerability

publication date further orders the top 10 listing and merged data. Furthermore, some

vulnerabilities have several entry points involved across source files, so the total number of entry

point vulnerability occurrences does not always match the total number of file vulnerability

occurrences. For files that contain no named entry points, files in which the entire file is what is

enacted, the entry point is labeled as “File.”

196

Table 5: Top 10 Files and Entry Points Involving Vulnerabilities

File V.O. Revs Entry Point V.O. First Intro. Used by Uses

pluggable.php1 21 635

auth_redirect 2 1.5 1 14

check_admin_referer 1 1.5.1 1 0

get_avatar 1 2.5 13 13

hash_equals 1 3.9.2 12 0

wp_check_password 1 2.5 4 5

wp_create_nonce 2 2.0.3 49 6

wp_nonce_ays 1 2.0.4 1 7

wp_validate_auth_cookie 1 2.5 3 13

wp_validate_redirect1 5 2.8.1 6 5

wp_verify_nonce 2 2.0.3 15 9

I/functions.php1 19 1763

add_post_meta 1 1.5 17 2

get_allowed_mime_types1 3 2.8.6 8 5

is_blog_installed 1 2.1 3 11

is_serialized1 2 2.0.5 5 0

is_serialized_string 1 2.0.5 0 0

maybe_serialize 1 2.0.5 10 1

maybe_unserialize 1 2 10 1

update_option 1 1 77 15

update_post_meta 1 1.5 37 2

update_user_option 1 2 4 2

update_usermeta1 2 2 - 10

wp_check_filetype 2 2.0.4 11 1

wp_check_filetype_and_ext 2 3 4 6

wp_die 1 2.0.4 110 14

wp_explain_nonce 1 2.0.4 0 2

wp_get_original_referer 1 2.0.4 1 2

wp_get_referer 2 2.0.4 13 4

197

File V.O. Revs Entry Point V.O. First Intro. Used by Uses

wp_remote_fopen 1 1.5.1 0 3

formatting.php1 15 845

esc_url 1 2.8 291 8

clean_url 1 1.2 - 2

make_clickable 2 .71 1 2

sanitize_file_name 2 2.1 5 9

sanitize_user 1 4 11 4

utf8_uri_encode 1 1.5 2 2

wp_targeted_link_rel 1 5.1 3 2

wptexturize 1 .71 7 8

wp-login.php1 12 527 File

I/post.php1 10 1388

_truncate_post_slug 1 3.6 3 1

get_post_meta_by_id 1 2.1 1 1

wp_delete_attachment 1 2 4 26

wp_get_attachment_thumb_file1 3 2.1 2 6

wp_insert_post 1 1 18 68

wp_untrash_post_comments 1 2.9 1 9

A/post.php1 10 380
edit_post 1 1.2 4 0

wp_create_post_autosave 1 2.6 3 14

wp_delete_attachment 1 2 4 26

ajax-actions.php1 9 806

wp_ajax_replyto_comment 1 3.1 0 24

wp_ajax_update_plugin1 3 4.2 0 16

wp_ajax_upload_attachment1 3 3.3 0 14

wp_ajax_wp_compression_test 1 3.1 0 5

kses.php1 8 192

safecss_filter_attr 1 2.8.1 2 7

wp_kses_attr 1 1 0 3

wp_kses_bad_protocol 1 1 6 2

wp_kses_bad_protocol_once 2 1 2 1

wp_kses_one_attr 1 4.2.3 1 7

wp_kses_uri_attributes 1 5.0.1 2 2

198

File V.O. Revs Entry Point V.O. First Intro. Used by Uses

default-filters.php1 8 341 File

AI/post.php1 8 602

_wp_get_allowed_postdata 2 4.9.9 5 1

_wp_translate_postdata1 4 2.6 5 11

bulk_edit_posts 1 2.7 0 24

edit_post 2 1.2 4 0

wp_create_post_autosave 1 2.6 3 15

http.php 5 148 wp_http_validate_url1 3 3.5.2 3 5

I/capabilities.php 3 299 map_meta_cap1 3 2 3 23

I/class-wp-customize-
widgets.php 3 133

WP_Customize_Widgets::sanitize_widget_instance1 3 3.9 2 6

WP_Customize_Widgets::get_instance_hash_key 1 3.9 2 1

1 Top 10 files and entry points with “update_usermeta” and “is_serialized” entry points tied for 10th place.

199

Table 5 signals a few noteworthy observations. Of the 30 entry points involved with two or more

vulnerabilities, 19 are housed within the top 10 files. Additionally, 8 of the top 10 files house one

or more entry points involved with two or more vulnerability occurrences, with functions.php

housing six such entry points. The merged top 10 table’s 12 files combined with the 10 other

files that house entry points with two or more vulnerability occurrences total 147 vulnerabilities,

indicating a concentration of recurring and non-recurring vulnerability surrounding only 2.3% of

the total source files and 0.3% of the total entry points. Of the 30 entry points, 66.7% were

introduced into the WordPress source code within the first five years of development. The

number of file revisions experienced by a file does not reveal any evident parallels between the

number of revisions and the involvement with vulnerabilities. Most vulnerability entry points

identified are related to sanitizing and altering content structured and designed for human

interaction through rendering through a web browser and human visitors. Three entry points,

“wp_die,” “wpdb::prepare,” and “esc_url,” are among the top 1% most referenced and relied

upon entry points. Lastly, although the “press_it” entry point did not meet the top 10 entry points

criteria, it is worthy of mention as part of the 30 entry points of multiple vulnerability

occurrences. The “press_it” entry point and associated file press-this.php are deprecated and,

with the release of “Billy Tipton” (4.9), have been refactored as a plugin. The “Press This”

functionality, creating a post from another website, had existed and experienced multiple code

reorganizations, transformations, vulnerabilities, and formalizations from the first release until

“Billy Tipton,” when it was removed to “streamline more niche functionality” out of what is

considered WordPress core source code (WordPress.org, “Press This”). From this level,

vulnerabilities appear to populate across many component-organized source files but are

concentrated within a small number of files and entry points. Many vulnerabilities are connected

200

to “older” code that has since been refactored, reorganized, or deprecated. While the

vulnerabilities have been discovered across multiple component functionalities, many relate to

sanitizing content and data that ultimately connect to user experience and interface rendered

through a web browser. Mapping the vulnerabilities to files and entry points helps locate code

regions to explore further. Before presenting an in-depth analysis of some vulnerabilities

discovered in “Nina,” a brief examination of the types and severity of vulnerabilities in

WordPress helps show patterns of focus or inattention in design and vulnerability considerations

within code.

Every published vulnerability includes details on the type of vulnerability and calculated

scores to describe the severity of the vulnerability, with a base, exploitability, and impact score

(common vulnerability scoring system). The Common Weakness Enumeration (CWE) lists and

describes the type of vulnerability or weakness to varying scales of specificity based on a

standardized, multi-tiered taxonomy of descriptors. The 333 identified core WordPress

vulnerabilities are categorized into 45 distinct vulnerability types. Cross-site scripting (“improper

neutralization of input during web page generation”) is the majority vulnerability type attributed

to one-third of the total vulnerabilities. The top 10 vulnerability types encompass 77% of the

total identified vulnerabilities. Most of the top 10 vulnerability types describe some type of

improper or unconsidered input into WordPress that generates unexpected (and unwanted)

results that permit harm to the WordPress ecosystem. Other top 10 vulnerability types range

from exposing sensitive or compromising information, permitting access to restricted resources,

and a series of un-categorized vulnerabilities that allow bad actors entry points into taking

control or alternating the developers’ designed processual progression of logic and control. With

201

a range of zero to 10, the mean vulnerability scores by year indicate a medium severity (4.0–6.9)

every year and overall, as demonstrated by Figure 10.

Figure 10 also shows a consistently high (7.0–10.0) severity for exploitability every year.

Although Figure 10 does not highlight some of the high-severity vulnerabilities encountered

within WordPress, it is essential to note that vulnerabilities were published with high severity

(10) base scores in 2007, 2009, 2009, 2011, and 2012; high severity exploitability scores every

year except 2010; and high severity impact scores in 2006, 2008, 2009, 2011, and 2012. By

combining data from Figure 8 and Figure 10, 2009, 2011, and 2012 convey WordPress’ most

severe vulnerabilities despite the years not having the highest number of vulnerabilities. Overall,

the range of vulnerability enumerations indicates that WordPress has experienced various

vulnerability types over time; however, the community is recurringly beleaguered by the same

types of vulnerabilities across its source code. The consistent exploitability score reveals the ease

with which bad actors can exploit these vulnerabilities, ultimately adding to the many risks of

using the software.

4.7

6.1
5.6 5.6

6.1 5.8
5.0

6.3

5.3
4.7

5.2
4.8 5.0 4.9

5.4 5.1 5.0 5.0 5.1

9.3 9.7
8.9

8.3
8.7 9.0

7.4

9.1
8.4 8.6 8.6 8.6

9.1
8.6 8.5 8.7 8.4 8.1 8.2

2.9

4.7 4.4
4.9

5.3
4.7 4.7

5.3

4.4

3.5
4.1

3.5 3.5 3.7
4.4

3.9 4.0 4.2 4.3

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

Average of CVSS2 Base Score

Average of CVSS2 Exploitability
Score

Average of CVSS2 Impact Score

Figure 10: Mean WordPress Vulnerability Scores by Year

202

As discussed in the “Nina Simone” section above, “Nina” had six security releases

published from February 2021 to March 2022 that addressed 11 discovered vulnerabilities. All

the uncovered vulnerabilities existed or were introduced in previous major versions dating as far

back as the “Count Basie” (3.7) release in 2013, except for CVE-ID 2021-29447. Although out of

scope for analysis, it is essential to note that CVE-ID 2021-29447 originates from an external

library that WordPress depends on for functionality, and, like “Nina,” the library was updated in

anticipation of the changes to PHP 8, which ultimately led to a vulnerability that was not patched

until the “Esperanza Spalding” (5.7.1) release in April 2021. Aside from the security release

5.6.6, which addressed an expired security certificate bundled with WordPress’ distribution, the

five other security releases addressed published vulnerabilities by modifying WordPress’ core

codebase or updating software libraries that the core is dependent upon to function. Table 6 lists

details of each release, including what versions contain the vulnerabilities and identifying the

locations involved in the core delegated code.

Table 6: Nina Simone Security Releases, with associated CVE IDs, Versions Affected, Files Involved, and Entry
Points

Release CVE ID Versions Files Involved Entry Points Core

5.6.3
2021-39200 4.7 - 5.7

I/blocks/latest-posts.php
I/rest-api/endpoints/class-wp-
rest-posts-controller.php

render_block_core_latest_
posts
WP_REST_Posts_Controll
er

Core

2021-29447 5.6 - 5.7 I/ID3/getid3.lib.php Lib

5.6.4
2018-19296 3.7 - 5.7 I/class-phpmailer.php Lib

2020-36326 3.7 - 5.7 I/class-phpmailer.php Lib

5.6.5

2021-39200 5.4 - 5.8 I/functions.php wp_die Core

2021-39201 5.4 - 5.8

A/about.php
I/assets/script-loader-
packages.php
I/script-loader.php

 Lib

5.6.7 2022-21661 3.7 - 5.8 I/class-wp-tax-query.php WP_Tax_Query::clean_qu
ery Core

203

The following analysis concentrates on the “Nina” (5.6.7) release. This release is the most recent

one involving vulnerabilities encountered only in WordPress’ core codebase. Four vulnerabilities

discovered in or during the “Art Tatum” (5.8) development cycle were patched and backported

or applied back to all major named versions back to “Basie” (3.7). The series of vulnerabilities

comprised three vulnerability types—SQL injection, cross-site scripting, and a general injection

type—that were all caused by improper neutralization of direct or indirect user-generated input

from interacting with “Nina’s” prescriptive state that can compromise the instance of

WordPress’ database or disrupt the understood-at-the-time designed output. The four

vulnerabilities were patched by changeset 52467 on its release date of January 6, 2022. The

patching involved five source code files that are further detailed below.

CVE-IDs 2022-21661 and 2022-21664 indicate that WordPress’ code improperly

constructs or does not entirely remove potentially harmful code, which is partially constructed by

user input, used to query databases, specifically the database coupled with an instance of

WordPress. The prescriptive PHP code generates delegated SQL code that, when assembled and

enacted as prescriptive code, allows syntactically correct yet systematically harmful code to be

Release CVE ID Versions Files Involved Entry Points Core

2022-21662 3.7 - 5.8 I/formatting.php
I/post.php

utf8_uri_encode
_truncate_post_slug Core

2022-21663 3.7 - 5.8 AI/upgrade.php upgrade_280 Core

2022-21664 3.7 - 5.8 I/class-wp-tax-query.php
I/class-wp-meta-query.php

WP_Meta_Query::find_co
mpatible_table_alias
WP_Tax_Query::find_com
patible_table_alias

Core

5.6.8 2021-20083 3.7 - 5.9
js/_enqueues/vendor/jquery/jqu
ery.query.js
I/script-loader.php

 Lib

204

executed through the database. The changeset explains that the code improves “sanitization”

within WordPress’ query class ecosystem, including WP_Meta_Query and WP_Tax_Query.

These classes are described as helping the primary WordPress query class, WP_Query, which

significantly controls WordPress’ output (as a web page) through what is called “The Loop,” and

it is designed to be the primary mechanism to query the instance and state of the WordPress’

ecosystem while enacted (WordPress.org, “WP_Query | Class”). The WP_Meta_Query class and

the “find_compatible_table_alias” entry point are housed in class-wp-meta-query.php, which has

had 59 revisions since the entry point was introduced in “Dinah Washington” (4.1) with changeset

29940. The patch revision changed only code line 815 within the entry point.

810 }
811
812 $clause_compare = strtoupper($clause['compare']);
813 $sibling_compare = strtoupper($sibling['compare']);
814 if (in_array($clause_compare, $compatible_compares, true
) && in_array($sibling_compare, $compatible_compares, true)) {
815 $alias = preg_replace('/\W/', '_', $sibling['alias']
);
816 break;
817 }
818 }
819
820 /**

The change modifies the assignment of the alias variable by searching and replacing any non-

alphanumeric characters stored within the variable sibling[‘alias’] to a “_”, which before the

change did not occur. The change effectively removes these non-alphanumeric characters that

are used within the SQL language to clarify and parse its delegated code and replaces them with

a less harmless SQL special character to prevent parsing confusion. Preventing parsing confusion

or removing ambiguity and unexpected (from as developer and design perspective) superfluous

code is a vulnerability focal point. This focal point creates and depends upon an abstractive

distancing and layering away from the PHP language into algebraically expressed regular and

SQL languages with unique syntax and constructs. The commentary code associated with the

205

“find_compatible_table_alias” method explains that it is designed to optimize database queries to

avoid additional computing by identifying compatible database tables to merge. The changes to

the WP_Tax_Query class follow a similar design theme of prescriptive code generating

delegated code to further its own self-referencing and self-actualizing as software.

The WP_Tax_Query class and its “find_compatible_table_alias” entry point are housed

in class-wp-tax-query.php, which has had 140 revisions since the entry point was introduced in

“Dinah Washington” (4.1) with changeset 29902. Like the WP_Meta_Query class, the class has

a “find_compatible_table_alias” method, although it is implemented differently. The code

approaches a similar logic pattern of optimizing the query to avoid additional computing and

code line 530 was changed the same way as its homonymous entry point. However,

WP_Tax_Query had another vulnerability identified that resulted in additional code changes.

CVE-ID 2022-21661 identifies another SQL injection vulnerability in the “clean_query” method

within the class. The entry point was introduced in “George Gershwin” (3.2), with changeset

17686, and the file has had 312 revisions since its introduction. The patch changeset 52454

introduced four new lines of code to “improve sanitization within WP_Tax_Query” by

constructing a check for certain value conditions before the value assignment of a query’s terms,

using the same assignment statement of the previous revision when the key field intended to be

queried has the value of “slug” or “name” and a new assignment statement in all other

conditions. The new delegated code introduced lines 559–563 into the “clean_query” method,

designed to “validate a single query,” as follows.

554 } elseif (! taxonomy_exists($query['taxonomy'])) {
555 $query = new WP_Error('invalid_taxonomy', __('Invalid
taxonomy.'));
556 return;
557 }
558
559 if ('slug' === $query['field'] || 'name' === $query['field']) {

206

560 $query['terms'] = array_unique((array) $query['terms']);
561 } else {
562 $query['terms'] = wp_parse_id_list($query['terms']);
563 }
564
565 if (is_taxonomy_hierarchical($query['taxonomy']) &&
$query['include_children']) {
566 $this->transform_query($query, 'term_id');
567
568 if (is_wp_error($query)) {

These changes are also designed to prevent parsing confusion by forceful coalescence of the

assembled delegated SQL code into a specific and predictable format by the prescriptive PHP

code. This focal point effectively sanitizes the constructed SQL code like the previous revisions

made to the “find_compatible_table_alias” methods. However, it does so with more complex

reasoning within the code. Unlike the democratizing publishing aesthetic presented through

WordPress’ user interface, the code further restricts and restrains input and content from

preventing machinic confusion (and vulnerability in this case) at the intersection of code borders

between PHP and SQL. When the conditional tests are met within the enacted environment, the

code branches and abstracts into additional layers of WordPress’ ecosystem of code to “sanitize”

and stabilize itself from the direct introduction of unknown and unexpected code payloads.

CVE-ID 2022-21661 presents a complex cross-site scripting vulnerability. Like CVE-IDs

2022-21661 and 2022-21664, the vulnerability involves a design that does not account for all

user interactions and allows malicious code to be injected and stored in the instance of

WordPress’ database. Unlike the other two vulnerabilities, this vulnerability is not related to

controlling the dynamic assembling of delegated SQL code; it permits an attack to store

delegated JavaScript code to be enacted and control WordPress’ user interface through the

webpage rendering process that offloads delegated code to a web browser to interpret and enact.

Once interpreted and enacted, the prescriptive JavaScript code can control the user experience

through the user interface. The changeset explains that the code patch is related to “formatting”

207

and “correctly encod[ing] ASCII characters in post slugs.” The vulnerability involves two entry

points, the functions “_truncate_post_slug” and “utf8_uri_encode,” which are housed in post.php

and formatting.php, respectively. The “_truncate_post_slug” function was introduced in “Oscar

Peterson” (3.6), with changeset 23420, and post.php has had 507 revisions since its introduction.

The “utf8_uri_encode” function was introduced in “Strayhorn” (1.5), with changeset 1636, and

formatting.php has had 801 revisions since its introduction. For “_truncate_post_slug,” only code

line 4731 was changed, adding the value “true” as the third parameter to the function call.

4725function _truncate_post_slug($slug, $length = 200) {
4726 if (strlen($slug) > $length) {
4727 $decoded_slug = urldecode($slug);
4728 if ($decoded_slug === $slug) {
4729 $slug = substr($slug, 0, $length);
4730 } else {
4731 $slug = utf8_uri_encode($decoded_slug, $length, true);
4732 }
4733 }
4734
4735 return rtrim($slug, '-');
4736}

The changeset modified 10 lines within the function “utf8_uri_encode,” adding additional

commentary code and new delegated code to calculate and check when to encode ASCII

characters. The new delegated code introduced lines 1148, 1163–1166, 1169, and 1170, with line

1148 changing the function declaration to have the new third parameter,

encode_ascii_characters.

1158for ($i = 0; $i < $string_length; $i++) {
1159
1160 $value = ord($utf8_string[$i]);
1161
1162 if ($value < 128) {
1163 $char = chr($value);
1164 $encoded_char = $encode_ascii_characters ?
rawurlencode($char) : $char;
1165 $encoded_char_length = strlen($encoded_char);
1166 if ($length && ($unicode_length + $encoded_char_length)
> $length) {
1167 break;
1168 }

208

1169 $unicode .= $encoded_char;
1170 $unicode_length += $encoded_char_length;
1171 } else {
1172 if (count($values) == 0) {
1173 if ($value < 224) {
1174 $num_octets = 2;

These changes are designed to check if a string’s character has a value within the ASCII

character set range and encode it for rendering through a web browser, using PHP’s internal

“rawurlencode” function when the function has its third parameter set to “true.” Across all of

“Nina’s” codebase, the “_truncate_post_slug” is one of only two functions that use the

“utf8_uri_encode” function. Although the “_truncate_post_slug” function is used by three other

functions, these functions, in turn, are used by other functions, creating a cascading effect that

blurs the focal point’s criticality by its chained and indirect use across the ecosystem. While the

code changes prevent this cross-site scripting attack, the focal point highlights another

occurrence of a code border intersection between PHP and HTML and JavaScript and their

technocultural entanglements within them toward encoding and correctly displaying content.

CVE-ID 2022-21663 presents another type of injection vulnerability that involves the

design failing to adequately counteract specially crafted input that generates unaccounted and

unexpected output that contains delegated code. The output is then unnoticeably chained and

passed through additional prescriptive code that ultimately permits malicious output-turned-code

to be enacted within the ecosystem. Like the other three vulnerabilities, this vulnerability relates

to creating a payload of delegated code that can be inserted in such a way as to become

prescriptive code. Unlike the other three vulnerabilities, this vulnerability permits an attack with

delegated PHP code, specifically through the language’s systemized approach and properties of

data and logic representation (object-oriented) and injecting code when an object is created and

instantiated, using the language and its constructs against itself for further exploitation. In this

209

case, the lexia of unpatched code directly and blindly uses PHP’s core “unserialize” function

instead of WordPress’ lexia of explicit code designed to help prevent malicious objects from

being created within WordPress through serialization or marshaling (object code to data) and

deserialization or unmarshalling (data to object code). WordPress heavily utilizes serialization

within its database and code to move between database and code systems. The changeset

explains the code patch “avoid(s)…unnecessary” use of PHP’s “unserialize” function. The

involved entry point is the function “upgrade_280” housed in wp-admin/includes/upgrade.php,

which has had 358 revisions since the entry point was introduced in “Chet Baker” (2.8) with

changeset 10553. The pre-patched code is as follows.

