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ABSTRACT

Almost all home buyers have mortgages and it is quite common to have mortgage refinanced.

There are two main reasons that make people decide to refinance the mortgage: (i) need some cash

for urgent purposes, and (ii) lower the monthly payment. In this dissertation, we are not going to

discuss (i), and we are investigating problems related to (ii). To begin with, let us intuitively make

the following observations: If the interest rate remains the same as the current mortgage interest

rate, then the monthly payment will automatically lower if you start a new mortgage with the same

term, say, 30-year, because the loan amount is lower than the previous one. It is not hard to see

that although the monthly payment is lowered, your overall payment is higher since the overall

term is longer. From this, we see that rational people will not refinance the mortgage if the interest

rate is not lower than the current one. Now, the subtle question is how much lower the interest rate

than the current one, people should start to think about refinance. Actually, besides interest rate,

one should also take into account the mortgage size and closing cost. Mathematically, this can be

formulated as an optimal impulse control problem, with some interesting features that make this

problem significantly from the classical problems.

Let us now make the above a little more precise. We will formulate an optimal impulse control

problem for stochastic differential equations with the running cost and the terminal being changed

at the time that an impulse of the control is applied. Because of these, unlike the classical impulse

control problems, a control with some zero impulses might be optimal. On the other hand, these

features bring some technical difficulties to the problem.

Our idea of solving the problem is as follows. First of all, we will prove that the number of impulses

must be finite, and optimal impulse control must exist. Second, by using a backward method, we

can solve an optimal impulse control problem with given number of impulses. These problems are
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parameterized by the number of impulses. Finally, we solve the original problem by optimizing

the number of the impulses.
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CHAPTER 1: INTRODUCTION

It is common to receive a letter from the mortgage company to tell us the payment rate will be

lower if we refinance now, however this is not really true. Also, many borrowers consider refi-

nancing their mortgage when the market interest rate drops below the contract rate. There are

some issues mainly to be discussed when the borrower determines to refinance or not. First is

the payment rate, which will be reset depending on the current remaining balance and the market

rate. Also, the borrower may modify their mortgage size depending on their financial situation

when refinancing their mortgage. Second issue is the closing cost. Usually a closing cost will be

paid by the borrower, which mainly depends on the remaining balance. Moreover, the terminal

time for the new mortgage usually is not the same as the old one, which implies more numbers of

payment periods left. Therefore, the borrower will evaluate whether the potential saving from the

lower interest rate counterbalances the cost of refinancing. It is of interest that investigating how

to optimally refinance a mortgage from the perspective of the borrower. This has been studied in

the literature (see Dunn and McConnell [11, 12], Pliska [35], Mayer, Piskorski, and Tchistyi [27]

and Khandani, Lo and Merton [23], etc.).

Mathematically, the valuation of mortgage refinancing can be modeled based on the stochastic op-

timal control theory. Each refinance can be treated as an impulse to the system and the cost of the

refinance is treated as the impulse cost. Since the loan amount, interest rate, payment rate and ma-

turity will be reset, the running cost and terminal cost in the performance index functional depend

on the initial pair of the (new) mortgage period when refinance applied. Therefore, an impulse

control problem with changing running cost will be developed and we want to optimize the per-

formance index functional. Classical impulse control problem was initiated by Bensoussan–Lions

[2]. With the dynamic programming method, under proper conditions, one can show that the value

function of the problem is the unique viscosity solution to a Hamilton-Jacobi-Bellman equation of
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a quasi-variational inequality form. There are a lot of follow-up works, see, for examples, Ben-

soussan–Lions [3], Barles [1], Tang-Yong [36] and Li-Yong [25] etc.. Also, thre are a quite a

few authors discussed the application of impulse control in mathematical finance (see Korn [24],

Cadenillas-Zapatero [4], Øksendal-Sulem [30], etc.). In this dissertation, we model the refinance

problem. It turns out that such a model is quite different from the classical impulse control prob-

lems.

We begin with one-time refinance model to investigate the significant characteristics of refinance.

It is similar to an optimal stopping problem, where the obstacle now becomes the expected total

payment after refinancing and the time to refinance becomes the optimal stopping time. Following

this idea, an optimal impulse control problem with the initial pair depending on running cost will

be developed. The running cost rate function and the terminal cost function now depend on the

initial pair, which makes our HJB equation significantly different from the classical case. Thanks to

the idea from the optimal stopping problem, we introduce a new method to construct a solution for

this model piecewisely, and we show this solution is the value function of the performance index

functional in our problem. Having done the above, we then can recursively discuss the multi-time

refinance situations. We will show that for a given initial loan amount, the optimal number of

refinance must be finite, without considering the cash out case. Therefore, after solving a finitely

many impulse control problems, parameterized by the number of impulses, we then optimize the

family with respect to the impulse number to get the final solution of the original problem.

The dissertation is organized as follows. In Chapter 2 we recall some basics in stochastic optimal

control theory, which are mainly tools we will use later. In Chapter 3 we carefully investigate

the refinance problem. In Chapter 4 we introduce the optimal impulse control with the initial pair

dependent running cost problem and the terminal time. We will provide the clue of constructing

the optimal solution. In Chapter 5 we summarize our work and pose some relevant open problems

for further research.
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CHAPTER 2: MATHEMATICAL PRELIMINARIES

In this chapter, we will review some basic knowledge in stochastic optimal control theory. More

details could be found in Yong–Zhou [39].

Let (Ω,F ,F,P) be a complete filtered probability space on which a d-dimensional standard Brow-

nian motion W (·) is defined, with F ≡ {Ft}t⩾0 being its natural filtration augmented by all the

P-null sets. First, we recall some properties of stochastic differential equations (SDEs, for short).

Consider the following stochastic differential equation:

 dX(s) = b(s,X(s))ds+ σ(s,X(s))dW (s),

X(0) = x0 ∈ Rn,

(2.1)

where b : [0, T ]× Rn 7→ Rn, σ : [0, T ]× Rn 7→ Rn×d, and T ∈ (0,∞) being fixed. We recall the

definition of strong solution of (2.1)

Definition 2.0.1. Let (Ω,F ,F,P) be given, W (t) be a given d-dimensional standard F-Brownian

motion, and x0 ∈ Rn. An F-adapted continuous process X(t), t ∈ [0, T ], is called a strong

solution of (2.1) if

X(0) = x0, P− a.s.,∫ t

0

{|b(s,X(s))|+ |σ(s,X(s))|2}ds <∞, ∀t ∈ [0, T ], P− a.s.,

X(t) = X(0) +

∫ t

0

b(s,X(s))ds+

∫ t

0

σ(s,X(s))dW (s), ∀t ∈ [0, T ], P− a.s..

If for any two strong solutions X(t) and Y (t) of (2.1) defined on any given (Ω,F ,F,P) along with

any standard F-Brownian motion, we have

P(X(t) = Y (t), 0 ⩽ t ⩽ T ) = 1.
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then we say that the strong solution is unique or that strong uniqueness holds.

We make the following assumption for the coefficients of (2.1).

(S). Maps b(t, x) and σ(t, x) are continuous and there exists an L > 0 such that for any t ∈ [0, T ],

x, y ∈ Rn  |b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ⩽ L|x− y|,

|b(t, 0)|+ |σ(t, 0)| ⩽ L.

Theorem 2.0.2. Let (S) hold. Then for any x0 ∈ Rn, (2.1) admits a unique strong solution X(·) ≡

X(·;x0) such that for any p ⩾ 1


E
[

sup
s∈[0,T ]

|X(s)|p
]
⩽ K(1 + |x0|p),

E
[
|X(t)−X(s)|p

]
⩽ K(1 + |x0|p)|t− s|

p
2 , ∀s, t ∈ [0, T ].

Moreover, if x̂ ∈ Rn and X̂(·) ≡ X(·; x̂) is the strong solution of (2.1) corresponding to x̂, then

E
[
sup

s∈[t,T ]

|X(s)− X̂(s)|p
]
⩽ K|x− x̂|p.

See Karatzas–Shreve [21], Yong–Zhou [39] for proofs.

Next, we review the main results in stochastic optimal control, optimal impulse control and optimal

stopping problems.
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2.1 Optimal Control

Let (Ω,F ,F,P) and W (·) be as before. Let T > 0. Consider the following controlled stochastic

differential equation

 dX(s) = b(s,X(s), u(s))dt+ σ(s,X(s), u(s))dW (s), s ∈ [t, T ]

X(t) = x,

(2.2)

where (t, x) ∈ [0, T ]×Rn is called an initial pair, b : [0, T ]×Rn×U 7→ Rn, σ : [0, T ]×Rn×U 7→

Rn×d are called drift and diffusion, respectively, with U being a given separable metric space.

Function u(·) is called the an admissible control process which is taken from the following set:

U [t, T ] =
{
u : [t, T ]× Ω 7→ Rn | u(·) is F− progressively measurable,E

∫ T

t

|u(s)|2ds <∞
}
.

We introduce the following assumption:

(S1). Maps b : [0, T ]× Rn × U 7→ Rn, σ : [0, T ]× Rn × U 7→ Rn×d, f : [0, T ]× Rn × U 7→ R,

and h : Rn 7→ R are uniformly continuous, and there exists a constant L > 0 such that for

φ(t, x, u) = b(t, x, u), σ(t, x, u), f(t, x, u), h(x),

 |φ(t, x, u)− φ(t, y, u)| ⩽ L|x− y|, ∀t ∈ [0, T ], x, y ∈ Rn, u ∈ U,

|φ(t, 0, u)| ⩽ L, ∀(t, u) ∈ [0, T ].

Then for any (t, x) ∈ [0, T ] × Rn, and u(·) ∈ U [t, T ], (2.2) admits a unique strong solution

X(·) ≡ X(·; t, x, u) by Theorme 2.0.2. For any (t, x) ∈ [0, T ] × Rn, and u(·) ∈ U [t, T ], let X(·)
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be the corresponding state process, we introduce the cost functional as follows.

J(t, x;u(·)) = E
{∫ T

t

f(s,X(s), u(s))ds+ h(X(T ))
}
, (2.3)

where f : [0, T ]×Rn ×U 7→ Rn and g : Rn 7→ Rn are two suitable deterministic maps, which are

called running cost and terminal cost, respectively. The classical optimal control problem can be

stated as follows:

Problem (C). For given (t, x) ∈ [0, T ]× Rn, find a ū(·) ∈ U [t, T ] such that

J(t, x; ū(·)) = inf
u∈U [0,T ]

J(t, x; ū(·)) = V (t, x). (2.4)

Any ū(·) ∈ U [t, T ] satisfying (2.4) is called an optimal control for the initial pair (t, x). The

corresponding state process x̄(·) and the state-control pair (x̄(·), ū(·)) are called an optimal state

process and an optimal pair, respectively. We call V (·, ·) the value function of Problem (C). With

the dynamic programming principle, we have the follow theorem which characterizes the value

function (see Yong–Zhou [39]).

Theorem 2.1.1. Suppose (S1) holds. For any (t, x) ∈ [0, T ] × Rn, the value function V (t, x)

defined in (2.4) is the unique viscosity solution of the corresponding Hamilton-Jacobi-Bellman

equation (HJB, for short) as follows under proper conditions


Vt(t, x) + inf

u∈U

{1

2
tr
[
Vxx(t, x)σ(t, x, u)σ(t, x, u)

⊤
]
+ ⟨Vx(t, x), b(t, x, u)⟩

+f(t, x, u)
}
= 0, (t, x) ∈ [0, T ]× Rn

V (T, x) = h(x), x ∈ Rn.

(2.5)

Once the value function is determined, the corresponding optimal control can be constructed, in
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principle.

2.2 Optimal Impulse Control

In Problem (C) presented in Section 2.1, the state process changes continuously in time t with

the influence of the control. However, in some problems, the controller may modify the state

instantaneously, that is an impulse applied to the state. The controller chooses the impulse times

and the intensity of these impulses in order to optimize a payoff or a cost. We introduce the optimal

impulse control problem to model such a situation.

Let (Ω,F ,F,P) and W (·) be as before. Consider the following stochastic differential equation:

X(s) = x+

∫ s

t

b(r,X(r))dr +

∫ s

t

σ(r,X(r))dW (r) + ξ(s), s ∈ [t, T ], (2.6)

where b : [0, T ] × Rn 7→ Rn, σ : [0, T ] × Rn 7→ Rn×d, T ∈ (0,∞) being fixed and ξ(·) is called

an impulse control of the following form:

ξ(s) =
∑
i⩾1

ξiχ[τi,T ](s), s ∈ [t, T ].

Here {τi}i⩾1 is an increasing sequence of F-stopping times valued in [t, T ], and each ξi is an Fτi-

measurable square integrable random variable taking values in K, where K ⊂ Rn being a closed

convex cone. Moreover, let

K [t, T ] =
{
ξ(·) =

∑
i⩾1

ξiχti,T (·) : [t, T ] 7→ K|τi ⩾ t, τi ↑,
∑
i⩾1

ℓ(τi, ξi) <∞
}
.
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Now under this state equation with impulse, we consider the cost functional as follows:

J(t, x; ξ(·)) = E
{∫ T

t

f(s,X(s))ds+ h(X(T )) +
∑
i⩾1

ℓ(τi, ξi)
}
, (2.7)

where f : [0, T ]×Rn 7→ Rn, g : Rn 7→ Rn and ℓ : [0, T ]×K 7→ Rn are some suitable deterministic

maps. The first two terms on the right-hand side have the same meaning as in the cost functional

in Section 2.1 and the third term on the right-hand side is called the impulse cost. The optimal

impulse control problem can be stated as follows:

Problem (IC). For any (t, x) ∈ [0, T ]× Rn, find a ξ̄(·) ∈ K [t, T ] such that

J(t, x; ξ̄(·)) = inf
ξ∈K

J(t, x; ξ̄(·)) = V (t, x). (2.8)

Any ξ̄(·) ∈ K [t, T ] satisfies (2.8) is called an optimal impulse control, and x̄ ≡ x(·; t, x, ξ̄) is

called the corresponding optimal state process and the state-control pair (x̄(·), ξ̄(·)) is an optimal

pair. Similarly, we call V (·, ·) is the value function of Problem (IC) and we introduce the following

assumptions:

(S2). Maps b : [0, T ]×Rn 7→ Rn, σ : [0, T ]×Rn 7→ Rn×d, f : [0, T ]×Rn 7→ R, and h : Rn 7→ R

are continuous, and there exists a constantL > 0 such that forφ(t, x) = b(t, x), σ(t, x), f(t, x), h(x),

 |φ(t, x)− φ(t, y)| ⩽ L|x− y|, ∀t ∈ [0, T ], x, y ∈ Rn,

|φ(t, x)| ⩽ L, ∀(t, x) ∈ [0, T ]× Rn.

(S3). Map ℓ is a continuous and there exists a constant ℓ0 > 0,

ℓ(t, ξ + ξ̂) < ℓ(t, ξ) + ℓ(t, ℓ̂), ∀t ∈ [0, T ], ξ, ξ̂ ∈ K,

inf
t∈[0,T ],ξ∈K

ℓ(t, ξ) ≡ ℓ0 > 0, lim
ξ∈K,|ξ|→∞

inf
t∈[0,T ]

ℓ(t, ξ) = ∞.
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The the following theorem is well-known by the dynamic programming principle (see Tang-Yong

[36]).

Theorem 2.2.1. Let (S2)-(S3) hold. For any (t, x) ∈ [0, T ] × Rn, the value function V (t, x) de-

fined in (2.8) is the unique viscosity solution of the corresponding HJB equation in the variational

inequality form as follows under proper conditions.


min

{
Vt(t, x) +

1

2
tr
[
Vxx(t, x)σ(t, x)σ(t, x)

⊤
]
+ ⟨Vx(t, x), b(t, x)⟩

+f(t, x), N [V (t, x)]− V (t, x)
}
= 0, (t, x) ∈ [0, T ]× Rn

V (T, x) = h(x), x ∈ Rn.

(2.9)

where

N [V (t, x)] = min
ξ∈K

{V (t, x+ ξ) + ℓ(t, ξ)}.

The optimal impulse control can be constructed once the value function is determined.

2.3 Optimal Stopping

Optimal stopping time problem is a model that controller controls the ending time of the system

directly. Let (Ω,F ,F,P) and W (·) be as before. In the formulation of such models for given an

initial pair (t, x), an admissible control is τ which is an F-stopping time taking values in [t, T ]. Let

T [t, T ] be the set of admissible stopping times valued in [t, T ].

We consider the state equation

 dX(s) = b(s,X(s))ds+ σ(s,X(s))dW (s),

X(t) = x ∈ Rn,

(2.10)
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where b : [0, T ] × Rn → Rn, σ : [0, T ] × Rn → Rn×d, and T ∈ (0,∞) being fixed. For any

(t, x) ∈ [0, T ]× Rn, consider the cost functional as follows:

J(t, x; τ) = E
{∫ τ

t

f(s,X(s))ds+ h(X(τ))
}
, (2.11)

where f : [0, T ]× Rn → Rn and g : Rn → Rn are two suitable deterministic maps, with the same

meaning as before. Now the optimal stopping problem can be stated as follow:

Problem (S). For given (t, x) ∈ [0, T ]× Rn, find τ̄ ∈ T [t, T ] such that

J(t, x; τ̄) = inf
τ∈T

J(t, x; τ) = V (t, x), (2.12)

Any τ̄ ∈ T satisfying (2.12) is called an optimal stopping time and now we call V (·, ·) the value

function of Problem (S).

For the optimal stopping time problem, let (S2) hold, then some routine argument can be applied

to prove the following theorem (see Øksendal-Reikvam [29] and Pham [31]).

Theorem 2.3.1. Let (S2) hold. For any (t, x) ∈ [0, T ] × Rn, the value function V (t, x) defined in

(2.12) is the unique viscosity solution of the following HJB equation in the variational inequality

form. 
min

{
Vt(t, x) +

1

2
tr
[
Vxx(t, x)σ(t, x)σ(t, x)

⊤
]
+ ⟨Vx(t, x), b(t, x)⟩

+f(t, x), h(x)− V (t, x)
}
= 0, (t, x) ∈ [0, T ]× Rn

V (T, x) = h(x), x ∈ Rn.

(2.13)
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CHAPTER 3: Mortgage Refinance Problem

In this chapter, we will discuss mortgage refinancing mathematically.

3.1 One-Time Refinance

We begin with the problem of at most making one time refinance.

Let (Ω,F ,F,P) and W (·) be as before. Consider the following interest rate model:

dr(s) = b0(s, r(s))ds+ σ0(s, r(s))dW (s), s ⩾ 0. (3.1)

We introduce the following assumption.

(S4). Maps b0 : [0, T ] × Rn 7→ Rn and σ0 : [0, T ] × Rn 7→ Rn×d are measurable and there exist

L > 0, for any t ∈ [0, T ] and x, y ∈ Rn such that

 |b0(t, x)− b0(t, y)|+ |σ0(t, x)− σ0(t, y)| ⩽ L|x− y|,

|b0(t, x)|+ |σ0(t, x)| ⩽ L.

For technical convenience, we assume that

b0(s, 0) = 0, σ0(s, 0) = 0,

and (3.1) admits a unique solution, for any given initial condition. This will be true if r 7→

(b0(s, r), σ(s, r)) is uniformly Lipschitz. Therefore, if r(t) = 0 for some t ⩾ 0, then r(s) = 0, for

all s ⩾ t.
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The following proposition which can be get from Theorem 2.0.2 directly.

Proposition 3.1.1. Let (S4) hold. Then for each (t, r) ∈ [0, T ] × R+, interest rate model (3.1)

admits a unique(strong) solution r(·) ≡ r(·; t, r). Moreover,

Et

{
sup

s∈[t,T ]

|r(s; t, r)|
}
⩽ C(1 + |r|), ∀(t, r) ∈ [0, T ]× R+.

Moreover, if both t, t̄ ∈ [0, T ], r, r̄ ∈ R+,

Et

{
sup

s∈[t∨t̄,T}
|r(s; t, r)− r(s; t̄, r)|

}
⩽ C(1 + |r|)(|t− t̄|

1
2 ),

and

Et

{
sup

s∈[t,T ]

|r(s; t, r)− r(s; t, r̄)|
}
⩽ C|r − r̄|.

