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ABSTRACT

Intrinsic susceptibility of deep learning to adversarial examples has led to a plethora of attack

techniques with a common broad objective of fooling deep models. However, we find slight com-

positional differences between the algorithms achieving this objective. These differences leave

traces that provide important clues for attacker profiling in real-life scenarios. Inspired by this,

we introduce a novel problem of ‘Reverse Engineering of aDversarial attacks’ (RED). Given an

adversarial example, the objective of RED is to identify the attack used to generate it. Under this

perspective, we can systematically group existing attacks into different families, leading to the

sub-problem of attack family identification. To enable RED analysis, we introduce a large ‘Ad-

versarial Identification Dataset’ (AID), comprising over 180k adversarial samples generated with

13 popular attacks for image specific/agnostic white/black box setups. We use AID to devise a

novel framework for the RED objective. The proposed framework is designed using a novel Trans-

former based Global-LOcal Feature(GLoF) module which helps in approximating the adversarial

perturbation and identification of the attack. Using AID and our framework, we provide multiple

interesting benchmark results for the RED problem.
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CHAPTER 1: INTRODUCTION

Deep learning is currently at the center of many emerging technologies, from autonomous vehicles

to smart surveillance and numerous security applications. However, it is now also well-established

that deep neural networks are susceptible to adversarial attacks [1, 9]. This intriguing weakness of

deep learning, which is otherwise known to supersede human intelligence in complex tasks [50],

has attracted an ever-increasing interest of the research community in the last few years [10, 2].

This has led to a wide range of adversarial attacks that can effectively fool deep learning mod-

els. Although adversarial attacks have also led to research in defenses, there is a consensus that

defenses currently lack efficacy [2]. Many of them are easily broken, or become ineffective by

changing the attack strategy [2].

Incidental, deep learning in practice is still widely open to malicious manipulation through adver-

sarial attacks [1, 9]. It is yet to be seen if this technology can retain its impressive performance

while also demonstrating robustness to adversarial attacks. Until an intrinsically (adversarially)

robust high-performing deep learning framework is developed, practitioners must account for the

adversarial susceptibility of deep learning in all applications. These conditions give rise to an im-

portant practical problem of ‘attacker profiling’. In real-life, understanding the attacker’s abilities

can allow counter-measures even outside the realm of deep learning. However, the current liter-

ature on adversarial attacks on deep learning is almost completely void of any exploration along

this line [2]. From the pragmatic viewpoint, the primal question of this potential research direction

is, “given an adversarial example, which attack algorithm was used to generate it?”.

In this work, we take the first systematic step towards answering this question with Reverse En-

gineering of aDversaial attacks (RED). Focusing on the additive adversarial perturbations, our

aim is to explore the extent to which a victim is able to identify its attacker by analysing only the
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Figure 1.1: Despite their imperceptibility, adversarial perturbations contain peculiar patterns.

adversarial input. To explore this new direction, it is imperative to curate a large database of adver-

sarial samples. To that end, we introduce Adversarial Identification Dataset (AID) which consists

of over 180k adversarial samples, generated with 13 popular attacks in the literature. The dataset

covers input-specific and input-agnostic attacks, and considers white- and black-box setups. We

select these attacks considering the objective of our reverse engineering problem.

We use AID to explore RED with a proposed framework that is built on the intuition that attack

algorithms leave their peculiar signatures in the adversarial examples. As seen in Fig. 1.1, these

traces can reveal interesting information that can help in profiling the attacker. Our technique

works on the principle of extracting those signatures. At the center of our framework is a signature

extractor which is trained to extract input-specific signatures. Unlike random noise, these traces

contain global as well as local structure. Motivated, we design the signature extractor consisting

GLoF modules that combine CNN’s ability to learn local structure [31] and transformer’s capability

to capture global information [55, 56, 18]. These signatures contain information relating to the

attack algorithm. We classify the extracted signature to identify the attack leveraged to generate

the adversarial example. We benchmark the effectiveness of the proposed framework on AID.

Our contributions are summarized as follow.

• We put forth a new problem of Reverse Engineering of aDversarial attacks (RED), which

2



is aimed at profiling the attacker generating the adversarial input. We formalize RED to

provide a systematic guideline for research in this direction.

• We propose an effective framework to provide the first-of-its-kind study for the RED prob-

lem.

• We introduce a large Adversarial Identification Dataset (AID), comprising 180k+ adversar-

ial samples generated with 13 attacks. AID is used to extensively study RED, leading to

promising results.
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CHAPTER 2: RELATED WORK

Adversarial attacks and defenses is currently a highly active research direction. For a comprehen-

sive review of the recent literature in this direction, we refer to [2]. Our discussion here focuses on

the relevant aspects of this direction with representative existing techniques.

The discovery of adversarial susceptibility of deep learning was made in the context of visual

classifiers [52]. Szegedy et al. [52] demonstrated that deep models can be fooled into incorrect

prediction by adding imperceptible adversarial perturbations to the input. They also showed that by

adding such adversarial samples in the training data, models can achieve robustness to adversarial

manipulation. Hence, to efficiently compute adversarial samples (for adversarial training), [20]

proposed the Fast Gradient Sign Method (FGSM). Conceptually, the FGSM takes a single gradient

ascend step over the loss surface of the model w.r.t. input to compute the adversarial perturbation.

