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ABSTRACT

Knowledge distillation, as a popular compression technique, has been widely used to reduce deep

neural network (DNN) size for a variety of applications. However, in recent years, some research

had found its potential for improving deep neural network performance. This dissertation focuses

on further exploring its power to facilitate accurate and reliable DNN training. First, I explored

data-efficient method for blackbox knowledge distillation where the specifics of the DNN for dis-

tillation is inaccessible. I integrated active learning and mixup to obtain significant distillation

performance gain with limited data. This work reveals the competence of knowledge distillation

to facilitate large foundation model application. Next, I extended this work to solve a more chal-

lenging practical problem, i.e. COVID-19 infection prediction. Due to extremely limited data at

the outbreak, it is very difficult to calibrate any existing epidemic model for practical prediction. I

applied blackbox knowledge distillation with sequence mixup to distill a comprehensive physics-

based simulation system. With the obtained distilled model, epidemic models are better calibrated

to fit limited observation data and provide more accurate and reliable projection. This work val-

idates that knowledge distillation can enhance DNN training for complex time series prediction

with limited observation data. Next, I applied knowledge distillation to improve DNN reliability

which reflects accurate model prediction confidence. Ensemble modeling and data augmentation

had been blended to equip distillation process and obtain a reliable DNN. This work justifies that

knowledge distillation can equip training for a more reliable DNN. Furthermore, this dissertation

extended my knowledge distillation study to semantic segmentation tasks. The study started with

investigation of semantic segmentation models, and then, proposed an approach of adaptive convo-

lution to improve the heterogeneity of local convolution fields. The experiments had been carried

out across different scales of segmentation benchmarks and justified that this approach outper-

forms existing state-of-the-art schemes and successfully boosts the performance of various back-
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bone models. After this investigation study, semantic segmentation models had been calibrated

with ensemble knowledge distillation which had been applied to solve image classification cali-

bration. Stronger augmentation had been incorporated into distillation process. The experiments

justify the effectiveness for semantic segmentation calibration.
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CHAPTER 1: INTRODUCTION

Knowledge distillation is proposed in [6] and its original intention is to solve model compression

problems, thus relieving the burden of training large DNNs, like ensemble learning. Hinton et

al. reveal that the probability outputs from large networks can be taken as “dark knowledge” to

retain its performance on accuracy with light-weight substitute models. Usually, a larger DNN is

taken as a teacher model, whilst the smaller one is viewed as a student model. Typical knowledge

distillation uses logits, which are before softmax activation, from the teacher model as the source

knowledge. The student model utilizes this knowledge to mimic the response of the teacher model,

thus retaining its output behavior. Commonly, the mimicking is carried out by minimization logit

distribution discrepancy between student and teacher models.

However, traditional knowledge distillation still has some important issues. The first important

one is high demand for training data. When it comes to model query for knowledge acquisi-

tion, traditional methods usually require a large number of original data to retrieve information

from teacher model for accurate distillation, which is infeasible in real applications. To alleviate

this data demand, several approaches are proposed, such as few-shot knowledge distillation [7],

data free knowledge distillation [8], zero-knowledge distillation [9], and so forth. Nevertheless,

these approaches require the gradient information of teacher network, which enables them also

intractable in the real world.

Moreover, its potential for model improvement is still under exploration. With respect of training

accuracy, lots of research finds out its potential for better generalization. For example, On-the-fly

Native Ensemble (ONE) equipped with ensemble distillation outperforms ensemble model [10].

Self-distillation with retraining the model can help increase model accuracy [11, 12]. These works

show that when distillation framework is optimized, like moderately increase in model size, it

1



is possible to render a student network outperform the teacher model in accuracy. This implies

knowledge distillation enables model accuracy improvement.

Recently, more research with further exploration also justifies that this approach is effective on

model reliability improvement. Although modern DNN achieves striking success in accuracy im-

provement, its calibration performance is inferior and usually suffers overconfidence issue [13].

This problem affects the application of DNN since the users may obtain misleading inference out-

puts and take inaccurate decisions. To address this issue, some current research proposes several

approaches, such as ensemble training [5], ensemble distribution distillation [14], batch ensemble

distillation [15], Dirichlet distribution [14], augmented distillation[15], and so forth.

To promote the application of deep neural networks in more real applications, this dissertation

explores knowledge distillation for efficiently training deep neural networks. The dissertation

attempts to address multiple pressing issues in or with knowledge distillation:

1. DNNs have limitation in blackbox knowledge distillation, especially when labeled data are

very few which causes lower distillation accuracy (cf. Chapter 3).

2. Prediction problems are very difficult when observation data are very limited, which have to

be used for time series modeling (cf. Chapter 4).

3. DNNs can exhibit poorer model reliability which yields misleading predictive confidence for

inaccurate prediction (cf. Chapter 5).

4. Segmentation models can also confront the reliability challenges and require further calibra-

tion improvement (cf. Chapter 6).

This dissertation tackles these challenges from several perspectives. First, given limited labeled

data for knowledge distillation, a challenged problem is formulated with three constraints, includ-

ing data limitation, training efficiency, and distillation effectiveness. Chapter 3 studies how to

train a student deep neural network for visual recognition by distilling knowledge from a blackbox
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teacher model in a data-efficient manner. Progress on this problem can significantly reduce the

dependence on large-scale datasets for learning high-performing visual recognition models. There

are two major challenges. One is that the number of queries into the teacher model should be min-

imized to save computational and/or financial costs. The other is that the number of images used

for the knowledge distillation should be small; otherwise, it violates our expectation of reducing

the dependence on large-scale datasets. To tackle these challenges, we propose an approach that

blends mixup and active learning. The former effectively augments the few unlabeled images by

a big pool of synthetic images sampled from the convex hull of the original images, and the latter

actively chooses from the pool hard examples for the student neural network and query their labels

from the teacher model. We validate our approach with extensive experiments.

Second, this dissertation attempts to extend knowledge distillation to a real-world problem. The

problem is formulated based upon limited observation data and constrained computation resource.

An accurate and efficient forecasting system is imperative to the prevention of emerging infectious

diseases such as COVID-19 in public health. This system requires accurate transient modeling,

lower computation cost, and fewer observation data. To tackle these three challenges, Chapter 4

proposes a novel deep learning approach using black-box knowledge distillation for both accurate

and efficient transmission dynamics prediction in a practical manner. First, we leverage mixture

models to develop an accurate, comprehensive, yet impractical simulation system. Next, we use

simulated observation sequences to query the simulation system to retrieve simulated projection

sequences as knowledge. Then, with the obtained query data, sequence mixup is proposed to

improve query efficiency, increase knowledge diversity, and boost distillation model accuracy. Fi-

nally, we train a student deep neural network with the retrieved and mixed observation-projection

sequences for practical use. The case study on COVID-19 justifies that our approach accurately

projects infections with much lower computation cost when observation data are limited.

Third, in addition to model accuracy, model reliability is further studied and explored for model
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training improvement. According to [13], modern deep neural network causes severely overcon-

fident prediction and misleading model users for decision making. An accurate and reliable deep

neural network (DNN) is critical. However, due to model uncertainty, it is very challenging to

achieve such DNNs. To reduce model uncertainty, Chapter 5 proposes ensemble knowledge dis-

tillation, a simple yet effective approach by leveraging accurate point estimation. There are two

challenges for accurate point estimation. One is the unbiasness from true parameter and the other

is high efficiency with lower estimator variance. To tackle these two challenges, we blend ensem-

ble model and knowledge distillation to improve model point estimation. The former effectively

reduces the bias of the estimation in virtue of large sample of model estimators. The latter sig-

nificantly reduces model estimator variance by distilling the ensemble into a single model. This

effective integration successfully provides a more accurate point-estimate single model with lower

model uncertainty. We justify our approach with extensive experiments and show its significant

improvement in in-distribution model calibration and out-of-distribution data detection. We also

reveal the importance of efficient data augmentation in model uncertainty reduction. Last, but not

least, we validate our approach with more up-to-date DNNs, like Vision Transformer.

Next, the reliability study is extended to semantic segmentation tasks. Since deep neural net-

works achieve tremendous success in image classification tasks, more complex computer vision

applications incorporate them into problem solving. Semantic segmentation, as an important but

challenging computer vision task, employs a variety of modern deep neural networks and show

much success in performance improvement. However, like image classification, it can encounter

accuracy and reliability problems. To better solve it, this dissertation conducts a study on under-

standing semantic segmentation through analysis and algorithmic optimization and then, applies

image classification calibration techniques to semantic segmentation calibration. Chapter 6 starts

with investigation on convolution neural network for semantic segmentation and explores a method

to improve convolutional modeling performance on semantic segmentation. Dilated convolution
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kernels are constrained by their shared dilation, keeping them from being aware of diverse spa-

tial contents at different locations. We address such limitations by formulating the dilation as

trainable weights with respect to individual positions. We propose Adaptive Dilation Convolu-

tional Neural Networks (ADCNN), a light-weighted extension that allows convolutional kernels to

adjust their dilation value based on different contents at the pixel level. Unlike previous content-

adaptive models, ADCNN dynamically infers pixel-wise dilation via modeling feed-forward inter-

patterns, which provides a new perspective for developing adaptive network structures other than

sampling kernel spaces. Our evaluation results indicate ADCNNs can be easily integrated into

various backbone networks and consistently outperform their regular counterparts on various vi-

sual tasks. Then, given the understanding of semantic segmentation modeling with deep neural

networks, this dissertation further studies the problem of semantic segmentation calibration. For

image classification, lots of existing solutions are proposed to alleviate model miscalibration of

confidence. However, to date, confidence calibration research on semantic segmentation is still

limited. We provide a study on the calibration of semantic segmentation models and propose a

simple yet effective approach, namely ensemble knowledge distillation. Next, we study popular

existing calibration methods and compare them with ensemble knowledge distillation on semantic

segmentation calibration. We conduct extensive experiments with a variety of benchmarks on in-

domain calibration, and show that ensemble knowledge distillation consistently outperforms other

methods.