Hereafter, C > 0 represents a generic constant which can be different from line to line.

For any t0 ⩾ 0, consider a fixed term T0 > 0 mortgage starting from t0 with the loan amount

x0 > 0, and the mortgage rate r(t0) + δ(t0, x0, T0), where δ(·, ·, ·) is a deterministic function

depends on the initial time t0, initial amount x0 and the loan term T0. The closing cost (including

various fees, such as origination fee, title insurance, etc.) is assumed to be κ0(t0) + κ1(t0)x0 for

some maps κ0 and κ1, depending on the initial time t0. Next, at any s ∈ (t0, t0 + T0), the principal

balance is denoted by X(s). Suppose there is no prepayment, nor default. Then process X(·)

satisfies

dX(s) =
{
[r(t0) + δ(t0, x0, T0)]X(s)−m(t0, x0, T0)

}
ds, s ∈ [t0, t0 + T0], (3.2)

with X(t0) = x0. Here, m(t0, x0, T0) is the payment rate determined by X(t0 + T0) = 0. Denote

12



r0 = r(t0) + δ(t0, x0, T0) and m0 = m(t0, x0, T0). Solving (3.2), we obtain

X(s) = er0(s−t0)x0 −m0

∫ s

t0

er0(s−θ)dθ = er0(s−t0)x0 −m0
er0(s−t0) − 1

r0
.

Hence, for s = t0 + T0, by the condition X(t0 + T0) = 0, we have

0 = er0T0x0 −m0
er0T0 − 1

r0
,

which gives the payment rate

m(t0, x0, T0) =
r0e

r0T0

er0T0 − 1
x0 ≡ m0.

This implies

X(s) = er0(s−t0)x0 −
r0e

r0T0

er0T0 − 1

er0(s−t0) − 1

r0
x0 =

er0T0 − er0(s−t0)

er0T0 − 1
x0

Now, let t ∈ [t0, t0 + T0) be the current time and s ∈ [t, t0 + T0). Then, with X(t) = x, one has

X(s) =
er0T0 − er0(s−t0)

er0T0 − er0(t−t0)
x, s ∈ [t, t0 + T0].

Suppose τ ∈ (t, t0 + T0) at which a refinance has been made, with term Ti > 0, Ti ∈ {T1 · · · , Tj},

which means different terms for the new mortgage could be chosen. Then the payment rate on

[τ, τ + Ti] will be

m(τ,X(τ), Ti) =
[r(τ) + δ(τ,X(τ), Ti)]e

[r(τ)+δ(τ,X(τ),Ti)]Ti

e[r(τ)+δ(τ,X(τ),Ti)]Ti − 1
X(τ), (3.3)

The (closing) cost will be κ0(τ)+κ1(τ)X(τ). Thus the total expected discounted payment is given

13



by

J(t, x, r; τ, Ti) = Et

{∫ τ

t

m0e
−

∫ s
t r(θ)dθds+ 1{τ<t0+T0}

[
κ0(τ) + κ1(τ)X(τ)

+

∫ τ+Ti

τ

m(τ,X(τ), Ti)e
−

∫ s
t r(θ)dθds

]}
.

where Et is the conditional expectation operator. The optimal one-time refinance problem can be

stated as follows.

Problem (RF)1. Find τ ∗ ∈ [t, t0 + T0] and T ∗ ∈ {T1, · · · , Tj} such that

J(t, x, r; τ ∗, T ∗) = inf
τ∈[t,t0+T0]

min
Ti∈{T1,··· ,Tj}

J(t, x, r; τ, Ti) = V (t, x, r).

Note for any T > 0,

Eτ

{∫ τ+T

τ

e−
∫ s
t r(θ)dθds

}
= e−

∫ τ
t r(θ)dθEτ

{∫ τ+T

τ

e−
∫ s
τ r(θ)dθds

}

Let

ψ(t, r, T ) = Et

{∫ T

t

e−
∫ s
t r(θ)dθds

}
, r(t) = r.

Then, for any 0 < ε < T − t,

ψ(t, r, T ) = Et

{∫ t+ε

t

e−
∫ s
t r(θ)dθds+

∫ T

t+ε

e−
∫ s
t r(θ)dθds

}
= Et

{∫ t+ε

t

e−
∫ s
t r(θ)dθds+ e−

∫ t+ε
t r(θ)dθEt+ε

(∫ T

t+ε

e−
∫ s
t+ε r(θ)dθds

)}
= Et

{∫ t+ε

t

e−
∫ s
t r(θ)dθds+ e−

∫ t+ε
t r(θ)dθψ(t+ ε, r(t+ ε), T )

}
.
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Hence,

0 =
1

ε
Et

{∫ t+ε

t

e−
∫ s
t r(θ)dθds+ e−

∫ t+ε
t r(θ)dθψ(t+ ε, r(t+ ε), T )− ψ(t, r, T )

}
→ 1− rψ(t, r, T ) + ψt(t, r, T ) + ψr(t, r, T )b0(t, r) +

1

2
σ0(t, r)

2ψrr(t, r, T ),

with

ψ(T, r, T ) = 0.

Therefore, ψ(·, ·, T ) is the solution to the following partial differential equation (PDE, for short)

with T as a parameter.



ψt(t, r, T ) +
1

2
σ0(t, r)

2ψrr(t, r, T ) + b0(t, r)ψr(t, r, T )− rψ(t, r, T ) + 1 = 0,

(t, r) ∈ [0, T ]× (0,∞),

ψ(T, r, T ) = 0, r ∈ (0,∞),

ψ(t, 0, T ) = T − t, t ∈ [0, T ].

(3.4)

Next, we let

R(s; t, r) = e−
∫ s
t r(θ)dθ, s ⩾ t.

Then

dR(s; t, r) = −r(s)R(s; t, r), R(t; t, r) = 1.

Consequently,

Eτ

{∫ τ+T

τ

e−
∫ s
t r(θ)dθds

}
= e−

∫ τ
t r(θ)dθEτ

{∫ τ+T

τ

e−
∫ s
τ r(θ)dθds

}
= R(τ ; t, r)ψ(τ, r(τ), τ + T ).
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Hence,

d


r(s)

R(s; t)

X(s)

 =


b0(s, r(s))

−r(s)R(s; t)

r0X(s)−m0

 ds+


σ0(s, r(s))

0

0

 dW (s)

with

J(t, x, r; τ, Ti) = E
{∫ τ

t

m0R(s; t, r)ds+ 1{τ<t0+T0}

[
κ0(τ) + κ1(τ)X(τ)

+m(τ,X(τ), Ti)R(τ ; t, r)ψ(τ, r(τ), τ + Ti)
]}
.

Unlike with the classical optimal stopping problem, the obstacle in our cost functional above is

determined by the solution (ψ(τ, r(τ), τ + Ti)) of a PDE. We should notice that the initial time of

this PDE is same as the stopping time τ. This difference makes our HJB equation different from

the classical case, which is coupled with a PDE, as follows.



min{Vt +
σ0(t, r)

2

2
Vrr + b0(t, r)Vr + (r0x−m0)Vx +m0,Φ− V } = 0,

(t, x, r) ∈ [t0, t0 + T0]× R+ × R+ ≡ D,

V (t0 + T0, x, r) = 0, (x, r) ∈ R+ × R+,

V (t, 0, r) = 0, (t, r) ∈ [t0, t0 + T0]× R+,

V (t, x, 0) = κ0(t) + κ1(t)x+
δ(t, x, T0)e

δ(t,x,T0)T0

eδ(t,x,T0)T0 − 1
xT, (t, x) ∈ [t0, t0 + T0]× R+.

where

Φ(t, x, r) = min
Ti∈{T1,··· ,Tj}

{κ0(t) + κ1(t)x+m(t, x, Ti)ψ(t, r, t+ Ti)}, (t, x, r) ∈ D,

with ψ(t, r, t+ Ti) being the solution of (3.4).
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3.1.1 Properties of Value Function

Let t0, T0 ∈ R+, and recall D = [t0, t0 + T0]×R+ ×R+. We introduce the following assumption.

(S5). Maps κ0, κ1 : [0, T ] 7→ R+ satisfy the Lipschitz conditions, δ(t, x, T ) : D 7→ R+ with

|δ(t, x, T )| ⩽ L, ∀(t, x, T ) ∈ [t0, t0 + T0]× R+ × R+,

and for any (t, x, T ), (t̄, x̄, T̄ ) ∈ [t0, t0 + T0]× R+ × R+,

|δ(t, x, T )− δ(t̄, x̄, T̄ )| ⩽ L(|t− t̄|+ |x− x̄|+ |T − T̄ |).

The following result is concerned with some basic properties of the value function.

Proposition 3.1.2. Let (S4)-(S5) hold. For any (t, x, r), (t̄, x̄, r̄) ∈ D,

|V (t, x, r)− V (t̄, x̄, r̄)| ⩽ C
{
(1 + |r| ∨ |r̄|)2(|x| ∨ |x̄|)|t− t̄|

1
2 + |x− x̄|+ |r − r̄|

}
.

Proof. First we show the value function V (·, ·, ·) is Lipschitz continuous on x.

For any (t, x, r), (t, x̄, r) ∈ D and τ ∈ [t, t0 +T0], Ti ∈ {T1, · · · , Tj} by the definition of X(·), we

have

|J(t, x, r; τ, Ti)− J(t, x̄, r; τ, Ti)|

⩽ Et

{
1{τ<t0+T0}

[
|κ1(τ)|

∣∣∣er0T0 − er0(τ−t0)

er0T0 − er0(t−t0)

∣∣∣|x− x̄|

+
∣∣∣ [r(τ) + δ(τ,X(τ), Ti)]e

[r(τ)+δ(τ,X(τ),Ti)]Ti

e[r(τ)+δ(τ,X(τ),Ti)]Ti − 1

∣∣∣∣∣∣er0T0 − er0(τ−t0)

er0T0 − er0(t−ti)

∣∣∣
×|x− x̄||R(τ ; t)||ψ(τ, r(τ); τ + Ti)|

]}
⩽ C|x− x̄|.

Similarly, we show the value function V (·, ·, ·) is Lipschitz continuous on r.
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For any (t, x, r), (t, x, r̄) ∈ D and T > 0, we have

Et

{
sup

s∈(t,t0+T0)

|m(s,X(s), T ; t, x, r)−m(s,X(s), T ; t, x, r̄)|
}

= Et

{
sup

s∈(t,t0+T0)

∣∣∣ [r(s; t, r) + δ(s,X(s), T ; t, x)]e[r(s;t,r)+δ(s,X(s),T ;t,x)]T

e[r(s;t,r)+δ(s,X(s),T ;t,x)]T − 1
X(s; t, x)

− [r(s; t, r̄) + δ(s,X(s), T ; t, x)]e[r(s;t,r̄)+δ(s,X(s),T ;t,x)]T

e[r(s;t,r̄)+δ(s,X(s),T ;t,x)]T − 1
X(s; t, x)

∣∣∣}
⩽ Et

{
sup

s∈(t,t0+T0)

C(|r(s; t, r)− r(s; t, r̄)|)

+|r(s; t, r) + δ(s,X(s), T ; t, x)]e[r(s;t,r)+δ(s,X(s),T ;t,x)]T

−r(s; t, r̄) + δ(s,X(s), T ; t, x)]e[r(s;t,r̄)+δ(s,X(s),T ;t,x)]T |
}

⩽ Et

{
sup

s∈(t,t0+T0)

C(|r(s; t, r)− r(s; t, r̄)|)
}

⩽ C|r − r̄|.

Next,

Et

{
sup |R(s; t, r)−R(s; t, r̄)|

}
⩽ CEt

∣∣∣ ∫ s

t

r(θ; t, r)dθ −
∫ s

t

r(θ; t, r̄)dθ
∣∣∣ ⩽ C|r − r̄|.

Therefore,

|J(t, x, r; τ, Ti)− J(t, x, r̄; τ, Ti)|

⩽ Et

{∫ τ

t

m0(R(s; t, r)−R(s; t, r̄))ds+ 1{τ<t0+T0}

[
(m(τ,X(τ), Ti; t, x, r)R(τ ; t, r)

−m(τ,X(τ), Ti; t, x, r̄)R(τ ; t, r̄))ψ(τ, r(τ); τ + Ti)
]}

⩽ C|r − r̄|.

Finally, we prove the 1
2
-Hölder continuity of V (·, ·, ·) on t. By Proposition 3.1.1, we obtain

Et

{
R(s; t, r)

}
⩽ 1 ∀s ∈ [t, T ],
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and for any t̄ ∈ (t, T ],

Et

{
sup

s∈[t̄,T ]

|R(s; t, r)−R(s; t̄, r)|
}

⩽ CEt

{
sup

s∈[t̄,T ]

∣∣∣ ∫ s

t

r(θ)dθ −
∫ s

t̄

r(θ)dθ
∣∣∣}

⩽ CEt

{
sup

s∈[t̄,T ]

∣∣∣ ∫ t̄

t

r(θ; t, r)dθ +

∫ s

t̄

r(θ; t, r)dθ −
∫ s

t̄

r(θ; t̄, r)dθ
∣∣∣}

⩽ CEt

{
sup

s∈[t̄,T ]

∣∣∣ ∫ t̄

t

r(θ; t, r)dθ
∣∣∣+ sup

s∈[t̄,T ]

∣∣∣ ∫ s

t̄

r(θ; t, r)dθ −
∫ s

t̄

r(θ; t̄, r)dθ
∣∣∣}

⩽ C(1 + |r|)(|t− t̄|
1
2 ).

Then, for any (t, x) ∈ [t0, t0 + T0]× R+,

|X(s; t, x)−X(s; t̄, x)| ⩽
∣∣∣er0T0 − er0(s−t0)

er0T0 − er0(t−t0)
x− er0T0 − er0(s−t0)

er0T0 − er0(t̄−t0)
x
∣∣∣

⩽ |x|
∣∣∣er0T0 − er0(s−t0)

er0T0 − er0(t−t0)
− er0T0 − er0(s−t0)

er0T0 − er0(t̄−t0)

∣∣∣
= |x|

∣∣∣ er0(t−t0) − er0(t̄−t0)

(er0T0 − er0(t−t0))(er0T0 − er0(t̄−t0))

∣∣∣
⩽ |x|

∣∣∣er0(t−t0) − er0(t̄−t0)
∣∣∣

⩽ C|x||t− t̄|.

We noticed that for any T ∈ R+ and any τ ∈ [t0, t0 + T0],

Et{ψ(τ, r; τ + T )} ⩽ T

there exist a constant K such that

Et{m(τ,X(τ), T )} < K.
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For any (t, x, r) ∈ D,

Et

{
sup

s∈(t̄,t0+T0)

|m(s,X(s), T ; t, x, r)−m(s,X(s), T ; t̄, x, r)|
}

= Et

{
sup

s∈(t̄,t0+T0)

∣∣∣ [r(s; t, r) + δ(s,X(s), T ; t, x)]e[r(s;t,r)+δ(s,X(s),T ;t,x,)]T

e[r(s;t,r)+δ(s,X(s),T ;t,x)]T − 1
X(s; t, x)

− [r(s; t̄, r) + δ(s,X(s), T ; t̄, x)]e[r(s;t̄,r)+δ(s,X(s),T ;t̄,x)]T

e[r(s;t̄,r)+δ(s,X(s),T ;t̄,x)]T − 1
X(s; t̄, x)

∣∣∣}
⩽ Et

{
C sup

s∈(t̄,t0+T0)

[
|X(s; t, x)r(s; t, r)−X(s; t̄, x)r(s; t̄, r)|

+
∣∣∣X(s; t, x)r(s; t, r)er(s;t̄,r)+δ(s,X(s),T ;t̄,x)]T −X(s; t̄, x)r(s; t̄, r)er(s;t,r)+δ(s,X(s),T ;t,x)]T

∣∣∣
+|X(s; t, x)δ(s,X(s), T ; t, x)−X(s; t̄, x)δ(s,X(s), T ; t̄, x)|

+
∣∣∣X(s; t, x)δ(s,X(s), T ; t, x)er(s;t̄,r)+δ(s,X(s),T ;t̄,x)]T

−X(s; t̄, x)δ(s,X(s), T ; t̄, x)er(s;t,r)+δ(s,X(s),T ;t,x)]T
∣∣∣]}

⩽
{
C(1 + |r|)|x||t− t̄|

1
2 + C(1 + |r|)2|x||t− t̄|

1
2 + C|x||t− t̄|+ C(1 + |r|)|x||t− t̄|

1
2

}
⩽ C(1 + |r|)2|x||t− t̄|

1
2 .

Hence for any (t, x, r), (t̄, x, r) ∈ D and Ti ∈ {T1, · · · , Tj} suppose t < t̄ and τ ∈ [t̄, t0 + T0],

|J(t, x, r; τ, Ti)− J(t̄, x, r; τ, Ti)|

⩽ Et

{∫ τ

t

m0R(s; t, r)ds−
∫ τ

t̄

m0R(s; t̄, r)ds+ 1{τ<t0+T0}

[
κ1(τ)|X(τ ; t, x)−X(τ ; t̄, x)|

+

∫ τ+Ti

τ

∣∣∣m(τ,X(τ), Ti; t, x, r)e
−

∫ s
t r(θ;t,r)dθ −m(τ,X(τ), Ti; t̄, x, r)e

−
∫ s
t r(θ;t̄,r)dθ

∣∣∣ds]}
⩽ C(1 + |r|)2|x||t− t̄|

1
2 .

Above all, we obtain our conclusion.
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3.1.2 Principle of Optimality and HJB Equation

The following proposition gives the existence of optimal stopping time for Problem (RF)1.

Proposition 3.1.3. Let (S4) and (S5) hold. For any (t, x, r) ∈ D, and τ ∈ [t, t0 + T0], Ti ∈

{T1, · · · , Tj}, J(t, x, r; τ, Ti) is well-defined Ft−measurable random variable. Moreover, there

exists τ̄(t, x, r) ∈ [t, t0 + T0] and T ∗ ∈ {T1, · · · , Tj} such that

V (t, x, r) ≡ inf
τ∈[t,t0+T0]

min
Ti∈{T1,··· ,Tj}

J(t, x, r; τ, Ti) = J(t, x, r; τ̄ , T ∗). (3.5)

Consequently, for any (t, x, r) ∈ D, and τ ∈ [t, t0 + T0], Ti ∈ {T1, · · · , Tj}, V (t, x, r) is

Ft−measurable.

Proof. For any fixed (t, x, r) ∈ (t0, t0+T0)× (0, x0)×Rn, τ ∈ [t, t0+T0] and Ti ∈ {T1, · · · , Tj},

|J(t, x, r; τ, Ti)|

⩽ Et

{∫ τ

t

m0|e−
∫ s
t r(θ)dθ|ds+ 1{τ<t0+T0}

[
|κ0(τ)|+ |κ1(τ)||X(τ)|

+

∫ τ+Ti

τ

|m(τ,X(τ), Ti)||e−
∫ s
t r(θ)dθ|ds

]}
⩽ C|x|(1 + |r|).

Hence J(t, x, r; τ) is well-defined Ft−measurable random variable. Next it is clear that t 7→

J(t, x, t; τ) is continuous. Therefore by Theorem 10.1.9 of [28] (see also Theorem D.12 of [22]),

we have the existence of an optimal stopping time τ̄(t, x, r) for Problem (RF)1.

Next, we will derive the principle of optimality for Problem (RF)1, and we we split it into following

steps.
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Proposition 3.1.4. Let (S4) and (S5) hold. For any (t, x, r) ∈ D,

V (t, x, r) ⩽ Φ(t, x, r) a.s.,

where we recall that

Φ(t, x, r) = min
Ti∈{T1,··· ,Tj}

{κ0(t) + κ1(t)x+m(t, x, Ti)ψ(t, r, t+ Ti)}, (t, x, r) ∈ D,

with ψ(t, r; t0 + T0) being the solution of (3.4) and

V (t, x, r) ⩽ inf
τ∈(t0,t0+T0)

Et

{∫ τ

t

m0R(s; t, r)ds+ V (τ,X(τ), r(τ))
}

a.s..