This notion of gradient ascend is one of the most popular strategy to compute adversarial examples

in the relevant literature.

Kurakin et al. [30] enhanced FGSM to iteratively take multiple small steps for gradient ascend,

thereby calling their strategy Basic Iterative Method (BIM). A similar underlying scheme is adopted

by the Projected Gradient Descent (PGD) attack [37], with an additional step of projecting the gra-

dient signals on a pre-fixed ℓp-ball to constrain the norm of the resulting perturbation signal. All

the above attacks must compute model gradient to compute the perturbations. Hence, we can

categorise them as gradient-based attacks. Moreover, the gradient computation normally requires

complete knowledge of the model itself. In the parlance of adversarial machine learning, the broad

category of these attacks is known as white-box attacks [1]. Other popular attacks that can be

categorised as white-box attacks include Carlini & Wagner attack [7], DeepFool [41] and Jaco-

bian Saliency Map Attack (JSMA) [43]. The counterpart of the white-box attack category is the
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black-box category. Black-box attacks do not assume any knowledge of the target model, except

its predictions. The most popular stream of black-box attacks are query-based attacks, which allow

the attacker to iteratively refine an adversarial example by sending the current version to the re-

mote model as a query. The model’s prediction is used as a feedback for improving the adversarial

nature of the input. If the attacker only receives the model decision (not its confidence score), then

such a query-based attack is called a decision-based attack. Currently, the decision based attacks

are more popular in black-box setups due to their pragmetic nature. A few recent representative

examples in this category include [46], [49], [19], [32].

With the ever increasing number of attack techniques, there is a considerable interest of the research

community in devising defences against the attacks. To that end, adversarial training is one of the

most popular strategies [20, 27, 37, 54, 61]. It trains the model on adversarial images themselves

to make it more robust. Another line of research in adversarial defenses transforms the input image

to reduce the adversarial effects of the embedded perturbations [21, 59, 57]. These transformations

also include image denoising to make adversarial image benign [35, 58]. [27] proposed a variant of

adversarial training that trains the network to minimize the the distance of its predictions for benign

and their corresponding adversarial images. While the defense mechanisms are making significant

efforts in suppressing the nature of perturbations, there have always been counter attacks that can

fool these networks.

The existing literature also covers a wide range of other defense techniques, from augmenting the

models with external defense modules [45, 33, 14] to certified defenses [28, 53, 13]. We refer

interested reader to [2] for recent advances in this direction. Here, we emphasize that although

effective, these defenses generally come at considerable computational cost and degradation in

model performance on clean inputs. This makes them less appealing for real-world applications.

Instead of proposing yet another defense, we take a different perspective on addressing the ad-
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versarial susceptibility of deep learning. Assuming a deployed model, we aim at identifying the

capabilities of the attacker. Such an attacker profiling can help in adversarial defenses outside the

realm of deep learning. This is more practical because it can eventually allow deep learning models

to disregard intrinsic/appended defensive modules that result in performance degradation, causing

deep learning to lose its advantage over other machine learning frameworks.
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CHAPTER 3: THE RED PROBLEM

The Reverse Engineering of aDversarial attacks (RED) problem is generic in nature. However,

we limit its scope to visual classifiers in this work for a systematic first-of-its-kind study. Let

C(.) be a deep visual classifier such that C(I) : I → ℓ, where I ∈ Rm is a natural image and

ℓ ∈ Z+ is the output of the classifier. For attacking C(.), an adversary seeks a signal ρ ∈ Rm

to achieve C(I + ρ) → ℓ̃, where ℓ̃ ̸= ℓ. To ensure that the manipulation to a clean image is

humanly imperceptible, the perturbation ρ is norm-bounded, e.g., by enforcing ||ρ||p< η, where

||.||p denotes the ℓp-norm of a vector and ‘η’ is a pre-defined scalar. More concisely, the adversary

seeks ρ that satisfies

C(I+ ρ) → ℓ̃ s.t. ℓ̃ ̸= ℓ, ||ρ||p< η. (3.1)

The above formulation underpins the most widely adopted settings for the adversarial attacks,

where ρ is a systematically computed additive signal. From our RED perspective, we see this

signal as a function ρ(A, {I}, C), where A identifies the algorithm used to generate the perturbation

and {I} indicates that ρ can be defined over a set of images instead of a single image, e.g., in

universal perturbations [39].

In practice, the targeted model C must already be deployed and the input I fixed during an attack.

This leaves A as the main point of interest for the RED problem. For clarity, we often refer to A

directly as ‘attack’ in the text. To abstract away the algorithmic details, we can conceptualize A as a

function A({φ}, {ψ}), where {φ} denotes a set of abstract design hyper-parameters and {ψ} is a

set of numeric hyper-parameters. To exemplify, the choice of the scope of the adversarial objective,

e.g. universal vs image-specific, is governed by an element in {φ}. Similarly, the choices of ‘η’ or

‘p’ values in Eq. (3.1) are overseen by the elements of {ψ}. Collectively, both sets contain all the
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hyper-parameters available to an attacker to compute ρ.

The numeric hyper-parameter set {ψ} is relatively less interesting because a simple choice of

numeric value does not help in profiling the attacker, which is the ultimate objective of the RED

problem. We are particularly interested in the design choices made under {φ}. In the considered

settings, {φ} is a finite set because each of its elements, i.e., φi ∈ {φ}, governs a choice along

a specific design dimension under the practical constraint that the attack must achieve its fooling

objective. Nevertheless, in this work, we are not after exhaustively listing the elements of {φ}.