1657 if (is_multisite()) {
1658 $start = 0;
1659 while ($rows = $wpdb->get_results("SELECT option_name,
option_value FROM $wpdb->options ORDER BY option_id LIMIT $start, 20")) {
1660 foreach ($rows as $row) {
1661 $value = $row->option_value;
1662 if (! @unserialize($value)) {
1663 $value = stripslashes($value);
1664 }
1665 if ($value !== $row->option_value) {
1666 update_option($row->option_name, $value);
1667 }
1668 }
Code lines 1661 and 1662 were changed in the patch version to the following:
1661 $value = maybe_unserialize($row->option_value);
1662 if ($value === $row->option_value) {

The designed patch no longer suppressively deserializes and blindly reconstructs the PHP object

from the database, which can contain malicious delegated code under particular circumstances

and environmental conditions. The change to using WordPress’ “maybe_unserialize” function

corrects the disequilibrium within the processual ecosystem of serialization of data and code that

occurs within WordPress through its “maybe_serialize,” “maybe_unserialize,” and

“is_serialized” functions that would otherwise more readily permit harm. Equilibrium is a critical

two-fold environmental necessity because of WordPress’ design. Due to early development

210

decisions, the design demands that all code-data serialization pairings follow the same

prescriptive procedures for security and backward compatibility.

While serialization and deserialization of data and code are typical design and

programming practices supported by many programming languages and file formats,

serialization and deserialization necessitate developers to consider and anticipate a wide field of

wholly unanticipated user interaction and input into the system. The PHP Manual warns readers

to “not pass untrusted user input” to PHP’s “unserialize” function under any circumstances,

emphasizing to “make sure data is not modified by anyone but you” (The PHP Group). With

“Strayhorn” (1.5) and changeset 1478, serialization was introduced to WordPress’ core

codebase, using PHP’s built-in functions to retrieve and set configuration options within

WordPress’ database. The delegated and commentary code in the “Strayhorn” (1.5) versions of

the two now-deprecated option-retrieving functions, “get_settings” and “get_alloptions,” reveal

the developers’ early brazen and bumptious attitudes towards serialization and delegated code

needed to control user input. For the “get_settings” function, the following code lexia shows the

suppressive deserialization using a pun for variable assignment.

327 if (!$option) :
328 $cache_nonexistantoptions[$setting] = true;
329 return false;
330 endif;
331
332 @ $kellogs = unserialize($option);
333 if ($kellogs !== FALSE)
334 return apply_filters('option_' . $setting,
$kellogs);
335 else return apply_filters('option_' . $setting, $option);
336 endif;
337}

For the “get_alloptions” function, its commentary code includes an overworked design quote

from Douglas Adams’ Mostly Harmless as a form of complaint about the user and the additional

delegated code that follows it to control the values stored within configuration options. The

211

commentary complaint and code line 358 (in the “Strayhorn” release) were introduced before the

“Strayhorn” release, with changeset 885 on February 16, 2004. The following code lexia shows

the “Strayhorn” release, in which lines 359 and 360 were introduced to further control the

growing “underestimation” of how people interacted with WordPress.

355 foreach ($options as $option) {
356 // "When trying to design a foolproof system,
357 // never underestimate the ingenuity of the fools :)" --
Dougal
358 if ('siteurl' == $option->option_name) $option-
>option_value = preg_replace('|/+$|', '', $option->option_value);
359 if ('home' == $option->option_name) $option->option_value
= preg_replace('|/+$|', '', $option->option_value);
360 if ('category_base' == $option->option_name) $option-
>option_value = preg_replace('|/+$|', '', $option->option_value);
361 @ $value = unserialize($option->option_value);

The two function examples above demonstrate the beginning of a persistent tone throughout the

code history of much of the early years of WordPress development that has subsequently shifted

into more formal rhetoric. The serialization design decisions created more problematic issues

throughout their framing and implementation across the WordPress ecosystem.

The triad of “serialize” WordPress core functions was introduced early in development.

The “maybe_unserialize” function was introduced in “Duke Ellington” (2.0) as a bug fix (ticket

#1980). The associated changeset 3234 declared the change to be “[p]art of a healthy balanced

breakfast,” referring to the earlier cereal pun code for the last time as the change removed the

delegated code directly referencing the “unserialize” function and abstracting as the first version

of “maybe_unserialize,” which was promptly fixed with changeset 3239 in less than 24 hours

due to another bug (ticket #1988). The “is_serialized” and “maybe_serialize” functions were

introduced shortly after in the only named security release (baby “Ronan”) in “Duke Ellington”

(2.0.5). In “Nina,” the delegated and associated commentary code of the “maybe_serialize”

212

function helps reveal more of the underlying, long-lasting, persistent design issue, as shown

below.

589/**
590 * Serialize data, if needed.
591 *
592 * @since 2.0.5
593 *
594 * @param string|array|object $data Data that might be serialized.
595 * @return mixed A scalar data.
596 */
597function maybe_serialize($data) {
598 if (is_array($data) || is_object($data)) {
599 return serialize($data);
600 }
601
602 /*
603 * Double serialization is required for backward compatibility.
604 * See https://core.trac.wordpress.org/ticket/12930
605 * Also the world will end. See WP 3.6.1.
606 */
607 if (is_serialized($data, false)) {
608 return serialize($data);
609 }
610
611 return $data;
612}

The “Nina” release of the “maybe_serialize” function is relatively uncomplicated, referencing

only one other WordPress core function, “is_serialized,” and has experienced only a few changes

since its introduction in “Duke Ellington” (2.0.5). The function’s introduction was a result of a

bug (ticket #2591) and vulnerability CVE-2006-6017, which describes WordPress as “not

properly stor[ing] a profile containing a string representation of a serialized object.” Changesets

4384 and 4418 made substantial changes to multiple files, including the introduction of the

“maybe_serialize” and “is_serialized” functions and a complete rewrite of the

“maybe_unserialize” function, with the changes described to “prevent users from entering strings

that will be interpreted as serialized arrays/objects on the way out.” The two statements in the

commentary code point to two other major focal points. Ticket #12930 describes a serialization

bug that was introduced through changeset 13673. While the changeset was designed to create

213

consistency in the type of data received among a series of functions, its introduction produced

errors across the WordPress community. Though the errors were initially misattributed to

plugins wrongly using the API, the developers discovered the changes to the “maybe_serialize”

function were unintentional, so they were reverted due to the number of plugins and WordPress

instances that would ultimately generate errors as a result. While double serialization is generally

unnecessary, it remains in the code to appease the WordPress community. Despite the hyperbole

of the world ending mentioned in the commentary code, “Oscar Peterson” (3.6.1) was a security

and maintenance release that addressed CVE-2013-4338, describing that WordPress “does not

properly determine whether data has been serialized,” through changesets 25320 and 25325. The

changes modified the “is_serialized” function to accept an additional optional parameter that,

when flagged, the new code within the function would take an alternative “stricter” approach of

checking the data to assert whether it was serialized or not. The default flag is to use the stricter

approach; of the 13 call references to the “is_serialized” checking function in “Nina,” only

“maybe_serialize” is flagged to not use the stricter approach for checking. The changes to the

trio serialize functions highlight more cautious and almost-paranoid attitudes in re-design

decisions about serialization, which now involve more code checking of data and commentary

recognition of its broad-reaching influences within the broader WordPress community. Despite

the historical efforts, which show a shift from conceit to reticence in the code, to avoid the

dangers of deserialization, WordPress has encountered multiple vulnerabilities that directly or

indirectly result from developers underestimating “the ingenuity of the fools.”

Although the “upgrade_280” function is a vulnerability focal point because of its

involvement with a vulnerability, it demonstrates that a focal point can be constituted through its

imbalanced use of abstractive distancing and layering from the PHP language and anchored in a

214

historical series of code changes. The layering and anchoring that occur in the early development

become an enframing and encoding within the delegated code, following the patterns of digital

media, which create a scaffolding of code layers to sustain and further its own self-referencing

and self-actualizing as software. All the vulnerabilities discussed are due to some level of

abstracting away and deferment from the immediacy of the functional programming language

designed, like WordPress’ serialize functions that build upon PHP’s serialize functions. The

vulnerability focal points likewise chain or string together the abstractions, pushing across or

down to other locations of PHP code and other languages within the WordPress ecosystem,

creating a series of assumptive dependencies and deferment of enactment. Ultimately,

abstraction creates additional complexity and an absence of the plainness of language, which

requires higher cognition toward the chained consequences throughout the processual linking

and referencing within the delegated code. The complexity of multiple levels of abstraction

increases the difficulty of thoughtful reflection on the meaning and location of vulnerability. The

last section explores mapping vulnerability focal points to the processual code focal points for

commonalities.

Mapping to Code Focal Points

Profiling the WordPress prescriptive code captured 1,336 distinct entry points across 143

source files by call count. The WordPress core code accounts for 943 entry points, and direct

PHP calls account for the other 393 entry points. The vulnerability analysis identified 333

vulnerabilities in WordPress’ core code across its development lifecycle, involving 234 source

files and 164 entry points. Most of the files and entry points involved with vulnerability remain

within the “Nina Simone” release of 946 source files and over 8,900 entry points, although some

have changed names and moved locations, like the “update_option” moving to options.php with

215

“Grant Green” (3.4). Additionally, most files now follow a convention of grouping and housing

entry points by functional components within the ecosystem of files and code. Hence, code is not

only separated or organized based on object representation but component representation, such

as database, editor, canonical, privacy, performance, taxonomy, themes, formatting, JavaScript,

security, and 74 more. Despite the locational and logical challenges with the

compartmentalization of the code, merging the processual and vulnerability data offers some

additional insight into locating and refining focal points within the code.

Combining the vulnerability and processual focal points generates a map to and from the

delegated code that pinpoints where within the code vulnerabilities are involved with how often a

particular code is enacted and revised. Akin to a busy, large traffic intersection, these combined

focal points present locations within the delegated code with a history of more frequent risk and

vulnerability that can be traced through their morphology and evolution across development

cycles that the changeset messages fail to acknowledge. For “Nina,” the merged processual and

vulnerability focal points generate 26 entry points across 13 source files. From the top 10

vulnerability entry points, only the “is_serialized” and “map_meta_cap” focal points overlap.

Seven focal points overlap with the 30 vulnerability entry points involved with two or more

vulnerability occurrences. There are only six vulnerability focal points within the top 100 most

called entry points, none of which are within the top 10. Table 7 summarizes the merged and

mapped focal points.

Table 7: Mapped Processual and Vulnerability Focal Points
Note: The “update_option” entry point was moved to option.php with Grant Green (3.4) and changeset 19602.

File Call
Count
Rank

LOC VO Revs Entry Point Call
Count
Rank

VO

I/canonical.php 100 527 1 231 redirect_canonical 628 1
I/capabilities.php 48 596 3 299 map_meta_cap 310 3

216

Table 7 highlights one of the limitations of profiling process data and the method used to capture

it. All the profiling data consists of a “front-side” view of “Nina Simone,” capturing only calls

involved with controlling and rendering content through a web browser without higher

WordPress privileges. None of the administrative entry points were profiled, although the

vulnerability data indicates that many of those source files were involved with vulnerabilities.

Table 7 reveals that files with a high volume of calls also have high vulnerability involvement,

with four of the top 10 vulnerability files ranking in the top 12 call count rankings. Table 7

File Call
Count
Rank

LOC VO Revs Entry Point Call
Count
Rank

VO

I/class-wp-
query.php 19 2,287 3 770 WP_Query::parse_query 343 2

I/formatting.php 7 2,982 15 845
esc_url 48 1
wptexturize 92 1
utf8_uri_encode 225 1

I/functions.php 5 3,689 19 1763

maybe_unserialize 16 1
is_serialized 17 2
is_blog_installed 445 1
wp 558 1

I/general-
template.php 33 2,317 3 822 get_the_generator 823 1

I/kses.php 12 1,479 8 192

wp_kses_bad_protocol 50 1
wp_kses_bad_protocol_once 51 2
wp_kses_attr 791 1
wp_kses_uri_attributes 897 1

I/link-template.php 17 1,837 2 693
wp_shortlink_wp_head 639 1
get_edit_post_link 673 1

I/option.php 11 1,087 0 1254 update_option 744 1

I/pluggable.php 34 1,248 21 635
get_userdata 443 1
wp_create_nonce 469 2
wp_validate_auth_cookie 746 2

I/post.php 10 3,489 10 1388 get_posts 440 1
I/post-template.php 52 936 2 580 get_the_content 645 1

I/wp-db.php 15 1,729 5 445
wpdb::query 117 1
wpdb::prepare 190 2
wpdb::set_charset 573 1

217

illustrates that source files with a high density of lines of code also influence vulnerability

occurrence, notably functions.php, post.php, and formatting.php, which are among the top 10

most dense files across all the 946 source files. The merged mapping of vulnerability and

processual focal points offers additional considerations and approaches to discussing patchwork

code and, more broadly, digital and computational thinking and the sense of risk and

vulnerability within open-source software.

Summary

WordPress’ code has increased in code density by 2,063% from its first release to “Nina

Simone” (5.6.8). The minor releases illustrate incremental changes to code through patchwork to

protect against vulnerabilities and correct minor defects in code; however, the changes overlay or

conceal past flaws of logic and valuations of security and functionality while simultaneously

adding and removing functionality through code. The effects are lasting, regardless of design

change rationale, within the code and experienced through the software, like with

“capital_P_dangit” and “my-hacks,” which are rhetorical points of interest within the code.

WordPress has become an ecosystem of interdependent code in which one code change can have

significant downstream effects. Profiling the “space of flows” or the enacted prescriptive code

within WordPress demonstrates the interdependency and chaining among code entry points. It

also identifies processual focal points, intersections of rhetorical considerations of potential risk

and vulnerability, by frequency of calls to an entry point by other code. Similarly, examining

published vulnerabilities identifies vulnerability focal points that further reveal design decision-

making and approaches through code changes. Some of these decision decisions illustrate a shift

in the written code from conceit to reticence, like the triad of “serialize” functions, while others,

like “capital_P_dangit,” maintain a performative narcissistic attitude. Combining focal point data

218

allows mapping locations within code to highlight relationships between the types of focal points

for further consideration on future design decisions and approaches to codework and source

code. Chapter 6 discusses some considerations and approaches through digital and computational

thinking, patchwork coding and the notion of transparency, risk and vulnerability in code, and

different approaches to coding.

219

CHAPTER 6: CONSIDERATIONS AND APPROACHES WITH CODE

AND IN THE DIGITAL

This chapter discusses three theoretical considerations and approaches to code and the

decision-making of design and development expressed through code, resulting in rhetorical,

vulnerability, and cultural entanglement. Accepting these entanglements as a critical juncture of

attention and reflection, the discussion is rooted in the software and critical code analyses and

findings of the two previous chapters and combined with the existing scholarship to offer

generalizable observations about code and coding practices. Code’s emergent properties help

illustrate how empathy, aesthetics, language, transparency, and trust become framed, entrenched,

and encoded in software design and how people perceive the software through its enframing. The

first section considers the influence of digital and computational thinking with the sense of risk

and vulnerability related to code and its properties. The second section connects the approaches

of patching code with the treatment of vulnerabilities and how language and code shape the

sense of control, trust, and empathy. The last section presents a consideration of coding through a

combined rhetorical-cultural lens to build a better understanding of the influences of code (at all

levels) through its framing and encoding that ultimately affects how it is created, viewed, and

consumed through its continual digital and dynamic enframing.

Considerations of the Distributed Digital

The distributed digital recalls the distributedness of media described by Kallinikos and

Manovich, the continuously changing digital ecosystems that have transformed and transferred

our sense of self and communication and the ways it is distributed as and through networked

software. Distributed digital takes a narrower view of cyberspace, focusing on the “hot”

interconnectedness, digital, and structures through which interactions occur. For this project, the

220

concentration is code within the distributed digital, specifically WordPress, and how digital and

computational thinking and the sense of risk and vulnerability influence coding decisions and

code. As delegated and prescriptive language, code presents a two-fold effect within a digital

ecosystem. Code frames or creates structure, and it enframes, regulating control within the flow

of the enacted digital space. While WordPress makes up only a fraction of all the computational

space, seemingly unassuming within the vastness of the distributed digital, the distributedness

and lossless capability to distribute code and software emphasize the formidable influence within

the more prominent digital mediated space (and the space itself).

Lawrence Lessig portrays the distributed digital as building a set of control and protocols

through a particular constitution, not of law, but an “architecture…that structures and constrains

social and legal power, to the end of projecting fundamental values” that is rapidly changing or

rebuilding itself from its early architecture (4). Lessig depicts a stark binary, stating, “we can

build, or architect, or code cyberspace to protect values that we believe are fundamental…[o]r

we can…code cyberspace to allow those values to disappear” (6). Lessig and Chun identify

generational iterations of re-architecture within the distributed digital and the multi-layered

software and platforms that run atop or through it. We have witnessed and experienced

fundamental changes in how the internet and web applications function, from the vision of

researchers and hackers to commerce to government, which Lessig believes is the third

generation of regulation and control (7). Chun calls attention to broader controlling factors, such

as corporate regulation, capitalism, and publicity (Control and Freedom 67). In Protocol,

Alexander Galloway highlights similar concerns through internet communication protocols

(TCP/IP) and the web (domains, HTTP, HTML). Galloway, along with Chun, emphasizes the

intolerance exhibited in protocol and its enacted code, coding (and encoding); referencing

221

TCP/IP, Galloway asserts that “protocol is a technique for achieving voluntary regulation within

a contingent environment” (7). In Chun’s examination of networked media, Chun outlines the

polarity of freedom and control as it relates to the function of hardware and software protocols,

such as ethernet cards and network traffic (Control and Freedom 17). Code interweaves these

polarities of freedom and control and protecting values, allowing them to dematerialize through

its delegated and prescriptive states.

As code reaches its terminal velocity, arranged to the point of generating functional

prescriptive code, the interweaving momentum builds into additional tensions of control and

freedom and scenes of removal and protection of cultural values and ideology. The perceptions

of this polarity seem to shift as software bootstraps into prescriptive dominance. Its primitive

media layers become more seemingly neutral, static, and accepted as the norm, while additional

code builds upon the layers, which in its prescriptive state adds a sense of movement and

freedom most easily recognized as software becomes a digital platform. The digital platform is

the fundamental sense of human empowerment and freedom within the control of the ecosystem

and more extensive distributed digital. While the prescriptive code layers below seem static and

entrenched within a particular framing, the prescriptive states above give all the layers a motion

and blurring of control and freedom that are ultimately controlled by billions of binary

calculations cycling every second through engineered and inscribed pathways of silicon and

gold.

Computational Thinking

For the distributed digital, software development is instrumental to its conceptual and

physical existence. Software development involves designing, coding, distributing, and

deploying processes and practices. The design and creation of code are a mix of engineering

222

principles and creative, digital, and computational thinking–“solving problems, designing

systems, and understanding human behavior”–that translates existing socio-technical protocols,

ideology, and cultural values into code (Wing 33). Kitchin and Dodge state that “code is an

expression of how computation both capture the world within a system of thought…and a set of

instructions that tell digital hardware and communication networks how to act in the world” (43).

The design and creation process encounters multiple iterations of specifications and numerous

translations that are a “highly ramified process” that, as code, is an explicitly linked chain of

translations that “depends on shared, but tacit, knowledge” (Fuller and Goffey 81). The

complexity involved in design and creation is threefold, 1) the translation and interpretation of

design to code, 2) the arrangement and styling of code, and 3) the understanding of the media

layers (hardware or other software) within and surrounding the code and codebase that constrain

and influence the arrangement of code and software design. Hayles’ concept of the

computational regime, paralleling Alan Turing’s universal machine, plants the kernel of the

computational structuring within software and platforms. As Hayles explains, it “starts with a

parsimonious set of elements and a relatively small set of logical operations. Instantiated into

some kind of platform, these components can be structured so as to build up increasing levels of

complexity, eventually arriving at complexity so deep, multilayered, and extensive as to simulate

the most complex phenomena on earth” (My Mother Was a Computer 18). As shown in the

previous chapter, developers and designers take multiple approaches to organizing (and

reorganizing) the conceptual, structural, and processual design within the WordPress source

code, like arranging source files by codified components or concepts; creating naming

conventions and style guides for code; and developing reusable code classes that represent

intricate but comparable objects and their behaviors within the computational environment.

223

Borrowing from Wing, Berry and Fagerjord describe this computational sense-making and

simplifying the complexity as decomposition (46). While the decomposition of the problem

helps simplify the complexity of the conceptual design by establishing discrete layers and

procedures, the constructed code presents another form of computational complexity

problematized through its arrangement and style in its delegated and prescriptive states.

In situating UNIX, which WordPress parallels in code arrangement and styling, Tara

McPherson analyzes Eric Raymond’s The Art of UNIX Programming, noting how the rules

identified by Raymond about programming “implicitly translate into computational terms the

chunked logics of the lenticular,” calling forward the rule of modularity (Feminist in a Software

Lab 54). The system is “controlled in part by the “rule of modularity,” which insists that code be

constructed of discrete and interchangeable parts that can be plugged together” (McPherson,

Feminist in a Software Lab 54). WordPress’ design follows a similar modular approach with its

delegated code and organization of its code across source files. While McPherson recognizes

some of the benefits of this coding approach, such structuring of code draws attention to “a

world view in which a troublesome part might be discarded without disrupting the whole, ”

isolating or ignoring critical design factors and considerations (McPherson, Feminist in a

Software Lab 55). The chunking of software and its code works two-fold as control and isolation,

maintaining the independence of the software from other software and pushing back or removing

the visibility of software’s operations, effectively preventing a holistic view or experience.

Adding to the polarities identified by Chun and Lessig, McPherson demonstrates how the

arrangement of modularity, a result of decomposition, within software and code disadvantages a

complete sociotechnical interpretation or decoding and creates conflicts and confrontations of

meaning, knowing, and understanding.