Note that the mathematical notations are consistent in each individual chapter, but the same symbol may refer to
different concepts in different chapters.
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CHAPTER 2: LITERATURE REVIEW

2.1 Knowledge Distillation and Its Application

Knowledge distillation [6] is widely used to solve DNN compression problem. Since it effectively

reduces model size with retaining accurate performance, it makes accurate but complex models

feasible for real-world applications. The distillation process is accomplished in an inversion man-

ner. Take the model θ as a teacher model for distillation. To retain the performance of this teacher

model θ , we may retrieve its outputs and train another smaller student model φ by imitating its

outputs. The outputs could be the logits or probabilities from teacher model θ . During the distilla-

tion, true observation data can be also incorporated into model training when they are feasible. It

can be formulated as the following optimization.

φ = argmin
φ

αLCE(P(y|D ,φ),y)+βLKD(P(y|D ,φ),qθ ). (2.1)

θ is model parameter, LCE is cross-entropy loss, P is model inference probability, y is the true

label encoded by one-hot vector, D denotes input data, φ denotes student model parameters, LKD

indicates distillation loss, and qθ is the soft targets, the probabilities queried from θ . There are two

hyperparameters of α and β to balance distillation and cross-entropy training.

In the field of computer vision, this technique has helped solve a variety of complex model size

problems. For example, in pose estimation [16, 17, 18], lane detection [19], real-time stream-

ing [20], object detection [21], video representation [22, 23, 24], and so forth. Furthermore, this

approach is able to boost the performance of DNN with improvement on efficiency [25] and ac-

curacy [26]. Accordingly, lots of research is conducted to enhance its performance from the per-
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spective of training strategy [27, 28], distillation scheme [29, 30], or network properties [31] ,

etc.

In the field of natural language processing, this technique improves the feasibility of large models

like BERT. For example, DistilBERT [32] successfully reduces the size of original BERT model

by 40% with maintaining accuracy; TinyBERT [33] leverages knowledge distillation to design a

framework for the reduction of transformer-based language model, which leads to the models with

lower time and space complexity, thus facilitating its application; relational knowledge distillation

[34] further optimizes distillation process and enables more productive student model, which can

even outperform teacher model.

2.2 Data Efficiency

When it comes to model query for knowledge acquisition, traditional methods usually require a

large number of original data to retrieve knowledge information for accurate distillation, which

is infeasible in real applications. Several approaches are proposed to solve this problem. For

example, few-shot knowledge distillation is proposed to retain teacher model performance with

pseudo samplers which are generated in adversarial manner [7]. Another approach called data free

knowledge distillation leverages extra activation records from teacher model to reconstruct original

datasets, thus recovering teacher model [8]. Recently, a zero-knowledge distillation method is de-

veloped by synthesizing data with gradient information of teacher network [9]. Nevertheless, these

approaches require the gradient information of teacher network, which enables them intractable in

the real world. To tackle this challenge, we formulated a blackbox optimization process for knowl-

edge distillation and solved it a data-efficient manner in [35]. We propose Active Mixup [35],

which blends active learning and mixup to efficiently invert teacher model without specifics like

gradient information.
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2.3 Model Accuracy

Recently, more research found that knowledge distillation can help model generalization due to

its optimization on soft targets [36], which can be taken as more general case of label smoothing

[37]. Therefore, model accuracy improvement from knowledge distillation draw more attention

and more techniques are integrated or proposed to boost its performance. For example, data aug-

mentation is very effective, especially in image classification task, since it can help model capture

multiple views on data [36].

Among multiple approaches, mixup is a simple yet effective approach to augment training data

and improve model performance [1]. This method is proposed to improve the generalization of

DNN by enhancing coverage of data distribution, especially when training data are limited. The

main idea is to incorporate convex combination into data synthesis, which involves mixing fea-

tures and mixing labels. It has been widely used to address both computer vision and natural

language processing problems, like Between-Class learning in speech recognition [38] and image

classification[39], AutoAugment with learning strategy augmentation for classification [40], and

wordMixup or senMixup with embedding mixup for sentence classification [41]. More studies

explore its potential for data-efficient learning, such as Active Mixup [35] and ranking distillation

in [42].

Another interesting accuracy boosting method is self-distillation. Self-distillation is the knowl-

edge distillation where the labeled data and architectures of teacher and student are identical. This

scheme can effectively boost model generalization [11, 12] in virtue of its amplifying model reg-

ularization [43]. Some regularization techniques can help model generalization to unseen data,

such as weight decay [13] and label smoothing [44]. Since knowledge distillation can be taken as

an learned label smoothing regularization[37], we can use self-distillation to regularize ensemble

member for better generalization.
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2.4 Model Reliability

In addition to model accuracy, model reliability is also critical to real-world application [13]. Al-

though DNNs achieve tremendous success in inference accuracy, its reliability is weak, which

usually refers to overconfidence in predicted results [13]. This causes potential risk because er-

roneous prediction may yield high inference probability and severely mislead decision making,

which may be fatal to real-world applications like autonomous driving. To address this issue, more

research is conducted to explore how to better calibrate DNN.

Among a range of proposed approaches, deep ensemble is found to be simple but effective[5] be-

cause it is closer to Bayesian inference process which is justified to be more accurate to capture

posterior distribution pattern[45]. Upon this observation, several approaches are developed. For

example, [46] proposes a prior network to more accurately describe prior distribution of the train-

ing data. Upon this work, [14] proposes ensemble distribution distillation with help of Dirichlet

distribution to achieve better calibrated inference outputs. However, it requires lots of ensemble

networks to sample model output distribution, which renders training a prior network computa-

tionally expensive and impractical for large models. Moreover, Dirichlet distribution is an ap-

proximate solution to ensemble model outputs, which is not always guaranteed. This leads to the

gap between ensemble model and distilled distribution network. [15] proposes batch ensemble

distillation, which takes advantage of batch ensemble training with more diverse data by input per-

turbation to fill the gap between ensemble model and distilled network, but the ensemble model as

an upper bound still limits model uncertainty performance.
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CHAPTER 3: ACTIVE MIXUP FOR DATA-EFFICIENT KNOWLEDGE

DISTILLATION FROM A BLACKBOX MODEL

3.1 Problem Introduction

Data curation is one of the most important steps for learning high-performing visual recognition

models. However, it is often tedious and sometimes daunting to collect large-scale relevant data

that have sufficient coverage of the inference-time scenarios. Additionally, labeling the collected

data is time-consuming and costly.

Given a new task, how can we learn a high-quality machine learning model in a more data-efficient

manner? We believe the answer varies depending on specific application scenarios. In this paper,

we focus on the case that there exists a blackbox teacher model whose capability covers our task

of interest. Indeed, there are many high-performing generic visual recognition models available as

Web-based APIs, in our smart devices, or even as an obsolete model built by ourselves some while

ago. The challenge is, however, we often have limited knowledge about their specifics, e.g., not

knowing the exact network architecture or weights. Moreover, it could be computationally and/or

financially expensive to query the models and read out their outputs for a large-scale dataset.

To this end, we study how to distill a blackbox teacher model for visual recognition into a student

neural network in a data-efficient manner. Our objective is three-fold. First of all, we would like

This chapter contains previously published materials from“Neural networks are more productive teachers than
human raters: Active mixup for data-efficient knowledge distillation from a blackbox model", by Dongdong Wang,
Yandong Li, Liqiang Wang, and Boqing Gong, in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 1498-1507. 2020.
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Figure 3.1: Data-efficient blackbox knowledge distillation. Given a blackbox teacher model and
a small set of unlabeled images, we propose to employ mixup [1] and active learning [2] to train
a high-performing student neural network in a data-efficient manner (b) so that we do not need to
re-do the heavy and expensive data curation used to train the teacher model (a).

the distilled student network to perform well as the teacher model as possible at the inference time.

Besides, we try to minimize the number of queries to the blackbox teacher model to save costs.

Finally, we also shall use as a small number of examples as possible to save data collection efforts.

It is hard to collect abundant data for rare classes or privacy-critical applications.
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We propose to blend active learning [47, 2] and image mixup [1] to tackle the data-efficient knowl-

edge distillation from a blackbox teacher model. The main idea is to synthesize a big pool of

images from the few training examples by mixup and then use active learning to select from the

pool the most helpful subset to query the teacher model. After reading out the teacher model’s

outputs, we simply treat them as the “groundtruth labels” of the query images and train the student

neural network with them.

Image mixup [1, 48, 49] was originally proposed for data augmentation to improve the general-

ization performance of a neural recognition network. It synthesizes a virtual image by a convex

combination of two training images. While the resultant image may become cluttered and se-

mantically meaningless, it resides near the manifold of the natural images — unlike white-noise

images. Given 1000 images, we can construct O(105) pairs, each of which can further generate

tens to thousands of virtual images depending on the coefficients in the convex combination. We

conjecture that the big pool of mixup images provides good coverage of the manifold of natural

images. Hence, we expect that a student network that imitates the blackbox teacher on the mixup

images can give rise to similar predictions over the test images as the teacher model does.