Proof. Let V (t, x, r) = infτ minTi
J(t, x, r; τ, Ti). For any stopping time τ ∈ [t, t0 + T0] and

Ti ∈ {T1, · · · , Tj}, we have

V (t, x, r) ⩽ J(t, x, r; τ, Ti) = Et

{∫ τ

t

m0R(s; t, r)ds+ 1{τ<t0+T0}

[
κ0(τ) + κ1(τ)X(τ)

+m(τ,X(τ), Ti)R(τ ; t, r)ψ(τ, r(τ); τ + Ti)
]}
.

First, if taking τ = t,

V (t, x, r) ⩽ κ0(t) + κ1(t)x+m(t, x, Ti)ψ(t, r; t+ Ti).

For any stopping time τ ∈ (t, t0 + T0) and Ti ∈ {T1, · · · , Tj}, take another stopping time θ ∈
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(τ, t0 + T0),

V (t, x, r)

⩽ J(t, x, r; θ, Ti)

= Et

{∫ θ

t

m0R(s; t, r)ds+ 1{θ<t0+T0}

[
κ0(θ) + κ1(θ)X(θ)

+m(θ,X(θ), Ti)R(θ; t, r)ψ(θ, r(θ); θ + Ti)
]}

= Et

{∫ τ

t

m0R(s; t, r)ds+

∫ θ

τ

m0R(s; t, r)ds+ 1{θ<t0+T0}

[
κ0(θ) + κ1(θ)X(θ)

+m(θ,X(θ), Ti)R(θ; t, r)ψ(θ, r(θ); θ + Ti)
]}

= Et

{∫ τ

t

m0R(s; t, r)Rds+

∫ θ

τ

m0R(s; τ, r(τ))R(τ ; t, r)ds+ 1{θ<t0+T0}

[
κ0(θ) + κ1(θ)X(θ)

+m(θ,X(θ), Ti)R(θ; τ, r(τ))R(τ ; t, r)ψ(θ, r(θ); θ + Ti)
]}

⩽ Et

{∫ τ

t

m0R(s; t, r)ds+

∫ θ

τ

m0R(s; τ, r(τ))ds+ 1{θ<t0+T0}

[
κ0(θ) + κ1(θ)X(θ; t, x)

+m(θ,X(θ), Ti)R(θ; τ, r(τ))ψ(θ, r(θ); θ + Ti)
]}

= Et

{∫ τ

t

m0R(s; t, r)ds+ J(τ,X(τ), r(τ); θ, Ti)
}
.

Taking infimum with respect to θ ∈ (τ, T ) yields

V (t, x, r) ⩽ Et

{∫ τ

t

m0R(s; t, r)ds+ V (τ,X(τ), r(τ))
}
.

Lemma 3.1.5. Let (S4)-(S5) hold. For any (t, x, r) ∈ D, if τ̄ ∈ [t, t0 + T0] is an optimal stopping

time of Problem (RF)1 for the initial triple (t, x, r), then

V (τ̄ , X(τ̄), r(τ̄)) = min
Ti∈{T1,··· ,Tj}

{κ0(τ̄)+κ1(τ̄)X(τ̄)+m(τ̄ , X(τ̄), Ti)R(τ̄ ; t, r)ψ(τ̄ , r(τ̄); τ̄+Ti)} a.s.
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Proof. Take a stopping time τ ∈ (t, t0 + T0), suppose τ̄ ∈ [τ, t0 + T0] and T ∗ ∈ {T1, · · · , Tj} are

optimal for initial triple (t, x, r) ∈ D. Then

V (t, x, r) = J(t, x, r; τ̄ , T ∗)

= Et

{∫ τ̄ ,T ∗

t

m0R(s; t, r)ds+ 1{τ̄<t0+T0}

[
κ0(τ̄) + κ1(τ̄)X(τ̄)

+m(τ̄ , X(τ̄), T ∗)R(τ̄ ; t, r)ψ(τ̄ , r(τ̄), τ̄ + T ∗)
]}

⩾ Et

{∫ τ̄

t

m0R(s; t, r)ds+ V (τ̄ , X(τ̄), r(τ̄))
}

⩾ inf
τ∈[t0,t0+T0]

Et

{∫ τ

t

m0R(s; t, r)ds+ V (τ,X(τ), r(τ))
}
= V (t, x, r).

Thus the above equalities must hold, which implies

Et

{
V (τ̄ , X(τ̄), r(τ̄))

}
= Et

{
min

Ti∈{T1,··· ,Tj}
{κ0(τ̄) + κ1(τ̄)X(τ̄) +m(τ̄ , X(τ̄), Ti)R(τ̄ ; t, r)ψ(τ̄ , r(τ̄), τ̄ + Ti)}

}
.

Combining the fact

V (τ̄ , X(τ̄), r(τ̄))

⩽ min
Ti∈{T1,··· ,Tj}

{κ0(τ̄) + κ1(τ̄)X(τ̄) +m(τ̄ , X(τ̄), Ti)R(τ̄ ; t, r)ψ(τ̄ , r(τ̄), τ̄ + Ti)} a.s.

the equality is desired.

Lemma 3.1.6. Let (S4)-(S5) hold. For any (t, x, r) ∈ D, the following is the optimal stopping time

of Problem (RF)1 corresponding to (t, x, r) :

τ̄ = inf
{
s ∈ [t, t0 + T0]|V (s,X(s), r(s)) = min

Ti∈{T1,··· ,Tj}
{κ0(s) + κ1(s)X(s)

+m(s,X(s), Ti)R(s; t, r)ψ(s, r(s), s+ Ti)}
}
.

(3.6)
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Further, it holds that

P
(
{τ̄ > t} △ {V (t, x, r) < min

Ti∈{T1,··· ,Tj}
{κ0(t) + κ1(t)X(t) +m(t, x, Ti)ψ(t, r; t+ Ti)}}

)
= 0.

(3.7)

where A△B = (A \B) ∪ (B \ A), for any A,B ∈ F .

Proof. Let (t, x, r) ∈ D. If there exists a Ω0 ⊆ {V (t, x, r) < minTi∈{T1,··· ,Tj}{κ0(t) + κ1(t)x +

m(t, x, Ti)ψ(t, r; t+ Ti)}}, with P(Ω0) > 0 such that

τ̄ = t, on Ω0. (3.8)

Then for (t, x, r) ∈ Ω0,

V (t, x, r) = min
Ti∈{T1,··· ,Tj}

{κ0(t) + κ1(t)X(t) +m(t, x, Ti)ψ(t, r; t+ Ti)}. (3.9)

which is contradicts the choice of Ω0. Conversely, if Ω0 ⊆ {τ̄(t, x, r) > t} with P(Ω0) > 0 such

that (3.9) holds, then by the definition of τ̄ , (3.8) has to be true, a contradiction to the choice of Ω0,

Hence the equation holds.

The following theorem gives the principle of optimal for Problem (RF)1.

Theorem 3.1.7. Let (S4)-(S5) hold. For any (t, x, r) ∈ D, for all stopping time θ ∈ [t, τ̄ ], τ ∈

[θ, τ̄ ] :

V (θ,X(θ), r(θ)) = Eθ

{∫ τ

θ

m0R(s; t, r)ds+ V (τ,X(τ), r(τ))
}
. (3.10)

Proof. Let (t, x, r) ∈ D. Define τ̄ by Lemma 3.1.6 and suppose P{t < τ̄} > 0. The case θ = τ̄ is

trivial. Thus, fix θ ∈ [t, τ̄), and let τ ∈ [θ, τ̄). From (3.6), we know that any µ ∈ [θ, t0 + T0] with
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P{µ < τ} > 0 is not optimal for point (θ,X(θ), r(θ)). Therefore

V (θ,X(θ), r(θ)) = inf
µ∈[τ,t0+T0]

min
Ti∈{T1,··· ,Tj}

Eθ

{∫ τ

θ

m0R(s; t, r)ds+ J(τ,X(τ), r(τ);µ, Ti)
}

= Eθ

{∫ τ

θ

m0R(s; t, r)ds+ V (τ,X(τ), r(τ))
}
.

proving (4.4.1).

Finally, by taking θ = t and τ = τ̄ , we see that

V (t, x, r) = Et

{∫ τ̄

t

m0R(s; t)ds+ 1{τ̄<t0+T0}

[
min

Ti∈{T1,··· ,Tj}
{κ0(τ̄) + κ1(τ̄)X(τ̄)

+m(τ̄ , X(τ̄), Ti)R(τ̄ ; t, r)ψ(τ̄ , r(τ̄), τ̄ + Ti)}
]}

= J(t, x, r; τ̄ , T ∗),

which means that τ̄ is an optimal stopping time of Problem (RF)1 for the initial triple (t, x, r), and

it must be the smallest one.

Then we can derive the variational inequality as follows.

Theorem 3.1.8. For any (t, x, r) ∈ D, let value function V (t, x, r) = infτ minTi
J(t, x, r; τ, Ti),

and suppose V (·, ·, ·) ∈ C1,1,2(D), where C1,1,2(D) is the space of all real-valued functions on

D whose first order continuous partial derivatives with respect to first two variables and second

order continuous partial derivative with respect to third variable exist. Then V is the solution of
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the following variational inequality:



min{Vt +
1

2
Vrrσ0(t, r)

2 + Vrb0(t, r) + Vx(r0x−m0) +m0,Φ− V } = 0,

(t, x, r) ∈ D,

V (t0 + T0, x, r) = 0, (x, r) ∈ R+ × R+,

V (t, 0, r) = 0, (t, r) ∈ [t0, t0 + T0]× R+,

V (t, x, 0) = κ0(t) + κ1(t)x+
δ(t, x, T0)e

δ(t,x,T0)T0

eδ(t,x,T0)T0 − 1
xT0,

(t, x) ∈ [t0, t0 + T0]× R+,

(3.11)

where

Φ(t, x, r) = min
Ti∈{T1,··· ,Tj}

{κ0(t) + κ1(t)x+m(t, x, Ti)ψ(t, r; t+ Ti)},

with ψ(t, r; t+ Ti) being the solution of (3.4).

Proof. Let (t, x, r) ∈ D, and for any stopping time τ ∈ [t, T ], from Proposition 3.1.4 we know

that if taking τ = t,

V (t, x, r) ⩽ Φ(t, x, r).

Otherwise,

V (t, x, r) ⩽ E
{∫ τ

t

m0R(s; t)ds+ V (τ,X(τ), r(τ))
}
.

By Itô’s formula,

0 ⩽
∫ τ

t

{
Vt +

1

2
Vrrσ0(t, r)

2 + Vrb0(t, r) + Vx(r0x−m0) +m0

}
ds.

Since τ is arbitrary,

Vt +
1

2
Vrrσ0(t, r)

2 + Vrb0(t, r) + Vx(r0x−m0) +m0 ⩾ 0.
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Thus the variational inequality holds.

We define the closed set S

S = {(t, x, r) : V (t, x, r) = min
Ti∈{T1,··· ,Tj}

{κ0(t) + κ1(t)x+m(t, x, Ti)ψ(t, r; t+ Ti)}}

which is called the stopping set, and the open set

D = {(t, x, r) : V (t, x, r) < min
Ti∈{T1,··· ,Tj}

{κ0(t) + κ1(t)x+m(t, x, Ti)ψ(t, r; t+ Ti)}}

which is called the continuation set.

3.1.3 Optimal Strategy

First we notice that for any triple (t, x, r) ∈ D, if

m0ψ(t, r; t+ T0) ⩾ Φ(t, x, r),

which means that if the cash flow of the original mortgage plan is larger than the refinancing cost

and cash flow of the new mortgage plan, then refinancing should be taken at once.

Generally, for any (t, x, r) ∈ D, define the process,

Zu =

∫ u

t

m0R(s; t)ds+ V (u,X(u), r(u)),
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and the first exit time of the continuation region τ̄ as we defined in (3.6), i.e.,

τ̄ = inf
{
s ∈ [t, t0 + T0]|V (s,X(s), r(s)) = min

Ti∈{T1,··· ,Tj}
{κ0(s) + κ1(s)X(s)

+m(s,X(s), Ti)R(s; t, r)ψ(s, r(s); s+ Ti)}
}
.

From the dynamic programming principle, for any stopping time θ ∈ [u, t0 + T0], since

Vt +
1

2
Vrrσ0(t, r)

2 + Vrb0(t, r) + Vx(r0x−m0) +m0 ⩾ 0,

we have

Zu ⩽ Eu[Zθ],

which means that Z is a submartingale. Moreover, since

Vt +
1

2
Vrrσ0(s, r(s))

2 + Vrb0(t, r) + Vx(r0X(s)−m0) +m0 = 0

for any s ∈ [t, τ̄), the process Z is a martingale on [t, τ̄), and so

V (t, x, r) = Et

{∫ τ̄

t

m0R(s; t, r)ds+ 1{τ̄}<t0+T0}

[
min

Ti∈{T1,··· ,Tj}
{κ0(τ̄) + κ1(τ̄)X(τ̄)

+m(τ̄ , X(τ̄), Ti)R(τ̄ ; t)ψ(τ̄ , r(τ̄); τ̄ + Ti)}
]}
,

which implies τ̄ is an optimal stopping strategy.

3.1.4 Viscosity Solutions

As we mentioned in Section 2.3, we know that the value function V (·, ·, ·) is the unique viscosity

solution of a HJB equation of the variational inequality form for the classical optimal stopping
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problem. Before we introduce the viscosity solution, first we rewrite the problem equivalently as

following:

J (t, x, r; τ) = E
{∫ τ

t

−m0R(s; t, r)ds+ 1{τ<t0+T0}

[
− κ0(τ)− κ1(τ)X(τ)

− min
Ti∈{T1,··· ,Tj}

m(τ,X(τ), Ti)R(τ ; t, r)ψ(τ, r(τ); τ + Ti)
]}
.

Then Problem (RF)1 can be equivalently stated as follows.

Problem (RF)∗1. Find τ ∗ ∈ [t, t0 + T0] such that

J (r, x, r; τ ∗, T ∗) = max
τ

min
Ti

J (t, x, r; τ, Ti) = V (t, x, r).

With the same argument as above, the HJB equation looks like



min{−Vt −
σ0(t, r)

2

2
Vrr − b0(t, r)Vr − (r0x−m0)Vx +m0,V + Φ} = 0,

(t, x, r) ∈ D,

V (t0 + T0, x, r) = 0, (x, r) ∈ R+ × R+,

V (t, 0, r) = 0, (t, r) ∈ [t0, t0 + T0]× R+,

V (t, x, 0) = −κ0(t)− κ1(t)x−
δ(t, x, T0)e

δ(t,x,T0)T0

eδ(t,x,T0)T0 − 1
xT0,

(t, x) ∈ [t0, t0 + T0]× R+,

(3.12)

where

Φ(t, x, r) = min
Ti∈{T1,··· ,Tj}

{κ0(t) + κ1(t)x+m(t, x, Ti)ψ(t, r; t+ Ti)},

with ψ(t, r; t + Ti) being the solution of (3.4). Thus we have for any (t, s, r) ∈ D, V (t, x, r) =

−V (t, x, r).
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We now introduce the definition of the viscosity solution as follows.

Definition 3.1.9. (a). V is a viscosity subsolution of (3.12) if for each φ ∈ C1,1,2(D) and each

(s0, y0, r0) ∈ D such that φ ⩾ V and φ(s0, y0, r0) = V (s0, y0, r0) we have,

min{−φt −
1

2
φrrσ0(s0, y0, r0)

2 − φrb0(s0, y0, r0)− φx(r0y0 −m0) +m0,

φ(s0, y0, r0) + Φ(s0, y0, r0)} ⩽ 0.

(b). V is a viscosity supersolution of (3.12) if for each ϕ ∈ C1,1,2(D) and each (s0, y0, r0) ∈ D

such that ϕ ⩽ V and φ(s0, y0, r0) = V (s0, y0, r0) we have,

min{−ϕt −
1

2
ϕrrσ0(s0, y0, r0)

2 − ϕrb0(s0, y0, r0)− ϕx(r0y0 −m0) +m0,

ϕ(s0, y0, r0) + Φ(s0, y0, r0)} ⩾ 0.

(c). V is a viscosity solution of (3.12) if it is both a viscosity subsolution and a viscosity superso-

lution of (3.12).

The main result of this section is stated as follows.

Theorem 3.1.10. Let (t, x, r) ∈ D, V (t, x, r) = infτ minTi
J(t, x, r; τ, Ti) is the unique viscosity
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solution of the equation



min{Vt +
1

2
Vrrσ0(t, r)

2 + Vrb0(t, r) + Vx(r0x−m0) +m0,Φ− V } = 0,

(t, x, r) ∈ D,

V (t0 + T0, x, r) = 0, (x, r) ∈ R+ × R+,

V (t, 0, r) = 0, (t, r) ∈ [t0, t0 + T0]× R+,

V (t, x, 0) = κ0(t) + κ1(t)x+
δ(t, x, T0)e

δ(t,x,T0)T0

eδ(t,x,T0)T0 − 1
xT0,

(t, x) ∈ [t0, t0 + T0]× R+,

where

Φ(t, x, r) = min
Ti∈{T1,··· ,Tj}

{κ0(t) + κ1(t)x+m(t, x, Ti)ψ(t, r; t+ Ti)},

with ψ(t, r; t+ Ti) being the solution of (3.4).

Proof. Note that V (t0 + T0, x, r) = 0 and V (t, 0, r) = 0 follow immediately from the definition

of V. Then to prove for any (t, x, r) ∈ D, V (t, x, r) = infτ minTi
J(t, x, r; τ, Ti) is the unique

viscosity solution of the 3.11, it suffices to prove that V is the unique viscosity solution of (3.12).

First for the viscosity subsolution case, let φ ∈ C1,1,2 and (s0, y0, r0) ∈ D such that φ ⩾ V on D

and φ(s0, y0, r0) = V (s0, y0, r0).

Since V (s0, y0, r0) ⩾ −Φ(s0, y0, r0), so φ(s0, y0, r0) ⩾ −Φ(s0, y0, r0). If (s0, y0, r0) ∈ S, then

φ(s0, y0, r0) = −Φ(s0, y0, r0). Next suppose (s0, y0, r0) ∈ D. For τ ∈ [t0, t0 + T0], by Dynkin’s
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formula we obtain

V (s0, y0, r0) = Es0

{∫ τ

s0

−m0R(s; s0, r0)ds+ V (τ,X(τ), r(τ))
}

⩽ Es0

{∫ τ

s0

−m0R(s; s0, r0)ds+ φ(τ,X(τ), r(τ))
}

= Es0

{∫ τ

s0

−m0R(s; s0, r0)ds+ φ(s0, y0, r0)

+

∫ τ

s0

φt +
1

2
φrrσ0(t, r)

2 + φrb0(t, r) + φx(r0x−m0)ds
}

= Es0

{∫ τ

s0

−m0R(s; s0, r0) + φt +
1

2
φrrσ0(t, r)

2 + φrb0(t, r)

+φx(r0x−m0)ds
}
+ φ(s0, y0, r0)

or

Es0

{∫ τ

s0

−m0R(s; s0, r0) + φt +
1

2
φrrσ0(t, r)

2 + φrb0(t, r) + φx(r0x−m0)ds
}
⩾ 0.

Letting τ → s0, we get

φt +
1

2
φrrσ0(t, r)

2 + φrb0(t, r) + φx(r0x−m0)−m0 ⩾ 0.

Thus

min
{
− φt −

1

2
φrrσ0(s0, r0)

2 − φrb0(s0, r0)− φx(r0y0 −m0) +m0,

φ(s0, y0, r0) + Φ(s0, y0, r0)
}
⩽ 0.

(3.13)

This shows that V is a viscosity subsolution.