224

WordPress as software and code is challenged by conflicts and confrontations of

complexity that manifest through community expectations and software stability as bugs,

vulnerabilities, and gaps of design consideration and translation of code, as outlined by

McPherson, Chun, Fuller, Goffey, and others. The source code analysis from the previous

chapter illustrates WordPress’ complexity through the volume of code changes, increasing

dependency on older code, and volume of new code. While the observations illustrated are about

delegated code, they support Mackenzie’s observations that each software version retains,

repeats, and reinforces the existing practices and ideology and extends the settled code to

incorporate additional design features or fixes that were not initially conceived (80). Although

the source code analysis from the previous chapter illustrates that most of the original code has

been removed or modified, WordPress retains most of its early conceptual or abstract

functionality and features. While seeming the same processually, the delegated code has been

heavily modified across time, shifting the pathways and flows of prescriptive code and

reiterating the same code slightly (and sometimes dramatically) differently. Hayles offers that

code’s “complexity inheres neither in the origin nor in the operation of difference as such but in

the labor of computation that again and again calculates differences to create complexity as an

emergent property of computation” (My Mother Was a Computer 41). The consistent

computational repeatability and repeatability with differences (variables) create the bedrock

layers of code that eventually fossilize, reinforcing user expectation of function and results

through interface and encoding “chunked” and isolated ideology that rarely is questioned as

frequently as the surface and new layers of code and dulls the sense of risk, power, and

vulnerability that the layers might contain.

225

Although computational thinking helps reduce the complexity of the problem to translate

into code, it also increases the complexity of the code through its organization and use of

abstraction. Fuller observes that “as a program’s complexity increases, and concomitantly that of

the problem it deals with, there is an increasing difficulty in accurately stating the most concise

means of answering it” (“Elegance” 89). Due to the volume of code abstractions and interacting

layers of abstractions within WordPress’ core codebase, some of the older code entry points have

remained completely unmodified over long stints despite being cultural, processual, and

vulnerability focal points. Furthermore, the same internal dependency on fossilized (or “stable”)

code exists with interface interactions with other code and software required for WordPress to

operate as software. As demonstrated through the analysis of “Nina” (5.6), most vulnerability

focal points patched also affected WordPress versions released up to nine years earlier. At least

four vulnerabilities are attributed to external code libraries that are part of WordPress’ code

functionality but not its core codebase. In framing a theoretical approach to the complexity of

interaction and time scale above and below the computational fold of the human interface,

Hayles offers that the software and other digital media are “constantly changing assemblages in

which inequalities and inefficiencies in their operations drive them toward breakdown,

disruption, innovation, and change” (Hayles, How We Think 13). The constantly changing

assemblages occur at different times and places for the machine (and those designing changes to

it at different levels) and people interacting with it at different levels. For WordPress, the

constant changes add to the conflicts and confrontations of computational complexity that

obscure a holistic two-dimensional view of code. One dimension of a holistic view involves

understanding the overall textual breadth and capability through the landscape of the delegated

code and its modular design through the use of objects and file organization. The modular

226

approach to design and depth of chained codified abstractions creates constant shifting layers of

reliability and dependence with code changes at different times while simultaneously anchoring

to crucial conceptual and ideological focal points within the code. Thus, Hayles’ computational

regime outlined in My Mother Was a Computer and Finn’s “age of the algorithm” or

“computationalist definition” of a worldview comes forward as the philosophical framework that

describes and forecasts WordPress’ development (Finn 21). WordPress exhibits long-term

behaviors, aesthetics, and confrontations through computational thinking rooted in its ideologic

framing of code.

Sense of Risk and Vulnerability

The origin story of vulnerability entering the lexicon of technology and the digital

computing world is beyond this project's scope. However, some early military motivators

included national security and the desire to have a reliable, decentralized, and distributed

network to communicate, which the US’ (now named) Defense Advanced Research Projects

Agency’s Advanced Research Projects Agency Network (ARPANET), the precursor to the

Internet, established (Lukasik 10). From Lukasik’s view, ARPANET was the technical solution

to carry out the military’s need for “command and control;” however, Lukasik notes that J. C. R.

Licklider, the primary visionary of ARPANET, recognized command and control as a two-fold

problem, one of controllable and reliable machine processing and one of usable human interface

(7). Other forms of latent protection and control exist in the design of modern computing through

hardware-level communication and logic error correction for processors and memory, and with

capacitors and voltage modulators at the integrated circuit level as control mechanisms to

stabilize and maintain power. These forms of control are designed to protect systems from

anticipated risks or the possibility of risks through a degree of tolerated circumstances and

227

conditions. Regarding computational thinking, software systems are designed for “prevention,

protection, and recovery from worst-case scenarios through redundancy, damage containment,

and error correction” (Wing 34). These designed protections propagate throughout electronic

digital media layers as feedback loops and self-preservation that progress in complexity as layers

and subsystem layers are added within the code ecosystem and distributed throughout the larger

ecosystem and distributed digital.

The advent of software worms and viruses (malware) marks a paradigm shift in

computing. Jussi Parikka points out, “after the infamous 1988 Morris worm incident, viruses

became a widely recognized (and times overestimated) danger” (276). Malware is anti-

vulnerability; it is software designed to aggressively seek out other software vulnerabilities to

exploit them to disrupt or harm the larger ecosystem. The Morris worm, as one of the first

internet-distributed malware and the subsequent federal conviction of its developer Robert

Morris, brought forward the public recognition of the vulnerability in computing; as Parikka

observes, “systems that were somewhat alive were never totally controlled, which also exposed

society at large to risk” (277). Code “spoke” in a new way, aimed at disruption instead of

seamless mediation and transfer of control. However, Morris’ worm code misspoke as its flawed

computationally thought-out design—a bug in the code—ultimately led to its detection. Adam

Barr points out that “part of the problem that led to the Morris worm was that nobody could

imagine why anybody would write their own [software]…that would misbehave in this way”

(86). Nonetheless, the code represented a new act of speech that Morris intended to demonstrate

a lack of security in computer networks.

While enacted code can be seen as prescriptive, enframing, and performative, with its

velocity governed by hardware, developers and the surrounding community determine the vector

228

of code through their understanding and ways of seeing the world. Prescriptive code, like speech,

has an immediacy of utterance that takes place “the moment of saying it,” creating a seemingly

uninterruptible flow of assertion and output (Cox and McLean 35). However, prescriptive code,

like speech, does not always do what designers mean it to say the moment of saying it, nor does

it always say what it means. There is a “gap between expression and execution” that neither the

delegated nor prescriptive code makes obvious (Raley). The disconnect between meaning and

saying creates computational gaps or flaws in the design that is further complicated by the

chained abstractions of logic flow and cognitive opacity generated through computational

thinking. Drawing from Latour, Introna, adding to the notion of disconnection, states, “software

code can enact the intentions of designers wherever and whenever it runs, but not exactly.

Encoding extends and translates agency but not necessarily its assumed intentionality (which was

itself, of course, encoded in the first instance)” (117). At that moment of execution, however, the

utterance of code and its act have already been carried out, hardware cycling forward towards the

next set of instructions to maintain the space of flows and the ultimate interface. The code or

portion of it has transformed into a performative mouthpiece and veneer, embodied with the

designers' framed and delegated intentions. Code, like text and speech, requires a sense of

representation or reference that depends on the foundational layers of its software codebase and

the layers of software and hardware that assert their view and control upon and through it.

Though fraught with vulnerabilities, WordPress’ core codebase and plugins are not designed to

make such a direct statement like the Morris worm. WordPress acts as gray media that operates

and influences below the folds of the human interface, presenting an unassuming, safe, and mild-

mannered surface or platform with a much more chaotic and vulnerable undersurface.

229

For WordPress, the sense of risk and vulnerability takes on Brown’s notion of software

hospitality that embraces and welcomes all interaction. WordPress’ core code frames the

controlled embrace of direct human interaction, indirect interactions through APIs, and

extendibility through third-party plugins and “hacks.” WordPress’ sense of hospitality not only

increases its popularity by inviting the community to participate in its making and maintenance

but also extends its sense of welcoming risk and vulnerability through its means of interaction

and interface that invite threat vectors or bad actors to take control. Through Raley’s code

analysis in “Code.surface || Code.depth,” the notion of vulnerability comes forward with code

only after it is realized as a violation of the designed and arranged series and layers of executed

code within the machine state. Prior to this realized moment, code vulnerability either lies

dormant, fixed and delegated, textual excerpts of a speech not yet spoken, or speaks repeatedly

and reliably, avoiding the precise arrangement or environmental conditions that violate the

computational flow. Brock, noting the arrangement, organization, and modularity of code,

explains, “it is their combination in a certain order that facilitates the specific computational

action(s) anticipated and desired (or, in some cases, unanticipated and not desired) by a

developer” (141). All code that participates in the distributed digital is subject to vulnerability;

however, due to the chain of dependencies and abstractions within the larger digital ecosystem,

the sense of vulnerability is not always evident. The external libraries involved with vulnerability

in “Nina” highlight the breadth of released older code remediated and that its use and

dependency within WordPress did not elicit concern among the developers until the vulnerability

was announced through the library maintainers. Fossilized code makes it difficult to avoid

vulnerability altogether. Like Hayles’ observation of the fossilization and embeddness of ASCII

code and teletype’s Baudot codes within modern technology, in “Trojan Source: Invisible

230

Vulnerabilities,” Nicholas Boucher and Ross Anderson reveal how delegated code stored

(encoded) as text within a source file can create a vulnerability opening for source files stored in

Unicode that are not directly evident through human review. While WordPress’ source code is

not stored in such a manner, Boucher and Anderson’s example helps illustrate that vulnerability

is more deeply rooted than the immediate code, adding to the gap and expanses of computational

interpretation that can lead to the logical and syntactic fallacy of bugs, flaws, and vulnerability.

Vulnerability can occur upstream or within the multiple layers of stacked and integrated media

entrenched within a digital ecosystem that is unapparent or seemingly unrelated within the

smaller systems, software, and platforms built atop such layers. WordPress is no exception.

Computational thinking is an approach to sense making within the complexity of the

distributed digital that requires a rhetorical “confidence [that] we can safely use, modify, and

influence a large complex system without understanding its every detail” and suggests a cultural

“‘profound ignorance’ in the sense that users can perform complicated chains of precise

commands without anything more than a very abstract understanding of their actions” (Wing 33;

Black). Code is an intermediary of intermediaries that, when stacked and chained together,

present an attempted instantiated worldview of interpretation of risks and ideologic assertion

built upon a continuing escalation of the complexity of code. The concepts of risk vulnerability

are both two-fold towards the system and the people using the system. The same code cannot

effectively always address both directly. As a codebase expands and becomes more complex, a

cognitive turn occurs at which delegated code is no longer humanly comprehensible. The number

of calculations, calls, controlling conditionals, and assignments become humanly immeasurable.

The code-turned-process-turned-repeating-process becomes software and platform, creating

layers of cognitive overloading and opacity that require a language shift to offer descriptors

231

towards what the software and processes are performing. This cognitively overloaded “thick”

layer software, like WordPress, operates as a gray zone, a “space of activity that is ethically

ambiguous, with ‘ill-defined outlines’ and a ‘complex internal structure’” that requires clarity or

definition (Fuller and Goffey 11). The level of literacy demanded to thoroughly understand

software from its rhetorical design, or cultural use is extreme. While computational thinking

presents a structure to decompose the complexity, its results generate or translate the complexity

within the paradigm of computational thought, which produces gaps in critical socio-cultural

values, like the sense of risk and vulnerability, among others. Berry adds that when software is

developed “into complicated assemblages that can be geographically dispersed and operating in

highly complex inter-dependent ways, it is no surprise that we are still struggling to comprehend

these systems and technologies as running code” (The Philosophy of Software 99). WordPress’

code is the material translation of its computational thinking design and development that

heavily influence its cultural acceptance and usage as web publishing software, which is 43% of

all known websites, or 64.1% of the global market share (W3Techs, “Usage Statistics and

Market Share of Content Management Systems”). Furthermore, the code reveals the rhetorical

approaches used to navigate risk, vulnerability, and functionality through its code updates, fixes,

and patchwork code that, in turn, cycle back and influence its acceptance and usage within the

distributed digital.

Approaches in Patchwork Code

The previous two chapters are attempts at reading code “grounded in a thorough

understanding of the functioning of the code, the software and hardware constraints that shape it,

and the history of its development and circulation” (Marino, “Why We Must Read the Code: The

Science Wars, Episode IV” 144). The readings offer a discussion beyond the declaration of

232

code’s functional design and extend the notion of code expression or how developers and

contributors express social and cultural values through code design and decision-making. For

WordPress, the early decisions to fork Michel Valdrighi’s b2/cafelog project, preserve the open-

source and inclusionary community principles, and maintain a hacker, almost anti-corporate,

ethos remain encoded and embedded within its modern codebase despite the profound changes to

delegated code and the commercial marketplace surrounding the software and platform.

Throughout WordPress’ almost two decades of development, the code and its files have had over

50,000 revisions that introduced new features or changed existing ones, fixed bugs,

accommodated upstream technology changes, and patched vulnerabilities. Hosanagar adds that

the design choices made by developers also “have ‘downstream’ consequences…that are hard to

anticipate” (61). The number of maintenance and security releases well surpasses the number of

major releases. While drawing a parallel to needlework patchwork, code patches are created and

applied to correct the designed intentions of code and code expressions by replacing code in such

a way as to maintain seamless (corrected) functionality. Brock observes that patchwork might be

the “most ‘social’ practice” of development that “serve as a sort of continued discourse between

parties (developer and client)” (108). Patchwork occurs from a continual negotiation of

understanding over time of what WordPress is and is not from its leading developers, although

not always universally agreed upon by the community. Bogost and Montfort explain that “people

make negotiations with technologies as they develop cultural ideas and artifacts, and people

themselves create technologies in response to myriad social, cultural, material, and historical

issues” (“Platform Studies,” sec.1.3). The following two sections discuss two approaches

towards patchwork code, the treatment of vulnerabilities, and the language aesthetics, employed

in WordPress’ development based on the findings and analysis of the previous two chapters.

233

Treatment of Vulnerabilities

The treatment of vulnerabilities is one approach to patchwork code. It focuses on the

holistic response to the disclosure of a computational flaw within the delegated code, in which

the flaw is introduced through the design logic or implementation of the design by way of the

code’s arrangement and style or aesthetic employed by the developers. Like a bug fix or feature

update, vulnerabilities almost always necessitate new lexia of code to be applied within multiple

locations within the codebase; however, the significant difference between vulnerabilities and

bugs is those vulnerabilities, when attacked and exploited, lead to a more significant breakdown

in “confidentiality, integrity, or availability” and compromise the sense of well-being of the

systems involved, disrupting and interrupting the entire ecosystem (MITRE Corporation, “CNA

Rules”). The problem with vulnerabilities is that the prescriptive code persists in its vulnerable

state no matter if the conditions to exploit it are met. As observed in WordPress, vulnerabilities

materialize partly because of code’s engagements and interactions with other layers of code and

abstraction. While the anticipation of vulnerability is usually part of the design and creation

process, it cannot be fully realized through the ever-changing layers of dependency within any

subsystem within the distributed digital. When vulnerabilities or other bugs are disclosed to

developers, the developers’ treatment of the code and software “present clear indicators of the

rhetorical awareness of the current situation— fixing an unforeseen problem” (Brock 111). The

changes (and quality of changes) to the code and communication about the changes are part of

the mechanisms for the overall treatment of vulnerabilities. Brock adds that “patches are often

highly kairotic” in how quickly delegated code is changed and distributed to correct weaknesses

and potential breaches (108). The timeliness of patching contributes to the treatment of

vulnerabilities. While other factors contribute to the treatment of vulnerabilities, the changes to

234

code, communication about the changes, and timeliness are three factors observable throughout

WordPress’ development.

WordPress encounters vulnerability throughout its design and implementation. Moreover,

it bidirectionally inherits vulnerability because of its implementation and design, respectively,

from underlying layers, like the programming languages employed, and through the designed

extendibility (overlaying layers) that affords themes, APIs, and plugins to hook into and override

or extend most WordPress core functionalities. PHP has its vulnerabilities, bug fixes, changes,

and patches. Themes and plugins also have their vulnerabilities. Like Brown’s interrogation of

software hospitality and how software can navigate and determine friend from foe, design and

implementation practices inevitably require anticipating a wide range of conditions that might

occur within each participating lexia of code and the order in which they occur within the chains

of prescriptive code (4–5). For WordPress, there is a stark difference between the treatment of

vulnerabilities involved with its core source and those involved with the inherited vulnerabilities

in the underlying and overlying layers, which are further discussed below.

Noting the complexity of code within a codebase, Kitchin and Dodge and Daniel

Kohanski observe the difficulty for any one developer to fully understand every detail of

delegated code and its flows within all its enactments, which the arrangement of code and the

experience, location, and abilities of the developers construct further influence the level of

understanding (Kitchin and Dodge 33; Kohanski 20; Kitchin 21). Patchstack’s 2021 report

identifies the most significant challenges with WordPress security are the “lack of knowledge,

blocking and preventing attacks, and plugin and theme vulnerabilities” (Slid, State Of WordPress

Security In 2021). Furthermore, in the Search Engine Journal, Matt Southern outlines three

threats facing WordPress sites: malware from pirated themes and plugins, malicious login

235

attempts, and vulnerability exploits (Southern). Every WordPress release has multiple reviewers

and contributors, and the community has made some acknowledgment of vulnerabilities through

the publication of individual version release support pages and release announcement blog posts.

For instance, except for the “Nina” (5.6.6) release, all “Nina” releases list extolments for the

people credited for finding a vulnerability along with a minimal description of the vulnerability.

Of the published pages, only the two related to the “Nina” (5.6.4) release list the vulnerabilities

(CVE-IDs) that are patched, which is for a third-party library (PHPMailer). As part of CISA’s

vulnerability disclosure process, the timeline for public disclosure has multiple factors, such as

the seriousness of the threat, the complexity of a solution, and vendor responsiveness

(Coordinated Vulnerability Disclosure Process | CISA). The WordPress community does not

include or update version release support pages, release announcement blog posts, or changeset

messages to include vulnerability disclosures (CVE-IDs). Furthermore, the WordPress

community preserves a published decade-old abandoned page

(https://codex.wordpress.org/CVEs) that attempted to map published vulnerabilities (CVE-IDs)

to release version and provides additional details, including if the vulnerability was deemed

invalid by the community, part of the core, or a plugin; the page now refers people to the

National Vulnerability Database. Despite some errors with the vendor and product entries in the

NVD, the database reports over 103,000 active and deprecated products (themes and plugins) in

which the target software is WordPress (National Institute of Standards and Technology, NVD -

WordPress Product Results). The database lists 4,694 vulnerabilities from vendors other than

WordPress that identify WordPress as the software affected or targeted (National Institute of

Standards and Technology, NVD - WordPress Target Vulnerability Results). Most WordPress

vulnerabilities occur in plugins and themes. WordPress’ seamless extendibility blurs the sense of

https://codex.wordpress.org/CVEs

236

accountability towards patching plugin and theme vulnerabilities and distorts the perception of

what is core WordPress. WordPress’ “texture, lability and ductility” allow “external forms and

forces to fold into [it]” that gradually take on a “pleaded, eroded” quality that blurs, distorts, and

“complicate[s] who says or does what” (Mackenzie 182). Third-party themes and plugins are

clearly a more considerable vulnerability risk for WordPress. The “auto-update” design decisions

implemented in “Basie” (3.7) suggest an understanding of a need to protect WordPress’

reputation, its distributed instances, and users despite the risks. There is a risk of “mindless”

automation flaws that can cause damage to the entire ecosystem of a WordPress instance.

Furthermore, there is a risk of people seeing WordPress as panopticon software, “entering your

front door while you sleep,” constantly surveilling to inspect and update, effectively controlling

every instance of WordPress.

As analyzed in Chapter 4, “Basie” (3.7) ushered in community controversy over its

“force-update” that was included as part of the new “auto-update” features. The features revealed

the control framed within WordPress’ code and enacted and exerted by the WordPress

administration within its community, mainly Automattic employees. While the ability for

WordPress administration to force updates is an overt display of power and control of code

(among other things), the automation of patching code presents a more subtle twofold

sociotechnical concern about the code’s framing and enframing. Although WordPress revisions

are tested, testing does not account for the wide range of digital environments in which

WordPress instances reside and enact. Automated updates assert the patchwork code upon an

instance regardless of the environment and at a higher technical risk towards software regression,

in which “just as with revision of any other type of writing, even though one issue might be fixed

by a patch, the added code might in turn generate new issues that need to be addressed by more

237

patches” (Brock 109). Moreover, automated updates allow and invite human passivity, drawing

updates into the heated, gray media core, toward reviewing new code lexia by abstracting and

systematizing its patchwork to the WordPress instance. As Brock observes, “code concerns

become a central issue, as there is no demand for, or expectation of, users to examine proposed

updates on their own and determine whether or not to apply those patches” (109). While creating

an efficacy towards maintaining a WordPress instance, the automated process produces a lull in

attentiveness towards WordPress’ code changes and its effects across the larger ecosystem,

essentially contributing to WordPress’ recessiveness as gray media, which “outside the realm of

systems design and administration, it is difficult to excite any interest in the finer

details…ethically and politically” within the software (Fuller and Goffey 13). Automattic has

forced “auto-update” on a plugin as recently as February 2022, and the WordPress community

no longer reacts strongly to its use, while Automattic continues to position itself away from the

controlling factor and more towards providing additional community security by only forcing

under extreme and extraordinary circumstances (Toulas). Montfort and colleagues warn, “people

now think little of modifications of their software, even those that are intrusive and annoying.”

(265–66). WordPress’ delegated code frames the grayness that its prescriptive code creates and

enframes its sense of software recessiveness. The quiet automation of updates contributes to

WordPress’ recessiveness and grayness, an emerging property sustained through the

computational repeated and repeatable behavior of every WordPress instance and across all

future releases.

Vulnerabilities undertake similar traits to what Fuller and Goffey describe as exceptions

in code. Fuller and Goffey distinguish exceptions from bugs and flaws, describing exceptions as

the moment prescriptive code “encounters an abnormal condition that it cannot handle, when an

238

event occurs that lies outside the expected range of possibilities that code is expected to cope

with” (118). The exception language constructs in most modern programming languages

(including PHP) afford developers a way to frame delegated code to anticipate and handle

specialized conditions within the environment. However, catching such exceptions requires

developers to have a posteriori knowledge of the exceptions that emerge through the flows of

prescriptive code and then write code that frames a type of a priori knowledge to catch and

handle the exceptions. Leaning on Alfred Jarry, Fuller and Goffey explain that “an

exception…might be considered something that infringes the deductive, the nomothetic or the

formal-logical principles of knowledge, a point at which language falters and stumbles in its

ability to pick things out” (118). Vulnerabilities follow this notion of exception, with potentially

a more catastrophic outcome than failure. WordPress’ code is framed and encoded with

anticipation of errors, correcting and sanitizing user input, and extremely sparingly incorporates

exception handling. When acted upon by malefactors, vulnerabilities exceed the exception of

unrestraint into the chaos and threat of destruction or exposure that can never be fully

anticipated, protected, or stabilized.