Instead of querying the blackbox teacher model by all the mixup images, we resort to active learn-

ing to improve the querying efficiency. We first acquire the labels of the small number of original

images from the blackbox teacher model and use them for training the student network. We then

apply the student network to all the mixup images to identify the subset with which the current

student network is the most uncertain. Notably, if two mixup images are synthesized from the

same pair of original images, we keep only the one with higher uncertainty. We query labels for

this subset, merge it into the previously labeled data, and then re-train the student network. We

iterate this procedure of subset selection, querying the blackbox teacher model, and training the

student neural network multiple times until reaching a stopping criterion.
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To the best of our knowledge, we are the first to distill knowledge from a blackbox teacher model

while underscoring the need for data-efficiency and query-efficiency. We empirically validate our

approach by contrasting it to both vanilla and few/zero-shot knowledge distillation methods. Ex-

periments show that, despite the blackbox teacher in our work, our approach performs on par or

better than the competing methods that learn from whitebox teachers.

Note that the mixup images are often semantically meaningless, making them almost impossible

for human raters to label. However, the blackbox teacher model returns predictions for them

regardless, and the student network still gains from such fake image-label pairs. In this sense, we

say that the blackbox teacher model is more productive than human raters in teaching the student

network.

3.2 Background

Knowledge Distillation. Knowledge distillation is proposed in [6] to solve model compression

problems, thus relieving the burden of ensemble learning. This work suggests that class proba-

bilities, as “dark knowledge", are very useful to retain the performance of original network, and

thus, light-weight substitute model could be trained to distill this knowledge. This approach is

very useful and has been justified to solve a variety of complex application problems, such as

pose estimation [16, 17, 18], lane detection [19], real-time streaming [20], object detection [21],

video representation [22, 23, 24], and so forth. Furthermore, this approach is able to boost the

performance of deep neural network with improvement on efficiency [25] and accuracy [26]. Ac-

cordingly, lots of research is conducted to enhance its performance from the perspective of training

strategy [27, 28], distillation scheme [29, 30], or network properties [31] , etc.

However, there is an important issue. Traditional knowledge distillation requires lots of original
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training data which are very difficult to be obtained. To alleviate this data demand, few-shot knowl-

edge distillation is proposed to retain teacher model performance with pseudo samplers which are

generated in adversarial manner [7]. Another approach called data free knowledge distillation

leverages extra activation records from teacher model to reconstruct original datasets, thus recov-

ering teacher model [8]. Recently, a zero-knowledge distillation method is developed by synthesiz-

ing data with gradient information of teacher network [9]. Nevertheless, these approaches require

the gradient information of teacher network, which enables them intractable in the real world.

Blackbox Optimization. Blackbox optimization is developed based on zero knowledge in the

gradient information of queried models and widely used to solve practical problems. Recently, this

work is widely used in deep learning, especially model attack. A rich line of blackbox attacking

approaches [50, 51, 52, 53, 54] are explored by accessing the input-output pairs of classifiers, most

of which are focusing on attacks resulting from accessing the data. [55] instead investigates that

the adversaries are capable of recovering sensitive data by model inversion. However, there is no

work for blackbox knowledge distillation.

Active Learning. Active learning is a learning process by interaction between oracle and learner

agents. This strategy is widely used to solve learning problems which exhibit costly data labelling

since it could exploit existing data information to efficiently improve obtained model, thus reducing

the number of queries. Lots of effective approaches are proposed to optimize this process, such

as uncertainty-based [2, 56, 57] and margin-based methods [58, 59]. Form the review by [60],

uncertainty-based methods, despite simple, are able to obtain good performance.

Mixup. Zhang et al. first proposed mixup to improve the generalization of deep neural network [1].

Between-Class learning [38] (BC learning) was proposed for deep sound recognition, and then,

they extended this approach to image classification [61]. Following them, Pairing Samples [62]

was proposed as a data augmentation approach by taking an average of two images for each pixel.
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More recently, an approach called AutoAugment [40], explores improving data augmentation

policies by automatically searching.

3.3 Approach

We present our approach to the data-efficient knowledge distillation from a blackbox teacher model

in detail in this section. Given a blackbox teacher model and a small number of unlabeled images,

the approach iterates over the following three steps: 1) constructing a big candidate pool of syn-

thesized images from the small number of unlabeled images, 2) actively choosing a subset from

the pool with which the current student network is the most uncertain, 3) querying the blackbox

teacher model to acquire labels for this subset and to re-train the student network.

3.3.1 Constructing a Candidate Pool

In real-world applications, data collection could consume a huge amount of time due to various

reasons, such as privacy concerns, rare classes, data quality, etc. Instead of relying on a big dataset

of real images, we begin with a small number of unlabeled images and use the recently proposed

mixup [1] to augment this initial image pool.

Given two natural images xi and x j, mixup generates multiple synthetic images by a convex com-

bination of the two with different coefficients,

x̂i j(λ ) = λxi +(1−λ )x j, (3.1)

where the coefficient λ ∈ [0,1]. Note that this notation also includes the original unlabeled data xi

and x j when λ = 1 and λ = 0, respectively.
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This technique comes handy and effective for our work. It can exponentially expand the size of

the initial image pool. Suppose we have collected 1000 natural images, and we generate 10 mixup

images for each image pair by varying the coefficient λ . We then arrive at a pool of about 106

images in total. Besides, this pool of synthetic images also provides good coverage of the manifold

of natural images. Indeed, this pool can be viewed as a dense sampling of the convex hull of the

natural images we have collected. The test images likely fall into or close to this convex hull if the

collected images are diverse and representative. Hence, we expect the student neural network to

generalize well to the inference-time data by enforcing it to imitate the blackbox teacher model on

the mixup images.

3.3.2 Actively Choosing a Subset to Query the Teacher Model

Let {x̂i j(λ ),λ ∈ [0,1], i ̸= j} denote the augmented pool of images. It is straightforward to query

the teacher model to obtain the (soft) labels for these synthetic images and then train the student

network with them. However, this brute-force strategy incurs high computational and financial

costs. Instead, we employ active learning to reduce the cost.

We define the student neural network’s confidence over an input x as

C1(x) := max
y

PS(y|x), (3.2)

where PS(y|x) is the probability of the input image x belonging to the class y predicted by the

current student network. Intuitively, the less confidence the student network has over the input x,

the more the student network can gain from the teacher model’s label for the input.

Therefore, we could rank all the synthetic images in the candidate pool according to the student

network’s confidences on them, and then choose the top ones as the query subset. However, this
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simple strategy results in near-duplicated images, for example x̂i j(λ = 0.5) and x̂i j(λ = 0.55). We

avoid this situation by choosing at most one image from any pair of images.

In particular, instead of ranking the synthetic images, we rank image pairs in the candidate pool.

We define the confidence of the student network over an image pair xi and x j as the following,

C2(xi,x j) := min
λ

C1(x̂i j(λ )), λ ∈ [0,1], (3.3)

which depends on a coefficient λ ∗ for the image pair. Hence, we obtain a confidence score and

its corresponding coefficient for any pair of the original images. The synthetic image x̂i j(λ
∗) is

selected into the query set if the confidence score C2(xi,x j) is among the lowest k ones. We study

the size of the query set in the experiments.

3.3.3 Training the Student Network

With the actively selected query set of images, we query the blackbox teacher model and read out

its soft predictions as the labels for the images. We then merge them with the previous training

set, if there is, to train the student network using a cross-entropy loss. The soft probabilistic labels

returned by the teacher model give rise to slightly better results than the hard labels, so we shall

use the soft labels in the experiments below.

3.3.4 Overall Algorithm

Algorithm 1 presents the overall procedure of our approach to the data-efficient blackbox knowl-

edge distillation. Beginning with a teacher model M T and a few unlabeled images X = {x1,x2, ...,xn},

we firstly train an initial student network M S
0 with (X ,Y0), where Y0 contains the labels for the im-
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ages in X and is obtained by querying the teacher model. We then construct a big pool of synthetic

images P with mixup [1] (eq. (3.1)) to facilitate the active learning stage. We iterate the follow-

ing steps until the accuracy of the student network converges. 1) Actively select a subset ∆Ps
t of

the synthetic images P with the lowest confidence scores, C2(xi,x j), as predicted by the current

student network so that the resulting subset ∆Ps
t contains hard samples for the current student net-

work M S
t−1. 2) Acquire labels ∆Yt of the selected subset of synthetic images ∆Ps

t by querying the

teacher model. 3) Train a new student network M S
t with all the labeled images thus far, (Ps

t ,Yt).

Note that, in Line 6 of Algorithm 1, we only keep one synthetic image for any pair (xi,x j) of the

original images to reduce redundancy.

Algorithm 1 Data-efficient blackbox knowledge distillation

INPUT: Pre-trained teacher model M T

INPUT: A small set of unlabeled images X = {xi}n
i=1

INPUT: Hyper-parameters (learning rate, subset size, etc.)
OUTPUT: Student network M S

1: Query M T and acquire labels Y0 for all images in X
2: Train an initial student network M S

0 with (X ,Y0)
3: Construct a synthetic image pool P = {x̂i j(λ )} by using the unlabeled images X with eq. (3.1)
4: Initialize Ps

1 = X ,Y1 = Y0.
5: for t = 1,2...,T do
6: Select a subset ∆Ps

t from P with lowest confidence scores {C2(xi,x j)} returned by student
M S

t−1
7: Query M T , acquire labels ∆Yt for all images ∆Ps

t
8: Ps

t ←Ps
t ∪∆Ps

t , Yt ← Yt ∪∆Yt
9: Train a new student network M S

t with (Ps
t ,Yt)

10: Update P ←P - ∆Ps
t

11: end for

3.4 Experiments

We design various experiments to test our approach, including both comparison experiments with

state-of-the-art knowledge distillation methods and ablation studies. Additionally, we also chal-
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Figure 3.2: Mixup images whose confidence scores (cf. eq. (3.3)) are the lowest among all candi-
dates in the third iteration. For each mixup image, we show the top three labels and probabilities
returned by the blackbox teacher model.

lenge our approach when the available data is out of the distribution of the main task of interest.