Instead, we specify only three representative elements to demonstrate the possibility of attack

reverse engineering. These three elements are:

• φ1 : Model gradient information.

• φ2 : Black-box prediction score information.

• φ3 : Attack fooling scope.

It is possible to easily extend the above list to incorporate further design choices. The criterion for

a parameter to be enrolled in {φ} is that a single choice should cover a range of existing attacks.

For instance, φ1 can either be true or false. The choice true can result in a family of attacks

Fa
1 of gradient-based attacks, covering FGSM [20], PGD [37], BIM [30] etc. Non-gradient based

attack family F b
1 results when φ1 = false. Similarly, when φ2 = true, we get an attack

family Fa
2 of score-based black-box attacks[36, 25], and φ2 = false yields F b

2 that represents

decision-based attacks[5, 4, 12]. We let φ3 ∼ {universal,input-specific}.

In the above formalism, Fx
i ∩ Fy

i = ∅ always holds for the resulting attack families. However, we

must allow Fx
i ∩Fx

j ̸= ∅ because an attack family resulting from φi may still make choices for φj ̸=i

without any constraint. For instance, a universal attack can be either gradient-based [39] or non-

gradient-based [16]. This also indicates that our set {φ} is decided by the pool of known attacks

8



themselves. This set can not be forced to be an exhaustive list of design parameters, because by

itself, a simple choice of parameter value does not represent a fully functional attack family.

Let Fi = {f i
1, f

i
2, ..., f

i
Z} denote the ith attack family with ‘Z’ adversarial attacks that are formed

under φi such that all f i
z ∈ Fi satisfy the constraint in Eq. (3.1). Then, f i

z(I) → Ĩ s.t. C(Ĩ) → ℓ̃ ̸=

ℓ, ||ρ||p< η. In this setting, the core RED problem is a reverse mapping problem that computes

Ψ(Ĩ) → f i
z, given a set of ‘N ’ attack families F = {F1,F2, ...,FN}. We must seek Ψ(.) to solve

this.

9



CHAPTER 4: ADVERSARIAL IDENTIFICATION DATASET(AID)

To investigate the RED problem, we develop Adversarial Identification Dataset (AID). This dataset

is leveraged to explore the attack reverse engineering technique developed in this work. Below,

we detail different attacks A, attack families F and their design and numeric hyper-parameters

({φ}, {ψ}) considered in AID.

Overview

Most of the existing literature in adversarial attacks concentrates on devising novel attack schemes

or robustifying models against the attacks. Multiple existing adversarial attack libraries such as ad-

vertorch [17], Adversarial robustness toolbox[42] and foolbox [47], etc., are available to generate

adversarial samples on-the-fly. However, for our problem, it is imperative that we store the gener-

ated adversarial perturbations to analyze them for reverse engineering. This motivates the curation

of Adversarial Identification Dataset (AID) that comprises perturbations generated by leveraging

different attack strategies over a set of images targeting different pre-trained classifiers.

We make use of the existing adversarial attack libraries to generate the desired perturbations. Given

a large number of adversarial attack methods and families available, we consider several factors

while choosing which attacks are to be included in AID. Firstly, our choice is to include the most

popular and well-studied attack techniques in the existing literature. Secondly, we prefer to have

diversity in the perturbations by considering attack toolchain families that differ in the way they

have access to the model(this includes model parameters, gradients, weights, etc.). Thirdly, we

chose to consider attacks that generalize over the dataset. The resulting dataset consists of:

• 180k perturbations

10



Table 4.1: AID statistics

Parameter Details

Dataset size 187.2k
Training samples 156k
Testing samples 31.2k
Per network train set 52k
Per network test set 10.4k
Total attacks 13
Toolchain families 3
Target networks 3
||ρ||∞ range {1, 16}
||ρ||2 range {1, 10}

• three different toolchain families

• 13 different adversarial attacks

Attack Families

Gradient based attacks: As per our definition, gradient based attacks are the attacks that are able

to exploit the gradients of the target model to perturb input images. Since the attacker needs access

to the gradients, these attacks are typically white box in nature. Our gradient-based attack family

consists of Fast Gradient Sign Method (FGSM) [20], Basic Iterative Method[30], NewtonFool[26],

Projected Gradient Descent(PGD)[37], DeepFool[38], Carlini Wagner (CW)[8] attacks.

Decision based attacks: For our exploration, decision-based attacks are the fooling techniques

applied in black-box setups where the attacker only has access to the decision of the target model.

The attacker repeatedly queries the target model and utilizes the decision of the model to curate

the perturbation. We consider Additive Gaussian Noise[47], Gaussian Blur[47], Salt & Pepper

Noise[47], Contrast Reduction[47], Boundary Attack[6] for the decision-based attack family.

11



Table 4.2: Summary of the attacks considered in AID.