Kitchin and Dodge and Mackenzie observe independently that software is constantly on

the verge of collapse because code is “contingent and unstable” and “fragile and precariously

subject to bitrot” (Mackenzie borrows Eric Raymond’s term) (Kitchin and Dodge 38; Mackenzie

12). The fragility and instability of code manifest throughout every technological layer involved

with a WordPress instance, the entire digital ecosystem, that asserts and succumbs to changes to

the ways of seeing and, thus, the ways of framing code. Errors, flaws, exceptions, and

vulnerabilities emerge and come into being, exposing volatility and the grayness of media.

Drawing from Latour, Bucher adds that when the black box or “obscurely grayed-out zones” of

239

software or algorithms breaks down, it “reveals itself as what it really is—not a stable thing but,

rather, an assemblage of many interrelated parts” (Fuller and Goffey 4; If...Then 50). WordPress’

continuous growth in lines of code illustrates the attempts to accommodate the past and better

anticipate the future within its designed space of flows. The evolution of software is

heterogenous, in which its growth “addresses commodity hardware, invokes standards and

conventions, imposes orderings of space and time, and diffuses modes of identification and

subjectification for originators and recipients” (Mackenzie 115). Some software creates and

exposes human vulnerabilities and causes direct and indirect harm to people, as well as generate

negative biases towards almost any categorical human identification, through its processes and

the data stored within them. Other software might be considered helpful and utilitarian, almost

unassuming, such as software that creates a web platform for publishing and sharing personal

ideas and thoughts, which also has the potential to cause harm through its content and enframing

of values. All software is threatened by vulnerabilities that can cause harm to people or systems.

Code vulnerability is inevitable. WordPress is endlessly exposed to a consistently high

vulnerability that is exploitable yearly. Moreover, there is a recurring pattern to the location and

type of vulnerability encountered within the code. Most historical vulnerability occurs within the

oldest introduced code, akin to Exiles in The Matrix. Exiles were seen as older and obsolete code

that served a purpose at some iteration of the system but then no longer worked, becoming

rogue; yet, some chose to remain hidden within the digital ecosystem instead of being deleted.

The design and creation of code is a Sisyphean task due to the continuous changes in and

throughout the surrounding technology and the mistranslation and decoding of the computational

regime within the media ecosystem. As Cox observes, “there is a dynamic relation between what

exists and what is possible, between past and present states, between concealing and revealing

240

possibilities corresponding to the layers within computation itself” (25). Following Hayles’

observation of the naturalization of revealing and concealing code, Cox and Hayles pinpoint the

tension of indeterminism within code, especially with its focus on recognizing vulnerability and

the impetus to patch and correct the potential reckoning to people, code, data, and reputation.

Published vulnerabilities are a form of airing dirty laundry, with patchwork code acting as the

mea culpa public missive. The patchwork of vulnerabilities focuses on stabilizing and preserving

software’s integrity of the designed prescriptive code to maintain control (or the illusion of

control). Errors, exceptions, and, most significantly, vulnerabilities disrupt WordPress’

recessiveness, calling attention to its code and arrangement. Code that is modularized and

sectioned off further obscures understanding of the holistic effect of the chains of abstraction that

frame software like WordPress. The distribution of fragile code and code’s chained and forked

abstractions within a software’s codebase build a transactional view of process, data

manipulation, transformation, and storage that obstructs a complete and empathetic processual

view, reducing the space of flows to narrow objects of function, akin to an assembly line worker.

Code Arrangement and Language Aesthetic

The arrangement of code, or style and aesthetic, is another approach to patchwork code.

As an approach to patchwork code, it focuses on how code is arranged to address or fix a

particular problem and the language used within delegated and commentary code to accomplish

it. For WordPress, the code aesthetic is foregrounded by its famous declaration that “code is

poetry.” The aesthetic of code ties closely with the elegance of code, which is seen as how

sophisticated the code solution is written or how effective, efficient, creative, or ingenious its

solution is viewed. Marino views code as an expression of thought, stating that “a cleverly

designed algorithm has the force of a novel poetic conceit. Though some lines of code can be as

241

functionally alike as two nails, they are not necessarily formally or aesthetically equivalent”

(Critical Code Studies 210). In this way, code aesthetic and arrangement move away from the

style in the sense of visual formatting, such as indentation and placement of brackets within

code. Generally, code aesthetic is expressed throughout and within the commentary and

delegated code of a codebase, influenced heavily by the surrounding and supporting media

layers. Framed by the logics of delegated code, prescriptive code can also be investigated

through its “efficiency, aesthetics, points of failure, or (lack of) suitability for particular

purposes” (Wardrip-Fruin 156). While the organization or architecture of source files and

prescriptive code are part of the code’s arrangement and aesthetic and help structure the

discussion, the commentary and delegated code in WordPress offer more meaningful and direct

connections to the rhetoric and aesthetic characteristics employed. As Brock explains,

“discursive and nondiscursive collaborative activities surrounding code development, from

commenting to forking to patching, demonstrate rhetorical character and value as fundamental

components of meaning making through these activities” (112). The following section presents

examples of code aesthetic and its rhetoric within WordPress through the notions of elegance

and empathy.

WordPress, in its modern iteration, is bound to multiple programming languages. By

forking the b2/cafelog project, WordPress inherited PHP, SQL, JavaScript, and HTML as

primary languages and the existing code aesthetic and arrangement. Since the first release of

WordPress in 2003, all the languages have evolved through several iterations and standardization

revisions that have influenced and created accommodating changes throughout the codebase.

Borrowing from Bakhtin’s notion of heteroglossia, Marino mentions how within the same lexia

of commentary code, multiple genres and styles can exist and be authored by the same developer

242

or multiple developers, such as “narratives, accumulated fragments, even some autogenerated

comments, organized around the particular operational patterns of the instructions” (Critical

Code Studies 95). WordPress’ delegated code follows the same notion of heteroglossia where

PHP is the principal server-side language below the fold of the user interface, which further

situates the multi-vocal expressions of code. PHP impels a particular and somewhat unique code

arrangement. PHP mainly follows C syntax; however, as a server-side language, it also

incorporates code-switching to navigate between the boundaries of server and client—the

machine and the human. Primarily, PHP’s output, as a server-side programming language,

becomes the delegated code for a web client to interpret and enact. PHP includes within its lexis

tag constructs that signal to the interpreter when to switch between parsing and enacting

delegated PHP code and act as a textual pass-through for delegated client code. For PHP, this

language feature differs from commentary code constructs in that, unlike commentary code

recognized and ignored as control, the code-switching textual pass-through assumes control and

delegated code framing transfers to the upper client interface media layers. In WordPress, code-

switching is heavily incorporated into its codebase, and numerous delegated code lexia move in

and out of PHP, HTML, and JavaScript, with each language having its approach to code

arrangement that WordPress contributors attempt to keep consistent for clarity and readability.

Similarly, SQL code-switching is incorporated within WordPress, in which database command

strings are constructed through delegated PHP code that, when enacted, branches away from

output to navigate and interact with bordering database layers. As seen through the

vulnerabilities analysis, boundary locations within the code, where code switches to other

languages and media layers, are highly vulnerable. WordPress’ primary server-side

programming language affords great flexibility and a sense of freedom for the design and

243

development of software, allowing multiple approaches to solving the same problem; however,

PHP also establishes a constraint of code arrangement that, while making PHP more

recognizable as a language, influences how it is used as a language within a codebase.

Elegance is one concept of code aesthetic and how programming language is arranged

within software. Elegance relates to design viewed as “more efficient and take[s] more

considerations into account” although not a “guarantor of efficiency” (Kohanski 19). Hayles

reminds us that “although code originates with human writers and readers, once entered into the

machine it has its primary reader the machine itself” (My Mother Was a Computer 50).

Nonetheless, Daniel Kohanski sees that focusing on elegance and aesthetics in the design can

benefit both human readers and comprehension of code and the machine’s ability to process

faster (20). Elegant code “render[s] its operations obvious at a glance against the backdrop of

symbolic representation,” so it is unambiguous, straight-forward, delineated, powerful,

meaningful, and efficient, and designed for computational and technical efficiency across

processing, data, and input and output that has a robustness and longevity and evolves to meet

unanticipated circumstances across time or the reuse or repeatability needs of others (Marino,

Critical Code Studies 144; Berry and Fagerjord 54–55; Kohanski 21,23; Brock 140). While Greg

Wilson’s and Andy Oram’s Beautiful Code offers many other examples, WordPress exhibits

elegance through its prolonged existence and extendibility from this combined view. WordPress

also lacks elegance within shorter snippets of code lexia in terms of ambiguity and efficiency

that have contributed to vulnerability, such as the history and evolution of the triad of “serialize”

functions. However, a combined view of elegance exposes the influence elegance can have on

code aesthetic.

244

Hayles, Kohanski, and others point out that the perceived duality of elegance can be seen

in code’s arrangement toward the machine or the human. For the machine, elegant code presents

a sense of computational cleverness that exploits and takes advantage of the technological

limitations and architecture within the ecosystem. It exhibits power through its repetitive uses

and calls within the codebase, indicating a sense of processual dexterity within the lexia of

called-upon code. For humans, elegant code has a sense of straightforwardness, readability, and

low cognitive load to understand and decode. These two code arrangements are often in

opposition, challenging a notion of a co-existing or combined elegance in code. For example, the

fast inverse square root function located in the Quake III source code exemplifies established

elegant code. Located within the q_math.c file, below is the “Q_rsqrt” function in its entirety.

552float Q_rsqrt(float number)
553{
554 long i;
555 float x2, y;
556 const float threehalfs = 1.5F;
557
558 x2 = number * 0.5F;
559 y = number;
560 i = * (long *) &y; // evil floating point bit
level hacking
561 i = 0x5f3759df - (i >> 1); // what the fuck?
562 y = * (float *) &i;
563 y = y * (threehalfs - (x2 * y * y)); // 1st iteration
564// y = y * (threehalfs - (x2 * y * y)); // 2nd iteration, this can
be removed
565
566#ifndef Q3_VM
567#ifdef __linux__
568 assert(!isnan(y)); // bk010122 - FPE?
569#endif
570#endif
571 return y;
572}

While the function offers a solution to the inverse square root of a given number, it does

so by using an atypical approach that includes a “magic number” constant (0x5f3759df), bit-level

manipulation, no division, and Newton’s method for approximating the value. While not publicly

245

known at the time of Quake III’s release in 1999, the approach was much faster than any other

software approach available at the time, which were much more computationally taxing, making

this approach a heavily relied upon function for faster 3D rendering and lighting. The

interjectional commentary code, along with several online discussions and its own Wikipedia

entry, offers insight into the perceived elegance of the code taking advantage of the machine,

which includes several explanations of how the approach works. The commentary code, while

significantly lacking in enlightenment, highlights an emotional appeal to its elegance, “pathos

nonetheless remains a critically important strategy through which individual developers can

stress the strength or intensity of their convictions…in relation to a particular point or as support

for their appeals to ethos.” (Brock 100). Although advancements in CPUs released that same

year made the function obsolete from a performance perspective, it remains an interesting

example of elegant code despite its lack of straightforwardness and ease of understanding for

humans. For WordPress, the “apply_filters” function (along with its counter function

“add_filter”) is a heavily relied upon function, with its human readability and straightforward

computational design as a systemwide extendibility API solution presenting itself as a form of

elegance. Although less elegant to the machine, many WordPress entry points gravitate towards

and call upon “apply_filters” to extend the functionality of much of what WordPress’ core code

is designed to provide, offering a sense of freedom and control. The notion of elegance within

code contributes to an overall code aesthetic within code. As Brock asserts, “code contributions

can and should be read as a combination of rhetorical and computational decisions” (140). The

design motivation for computational simplicity and efficiency also connects to the repetition

within code, the design decisions on re-use, and the potential over-conflation of what any

particular lexia of code can frame before becoming computationally overburdened, cumbersome

246

to understand, and less elegant. Ultimately, the conception of elegance leans towards a sense of

power and proficiency towards either machine or human, keeping elegance a contested approach

within delegated code.

Empathy is another concept of code aesthetic and how programming language is styled

within software. Beever and colleagues warn that “not only is empathy difficult to understand

and tricky to define, but it is also particularly hard to transfer in digital environments.” (Beever et

al. 133). Recognizing the density and complexity of empathy, the attention of this discussion is

on ways in which empathy is perceived to be applied through the writing of code and its design.

To further situate empathy as code aesthetic, this discussion is not about developing

computational or artificial empathy within a digital ecosystem. Empathy, in the WordPress and

code aesthetic context, carries a few phenomenological approaches to how digital empathy might

be written, expressed, experienced, or perceived within WordPress’ code and its coding

practices. Amy Coplan offers a starting point, defining empathy as “a complex imaginative

process in which an observer simulates another person’s situated psychological states while

maintaining clear self-other differentiation” (6). Coplan’s view of empathy creates a foundational

view that is amenable to combining with particular empathy phenomena. Two other descriptive

approaches useful in discussing WordPress code are digital empathy and rhetorical empathy.

Digital empathy has broader implications than the intersection of technology and empathy;

however, it provides a distinction for narrowing the concept of empathy within the context of

digital technology and highlighting some of the idiosyncrasies that can occur within that framing,

such as its distributedness and repeatability. For Yonty Friesem, digital empathy is a

combination of social, emotional, and cognitive skills that help form a media literacy that can be

observed, taught, and reinforced through video production, which has similar design practices to

247

software design (Friesem). Rhetorical empathy connects to Kenneth Burke’s concept of

identification and persuasion. For Blankenship, rhetorical empathy “functions as an inventional

topos and a rhetorical strategy” that extends Burke’s notion of identification through personal

connection and emotion (Blankenship 2). While Friesem focuses and advocates teaching

empathy through media production, their combined views offer the framing for discussing

WordPress code aesthetic practices as an approach to digital and rhetorical empathy. Building on

Friesem and Blankenship, the following discussion focuses on WordPress’ delegated code from

the previous analysis through how digital and rhetorical empathy function and how empathy

phenomena are conveyed through the code.

Like elegance, empathy has a duality of perspective from code’s arrangement toward the

machine or the human. With the design and writing of code as an amalgam of engineering,

creative, and computational practices, the translation and transfer of empathy present the same

challenges towards recognizing the object to which empathy is directed. From an engineering

perspective, code optimization can be construed as empathy towards the machine, reducing the

amount of computational work and cycles to produce results. From this view, elegance and

empathy overlap, in which straightforward and easy-to-read-and-executed code conveys

elegance and empathy. For example, the Quake III inverse square root code consumed fewer

CPU cycles than other known algorithms at the time. Although it became outdated and

superseded (thus reducing its magnitude of empathy towards newer machines) through new

hardware released the same year that inscribed the ability to calculate square roots through new

instruction sets and series of transistors, the code remains valuable as an alternative for hardware

that does not support calculating square roots directly. While this view of machine-directed

248

empathy offers a perspective that warrants further exploration, the concentration is the

observable empathy towards humans within WordPress’ code.

Digital empathy towards humans can easily be “lost in translation” within code and the

design and development of software. For prescriptive code, practiced empathy is observed

through the performativity and performance of its enactment—how effortless the interaction

experience is perceived, how the prescribed experience conveys courtesy and trust, and how

effectively the designed code creates affordance, responsiveness, and stability across and

throughout its interfaces. Possati, like Cox, argues, “software is not only performative in the

sense of natural language. Software does not say what it does, but it becomes what it says” (7).

This perceived empathy becomes strained through the disruptions of errors, bugs, vulnerabilities,

and exceptions occurring throughout the entire digital ecosystem that require constant updating

or correction. In general, developers applying empathy create software that performs its

delegated promises to which it speaks in a stable, seamless, and persuasive manner that relates

and connects to the next intersection of data and code exchange throughout the layers and

abstracted interfaces. For gray media, seamlessness is especially critical to not draw undue

attention to itself. While the WordPress contributors strive to create a seamless experience and

universal usability, a challenge in applying empathy within software’s code design is that “each

level of a stratified design provides a different vocabulary for expressing the characteristics of

the system, and a different kind of ability to change it” (Abelson et al. 191). Applying empathy

requires developers to switch their mode of inquiry and the audience being addressed with each

layer, especially layers involving code-switching. In a sense, WordPress’ prescriptive code

holistically asks, by way of its design in action, for an understanding and trust towards its design

and ways of conceptualizing and presenting content, security, privacy, and vulnerability while

249

simultaneously offering an expression of empathy towards the task-at-hand of whomever or

whatever is engaging with its designed interface by abstracting the complexity of the code

below. While one of the ultimate software design goals is typically to create universal usability

and a seamless user experience throughout the processual levels that build up to and include the

human interface, the delegated and commentary code present more nuanced views of applied

empathy.

WordPress contributors design and arrange code to maintain or improve WordPress'

stability and reliability to position it as a “powerful and empowering…open source platform that

powers the web” (WordPress.org, “Blog Tool, Publishing Platform, and CMS”). The code, to an

extent, is written and contributed by developers for developers to coalesce into WordPress’

software aesthetic of openness, empowerment, and community. As patchwork code, the

contributed code corrects and secures existing code and changes features by adding, altering, or

removing them. The code is part of the design and decision-making of the WordPress ecosystem.

Borrowing from C. Daniel Batson, Friesem outlines five video production stages corresponding

to five empathy phenomena: cognitive, projective, affective, psychological, and aesthetic (33).

While many of the empathy phenomena can be traced within WordPress, two fundamental

phenomena, cognitive and psychological empathy, recurred throughout the analyzed code. Three

WordPress examples that come through the analysis are the “capital_P_dangit” function, the

Hello Dolly plugin, and the overall code, which all convey varying degrees of empathy.

The three examples show evidence of empathy expression within code, which the

previous software and code analyses helped reveal. For “capital_P_dangit,” the function and its

surrounding developer discussions indicate resistance and outright refusal to follow the coding

standards and styling while simultaneously ineffectively solving the perceived problem of how

250

WordPress is capitalized. While the function partially contributes to WordPress’ brand aesthetic

and trademark, the inclusion of it as core code is contrary to its software aesthetic. It does not

illustrate consideration towards the perspective of other contributors, users, or the machine

(which must take additional cycles to process it, however trivial). Finn observes that “at a certain

level of cultural success, these systems start to create their own realities as well: various players

in the system begin to alter their behavior in ways that short-circuit the system’s assumptions”

(19). Not only are assumptions short-circuited, but the altered reality reveals attitudes and

assertions of beliefs that seem contradictory to the openness and freedom espoused within the

WordPress community about the software. The prescriptive default behaviors of capitalization

are entrenched within the platform's core code, with no option to remove it without significant

effort and expertise. As Finn points out, “our technical systems have specifically political

implications, articulating certain forms of power that often contradict the emancipatory rhetoric

of computation” (45).

For the Hello Dolly plugin, the March 2018 removal of problematic “sexist” lyrics from

“Hello Dolly” reveals a shift in empathy since the plugin's introduction to WordPress 14 years

earlier. (WordPress.org, “Keep Hello Dolly from Displaying Sexist Text”). Later in 2018, in a

similar manner, the Linux kernel project adopted a new “Code of Conduct,” which is based on

Coraline Ada Ehmke’s “Contributor Covenant Code of Conduct” that over 40,000 open source

projects have adopted, which created controversy around its perceived diminishing sense of

meritocracy of its contributors, with some threatening to rescind their code contributions

(Oberhaus). For Linux, this introduced other changes, such as replacing “fuck” with “hug” in the

commentary code, and, in 2020, a proposal to use more inclusive language in code and avoid

using terms such as “blacklist” and “whitelist” and “master” and “slave” (Prakash; Anderson).

251

To date, WordPress has not adopted the “Contributor Covenant Code of Conduct” although

Automattic has adopted it for its Calypso WordPress interface project (Contributor Covenant:

Adopters).

As the last example, commentary code and revision messages reveal some shift in

empathy and attitudinal aesthetic, from smugness to modesty, over the years. While mostly seen

only by developers, “Nina’s” code no longer calls users fools, nor does it contain any of George

Carlin’s seven dirty words; however, some library dependencies include language such as

“dumb,” “brain-damaged,” and “stupid,” and the core still retains some deprecated code referring

to “blacklist” and “whitelist.” These three examples show how empathy can be expressed and

experienced within and throughout code’s arrangement. From Douglas Hollan’s anthropologic

view, “empathy is never “neutral,” but rather is always found embedded in a moral context,

which affects both its likelihood and means of expression, and its social, emotional, and even its

political and economic, consequences.” (72). As part of code’s arrangement and language

aesthetic, digital and rhetorical empathy highlight another way that patchwork code is

approached by developers and design decisions and perceived by users of the software and the

community.

The treatment of vulnerabilities and the code arrangement within WordPress are two

approaches to patchwork code and, generally, any code that participates in software and its

design. The overall approaches to code contribute to a software aesthetic and attitude that can be

experienced within the commentary, delegated, and prescriptive code and throughout the media

layers and interfaces. As Brock observes about developers, “the various genres of code, in-code

comments, and meta discursive commentary all function in ways that allow specific development

communities, and individual members thereof, to establish and reify their contemporary

252

professional and community based identities.” (128). For WordPress, code as poetry, “My

Hacks,” and the hacker ethos, openness, empowerment, and community remain and maintain

parts of its software aesthetic and identity. Developers writing and contributing code to

WordPress can easily overlook the empathic and elegant confrontations within code and the

locations of vulnerability when there is a concentration on syntactical correctness, logical

flawlessness, and function or processual movement that does not account for the holistic,

upstream and downstream impacts to the machine and human. Brock observes that developers’

“use of repetition and arrangement in meaningfully important ways allows them to make

potentially powerful rhetorical claims through their code” (40–41). Software design, its decision-

making process, and “writing constitutes the fundamental mediation between the two elements

that a programming language tries to put together: machinery and language” (Possati 5).