In practice, across all experiments, we select λ ∈ {0.3,0.7} (with an interval of 0.04) to generate

synthetic images to produce more diverse mixup images.
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Figure 3.3: Different mixup images from the same pair of the original images by varying the mixup
coefficient λ . We show the top three labels and probabilities predicted by the teacher model for
each of them. It is interesting to see how the top-1 label changes from Hockey Arena, to Baseball
Field, and to Golf Course.

3.4.1 Comparison Experiments

Since our main objective is to explore how to train a high-performing student neural network

from a blackbox teacher model in a data-efficient manner, it is worth comparing our approach

with existing knowledge distillation methods although they were developed for other setups. The

comparison can help review how data-efficient our approach is given the blackbox teacher model.

3.4.1.1 Experiment Setting

Datasets. We run experiments on MNIST [63], Fashion-MNIST [64], CIFAR-10 [65], and Places365-

Standard [66], which are popular benchmark datasets for image classification. The MNIST dataset

contains 60K training images and 10K testing images about ten handwritten digits. The image

resolution is 28×28. Fashion-MNIST is composed of 60K training and 10K testing fashion prod-

uct images of the size 28×28. CIFAR-10 consists of 60K (50K training images and 10K test

images) 32×32 RGB images in 10 classes, with 6K images per class. In addition to evaluating
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the proposed approach on the above described low-resolution images, we also test our approach

on Places365-Standard, which is a challenging dataset for natural scene recognition. It has 1.8M

training images and 18,250 validation images in 365 classes. We use the resolution of 256×256

for Places365-Standard in the following experiments.

Evaluation Metric. We mainly use the classification accuracy as the evaluation metric. Addi-

tionally, we also propose a straightforward metric to measure how much “knowledge” the student

network distills from the teacher model. This metric is computed as the ratio between the student

network’s classification accuracy and the teacher’s accuracy, and we call it the distillation success

rate.

Table 3.1: Comparison results on Places365-Standard, CIFAR-10, MNIST, and Fashion-MNIST.
The “Teacher” column reports the teacher model’s accuracy on the test sets, “KD Accuracy” is the
student network’s test accuracy, “Success” stands for the distillation success rates, “Black/White”
indicates whether or not the teacher model is blackbox, “Queries” lists the numbers of queries into
the teacher models, and “Unlabeled Data” shows the numbers of original training images used in
the experiments. (* results reported in the original paper)

Task (Model) Teacher KD Accuracy Success Black/White Queries Unlabeled Data
Places365-Standard (ZSKD) [9] – – – – – 0
Places365-Standard (FSKD [7]) 53.69 38.18 71.11 White 480K 80K
Places365-Standard (KD) 53.69 49.01 90.35 Black 1,800K 1,800K
Places365-Standard (Ours) 53.69 45.71 85.14 Black 480K 80K
CIFAR-10 (ZSKD) [9] 83.03∗ 69.56∗ 83.78 White >2,000K 0
CIFAR-10 (FSKD [7]) 83.07 40.58 48.85 White 40K 2K
CIFAR-10 (KD) 83.07 80.01 96.31 Black 50K 50K
CIFAR-10 (Ours) 83.07 74.60 89.87 Black 40K 2K
MNIST (ZSKD) [9] 99.34∗ 98.77∗ 99.42 White >1,200K 0
MNIST (FSKD [7]) 99.29 80.43 81.01 White 24K 2K
MNIST (KD) 99.29 99.05 99.76 Black 60K 60K
MNIST (Ours) 99.29 98.74 99.45 Black 24K 2K
Fashion-MNIST(ZSKD) [9] 90.84∗ 79.62∗ 87.65 White >2,400K 0
Fashion-MNIST (FSKD [7]) 90.80 68.64 75.60 White 48K 2K
Fashion-MNIST (KD) 90.80 87.79 96.69 Black 60K 60K
Fashion-MNIST(Ours) 90.80 80.90 89.10 Black 48K 2K
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Blackbox Teacher Models. For each task except Places365-Standard, we prepare a teacher model

by following the training setting provided in [9]. For Places365-Standard, there is no training

setting reference for the knowledge distillation research yet, so we use a pre-trained model from

the dataset repository [66] as our teacher model. On MNIST and Fashion-MNIST, we use the

LeNet-5 architecture [67] as the teacher model and optimize it to achieve 99.29% and 90.80%

top-1 accuracies, respectively. On CIFAR-10, we have an AlexNet [68] as the teacher model

and train it to obtain 83.07% top-1 accuracy. As shown in Table 3.1, the above teacher models are

comparable to the teacher models in [9]: 83.03% vs. 83.07% on CIFAR-10, 99.34% vs. 99.29% on

MNIST, and 90.84% vs. 90.87% on Fashion-MNIST. For Places365-Standard, the teacher model

is a ResNet-18 [69] and yields 53.68% top-1 accuracy.

Competing Methods. We identify three existing relevant methods for comparison.

• One is zero-shot knowledge distillation (ZSKD) [9], which distills a student neural network

with zero training example from a whitebox teacher model. It synthesizes data by backprop-

agating gradients to the input through the whitebox teacher network.

• The second method is few-shot knowledge distillation (FSKD) [7], which augments the

training images by generating adversarial examples. It is the most relevant work to ours,

but it depends on the computationally expensive adversarial examples [70] and has no ac-

tive learning scheme to reduce the query cost at all. The original work assumes a whitebox

teacher neural network so that it is straightforward to produce the adversarial examples,

whereas there exist blackbox attack methods [54, 50].

• The third is the vanilla knowledge distillation [6], which accesses the whole training set of

the teacher model and is somehow an upper bound of our method.
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3.4.1.2 Quantitative Results

Table 3.1 shows the comparison results. For simplicity, we run the active learning stage for only

one step (i.e., T = 1 in Algorithm 1). Section 3 presents the results of running it for multiple steps.

Accuracy. Our approach significantly outperforms FSKD over all the datasets. On CIFAR-10,

MNIST, and Fashion-MNIST, ours yields 41%, 18%, and 14% success rate improvements over

FSKD, respectively. On Places365-Standard, whose images are high-resolution about natural

scenes, we also outperform FSKD by 14% success rate. Compared to ZSKD, which relies on

a whitebox teacher network, our approach also shows higher accuracies and success rates except

on MNIST. We were not able to reproduce ZSKD on Places365-Standard because its images are all

high-resolution, making it computationally infeasible to generate a large number of gradient-based

inputs. Similarly, the advantage of ours over ZSKD is larger on CIFAR-10 than other MNIST or

Fashion-MNIST, probably because the CIFAR-10 images have a higher resolution. In contrast, the

computation cost of our active mixup approach does not depend on the input resolution. Overall,

the results indicate that active mixup has a higher potential to solve the larger-scale knowledge

distillation in a data-efficient manner.

Queries. Our approach saves orders of queries into the teacher model compared to ZSKD. For

example, we only query the blackbox teacher model up to 40K times for CIFAR-10. In contrast,

ZSKD requires more than 2M queries and yet yields lower accuracy than ours. The big difference is

not surprising because the gradient-based inputs in ZSKD are less natural than or representative of

the test images than our mixup images. Besides, ZSKD incurs additional queries into the whitebox

teacher model every time it produces an input.
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3.4.1.3 Qualitative Intermediate Results

We show some mixup images in Figures 3.2 and 3.3. These images are selected from the candidate

pool constructed using the natural images in the Places365-Standard training set. Figure 3.2 shows

some mixup images with low confidence scores. They can potentially benefit the student network

more than the other candidate images if we use them to query the teacher model. Figure 3.3

demonstrates some mixup images synthesized from the same pair of natural images by varying the

mixup coefficient λ . It is interesting to see that the mix of “Hockey Arena” and “Golf Course”

leads to a “Baseball Field” at λ = 0.46 predicted by the blackbox teacher model. This indicates

that our active mixup approach can effectively augment the originally small training set by not only

bringing in new synthetic images but also comprehensive coverage of classes.

3.4.2 Ablation Study

We select CIFAR-10 and Places365-Standard to study our approach in detail since they represent

the small-scale and large-scale settings, respectively. For CIFAR-10, we switch to VGG-16 [71]

as the blackbox teacher model, which gives rise to 93.31% top-1 accuracy.

3.4.2.1 Data-Efficiency and Query-Efficiency

We investigate how the results of our active mixup approach change as we vary the total number of

unlabeled real images (data-efficiency) and the number of synthetic images selected by the active

learning scheme (query-efficiency). Here we run only one step of the active learning stage (T = 1

in Algorithm 1) to save computation cost. Tables 3.2 and 3.3 show the results on CIFAR-10 and

Places365-Standard, respectively. Each entry in the tables is a classification accuracy on the test

set, and it is obtained by a student network which we distill by using the corresponding number of
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unlabeled real images (Real images) and the number of selected synthetic images (Selected Syn.).

Table 3.2: Classification accuracy on CIFAR-10 with different numbers of real images and selected
synthetic images.

Selected Syn.
Real images

0.5K 1K 2K 4K 8K 16K

0 44.72 56.87 68.09 76.59 83.61 86.89
5K 66.97 71.67 77.76 81.76 85.76 87.05

10K 73.60 77.27 81.27 83.27 86.56 88.79
20K 77.44 81.18 84.19 86.29 88.07 89.01
40K 82.28 84.25 86.06 87.71 89.00 90.49
80K 85.18 86.53 87.89 88.71 89.61 90.96

160K 86.56 88.94 89.42 90.26 90.87 91.51

Table 3.3: Classification accuracy on Places365-Standard with different numbers of real images
and selected synthetic images.