For the supersolution case, let ϕ ∈ C1,1,2 and (s0, y0, r0) ∈ D such that ϕ ⩽ V on D and

ϕ(s0, y0, r0) = V (s0, y0, r0).
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For all bounded stopping time τ ⩽ t0 + T0, with the same argument as above, we have

V (s0, y0, r0) = Es0

{∫ τ

s0

−m0R(s; s0, r0)ds+ V (τ,X(τ), r(τ))
}

⩾ Es0

{∫ τ

s0

−m0R(s; s0, r0)ds+ ϕ(τ,X(τ), r(τ))
}

= Es0

{∫ τ

s0

−m0R(s; s0, r0)ds+ ϕ(s0, y0, r0)

+

∫ τ

s0

ϕt +
1

2
ϕrrσ0(t, r)

2 + ϕrb0(t, r) + ϕx(r0x−m0)ds
}

= Es0

{∫ τ

s0

−m0R(s; s0, r0) + ϕt +
1

2
ϕrrσ0(t, r)

2 + ϕrb0(t, r)

+ϕx(r0x−m0)ds
}
+ ϕ(s0, y0, r0)

or

Es0

{∫ τ

s0

−m0R(s; t) + ϕt +
1

2
ϕrrσ0(t, r)

2 + ϕrb0(t, r) + ϕx(r0x−m0)ds
}
⩽ 0.

Letting τ → s0, we get

ϕt +
1

2
ϕrrσ0(t, r)

2 + ϕrb0(t, r) + ϕx(r0x−m0)−m0 ⩽ 0.

Thus

min
{
− ϕt −

1

2
ϕrrσ0(s0, r0)

2 − ϕrb0(s0, r0)− ϕx(r0y0 −m0) +m0,

ϕ(s0, y0, r0) + Φ(s0, y0, r0)
}
⩾ 0.

(3.14)

This shows that V is a viscosity supersolution. Combining (3.13) and (3.14), we get V is a

viscosity solution.

To prove the uniqueness, we use the Theorem 3.3 in [7]. Let U (resp. V ) be a upper-semicontinuous

function (u.s.c.) viscosity subsolution (resp. lower-semicontinuous function (l.s.c.) viscosity su-

persolution) of (3.12), then we claim that U ⩽ V on D. To prove this we argue by the con-
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tradiction. Assuming that sup(U − V ) > 0, which implies there exists (t̄, x̄, r̄) ∈ D such that

(U − V )(t̄, x̄, r̄) = sup(U − V ) = δ > 0. For all ϵ > 0, consider Uϵ = U − ϵ(|x|2 + |r|2) and

Vϵ = V + ϵ(|x|2 + |r|2), then

lim
|x|∨|r|→∞

sup
t∈[t0,t0+T0]

(Uϵ − Vϵ)(t, x, r) → −∞.

Define for all k ∈ N,

Γk(t, x, r; s, y, z) = U (t, x, r)− V (s, y, z)− γk(t, x, r; s, y, z)

−1

k
(|x|2 + |r|2 + |y|2 + |z|2)− t0 + T0 − t− s

k
,

γk(t, x, r; s, y, z) = k[|t− s|2 + |x− y|2 + |r − z|2].

(3.15)

Thus the u.s.c. function Γk attains its maximum at (tk, xk, rk, sk, yk, zk) ∈ D, that is there exist

k0 > 0, for k > k0,

Γk(tk, xk, rk; sk, yk, zk) = sup
D×D

Γk(t, x, r; s, y, z)

⩾ Γk(t̄, x̄, r̄; t̄, x̄, r̄) = U (t̄, x̄, r̄)− V (t̄, x̄, r̄)− γk(t̄, x̄, r̄; t̄, x̄, r̄)−
2

k
(|x̄|2 + |r̄|2)

−t0 + T0 − 2t

k

⩾ δ − 2

k
(|x̄|2 + |r̄|2)− t0 + T0 − 2t

k
⩾
δ

2
.

(3.16)

Therefore,
δ

2
⩽ U (tk, xk, rk)− V (sk, yk, zk). (3.17)

Next by the definition of (tk, xk, rk; sk, yk, zk), we get

2Γk(tk, xk, rk; sk, yk, zk) ⩾ Γk(tk, xk, rk; tk, xk, rk) + Γk(sk, yk, zk; sk, yk, zk),
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equivalently,

2
[
U (tk, xk, rk)− V (sk, yk, zk)− γk(tk, xk, rk; sk, yk, zk)

−1

k
(|xk|2 + |rk|2 + |yk|2 + |zk|2)−

t0 + T0 − tk − sk
k

]
⩾ U (tk, xk, rk)− V (tk, xk, rk)−

2

k
(|xk|2 + |rk|2)−

t0 + T0 − 2tk
k

+U (sk, yk, zk)− V (sk, yk, zk)−
2

k
(|yk|2 + |zk|2)−

t0 + T0 − 2sk
k

.

Thus there exist C > 0,

2γk(tk, xk, rk; sk, yk, zk) ⩽ U (tk, xk, rk)− U (sk, yk, zk) + V (tk, xk, rk)− V (sk, yk, zk) ⩽ C.

Hence,

|tk − sk|+ |xk − yk|+ |rk − sk| ⩽
(C
k

) 1
2
. (3.18)

Therefore, as k → ∞,

γk(tk, xk, rk; sk, yk, zk)

⩽ sup

|tk−sk|+|xk−yk|+|rk−sk|≤
(

C0
k

) 1
2

(|U (tk, xk, rk)− U (sk, yk, zk)|

−|V (tk, xk, rk)− V (sk, yk, zk)|)

→ 0.

(3.19)

Notice that as k → ∞, the bounded sequence (tk, xk, rk; sk, yk, zk)k converges, along a subse-

quence, to some point (t̂, x̂, r̂; ŝ, ŷ, ẑ) ∈ [t0, t0+T0]×Ō×Ō, for some open bounded set O ∈ R+.

By (3.18) we get t̂ = ŝ, x̂ = ŷ, r̂ = ẑ.

If U is u.s.c., φ ∈ C1,1,2(D), and (t̄, x̄, r̄) ∈ D is a maximum point of U − φ, then a second
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Taylor expansion of φ yields

U (t, x, r) ⩽ U (t̄, x̄, r̄) + φ(t, x, r)− φ(t̄, x̄, r̄)

= U (t̄, x̄, r̄) + φt(t̄, x̄, r̄)(t− t̄) + φx(t̄, x̄, r̄)(x− x̄) + φr(t̄, x̄, r̄)(r − r̄)

+
1

2
φrr(t̄, x̄, r̄)(r − r̄)2 + o(|t− t̄|+ |x− x̄|+ |r − r̄|2).

(3.20)

Thus we can define P2,+U (t, x, r) as the set of elements (q̄, p̄, h̄, M̄) ∈ R×R×R×R, satisfying

U (t, x, r) ⩽ U (t̄, x̄, r̄)+ q̄(t− t̄)+ p̄(x−x̄)+h̄(r− r̄)+ 1

2
M̄(r− r̄)2+o(|t− t̄|+|x−x̄|+|r− r̄|2).

The inequality (3.20) shows that for a given point (t, x, r) ∈ D, if φ ∈ C1,1,2(D) is such that

(t, x, r) is maximum of U − φ, then

(q, p, h,M) = (φt(t, x, r), φx(t, x, r), φr(t, x, r), φrr(t, x, r)) ∈ P2,+U (t, x, r).

Similarly, we can define P2,−V (t, x, r) of a l.s.c. function V as the set of elements (q̄, p̄, h̄, M̄) ∈

R× R× R× R, satisfying

V (t, x, r) ⩾ V (t̄, x̄, r̄)+ q̄(t− t̄)+ p̄(x− x̄)+ h̄(r− r̄)+ 1

2
M̄(r− r̄)2+o(|t− t̄|+ |x− x̄|+ |r− r̄|2),

and for a given point (t, x, r) ∈ D, if φ ∈ C1,1,2(D) is such that (t, x, r) is minimum of V − φ,

then

(q, p, h,M) = (φt(t, x, r), φx(t, x, r), φr(t, x, r), φrr(t, x, r)) ∈ P2,−V (t, x, r).

More precisely, define P̄2,+U (t, x, r) as the set of element (q, p, h,M) ∈ R × R × R × R

for which there exists a sequence (tϵ, xϵ, rϵ, qϵ, pϵ, hϵ,Mϵ)ϵ in D × P2,+U (tϵ, xϵ, rϵ) such that
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(tϵ, xϵ, rϵ,U (tϵ, xϵ, rϵ), qϵ, pϵ, hϵ,Mϵ) → (t, x, r,U (t, x, r), q, p, h,M), and define the set P̄2,−V (t, x, r)

similarly.

Form Ishii’s lemma, there exist M and N ∈ R such that

(2k(tk − sk), 2k(xk − yk) +
2

k
(xk), 2k(rk − zk) +

2

k
(rk),M) ∈ P̄2,+U (t, x, r),

(2k(tk − sk), 2k(xk − yk)−
2

k
(yk), 2k(rk − zk)−

2

k
(zk), N) ∈ P̄2,−V (s, y, z),

and

(σ0(tk, rk)
2M − σ0(sk, zk)

2N) ⩽ 3k|σ0(tk, rk)− σ0(sk, zk)|2.

From the viscosity subsolution (resp. supersolution) property of U (resp. V ) at (tk, xk, rk) (resp.

(sk, yk, zk)). we have

min
{
− 2k(tk − sk)−

σ0(tk, rk)
2

2
M − b0(tk, rk)(2k(rk − zk) +

2

k
(rk))

−(r0xk −m0)(2k(xk − yk) +
2

k
(xk)) +m0,U + Φ

}
⩽ 0,

(3.21)

and

min
{
− 2k(tk − sk)−

σ0(sk, zk)
2

2
N − b0(sk, zk)(2k(rk − zk)−

2

k
(zk))

−(r0yk −m0)(2k(xk − yk)−
2

k
(yk)) +m0,V + Φ

}
⩾ 0.

(3.22)

The first term of the left-hand side of (3.22) is nonnegative, therefore, from the Lipschitz condition
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on b0, σ0, continuity of X, r and for k → ∞, we get

(σ0(sk, zk)2
2

N − σ0(tk, rk)
2

2
M

)
+ 2k(rk − zk)(b0(sk, zk)− b0(tk, rk))

−2

k
(zkb0(sk, zk) + rkb0(tk, rk)) + 2k(xk − yk)r0(yk − xk)

−2

k
(yk(r0yk −m0) + xk(r0xk −m0)) → 0.

which implies for all k, U (tk, xk, rk) + Φ(tk, xk, rk) ⩽ 0 and V (sk, yk, zk) + Φ(sk, yk, zk) ⩾ 0,

therefore, U (tk, xk, rk)−V (sk, yk, zk) ⩽ −Φ(tk, xk, rk)− (−Φ(sk, yk, zk)). Letting k → ∞, and

by the continuity of Φ, we get the contradiction with 3.17. Then by V (t, x, r) = −V (t, x, r), the

theorem is proved.

3.1.5 Example

In this section, we present an example to illustrate our result in this section. For any t0 ⩾ 0, let the

market interest rate r0 > 0 be fixed. Consider a fixed term mortgage starting from t0 with the loan

amount x0 > 0, the fixed term T0 > 0, and the mortgage rate is r0. Suppose there is no closing

cost (including various fees) in this example. Next, at any s ∈ (t0, t0 + T0), the principal balance

is denoted by X(s). Then by above discussion, the process X(·) satisfies

 dX(s) =
{
r0X(s)−m(t0, x0, T0)

}
ds, s ∈ [t0, t0 + T0],

X(t0) = x0,

(3.23)

and the payment rate

m(t0, x0, T0) =
r0e

r0T0

er0T0 − 1
x0 ≡ m0.

Now, one has

X(s) =
er0T0 − er0(s−t0)

er0T0 − 1
x0, s ∈ [t0, t0 + T0].
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The total discounted payment is given by

J0 =

∫ t0+T0

t0

m0e
−r0(s−t0)ds = x0.

Now we consider refinancing the mortgage at τ ∈ (t, t0+T0) with the market interest rate changing

to r1 where r0 > r1 > 0. By the discussion above, we know the mortgage balance now is

X(τ) =
er0T0 − er0(τ−t0)

er0T0 − 1
x0.

and the payment rate on [τ, τ + T0] will be

m(τ,X(τ), T0) =
r1e

r1T0

er1T0 − 1
X(τ) =

r1e
r1T0

er1T0 − 1
× er0T0 − er0(τ−t0)

er0T0 − 1
x0. (3.24)

Now the total expected discounted payment is given by

J1 =

∫ τ

t0

m0e
−r0(s−t0)ds+

∫ τ+T0

τ

m(τ,X(τ), T0)e
−r1(s−τ)ds

=
er0T0

er0T0 − 1
x0

[
1− e−r0(τ−t0)

]
+

er1T0

er1T0 − 1
× er0T0 − er0(τ−t0)

er0T0 − 1
x0

[
1− e−r0T0

]
.

It is easy to show that

m(τ,X(τ), T0) =
r1e

r1T0

er1T0 − 1
× er0T0 − er0(τ−t0)

er0T0 − 1
x0 <

r0e
r0T0

er0T0 − 1
x0 = m(t0, x0, T0),

since er0T0−er0(τ−t0)

er0T0−1
x0 < x0 and the function rerT0

erT0−1
is monotone increasing respect to r. This means

that the payment rate is lower.

Now we compare J0 and J1. This is equivalent to compare the discounted payment after τ, there-
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fore, let

J2 =

∫ t0+T0

τ

m0e
−r0(s−t0)ds =

er0(T0+t0−τ) − 1

er0T0 − 1
x0,

and

J4 =

∫ τ+T0

τ

m(τ,X(τ), T0)e
−r1(s−τ)ds =

er1T0

er1T0 − 1
× er0T0 − er0(τ−t0)

er0T0 − 1
x0

[
1− e−r0T0

]
.

Then we have the following relationship:

(1) If

1− 1

er1T0
=
er0T0 + e−r0(t0+T0−τ) − er0(τ−t0) − 1

er0(T0+t0−τ) − 1
,

which implies J0 = J1. Hence it is no advantage to refinance at this time.

(2) If

1− 1

er1T0
<
er0T0 + e−r0(t0+T0−τ) − er0(τ−t0) − 1

er0(T0+t0−τ) − 1
,

which implies that the discounted payment after refinancing is larger than original mortgage, i.e.,

J1 > J0, even the payment rate is lower than original mortgage since r1 is not lower enough than

r0 and a longer payment period after refinancing than before. Clearly, in this case, it is wise that

not refinance the mortgage.

(3) If

1− 1

er1T0
>
er0T0 + e−r0(t0+T0−τ) − er0(τ−t0) − 1

er0(T0+t0−τ) − 1
,

which implies that when r1 is lower enough, one might want to refinance the mortgage.

Remark 3.1.11. Inspired by this example, an impulse control problem with changing running cost

could be established and two features are different from the classical impulse control problem.

First zero impulse is meaningful, since the running cost is changed when impulse applied. Second,
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because of the changing on the terminal time when impulse applied, the lower running cost is not

equivalent to the lower total expected discounted payment.

3.2 Multi-Times Refinances

In this section we consider multiple times refinancing and investigate the features by a general two

times refinance model.

Let (Ω,F ,F,P) and W (·) be as before. Consider the following (market) interest rate model:

 dr(s) = b0(s, r(s))ds+ σ0(s, r(s))dW (s), s ∈ [t, T ],

r(t) = r.

(3.25)

where b0 : [0, T ]×R → R and σ0 : [0, T ]×R → R1×d are some suitable deterministic maps, r(·)

is the state process with t ∈ [0, T ] being the initial time and r ∈ R being the initial state.

Consider a mortgage started at t0 ⩾ 0 with the loan amount xt0 , mortgage interest rate r(t0) =

r(t0)+δ(t0, xt0 , T0), where δ(·, ·, ·) is a deterministic function and with fixed term T0 as we defined

in Section 3.1. If there is no pre-payment, refinance nor default, the remaining balance process

X(·) should satisfy:

X(s) = xt0 +

∫ s

t0

r(t0)X(t)dτ −
ℓ∑

k=1

m(t0)χ[t0+kµ,∞)(s), s ∈ [t0, t0 + T0],

with m(t0) is determined by the terminal constraint

X(t0 + T0) = 0,
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and µ is the unit period length, at the end of each (t0 + kµ, t0 + (k + 1)µ], a payment is made.

Thus, ℓµ = T0.

Note that

X(s) = e[r(t0)+δ(t0,xt0 ,T0)](s−t0)xt0 −
ℓ∑

k=1

∫ s

t0

e[r(t0)+δ(t0,xt0 ,T0)](s−τ)m(t0)χ[t0+kµ,∞)(τ)dτ.

Thus, X(t0 + T0) = 0 leads to

e[r(t0)+δ(t0,xt0 ,T0)]T0η =
ℓ∑

k=1

∫ t0+T0

t0+kµ

m(t0)e
[r(t0)+δ(t0,xt0 ,T0)](T0+t0−τ)dτ

= m(t0)
ℓ∑

k=1

e[r(t0)+δ(t0,xt0 ,T0)](ℓ−k)µ − 1

r(t0) + δ(t0, xt0 , T0)

=
m(t0)

r(t0) + δ

[e[r(t0)+δ(t0,xt0 ,T0)]T0 − 1

e[r(t0)+δ(t0,xt0 ,T0)]µ − 1
− ℓ

]
.

Therefore,

m(t0) = [r(t0) + δ(t0, xt0 , T0)]e
[r(t0)+δ(t0,xt0 ,T0)]T0

[e[r(t0)+δ(t0,xt0 ,T0)]T0 − 1

e[r(t0)+δ(t0,xt0 ,T0)]µ − 1
− T0

µ

]−1

η.

Thus,

m(t0) = m(T0, r(t0), xt0).

For this case, the cost functional is (discount all the payments made at τk = t0 + kµ to the time t0,

using continuous compound interest)

J(θ0, xt0) =
ℓ∑

k=1

∫ τk

θ

m(t0)e
−r(t0)(s−t0)ds =

ℓ∑
k=1

m(t0)
1− e−r(t0)kµ

r(t0)

=
m(t0)

r(t0)

[T0
µ

− e−r(t0)µ
1− e−r(t0)T0

1− e−r(t0)µ

]
.
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Now we consider a refinance which is happened at the current situation (t,X(t)) and r(t). Suppose

some additional impulse control ξ(·) as the following form:

ξ(s) =
∑
k⩾1

ξkχ[t0+kµ,∞)(s), s ⩾ t0

applies, with ξk ⩾ 0. Let at (tj, X(tj)), the mortgage is refinanced with new term Tj , the loan

amount is X(tj) = X(tj + 0) and the rate r(tj) + δ. Then the state between tj and tj+1 is

X(s) = e[r(tj)+δ(t0,xt0 ,T0)](s−tj)X(tj)

−
∑
k⩾1

∫ s

tj

e[r(tj)+δ(t0,xt0 ,T0)](s−tj)[m(Tj, r(tj), X(tj)) + ξk]χ[tj+kµ,∞)(τ)dτ.

The monthly payment m(Tj, r(tj), X(tj)) is determined similarly as m(T, r(t0), xt0). Expected

cost on [tj, tj+1] can be defined. For technical convenience, we assume that the term for every new

refinanced mortgage is fixed T0.

Now we rewrite above in a general form. Consider the following stochastic differential equations.

X(s) = x+

∫ s

t

b1(τ,X(τ), u(τ))dτ +

∫ s

t

σ1(τ,X(τ), u(τ))dW (τ) + ξ(s), s ∈ [t, T ], (3.26)

and

r(s) = r +

∫ s

t

b2(τ, r(τ))dτ +

∫ s

t

σ2(τ, r(τ))dW (τ), s ∈ [t, T ], (3.27)

where b1 : [0, T ]×R×U → R, b2 : [0, T ]×R → R, σ1, σ2 : [0, T ]×R → R1×d are some suitable

deterministic maps and U is a metric space. X(·) is the mortgage balance and r(·) is the mortgage

rate with t ∈ [0, T ] being the initial time and x ∈ R and r ∈ R being the initial states respectively,
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u(·) is called a control process which is taken from the following set:

U [t, T ] =
{
u : [t, T ]× Ω 7→ R | u(·) is F− progressively measurable,E

∫ T

t

|u(s)|2ds <∞
}
.