Attack Method Family Setup NB

PGD [37] Grad. WB l∞
BIM [30] Grad. WB l∞

FGSM [20] Grad. WB l∞
DeepFool [38] Grad. WB l∞

NewtonFool [26] Grad. WB l2
CW [8] Grad. WB l2

Additive Gaussian [47] Grad. BB l2
Gaussian Blur [47] Grad. BB l∞
Salt&Pepper [47] Grad. BB l∞

Contrast Reduction [47] Dec. BB l∞
Boundary [6] Dec. BB l2

UAN [22] Uni. WB l∞
UAP [40] Uni. WB l∞

Universal attacks: Universal attacks generalize across a dataset. A single perturbation is sufficient

to fool the network across multiple images with a desired fooling probability. Most common ap-

proaches to generate universal perturbations either iteratively compute perturbations by gradually

computing and projecting model gradients over input batches, or use generative modelling to com-

pute image agnostic perturbations. We consider Universal Adversarial Perturbation (UAP)[40],

Universal Adversarial Network (UAN)[22] for the universal attack family.

Dataset creation

Benign samples: We require clean images to create an adversarial perturbation. We utilize Ima-

geNet2012 [48] validation set consisting of 50k images spanning across 1000 classes. We split the

validation set into two parts, forming training and test partitions of AID. This ensures that there

the two partitions are mutually exclusive. Training set of perturbed images for AID is generated

12



by randomly choosing 4k images per network per attack from the training partition. Similarly, the

test set of perturbed images is generated by randomly choosing 800 images per network per attack

from the test partition. Note that each attack image can be computed with different networks i.e.

target models. We discuss these in the following section.

Target models: We consider three different target models; ResNet50 [23], DenseNet121 [24] and

InceptionV3 [51]. The use of multiple models ensures that the adversarial samples are not specific

to a target model.

Attack settings: In practice, there can be variations in perturbations norm for an attack - a hyper-

parameter from {ψ}. This variation is incorporated in AID by sampling η from a range of values.

For attacks constructed under l∞ norm, we consider a range of {1, 16} and {1, 10} for l2 norm

based attacks. In Table 4.1, we provide summary statistics of the dataset. The procedure of gen-

erating the full dataset is further explained in the supplementary material of the paper. We also

summarise the considered attacks, their families and used perturbation norm-bounds in Table 4.2.

13



CHAPTER 5: PROPOSED APPROACH

In this section, we discuss the design choices we consider for solving the RED problem Ψ(Ĩ) → f i
z.

A straightforward approach could be to build a classifier C(Ĩ) → f i
z that identifies the attack

leveraged to generate the adversarial input Ĩ. In such a scenario, the underlying patterns in the

perturbation aren’t preserved since the perturbation ρ is closely intertwined with the benign sample

I, thus making the problem much harder. To solve this problem, we design a signature extractor

Ω(Ĩ) → ρ̃ that generates a signature ρ̃ from the adversarial input such that it lies close to the

original perturbation ρ while preserving patterns helpful in identifying the attacker. The objective

of the signature extractor is,

Ω(Ĩ) → ρ̃, ||ρ̃− ρ||2= δ, min(δ). (5.1)

While the objective draws similarities with existing problems like denoising/deraining, signature

extraction is relatively complex. Noise/rain pertaining to these tasks are localized in nature and are

visually perceptible in most cases. Contrastively, adversarial perturbations are nearly imperceptible

and contain global patterns that makes the problem extremely challenging and requires methods

beyond standard techniques aimed at denoising and other low-level computer vision tasks.

The adversarial input also contains minute imprints left by the attacker. We utilize these imprints

to complete extent by extracting features from the input image as well and fusing them with the

generated signature. Fused signature is passed on to the attack classifier C that identifies the attack.

The objective of the attack classifier is,

C(ρ̃) → f i
z, where f i

z(I) → Ĩ (5.2)
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where, ρ̃ is the generated signature, f i
z is the zth attack from the ith toolchain family. Figure 5.1

shows an overview of the proposed approach highlighting the signature extractor and the attack

classifier.

Signature Extractor

The Signature Extractor serves the purpose of extracting a signature that contains patterns specific

to the attack. As shown in Fig.5.1, the signature extractor has two streams of information flow

progressing through a series of GLoF blocks. Each stream is designed to capture local or global

features along with feature sharing across them that helps in generating a rectified image. GloF

block utilizes convolutional layers to extract local features while attention mechanism applied over

image patches to help in attaining global connectivity. Conjunction of global and local features

help reconstruct a rectified image that lies in the neighborhood of the clean image. Subtracting the

rectified image from the input adversarial image yields the signature.

Consider an adversarial image Ĩ ∈ RH×W×3 (H, W correspond to image height and width and 3

corresponds to the RGB channels). The standard GLoF block receives a series of token embeddings

and a 2D feature map of the image. The input adversarial image Ĩ is reshaped into a series of 2D

patches Ĩp ∈ RN×P 2×3, where P is the height and width of each patch and N is the number

of patches/tokens N = HW/P 2. The patches are flattened along the feature dimension Ĩp ∈

RN×(P 2·3). The attention arm along the GLoF blocks expects a constant embedding dimension

D1, hence the patches are projected onto the embedding space of dimension D. As proposed in [],

adding position embeddings E ∈ RN×D1 to the patch embeddings help in the retain the relative

position of the patches in the 2D space. The resulting patch embedding is termed T0 ∈ RN×D1 (0

referring to the intital feature level).
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Figure 5.1: Model Overview.

T0 = Ĩp + E; Ĩp, E ∈ RN×D1 (5.3)

Alongside, the input image is projected to an embedding dimensionD2, by applying a 3× 3 Conv

with D2 features. We term these features Z0 ∈ RH×W×D2 (0 referring to the initial feature level).