WordPress’ employment of PHP as its principal server-side language uniquely situates its design

and code arrangement into an emanant rhetorical intersection of code-switching, style, syntax,

mediation, function, and security-mindedness with each change commitment. Brock offers that

“the kairotic qualities of a coding situation influence each developer and audience in unique

ways, and the appeals used by a developer to effect change in his or her audience highlight that

developer’s understanding of the relationship he or she has with the project under discussion.”

(102). The approaches to code present a bidirectional influence, like its inheritance of

vulnerability, from the layers and language—the machine—that frame and enframe the source

code from below to the developers and design decisions that stipulate and organize the source

code from above. As Holmes observes, the “composition of source code involves idiosyncrasies

of individual coding styles, justifications for patches/corrections in notational commentary, a

variety of procedural rhetorics, and even the rhetoricality of platform or coding language

253

selection” (Holmes). It follows that code presents itself as a multidirectional rhetorical power on

any code layer, via its developers, that influences the layers it is assembled from (and from those

to it), the layers of which are developed upon it, and its own layers. Brock adds that “while most

code’s readability is influenced most explicitly by the names chosen for specific functions,

variables, and objects, there is an implicit argument made by a developer for a particular logical

structure as presented to readers through the code” (144). The ability for developers to employ

and distribute code with a particular logic that continuously frames and enframes and encodes

and decodes societal and cultural values and ideology over time affects how it is created, viewed,

consumed, and interpreted.

Encoding/Decoding and Framing/Enframing of Code

Usability and functionality are two leading goals for software developers. Developers

work through computational thinking, translation, and mediation of the design and

implementation. The code-writing process is often iterative across multiple development cycles

and versions to implement the design goals fully and correctly. As patchwork productions, “code

here recycles ‘original’ language in random patterns that cross and recross the threshold of

intelligibility, inviting the reader’s projection into the echoic effects” (Hayles, My Mother Was a

Computer 116). Developers focus on writing and producing code that is syntactically and

computationally complete, to a degree, yet not necessarily embracing and understanding the

holistic upstream and downstream processual or cultural influences and assertions within the

code. Function and correct syntax within the immediate code lexia and layers remain prioritized

goals for developers. Berry and Fagerjord suggest the developer “only considers the possibilities,

or affordances, of the language s/he is currently coding in…” and “know[s] the capabilities and

limitations of the platform, and often of the lower-level platform that supports it, maybe even the

254

platform below that” (91). While the complete sense of a developer’s understanding and

intention might never be known in a sizeable multi-authored project like WordPress, the code

often offers a direct path towards tracing and constructing an impression of the intention and

approach as it relates to the developer, software, community, developer’s view of the software

and coalescing worldview. Kitchin and Dodge observe that “developers often unconsciously

place a particular philosophical frame on the world that renders it amenable to the work of code

and algorithms, thus realizing a specific system of thought to address a particular relational

problem” (247). Once code is committed through changesets and accumulated into a published

new release or version, the encoded worldview within the code takes flight.

Each release of WordPress inherits much of its existing and fossilized worldview created

through code, release announcements, and documentation, with the changes of the release

presenting a new iteration of influence through determinate moments and framing of code. While

each release and every instance of WordPress offers an opportunity for individual interpretation

and experience of its code, each named release anchors its jazzy software aesthetic and

establishes a software focal point of “frozen” code that offers a static but fundamental

interpretation. As new WordPress releases are downloaded or updated over existing versions and

through experiencing its enacted states, “the meaning of code changes beyond its functional role

to include connotations and implications, opening to interpretation and inference, as well as

misinterpretation and reappropriation…the meaning of which develops and transforms as

additional readers encounter it over time and as contexts change” (Marino, Critical Code Studies

4–5). For WordPress, contextual changes include the surrounding technology and media layers

that influence approaches to code and the code itself, such as changes to code libraries on which

WordPress depends or language changes to PHP, HTML, and SQL. Mackenzie adds that

255

examining long-term changes in code is a “niche that itself is inevitably changing shape along

with changing hardware platforms (short term), network protocols (relatively long term) and

operating systems (medium term)” (12). Notwithstanding this constantly dynamic network,

Marino brings forth Stuart Hall’s notion of encoding and decoding within ever-changing media.

Recognizing the encoding and Introna’s concept of framing and enframing necessitates a level of

code and computational literacy to facilitate transparency and bring to light opaquer software and

its code. With almost two decades of development and iteration, WordPress as software and code

text has become well-established gray media, with its code revealing how it has framed and

encoded cultural and societal values within it that through its enacted state asserts a prescriptive

worldview for those who interact with it. The following section discusses code and

computational literacy and how engaging with code aids in recognizing how framing and

encoding occur within code and a codebase over time.

While code and computational literacy is a debated topic within the humanities, namely

what it entails and its contributions toward scholarship, multiple literacies about and around code

appear, with some degree of caution, a required skill for examining code and a codebase,

especially concerning WordPress, which arranges and employs code-switching throughout its

source code. Multiple scholars advocate, to some degree, code, computational, or digital literacy

toward understanding software, networked platforms, and digital media in order to contribute to

critical engagement with code and its surrounding influences (Berry, The Philosophy of Software

20; Taylor 116; Noble 25; Gillespie, “The Relevance of Algorithms” 170; Finn 47; Marino,

Critical Code Studies 45–46; Wing 33; Petzold 5; Wardrip-Fruin 214; Berry and Fagerjord 21;

McPherson, “U.S. Operating Systems at Mid-Century” 258). In Coding Literacy, Annette Vee

compares the practice of coding to reading and writing, stating, “programming and writing are

256

both socially inflected by the contexts in which they are learned and circulated and are materially

shaped by the technologies that support and distribute them” (3). In Vee’s mapping of computer

programming as literacy, she relates coding literacy to Ian Bogost’s and Michael Mateas’

concepts of procedural literacy, Jeannette Wing’s computational thinking, and Andrea DiSessa’s

computational literacy (9). Berry’s umbrella term iteracy connects iteration, prominent in

software development, with code meaning and literacy that includes computational thinking,

algorithms, reading and writing code, learning programming languages, aesthetics of code, data

and models, critical code studies, and software studies (Berry, “Iteracy”). These distinctions of

literacy, adding Bogost’s procedural rhetoric, build towards a broader and more complete view

of code and computational literacy and understanding that extends well beyond the language of

code, logic, and procedure. Critical engagement of code includes recognizing the need to learn

code and acknowledging the vast contributions to code, code arrangement, code literacy,

software, technology, and other digital media that occur beyond learning and knowing code

(Salter). Berry’s notion of digital education, digital Bildung, of which iteracy is part, offers a

broader view towards this breadth of knowledge, which Berry and Fagerjord state includes

“transcending the boundaries between humanities and computation” (Berry and Fagerjord 17).

Within the context of a more extensive digital Bildung, critically engaging directly or indirectly

with code provides additional insight into approaches and arrangements in code, the encoding

and decoding and framing and enframing within code, coding practices, and the decision-making

and considerations that coincide with the design and development of a codebase. Critical

engagement might extend to exploiting code as an algorithm, process, or software akin to an

engineer or hacker who is debugging or decompiling software or creating malicious software.

Ultimately, critical engagement with code helps identify focal points within the code that are of

257

cultural, social, and technical interest, which can be made easier by open-source software, such

as WordPress.

WordPress is an open-source codebase that establishes one type of filmy transparency or

partial barrier removal from examining and knowing its code. Open access to its code permits the

peeling back of the curtain of WordPress as software, departing from Plato’s cave only to return

to it blinded by massive lines of code. Chun warns that “knowing software…does not simply

enable us to fight domination or rescue software from ‘evil-doers’…Software, free or not, is

embedded and participates in structures of knowledge-power” (Chun, Programmed Visions 21).

Chun’s apt warning that knowing software and having access to its source code is not enough to

critically engage with it. Chun continues, criticizing Lessig, by stating there is an assumption that

“readability ensures democracy (those who can read the code will read it and a “good” consensus

will emerge) and that open means public, open means common” (Chun, Control and Freedom

68). Adding to this view, Salter observes that “attempts to treat coding as an easily acquired skill

for all also risk obscuring the realities of code and systems as they exist today” (Salter). Code as

text, especially a high-level programming language, such as PHP, HTML, and SQL, may afford

additional ease of readability (and writability) due to its approximation of natural language;

however, critical engagement extends beyond understanding the immediate function of the code.

The two previous chapters examined WordPress as software and as code, including its

development history, popularity, positioning, and community reception, as well as a historical

examination of its code and close reading of “Nina Simone” through cultural, processual, and

vulnerability focal points. The analysis and use of focal points help locate and map some of the

scaffolding of media layers that control and influence the full technological stack and digital

258

ecosystem. Furthermore, the analysis builds a fuller contextualized view of the mediating and

enframing within the culturally and socially encoded code across every media layer.

WordPress’ code constructs control and continued intermediation, a low-level sense of

surveillance of the flows of inputs and outputs, throughout multiple layers of code and data

exchange. The multiple layers of abstraction act as intermediaries, dynamic borders, building up

and across to construct a platform with a veneer that affords a “happy medium” toward being

closer to the machine while pulling back through constraint and control. WordPress’ enacted

design generates a two-dimensional middling, one toward the machine or network of machines

and an individual, and the other toward a marketplace of themes and plugins and prosumers.

Fuller and Goffey observe that “a strangely active and more or less surreptitious transformational

aspect inheres to being in the middle…it is better to appear as a transparent intermediary rather

than an active, shape-shifting manipulator or incompetent—because otherwise the accusations of

betrayal will not be slow in coming” (141). Though Automattic has vacillated from the middle,

like with the “Deplatforming” the “The Conservative Treehouse” and Automattic Inc. v. Steiner

cases discussed in chapter 4, WordPress as open source software has remained more of a

“transparent intermediary” despite its own perceived shifts from the middle, like with “phoning

home” and “entering your front door while you sleep.” Despite WordPress’ shifts from the

middle and encounters with bugs and vulnerabilities, its popularity as a platform remains high.

At the same time, WordPress as a platform maintains a design of a transparent intermediary that

seeks the quiet, gray middle. Its code and code history showcases the influences of encoding and

enframing within the code, which challenge the notion that WordPress is not a shape-shifting

manipulator.

259

Early WordPress decisions, such as forking the b2/cafelog code and preserving it as

open-source, highlight the origins of encoding and decoding. At its simplest, Hall’s notion of

encoding is the process of generating a message and decoding is interpreting it. The existing

code and structuring of the codebase offer some of the first opportunities for basic interpretation

of WordPress as code, including the inherited complex encoding and abstractions that have

developed over the history of the programming languages and technologies that participate in

WordPress’ constitution. Montfort and colleagues observe that when writing code, it is “written

using keywords that bear remnants of the history of textual and other technologies, and they are

written in programming languages with complex pasts and cultural dimensions, and they lie in

the intersection of dozens of other social and material practices” (262). Early changes to

WordPress and its structuring highlight a rudimentary encoding, creating standardization and

language aesthetic, like “the great renaming” (changeset 601) that changed, renamed, and

reorganized 97 different source files and creating XHTML-validated output. The decision of

programming languages involved with a software project and how the languages are arranged

and further developed, like media production, encode value-laden messages to instruct the

machine and shape and enframe a worldview. The introduction of “maybe_serialize,”

“maybe_unserialize,” and “is_serialized” in WordPress’ codebase is a more complex example

that shows a shift in arrangement and worldview over time, from smugness to modesty while

creating a layer of encoding. The layer of encoding renders PHP’s built-in serialization functions

ineffective and damaging to use directly within WordPress’ code ecosystem. Hayles cautions,

“changes on one level of programming code must be exactly correlated with what is happening

at all the other levels” (My Mother Was a Computer 47). All WordPress core, plugin, and theme

code must use the three designed gatekeeping entry points that build upon and encode PHP’s

260

functionality and framing while encapsulating and impelling them, subverting them into a

primitive state. WordPress code becomes the abstraction and interface layer for serialization

within the WordPress ecosystem. Robinson observes that “a function’s definition is a symbolic

expression built up recursively from previously defined functions” (102). There are recursive

base cases, “axioms or ground truths,” that establish the initial framing and subsequent

enframing, such as PHP’s “serialize” and “unserialize” functions (102). Although the ground

truths can be traced to the hardware inscriptions of instructional sets, for WordPress, the PHP

interface layers provide a sufficient examination point. PHP acts as another form of

sociotechnical middling and gray media orchestration that allows the observation of material

framing and encoding within WordPress’ codebase. Observation of the PHP and WordPress

layers reveals the encapsulation, which “hides complexity by covering over or rendering

invisible supposed unnecessary detail” (Introna 118). Ultimately, “the values that developers

stress in their code and discursive commentary, in addition to the persuasive tactics they use to

build particular types of identities and communities, highlight a set of qualities likely to be

communicated in and through the code they produce” (Brock 69). The value-laden framing of

code and encoding manifests into a tableau of layered and controlled interfaces. When enacted,

the code repeatedly enframes and overlays a worldview that, although noticeable at the most

abstract top-level human interface, becomes normalized and naturalized over time to the machine

and human through continuous decoding and interpreting and re-interpreting as experiences and

context change.

The top-level human interfaces of platforms and networked software capture glimpses or

blips (as Fuller might refer to them) of the repeated imperfect translations, encoding, and

decoding compressed through enacted code. Vaidhyanathan and Noble stress how Google is not

261

a neutral, benevolent organization despite its cooperative rhetoric and strategic communication.

Hinting at its grayness, Vaidhyanathan demonstrates that Google veils its core business of

profiling and collecting data on people behind seemingly helpful and contemporary societally

needed services, such as web searching, email, ads, analytics, and document sharing, reminding

us that Google is under little legal obligation to reveal more on what and how it collects data and

what it then does with it. WordPress’ grayness, like Google’s, is a constant quest to design, find,

and maintain a sociotechnical platform, a highly encoded intermediary and medium of control,

affordance, and convenience. The perpetual and consistent repetition of the enacted code creates

an expectation and naturalization toward its performance, capability, stability, sense of security,

and perceived designed intention. Vaidhyanathan highlights the strong influence of car and

airplane companies on “public discourse and polic[ies]” about them when the products were first

introduced without a broad public understanding or acknowledgment of the dangers about them

(5). Vaidhyanathan notes that “only a few years later, life on earth was unimaginable without

these systems, and by the close of the twentieth century, the entire world was reorganized around

them” (5). WordPress has a similar effect through its distribution, adoption of use, and iteration

as a web publishing platform and software that does “influence, entertain, instruct or persuade,

with very complex perceptual, cognitive, emotional, ideological or behavioural consequences”

(Hall 119). WordPress as software maintains a jazzy “powerful and empowering” software

aesthetic that its repetitive prescriptive code sustains through which the “encoding produces a

remarkable continuity which suggests at least a sufficient level of sameness (or citationality) to

endure from one event to the next” (WordPress.org, “Blog Tool, Publishing Platform, and

CMS”; Introna 118). Drawing from Derrida, Introna states, “encoding achieves its performativity

through its assumed ontological necessity and its ongoing enactment (or extension) through

262

repetition, or more accurately iteration” (118). Specifically, WordPress’ steadfast human

interface and distributed performativity as a platform anchor its familiarity and expectation while

the iterative code changes act as rapid overlays of additional encoding and disruption of the

attentiveness toward previous code changes that have already been distributed and enacted,

repeating the insistence of the new framed code and view.

WordPress code changes, like version checking (“phoning home”) and auto-updating

(“entering your front door while you sleep”), illustrate the control, persistence, and normalizing

power of encoding and enframing over time. Since “Decter Gordon” (2.3) in 2007, WordPress

code sends data to Automattic, with enhancement requests to further anonymize the data

remaining in a “maybelater” resolution. Despite the community concerns raised in the first years

of introduction, WordPress’ phoning home persists. Likewise, despite the concerns of automatic

updates to core code, plugins, and themes raised with the release of “Count Basie” (3.7) in 2013,

WordPress maintains the ability to override its own instance settings and configuration and

update plugins across all distributions. Although a rarity in use, the community has become

somewhat accustomed to these controlling enactments, among many others. As if by brute force,

the persistent prescriptive code normalizes each WordPress release through repetition and

distribution, desiring to move quickly back to the middle as gray media. Hayles and Hall offer

critical considerations of how encoding and programming languages can significantly naturalize

or become accepted across time through large codified systems, such as WordPress, Google, or

other platforms that mediate and abstract the language, discourse, and complexity among

computers, humans, and reality (Hall 121; Hayles, My Mother Was a Computer 57, 68).

WordPress’ design and development process also participates in the encoding and enframing as

it is “framed throughout by meanings and ideas: knowledge-in-use concerning the routines of

263

production, historically defined technical skills, professional ideologies, institutional knowledge,

definitions and assumptions, [and] assumptions about the audience” (Hall 118). Ultimately,

WordPress becomes an enframing platform, a medium of multilayered patchwork intermediaries,

through which cultural and societal values are framed, internalized, and encoded by its code and

design decision-making.

Summary

WordPress is encoded with cultural and societal values that focal points help locate.

Computational thinking considers how software is designed and how it can obscure the

rhetorical, cultural, and vulnerability entanglements within code. Code and how it is approached

within a codebase is also a consideration toward its encoding and enframing effects within

WordPress. WordPress’ code arrangement illustrates how empathy and elegance can be encoded

and decoded. Code arrangement is further problematized by the surrounding and inherited

technological controls and encoding embedded within them. WordPress is an iterative patchwork

of value-laden code, composed of multiple layers of encoding that enframe a worldview through

code’s enactment.

264

CHAPTER 7: FUTURE WORK AND CONCLUSION

Future Work

The following topics are ideas for future research. The continued examination of code as

a text and software and platforms as digital cultural objects is paramount to software, platform,

and critical code studies. Code’s intersections of influence, such as future hardware; upcoming

changes to the web and internet; algorithms; artificial intelligence; identity and sense of

responsibility of software developers and organizations; developer and developer culture; ethics

of computing (and coding); language; and the community that uses a particular software, offer

pathways of future inquiry.

Blue Skies and Thunderclouds

In 1987, Aaron Goldberg, drawing comparisons for upgrading computer systems en

masse, highlighted some advantages to upgrading to Advanced DOS over 386 DOS by

“leveraging existing hardware platforms and maintaining some ties with the past” (Goldberg). At

a time before internet connections were prevalent, Goldberg’s statement sets a simple but

profound view of 1980s technology and how it would continue from a design perspective. The

hereditary nature of the hardcoded underbelly of digital computing coupled with hardware-

specific compatible software became a realization to decouple and further abstract. As operating

systems developed into platforms that could interface across multiple hardware platforms,

software applications followed suit to work across multiple operating systems, stratifying into

numerous layers of code and API. Technological layering has ballooned skyward, creating a vast

new layer of abstraction within the distributed digital, known popularly as the “cloud.”

265

As one of the most distancing effects between machine and human, the cloud and all its

diffusive and on-the-ready rhetoric has an extensive influence on how we view platforms and

networked software. The cloud further complicates the notion of control and locating focal points

within the ever-expanding 3-dimensional space of code. Finn describes cloud computing as

another layer of abstraction that “functions as an opaque membrane deflecting public attention,

ethical inquires, and legal liability” (133). The cloud continues to build and take on new shapes

of services that rely on distributedness, connectedness, and networked systems. Despite the

cloud's airy and open connotation, it compacts and pushes more layers into the “other side” of

opacity, pushing more into obscurity and abstraction in favor of ease of use and response to the

interface. Though perhaps, more so, the cloud is a consequence of the deepening complexity and

sophistication of algorithmic and codification processes. Examining its influences and

relationship to people is critical as we continue to compress the technological encoding below us.

Ethics and Empathy of Green Computing and Code

Computing technology has expanded in capability at nearly an exponential rate over the

last six decades. While not a law, Gordon Moore’s 1965 transistor capacity observation

presciently set a pace of growth and quality improvements across most computing components,

such as increased memory and storage capacity, faster and more complex CPUs, and higher

resolutions for displays and cameras. Along with shrinking components and increased capacity,

components have become less expensive and consume more power. The International Energy

Agency reported that cloud-creating data centers consumed 194 terawatt hours of electricity (1%

of total demand) in 2014, and data networks guzzled 185 terawatt hours in 2015 (International

Energy Agency 103). These changes influenced the complexity and expansion of lines of code

within software. Perhaps, influenced by scarcity, the elegant arrangement of code favoring the

266

machine remains a charge within the developer community. Berry and Fagerjord add, “of two

programs that perform the same task with similar correct results, the fastest will normally be

preferred, or the one that uses less memory, bandwidth, CPU power or other scarce resources”

(54). Functions like Quake III’s inverse square root, although motivated by the need to optimize

efficiency and increase the calculation speed for a better gaming experience, suggest a type of

green computing. Despite the propensity towards elegant code, the sheer number of lines of code

involved and processed on any given machine paints a wide landscape of non-elegant,

unoptimized, and buggy and vulnerability-prone code that consumes more processing cycles and

power. Other sociotechnical approaches seemingly disregard elegance, such as bitcoin mining

and big data projects that consume massive amounts of power by brute-force calculations. In

September 2022, the White House Office of Science and Technology Policy published a report

estimating that crypto-asset power usage ranges from 105 to 305 terawatt-hours per year (OSTP

14). Despite efforts by The Green Grid consortium, the U.S. Environmental Protection Agency’s

Energy Star program, and energy efficiency use certification programs like “80 Plus” towards

examining and promoting more efficient and responsible energy use in hardware, the expansive

landscape software code presents another area of research in locating green computing ethical

and empathic focal points within a codebase and its history. Though the faster hardware has

masked some of the inelegant and non-optimized code, Leiserson and colleagues contend that

“as miniaturization wanes, the silicon-fabrication improvements at the Bottom will no longer

provide the predictable, broad-based gains in computer performance that society has enjoyed for

more than 50 years” (1). Leiserson and co-authors forecast that post-Moore performance

improvements will come from the top code layers being refactored and optimized. While

WordPress contains overt examples of software bloat, such as the “capital_P_dangit” function

267

and the Hello Dolly plugin that demand additional storage and processing, the less obvious and

grayer code may reveal more vital patterns of inefficiency. Identifying focal points in code offers

opportunities to locate the origin and ethical framing of green computing of less obvious code.