ξ(·) is called an impulse control of the following term:

ξ(s) =
∑
i⩾1

ξiχ[ti,T ](s), s ⩾ t, (3.28)

where {τi}i⩾1 is an increasing sequence of F-stopping times valued in [t, T ], and each ξi is an

Fτi-measurable square integrable random variable taking values in K, with K ⊂ R being a closed

convex cone. Let K [t, T ] be the set of all impulse controls of the form (4.3). Under proper

conditions, for any (t, x, r) ∈ [0, T ] × Rn × Rn, and ξ(·) ∈ K [t, T ], state equations (4.1) and

(4.2) admit unique solutions X(·) ≡ X(·; t, x, ξ(·)) and r(·) ≡ r(·; t, r) respectively (see Theorem

2.0.2).

We start from the case that no refinance happened and introduce the following cost functional for

(t, x, r) ∈ [0, T ]× R× R with the given initial triple (t0, xt0 , rt0) ∈ [0, T ]× R× R:

J0(t0, xt0 , rt0 ; t, x, r;u(·)) = E
{∫ t0+T

t

g(t0, xt0 , rt0 ; s,X(s), r(s);u(s))ds

+h(t0, xt0 , rt0 ;X(t0 + T0), r(t0 + T0))
}
,

(3.29)

for some suitable deterministic maps g(t0, xt0 , rt0 ; ·) and h(t0, xt0 , rt0 ; ·), which depends on the

initial triples (t0, xt0 , rt0) ∈ [0, T ]× R× R. The terms on the right-hand side are the running cost

and the terminal cost, respectively. For any (t, x, r) ∈ [t0, t0 + T0] × R × R, with the classical

optimal control theory, we can find a ū(·) ∈ U [t, T ] such that

J0(t0, xt0 , rt0 ; t, x, r; ū(·)) = min
u∈U [t,T ]

J0(t0, xt0 , rt0 ; t, x, r;u(·)) = V 0(t0, xt0 , rt0 ; t, x, r). (3.30)
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Under proper conditions, the value function V 0(t0, xt0 , rt0 ; ·, ·, ·) is a the unique solution of the

following HJB equation:



V 0
t (t0, xt0 , rt0 ; t, x, r) + inf

u∈U

{1

2
V 0
xx(t0, xt0 , rt0 ; t, x, r)σ1(t, x, u)

2

+
1

2
V 0
rr(t0, xt0 , rt0 ; t, x, r)σ2(t, r)

2 + V 0
x (t0, xt0 , rt0 ; t, x, r)b1(t, x, u)

+V 0
r (t0, xt0 , rt0 ; t, x, r)b2(t, r) + g(t0, xt0 , rt0 ; t, x, r, u)

}
= 0,

(t, x, r) ∈ [t0, t0 + T0]× R× R,

V 0(t0, xt0 , rt0 ; t0 + T0, x, r) = h(t0, xt0 , rt0 ;x, r), (x, r) ∈ R× R.

(3.31)

Any ū(·) ∈ U [t, t0 + T0] satisfying (3.30) is called an optimal control and X̄(·) ≡ (·; t, x, r; ū(·))

is called the corresponding optimal state process. We call V 0(θ0, xθ0 , rθ0 ; ·, ·, ·) the value function

of (3.29).

Now consider a refinance will be applied for this mortgage, that is find t1 ∈ (t0, t0 +T0) where the

first impulse will be applied. For any (t, x, r) ∈ [t0, t0 + T0]× R× R and ξi ∈ K, let

N [V ](t0, xt0 , rt0 ; t, x, r) = inf
ξi∈K

{V (t0, xt0 , rt0 ; t, x+ ξi, r) + ℓ(t, x, ξi)} (3.32)

where ℓ(t, x, ξi) > 0 is called the impulse cost. We state with two times refinance in following two

cases.
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3.2.1 Case 1: Refinancing One Time After Another

In this case, the first refinance will be applied at t1 ∈ (t0, t0 + T0). Hence for any (t, x, r) ∈

[t0, t0 + T0]× R× R, the cost functional (3.29) now should be:

J1(t0, xt0 , rt0 ; t, x, r;u(·), ξ(·))

= E
{∫ t1

t

g(t0, xt0 , rt0 ; s,X(s), r(s);u(s))ds

+1{t1<t0+T0}

[ ∫ t1+T1

t1

g(t1, X(t1 + 0), r(t1); s,X(s), r(s);u(s))ds

+ℓ(t1, X(t1 − 0), ξ1) + h(t1, xt1 , rt1 ;X(t1 + T1), r(t1 + T1))
]

+1{t1=t0+T0}

[
h(t0, xt0 , rt0 ;X(t0 + T0), r(t0 + T0))

]}
,

(3.33)

and find (ū(·), ξ̄(·)) ∈ U [t, T ]× K1[t, T ] such that:

J1(t0, xt0 , rt0 ; t, x, r; ū(·), ξ̄(·))

= inf
(u(·),ξ(·))∈U [t,T ]×K1[t,T ]

J1(t0, xt0 , rt0 ; t, x, r;u(·), ξ(·)) = V 1(t0, xt0 , rt0 ; t, x, r).
(3.34)

Any ū(·) ∈ U [t, T ] satisfying (3.34) is called an optimal control, ξ̄(·) ∈ K1[t, T ] satisfying (3.34)

is called an optimal impulse control and X̄(·) ≡ (·; t, x, r; ū(·), ξ̄(·)) is called the corresponding

optimal state process. We call V 1(t0, xt0 , rt0 ; ·, ·, ·) the value function of (3.33).

To find (ū(·), ξ̄(·)) ∈ U [t, T ] × K1[t, T ] in (3.34), first for any t1 ∈ (t0, t0 + T0), define the cost

functional for (t, x, r) ∈ [t1, t1 + T1]× R× R as follows.

J1(t1, xt1 , rt1 ; t, x, r;u(·)) = E
{∫ t1+T1

t

g(t1, xt1 , rt1 ; s,X(s), r(s);u(s))ds

+h(t1, xt1 , rt1 ;X(t1 + T1), r(t1 + T1))
}
,

(3.35)
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and find ū(·) ∈ U [t, T ] such that:

J1(t1, xt1 , rt1 ; t, x, r; ū(·)) = inf
u(·)∈U [t,T ]

J1(t1, xt1 , rt1 ; t, x, r;u(·))

= V 1(t1, xt1 , rt1 ; t, x, r).

(3.36)

Under proper conditions, the value function (3.36) should satisfies the following HJB equation:



V 1
t (t1, xt1 , rt1 ; t, x, r) + inf

u∈U

{1

2
V 1
xx(t1, xt1 , rt1 ; t, x, r)σ1(t, x, u)

2

+
1

2
V 1
rr(t1, xt1 , rt1 ; t, x, r)σ2(t, r)

2 + V 1
x (t1, xt1 , rt1 ; t, x, r)b1(t, x, u)

+V 1
r (t1, xt1 , rt1 ; t, x, r)b2(t, r) + g(t1, xt1 , rt1 ; t, x, r, u)

}
= 0,

(t, x, r) ∈ [t1, t1 + T1]× R× R,

V 1(t1, xt1 , rt1 ; t1 + T1, x, r) = h(t1, xt1 , rt1 ;x, r), (x, r) ∈ R× R.

(3.37)

Then for any (t, x, r) ∈ [t0, t0 + T0]× R× R, we can re-write (3.33) as:

J1(t0, xt0 , rt0 ; t, x, r;u(·), ξ(·))

= E
{∫ t1

t

g(t0, xt0 , rt0 ; s,X(s), r(s);u(s))ds

+1{t1<t0+T0}

[
[V 1](t0, xt0 , rt0 ; t1, X(t1), r(t1))

]
+1{t1=t0+T0}

[
h(t0, xt0 , rt0 ;X(t0 + T0), r(t0 + T0))

]}
.

(3.38)

Let

t∗1 = inf
{
t1 ∈ (t0, t0 + T0) | N [V 1](t0, xt0 , rt0 ; t1, xt1 , rt1) = V 1(t0, xt0 , rt0 ; t1, xt1 , rt1)

}
. (3.39)

Under proper conditions, the value function(3.36) should satisfy the following quasi-variational
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inequality:



min
{
V 1
t (t0, xt0 , rt0 ; t, x, r) + inf

u∈U

{1

2
V 1
xx(t0, xt0 , rt0 ; t, x, r)σ1(t, x, u)

2

+
1

2
V 1
rr(t0, xt0 , rt0 ; t, x, r)σ2(t, r)

2 + V 1
x (t0, xt0 , rt0 ; t, x, r)b1(t, x, u)

+V 1
r (t0, xt0 , rt0 ; t, x, r)b2(t, r) + g(t0, xt0 , rt0 ; t, x, r, u)

}
,

N [V 1](t0, xt0 , rt0 ; t, x, r)− V 1(t0, xt0 , rt0 ; t, x, r)
}
= 0,

(t, x, r) ∈ [t0, t0 + T0]× R× R,

V 1(t0, xt0 , rt0 ; t0 + T0, x, r) = h(t0, xt0 , rt0 ;x, r), (x, r) ∈ R× R

(3.40)

then an optimal refinance time t∗1 ∈ [t, t0 + T0] could be found and (ū × ξ̄) ∈ U [t, T ] × K1[t, T ]

can be constructed by the value function (3.34).

Suppose there exists a t∗1 ∈ (t, t0 + T0) where the first refinance applied we find by the process

above, the cost functional with V 1(t1, xt1 , rt1 ; t1, xt1 , rt1) of (3.38) with this t∗1 now becomes as

follows:

J1(t0, xt0 , rt0 ; t, x, r;u(·), ξ(·)) = E
{∫ t1

t

g(t0, xt0 , rt0 ; s,X(s), r(s);u(s))ds

+[V 1](t0, xt0 , rt0 ; t
∗
1, X(t∗1), r(t

∗
1))

}
.

(3.41)

Next we will find the time where the second refinance applied with the same argument above. For

any (t, x, r) ∈ [t∗1, t
∗
1+T1]×Rn×Rn, and t2 ∈ [t∗1, t

∗
1+T1], consider the following cost functional:
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J1(t∗1, xt∗1 , rt∗1 ; t, x, r;u(·), ξ(·))

= E
{∫ t2

t

g(t∗1, xt∗1 , rt∗1 ; s,X(s), r(s);u(s))ds

+1{t2<t∗1+T1}

[ ∫ t2+T2

t2

g(t2, X(t2 + 0), r(t2); s,X(s), r(s);u(s))ds

+ℓ(t2, X(t2 − 0), ξ1) + h(t2, X(t2 + 0), r(t2);X(t2 + T0), r(t2 + T0))
]

+1{t2=t∗1+T1}

[
h(t∗1, xt∗1 , rt∗1 ;X(t∗1 + T1), r(t

∗
1 + T1))

]}
,

(3.42)

and find (ū(·), ξ̄(·)) ∈ U [t, T ]× K1[t, T ] such that:

J1(t∗1, xt∗1 , rt∗1 ; t, x, r; ū(·), ξ̄(·))

= inf
(u,ξ)∈U [t,T ]×K1[t,T ]

J1(t∗1, xt∗1 , rt∗1 ; t, x, r;u(·), ξ(·)) = V 1(t∗1, xt∗1 , rt∗1 ; t, x, r).
(3.43)

As the same process for finding t∗1 ∈ [t0, t0 + T0], above, we may find t∗2 ∈ [t∗1, t
∗
1 + T1], where

t∗2 = inf
{
t2 ∈ (t∗1, t

∗
1+T1) |N [V 1](t∗1, xt∗1 , rt∗1 ; t2, xt2 , rt2) = V 1(t∗1, xt∗1 , rt∗1 ; t2, xt2 , rt2)

}
. (3.44)

Again, under proper conditions, the value function (3.43) satisfies the following variational in-

equality:



min
{
V 1
t (t

∗
1, xt∗1 , rt∗1 ; t, x, r) + inf

u∈U

{1

2
V 1
xx(t

∗
1, xt∗1 , rt∗1 ; t, x, r)σ1(t, x, u)

2

+
1

2
V 1
rr(t

∗
1, xt∗1 , rt∗1 ; t, x, r)σ2(t, r)

2 + V 1
x (t

∗
1, xt∗1 , rt∗1 ; t, x, r)b1(t, x, u)

+V 1
r (t

∗
1, xt∗1 , rt∗1 ; t, x, r)b2(t, r) + g(t∗1, xt∗1 , rt∗1 ; t, x, r, u)

}
,

N [V 1](t∗1, xt∗1 , rt∗1 ; t, x, r)− V 1(t∗1, xt∗1 , rt∗1 ; t, x, r)
}
= 0,

(t, x, r) ∈ [t∗1, t
∗
1 + T1]× R× R,

V 1(t∗1, xt∗1 , rt∗1 ; t
∗
1 + T1, x, r) = h(t∗1, xt∗1 , rt∗1 ;x, r), (x, r) ∈ R× R.

(3.45)
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Then we can update V 1
t (t

∗
1, xt∗1 , rt∗1 ; t

∗
1, xt∗1 , rt∗1) in (3.42) and find (3.34) by (3.37). Above all, for

any (t, x, r) ∈ [t0, t0 + T0]× R× R, we find the value function in this case.

3.2.2 Case 2: Two Refinance will be Applied

Unlike the refinancing method we did above, in this case, we fix the refinance times first, that is

we are given t0 ⩽ t1 ⩽ t0 + T0, and t1 ⩽ t2 ⩽ t1 + T1. For any (t, x, r) ∈ [t0, t0 + T0] × R × R,

the cost functional (3.29) now should be:

J2(t0, xt0 , rt0 ; t, x, r;u(·), ξ(·))

= E
{∫ t1

t

g(t0, xt0 , rt0 ; s,X(s), r(s);u(s))ds

+1{t1<t0+T0}

[ ∫ t2

t1

g(t1, X(t1 + 0), r(t1); s,X(s), r(s);u(s))ds

+ℓ(t1, X(t1 − 0), ξ1)

+1{t2<t1+T1}

[ ∫ t2+T2

t2

g(t2, X(t2 + 0), r(t2); s,X(s), r(s);u(s))ds

+ℓ(t2, X(t2 − 0), ξ2) + h(t2, X(t2 + 0), r(t2);X(t2 + T2), r(t2 + T2))
]

+1{t2=t1+T1}

[
h(t1, X(t1 + 0), r(t1);X(t1 + T1), r(t1 + T1))

]]
+1{t1=t0+T0}

[
h(t0, xt0 , rt0 ;X(t0 + T0), r(t0 + T0))

]}
,

(3.46)

and now we need to find (ū(·), ξ̄(·)) ∈ U [t, T ]× K2[t, T ] such that:

J2(t0, xt0 , rt0 ; t, x, r; ū(·), ξ̄(·))

= inf
(u(·),ξ(·))∈U [t,T ]×K2[t,T ]

J2(t0, xt0 , rt0 ; t, x, r;u(·), ξ(·)) = V 2(t0, xt0 , rt0 ; t, x, r).
(3.47)

Similarly, any ū(·) ∈ U [t, T ] satisfying (3.47) is called an optimal control, ξ̄(·) ∈ K2[t, T ] sat-

isfying (3.47) is called an optimal impulse control and X̄(·) ≡ (·; t, x, r; ū(·), ξ̄(·)) is called the
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corresponding optimal state process. We call V 2(t0, xt0 , rt0 ; ·, ·, ·) the Problem value function of

(3.47).

First we fix a t1 ∈ (t0, t0 + T0), for any t2 ∈ (t1, t1 + T1) define the cost functional for any

(t, x, r) ∈ [t2, t2 + T2]× Rn × Rn as following:

J2(t2, xt2 , rt2 ; t, x, r;u(·)) = E
[ ∫ t2+T2

t

g(t2, xt2 , rt2 ; s,X(s), r(s);u(s))ds

+h(t2, xt2 , rt2 ;X(t2 + T2), r(t2 + T2))
]
,

(3.48)

and let

J2(t2, xt2 , rt2 ; t, x, r; ū(·))

= inf
u(·)∈U [t,T ]

J2(t2, xt2 , rt2 ; t, x, r;u(·)) = V 2(t2, xt2 , rt2 ; t, x, r),
(3.49)

which should satisfy the following HJB equation under proper conditions:



V 2
t (t2, xt2 , rt2 ; t, x, r) + inf

u∈U

{1

2
V 1
xx(t2, xt2 , rt2 ; t, x, r)σ1(t, x, u)

2

+
1

2
V 1
rr(t2, xt2 , rt2 ; t, x, r)σ2(t, r)

2 + V 2
x (t2, xt2 , rt2 ; t, x, r)b1(t, x, u)

+V 2
r (t2, xt2 , rt2 ; t, x, r)b2(t, r) + g(t2, xt2 , rt2 ; t, x, r, u)

}
= 0,

(t, x, r) ∈ [t2, t2 + T2]× R× R,

V 2(t2, xt2 , rt2 ; t2 + T2, x, r) = h(t2, xt2 , rt2 ;x, r), (x, r) ∈ R× R.

(3.50)

Note that the t2 we choose above is depending on t1.
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Then consider the cost functional for any (t, x, r) ∈ [t1, t1 + T1]× R× R as following:

J2(t1, xt1 , rt1 ; t, x, r;u(·), ξ(·))

= E
{∫ t2

t1

g(t1, xt1 , rt1 ; s,X(s), r(s);u(s))ds

+1{t2<t1+T1}

[
[V 2]((t1, xt1 , rt1 ; t2, X(t2), r(t2)

]
+1{t2=t1+T1}

[
h(t1, xt1 , rt1 ;X(t1 + T1), r(t1 + T1))

]}
,

(3.51)

Let

J2(t1, xt1 , rt1 ; t, x, r; ū(·), ξ̄(·))

= inf
(u(·),ξ(·))∈U [t,T ]×K1[t,T ]

J2(t1, xt1 , rt1 ; t, x, r;u(·), ξ(·)) = V 2(t1, xt1 , rt1 ; t, x, r).
(3.52)

which should satisfies the following quasi-variational inequality under proper conditions:



min
{
V 2
t (t1, xt1 , rt1 ; t, x, r) + inf

u∈U

{1

2
V 2
xx(t1, xt1 , rt1 ; t, x, r)σ1(t, x, u)

2

+
1

2
V 2
rr(t1, xt1 , rt1 ; t, x, r)σ2(t, r)

2 + V 2
x (t1, xt1 , rt1 ; t, x, r)b1(t, x, u)

+V 2
r (t1, xt1 , rt1 ; t, x, r)b2(t, r) + g(t1, xt1 , rt1 ; t, x, r, u)

}
,

N [V 2](t1, xt1 , rt1 ; t, x, r)− V 2(t1, xt1 , rt1 ; t, x, r)
}
= 0,

(t, x, r) ∈ [t1, t1 + T1]× R× R,

V 2(t1, xt1 , rt1 ; t1 + T1, x, r) = h(t1, xt1 , rt1 ;x, r), (x, r) ∈ R× R.

(3.53)

and we can find t∗2 ∈ [t1, t1 + T1], where

t∗2 = inf
{
t2 ∈ (t1, t1 + T1) | N [V 2](t1, xt1 , rt1 ; t2, xt2 , rt2) = V 2(t1, xt1 , rt1 ; t2, xt2 , rt2)

}
. (3.54)

Again, this t∗2 depends on t1.
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Therefore, for any (t, x, r) ∈ [t0, t0 + T0]× R× R, we can re-write (3.46) as following:

J2(t0, xt0 , rt0 ; t, x, r;u(·), ξ(·))

= E
{∫ t1

t

g(t0, xt0 , rt0 ; s,X(s), r(s);u(s))ds

+1{t1<t0+T0}

[
[V 2](t0, xt0 , rt0 ; t1, X(t1), r(t1))

]
+1{t1=t0+T0}

[
h(t0, xt0 , rt0 ;X(t0 + T0), r(t0 + T0))

]}
.