Features extracted from previous level(l − 1) are passed on to the next GLoF block.

Tl,Zl = GLoF (Tl−1,Zl−1); l = 1...L (5.4)

Where L is the number of GLoF blocks. The output of the final GLoF block corresponding to the

convolutional arm Zl is transformed to RGB space by applying a 3× 3 Conv with 3 feature maps

resulting in the rectified image Ir ∈ RH×W×3. Finally, to extract the signature from the rectified

image, difference of the rectified and the original image is considered ρ̃ = Ĩ − Ir.
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GLoF Module

Standard convolutional layers are very good at extracting local information [29]. However, a major

drawback of convolutional layer is its inability to extract features from a receptive field larger than

the kernel, hence missing global connectivity. On the other hand, transformers are known to be

extremely powerful in learning non-local connectivity [15, 62]. As seen in [18], standard vision

transformers splits the image into patches and learn the similarities between the patches. While

this allows the network to learn global connectivity, it fails to utilize the local information [34,

60]. Overcoming these limitations, we propose Global-LOcal Feature extractor (GLoF) module

to combine CNN’s ability to extract low-level localized features and vision transformer’s ability

to extract global connectivity across long range tokens. Detailed schematic of the GLoF block

is given in Fig.5.2. The GLoF block at any level receives the local and global features from the

previous level. The GLoF block at level l receives the image features Zl−1 ∈ RH×W×D2 and the

embedded tokens Tl−1 ∈ RN×D1 where Tl−1 = {T 1
l−1, T

2
l−1, ..., T

N
l−1} (N being the number of

tokens) as inputs.

Local features: Embedded 2D image features from the previous layer Zl−1 are fed to a standard

ResNet block with convolutional, batch norm and activation layers.

Global features: Embedded tokens are fed to attention mechanism. Series of tokens from previous

layer Tl−1 are passed through a multi-head attention layer which calculates the weighted sum. A

feed forward network is applied over the attention output. It consists of two dense layers that are

applied to individual tokens separately with GELU activation applied over the output of the first

dense layer[18].

T2I Block: Features learned from the attention arm corresponding to the global connectivity are

merged with the convolutional arm. Token to Image (T2I) block is responsible for rearranging the
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Figure 5.2: GLoF block architecture.

series of tokens to form a 2D grid. This transformed grid is passed on to a series of convolutional

layers to obtain the feature map with the desired depth and is merged with the features from the

convolution arm of the GLoF block. The merged features as well as the learned token embeddings

are passed to consecutive GLoF blocks.

Attack Classifier

The generated signature is specific to the input image. Since the input image also contains imprints

pertaining to the attacker, we complement the extracted signature with the adversarial input and

feed it to the attack classifier. The fusion is done by applying a series of convolutional layers over
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the signature and the input image separately and concatenating them. We explore several standard

pre-trained CNN networks as attack classifiers.

Training Objective

We use L2 loss to minimize the the distance of the generated signature ρ̃ to the raw perturbation

ρ. Alongside, the attack classifier is modelled to generate probability scores over a set of classes.

Hence, we use cross-entropy loss to train the attack classifier.
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CHAPTER 6: EXPERIMENTS

We evaluate the performance of our network on AID under various settings. We also present

extensive ablations that support the design choices for signature extractor and attack classifier.

Implementation details: The signature extractor comprises of 5 GLoF blocks with the attention

arm embedding dimension of 768 and the convolutional arm embedding dimension of 64. The T2I

block consists of two convolutional layers with kernel size 5 each followed by batch normalization.

We use a patch size of 16x16 and 12 attention heads. Each convolutional arm in the GloF block

consists of a ResNet block with 2 convolutional layers of kernel size 5, batch norm and a skip

connection. We use DenseNet121[24] as the attack classifier. Final layers of the attack classifier

are adjusted to compute probabilities over 13 classes for attack identification and 3 classes for

attack family identification.

GLoF Variants: Standard GLoF block consists of convolution and attention arms. We introduce

variants of GLoF block that exclusively contain either of the arms allowing us to study the contri-

bution of local and global features separately. We term GLoF-C, referring to the GLoF block with

only the convolutional arm and GLoF-A, referring to the GLoF block containing only the attention

arm.

Experimental Setup: We employ a two stage training strategy to train the overall pipeline. In

the first stage, the signature extractor is trained to produce the rectified image. Input adversarial

images are randomly augmented by resizing and cropping. Benign samples corresponding to the

adversarial inputs are used as the ground truth. Adam optimizer and L2 loss are used to pre-train the

signature extractor. In the second stage, the overall pipeline with the pre-trained signature extractor

is further trained. We refrain from using any augmentations while training the complete pipeline

since augmenting the adversarial samples results in alteration of the underlying perturbation thus
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Table 6.1: Performance of different methods on AID focusing on identifying 13 different attacks
and 3 attack families.