Selected Syn.
Real images

20K 40K 80K

100K 40.72 41.95 43.52
200K 41.15 42.86 44.77
400K 41.94 43.42 45.71

We can see that the more synthetic images we select by their confidence scores (cf. eq. (3.3)), the

higher-quality the distilled student network is. It indicates that the mixup images can effectively

boost the performance of our method. Meanwhile, the higher the number of unlabeled real images

we have, the higher the distillation success rate we can achieve. What’s more interesting is that,

when the number of synthetic images is high (e.g., 160K), the gain is diminishing as we increase

the number of real images. Hence, depending on the application scenarios, we have the flexibility

to trade-off the real images and synthetic images for achieving a certain distillation success rate.
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We can take a closer look at Tables 3.2 and 3.3 to obtain an understanding about the “market

values” of the selected synthetic images. In Table 3.2, 10K selected synthetic images and 8K

unlabeled real images yield 86.56% accuracy; 20K synthetic images and 4K real images lead to

86.29% accuracy; and 40K synthetic images with 2K real examples give rise to 86.06% accuracy.

The accuracies are about the same. There is a similar trend along the off-diagonal entries in Ta-

ble 3.3, implying that if we reduce the number of real images by half, we can complement it by

doubling the size of synthetic images to maintain about the same distillation success rate.

3.4.2.2 Active Mixup vs. Random Search

We design another experiment to compare active mixup with the random search to understand

the effectiveness of our active learning scheme. We keep 500 real images for CIFAR-10 and

20K for Places365-Standard. We then use them to construct 100K and 300K synthetic images,

respectively. For a fair comparison, we let random search and active mixup share the same sets of

natural images. Since our active learning scheme avoids selecting redundant images by using the

improved confidence score in eq. (3.3), we also equip the random search such capability by using

a single mixup coefficient of λ = 0.5 to construct the synthetic images. This guarantees that, like

our approach, no two synthetic images selected by the random search are from the same pair of

real images.

Figure 3.4 shows the comparison results of our active mixup and the random search. On CIFAR-10,

we select 10K synthetic images every time and run the active learning stage for 10 steps (T = 10

in Algorithm 1). On Places365-Standard, we run it for six steps and choose 50K synthetic images

per step. We can see that active mixup significantly outperforms random search over the whole

course of knowledge distillation, verifying its effectiveness on improving the query-efficiency.

More concretely, 80K actively selected synthetic images yield 86.76% accuracy, which is about

26



Figure 3.4: Test accuracy of student networks vs. number of queries into the blackbox teacher
model on CIFAR-10 (left) and Places365-Standard (right). We use 500 and 20K natural images
for the two datasets, respectively. The plot for CIFAR-10 starts from first active learning stage
(t = 1 in Algorithm 1) and the one for Places365 starts from the initial student network training
by natural images. The initial student network for CIFAR-10 trained by using natural images only
yields 43.67% accuracy.

the same as what 160K randomly selected synthetic images can achieve on CIFAR-10. Similarly,

40K synthetic images by active mixup lead to 84.2% accuracy, on par with the 85.18% accuracy

by 80K randomly chosen synthetic images.

3.4.2.3 Active Mixup vs. Vanilla Active Learning

Our active learning scheme (eq. (3.3)) improves upon the vanilla score-based active learning

(eq. (3.2)) by selecting only one synthetic image at most from any pair of real images. This

change is necessary because two nearly duplicated synthetic images could both have very low

scores according to eq. (3.2).

To quantitatively compare the two active learning methods, we run another experiment by replacing
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our active learning scheme with the vanilla version. The candidate pool is the same as ours, i.e.,

mixup images generated by varying λ ∈ {0.3,0.7} with an interval of 0.04. Figure 3.4 shows the

results on both CIFAR-10 and Place365-Standard.

Generally, the vanilla active learning yields lower accuracy than our active mixup and the random

search. This shows that the vanilla score-based active learning even fails to improve upon random

search because it selects nearly duplicated synthetic images to query the teacher model. In con-

trast, our active mixup consistently performs the better than the vanilla active learning and random

search. The prominent gap justifies that the constraint by C2 in eq. (3.3) is crucial in our approach.

3.4.3 Active Mixup with Out-of-Domain Data for Blackbox Knowledge Distillation

In real-world applications, it may be hard to collect real training images for some tasks, e.g., due

to privacy concerns. Under such scenarios, we have to use out-of-domain data to distill the student

neural network. Hence, we further challenge our approach by revealing some images that are out

of the domain of the training images of the blackbox teacher model.

We conduct this experiment on CIFAR-10 by providing our approach some training images in

CIFAR-100 [72]. To reduce information leak, we exclude the images that belong to the CIFAR-

10 classes and keep 2K images to construct the candidate pool. Equipped with these synthetic

images, we run active mixup to distill student neural networks from a blackbox teacher model for

CIFAR-10. The teacher model is VGG-16, which yields 93.31% accuracy on the CIFAR-10 test

set.

Table 3.4 shows the results of different numbers of selected synthetic images. We still run only

one iteration of the active learning to save computation costs. The best distillation performance is

83% top-1 accuracy and success rate is 88.9%. Comparing the result to Table 3.2, especially the
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Table 3.4: CIFAR-10 classification accuracy by the student neural networks which are distilled by
using out-of-domain data.

Selected Syn. 10K 20K 40K 80K
Accuracy (%) 64.10 71.39 77.89 83.03

entry (87.89%) of 80K selected synthetic images and 2K real images, we can see that our approach

leads to about the same performance by using the out-of-domain data as the in-domain data.

Table 3.5: CIFAR-10 classification accuracy by the student neural networks which are distilled by
using out-of-domain data. We set the number of selected synthetic images to 40K and vary the
numbers of real images.

Real images 500 1000 1500 2000
Accuracy (%) 70.21 74.60 75.54 77.89

To better understand how different factors influence the distillation performance, we also decouple

the number of available real images from the number of selected synthetic images in Table 3.5. We

fix the number of selected synthetic images to 40K and vary the numbers of real images. Not sur-

prisingly, the more real images there are, the higher distillation accuracy the active mixup achieves.

Furthermore, the number of synthetic images still plays a prominent role in distillation accuracy,

according to Table 3.4. Without the original training data, mixup augmentation is probably more

critical to enhancing the distillation performance than otherwise.

3.5 Summary

In this paper, we formalize a novel problem, knowledge distillation from a blackbox teacher model

in a data-efficient manner, which we think is more realistic than previous knowledge distillation
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setups. There are two key challenges to this problem. One is that the available examples are

insufficient to represent the vast variation in the original training set of the teacher model. The

other is that the blackbox teacher model often implies that it is financially and computationally

expensive to query.

To deal with the two challenges, we propose an approach combining mixup and active learning.

Although neither of them is new by itself, combining them is probably the most organic solution

to our problem setup for the following reasons. First of all, we would like to augment the few

available examples. Unlike conventional data augmentations (e.g., cropping, adding noise), which

only probe the regions around the available examples, mixup provides a continuous interpolation

between any pairwise examples. As a result, mixup allows the student model to probe diverse

regions of the input space. We then employ active learning to reduce the query transactions to the

teacher model. Extensive experiments verify the effectiveness of our approach to the data-efficient

blackbox knowledge distillation.
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CHAPTER 4: DEEP EPIDEMIOLOGICAL MODELING BY

BLACK-BOX KNOWLEDGE DISTILLATION

4.1 Problem Introduction

The spread of infectious diseases is a serious threat to public health and may cause million deaths

every year. To effectively battle against infectious diseases, accurate modeling on their trans-

mission patterns is critical. This issue becomes more pressing when the infectious disease, like

COVID-19, is unprecedented, transmission dynamics is complex, and observation data are limited.

Due to data limitation, we need to solve this problem with the help of conventional physics-based

epidemiological models. However, it is still difficult to accurately describe complex dynamics with

a single model.

Mixture models are widely used to accurately solve complex transient modeling problems. They

can refine temporal scale into several states with different onsets, model these states separately,

and then mix modeling results to represent complex dynamics. Although this refinement on tem-

poral scale more accurately depicts the variation in a physical system, the difficulty of calibrating a

mixture model and computational complexity can exponentially increase since it can result in very

large parameter space, i.e., curse of dimensionality. When prior knowledge about an infectious dis-

ease, such as COVID-19, is limited, exhaustive search in such large space is inevitable for accurate

model calibration, which can easily render a mixture model impractical. In reality, some modelers

This chapter contains previously published materials from “Deep epidemiological modeling by black-box knowl-
edge distillation: An accurate deep learning model for covid-19.", by Dongdong Wang, Shunpu Zhang, and Liqiang
Wang. In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 17, pp. 15424-15430. 2021.
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propose some assumptions to truncate search space with coarse grid and trade for efficiency and

feasibility, but it can cause large uncertainty and model degradation.