(3.55)

Then the value function defined in (3.47) satisfies the following quasi-variational inequality under

proper conditions:



min
{
V 2
t (t0, xt0 , rt0 ; t, x, r) + inf

u∈U

{1

2
V 2
xx(t0, xt0 , rt0 ; t, x, r)σ1(t, x, u)

2

+
1

2
V 2
rr(t0, xt0 , rt0 ; t, x, r)σ2(t, r)

2 + V 2
x (t0, xt0rt0 ; t, x, r)b1(t, x, u)

+V 2
r (t0, xt0 , rt0 ; t, x, r)b2(t, r) + g(t0, xt0 , rt0 ; t, x, r, u)

}
,

N [V 2](t0, xt0 , rt0 ; t, x, r)− V 2(t0, xt0 , rt0 ; t, x, r)
}
= 0,

(t, x, r) ∈ [t0, t0 + T0]× R× R,

V 2(t0, xt0 , rt0 ; t0 + T0, x, r) = h(t0, xt0 , rt0 ;x, r), R× R.

(3.56)

and t∗1 ∈ [t0, t0 + T0] may be found where

t∗1 = inf
{
t1 ∈ (t0, t0 + T0) | N [V 2](t0, xt0 , rt0 ; t1, xt1 , rt1) = V 2(t0, xt0 , rt0 ; t1, xt1 , rt1)

}
. (3.57)

Above all, we find the value function (3.47) and the optimal controls could be constructed.
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3.2.3 Comparison

Now we compare two value functions obtained in above two cases, for any (t, x, r) ∈ [t0, t0 +

T0]× R× R we have

V 2(t0, xt0 , rt0 ; t, x, r) ⩽ V 1(t0, xt0 , rt0 ; t, x, r), (3.58)

since we optimize t1 after we find t∗2 for each t1 in V 2(t0, xt0 , rt0 ; t, x, r) while t∗1 is fixed for

V 1(t0, xt0 , rt0 ; t, x, r).

Now we suppose two refinances are applied in both two cases. For any (t, x, r) ∈ [t0, t0 + T0] ×

Rn × Rn, consider the second case with the t∗1 we found for V 1(t0, xt0 , rt0 ; t, x, r), we have as

following:

inf
(u(·),ξ(·))∈U [t,T ]×K2[t,T ]

J2(t0, xt0 , rt0 ; t, x, r;u(·), ξ(·))

= inf
(u(·),ξ(·))∈U [t,T ]×K2[t,T ]

E
{∫ t∗1

t0

g(t0, xt0 , rt0 ; s,X(s), r(s);u(s))ds

+[V 2](t0, xt0 , rt0 ; t
∗
1, X(t∗1), r(t

∗
1))

}
.

(3.59)

If

inf
(u(·),ξ(·))∈U [t,T ]×K2[t,T ]

J2(t0, xt0 , rt0 ; t, x, r;u(·), ξ(·)) = [V 2](t0, xt0 , rt0 ; t, x, r), (3.60)
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the refinance should be applied at t∗1 and we have

inf
(u(·),ξ(·))∈U [t,T ]×K2[t,T ]

J2(t0, xt0 , rt0 ; t
∗
1, X(t∗1), r(t

∗
1);u(·), ξ(·))

= N [V 1](t0, xt0 , rt0 ; t
∗
1, X(t∗1), r(t

∗
1))

= N [V 2](t0, xt0 , rt0 ; t
∗
1, X(t∗1), r(t

∗
1))

= V 2(t0, xt0 , rt0 ; t
∗
1, X(t∗1), r(t

∗
1)).

(3.61)

Moreover, if this t∗1 is as same as we find in V 2(t0, xt0 , rt0 ; t, x, r), it should satisfies (3.57). If these

two conditions above are satisfied, we can conclude that now

V 1(t0, xt0 , rt0 ; t, x, r) = V 2(t0, xt0 , rt0 ; t, x, r), (3.62)

and the refinancing time t∗1 we find in Case 1 is also the refinancing time we find in Case 2. To

conclude the result of this section, we introduce the following proposition.

Proposition 3.2.1. For any (t, x, r) ∈ [t0, t0 + T0]× R× R and (u(·), ξ(·)) ∈ U [t, T ]× K2[t, T ],

the refinancing strategy we obtained backwardly is optimal.

Proof. Consider m times refinance applied, and for each (t, x, r) ∈ [t0, t0 + T0] × R × R, on the

last time period (tm, tm + Tm) the cost functional defined as

J(tm, xtm , rtm ; t, x, r;u
m(·)) = E

[ ∫ tm+Tm

t

g(tm, xtm , rtm ; s,X(s), r(s);um(s))ds

+h(tm, xtm , rtm ;X(tm + Tm), r(tm + Tm))
]
,

and the corresponding value function

V (tm, xtm , rtm ; t, x, r) = inf
um(·)∈U [t,T ]

J(tm, xtm , rtm ; t, x, r;u
m(·)).
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Notice that no more refinance will be applied when

V (tm, xtm , rtm ; t, x, r) < ℓ(t, x, ξm+1) (3.63)

For any (t, x, r) ∈ [t0, t0 + T0] × R × R and (u(·), ξ(·)) ∈ U [t, T ] × K2[t, T ], let l < ∞ times

refinancing applied, then we have

J(t0, xt0 , rt0 ; t, x, r;u(·), ξ(·))

⩾ E
{∫ t1

t

g(t0, xt0 , rt0 ; s,X(s), r(s);u(s))ds

+
l∑

i⩾1

(∫ ti+1

ti

g(ti, X(ti + 0), r(ti); s,X(s), r(s);u(s))ds+ ℓ(ti, X(ti + 0), ξi)
)

+h(tl, X(tl), r(tl);X(tl+1), r(tl+1))
}

⩾ E
{∫ t1

t

g(t0, xt0 , rt0 ; s,X(s), r(s);u(s))ds

+
l−1∑
i⩾1

(∫ ti+1

ti

g(ti, X(ti + 0), r(ti); s,X(s), r(s);u(s))ds+ ℓ(ti, X(ti + 0), ξi)
)

+N [V ](tl−1, X(tl−1), r(tl−1); tl, X(tl), r(tl))
}

⩾ E
[ ∫ t1

t

g(t0, xt0 , rt0 ; s,X(s), r(s);u(s))ds

+
l−2∑
i⩾1

(∫ ti+1

ti

g(ti, X(ti + 0), r(ti); s,X(s), r(s);u(s))ds+ ℓ(ti, X(ti + 0), ξi)
)

+N [V ](tl−2, X(tl−2), r(tl−2); tl−1, X(tl−1), r(tl−1))
]

⩾ · · ·

⩾ E
[ ∫ t1

t

g(t0, xt0 , rt0 ; s,X(s), r(s);u(s))ds+N [V ](t1, X(t1), r(t1); t1, X(t1), r(t1))
]

⩾ V (t0, xt0 , rt0 ; t, x, r),

which implies the value function V (t0, xt0 , rt0 ; t, x, r) we found by above method is optimal.
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CHAPTER 4: OPTIMAL IMPULSE CONTROL WITH INITIAL PAIR

DEPENDENT RUNNING COST

In Chapter 3, we notice that the mortgage size, mortgage interest rate and mortgage terminal time

will be changed once the refinance applied. Also, a closing cost will be added to the payoff

function. Inspired by this, we now study an impulse control problem with the running cost rate

depending on the initial pair.

4.1 Problem Formulation

Consider the following stochastic differential equations:

X(s) = x+

∫ s

t

b1(τ,X(τ), u(τ))dτ +

∫ s

t

σ1(τ,X(τ), u(τ))dW (τ) + ξ(s), s ∈ [t, T ], (4.1)

and

r(s) = r +

∫ s

t

b2(τ, r(τ))dτ +

∫ s

t

σ2(τ, r(τ))dW (τ), s ∈ [t, T ], (4.2)

where b1 : [0, T ] × Rn × U → Rn, b2 : [0, T ] × Rn → Rn, σ1, σ2 : [0, T ] × Rn → Rn×d are

some suitable deterministic maps and U is a metric space. X(·) and r(·) are the state processes

with t ∈ [0, T ] being the initial time and x ∈ Rn and r ∈ Rn being the initial states respectively,

u(·) is called a control process as we defined in Chapter 2. ξ(·) is called an impulse control of the

following term:

ξ(s) =
∑
i⩾1

ξiχ[ti,T ](s), s ⩾ t, (4.3)

where {τi}i⩾1 is an increasing sequence of F-stopping times valued in [t, T ], and each ξi is an Fτi-

measurable square integrable random variable taking values in K, with K ⊂ Rn being a closed
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convex cone. Let K [t, T ] be the set of all impulse controls of the form (4.3). Under proper

conditions, for any (t, x, r) ∈ [t, T ] × Rn × Rn, and ξ(·) ∈ K [0, T ], state equations (4.1) and

(4.2) admit unique solutions X(·) ≡ X(·; t, x, ξ(·)) and r(·) ≡ r(·; t, r) respectively (see Theorem

2.0.2).

Under proper conditions, for any (t, x, r) ∈ [t0, t0 + T0] × Rn × Rn and (u(·), ξ(·)) ∈ U [t, T ] ×

K [t, T ], we have the cost functional as follows,

J(t0, xt0 , rt0 ; t, x, r;u(·), ξ(·))

= E
[ ∫ t1

t

g(t0, X(t0), r(t0); s,X(s), r(s);u(s))ds

+
∑
i⩾1

(
1{ti<ti−1+Ti−1}

(∫ ti+1

ti

g(ti, X(ti + 0), r(ti); s,X(s), r(s);u(s))ds

+ℓ(ti, X(ti − 0), ξi)
)
+ 1{ti=ti−1+Ti−1}(h(ti−1, X(ti−1), r(ti−1);X(ti), r(ti)))

)]
,

(4.4)

where g(ti, xti , rti ; ·, ·, ·), and h(ti, xti , rti ; ·, ·, ·) for i ⩾ 0 are some suitable deterministic maps,

which depends on the initial triples (t0, xt0 , rt0) ∈ [0, T ] × Rn × Rn, and ℓ(·, ·, ·) is a positive

suitable deterministic map. Then the optimal impulse control with initial triple dependent running

cost can be stated as follows.

Problem (OC). For any (t, x, r) ∈ [t0, t0 + T0] × Rn × Rn, find (ū(·), ξ̄(·)) ∈ U [t, T ] × K [t, T ]

such that

J(t0, xt0 , rt0 ; t, x, r; ū(·), ξ̄(·)) = inf
(u(·),ξ(·))∈U [t,T ]×K [t,T ]

J(t0, xt0 , rt0 ; t, x, r;u(·), ξ(·))

≡ V (t0, xt0 , rt0 ; t, x, r).

(4.5)

It should be pointed out that, unlike the classical optimal control problems, we have paid a special

attention on the initial triple since the running cost is changed with the given different initial pairs.

Because of that, our value function is of form V (t0, xt0 , rt0 ; t, x, r), depends on the initial triple,
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which make our HJB equation significantly different from the classical case. Moreover, the termi-

nal time of (4.4) depends on the initial triple at the last impulse. Due to this, the impulse ξi = 0 is

also can make the value function changed.

We now will show that the number of impulses is finite and the optimal impulse control exists.

Proposition 4.1.1. For each (t, x, r) ∈ [t0, t0 + T0] × Rn × Rn, there exists a optimal impulse

control ξ̄(·) ∈ K [t, T ] such that

inf
u(·)∈U [t,T ]

J(t0, xt0 , rt0 ; t, x, r; ;u(·), ξ̄(·)) = inf
u(·)∈U [t,T ],ξ(·)∈K [t,T ]

J(t0, xt0 , rt0 ; t, x, r; ;u(·), ξ(·)),

which implies the optimal number ℓ of impulse exist and finite.

Proof. First we will show that there exists a maximum times of impulse, m < ∞, for (4.4).

Suppose m times impulses applied and the last impulse applied at tm with xtm , rtm ∈ Rn × Rn.

For any (t, x, r) ∈ [tm, tm + Tm]×Rn ×Rn, no more impulses will be applied after time m when

V (tm, xtm , rtm ; t, x, r) < ℓ(t, x, ξm+1). (4.6)

For any ξ(·) ∈ K [t, T ], there exist k <∞ such that for any (t, x, r) ∈ [t0, t0 + T0]× Rn × Rn,

0 ⩽ inf
u(·)∈U [t,T ]

J(t0, xt0 , rt0 ; t, x, r;u(·), ξ(·)) ⩽ J(t0, xt0 , rt0 ; t, x, r;u(·), ξ(·))

= E
[ ∫ t1

t

g(t0, xt0 , rt0 ; s,X(s), r(s);u(s))ds

+
k∑

i⩾1

(∫ ti+1

ti

g(ti, X(ti + 0), r(ti); s,X(s), r(s);u(s))ds+ ℓ(ti, X(ti + 0), ti)
)

+h(tk, xtk , rtk ;X(tk + Tk), r(tk + Tk))
]
,
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Hence, there exist a sequence uk(·) ∈ U [t, T ], such that

lim
k→∞

J(t0, xt0 , rt0 ; t, x, r;uk(·), ξ(·)) = inf
u(·)∈U [t,T ]

J(t0, xt0 , rt0 ; t, x, r;u(·), ξ(·)).

Next suppose there exists a subsequence {ξi(·)} ∈ K [t, T ] with infinite time impulse, since the

ℓ(·, ·, ·) is bounded below by a strictly positive constant,

lim
i→∞

J(t0, xt0 , rt0 ; t, x, r;u(·), ξi(·)) = ∞.

Therefore, only finite time impulses will be applied and the optimal number ℓ of impulse exist.

4.2 Solution Formulation

Now we will introduce the process to solve the Problem (OC), that is for each (t, x, r) ∈ [t0, t0 +

T0]×Rn ×Rn and (u(·), ξ(·)) ∈ U [t, T ]×K [t, T ], find (4.21) for (4.4). We will carry out this by

several steps.

Step 1. For each (t, x, r) ∈ [t0, t0+T0]×Rn×Rn, fix k ∈ {1, · · · ,m} wherem is the upper bound

of number of impulses which a candidate of optimal impulse could have. Then for a minimizing

sequence (uk(·), ξk(·)) ∈ U [t, T ] × Kk[t, T ], we pick {ti+1}0⩽i⩽k−1 to be an increasing sequence
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of F-stopping times valued in [ti, ti + Ti] and the cost functional (4.4) becomes:

Jk(t0, xt0 , rt0 ; t, x, r;u
k(·), ξk(·))

= E
{∫ t1

t

g(t0, X(t0), r(t0); s,X(s), r(s);uk(s))ds

+
k∑

i⩾1

(
1{ti<ti−1+Ti−1}

(∫ ti+1

ti

g(ti, X(ti + 0), r(ti); s,X(s), r(s);u(s))ds

+ℓ(ti, X(ti − 0), ξi)
)
+ 1{ti=ti−1+Ti−1}(h(ti−1, X(ti−1), r(ti−1);X(ti), r(ti)))

)
+h(tk, X(tk), r(tk);X(tk + Tk), r(tk + Tk))

}
,

(4.7)

and the corresponding value function

V k(t0, xt0 , rt0 ; t, x, r) = inf
(uk(·),ξk(·))∈U [t,T ]×Kk[t,T ]

J(t0, xt0 , rt0 ; t, x, r;u
k(·), ξk(·)). (4.8)

Here we use upper index k to indicate k times impulse supposed to be applied. Similar as before,

we try to find the value function (4.8) backwardly.

Step 2. We start from the last time period. On the last time period [tk, tk + Tk], for each (t, x, r) ∈

[tk, tk + Tk]× Rn × Rn and uk(·) ∈ U , the cost functional is given as follows:

Jk(tk, xtk , rtk ; t, x, r;u
k(·)) = E

[ ∫ tk+Tk

t

g(tk, xtk , rtk ; s,X(s), r(s);uk(s))ds

+h(tk, xtk , rtk ;X(tk + Tk), r(tk + Tk))
]
,

(4.9)

and the corresponding value function is

V k(tk, xtk , rtk ; t, x, r) = inf
uk(·)∈U [t,tk+Tk]

Jk(tk, xtk , rtk ; t, x, r;u
k(·)) (4.10)

62



should satisfies the following HJB equation under proper conditions:



V k
t (tk, xtk , rtk ; t, x, r)

+ inf
uk∈U

{1

2
tr
[
V k
xx(tk, xtk , rtk ; t, x, r)σ1(t, x, u

k)σ1(t, x, u
k)⊤

]
+
1

2
tr
[
V k
rr(τk, xtk , rtk ; t, x, r)σ2(t, r)σ2(t, r)

⊤
]

+⟨V k
x (tk, xtk , rtk ; t, x, r), b1(t, x, u

k)⟩

+⟨V k
r (tk, xtk , rtk ; t, x, r), b2(t, r)⟩

+g(tk, xtk , rtk ; t, x, r, u
k)
}
= 0, (t, x, r) ∈ [tk, tk + Tk]× Rn × Rn,

V k(tk, xtk , rtk ; tk + Tk, x, r) = h(tk, xtk , rtk ;x, r), (x, r) ∈ Rn × Rn.

(4.11)

Then the optimal strategy ū ∈ U [t, tk + Tk] could be constructed.

Step 3. Next consider [tk−1, tk]. The cost functional for each (t, x, r) ∈ [tk−1, tk + Tk]× Rn × Rn

and (uk(·), ξk(·)) ∈ U [t, T ]× K1[t, T ], on the last second time period [tk−1, tk] as following:

Jk(tk−1, xtk−1
, rtk−1

; t, x, r;uk(·), ξk(·))

= E
[ ∫ tk

tk−1

g(tk−1, tk−1, tk−1; s,X(s), r(s);uk(s))ds

+1{tk<tk−1+Tk−1}

(
N [V k](tk−1, X(tk−1), r(tk−1); tk, X(tk), r(tk))

)
+1{tk=tk−1+Tk−1}(h(tk−1, X(tk−1), r(tk−1);X(tk), r(tk))

]
,

(4.12)

and the value function

V k(tk−1, xtk−1
, rtk−1

; t, x, r) = inf
(uk(·),ξk(·))∈U [t,T ]×K1[t,T ]

Jk(tk−1, xtk−1
, rtk−1

; t, x, r;uk(·), ξk(·))

(4.13)
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should satisfy the following variational inequality under proper conditions:



min
{
V k
t (tk−1, xtk−1

, rtk−1
; t, x, r)

+ inf
uk∈U

{1

2
tr
[
V k
xx(tk−1, xtk−1

, rtk−1
; t, x, r)σ1(t, x, u

k)σ1(t, x, u
k)⊤

]
+
1

2
tr
[
V k
rr(tk−1, xtk−1

, rtk−1
; t, x, r)σ2(t, r)σ2(t, r)

⊤
]

+⟨V k
x (tk−1, xtk−1

, rtk−1
; t, x, r), b1(t, x, u

k)⟩

+⟨V k
r (tk−1, xtk−1

, rtk−1
; t, x, r), b2(t, r)⟩

+g(tk−1, xtk−1
, rtk−1

; t, x, r, uk)
}
,

N [V k](tk−1, xtk−1
, rtk−1

; t, x, r)− V k(tk−1, xtk−1
, rtk−1

; t, x, r)
}
= 0,

(t, x, r) ∈ [tk−1, tk−1 + Tk−1]× Rn × Rn,

V k(tk−1, xtk−1
, rtk−1

; tk−1 + T0, x, r) = h(tk−1, xtk−1
, rtk−1

;x, r), (x, r)Rn × Rn.