Code Sentiment

Code is a reductive and reduced language based on systematic ordering and categorizing

using syntactic, semantic, and logical arrangement. Although influenced by other programming

and natural languages, programming languages present their own characteristics and

arrangement that shape how the code expresses itself and influence how developers incorporate

and employ the language within software. When code speaks through enactment, the delegated

code blurs and whirls into prescriptive machinic instruction that mediates and builds an

intermediated software expression that typically manifests as a human interface; however, the

effects of reading, writing, and understanding delegated code are less evident. Examining code

sentiment is an approach to answering the question: “is code mopey like a zoo lion?” Examining

code from a philological or mixed computational and comparative linguistics lens allows one to

understand delegated code's effects on those exposed to and encountering it regularly.

Coding the code through sentiment analysis or tokenization are two methods that may

help understand some of the philological traits and effects of delegated code. The analysis of

code through coding the code resembles the assemblage of “textual intervention,” “deformance,”

and “computational enacted ‘tamperings’” that Ramsay attributes to Rob Pope; Jerome McGann

and Lisa Samuels; and Estelle Irizarry as heuresis or invention or ways of locating understanding

through algorithmic criticism (Ramsay 32). Seemingly a form of poetics, tokenization leans

closer to the machine by reading the source code as text to generate codes based on how machine

compilers and interpreters internally parse and make sense of the source code. While codifying

268

code and doing so algorithmically may seem an absurd, paradoxical examination approach, the

“tokenization forces us to confront the fact that the notion of a word is neither unambiguous nor

satisfactorily definable for all circumstances” all the more so with programming languages with

a much smaller lexicon than spoken languages (Ramsay 34). Sentiment analysis computation

presents a way to codify the code into fundamental polarities of positive, negative, or neutral

attitudinal and emotional expressions. Brock warns that “code might be described as

‘inexpressive’ in that it creates and communicates meaning in ways that often differ from

conventional invention and delivery of discursive arguments; it is precisely because of this

quality, however, that its procedural nature can demonstrate expressive out comes in novel and

unique ways” (54–55). If code indeed expresses sentiment, exploring how sentiment influences

software development and the people participating in its development is critical for future

software development and most digital object construction and production. While the magnitude

of influence might vary among programming languages, “code is understood as the discursive

system that mirrors what happens in nature and that generates nature itself” (Hayles, My Mother

Was a Computer 27). Exploring the effect of code expressions through coding the code

maintains the underlying framing and encoding that occurs within code while opening the

potential for new algorithmic and computational methods toward code as text and cultural digital

object.

Conclusion

This project is not a comprehensive examination of WordPress as software or its source

code as text. By applying critical code studies through a broad etiological approach, the project

offers different methods to analyze software and code while emphasizing the benefits of a

transdisciplinary approach. Examining WordPress from the “inside,” “middle,” and “outside”

269

has allowed capturing the complex dimensionality of code beyond its immediate functionality.

The introduction of focal points within source code to help identify and anchor moments of

confrontation also aids in isolating and further analyzing these moments and their influences.

While other types of focal points can be developed, analyzing some of WordPress’ cultural,

processual, and vulnerability focal points helped respond to what its code reveals about

developers’ rhetorical and ethical decision-making. Although identifying the processual focal

points depended on the functionality of WordPress, the method created a snapshot mapping of

delegated code to the flows of prescriptive code, revealing design-decision patterns, code use

frequency, and arrangement of code. Combined with examining WordPress’ core ideas, software

and code history, and the languages employed, the project offers three generalizable closing

observations about WordPress’ encoding and enframing of code, grayness, and the need to

compromise and collaborate among disciplines and between machines and humans.

Encoding of Code

Software source code, such as WordPress’ codebase, presents itself as a digital cultural

object containing text that can explicitly frame, with multiple layers of encoding, a worldview.

When enacted, the prescriptive code enframes embedded societal and cultural values through and

as interface that is constantly reinforced through the repetition and consistent repeatability of a

message. Code, as a function of systematic communication and media, paints itself broadly as an

encoded and encapsulated signal and an ephemeral snapshot of repeating beliefs and expressions.

These codified expressions manifested through our receivership and perception of media and

mediated outputs, such as search engine results, software features and APIs, and social media

platforms that compel certain forms of control and complacency with every interaction. Hayles,

observing the views of Stephen Wolfram, Edward Fredkin, and Harold Morowitz that everything

270

is computational, elevates code to be the “lingua franca not only of computers but of all physical

reality” (My Mother Was a Computer 15). Code speaks and, to varying degrees, effectively and

efficiently speaks repeatedly, almost without exception.

Nonetheless, the exceptions, errors, bugs, and vulnerabilities disrupt the smoothness of

software, revealing the code and unraveling its flaws that extend beyond preventing

functionality. Coding or writing code is an act of expression, framing, and encoding, producing a

two-dimensional digital ecosystem of code. Marino observes that “code becomes a channel of

discourse, a means of critical thinking and exploration, a writing process of drafting and revision,

and a mode of theoretical practice that is theorizing through making” (Critical Code Studies

167). The enactment of code and its ability to be distributed and distribute helps enframe

expression and ideology through a seemingly smooth repeating veneer of interface and presence.

As the ecosystem system evolves, the code, encoding, and technology become fossilized,

naturalized, normalized, and optimized, contributing to some software’s grayness. Before

discussing WordPress as a gray platform, reviewing code expression and the influence of the

effects of encoding and the naturalization of code and codes helps illustrate the concerns of the

grayness of WordPress.

Developers can express themselves through code in almost boundless manners. In some

cases, developers like Seth Vargo removed an open-source project from GitHub. An organization

contracted to make software for the U.S. Immigration and Customs Enforcement Agency

depended directly on the code from the project, essentially disrupting the software’s functionality

(Schiffer). As quoted in Zoe Schiffer’s article, Vargo stated, “as software engineers, we have to

abide by some sort of moral compass. When I learned that my code was being used for purposes

that I personally perceive as evil, I felt an obligation to prevent that” (Schiffer). For others, like

271

Justin Frankel, who created and developed Winamp, a famous media player that helped usher in

the MP3 era, it meant resigning from AOL. As quoted in Paul Boutin’s article, “The Death of the

Last Maverick Tech Company,” Justin Frankel blogged, “for me, coding is a form of self-

expression…The company controls the most effective means of self-expression I have.”

(Boutin). Code has a strong personal tie to those who are programming it. It becomes part of

their identity and sense of expression and value. For Vargo and Frankel, their products of

expression became strongly at odds with organizational politics and a sense of morality. Brock

remarks that “code, like other forms of language, serves to describe more than what it literally

states, the variety of rhetorical strategies and devices available to developers in code is relatively

astounding” (149). For WordPress, self-expressions remain in its codebase through the

remaining jazzy-punk-hack aesthetic and code arrangement that includes the tenacity of

“capital_P_dangit” and the never-fully-deprecated “my-hacks” feature, expressions that connote

a tantrum about capitalization and nostalgia of a long-ago sense of energetic freedom and

optimism of the web and hacking when the distributed digital was less normalized and

naturalized at the web technology layers. Hall observes that “the level of connotation of the

visual sign, of its contextual reference and positioning in different discursive fields of meaning

and association, is the point where already coded signs intersect with the deep semantic codes of

a culture and take on additional, more active ideological dimensions” (123). The self-expression

within WordPress’ source code is constantly countered by corporate capital expressions of

Automattic and WordPress.com, premium plugin and theme services, and premium or “white

glove” hosting. Mackenzie observes that “software development is embodied as definite, highly

focused orientations to code, machines, programs, diagrams, software tools, and most intensely,

other programmers” (137). However, the expressions and values, Harrel warns, that are “built

272

into the structures of computer systems can serve to either empower or disempower people"

(252). Furthermore, the structures and code can be duplicated and embedded within larger

systems with conflicting political and societal views. This double-edged problem of expression

and ideological embodiment within code, along with the iterative development of software, blurs

the origins and shifts of expression and designed intention within software.

Multi-vocal and expressive code has a complex and persistent encoding within it. Code

changes disrupt or reinforce the value-laden delegated assertions. For example, all the code

changes to “capital_P_dangit” have only reinforced the function’s inclusion and assertion of the

capitalization of WordPress since its introduction in “Thelonious Monk” by refining the

replacement process and the additional commentary code. Through the process of reinforcement

or disruption, code assertions and expressions start a trajectory toward naturalization,

standardization, and normalization. In observing the political strength of technical objects,

Akrich states that “they may change social relations, but they also stabilize, naturalize,

depoliticize, and translate these into other media…the processes involved in building up

technical objects are concealed. The causal links they established are naturalized” (222). The

slow, iterative naturalization of encoding can be observed across the years of WordPress’

development despite community dissent early in the code introduction. Chun observes

{referencing Lessig’s ‘code is law’} that code “is better than law; it is what lawyers have always

dreamed the law to be: an inhumanly perfect “performative” uttered by no one. Unlike any other

law or performative utterance, code almost always does what it says because it needs no human

acknowledgment” (Chun, Control and Freedom 66). After many years, the code for

“capital_P_dangit” and the Hello Dolly plugin has become the fossilized de facto WordPress

273

experience. The lulling effect of the naturalization of encoding within WordPress is further

fueled by its grayness as a platform and its flows of coded intermediaries.

Grayness of Platforms and Intermediaries

WordPress is positioned between social and technical, freedom and control, vulnerable

and safe, open-source and closed-source (through WordPress.com), and free and walled garden.

Its stakeholders seek a community to sustain and maintain it and a capital marketplace, while its

users and developers seek performativity, flexibility, stability, security, and autonomy.

Furthermore, WordPress follows Mackenzie’s observation about the Linux operating system in

that it “is situated within a context that figures information and communication processes as the

epitome of postindustrial power and productivity” (Mackenzie 74). WordPress is slowly eating

the content management system software world, with 64.1% of the global market share

(W3Techs, “Usage Statistics and Market Share of Content Management Systems”). Automattic

is motivated to sustain or increase its market share by maintaining WordPress’ sophisticated

utilitarian grayness, controlling the perceived quality of its core code, and then outwardly toward

themes and plugins that help feed the organizational and software identity and popularity.

Disruptions to WordPress’ grayness and naturalization emanate from code as changes,

exceptions, errors, bugs, and vulnerabilities. While disruptions offer an opportunity to rouse from

the lulling of WordPress, the thickening layers of code, chains of code, and extensions of code—

the intermediaries—obfuscate the source of the disruptions, leading to a more significant

opening of vulnerability occurrences in heavily encoded and naturalized code. Nonetheless,

WordPress, at present, remains a steadfast content management system comprised of a stack of

intermediaries and intermediation.

274

WordPress affords a gray web publishing platform that can be used to create content (the

top media layers) on almost any subject (unless it is hosted on WordPress.com as highlighted in

the “De-platforming” the “The Conservative Treehouse” section of Chapter 4 or on the merits of

capitalizing WordPress as “Wordpress”). WordPress, as an open-source software and platform,

has a design that effectively positions itself into the middle of gray through its enactment as a

web content platform that can, to some degree, decouple from content published through it.

WordPress establishes and moderates a surface media, compressing and conflating the media

expressions that construct and sustain it, for content. WordPress presents a fast and easy

publication mechanism in which the content can harm, hinder, disempower, and misinform

people, while it can also help, empower, disrupt, and create social space. Gillespie notes that

“‘platforms’ are ‘platforms’ not necessarily because they allow code to be written or run, but

because they afford an opportunity to communicate, interact or sell” (“The Politics of

‘Platforms’” 351). WordPress as a platform affords all three, with Automattic laying claim to its

commodification through hosting WordPress.com, taking advantage of the enthusiasm and

community contributions to WordPress’ core, and by the creation of themes and plugins, which

when they become popular, are swallowed by Automattic. Meanwhile, WordPress is ignored as a

sophisticated controlling system that continuously bombards our sensibilities. Introna observes

that “in our continual pursuit of convenience and efficiency we ‘delegate’ to digitally encoded

actors the most intimate details of our lives, and, in doing so, we conveniently forget and lose

track of these encodings” (114). The perceived benefits and expediency of WordPress “induce a

process of interpellation, wherein people willingly and voluntarily subscribe to and desire [its]

logic, trading potential disciplinary effects against benefits gained. And the benefits are often

substantial and, in a very quotidian sense, irresistible.” (Kitchin and Dodge 11). The entrancing

275

and luring effects of convenience, bringing people closer to the machine to communicate through

web publishing, is the nucleus of WordPress’ grayness. The interwoven intermediaries move and

control the flow of encoded logic and values that create WordPress’ persistence as a web

publishing platform; they also carry various degrees of decoding and misinterpretation. Fuller

and Goffey, at length, warn:

Being sophisticated today is about operating with media forms, techniques, and

technologies that are excessively, absurdly, finalized as to purpose and utility, but whose

seductive faces of apparent, personalized, seamlessness, whose coded and codified

bureaucratic allure, …presents multiple occasions (kairos) for crafty—and well-crafted—

exploitation (19).

The intermediaries not only create the grayness of WordPress as a platform but darken and veil

the signs of control and vulnerability in code and the potential risks of using the software.

Compromise and Collaboration Between the Binary

New media and technology signal a promise of change and reconstruction, a means to

start over and begin afresh. Software and code updates suggest the same; however, there is a

sameness to all new digital media and technology through hardware and software layers that

have long ago become naturalized and fossilized in how we think and compute to the point of

invisibility. Chun warns that “digital language makes control systems invisible: we no longer

experience the visible yet unverifiable gaze but a network of nonvisualizable digital control”

(Control and Freedom 9). As technology and media age and naturalize, their foundational layers

lose social value and attention by those consuming them to those farthest from the machine or

core design. The perceived invisibility and naturalization distance consumers from

intermediaries, developers, and organizations that continue to design, frame, build, and expand

276

upon the technology. While the evolution of the phone offers a more obvious example,

WordPress and other software are subtler with their enframing and design strategies. Drawing

from Karl Marx, Finn states, “industrial capitalism is based on a powerful mode of abstraction,

one that separates individuals from the profits of their labor, creating a form of alienation that

abstracts the work of individuals into fungible goods and services” (Finn 165). While this might

appear more evident through social media, prosumers, and content creators, open-source

software and other technologies present very similarly. There is tension among consumers,

community and core developers, and other contributors to WordPress over the sense of control

and contribution toward WordPress as open-source software and the communication with an

almost global audience that WordPress as a platform affords. Automattic employees are the most

significant contributors to WordPress, and it has a pattern of purchasing popular plugins and then

converting them into premium services with recurring costs that hook the data and experience

into its internal, closed-off ecosystem. Montfort et al. observe that “software is deeply woven

into contemporary life—economically, culturally, creatively, politically—in manners both

obvious and nearly invisible” (xi). WordPress has almost invisibly expanded from a blogging

platform to a global content management ecosystem and marketplace.

Concerning code and the open-source future of WordPress, we might continue to see the

binaries of open-source and closed-off systems in new forms of capitalistic compromise as

organizations continue to seek the benefits of community fervor and participation while

furthering pursuits to monetize digital platforms. WordPress’ shift in networked API calls to

walled gardens and premium services offers a hint of the gray matter creation between the

binaries. While the code on each side extends outward enough to interface and transact, the

blurring intermediaries and smoothness of the interface impede a holistic understanding of code

277

and the organizational and personal developer influences within it. Lund and Zukerfeld warn,

“exploitation and alienation have not vanished, but have merely been updated for cognitive

capitalism through the profit from openness business model and its powerful ideological

discourse” (6). Automattic’s embrace of this model helps conceal corporate motives and

influences in WordPress’ code and contributes to WordPress’ grayness as a community-driven

utility. WordPress’ future code changes offer a glimpse into Automattic’s strategic decision-

making because “to a significant degree, code is the structural glue that binds distributed and

distanciated activities together and ensures that products are (almost) always available for

purchase and in a way profitable to the end business” (Kitchin and Dodge 200). Furthermore, the

code pulls together these activities into material intersections, moments of the collisions of

encoding and decoding that create further focal points to examine.

We may be moving through what Florian Cramer begrudgingly suggests is the post-

digital. The post-digital is “either a contemporary disenchantment with digital information

systems and media gadgets, or a period in which our fascination with these systems and gadgets

has become historical” (“What Is ‘Post-Digital’?” 690–91). Becoming post-digital illustrates a

two-fold paradigm shift, a further distribution of code across and deeper within systems and

platforms in the pursuit of technology and capital and a distancing of interest and enthusiasm in

recognizing the controlling factors of code and technology within daily lives. Cramer explains

that the post-digital can be understood as “subtler cultural shifts and ongoing mutations” into

“new power structures, less obvious but no less pervasive, which have a profound and lasting

impact on languages and cultures, and most significantly continue to govern geopolitics and

global production chains” (“What Is ‘Post-Digital’?” 693). The blank canvas of the web and its

promise of unbounded freedom and organized anarchy mark the beginnings of recognition of the

278

post-digital. The early unbridled internet was a handful of protocols and limited modality,

fomenting a period of creativity and entrepreneurial spirit and a faster realization of the data

capital to be captured and gained through such a medium. For WordPress, a post-digital view

can be seen through the naturalization of code and its code changes that have either been

accepted or forgotten over time.

As new technology and evolutions of digital media are created, examining the complexity

of its layers as text, code, media, software, and platform remains critical to maintaining and

enhancing our understanding of its bidirectional influences. Postman cautions that “once a

technology is admitted, it plays out its hand; it does what it is designed to do. Our task is to

understand what that design is…when we admit a new technology to the culture, we must do so

with our eyes wide open” (7). To engage critically with code, McPherson calls for an

interdisciplinary approach that genuinely crosses within the disciplines to create multiple forms

of computational literacies, such as database, algorithmic, computational, and interface, and new

hybrid practices, such as artist-theorists, programming humanists, and theoretical archivists

(“U.S. Operating Systems at Mid-Century” 257). Code is a complex intermediary, which creates

complex layers of connection and intersection, delegation and prescription, framing and

enframing, encoding and decoding, and declarations and expression, that a singular discipline

cannot sufficiently embrace.

Code is a serious contributor to the thickness of digital media and moderation between

the binary of machines and humans. Although Cramer claims, mirroring Kittler’s software

proclamation, that there is no digital media, only “analog-to-digital-to-analog convertors,” there

is an overlooking factor to a no digital media or software view (“What Is ‘Post-Digital’?” 699).

The conversions and early hardware inscriptions are nevertheless codified languages and hot

279

media—technology that has extended beyond the self into complex mechanisms and systems of

media. Ullman adds, “we think we are creating the system for our own purposes. We believe we

are making it in our own image…but the computer is not really like us. It is a projection of a

very slim part of ourselves: that portion devoted to logic, order, rule, and clarity” (90). The

extension of ourselves has widened and diffused through the changes in technology, inscribing

our values, biases, views, and ways of thinking through code within the machine at every level.

For Hayles, “code permeates language and is permeated by it; electronic text permeates print;

computational processes permeate biological organism; intelligent machines permeate flesh” (My

Mother Was a Computer 242). As complex and seemingly hot and distanciated media, software

is experienced through a cascading and collective encoding and flow of code that cools with the

prevalence of human interaction. Introna observes that “under the surface of our lives an

increasingly complex geography of encoding is evolving with its own emergent performative

outcomes—a performativity in which human agency is but a faint echo, silently shaping our

present and future possibilities for becoming” (114). The challenge remains to find a

compromise between the binaries. Software acts as if it were an iceberg, showing 10 percent

visibility (despite the rising sea levels) but imparting a constant presence through prescriptive

acts of code speech and expression. Ong reminds us that “spoken words are always

modifications of a total situation which is more than verbal. They never occur alone, in a context

simply of words” (100). Below the surface, software has a vast and complex underbody of code,

and we may not be able to fully understand and pinpoint every focal point of vulnerability,

power and influence; however, we can continue to steer clear of the inevitable sinking of our

ship—the surrendering of our human agency and the naturalization of technology—with eyes

wide open to the extremes of the binary.

280

APPENDIX A: WORDPRESS DOWNLOAD SCRIPT

281

The following script was used to semi-automate the download of every WordPress

release published as an archive (“zip”) file. The script is written in Python and depends on the

Beautiful Soup, Requests, urllib3, and tqdm libraries. It is designed to be executed from a

command line.

#!/usr/bin/python3

from bs4 import BeautifulSoup
from tqdm import *
import requests
from urllib.parse import urlparse
import os
import time

url = "https://wordpress.org/download/releases/"
html = requests.get(url)
soup = BeautifulSoup(html.text, "html.parser")

for link in soup.find_all('a', href=True):
 href = link['href']
No beta, release candidates,IIS, or multisite versions
 if (href.endswith(".zip") and "beta" not in href and "-RC" not in
href and "-IIS" not in href and "-mu" not in href):
 pr = urlparse(href)
 filename = os.path.basename(pr.path)
 if (os.path.exists(filename)):
 print("{} already exists,
skipping...".format(filename))
 continue
 print("Downloading '{}'".format(href))
#Check to see if the href is a relative or absolute
 if (not pr.netloc):
 remotefile = url + href
 else:
 remotefile = href

 with requests.get(remotefile, stream=True) as r:
 r.raise_for_status()
 with open(filename, 'wb') as f:
 pbar = tqdm(total=int(r.headers['Content-
Length']))
 for chunk in r.iter_content(chunk_size=8192):
 if chunk:
 f.write(chunk)
 pbar.update(len(chunk))
 pbar.close()

282

APPENDIX B: CALLGRIND DATA EXCERPT

283

Profiling executing WordPress code was accomplished through installing and

configuring the PHP extension library, xdebug, which can track the processes of PHP by

documenting every function or entry point of execution and cataloging the number of calls it

makes, the number of calls made to it, caller, the path of the caller, and the processor time used.