To address this problem, we formulate a new approach with black-box knowledge distillation. This

approach is developed based on three-fold objectives, including higher prediction accuracy, lower

modeling cost, and higher data efficiency. To achieve higher prediction accuracy, we first leverage

mixture models to create a comprehensive, accurate, but probably impractical epidemic simulation

system. This system is viewed as a black-box teacher model which contains sophisticated mod-

eling knowledge. To reduce modeling cost and make this system feasible, we employ knowledge

distillation to transfer the accurate modeling knowledge from this impractical black-box teacher

model to a deep neural network for practical use. To realize this knowledge transfer, we collect a

set of simulated observation sequences to query the teacher model and acquire their corresponding

simulated projection sequences as knowledge. Particularly, for improvement in model perfor-

mance with limited data, we propose sequence mixup to augment data pool, thus reducing model

queries, increasing sequence diversity, and boosting modeling accuracy. With all retrieved and

mixed observation-projection sequence pairs, we train a student deep neural network for infection

prediction. This student network can perform prediction as accurately as teacher model, but save

lots of computation cost, and require fewer observation data.

To the best of our knowledge, we are the first to propose a black-box knowledge distillation based

framework to solve epidemiological modeling by leveraging mixture models. Besides this novelty,

our work also includes the following contributions: (1) the distilled student deep neural network

enables accurate model calibration and projection automatically. (2) Sequence mixup is proposed

to reduce teacher model queries for higher efficiency, improve the coverage of obtained data for

better accuracy, and further enhance knowledge transfer with fewer observation data. (3) We justify

our approach by solving COVID-19 infection projection and it performs on par or even better than

some state-of-the-art methods, like CDC Ensemble, with adequate accuracy over the evaluation
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period. (4) Our approach provides a general solution to render impractical physics-based models

feasible.

4.2 Background

4.2.1 Epidemiological Modeling

Epidemiological modeling has been extensively studied for decades. It is focused on how to accu-

rately quantify infectious disease transmission dynamics. The proposed methods can be classified

into two main categories, classical physics-based modeling and data-driven approach. For physics-

based modeling, compartmental modeling, like SEIR [73], is well justified for practical projection.

Different from physics-based modeling, thanks to the improvement on data collection, data-driven

approaches have been developed based upon statistical modeling on real observation data and

widely used for transmission dynamics projection, such as ARIMA[74] and ARGO[75, 76]. With

rapid advances in artificial intelligence, deep learning based modeling as an alternative is proposed

to solve infection projection, especially for emergency pandemic like COVID-19 [77, 78, 79, 80].

However, these data-driven approaches can suffer from observation data limitation. Recently, a

hybrid approach named DEFSI [81] adopts compartmental modeling to alleviate data limitation

problem in deep neural network training.

4.2.2 Knowledge Distillation

Knowledge distillation [6] is widely used to solve deep neural network compression problem.

Conventional distillation process is carried out by training a smaller neural network called student

model with class probability, which is referred to as “dark knowledge", to retain the performance

of original cumbersome ensemble of models called teacher model. This approach can effectively
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reduce model size, which makes complex models feasible for real-world applications. Many com-

plex applications in computer vision or natural language processing have justified its merits for

model size reduction. For example, DistilBERT [32] successfully reduces the size of original

BERT model by 40% with maintaining accuracy; TinyBERT [33] leverages knowledge distilla-

tion to design a framework for the reduction of transformer-based language model, which leads

to the models with lower time and space complexity, thus facilitating its application; relational

knowledge distillation [34] further optimizes distillation process and enables more productive stu-

dent model, which can even outperform teacher model. However, this effective approach has not

been applied to solve complex epidemiological modeling, especially the infeasibility of mixture

epidemiological models.

4.2.3 Mixup

Mixup is a simple yet effective approach to augment training data and improve model performance

[1]. This method is proposed to improve the generalization of deep neural network by enhancing

coverage of data distribution, especially when training data are limited. The main idea is to incor-

porate convex combination into data synthesis, which involves mixing features and mixing labels.

It has been widely used to address computer vision and natural language processing problems, like

Between-Class learning in speech recognition [38] and image classification[39], AutoAugment

with learning strategy augmentation for classification [40], and wordMixup or senMixup with em-

bedding mixup for sentence classification [41]. More studies explore its potential for data-efficient

learning, such as active mixup [35] and ranking distillation in [42]. However, there is no work

using mixup to enhance epidemiological modeling efficacy and efficiency.
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Figure 4.1: Modeling with black-box knowledge distillation. Teacher model is an accurate but sig-
nificantly complex comprehensive simulation system. Both observation and projection sequences
are simulated results. Model query is optimized by sequence mixup.

4.3 Methodology

Figure 4.1 shows an overview of our approach on epidemiological modeling by black-box knowl-

edge distillation. We leverage mixture models to build a comprehensive simulation system with

accurate modeling knowledge yet significantly high complexity. Then, we use simulated observa-

tion sequences to query this system to retrieve simulated projection sequences as knowledge. To

improve query efficiency and enhance knowledge transfer, sequence mixup is designed to further

efficiently augment data pool. With retrieved and mixed observation-projection sequence pairs, a

deep neural network is trained to retain the modeling accuracy of the original impractical simula-

tion system and prepared for practical use.
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4.3.1 Developing a Teacher Model

Many approaches can be used to create mixture models and build a comprehensive simulation

system M . To ensure reliability, we select a widely accepted compartmental model of SEIR as

the modeling approach. In SEIR, people in the modeled society, aka host society, must be in one

of the four health states, i.e., susceptible, exposed, infectious, and recovered. The state transition

starts from “susceptible", and then moves to “exposed", then to “infectious", and finally reaches

“recovered" state. Thus, the model is constrained with the boundary condition of N = S + E + I + R,

where S, E, I, and R denote susceptible, exposed, infected, and recovered population, respectively,

and N represents the population of the entire host society.

For accurate depiction of transient transmission dynamics, we employ linear mixture model [82]

to represent the heterogeneity of host society [83]. The host society N is divided into several

component host communities Ni with the linear combination in Equation 4.1, and modeling results

from these communities will be mixed to represent the dynamics of entire host society N. The

division of host society is based on heuristics, which depends on modeling resolution.

N =
n

∑
i=0

Ni =
n

∑
i=0

(Si +Ei + Ii +Ri) (4.1)

Within each community Ni, transmission dynamics can be described by an ordinary differential

equation (ODE) system, as shown in Equation 4.2, across all compartments.

dSi

dt
= αNi−βSt

iI
t
i −µNiSt

i

dEi

dt
= βSt

iI
t
i − (σ +µ)Et

i

dIi

dt
= σEt

i − (γ +µ)It
i

dRi

dt
= γIt

i −µRt
i

(4.2)
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where St
i , Et

i , It
i , and Rt

i denote susceptible, exposed, infected, and recovered population, respec-

tively, at time t. β , σ , and γ denote infectious, latent, and recovery rate over the entire incidence,

respectively. α and µ are referred to as natural birth and death rates during this period, respectively,

which are assumed to be zero in this study.

SEIR modeling is a typical boundary value problem [84], the solution of which relies on boundary

condition (BC), initial condition (IC), and ODEs. In this study, for each component host commu-

nity, constant BC is assigned by the total population Ni due to no vital dynamics, IC is determined

by the compartment state information {S0
i ,E

0
i , I

0
i ,R

0
i } at time step t = 0, and ODEs are specified by

the dynamics coefficients {β ,σ ,γ}. Conventional numerical modeling requires model calibration,

, which adjusts parameters to obtain agreement between real observation data and modeled results,

using grid search for an optimal combination of BC, IC, and ODEs ({BC, IC, ODEs}) within

constraints in search space. If the search space for {BC, IC, ODEs} is larger and fine-grained,

the calibration results are better fit to the real observation data and simulated projected results are

more reliable. Therefore, we construct a comprehensive simulation system with an ensemble of

simulation scenarios from large and fine search space, which enables accurate model calibration

and projection.

However, the complexity of this simulation ensemble system is very time-consuming for grid

search due to curse of dimensionality. For example, suppose we have just 2 options for BC, IC,

and ODEs (the real problems require much more). For each component host community, there

are 8 simulation scenarios. However, if we have 10 component communities, the ensemble for the

entire society N will reach 810 simulation scenarios. It is infeasible to find an optimal solution

with random grid search. Therefore, we conduct knowledge distillation to distill this ensemble

simulation system into a deep neural network for practical use.
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Figure 4.2: Weekly new infection cases over the calibration (04/06-08/23) and projection (08/24-
09/13) periods by teacher model, student network, and coarse search.

4.3.2 Querying the Teacher Model

Conventional knowledge distillation is carried out by querying the teacher model to obtain pre-

diction probabilities that are referred to as “knowledge". In our problem, the “knowledge" are

simulated projection sequences from the simulation system since they contain the features of mod-

eling process. To facilitate acquiring such kind of modeling “knowledge", we conduct model

querying as follows. First, we prepare a simulated observation sequence over the calibration pe-

riod with a {BC, IC, ODEs} for each host community. Each {BC, IC, ODEs} is used as a “key"

to query teacher model. Then, the teacher model will use the “key" to return a query answer with

a simulated sequence over the calibration and projection period, i.e., a projection sequence. With

more queries, more projection sequences are obtained and more accurate modeling knowledge is

acquired.

4.3.3 Sequence Mixup

To ensure adequate knowledge, distillation usually requires lots of training data from many model

queries. However, too many queries can be time-consuming, and more importantly, the simulated

observation sequences are still too limited to acquire diverse knowledge. For improvement in
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distillation efficacy and data diversity, we employ sequence mixup to reduce the number of queries

and enlarge knowledge coverage.

x̂ = ω1x1 +ω2x2 + ...+ωnxn

ŷ = ω1y1 +ω2y2 + ...+ωnyn

(4.3)

Our sequence mixup is developed with convex combinations of multiple observation sequences xi

and projection sequences yi with mix rates ωi, where Σωi = 1. Equation 4.3 presents this mixup

process which mixes observation sequences x and projection sequences y in the same manner.