Method Attack
Identification

Attack Family
Identification

no. of
params

ResNet50[23] 68.27% 80.11% 24.7M
ResNet101[23] 71.03% 80.38% 43.8M
ResNet152[23] 67.03% 78.48% 59.5M
DenseNet121[24] 73.20% 84.21% 8.2M
DenseNet169[24] 72.22% 84.10% 14.3M
DenseNet201[24] 73.07% 81.69% 20.2M
InceptionV3[51] 69.96% 81.91% 22.9M
ViT-B/16[18] 63.91% 75.89% 85.8M
ViT-B/32[18] 54.61% 72.34% 87.4M
ViT-L/16[18] 67.28% 78.25% 303M
ViT-L/32[18] 55.23% 72.62% 305M

Ours 80.14% 84.72% 47.8M

making it difficult to comprehend the patterns responsible in identifying the attack. We use cross-

entropy loss to train the network with Adam optimizer with a learning rate of 1e−4 and momentum

rates of 0.9 and 0.999. We use exponential decay strategy to decrease the learning rate by 5% every

1k iterations. All experiments are conducted on NVIDIA V100 GPU with a batch size of 16. Two

stage training helps in faster convergence of the overall network, allows the signature extractor to

learn better, and removes the need to retrain it if novel attacks are included.

Baselines: Since the RED problem is first-of-its-kind, and there is no existing literature directly

related to this problem, we develop several baselines and compare our technique against them.

RED at its core is a classification problem, we look at the existing visual classifier models and

train them accordingly for the RED problem. We consider variants of ResNet [23], DenseNet [24],

Inception [51] and different versions of Vision Transformer[18]-{ViT-B, ViT-L}as baselines. In

line with [18], ViT-B refers to the Base version of ViT with 12 encoder layers and ViT-L refers to

the Large version with 24 encoder layers. We analyze patch sizes of 16x16 and 32x32 for both the
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Table 6.2: Cross Model Attack Identification. AID-R, AID-D, and AID-I refer to the subsets of
AID containing perturbations corresponding to the target models ResNet50[23], DenseNet121[24]
and InceptionV3[51] respectively.

Method Train
Set

Performance on
different test sets

AID-R AID-D AID-I

ResNet50
[23]

AID-R 71.46% 65.74% 62.90%
AID-D 66.15% 66.88% 61.46%
AID-I 59.69% 65.22% 66.96%

DenseNet121
[24]

AID-R 70.01% 66.89% 58.46%
AID-D 55.77% 73.71% 53.83%
AID-I 63.30% 66.96% 69.54%

InceptionV3
[51]

AID-R 66.35% 60.51% 61.29%
AID-D 63.02% 66.05% 62.54%
AID-I 59.21% 60.03% 68.72%

Proposed
Approach

AID-R 75.41% 73.56% 69.76%
AID-D 70.46% 74.42% 67.42%
AID-I 69.95% 69.88% 73.12%

variants.

Results

Attack Identification: Table 6.1 reports the results on RED problem under two settings: identify-

ing the attack as well as the attack family. Our approach with the pre-trained signature extractor,

feature fusion and the attack classifier achieves an accuracy of 80.14% on the attack identification

and 84.72% on attack family identification.

Comparison with baselines: Table 6.1 compares the performance of our network against other

baselines. The top performing compared method, DenseNet121 [24], is surpassed by our tech-

nique in both categories by a margin of 6.94% in attack identification and 0.51% in attack family
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identification. In general, variants of ResNet [23] and Inception [51] under perform when com-

pared with DenseNet [24] versions. Comparing with versions of ViT, CNNs have fewer number

of parameters and perform much better in both the settings. One reason for this being that ViT[18]

requires large amounts of training data. We also observe a drop in accuracy with increase in a

patch size from 16x16 to 32x32 suggesting that ViT[18] struggles to accurately capture the local

intrinsic properties as the patch becomes bigger. It is evident that the RED problem focusing on

identifying the attack family is simpler compared to identifying the specific attack. This is in view

of the fact that attacks that belong to the same family employ similar training strategies making it

difficult to distinguish them.

Cross Model attack identification: We analyze the performance of our network on cross model

attack identification. AID consists of attacks generated by targeting 3 different networks. For this

experiment, we split AID into three subsets containing perturbations related to the corresponding

target model. AID-R, AID-D, AID-I refer to subsets of AID containing perturbations correspond-

ing to ResNet50 [23], DenseNet121 [24] and InceptionV3 [51] as target networks. Each subset

is further split into train and test sets. Table 6.2 summarizes the results on cross model attack

identification of several baselines compared against our technique. In general, we observe that the

networks perform well when trained and tested on the same subsets of AID. The proposed tech-

nique performs better in all cases compared to other baselines. This experiment suggests that the

although perturbations differ with the target model, the attacker leaves traces that can be leveraged

to profile the attacker.

Ablations

We investigate the contribution of each component by performing ablation studies, summarized

in Table 6.3a. At the core of signature extractor is the GLoF block. Removing local or global
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Table 6.3: Performance of the proposed network and their variants

(a) Ablation study for Attack Identification.

Method Accuracy

Full model 80.14%
without pre-training 79.20%
without global connect.- GLoF-C 78.66%
without local connect.- GLof-A 73.61%
without Feature Fusion 78.87%
without Signature Extractor 73.20%

(b) Evaluation of GLoF with varying number
(m) of attention heads.

GLoF Variant PSNR SSIM

GLoF-C 31.49 0.88
GLoF-A 31.53 0.87
GloF(m = 4) 30.96 0.87
GloF(m = 8) 30.93 0.88
GloF(m = 12) 31.55 0.89
GloF(m = 16) 31.54 0.89

connectivity reduces the accuracy by 6.53% and 1.49% respectively. The extracted signature is

coupled with the features from the input image. Removing feature fusion drops the accuracy of the

network to 78.87%. Transformers are known to work well when pre-trained [18, 11]. We test the

capability of our network without pre-training the signature extractor and observe a drop of 0.94%.