The tracking process creates a call tree mapped to a text-based profile data format called

“callgrind.” The following is a small excerpt of the “callgrind” data produced through the

execution of WordPress. The complete call tree mapping in “callgrind” format is 781,181 lines,

approximately 6.6MB of data.

version: 1
creator: xdebug 3.1.2 (PHP 8.1.4)
cmd: /wordpress568/index.php
part: 1
positions: line

events: Time_(10ns) Memory_(bytes)

fl=(1) php:internal
fn=(1) php::define
14 722 24

fl=(1)
fn=(1)
21 188 24

fl=(1)
fn=(2) php::error_reporting
24 294 408

fl=(1)
fn=(3) php::file_exists
34 3169 0

fl=(1)
fn=(1)
23 262 24

fl=(1)
fn=(1)
26 98 24

fl=(1)
fn=(1)
29 69 24

fl=(1)

284

fn=(1)
32 75 24

fl=(1)
fn=(1)
35 92 24

fl=(1)
fn=(1)
38 111 24

fl=(1)
fn=(1)
40 105 24

fl=(1)
fn=(1)
52 79 24

fl=(1)
fn=(1)
53 78 24

fl=(1)
fn=(1)
54 128 24

fl=(1)
fn=(1)
55 117 24

fl=(1)
fn=(1)
56 51 24

fl=(1)
fn=(1)
57 108 24

fl=(1)
fn=(1)
58 85 24

fl=(1)
fn=(1)
59 77 24

fl=(1)
fn=(1)
83 127 24

fl=(1)
fn=(1)
16 210 24

285

REFERENCES

Abelson, Harold, et al. Structure and Interpretation of Computer Programs. 2nd ed., MIT Press,

1996.

Akrich, Madeleine. “The De-Scription of Technical Objects.” Shaping Technology/Building

Society: Studies in Sociotechnical Change, edited by Wiebe E. Bijker and John Law, MIT

Press, 1992.

Alexander, Elizabeth. “Praise Song for the Day.” Praise Song for the Day by Elizabeth

Alexander - Poems | Academy of American Poets, https://poets.org/poem/praise-song-

day. Accessed 15 Dec. 2020.

Ananny, Mike. “Toward an Ethics of Algorithms: Convening, Observation, Probability, and

Timeliness.” Science, Technology, & Human Values, vol. 41, no. 1, Sept. 2015, pp. 93–

117, https://doi.org/10.1177/0162243915606523.

Anderson, Tim. “Linux Kernel Coders Propose Inclusive Terminology Coding Guidelines, Note:

‘Arguments about Why People Should Not Be Offended Do Not Scale.’” The Register, 6

July 2020,

https://www.theregister.com/2020/07/06/linux_kernel_coders_propose_inclusive/.

Andreessen, Marc. “The Three Kinds of Platforms You Meet on the Internet.”

Blog.Pmarca.Com, 16 Sept. 2007,

http://web.archive.org/web/20071018161644/http://blog.pmarca.com:80/2007/09/the-

three-kinds.html.

---. “Why Software Is Eating The World.” Wall Street Journal (Online), 20 Aug. 2011.

Applen, J. D., and Rudy McDaniel. The Rhetorical Nature of XML: Constructing Knowledge in

Networked Environments. Routledge, 2009.

286

Arrington, Michael. “Automattic Spurns $200 Million Acquisition Offer.” TechCrunch, 29 Oct.

2007, https://social.techcrunch.com/2007/10/29/automattic-spurns-200-million-

acquisition-offer/.

Automattic. “About Us.” Automattic, 23 July 2005, https://automattic.com/about/.

---. “What to Expect During a Trial.” Automattic, 29 Sept. 2020, https://automattic.com/what-to-

expect-during-a-trial/.

Balmer, John M. T., et al. “The Nature and Management of Ethical Corporate Identity: A

Commentary on Corporate Identity, Corporate Social Responsibility and Ethics.” Journal

of Business Ethics, vol. 76, no. 1, Nov. 2007, pp. 7–15, https://doi.org/10.1007/s10551-

006-9278-z.

Barr, Adam. The Problem with Software: Why Smart Engineers Write Bad Code. The MIT Press,

2018.

Battelle, John. “The Startup Type.” Business 2.0, vol. 7, no. 3, Apr. 2006, pp. 122–24. Business

Source Premier.

Beck, Estee. “A Theory of Persuasive Computer Algorithms for Rhetorical Code Studies.”

Enculturation, vol. 23, 2016.

Beever, Jonathan, et al. Understanding Digital Ethics: Cases and Contexts. Routledge, 2020.

Berkun, Scott. The Year Without Pants: WordPress. Com and the Future of Work. John Wiley &

Sons, Incorporated, 2013.

Berry, David M. “A Contribution Towards a Grammar of Code.” The Fibreculture Journal, no.

13, 2008, http://thirteen.fibreculturejournal.org/fcj-086-a-contribution-towards-a-

grammar-of-code/.

287

---. “Iteracy: Reading, Writing and Running Code.” Iteracy, Sept. 2011. Blogger,

http://stunlaw.blogspot.com/2011/09/iteracy-reading-writing-and-running.html.

---. The Philosophy of Software: Code and Mediation in the Digital Age. Springer, 2016.

Berry, David M., and Anders Fagerjord, editors. Digital Humanities: Knowledge and Critique in

a Digital Age. Polity Press, 2017.

Black, Michael L. “A Textual History of Mozilla: Using Topic Modeling to Trace Sociocultural

Influences on Software Development.” Digital Humanities Quarterly, vol. 009, no. 3,

Dec. 2015.

Blankenship, Lisa. “Rhetorical Empathy in Dustin Lance Black’s 8: A Play on (Marriage)

Words.” Present Tense, vol. 3, no. 1, 2013, pp. 1–8.

Bogost, Ian, and Nick Montfort. “New Media as Material Constraint: An Introduction to

Platform Studies.” Electronic Techtonics: Thinking at the Interface. Proceedings of the

First International HASTAC Conference, 2007, pp. 176–93.

---. “Platform Studies: Frequently Asked Questions.” UC Irvine: Digital Arts and Culture, 2009,

https://escholarship.org/uc/item/01r0k9br.

Boutin, Paul. “Nullsoft, 1997-2004.” Slate, 12 Nov. 2004. slate.com,

https://slate.com/technology/2004/11/the-death-of-the-last-maverick-tech-company.html.

Brazell, Aaron. WordPress Bible. Wiley, 2010.

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments in and around Code. University

of Michigan Press, 2019.

Brooke, Collin Gifford. Lingua Fracta: Toward a Rhetoric of New Media. Hampton Press, 2009.

Brown, James J. Ethical Programs: Hospitality and the Rhetorics of Software. University of

Michigan Press, 2015.

288

Bucher, Taina. If...Then: Algorithmic Power and Politics. Oxford University Press, 2018.

---. “Want to Be on the Top? Algorithmic Power and the Threat of Invisibility on Facebook.”

New Media & Society, vol. 14, no. 7, Apr. 2012, pp. 1164–80,

https://doi.org/10.1177/1461444812440159.

Cabot, Jordi. “WordPress: A Content Management System to Democratize Publishing.” IEEE

Software, vol. 35, no. 3, June 2018, pp. 89–92,

https://doi.org/10.1109/MS.2018.2141016.

Carnell, Brian. Do NOT Use WordPress.Com to Host Your Blog – Brian.Carnell.Com.

https://brian.carnell.com/articles/2009/do-not-use-wordpresscom-to-host-your-blog/.

Chun, Wendy Hui Kyong. Control and Freedom: Power and Paranoia in the Age of Fiber

Optics. MIT Press, 2008.

---. Programmed Visions: Software and Memory. MIT Press, 2013.

Cimpanu, Catalin. “WordPress Accounted for 90 Percent of All Hacked CMS Sites in 2018.”

ZDNet, 5 Mar. 2019, https://www.zdnet.com/article/wordpress-accounted-for-90-percent-

of-all-hacked-cms-sites-in-2018/.

---. “WordPress Deploys Forced Security Update for Dangerous Bug in Popular Plugin.” ZDNet,

21 Oct. 2020, https://www.zdnet.com/article/wordpress-deploys-forced-security-update-

for-dangerous-bug-in-popular-plugin/.

Cohen, Matt. “It’s WordPress with a Capital ‘P’, Dangit!” Memeburn, 12 July 2010,

https://memeburn.com/2010/07/its-wordpress-with-a-capital-p-dangit/.

Colburn, Timothy R. “Software, Abstraction, And Ontology.” The Monist, vol. 82, no. 1, Jan.

1999, pp. 3–19, https://doi.org/10.5840/monist19998215.

Contributor Covenant: Adopters. https://www.contributor-covenant.org/adopters/.

289

Coordinated Vulnerability Disclosure Process | CISA. https://www.cisa.gov/coordinated-

vulnerability-disclosure-process. Accessed 26 Nov. 2022.

Coplan, Amy. “Understanding Empathy: Its Features and Effects.” Empathy: Philosophical and

Psychological Perspectives, edited by Amy Coplan and Peter Goldie, Oxford University

Press, 2011, pp. 2–18, https://doi.org/10.1093/acprof:oso/9780199539956.003.0002.

Cox, Geoff, and Christopher Alex McLean. Speaking Code: Coding as Aesthetic and Political

Expression. MIT Press, 2013.

Cramer, Florian. “Digital Code and Literary Text.” Beehive Hypertext/Hypermedia Literary

Journal, 2001.

---. “What Is ‘Post-Digital’?” New Media, Old Media: A History and Theory Reader, edited by

Wendy Hui Kyong Chun et al., 2nd ed., Routledge, 2016, pp. 689–702.

Crunchbase. “Automattic - Funding, Financials, Valuation & Investors.” Crunchbase,

https://www.crunchbase.com/organization/automattic/company_financials.

Danial, Al. Cloc. 2015. 22 June 2020. GitHub, https://github.com/AlDanial/cloc.

de Reuver, Mark, et al. “The Digital Platform: A Research Agenda.” Journal of Information

Technology, vol. 33, no. 2, June 2018, pp. 124–35, https://doi.org/10.1057/s41265-016-

0033-3.

Dillet, Romain. “Automattic Raises $300 Million at $3 Billion Valuation from Salesforce

Ventures.” TechCrunch, 19 Sept. 2019,

https://social.techcrunch.com/2019/09/19/automattic-raises-300-million-at-3-billion-

valuation-from-salesforce-ventures/.

DiNucci, Darcy. “Fragmented Future.” Print, vol. 53, no. 4, Aug. 1999, p. 32.

290

Dourish, Paul. “Algorithms and Their Others: Algorithmic Culture in Context.” Big Data &

Society, vol. 3, no. 2, 2016, pp. 1–11.

---. The Stuff of Bits: An Essay on the Materialities of Information. MIT Press, 2017.

Drucker, Johanna. “Performative Materiality and Theoretical Approaches to Interface.” Digital

Humanities Quarterly, vol. 007, no. 1, July 2013.

Eyman, Douglas. Digital Rhetoric: Theory, Method, Practice. University of Michigan Press,

2015.

Finn, Ed. What Algorithms Want: Imagination in the Age of Computing. MIT Press, 2017.

Friesem, Yonty. “Chapter 2 - Empathy for the Digital Age: Using Video Production to Enhance

Social, Emotional, and Cognitive Skills.” Emotions, Technology, and Behaviors, edited

by Sharon Y. Tettegah and Dorothy L. Espelage, Academic Press, 2016, pp. 21–45,

https://doi.org/10.1016/B978-0-12-801873-6.00002-9.

Fuller, Matthew. Behind the Blip: Essays on the Culture of Software. Autonomedia, 2003.

---. “Elegance.” Software Studies: A Lexicon, edited by Matthew Fuller, MIT Press, 2008, pp.

87–92.

---. “Introduction.” Software Studies: A Lexicon, edited by Matthew Fuller, MIT Press, 2008, pp.

1–13.

---. Media Ecologies: Materialist Energies in Art and Technoculture. MIT Press, 2005.

Fuller, Matthew, and Andrew Goffey. Evil Media. MIT Press, 2012.

Galloway, Alexander R. Protocol: How Control Exists after Decentralization. MIT Press, 2006.

Gillespie, Tarleton. Custodians of the Internet: Platforms, Content Moderation, and the Hidden

Decisions That Shape Social Media. Yale University Press, 2018.

291

---. “The Politics of ‘Platforms.’” New Media & Society, vol. 12, no. 3, May 2010, pp. 347–64,

https://doi.org/10.1177/1461444809342738.

---. “The Relevance of Algorithms.” Media Technologies: Essays on Communication,

Materiality, and Society, edited by Tarleton Gillespie et al., MIT Press, 2014, pp. 167–93.

Goffey, Andrew. “Algorithm.” Software Studies: A Lexicon, edited by Matthew Fuller, MIT

Press, 2008, pp. 15–20.

Goldberg, Aaron. “Routes to System Upgrades.” Computerworld, 4 Mar. 1987.

Goldman, Eric. “It Takes a Default Judgment to Win a 17 USC 512(f) Case-Automattic v.

Steiner.” Technology & Marketing Law Blog, 13 Mar. 2015,

https://blog.ericgoldman.org/archives/2015/03/it-takes-a-default-judgment-to-win-a-17-

usc-512f-case-automattic-v-steiner.htm.

Gooding, Sarah. “WordPress.Com Gives Conservative Treehouse the Boot, Citing TOS

Violations.” WordPress Tavern, 18 Nov. 2020, https://wptavern.com/wordpress-com-

gives-conservative-treehouse-the-boot-citing-tos-violations.

HackerOne. “Automattic - Bug Bounty Program.” HackerOne, 15 Dec. 2020,

https://hackerone.com/automattic.

---. “WordPress - Bug Bounty Program.” HackerOne, 23 Nov. 2020,

https://hackerone.com/wordpress.

Hall, Stuart. “Encoding/Decoding.” Culture, Media, Language, edited by Stuart Hall et al.,

Routledge, 2005, pp. 117–27.

Harrell, D. Fox. Phantasmal Media: An Approach to Imagination, Computation, and Expression.

MIT Press, 2013.

292

Hayles, N. Katherine. How We Think: Digital Media and Contemporary Technogenesis. The

University of Chicago Press, 2012.

---. My Mother Was a Computer: Digital Subjects and Literary Texts. The University of Chicago

Press, 2005.

Hern, Alex. “WordPress Pulls Interview with Anti-Gay Group Straight Pride UK.” The

Guardian, 13 Aug. 2013. www.theguardian.com,

https://www.theguardian.com/technology/2013/aug/13/wordpress-straight-pride-uk.

Hollan, Douglas. “Emerging Issues in the Cross-Cultural Study of Empathy.” Emotion Review,

vol. 4, no. 1, Jan. 2012, pp. 70–78, https://doi.org/10.1177/1754073911421376.

Holmes, Steve. “‘Can We Name the Tools?’ Ontologies of Code, Speculative Techné and

Rhetorical Concealment.” Computational Culture, no. 5, Jan. 2016,

http://computationalculture.net/can-we-name-the-tools-ontologies-of-code-speculative-

techne-and-rhetorical-concealment/.

Hosanagar, Kartik. A Human’s Guide to Machine Intelligence: How Algorithms Are Shaping

Our Lives and How We Can Stay in Control. Viking, 2019.

Indeed. “Find Wordpress Jobs with Great Pay and Benefits | Indeed.Com.” Find Wordpress Jobs

with Great Pay and Benefits,

https://www.indeed.com/jobs?q=WordPress&l&vjk=ea4d7b1158e1a42a. Accessed 13

Apr. 2022.

Intel. Deprecated Technologies - 004 - ID:655258 | CoreTM Processors.

https://edc.intel.com/content/www/us/en/design/ipla/software-development-

platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-

datasheet-volume-1-of-2/004/deprecated-technologies/.

293

International Energy Agency. Digitalization & Energy. International Energy Agency, Nov. 2017,

p. 185.

Introna, Lucas D. “The Enframing of Code: Agency, Originality and the Plagiarist.” Theory,

Culture & Society, vol. 28, no. 6, 2011, pp. 113–41.

Jorbin, Aaron. “My-Hacks.Php No Longer Supported.” Make WordPress Core, 18 Sept. 2015,

https://make.wordpress.org/core/2015/09/18/my-hacks-php-no-longer-supported/.

Kallinikos, Jannis, et al. “A Theory of Digital Objects.” First Monday, vol. 15, no. 6, June 2010,

https://doi.org/10.5210/fm.v15i6.3033.

---. “The Ambivalent Ontology of Digital Artifacts.” MIS Quarterly, vol. 37, no. 2, 2013, pp.

357–70.

King, Alex. Interview with Alex King. Digital, 23 Apr. 2013,

https://archive.wordpress.org/interviews/2013_04_23_King.html#L53.

Kinsta. “The History of WordPress, Its Ecosystem and Community.” Kinsta Managed

WordPress Hosting, https://kinsta.com/learn/wordpress-history/. Accessed 13 Sept. 2020.

Kitchin, Rob. “Thinking Critically About and Researching Algorithms.” Information,

Communication & Society, vol. 20, no. 1, Jan. 2017, pp. 14–29,

https://doi.org/10.1080/1369118X.2016.1154087.

Kitchin, Rob, and Martin Dodge. Code/Space: Software and Everyday Life. MIT Press, 2011.

Kittler, Friedrich A. “Code (or, How You Can Write Something Differently).” Software Studies:

A Lexicon, edited by Matthew Fuller, MIT Press, 2008, pp. 40–47.

---. “There Is No Software.” The Truth of the Technological World: Essays on the Genealogy of

Presence, Stanford University Press, 2013, pp. 219–29.

294

Kohanski, Daniel. The Philosophical Programmer: Reflections on the Moth in the Machine. 1st

ed, St. Martin’s Press, 1998.

Krouse, Sarah. “Verizon to Sell Tumblr to WordPress.Com Owner; Carrier Sheds Blogging Site

for Nominal Amount as Part of Media Unit Revamp.” Wall Street Journal (Online), 12

Aug. 2019.

Krysa, Joasia, and Grzesiek Sedek. “Source Code.” Software Studies: A Lexicon, edited by

Matthew Fuller, MIT Press, 2008, pp. 236–43.

Lehman, Meir M., and Juan F. Ramil. “Software Evolution—Background, Theory, Practice.”

Information Processing Letters, vol. 88, no. 1, Oct. 2003, pp. 33–44,

https://doi.org/10.1016/S0020-0190(03)00382-X.

Leiserson, Charles E., et al. “There’s Plenty of Room at the Top: What Will Drive Computer

Performance after Moore’s Law?” Science, vol. 368, no. 6495, June 2020, p. eaam9744,

https://doi.org/10.1126/science.aam9744.

Lerdorf, Rasmus, et al. Programming PHP. 3rd ed., O’Reilly Media, Inc., 2006.

Lessig, Lawrence. Code. Version 2.0, Basic Books, 2006.

LinkedIn. Wordpress Jobs | LinkedIn.

https://www.linkedin.com/jobs/search/?keywords=wordpress. Accessed 13 Apr. 2022.

Lomas, Natasha. “Automattic Pumps $4.6M into New Vector to Help Grow Matrix, an Open,

Decentralized Comms Ecosystem.” TechCrunch, 21 May 2020,

https://social.techcrunch.com/2020/05/21/automattic-pumps-4-6m-into-new-vector-to-

help-grow-matrix-an-open-decentralized-comms-ecosystem/.

295

Lovelace, Ada. “Sketch of the Analytical Engine (1843).” Literature and Science in the

Nineteenth Century: An Anthology, edited by Laura Otis, Oxford University Press, 2002,

pp. 15–19.

Lukasik, Stephen. “Why the Arpanet Was Built.” IEEE Annals of the History of Computing, vol.

33, no. 3, 2010, pp. 4–21.

Lund, Arwid, and Mariano Zukerfeld. Corporate Capitalism’s Use of Openness: Profit for Free?

2020.

Mackenzie, Adrian. Cutting Code: Software and Sociality. Peter Lang, 2006.

Manovich, Lev. The Language of New Media. MIT Press, 2001.

Marino, Mark C. “Critical Code Studies.” Electronic Book Review, vol. 4, Dec. 2006.

---. Critical Code Studies: Initial Methods. MIT Press, 2020.

---. “Field Report for Critical Code Studies, 2014.” Computational Culture, no. 4, Nov. 2014.

computationalculture.net, http://computationalculture.net/field-report-for-critical-code-

studies-2014/.

---. “Why We Must Read the Code: The Science Wars, Episode IV.” Debates in the Digital

Humanities: 2016, edited by Matthew K. Gold and Lauren F. Klein, University of

Minnesota Press, 2016, pp. 139–52.

Matt Meullenweg. “New Feature: My-Hacks.Php.” WordPress News, 15 Dec. 2003,

https://wordpress.org/news/2003/12/new-feature-my-hacksphp/.

Matt Mullenweg: State of the Word 2016. Directed by WordPress.tv, 2016,

https://wordpress.tv/2016/12/07/matt-mullenweg-state-of-the-word-2016/.

McPherson, Tara. Feminist in a Software Lab: Difference + Design. Harvard University Press,

2018.

296

---. “Introduction: Media Studies and the Digital Humanities.” Cinema Journal, vol. 48, no. 2,

2009, pp. 119–23.

---. “U.S. Operating Systems at Mid-Century: The Intertwining of Race and UNIX.” New Media,

Old Media: A History and Theory Reader, edited by Wendy Hui Kyong Chun et al., 2nd

ed., Routledge, 2016, pp. 247–59.

Melody, William H. “Human Capital in Information Economies.” New Media & Society, vol. 1,

no. 1, 1999, pp. 39–46.

Michel Valdrighi: Les origines de WordPress – la naissance de b2/cafelog. Directed by

WordPress.tv, 2012, https://wordpress.tv/2012/02/27/les-origines-de-wordpress-la-

naissance-de-b2cafelog/.

Milestones: The Story of WordPress. 2013. 1, WordPress, 23 Aug. 2020. GitHub,

https://github.com/WordPress/book.

MITRE Corporation. “CNA Rules.” CNA Rules, 14 Apr. 2022,

https://www.cve.org/ResourcesSupport/AllResources/CNARules#appendix_a_definitions

.

---. Overview | CVE. https://www.cve.org/About/Overview.

Monin, Monica, and Astrid Lorange. “A Poetics of Computation: Critical Approaches to

Reading and Writing with Data.” Electronic Visualisation and the Arts Australasia 2016,

2017, pp. 26–33.

Montfort, Nick, et al. 10 PRINT CHR $(205.5+ RND (1));: GOTO 10. MIT Press, 2012.

Mullenweg, Matt. “A New Home for the WordPress Trademark.” Matt Mullenweg, 9 Sept. 2010,

https://ma.tt/2010/09/wordpress-trademark/.