St+1 = St +
dSt

dt
=

n

∑
i=1

ωiSt
i +

d ∑
n
i=1 ωiSt

i
dt

=
n

∑
i=1

ωiSt
i +

n

∑
i=1

dωiSt
i

dt
=

n

∑
i=1

ωiSt
i +

dωiSt
i

dt

=
n

∑
i=1

ωiSt+1
i

(4.4)

The mixup projection sequence ŷ in Equation 4.3 uses the same coefficients ω1,ω2, ...,ωn as in x̂

and it can be briefly proved as follows. Suppose x̂ denotes St = ∑
n
i=1 ωiSt

i at the current observation

time and ŷ denotes St+1 at the next projection time. Given the linearity of differentiation, this mixup

process St+1 = ∑
n
i=1 ωiSt+1

i is justified in Equation 4.4. Similar proof can be completed for E, I,

and R.

These mixed sequences as an alternative to query knowledge efficiently augment training data and

enhance the knowledge transfer from teacher model. Thus, all retrieved and mixed sequences

construct a training set (X ,Y ).
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4.3.4 Training a Student Deep Neural Network

With the acquired observation-projection sequence pairs (X ,Y ), a deep neural network is trained

to distill the modeling knowledge within the comprehensive simulation system. The conven-

tional distillation process is carried out by minimization on the distillation loss function Ldis =

D1(ytrue
n ,S(xn))+D2(T (xn),S(xn)), where T (xn) is the output of data xn from teacher model T ,

S(xn) is the output of data xn from student network S, D1 is the supervised loss for supervised

learning with data label ytrue
n , and D2 is the imitation loss for model output imitation. In our

problem, there is no knowledge about the true label ytrue
n for xn, and thus, the distillation loss is

modified to the imitation loss only, as shown in Equation 4.5. We select mean squared error loss

as distillation loss function.

Ldis = D2(T (xn),S(xn)) (4.5)

The proposed black-box knowledge distillation is a general approach that can be applied to differ-

ent student networks. In the problem of COVID-19, we use multilayer perceptron (MLP) which is

detailed in the case study.

Table 4.1: Error assessment of model calibration (04/06 - 08/23) and projection (08/24 - 09/13).

Metric Model
Calibration Projection

US Mexico Philippines Brazil US Mexico Philippines Brazil

MAPE
Teacher 0.0363 0.1217 0.3197 0.0879 0.0352 0.0369 0.1030 0.1522
Student 0.0695 0.1164 0.3472 0.0792 0.0433 0.0527 0.0984 0.1331
Coarse 0.0843 0.2269 1.3159 0.1438 0.0727 0.0910 0.1314 0.2923
Teacher 0.669 0.183 0.101 0.790 0.209 0.028 0.048 0.703

RMSE Student 1.321 0.163 0.163 0.857 0.218 0.041 0.041 0.593
(105) Coarse 1.426 0.333 0.229 0.985 0.399 0.063 0.059 1.215
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4.3.5 Overall Algorithm

Algorithm 2 presents the overall procedure of our proposed black-box knowledge distillation based

epidemiological modeling. Beginning with a modeling approach, a comprehensive epidemic simu-

lation system is built as a teacher model M T . We then pick a few simulated observation sequences

x to query the teacher model and retrieve their simulated projection sequences y. With obtained

sequences (x,y), we construct a large observation-projection pool (X ,Y ) using sequence mixup.

Finally, we train a student deep neural network M S with (X ,Y ).

Algorithm 2 Epidemiological Modeling with Black-box Knowledge Distillation

INPUT: A modeling approach F such as mixture SEIR.
INPUT: A set of observation sequences Xobs = {xi}n

i=1.
INPUT: Hyper-parameters (mixup rate, learning rate etc.)
OUTPUT: A student deep neural network M S

1: Develop a comprehensive simulation system M T based upon F with a set of conditions {BC,
IC, ODEs}s

2: With all observation sequences in Xobs, query simulation system M T , retrieve projection se-
quences Yquery = {yi}n

i=1, and form an observation-projection pool (Xobs,Yquery).
3: Construct a mixed sequence pool (Xmix,Ymix) = {(x̂, ŷ) : (x̂, ŷ) ∈ (∑n

i=1 ωixi,∑
n
i=1 ωiyi)} with

query results (Xobs,Yquery), where ω is heuristically chosen.
4: Train a student deep neural network M S with (X ,Y ) = (Xobs,Yquery)∪(Xmix,Ymix) to minimize

distillation loss Ldis.

4.4 COVID-19 Case Study

4.4.1 Experiment Setting

Data. We evaluate our approach on the open COVID-19 datasets provided by Johns Hopkins

University [85]. In this dataset, our experiments are focused on daily infection case increase. With

these reported data, we derive active infection cases based on 7-day transmission duration [86], as
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the data do not explicitly report the number of recovered patients. The observation period starts

from 04/06/2020 to 08/23/2020 and the evaluation period is from 08/24/2020 to 09/13/2020.

Black-box Teacher Model. A black-box teacher model is built with aforementioned mixture

SEIR. The mixture model consists of 10 compartment host communities. Each compartment host

community is simulated with 10 choices for Ni to specify constant BC, 2 choices for {S0
i ,E

0
i , I

0
i ,R

0
i }

to specify IC, and 20 choices for each coefficient in {β ,σ ,γ} to specify ODEs. Such choices of

parameters are based on heuristics. Most studies on COVID-19 using SEIR model give a wide

range of parameter choices [87]. We refine them to more reliable ranges. With the refined param-

eter choices, this simulation system contains 16000010 scenarios for the entire society N, which

is impractical. To facilitate distillation assessment, we conduct random sampling to reduce it to

107 scenarios as an approximate version of teacher model to the simulation system for compara-

tive study. The teacher model generates a simulated projection sequence by minimizing the mean

squared error between real observation and the simulation over the calibration period, which is

similar to exhaustive search.

Query Sequences and Mixup. We randomly pick 1000 {BC, IC, ODEs}s to prepare simulated

observation sequences which are used to query teacher system. Note that, compared to the size

of the ensemble, this number is so limited that we acquire little knowledge about simulation sys-

tem with selected sequences, which still follows black-box teacher model setting. Given 1000

query results, we construct a large pool with 100K sequences by sequence mixup, where ω is set

heuristically.

Student Deep Neural Network Training. Our student network architecture is an MLP which has

3 hidden layers with 80 neurons each. The batch size is 128 and learning rate is set to 0.1. Adam

optimizer is chosen. Weight decay is specified to 1e-5. The total epoch is set to 300 and learning

rate is reduced by 90% after every 100 epochs. We select 1K sequences from the constructed
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sample pool as a training set for efficient training.

Studied Cases. We implement our black-box distillation framework to distill comprehensive in-

fection modeling system for US, Mexico, Philippines, and Brazil. The infection patterns of these

countries are representative of complex dynamics which involves multiple peaks and complicates

model calibration. To achieve an adequate teacher model on each studied country, we heuristically

specify the search space boundaries for {BC, IC, ODEs}s with the information of national popu-

lation, reported positive cases on March 30th (a week before April 6th), and outbreak severity for

each country.

Evaluation Metric. We evaluate infection case modeling performance on both accuracy and effi-

ciency. For accuracy, model calibration and projection are assessed. The performance is quantified

by mean absolute percentage error, MAPE = 1
n ∑

n
i=1 |

yo
i−ym

i
yo

i
|, and root mean square error, RMSE

=
√

1
n ∑

n
i=1(y

o
i − ym

i )
2, where yo is the real observation sequence, ym is the modeled sequence, and

n is the total number of sequences. MAPE and RMSE are two widely adopted metrics to evaluate

regression models. While lower MAPE suggests that the general trend is better captured, higher

error can occur at larger observation data. RMSE is a better indicator for large values since it offers

higher penalty for these errors. Therefore, we use both metrics for accuracy evaluation.

As to computation efficiency, we evaluate model complexity with required simulation scenarios

and total time cost for each projection query. For student network, the network training cost is

included in each query process although network retraining is not always necessary.

Competing Methods.

First, we compare our approach with the approximate teacher model and coarse search to examine

accuracy and efficiency. Coarse search is developed upon coarse grid search space for mixture

models. We reduce the number of compartment communities to 5, the options for BC to 5, and the
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choices for each ODE coefficient to 10, which could be taken as a reduced teacher model, but still

with the complexity of 100005. Similar to teacher model, for practical performance evaluation,

we reduce it to 105 scenarios with random sampling, which ensures its similar data complexity to

student network. In the following sections, approximate teacher model and coarse grid search are

referred to as teacher model and coarse search, respectively. Next, we compare our student network

with 7 state-of-the-art forecasting models reported from CDC [88]. These models are developed

with machine learning based methods, like UM and UCLA-SuEIR, statistical methods, like DDS,

physics-based model, like JHU-IDD and Columbia, and ensemble approaches, like UVA and CDC

Ensemble [89].

Table 4.2: MAPE comparison of state-of-the-art models and our method on US weekly infection
case increase projection between 08/24 and 09/13. The results of other models are collected from
CDC, which are reported by COVID-19 Forecast Hub.

Period Model
(from 08/23) CDC Ensemble UM DDS UVA UCLA JHU Columbia Ours
1 week ahead 0.0608 0.3866 0.0417 0.0698 0.0367 0.0737 0.0456 0.0301
2 week ahead 0.1108 0.0386 0.0228 0.0772 0.0889 0.1165 0.0250 0.0623
3 week ahead 0.0581 0.0549 0.0819 0.2724 0.0077 0.2572 0.2083 0.0398

Table 4.3: Model complexity measured by the required simulations and the CPU time cost for one
projection query.