Lastly, we mention the attack identification accuracy is 73.20% without any signature extractor.

Table 6.4: Performance of the Signature extractor/Attack classifier and their variants

(a) Effect of number of GLoF blocks n on attack
identification

Number of
GLoF Blocks Accuracy

n = 1 79.20%
n = 3 79.65%
n = 5 80.14%
n = 7 79.22%
n = 9 79.90%

(b) Performance of different attack classifiers
with Signature Extractor

Method Accuracy

SigExt. +
ResNet50[23] 73.80%

ResNet101[23] 74.74%
ResNet152[23] 73.25%

DenseNet121[24] 80.14%
DenseNet169[24] 78.15%
DenseNet201[24] 76.69%
InceptionV3[51] 70.38%
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In Table 6.4a, we analyze the performance of the network by varying the number of GLoF

blocks. Signature Extractor with as low as a single GLoF block achieves 79.20% (+6% over

baseline) thus indicating its effectiveness. Employing 5 GLoF blocks yields the best accuracy of

80.14%.

We explore how different attack classifiers affect the overall performance. As seen in Table 6.4b,

the signature extractor paired with DenseNet121 [24] yields the best results. It can be observed

that the attack classifiers paired with signature extractor (Table 6.4b) performs significantly better

compared to training stand alone classifiers. This supports the claim that extracting input-specific

signature form the adversarial input to identify the attack is a better strategy.

Analysis

Signature Extraction: We investigate the performance of pre-training the signature extractor un-

der various settings. To measure the performance of the signature extractor we use PSNR and

SSIM metrics over the rectified image and the corresponding benign samples to evaluate the qual-

ity of the reconstruction. Table 6.3b reports the results of different variants of the GLoF block.

Standard GLoF achieves higher PSNR and SSIM scores over GLoF-C and GLoF-A indicating that

global and local connectivity together help in better reconstruction. We also report the variation

in reconstruction scores when the number of heads m in multi head attention are increased. GLoF

blocks with 12 heads achieves the highest scores of 31.55 PSNR and 0.89 SSIM.

We analyze the performance of the network by varying the number of GLoF blocks. Signature

Extractor with as low as a single GLoF block achieves 79.20% (+6% over baseline) thus indicating

its effectiveness. Employing 5 GLoF blocks yields the best accuracy of 80.14%.

Next, we explore how different attack classifiers affect the overall performance. We observe

25



Figure 6.1: Visualizations of features learned by the attack classifier. (a)t-SNE for specific attack
categories. Labels are in accordance with Table 4.2 (b)t-SNE for attack families. The labels {0,1,2}
refer to {gradient, decision, universal} attacks.

that the versions of DenseNet121[24] perform better than other classifiers. The signature extractor

paired with DenseNet121[24] yields the best results.

Identifying Novel Attacks: With the increasing threat to deep learning networks, it is highly likely

for the RED problem to encounter novel unseen attacks. To experiment the effectiveness of the

proposed network we devise an experiment which includes identifying the toolchain family of a

novel attack. For this, we split AID into two different sets containing mutually exclusive attack cat-

egories. We retrain the overall pipeline on one set and test it on the novel classes which achieves an

accuracy of 57.2%. We extend our approach to register novel attacks with minimal training set us-

ing toolchain indexing(discussed in supplementary). Identifying open set novel attacks under RED

scenario remains challenging due to the fact that the unseen perturbations are nearly imperceptible

and are difficult to distinguish.

Visualization: We generate t-SNE plots of a set of features extracted from the penultimate layer

of the attack classifier. Fig.6.1 shows the three toolchain families forming separate clusters. Due
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Figure 6.2: Confusion matrix: The labels of the classes are in accordance with the order in Table
6.5.

to their ’universality’ constraint, universal perturbations form a clear cluster and are easily dis-

tinguishable. While gradient based attacks share similar techniques, decision based attacks have

distinctive approaches based on the decision of the network. Hence we observe the overlap between

gradient and decision based attacks. Fig shows the t-SNE plots over specific classes. Boundary

Attack[6] has the maximum overlap with other attacks. In gradient based attacks, DeepFool[38],

NewtonFool[26] and CW[8] attacks overlap with each other indicating that they generate similar

patterns thus making it difficult to distinguish them.

We analyze class wise scores and the confusion matrix of the predictions from the proposed ap-
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proach in Fig 6.2 and Table 6.5. From the confusion matrix, we observe the common trend of

relatively high scores for all decision based attacks except for boundary attack. With scores close

to 1, these attacks have distinctive patterns which are being easily identified by the signature extrac-

tor. Boundary attack do not always have specific patterns because of the way they are generated.

Starting from a point that is already adversarial, boundary attack performs a random walk on the

decision boundary minimizing the amount of perturbation. Similarly, universal attacks generate

discernible patterns making it easier for detection. Major confusion occurs in the gradient based

attacks among NewtonFool, DeepFool and CW attack. These attacks being highly powerful, are

targeted on generated nearly imperceptible perturbations specific to the input image, making it dif-

ficult for the method to identify and distinguish. Similar trends observed in the confusion matrix

can be seen in Table 6.5.