(4.14)

Step 4. Continuously, consider sub-periods [ti, ti+1] for 0 ⩽ i ⩽ k−2. The cost functional for each

(t, x, r) ∈ [ti, ti + Ti] × Rn × Rn and (uk(·), ξk(·)) ∈ U [t, T ] × Kk−1[t, T ], on each sub-periods

[ti, ti + 1] as following:

Jk(ti, xti , rti ; t, x, r;u
k(·), ξk(·))

= E
[ ∫ ti+1

ti

g(ti, xti , rti ; s,X(s), r(s);uk(s))ds

+1{ti+1<ti+Ti}

(
N [V k](ti, xti , rti ; ti+1, X(ti+1), r(ti+1))

)
+1{ti+1=ti+Ti}(h(ti, xti , rti ;X(ti+1), r(ti+1))

]
,

(4.15)

and the value function

V k(ti, xti , rti ; t, x, r) = inf
(uk(·),ξk(·))∈U [t,T ]×Kk−1[t,T ]

Jk(ti, xti , rti ; t, x, r;u
k(·), ξk(·)) (4.16)
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should satisfy the following quasi-variational inequality under proper conditions:



min
{
V k
t (ti, xti , rti ; t, x, r)

+ inf
uk∈U

{1

2
tr
[
V k
xx(ti, xti , rti ; t, x, r)σ1(t, x, u

k)σ1(t, x, u
k)⊤

]
+
1

2
tr
[
V k
rr(ti, xti , rti ; t, x, r)σ2(t, r)σ2(t, r)

⊤
]

+⟨V k
x (ti, xti , rti ; t, x, r), b1(t, x, u

k)⟩

+⟨V k
r (ti, xti , rti ; t, x, r), b2(t, r)⟩

+g(ti, xti , rti ; t, x, r, u
k)
}
,

N [V k](ti, xti , rti ; t, x, r)− V k(ti, xti , rti ; t, x, r)
}
= 0,

(t, x, r) ∈ [ti, ti + Ti]× Rn × Rn,

V k(ti, xti , rti ; ti + Ti, x, r) = h(ti, xti , rti ;x, r), (x, r)Rn × Rn.

(4.17)

Step 5. Since we have shown that the optimal ξ̄(·) ∈ K [t, T ] exists and there exists an opti-

mal times of impulse l < ∞, by the continuous and bounded of V (t0, xt0 , rt0 ; t, x, r) , for each

(t, x, r) ∈ [ti, ti + Ti]× Rn × Rn we obtain

min
k∈{0,··· ,m}

V k(t0, xt0 , rt0 ; t, x, r) = V (t0, xt0 , rt0 ; t, x, r) = V l(t0, xt0 , rt0 ; t, x, r). (4.18)

Remark 4.2.1. We should notice here for 0 ⩽ i ⩽ m − 1, each ti+1 which we choose above

depends on ti.

Combining (4.10), (4.16) and (4.18), we can get the optimal times l of impulse and for i ∈
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{1, · · · , l} we have

t∗i = inf
{
ti ∈ (ti−1, ti−1 + Ti−1) | N [V ](ti−1, xti−1

, rti−1
; ti, xti , rti)

= V (ti−1, xti−1
, rti−1

; ti, xti , rti)
}
.

(4.19)

where the impulse controls applied. Then we can re-write (4.4) as following: for each (t, x, r) ∈

[t0, t0 + T0]× Rn × Rn and (u(·), ξ(·)) ∈ U [t, T ]× K [t, T ],

J(t0, xt0 , rt0 ; t, x, r;u(·), ξ(·))

= E
[ ∫ t1

t

g(t0, xt0 , rt0 ; s,X(s), r(s);u(s))ds

+
l∑

i⩾1

(N [V ]
(
t∗i , X(t∗i ), r(t

∗
i ); t

∗
i+1, X(t∗i+1), r(t

∗
i+1))

+h(t∗l , X(t∗l ), r(t
∗
l );X(t∗l + Tl), r(t

∗
l + Tl))

]
,

(4.20)

where l is we find by (4.18) andN [V ](t∗i , X(t∗i ), r(t
∗
i ); t

∗
i+1, X(t∗i+1)) and h(t∗l , X(t∗l ), r(t

∗
l );X(t∗l+

Tl), r(t
∗
l + Tl)) are we found by (4.10) and (4.16) corresponding to l. The Problem (OC) is equiv-

alently finding the value function for (4.20)

J(t0, xt0 , rt0 ; t, x, r; ū(·), ξ̄(·))

= inf
(u(·),ξ(·))∈U [t,T ]×K [t,T ]

J(t0, xt0 , rt0 ; t, x, r;u(·), ξ(·)) ≡ V (t0, xt0 , rt0 ; t, x, r),
(4.21)

which satisfies the following HJB equations in a recursive form backwardly: for any (t, x, r) ∈

[t∗i , t
∗
i + Ti] × Rn × Rn, the value function V (t∗i , xt∗i , rt∗i ; t, x, r) on each time sub-periods should
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satisfies the following HJB equations under proper conditions:



Vt(t
∗
l , xt∗l , rt∗l ; t, x, r) + inf

u∈U

{
H(t∗l , xt∗l , rt∗l ; t, x, r, u, Vx(t

∗
l , xt∗l , rt∗l ; t, x, r),

Vxx(t
∗
l , xt∗l , rt∗l ; t, x, r), Vr(t

∗
l , xt∗l , rt∗l ; t, x, r),

Vrr(t
∗
l , xt∗l , rt∗l ; t, x, r))

}
= 0,

(t, x, r) ∈ [t∗l , t
∗
l + Tl]× Rn × Rn,

V (t∗l , xt∗l , rt∗l ; t
∗
l + Tl, x, r) = h(t∗l , xt∗l , rt∗l ;x, r), (x, r) ∈ Rn × Rn.

(4.22)



Vt(t
∗
i , xt∗i , rt∗i ; t, x, r) + inf

u∈U

{
H(t∗i , xt∗i , rt∗i ; t, x, r, u, Vx(t

∗
l , xt∗l , rt∗l ; t, x, r),

Vxx(tt
∗
i , xt∗i , rt∗i ; t, x, r), Vr(t

∗
i , xt∗i , rt∗i ; t, x, r),

Vrr(t
∗
i , xt∗i , rt∗i ; t, x, r))

}
= 0,

(t, x, r) ∈ [t∗i , t
∗
i+1]× Rn × Rn,

V (t∗i , xt∗i , rt∗i ; t
∗
i+1, x, r) = N [V ](t∗i , xt∗i , rt∗i ; t

∗
i+1, x, r), (x, r) ∈ Rn × Rn.

(4.23)

Remark 4.2.2. We should notice that the impulse will only be applied at the specific times t∗i . Thus

there is no impulse between two time sub-periods.

4.3 The Value Function and Its Properties

In this section, we discuss the properties of the value function. We keep the above setting.

For the coefficients of the state equations (4.1) and (4.2), let b1, b2 and σ1, σ2 satisfies (S2) and we

introduce the following assumption:

(H1). For any (t̂, x̂, r̂) ∈ [0, T ] × Rn × Rn and u ∈ U, maps g and h are continuous and any
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x1, x2 ∈ Rn, r1, r2 ∈ Rn, there exists a constant L > 0,


|g(t̂, x̂, r̂; t, x1, r1;u)− g(t̂, x̂, r̂; t, x2, r2;u)|

+|h(t̂, x̂, r̂;x1, r1)− h(t̂, x̂, r̂;x2, r2)| ⩽ L(|x1 − x2|+ |r1 − r2|),

|g(t̂, x̂, r̂; t, 0, 0;u)|+ |h(t̂, x̂, r̂; 0, 0)| ⩽ L.

(4.24)

(H2). For any 0 ⩽ t̂ ⩽ t ⩽ T, x, x̂ ∈ Rn, and ξ, ξ̂ ∈ K, there exist constants l0, α, L > 0,

l0 ⩽ ℓ(t̂, x, ξ) ⩽ ℓ(t, x, ξ), ℓ(t, x, ξ) > α|ξ|,

ℓ(t, x, ξ + ξ̂) ⩽ ℓ(t, x, ξ) + ℓ(t, x, ξ̂), ℓ(t, x, ξ)− ℓ(t, x̂, ξ)| ⩽ L|x− x̂|.
(4.25)

Next, we introduce the following notion of control processes.

Definition 4.3.1. (1). An F− adapted process u(·) is called an admissible(continuous) control

process on [t, T ] if it takes values in U almost surely. (2). An admissible impulse control process

on [t, T ] is defined to be

ξ(s) =
∑
i⩾1

ξiχ[ti,T ](s), t ⩽ s ⩽ T, (4.26)

where each ti is an F−stopping time with

t ⩽ t1 ⩽ t2 ⩽ · · · ⩽ T, a.s. (4.27)

each ξi is Fti−measurable with values in K, and

E
(∑

i⩾1

ℓ(ti, xi, ξi)
)
<∞. (4.28)

68



Again, we let U [t, T ] and K [t, T ] be the set of all admissible continuous control processes and

impulse control processes on [t, T ], respectively.

Remark 4.3.2. We should note that an impulse control with no impulse and with zero impulses are

different due to the condition (4.25) for the impulse cost. In the classical impulse control problem,

it is clear that any impulse control with some zero impulses are not optimal. However, in our

problem, the zero impulses may be optimal due to the change of the running cost of the following

time period.

For notation convenience, we let t∗l+1 = t∗l + Tl for the last time period and t∗0 = t0 for the first

time period. Due to no impulse made between two time sub-periods, therefore, on each [t∗i , t
∗
i+1]

we can re-write (4.1) equivalently as following:

X(s) = x+ξt∗i +

∫ s

t∗i

b1(τ,X(τ), u(τ))dτ+

∫ s

t∗i

σ1(τ,X(τ), u(τ))dW (τ), s ∈ [t∗i , t
∗
i+1], (4.29)

Theorem 4.3.3. Let (H1)-(H2) and (S2) hold. Then there exists a constant K > 0 such that the

value function on each sub-periods V (t∗i , xt∗i , rt∗i ; , t, x, r) for satisfies the following:

|V (t∗i , xt∗i , rt∗i ; t, x, r)| ⩽ K(1 + |x|+ |r|),

∀(t, x, r) ∈ (t, x, r) ∈ [t∗i , t
∗
i+1]× Rn × Rn,

(4.30)

|V (t∗i , xt∗i , rt∗i ; t, x, r)− V (t∗i , xt∗i , rt∗i ; t̂, x̂, r̂)|

⩽ K{|x− x̂|+ |r − r̂|+ (1 + |x| ∨ |x̂|+ |r| ∨ |r̂|)|t− t̂|
1
2},

∀(t, x, r), (t̂, x̂, r̂) ∈ [t∗i , t
∗
i+1]× Rn × Rn.

(4.31)

We first introduce following useful lemma.

Lemma 4.3.4. Let (S2) hold. For any initial triple (t, x, r) ∈ [t∗i , t
∗
i+1] × Rn × Rn and u(·) ∈
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U [t∗i , t∗i+1], state functions (4.29) and (4.2) admit a unique strong solution X(·) ≡ X(·; t, x, ξ(·))

and r(·; t, r), respectively. Moreover, for any u(·) ∈ U [t∗i , t∗i+1] let t∗i ⩽ t ⩽ t̂ ⩽ t∗i+1 andX(·; t, x),

X(·; t̂, x̂), r(·; t, r), and r(·; t̂, r̂) be the states corresponding to (t, x, u(·)), (t̂, x̂, u(·)), (t, r), and

(t̂, r̂), respectively. There exists a constant K > 0 such that

E
{

sup
s∈[t,t∗i+1]

|X(s; t, x)|+ sup
s′∈[t,t∗i+1]

|r(s′; t, r)|
}
⩽ KE

{
1 + |x|+ |r|

}
,

and

E
{

sup
s∈[t̂,t∗i+1]

|X(s; t, x)−X(s; t̂, x̂)|+ sup
s′∈[t̂,t∗i+1]

|r(s′; t, r)− r(s′; t, r̂)|
}

⩽ KE
{
K{|x− x̂|+ |r − r̂|+ (1 + |x| ∨ |x̂|+ |r| ∨ |r̂|)|t− t̂|

1
2}
}
.

The proof is standard, see Yong–Zhou [39].

Now we prove Theorem 4.3.3.

Proof. Let (t, x, r) ∈ [t∗i , t
∗
i+1]× Rn × Rn be fixed. By Lemma 4.3.4 and (H2), we have

|V (t∗i , xt∗i , rt∗i ; t, x, r)| ⩽ |J(t∗i , xt∗i , rt∗i ; t, x, r;u(·))| ⩽ K(1 + |x|+ |r|), ∀u(·) ∈ U [t∗i , t∗i+1].

Similarly, let t∗i ⩽ t ⩽ t̂ ⩽ t∗i+1 and X(·; t, x), X(·; t̂, x̂), r(·; t, r), and r(·; t̂, r̂) be the states

corresponding to (t, x, u(·)), (t̂, x̂, u(·)), (t, r), and (t̂, r̂), respectively. Again by Lemma 4.3.4 and

(H2), we have

|J(t∗i , xt∗i , rt∗i ; t, x, r;u(·))− J(t∗i , xt∗i , rt∗i ; t, x̂, r̂;u(·))|

⩽ KE
{
K{|x− x̂|+ |r − r̂|+ (1 + |x| ∨ |x̂|+ |r| ∨ |r̂|)|t− t̂|

1
2}
}
.

Taking the infimum in u(·) ∈ U [t∗i , t∗i+1], we get our result.

70



Note that the impulse will applied on the terminal time t∗i+1 for 0 ⩽ i ⩽ l − 1.

Next we show the continuous in the state variable (4.1).

Lemma 4.3.5. Let (S2) hold. For any initial triple (t, x, r) ∈ [0, T ]×Rn×Rn and u(·) ∈ U [0, T ],

state functions (4.1) admits a unique strong solution X(·) ≡ X(·; t, x, ξ(·)). Moreover, there exists

a constant K > 0, such that for any t ∈ [0, T ), x, x̂ ∈ Rn,

E|X(s; t, x)−X(s; t, x̂)| ⩽ KE|x− x̂|, ∀s ∈ [t, T ].

Proof. First of all, for any (t, x, r) ∈ [0, T ] × Rn × Rn and (u(·), ξ(·)) ∈ U [0, T ] × K [[0, T ],

by a standard argument making use of the contraction mapping theorem, we know that the state

equations (4.1) admits a unique strong solution X(·) ≡ X(·; t, x, ξ(·)). Then for any ε > 0, let

⟨x⟩ε =
√
ε2 + |x|2. Then by Itô’s formula, we have

E⟨X(s; t, x)−X(s; t, x̂)⟩ε ⩽ E⟨x− x̂⟩ε + (L+ L2)

∫ s

t

E⟨X(r; t, x)−X(r; t, x̂)⟩εdr

Applying Gronwall’s inequality, we get

E⟨X(s; t, x)−X(s; t, x̂)⟩ε ⩽ CE⟨x− x̂⟩ε.

Letting ε→ 0 to obtain

E|X(s; t, x)−X(s; t, x̂)| ⩽ C|x− x̂|.

Next theorem will give us the Lipschitz continuous ofN [V ](t∗i , xt∗i , rt∗i ; t
∗
i+1, x, r) in state variables.
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Theorem 4.3.6. Let (H1)-(H2) and (S2) hold. Then there exists a constant K > 0 such that the

terminal function on each sub-periods N [V ](t∗i , xt∗i , rt∗i ; t
∗
i+1, x, r) satisfies the following:

|N [V ](t∗i , xt∗i , rt∗i ; t
∗
i+1, x, r)−N [V ](t∗i , xt∗i , rt∗i ; t

∗
i+1, x̂, r̂)|

⩽ K{|x− x̂|+ |r − r̂|}, ∀(x, r), (x̂, r̂) ∈ ×Rn × Rn.

(4.32)

Proof. Let (x, r), (x̂, r̂) ∈ Rn × Rn. Let

N [V ](t∗i , xt∗i , rt∗i ; t
∗
i+1, x, r) = inf

ξ∈K
{V (t∗i , xt∗i , rt∗i ; t

∗
i+1, x+ ξ, r) + ℓ(t∗i+1, x, ξ)}

= V (t∗i , xt∗i , rt∗i ; t
∗
i+1, x+ ξ1, r) + ℓ(t∗i+1, x, ξ1),

and

N [V ](t∗i , xt∗i , rt∗i ; t
∗
i+1, x̂, r̂) = inf

ξ∈K
{V (t∗i , xt∗i , rt∗i ; t

∗
i+1, x̂+ ξ, r̂) + ℓ(t∗i+1, x̂, ξ)}

= V (t∗i , xt∗i , rt∗i ; t
∗
i+1, x̂+ ξ2, r̂) + ℓ(t∗i+1, x̂, ξ2).

Then by Theorem 4.3.3, (S2) and (H1)-(H2), we have

|N [V ](t∗i , xt∗i , rt∗i ; t
∗
i+1, x, r)−N [V ](t∗i , xt∗i , rt∗i ; t

∗
i+1, x̂, r̂)|

= |V (t∗i , xt∗i , rt∗i ; t
∗
i+1, x+ ξ1, r) + ℓ(t∗i+1, x, ξ1)

−V (t∗i , xt∗i , rt∗i ; t
∗
i+1, x̂+ ξ2, r̂) + ℓ(t∗i+1, x̂, ξ2)|

⩽ |V (t∗i , xt∗i , rt∗i ; t
∗
i+1, x+ ξ2, r) + ℓ(t∗i+1, x, ξ2)

−V (t∗i , xt∗i , rt∗i ; t
∗
i+1, x̂+ ξ2, r̂) + ℓ(t∗i+1, x̂, ξ2)|

⩽ K{|x− x̂|+ |r − r̂|}.
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4.4 Dynamic Programming and HJB Equation

In this section, we first establish a Bellman dynamic programming principle. Then we derive the

corresponding HJB equation for the value function. As we show above, although the form of the

terminal function on the last time period is different with others, however, since we have shown

the Lipschitz continuous of N [V ](t∗i , xt∗i , rt∗i ; t
∗
i+1, x, r) for any t∗i where 0 ⩽ i ⩽ l − 1, we start

from the last time period, and then each sub-periods will be established in the same idea.

Theorem 4.4.1. Let (H1)-(H2) and (S2) hold. Then

(1). for any (t, x, r) ∈ [t∗l , t
∗
l + Tl]× Rn × Rn,

V (t∗l , xt∗l , rt∗l ; t, x, r)

= inf
u(·)∈U

E
[ ∫ t̂

t

g(t∗l , xt∗l , rt∗l ; s,X(s; t∗l , xt∗l , u(·)), r(s; t
∗
l , rt∗l );u(s))ds

+V (t∗l , xt∗l , rt∗l ; t̂, x(t̂; t
∗
l , xt∗l , u(·)), r(t̂; t

∗
l , rt∗l ))

]
, ∀t∗l ⩽ t ⩽ t̂ ⩽ t∗l + Tl.

(4.33)

(2). for any (t, x, r) ∈ [t∗i , t
∗
i+1]× Rn × Rn,

V (t∗i , xt∗i , rt∗i ; t, x, r)

= inf
(u(·),ξ(·))∈U×K

E
[ ∫ t̂

t

g(t∗i , xt∗i , rt∗i ; s,X(s; t∗i , xt∗i , u(·)), r(s; t
∗
i , rt∗i );u(s))ds

+V (t∗i , xt∗i , rt∗i ; t̂, x(t̂; t
∗
i , xt∗i , u(·)), r(t̂; t

∗
i , rt∗i ))

]
, ∀t∗i ⩽ t ⩽ t̂ ⩽ t∗i+1.

(4.34)
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Proof. (1). Denote the right-hand side of (4.33) by V̄ (t∗l , xt∗l , rt∗l ; t, x, r). For any ε > 0,

V (t∗l , xt∗l , rt∗l ; t, x, r) + ε > J(t∗l , xt∗l , rt∗l ; t, x, r;u(·))

= E
[ ∫ t∗l +Tl

t

g(t∗l , xt∗l , rt∗l ; s,X(s; t∗l , xt∗l , u(·)), r(s; t
∗
l , rt∗l );u(s)ds

+h(t∗l , xt∗l , rt∗l ;X(t∗l + T0; t
∗
l , xt∗l , u(·)), r(t

∗
l + T0; t

∗
l , rt∗l ))

]
= E

[ ∫ t̂

t

g(t∗l , xt∗l , rt∗l ; s,X(s; t∗l , xt∗l , u(·)), r(s; t
∗
l , rt∗l );u(s)ds

+E
[ ∫ t∗l +Tl

t̂

g(t∗l , xt∗l , rt∗l ; t,X(s; t∗l , xt∗l , u(·)), r(s; t
∗
l , rt∗l );u(s)ds

+h(t∗l , xt∗l , rt∗l ;X(t∗l + T0; t
∗
l , xt∗l , u(·)), r(t

∗
l + T0; t

∗
l , rt∗l ))|Ft̂

]]
⩾ E

[ ∫ t̂

t

g(t∗l , xt∗l , rt∗l ; s,X(s; t∗l , xt∗l , u(·)), r(s; t
∗
l , rt∗l );u(s))ds

+V (t∗l , xt∗l , rt∗l ; t̂, x(t̂; t
∗
l , xt∗l , u(·)), r(t̂; t

∗
l , rt∗l ))

]
Sending ε→ 0, we obtain

V (t∗l , xt∗l , rt∗l ; t, x, r) ⩾ E
[ ∫ t̂

t

g(t∗l , xt∗l , rt∗l ; s,X(s; t∗l , xt∗l , u(·)), r(s; t
∗
l , rt∗l );u(s))ds

+V (t∗l , xt∗l , rt∗l ; t̂, x(t̂; t
∗
l , xt∗l , u(·)), r(t̂; t

∗
l , rt∗l ))

]
.