297

---. “Hello Dolly.” WordPress.Org, https://wordpress.org/plugins/hello-dolly/. Accessed 15 Dec.

2020.

---. “The Blogging Software Dilemma.” Matt Mullenweg, 24 Jan. 2003,

https://ma.tt/2003/01/the-blogging-software-dilemma/.

---. “The CEO of Automattic on Holding ‘Auditions’ to Build a Strong Team.” Harvard Business

Review, vol. 92, no. 4, Apr. 2014, pp. 39–42.

---. “Twenty-Five.” Matt Mullenweg, 11 Jan. 2009, https://ma.tt/2009/01/twenty-five/.

---. “WordPress.Com VIP.” Matt Mullenweg, 25 Sept. 2006,

https://ma.tt/2006/09/wordpresscom-vip/.

National Institute of Standards and Technology. NVD - Vulnerability Detail Pages.

https://nvd.nist.gov/vuln/vulnerability-detail-pages#. Accessed 30 Aug. 2021.

---. NVD - WordPress Product Results.

https://nvd.nist.gov/products/cpe/search/results?namingFormat=2.3&keyword=cpe%3A2

.3%3Aa%3A*%3A*%3A*%3A*%3A*%3A*%3A*%3Awordpress%3A*%3A*.

Accessed 25 Nov. 2022.

---. NVD - WordPress Target Vulnerability Results.

https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&q

uery=cpe%3A2.3%3Aa%3A*%3A*%3A*%3A*%3A*%3A*%3A*%3Awordpress%3A

%3A&search_type=all&isCpeNameSearch=false. Accessed 25 Nov. 2022.

Noble, Safiya Umoja. Algorithms of Oppression: How Search Engines Reinforce Racism. New

York University Press, 2018.

298

Oberhaus, Daniel. “The Culture War Comes to Linux.” Vice, 26 Sept. 2018,

https://www.vice.com/en/article/yw43kj/what-happens-if-linux-developers-remove-their-

code.

Oh, Inae. “Trump Falsely Accuses an Elderly Buffalo Protester of Staging His Violent Police

Encounter.” Mother Jones, 9 June 2020, https://www.motherjones.com/crime-

justice/2020/06/trump-martin-gugino/.

Ong, Walter J. Orality and Literacy: The Technologizing of the Word. 30th anniversary ed.; 3rd

ed, Routledge, 2012.

Opensource.org. WordPress Foundation Becomes an Open Source Initiative® Affiliate Member |

Open Source Initiative. 6 Oct. 2014, https://opensource.org/WordPressPR.

Oracle. Java Software. https://www.oracle.com/java/. Accessed 5 Oct. 2021.

---. Moved by Java Timeline | Oracle. https://www.oracle.com/java/moved-by-

java/timeline/#2016. Accessed 6 Oct. 2021.

O’Reilly, Tim. “What Is Web 2.0: Design Patterns and Business Models for the next Generation

of Software.” Communications & Strategies, no. 65, Jan. 2007, p. 11.

OSTP. Climate and Energy Implications of Crypto-Assets in the United States. White House

Office of Science and Technology Policy, 8 Sept. 2022, p. 46,

https://www.whitehouse.gov/wp-content/uploads/2022/09/09-2022-Crypto-Assets-and-

Climate-Report.pdf.

Oxford English Dictionary. “code, n.1”.

https://www.oed.com/view/Entry/35578?rskey=90yTCm&result=1.

Parikka, Jussi. “Viral Ecologies.” New Media, Old Media: A History and Theory Reader, edited

by Wendy Hui Kyong Chun et al., 2nd ed., Routledge, 2016, pp. 275–86.

299

Petzold, Charles. Code: The Hidden Language of Computer Hardware and Software. Paperback

ed, Microsoft Press, 2000.

Planque, François. “Evolution of B2, 180° from WordPress!” About B2evolution CMS,

https://b2evolution.net/about/b2evolution-vs-wordpress.

---. “News from the B2 World.” Fplanque: Blog Geek, 23 May 2003,

http://fplanque.net/Blog/devblog/2003/05/23/news_from_the_b2_world.

“Playboy Interview: Marshall McLuhan: A Candid Conversation with the High Priest of Popcult

and Metaphysician of Media.” Playboy, vol. 16, no. 3, Mar. 1969, pp. 53–158.

Possati, Luca M. “Towards a Hermeneutic Definition of Software.” Humanities and Social

Sciences Communications, vol. 7, no. 1, Aug. 2020, p. 71,

https://doi.org/10.1057/s41599-020-00565-0.

Postman, Neil. Technopoly: The Surrender of Culture to Technology. First Vintage Books

Edition, Vintage Books, 1993.

Prakash, Abhishek. “New Patch Replaces F-Words in Linux Kernel Code with ‘Hug.’” It’s

FOSS, 5 Dec. 2018, https://itsfoss.com/swear-words-linux-kernel/.

Primack, Dan. “3/ Story Updated: Price Less than $3 Million.” @danprimack, 12 Aug. 2019,

https://twitter.com/danprimack/status/1161038705295089664.

Quinn, Melissa. Trump Suggests without Evidence 75-Year-Old Man Shoved to the Ground by

Buffalo Police Was a “Set Up.” 10 June 2020, https://www.cbsnews.com/news/trump-

comments-on-buffalo-protester-martin-gugino-antifa-police/.

Raley, Rita. “Code. Surface|| Code. Depth.” Dichtung Digital, vol. 36, 2006,

http://www.dichtung-digital.org/2006/1-Raley.htm.

300

Ramsay, Stephen. Reading Machines: Toward an Algorithmic Criticism. University of Illinois

Press, 2011.

Robinson, Derek. “Function.” Software Studies: A Lexicon, edited by Matthew Fuller, MIT

Press, 2008, pp. 101–10.

Salter, Anastasia. “Code before Content? Brogrammer Culture in Games and Electronic

Literature.” Hyperrhiz: New Media Cultures, no. 17, 2017. hyperrhiz.io,

https://doi.org/10.20415/hyp/017.e02.

Salter, Anastasia, and John Murray. Flash: Building the Interactive Web. MIT Press, 2014.

Sample, Mark L. “Criminal Code: Procedural Logic and Rhetorical Excess in Videogames.”

DHQ: Digital Humanities Quarterly, vol. 7, no. 1, 2013.

Schiffer, Zoe. “To Fight ‘Evil’ ICE, an Engineer Pulled His Code off GitHub.” The Verge, 20

Sept. 2019, https://www.theverge.com/2019/9/20/20876495/github-seth-vargo-pulled-

code-chef-ice-deportations-trump-administration.

Selig, Abe. “The Value of WordPress: The World’s First Study of the WordPress Economy.”

WP Engine, 30 Jan. 2022, https://wpengine.com/resources/value-of-wordpress-worlds-

first-study-of-wordpress-economy/.

Shirey, R. Internet Security Glossary, Version 2. Informational, RFC4949, Internet Engineering

Task Force, Aug. 2007, p. 365, https://doi.org/10.17487/rfc4949.

Slid, Oliver. Security Vulnerabilities of WordPress Ecosystem in 2020. Patchwork, Apr. 2021, p.

5, https://patchstack.com/wordpress-security-2020/.

---. State Of WordPress Security In 2021. 3 Apr. 2022, https://patchstack.com/whitepaper/the-

state-of-wordpress-security-in-2021/.

301

Softaculous. “Loginizer.” WordPress.Org, https://wordpress.org/plugins/loginizer/. Accessed 15

Dec. 2020.

Sonnad, Nikhil. “The Great American Word Mapper.” Quartz, https://qz.com/862325/the-great-

american-word-mapper/#int/words=dang&smoothing=3. Accessed 16 May 2022.

Sordello. Code Isn’t Poetry - or “What I Don’t like about Wordpress” | Sordello. 25 Feb. 2010,

https://web.archive.org/web/20100225185602/http://www.sordello.org/code-isnt-poetry/.

Southern, Matt G. “Top Threats to WordPress Sites Identified in New Report.” Search Engine

Journal, 30 Jan. 2021, https://www.searchenginejournal.com/top-threats-to-wordpress-

sites-identified-in-new-report/394185/.

Srnicek, Nick. Platform Capitalism. John Wiley & Sons, 2017.

Sundance. “The Treehouse Is Deplatformed...” The Last Refuge, 15 Nov. 2020,

https://theconservativetreehouse.com/2020/11/15/the-treehouse-is-deplatformed/.

Taylor, Astra. The People’s Platform: Taking Back Power and Culture in the Digital Age.

Metropolitan Books, 2014.

The PHP Group. “PHP: Unserialize - Manual.” PHP: Hypertext Preprocessor,

https://www.php.net/manual/en/function.unserialize.php. Accessed 4 Oct. 2022.

Thompson, Clive. Coders: The Making of a New Tribe and the Remaking of the World. Penguin

Press, 2019.

Tiwana, Amrit, et al. “Research Commentary—Platform Evolution: Coevolution of Platform

Architecture, Governance, and Environmental Dynamics.” Information Systems

Research, vol. 21, no. 4, Dec. 2010, pp. 675–87, https://doi.org/10.1287/isre.1100.0323.

Toulas, Bill. “WordPress Force Installs UpdraftPlus Patch on 3 Million Sites.”

BleepingComputer, 18 Feb. 2022,

302

https://www.bleepingcomputer.com/news/security/wordpress-force-installs-updraftplus-

patch-on-3-million-sites/.

Ullman, Ellen. Close to the Machine: Technophilia and Its Discontents. 1st Picador ed, Picador /

Farrar, Straus, and Giroux, 2012.

Vaidhyanathan, Siva. The Googlization of Everything: And Why We Should Worry. Updated

edition, First paperback printing, University of California Press, 2012.

Vasquez, Richard. Kses. 2013. 27 Nov. 2021. GitHub, https://github.com/RichardVasquez/kses.

Vecchi, Alessandra. “Global Work Arrangements in the Virtual Enterprise – Some Lessons

from Automattic.” International Conference on Advances in Business and Law (ICABL),

vol. 1, no. 1, Dec. 2017, pp. 310–32, https://doi.org/10.30585/icabml-cp.v1i1.28.

W3C. “Why Validate?” World Wide Consortium (W3C),

https://validator.w3.org/docs/why.html#why_pros. Accessed 12 Dec. 2020.

---. “XHTML 1.0: The Extensible HyperText Markup Language (Second Edition).” World Wide

Consortium (W3C), 1 Aug. 2002, https://www.w3.org/TR/xhtml1/#why.

W3Techs. “Usage Statistics and Market Share of Content Management Systems, November

2022.” W3Techs - Extensive and Reliable Web Technology Surveys,

https://w3techs.com/technologies/overview/content_management. Accessed 20 Nov.

2022.

---. “Usage Statistics and Market Share of PHP for Websites, April 2022.” W3Techs - Extensive

and Reliable Web Technology Surveys, 17 Apr. 2022,

https://w3techs.com/technologies/details/pl-php.

Wardrip-Fruin, Noah. Expressive Processing: Digital Fictions, Computer Games, and Software

Studies. MIT Press, 2012.

303

Wing, Jeannette M. “Computational Thinking.” Communications of the ACM, vol. 49, no. 3,

2006, pp. 33–35.

WordPress Foundation. “WordPress Foundation.” WordPress Foundation,

https://wordpressfoundation.org/. Accessed 15 Dec. 2020.

WordPress.com. “Automattic Acquires BruteProtect.” Jetpack: WordPress Security,

Performance, and Growth, 26 Aug. 2014, https://jetpack.com/2014/08/26/automattic-

bruteprotect/.

---. “Notable WordPress Users.” WordPress.Com, 11 July 2006, https://wordpress.com/notable-

users/.

---. “WordPress Cost | WordPress Price | Compare Our Plans.” WordPress.Com, 23 Feb. 2016,

https://wordpress.com/pricing/.

WordPress.org. “#5066 (Anonymize Update Checking) – WordPress Trac.” Blog Tool,

Publishing Platform, and CMS - WordPress.Org,

https://core.trac.wordpress.org/ticket/5066. Accessed 15 Dec. 2020.

Wordpress.org. “#11538 (Unbundle Hello Dolly) – WordPress Trac.” WordPress Trac,

https://core.trac.wordpress.org/ticket/11538. Accessed 6 June 2022.

WordPress.org. “#13583 (Wordpress -> WordPress Breaks Quotations) – WordPress Trac.”

WordPress Trac, https://core.trac.wordpress.org/ticket/13583. Accessed 19 May 2022.

---. “#13971 (‘Wordpress’ Being Turned into CamelCase ‘WordPress’ Breaks URLs) –

WordPress Trac.” WordPress Trac, https://core.trac.wordpress.org/ticket/13971.

Accessed 17 May 2022.

304

---. “#14219 (Making Capital_P_dangit Completely Wpcamelcase.Com Compliant) – WordPress

Trac.” WordPress Trac, https://core.trac.wordpress.org/ticket/14219. Accessed 14 Dec.

2020.

---. “#15769 (WordPress Ships with Copyrighted ‘Hello, Dolly!’ Lyrics Which Could Potentially

Terminate the GNU GPL of the Package) – WordPress Trac.” WordPress Trac,

https://core.trac.wordpress.org/ticket/15769. Accessed 6 June 2022.

---. “#33741 (Remove References to My-Hacks.Php and the Hack_file Option) – WordPress

Trac.” WordPress Trac, https://core.trac.wordpress.org/ticket/33741#no0. Accessed 13

Dec. 2020.

---. “#43555 (Keep Hello Dolly from Displaying Sexist Text in the Admin) – WordPress Trac.”

WordPress Trac, https://core.trac.wordpress.org/ticket/43555. Accessed 6 June 2022.

---. “About Us: Our Mission.” Blog Tool, Publishing Platform, and CMS - WordPress.Org, 28

Mar. 2018, https://wordpress.org/about/.

---. “Announcing WordPress 1.5.” WordPress News, 17 Feb. 2005,

https://wordpress.org/news/2005/02/strayhorn/.

---. “Blog Tool, Publishing Platform, and CMS — WordPress.Org.” Blog Tool, Publishing

Platform, and CMS - WordPress.Org, 23 Nov. 2020, https://wordpress.org/.

---. “Changeset 14996 – WordPress Trac.” WordPress Trac,

https://core.trac.wordpress.org/changeset/14996. Accessed 16 May 2022.

---. “Changeset 15377 – WordPress Trac.” WordPress Trac,

https://core.trac.wordpress.org/changeset/15377. Accessed 18 May 2022.

---. “Changeset 49581 – WordPress Trac.” WordPress Trac,

https://core.trac.wordpress.org/changeset/49581. Accessed 30 May 2022.

305

---. “Codex: Community Portal « WordPress Codex.” WordPress Codex,

https://codex.wordpress.org/Codex:Community_Portal. Accessed 14 Dec. 2020.

---. “Gutenberg as a Development Platform | Block Editor Handbook.” WordPress Developer

Resources, https://developer.wordpress.org/. Accessed 7 Feb. 2021.

---. Hacking WordPress « WordPress Codex. 5 Sept. 2015,

https://web.archive.org/web/20150905110202/https://codex.wordpress.org/Hacking_Wor

dPress.

---. “Make WordPress.” Make WordPress, https://make.wordpress.org/. Accessed 14 Dec. 2020.

---. “Managing Plugins.” WordPress.Org Forums, 24 Oct. 2018,

https://wordpress.org/support/article/managing-plugins/.

---. “Press This.” Blog Tool, Publishing Platform, and CMS - WordPress.Org,

https://wordpress.org/plugins/press-this/. Accessed 8 Aug. 2022.

---. “The GNU Public License.” Blog Tool, Publishing Platform, and CMS - WordPress.Org, 28

Mar. 2018, https://wordpress.org/about/license/.

---. “Version 1.0.2.” WordPress.Org Forums, 19 May 2019,

https://wordpress.org/support/wordpress-version/version-1-0-2/.

---. “WordPress 0.71 Now Available.” WordPress News, 9 June 2003,

https://wordpress.org/news/2003/06/wordpress-071-now-available/.

---. “WordPress 2.0.5 – Ronan.” WordPress News, 27 Oct. 2006,

https://wordpress.org/news/2006/10/205-ronan/.

---. “WordPress 2.3.” WordPress News, 25 Sept. 2007,

https://wordpress.org/news/2007/09/wordpress-23/.

306

Wordpress.org. “WordPress 3.7 ‘Basie.’” WordPress News, 24 Oct. 2013,

https://wordpress.org/news/2013/10/basie/.

WordPress.org. “WordPress and PHP 8.0.” Make WordPress Core, 23 Nov. 2020,

https://make.wordpress.org/core/2020/11/23/wordpress-and-php-8-0/.

---. “WordPress Developer Resources | Official WordPress Developer Resources.” WordPress

Developer Resources, https://developer.wordpress.org/. Accessed 17 June 2022.

---. “WordPress Is Secure.” Blog Tool, Publishing Platform, and CMS - WordPress.Org, 28 Mar.

2018, https://wordpress.org/about/security/.

---. WordPress “Nina Simone.” 5.6, WordPress,

https://core.trac.wordpress.org/browser/tags/5.6/src/.

---. “WordPress Now Available.” WordPress News, 27 May 2003,

https://wordpress.org/news/2003/05/wordpress-now-available/.

---. “WordPress Plugins.” Blog Tool, Publishing Platform, and CMS - WordPress.Org,

https://wordpress.org/plugins. Accessed 12 Dec. 2020.

---. “WordPress Themes | WordPress.Org.” Blog Tool, Publishing Platform, and CMS -

WordPress.Org, https://wordpress.org/themes/. Accessed 30 Jan. 2023.

---. “WordPress Versions « WordPress Codex.” WordPres Codex,

https://codex.wordpress.org/WordPress_Versions. Accessed 15 Oct. 2020.

---. “WP5.6 | Auto-Update Implementation Change.” Make WordPress Core, 10 Nov. 2020,

https://make.wordpress.org/core/2020/11/10/wp5-6-auto-update-implementation-change/.

---. “WP_Query | Class.” WordPress Developer Resources, https://developer.wordpress.org/.

World Wide Web Foundation. The Case for the Web. World Wide Web Foundation, 3 Nov.

2018, p. 24, https://webfoundation.org/research/the-case-for-the-web/.

307

WP Engine. “About WP Engine | WordPress Digital Experience Platform.” WP Engine,

https://wpengine.com/about-us/. Accessed 14 Dec. 2020.

WWW-Talk Apr-Jun 1993: NCSA Httpd Version 0.3.

http://1997.webhistory.org/www.lists/www-talk.1993q2/0135.html. Accessed 7 June

2022.

	Mapping the Focal Points of WordPress: A Software and Critical Code Analysis
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	Motivation and Purpose
	Overview

	CHAPTER 2: LITERATURE REVIEW AND THEORETICAL LENSES
	Introduction
	Media, Software, and Platforms
	Media
	Technology
	Ecology
	Distributedness

	Software
	Processual and Computational
	Interface and Interaction
	Abstraction and Metaphor

	Digital Platforms
	Political and Personal
	Controlled and Controlling Affordance
	Pervasive Engagement

	Code and Language
	Location of Code
	Emergent Properties
	Enframing
	Ideal-Types
	Ideologic and Intentional
	Material and Tactic
	Cultural and Communicative

	Language
	Comparisons and Limits
	Encoding
	The Lows and Highs of Programming Language

	Power Structures
	The Distributed Decidedness
	Obscured Logic of Control and Knowledge
	Embeddedness

	Summary

	CHAPTER 3: METHODOLOGY
	Introduction
	Research Question
	Context
	WordPress Popularity
	Vulnerabilities and Vulnerability Management
	A Brief History of PHP

	Approach
	The Stack
	Code and WordPress as Text
	Poetics and Hermeneutics
	Transdisciplinary
	Computer Science or Digital Humanities
	Software Studies
	Platform Studies
	Critical Code Studies

	WordPress Data and Collection Methods
	WordPress as Software
	Source Code
	Profiling Processes
	Vulnerabilities

	WordPress Analysis Methods
	WordPress as Software
	Source Code
	Comparison of Lines, Files, Release Dates, and Size through Version History
	Close Reading of “Nina Simone”

	Profiling Processes
	Vulnerabilities

	Summary

	CHAPTER 4: SOFTWARE ANALYSIS AND FINDINGS
	Introduction
	Origins and Evolution
	From the Forked Ashes of b2/cafelog
	“My Hacks,” Hacks, Plugins, and Extendibility
	“capital_P_dangit”
	WordPress.org and the WordPress Community
	Automattic and WordPress.com
	WordPress as Platform
	“De-platforming” the “The Conservative Treehouse”
	Automattic Inc. v. Steiner
	Platform of Commodified Freedom and Control

	WordPress Foundation

	Poetry and All That Jazz
	Open Source, Copyright, and Licensing
	WordPress Vulnerability and Security Management
	“Phoning Home”
	“Entering Your Front Door While You Sleep”

	Summary

	CHAPTER 5: CRITICAL CODE ANALYSIS AND FINDINGS
	Introduction
	Source Code
	Comparison of Lines, Files, and Release Dates through Version History
	“Nina Simone”
	Changes
	Lasting Effects of “capital_P_dangit,” “My Hacks,” and Hello Dolly

	Profiling Processes – The Space of Flows
	Identifying the Focal Points
	Backtracing and Mapping the Code Focal Points

	Vulnerabilities
	Backtracing of Vulnerability from Introduction to Patch
	Mapping to Code Focal Points

	Summary

	CHAPTER 6: CONSIDERATIONS AND APPROACHES WITH CODE AND IN THE DIGITAL
	Considerations of the Distributed Digital
	Computational Thinking
	Sense of Risk and Vulnerability

	Approaches in Patchwork Code
	Treatment of Vulnerabilities
	Code Arrangement and Language Aesthetic
	Encoding/Decoding and Framing/Enframing of Code

	Summary

	CHAPTER 7: FUTURE WORK AND CONCLUSION
	Future Work
	Blue Skies and Thunderclouds
	Ethics and Empathy of Green Computing and Code
	Code Sentiment

	Conclusion
	Encoding of Code
	Grayness of Platforms and Intermediaries
	Compromise and Collaboration Between the Binary

	APPENDIX A: WORDPRESS DOWNLOAD SCRIPT
	APPENDIX B: CALLGRIND DATA EXCERPT
	REFERENCES