Reconstructions

Fig ??. depicts the adversarial images, corresponding perturbations and the signatures extracted

by the signature extractor. In general, the extracted signatures have patterns highlighting the object

from the clean image. This is due to the fact that extracting these nearly imperceptible perturbations

accurately always is almost nearly impossible. These patterns along with the patterns pertaining to

the attacker help in training the attack classifier to identify the attacker.

Detecting Clean vs. Perturbed

While the core idea of RED is to profile the attacker given an adversarial image, it is likely for the

signature extractor to be tested with clean images in real world scenarios. We devise an experi-

ment to analyze the performance of the signature extractor in distinguishing clean from perturbed

images. We consider a subset of AID containing adversarial images and similar size set of clean
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Table 6.5: Classification report(Precision, Recall, F1-score) of the proposed network on AID.

label Attack Method Precision Recall F1-score

0 PGD [37] 0.90 0.82 0.86
1 BIM [30] 0.95 0.85 0.89
2 FGSM [20] 0.86 0.90 0.88
3 DeepFool [38] 0.49 0.51 0.50
4 NewtonFool [26] 0.59 0.64 0.61
5 CW [8] 0.48 0.46 0.47
6 Additive Gaussian [47] 1.00 1.00 1.00
7 Gaussian Blur [47] 0.90 0.91 0.90
8 Salt&Pepper [47] 0.97 0.94 0.95
9 Contrast Reduction [47] 0.92 0.97 0.94
10 Boundary [6] 0.49 0.53 0.51
11 UAN [22] 1.00 1.00 1.00
12 UAP [40] 0.95 0.88 0.91

images. The signature extractor is trained to extract signatures highlighting the patterns in adver-

sarial images. Extracted signatures are used to train a binary classifier that identifies clean and

perturbed images. We use a standard ResNet50[23] as the binary classifier in this case. The end

to end pipeline yields a 100% accuracy in distinguishing perturbed images from clean images.

This can act as a preliminary step, and if a perturbation is detected, it can be passed to the attack

classifier for identifying the specific attack category.

Enrolling Novel Classes

With the fast moving field of adversarial machine learning, it is highly likely for the signature

extractor to come across novel unseen attacks. While, it is difficult to retrain the signature extractor

and the attack classifier each time a new attack is added to the system, we employ a dictionary

based toolchain indexing scheme to enrol novel attack classes with limited data.
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We use a simple indexing scheme which can work as an addition to the existing signature extraction

approach. The extracted signature for the adversarial images is of size 24x224x3. Since, storing

and indexing such large images requires large amounts of memory and computations, we project

the signature to a 512-dimensional using the model activations. These are extracted from the

penultimate layer of a standard DenseNet-121 network. To index these compressed signatures into

a dictionary, it is required to assign the correct toolchain to the sample. To solve this problem, we

adapt a sparse and collaborative representation based classifier[3]. This classifier expects training

data, which is our dictionary and the test sample that we need to index in the dictionary. The

produced label is the label of the adversarial attack in our case, which is identifiable because our

dictionary is structured. We use Orthogonal Matching Pursuit(OMP)[44] algorithm to compute

sparse codes for a given sample over a fixed dictionary. It tends to assign large coefficient values

in the sparse codes corresponding to the dictionary elements that are closely correlated to the test

samples. The algorithm does not make any assumption about the dictionary itself. Hence, it does

not restrict us from enrolling new attacks (or their families) to the dictionary.

To enroll a novel attack, we adopt a similar strategy. The main challenge for the indexing scheme

is to register the novel attack with limited data. Hence, the indexing challenge gets translated into

maintaining reasonable classification performance with one or very few samples for the unknown

class. For analysis, we sequentially consider each of the thirteen attacks as the ‘unknown attack’

and note the performance of indexing scheme with varied number of samples available from the

known attacks. We consider a subset of 50 samples per class from AID for the experiment. Starting

with enrolling as little as a single sample for the class, we analyze the performance when we have

10, 20, 30, 40 and 50 samples for a newly enrolled class. The corresponding plots are shown in

Fig 6.3.

From the plots, it can be observed for PGD, BIM and FGSM the indexing technique achieves

accuracies greater than 60% with just 10 training samples. With as low as a single training sample,
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accuracy is consistently above 30%. For relatively simple classes like Gaussian Blur and UAP, we

were able to maintain 100%. For particularly challenging classes like NewtonFool, CW and UAN,

more samples resulted in better performance. These results demonstrate that the degradation in

performance of our indexing scheme in the case of fewer training samples is graceful, to the extent

that average accuracy across all classes with a single training sample is 46%. Hence, we can claim

that the scheme has the ability of enrolling new attack effectively with as little as a single sample

for most of the unknown attacks.
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Figure 6.3: Results of considering individual classes as the unknown class
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CHAPTER 7: CONCLUSION

We presented a new perspective on adversarial attacks indicating the presence of peculiar patterns

in the perturbations that hint back to the attacker. We formulate the RED problem- given the adver-

sarial input, reverse engineer to identify the attack strategy leveraged to generate the sample. We

develop Adversarial Identification Dataset (AID) and compare several baseline techniques. Tar-

geting RED, we propose a framework that combines CNN’s capability to capture local features

and transformer’s ability to attain global attention together to generate a signature containing at-

tack specific patterns, which is used by the attack classifier to identify the attacker. Extensive

experiments showcase the efficacy of the proposed framework and support the credibility of RED

problem.
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