On the other hand,

V (t∗l , xt∗l , rt∗l ; t, x, r) ⩽ J(t∗l , xt∗l , rt∗l ; t, x, r;u(·))

= E
[ ∫ t∗l +Tl

t

g(t∗l , xt∗l , rt∗l ; s,X(s; t∗l , xt∗l , u(·)), r(s; t
∗
l , rt∗l );u(s)ds

+h(t∗l , xt∗l , rt∗l ;X(t∗l + T0; t
∗
l , xt∗l , u(·)), r(t

∗
l + T0; t

∗
l , rt∗l ))

]
= E

[ ∫ t̂

t

g(t∗l , xt∗l , rt∗l ; s,X(s; t∗l , xt∗l , u(·)), r(s; t
∗
l , rt∗l );u(s)ds

+J(t∗l , xt∗l , rt∗l ; t̂, X(t̂; t∗l , xt∗l , u(·)), r(t̂; t
∗
l , rt∗l ), r;u(·))]

]
.
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Thus, we have

V (t∗l , xt∗l , rt∗l ; t, x, r) ⩽ E
[ ∫ t̂

t

g(t∗l , xt∗l , rt∗l ; s,X(s; t∗l , xt∗l , u(·)), r(s; t
∗
l , rt∗l );u(s))ds

+V (t∗l , xt∗l , rt∗l ; t̂, x(t̂; t
∗
l , xt∗l , u(·)), r(t̂; t

∗
l , rt∗l ))

]
.

This completes the proof of (4.33).

(2). First of all, for any (t, x, r) ∈ [t∗i , t
∗
i + Ti]×Rn ×Rn, take any ξ(·) ∈ K [t̂, t0 + T0], one have

V (t∗i , xt∗i , rt∗i ; t, x, r) ⩽ E
[ ∫ t̂

t

g(t∗i , xt∗i , rt∗i ; s,X(s; t∗i , xt∗i , u(·)), r(s; t
∗
i , rt∗i );u(s)ds

+J(t∗i , xt∗i , rt∗i ; t̂, X(t̂; t∗i , xt∗i , u(·)), r(t̂; t
∗
i , rt∗i ), r;u(·))]

]
.

Hence, by taking infimum over (u(·), ξ(·)) ∈ U [t̂, t0 + T0]× K [t̂, t0 + T0], we obtain

V (t∗i , xt∗i , rt∗i ; t, x, r) ⩽ E
[ ∫ t̂

t

g(t∗i , xt∗i , rt∗i ; s,X(s; t∗i , xt∗i , u(·)), r(s; t
∗
i , rt∗i );u(s))ds

+V (t∗i , xt∗i , rt∗i ; t̂, x(t̂; t
∗
i , xt∗i , u(·)), r(t̂; t

∗
i , rt∗i ))

]
.

Moreover, one have

V (t∗i , xt∗i , rt∗i ; t, x, r) ⩽ V (t∗i , xt∗i , rt∗i ; t, x+ ξ, r) + ℓ(l, x, ξ), ∀ξ ∈ K.

Suppose above strictly inequality holds for at some points (t, x, r) ∈ [t∗i , t
∗
i + Ti] × Rn × Rn.

We claim that (4.34) holds for some t0 ∈ (t, t∗i + Ti], that is, there exists a minimizing sequence

ξε(·) ∈ K [t, t∗i + Ti] such that the first impulse time tεi+1 ⩾ t0. Suppose (4.34) fails, which means

that for any minimizing sequence ξε(·) ∈ K [t, t∗i + Ti], the first impulse time tεi+1 satisfies

lim
ε→0

tεi+1 = t,
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and

lim
ε→0

min
u(·)∈U

J(t∗i , xt∗i , rt∗i ; t, x, r;u(·), ξ
ε(·)) = V (t∗i , xt∗i , rt∗i ; t, x, r),

Consequently, we may assume that

V (t∗i , xt∗i , rt∗i ; t, x, r) + ε ⩾ J(t∗i , xt∗i , rt∗i ; t, x, r;u(·), ξ
ε(·))

= E
[ ∫ tεi+1

t

g(t∗l , xt∗l , rt∗l ; s,X(s; t, x, u(·)), r(s; t, x;u(s))ds

+

∫ tεi+1+Ti+1g(t
ε
i+1,X(tεi+1;t,x),r(t

ε
i+1;t,r);s,X(s;t,x),u(·)),r(s;t,x);u(s))ds

tεi+1

+h(tεi+1, X(tεi+1; t, x), r(t
ε
i+1; t, r);X(tεi+1 + T0; t, x), r(t

ε
i+1 + T0; t, r))

+ℓ(tεi+1, X(tεi+1 − 0), ξεi+1)
]

⩾ E
[ ∫ tεi+1

t

g(t∗l , xt∗l , rt∗l ; s,X(s; t∗l , xt∗l , u(·)), r(s; t
∗
l , rt∗l );u(s))ds

+N [V ](tεi , X(tεi ; t, x), r(t
ε
i ; t, r); t

ε
i+1, X(tεi+1; t, x), r(t

ε
i+1; t, r))

]
.

Sending ε→ 0 and by the continuity of (t, x, r) 7→ N [V ](t∗i , xt∗i , rt∗i ; t, x, r), we obtain

V (t∗i , xt∗i , rt∗i ; t, x, r) ⩾ N [V ](t∗i , xt∗i , rt∗i ; t, x, r),

which is a contradiction, proving (4.34).

Now let us introduce the following two Hamiltonian, respectively:

H(t∗l , xt∗l , rt∗l ; t, x, r, u, p, P, q,Q)

≜
1

2
tr
[
Pσ1(t, x, u)σ1(t, x, u)

⊤ +Qσ2(t, r)σ2(t, r)
⊤
]
+ ⟨p, b1(t, x, u)⟩

+⟨q, b2(t, r)⟩+ g(t∗l , xt∗l , rt∗l ; t, x, r, u),

∀(t, x, r, u, p, P, q,Q) ∈ [t∗l , t
∗
l + Tl]× Rn × Rn × U × Rn × Sn × Rn × Sn.

(4.35)
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and

H(t∗i , xt∗i , rt∗i ; t, x, r, u, p, P, q,Q)

≜
1

2
tr
[
Pσ1(t, x, u)σ1(t, x, u)

⊤ +Qσ2(t, r)σ2(t, r)
⊤
]
+ ⟨p, b1(t, x, u)⟩

+⟨q, b2(t, r)⟩+ g(t∗i , xt∗i , rt∗i ; t, x, r, u),

∀(t, x, r, u, p, P, q,Q) ∈ [t∗i , t
∗
i+1]× Rn × Rn × U × Rn × Sn × Rn × Sn.

(4.36)

Then we obtain the Hamilton-Jacobi-Bellman equations for our value function:

Theorem 4.4.2. Suppose the value function V (t∗i , xt∗i , rt∗i ; ·, ·, ·) is smooth on each sub-period for

any given (t∗i , xt∗i , rt∗i ). Then the following system is satisfied:



Vt(t
∗
l , xt∗l , rt∗l ; t, x, r) + inf

u∈U

{
H(t∗l , xt∗l , rt∗l ; t, x, r, u, Vx(t

∗
l , xt∗l , rt∗l ; t, x, r),

Vxx(t
∗
l , xt∗l , rt∗l ; t, x, r), Vr(t

∗
l , xt∗l , rt∗l ; t, x, r),

Vrr(t
∗
l , xt∗l , rt∗l ; t, x, r))

}
= 0,

(t, x, r) ∈ [t∗l , t
∗
l + Tl]× Rn × Rn,

V (t∗l , xt∗l , rt∗l ; t
∗
l + Tl, x, r) = h(t∗l , xt∗l , rt∗l ;x, r), (x, r) ∈ Rn × Rn.

(4.37)



Vt(t
∗
i , xt∗i , rt∗i ; t, x, r) + inf

u∈U

{
H(t∗i , xt∗i , rt∗i ; t, x, r, u, Vx(t

∗
l , xt∗l , rt∗l ; t, x, r),

Vxx(tt
∗
i , xt∗i , rt∗i ; t, x, r), Vr(t

∗
i , xt∗i , rt∗i ; t, x, r),

Vrr(t
∗
i , xt∗i , rt∗i ; t, x, r))

}
= 0,

(t, x, r) ∈ [t∗i , t
∗
i+1]× Rn × Rn,

V (t∗i , xt∗i , rt∗i ; t
∗
i+1, x, r) = N [V ](t∗i , xt∗i , rt∗i ; t

∗
i+1, x, r), (x, r) ∈ Rn × Rn.

(4.38)

Proof. Let us first prove that V (t∗l , xt∗l , rt∗l ; ·, ·, ·) satisfies (4.37), then for V (t∗i , xt∗i , rt∗i ; ·, ·, ·) sat-

isfies (4.38) can be proved in the similar way. Fix (t, x, r) ∈ [t∗l , t
∗
l + Tl] × Rn × Rn and u ∈ U.
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Let x(·) be the state trajectory corresponding to the control u(·) ∈ U [t, t∗l + Tl] with u(t) ≡ u. By

(4.33) with t̂ ↓ t and Itô’s formula, we obtain

0 ⩽
E{V (t∗l , xt∗l , rt∗l ; t̂, X(t̂; t, x), r(t̂; t, r))− V (t∗l , xt∗l , rt∗l ; t, x, r)}

t̂− t

+
1

t̂− t

∫ t̂

t

g(t∗l , xt∗l , rt∗l ; s,X(s; t, x), r(s; t, r);u(s; t, u))ds

=
1

t̂− t

∫ t̂

t

Vt(t
∗
l , xt∗l , rt∗l ; s,X(s; t, x), r(s, t, r)) +H(t∗l , xt∗l , rt∗l ; s,X(s; t, x), r(s; t, r), u(s),

Vx(t
∗
l , xt∗l , rt∗l ; s,X(s; t, x), r(s, t, r)), Vxx(t

∗
l , xt∗l , rt∗l ; s,X(s; t, x), r(s; t, r)),

Vr(t
∗
l , xt∗l , rt∗l ; s,X(s; t, x), r(s; t, r)), Vrr(t

∗
l , xt∗l , rt∗l ; s,X(s; t, x), r(s; t, r)))ds

→ Vt(t
∗
l , xt∗l , rt∗l ; t, x, r) +H(t∗l , xt∗l , rt∗l ; t, x, r, u, Vx(t

∗
l , xt∗l , rt∗l ; t, x, r), Vxx(t

∗
l , xt∗l , rt∗l ; t, x, r),

Vr(t
∗
l , xt∗l , rt∗l ; t, x, r), Vrr(t

∗
l , xt∗l , rt∗l ; t, x, r)), ∀u ∈ U.

This results in

0 ⩽ Vt(t
∗
l , xt∗l , rt∗l ; t, x, r) + inf

u∈U

{
H(t∗l , xt∗l , rt∗l ; t, x, r, u, Vx(t

∗
l , xt∗l , rt∗l ; t, x, r),

Vxx(t
∗
l , xt∗l , rt∗l ; t, x, r), Vr(t

∗
l , xt∗l , rt∗l ; t, x, r), Vrr(t

∗
l , xt∗l , rt∗l ; t, x, r))

}
.

On the other hand, for any ε > 0, t∗l ⩽ t ⩽ t̂ ⩽ t∗l + Tl with t̂− t > 0 small enough, there exists a

u(·) ≡ uε,t̂(·) ∈ U [t, t∗l + Tl] such that

Vt(t
∗
l , xt∗l , rt∗l ; t, x, r) + ε(t̂− t)

⩾ E
{∫ t̂

t

g(t∗l , xt∗l , rt∗l ; s,X(s; t, x), r(s; t, r);u(s))ds+ V (t∗l , xt∗l , rt∗l ; t̂, X(t̂; t, x), r(t̂; t, r))
}
.
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Thus, it follows from Itô’s formula that as t̂ ↓ t,

ε ⩾
E{V (t∗l , xt∗l , rt∗l ; t̂, X(t̂; t, x), r(t̂; t, r))− V (t∗l , xt∗l , rt∗l ; t, x, r)}

t̂− t

+
1

t̂− t

∫ t̂

t

g(t∗l , xt∗l , rt∗l ; s,X(s; t, x), r(s; t, r);u(s; t, u))ds

=
1

t̂− t

∫ t̂

t

Vt(t
∗
l , xt∗l , rt∗l ; s,X(s; t, x), r(s, t, r)) +H(t∗l , xt∗l , rt∗l ; s,X(s; t, x), r(s; t, r), u(s),

Vx(t
∗
l , xt∗l , rt∗l ; s,X(s; t, x), r(s, t, r)), Vxx(t

∗
l , xt∗l , rt∗l ; s,X(s; t, x), r(s; t, r)),

Vr(t
∗
l , xt∗l , rt∗l ; s,X(s; t, x), r(s; t, r)), Vrr(t

∗
l , xt∗l , rt∗l ; s,X(s; t, x), r(s; t, r)))ds

⩾
1

t̂− t

∫ t̂

t

Vt(t
∗
l , xt∗l , rt∗l ; s,X(s; t, x), r(s, t, r)) + inf

u∈U
H(t∗l , xt∗l , rt∗l ; s,X(s; t, x), r(s; t, r), u(s),

Vx(t
∗
l , xt∗l , rt∗l ; s,X(s; t, x), r(s, t, r)), Vxx(t

∗
l , xt∗l , rt∗l ; s,X(s; t, x), r(s; t, r)),

Vr(t
∗
l , xt∗l , rt∗l ; s,X(s; t, x), r(s; t, r)), Vrr(t

∗
l , xt∗l , rt∗l ; s,X(s; t, x), r(s; t, r)))ds

→ Vt(t
∗
l , xt∗l , rt∗l ; t, x, r) + inf

u∈U

{
H(t∗l , xt∗l , rt∗l ; t, x, r, u, Vx(t

∗
l , xt∗l , rt∗l ; t, x, r),

Vxx(t
∗
l , xt∗l , rt∗l ; t, x, r), Vr(t

∗
l , xt∗l , rt∗l ; t, x, r), Vrr(t

∗
l , xt∗l , rt∗l ; t, x, r))

}
.

Thus we obtain our conclusion. With same idea, we obtain the same conclusion on each sub-

periods.

4.5 Viscosity Solution

Since the value function V (t∗i , xt∗i , rt∗i ; ·, ·, ·) is not necessarily smooth on [t∗i , t
∗
i+1] × Rn × Rn,

the notion of viscosity solution (see Crandall-Lions [8, 9, 6]) is introduced as an important tool to

costrtuct the solution. First we recall the definition of viscosity solution on each sub-periods.

Definition 4.5.1. A function V ∈ C([t∗l , t
∗
l +Tl]×Rn×Rn) is called a viscosity subsolution (resp.
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viscosity supersolution) of (4.37) if

V (t∗l , xt∗l , rt∗l ; t
∗
l + Tl, x, r) ⩽ (resp. ⩾)h(t∗l , xt∗l , rt∗l ;x, r),

∀(t, x, r) ∈ [t∗l , t
∗
l + Tl]× Rn × Rn,

(4.39)

and for any φ ∈ C1,2,2([t∗l , t
∗
l + Tl]× Rn × Rn), whenever V − φ attains a local maximum (resp.

minimum) at (t0, x0, r0) ∈ [t∗l , t
∗
l + Tl]× Rn × Rn, we have

φt(t
∗
l , xt∗l , rt∗l ; t0, x0, r0) + inf

u∈U

{
H(t∗l , xt∗l , rt∗l ; t, x, r, u, φx(t

∗
l , xt∗l , rt∗l ; t, x, r),

φxx(t
∗
l , xt∗l , rt∗l ; t, x, r), φr(t

∗
l , xt∗l , rt∗l ; t, x, r), φrr(t

∗
l , xt∗l , rt∗l ; t, x, r))

}
⩾ 0 (resp. ⩽ 0).

(4.40)

A function V ∈ C([t∗l , t
∗
l + Tl] × Rn × Rn) s called a viscosity solution of (4.37) if it is both a

viscosity sub- and super-solution of (4.37).

Similarly, a function V ∈ C([t∗i , t
∗
i+1]×Rn ×Rn) is called a viscosity subsolution (resp. viscosity

supersolution) of (4.38) if

V (t∗i , xt∗i , rt∗i ; t
∗
i + Ti, x, r) ⩽ (resp. ⩾)N [V ](t∗i , xt∗i , rt∗i ; t

∗
i+1, x, r),

∀(t, x, r) ∈ [t∗i , t
∗
i+1]× Rn × Rn.

(4.41)

and for any φ ∈ C1,2,2([t∗i , t
∗
i+1] × Rn × Rn), whenever V − φ attains a local maximum (resp.

minimum) at (t0, x0, r0) ∈ [t∗i , t
∗
i+1]× Rn × Rn, we have

φt(t
∗
i , xt∗i , rt∗i ; t0, x0, r0) + inf

u∈U

{
H(t∗i , xt∗i , rt∗i ; t, x, r, u, φx(t

∗
i , xt∗i , rt∗i ; t, x, r),

φxx(t
∗
i , xt∗i , rt∗i ; t, x, r), φr(t

∗
i , xt∗i , rt∗i ; t, x, r), φrr(t

∗
i , xt∗i , rt∗i ; t, x, r))

}
⩾ 0 (resp. ⩽ 0).

(4.42)

A function V ∈ C([t∗i , t
∗
i+1]×Rn×Rn) s called a viscosity solution of (4.38) if it is both a viscosity

sub- and super-solution of (4.38).
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The main results of this section is the following.

Theorem 4.5.2. Let (H1)-(H2) hold. Then the value function V is the unique viscosity solution of

(4.37) and (4.38) on [t∗i , t
∗
i+1]× Rn × Rn, repectively.

The proof of this theorem is standard, see Yong-Zhou [39].
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CHAPTER 5: CONCLUSION AND FUTURE RESEARCH

In this dissertation, we discussed a new type optimal impulse control problem, in which running

cost is dependent on the initial pairs, motivated the refinance of mortgage. Starting from the

one-time refinance model, essential features of refinancing are found, and following this model

we set up a general model to describe multiple times refinancing. Unlike with classical optimal

impulse control problems, a backward method to construct the solution is established piecewisely.

Thanks to the classical stochastic optimal control theory, the value function is determined by a

set of recursive HJB equations in the sense of viscosity solution. Also, the optimal controls are

determined from this solution.

A list of topics can be discussed following our results in the future. First, we expect that the optimal

number of impulses and the optimal times to apply each impulses can be characterized in terms of

the given coefficients of the state equation and the weighting functions in the cost functional.

Second, our study is from the borrower’s point of view. It is equally interesting that how one can

study it from the lender side. There is a list of literature discussing the optimal mortgage design, see

Piskorski–Tchistyi [32], Piskorski–Tchistyi [33], Piskorski–Tchistyi [34], Guren–Krishnamurthy-

Mcquade [16]. Note that mortgage contract is designed by the lender, and the refinance, default,

prepayment, etc. strategies are decided by the borrower. Therefore, it will lead to a very challeng-

ing differential game problem.

Finally, from practical viewpoint, how one can use nowadays’s popular deep learning tools to

solve mortgage refinance problems numerically. We have notices that deep learning in stochastic

optimal control theory attracted lots of attentions from Han–Jentzen–E [17], which introduced deep

learning in solving high dimensional PDEs. Thus, we expect that by adopting newly developed

tools, one will be able to solve mortgage refinance type problems more practically.
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