Complete Approximate Student Coarse
Teacher Teacher Network Search

Simulations 16000010 107 103 105

Time(s) N/A ∼3×104 ∼ 400 ∼300
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4.4.2 Results

Accuracy. Our calibration and projection results are reported with weekly increase cases in Figure

4.2. Student network is comparable to teacher model and significantly outperforms coarse search.

These performance differences are quantified with MAPE and RMSE in Table 4.1. It is shown that,

compared to the teacher model, student network achieves similarly low or even lower MAPE and

RMSE, over the calibration or projection periods. This observation results from the approximation

of teacher model and sequence mixup for student network training. Coarse search yields highest

errors due to limited search space.

We compare our student network with 7 state-of-the-art models in Table 4.2, which are based on

the reported data from CDC [88]. Our model consistently outperforms CDC Ensemble, which

incorporates all reported state-of-the-art models, with 30%−50% MAPE reduction over this pe-

riod. In particular, our model yields more accurate 1 week ahead prediction and more consistent

performance over three weeks compared to other models.

Table 4.4: Calibration and projection errors from student network for US with 100K, 50K, and
25K mixed sequences.

Metric 100K 50K 25K

Calibration
MAPE 0.0695 0.0987 0.1459
RMSE(105) 1.321 1.831 2.910

Projection
MAPE 0.0433 0.1861 0.2813
RMSE(105) 0.218 0.985 1.367

Efficiency. From Table 4.3, student network saves both simulations and time cost by orders of

magnitude. Student network and coarse search are on par in total time cost, while the network

training takes approximately 300 CPU seconds in our study. This performance gain results from

the optimization with sequence mixup and lightweight network design. It justifies that our ap-

proach significantly improves modeling efficiency and can facilitate the application of complex
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and cumbersome epidemiological models.

Significance of Mixup. Sequence mixup, as an efficient method for data augmentation, is very

important to enhance knowledge transfer in our approach. Compared to coarse search and teacher

model, our student network can learn more scenarios out of search space due to sequence mixup,

and this knowledge can overcome the limit from search space, thus even improving calibration

and projection accuracy. To justify its importance, we conduct experiments with 100K, 50K, and

25K mixed sequences from 1000 retrieved observation-projection sequences and evaluate their

performance difference in calibration and projection for US. From Table 4.4, the reduction in mixed

sequences causes model degradation. The degradation becomes worse in the projection period due

to calibration error propagation. Thus, sequence mixup is critical to accurate projection.

4.4.3 Discussion.

First, a comprehensive and accurate modeling system is critical in our framework. When this

comprehensive teacher model is more complex and accurate, our student network can yield more

accurate results. Next, student network can interpolate information in latent space which can

resolve space discretization problem in grid search. The space of grid search is often too sparse to

find an optimal solution. Therefore, dense search space is imperative, but its cost will exponentially

increase. This can be alleviated by our proposed knowledge distillation. In addition, sequence

mixup improves training data coverage and boosts model distillation, which helps student network

even outperform teacher model. It implies that our proposed knowledge distillation scheme has

potential to improve teacher model. Also, if a well-trained student network is obtained, the model

could be reused many times, even when new data are included. In contrast, conventional random

grid search, like teacher model or coarse search, has to be reset and query all entries again to

retrieve projection solutions. This implies student network can save extra query cost.
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4.5 Summary

We propose an innovative accurate modeling approach which leverages mixture models to ensure

high accuracy and employs black-box knowledge distillation to reduce complexity and improve

accuracy. It consists of teacher model development, model querying, sequence mixup, and student

network training. The developed teacher model is a comprehensive simulation system which can

accurately model challenged transient dynamics but is impractical. Then, we prepare simulated

observation sequences to query this simulation system and retrieve simulated projection sequences

as knowledge for distillation. In particular, to save number of queries and enhance knowledge

transfer, sequence mixup is designed and effectively augments training data. With retrieved and

mixed observation-projection sequences, a student deep neural network is trained as a distilled

model for practical use. Our COVID-19 case study on US, Mexico, Philippines, and Brazil justifies

that this approach brings in high accuracy but lower complexity. Also, our approach outperforms

some state-of-the-art methods, like CDC Ensemble, over the studied period. In future, this work

will be extended and applied to more epidemiological studies.
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CHAPTER 5: SIMPLE YET EFFECTIVE MODEL UNCERTAINTY

REDUCTION

5.1 Problem Introduction

This paper aims at providing a general and effective model uncertainty reduction approach, thus

improving in-distribution (InD) model calibration and out-of-distribution (OoD) data detection.

Recently, DNN, as a sophisticated modeling approach, has attained tremendous success in many

complex practical problems, such as computer vision, natural language processing, and speech

recognition. Although this modeling approach exhibits impressive performance on model accu-

racy, the reliability of DNN is still an issue for real applications. The work in [13] shows that

DNN can exhibit over-confidence on the prediction results, which is risky for many safety-critical

applications such as autonomous driving. Therefore, model uncertainty reduction is critical and

pressing to neural network applications.

Recently, increasing number of research efforts start to explore this problem. [90] formulates

and discusses the model uncertainty problem in deep learning and highlights its importance for

DNN applications. [46] refines the problem where distributional uncertainty is considered for

addressing data distribution shift issue. Given the formulations, there are several methods to reduce

model uncertainty. The straightforward method is to find an integral solution, but it is generally

intractable[46]. Approximation approaches can be helpful, such as Bayesian Monte Carlo[91]

and point estimation, but they still have some limitations. Bayesian learning may help find more

accurate solution, but it consumes lots of time and model storage. Ensemble model can be taken as

a simplified Bayesian model[45], but it not only consumes lots of time and storage for inference,

but also exhibits lower estimator efficiency due to high variance [92]. Conventional single model
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training based upon point estimation can save storage and show high estimator efficiency in virtue

of low estimator variance, but it can easily cause biased estimator. Accordingly, it is a challenge to

seek an unbiased and efficient model estimator, which is essential for model uncertainty reduction.

To tackle this challenge, we propose a simple yet effective model uncertainty reduction approach

leveraging point estimation. This approach employs ensemble model to correct the estimator bias

first. Then, it integrates knowledge distillation with data augmentation to reduce the estimator

variance and improve estimator efficiency. After this effective integration, the obtained model is a

bias-reduced and efficient point estimator. This approach is more unbiased and more efficient than

deep ensemble such as [5].

The contributions of this work include:

• This paper develops a simple yet effective approach EKD (Ensemble Knowledge Distillation)

to reduce model uncertainty. Our method is easily implementable and scalable to any model

neural network.

• To the best of our knowledge, we are the first to leverage a bias-reduced and efficient model

point estimator to solve model uncertainty problem. Our proposed approach blends ensemble

model and knowledge distillation to effectively address model estimator bias and variance

simultaneously, thus successfully reducing model uncertainty with point estimation.

• Our study reveals that this simple model uncertainty reduction approach can directly improve

InD model calibration and OoD data detection, simultaneously.

• This work studies the effectiveness of different data augmentations on ensemble knowledge

distillation and reveals that AutoAugment [40] is an effective approach for model uncertainty

reduction by ensemble distillation.
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• This work conducts extensive experiments to justify this approach across different scale of

datasets and various model architectures such as CNN models and Vision Transformer (ViT)

variants.

5.2 Background

5.2.1 Model Uncertainty

Although DNNs achieve wide successes on lots of applications, model reliability is always a con-

cern for its practical use. For example, the study in [93] reveals that DNNs can predict with high

confidence for the images unrecognizable to humans. The research in [13] further highlights the

overconfidence problem in modern DNNs. This overconfidence issue can cause the high vulnera-

bility to very small perturbation on images and misclassification with high probability prediction

[94]. To address these issues on performance generalization, [95] puts forward a baseline approach

of maximum softmax probability to distinguish OoD images from misclassified InD images. [96]

proposes an approach named ODIN with post-processing on model outputs to enhance the model

reliability of OoD image detection. [97] develops a unified framework for OoD detection by im-

proving confidence analysis with energy score.

The work most relevant to our approach is Deep Ensemble (DE) [5]. DE [5] excels in model

calibration on InD data due to its approximate form of Bayesian model average [45], but OoD

detection can be affected due to the mix of misclassification and OoD detection. According to the

formulation in [46], the data uncertainty is further separated into data and distributional uncertain-

ties, which are referred to InD calibration and OoD detection, and a prior network is designed to

distinguish InD and OoD data.
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5.2.2 Knowledge Distillation

Knowledge distillation [6] is proposed to compress large DNNs to smaller ones. This work reveals

that the probability outputs from large networks can be taken as “dark knowledge” to retain its per-

formance on accuracy with light-weight substitute models. The research with further exploration

also finds that this approach is effective on model accuracy improvement. For example, On-the-fly

Native Ensemble (ONE) equipped with ensemble distillation outperforms ensemble model [10].

Self-distillation with retraining the model can help increase model accuracy [11, 12].

The most relevant methods to our approach are ensemble distribution distillation [14] and batch

ensemble distillation [15]. Extending from [46], Dirichlet distribution is employed to describe prior

distribution and help distill ensemble networks, which improves model uncertainty distillation

[14]. However, it require lots of ensemble networks to sample model output distribution, which

causes training a prior network is computationally expensive and impractical for large models.

Moreover, Dirichlet distribution is an approximate solution to ensemble model outputs, which is

not always guaranteed. This leads to the gap between ensemble model and distilled distribution

network. [15] makes use of batch ensemble training with more diverse data by input perturbation

to fill the gap between ensemble model and distilled network, but the ensemble model as an upper

bound still limits model uncertainty performance.

5.2.3 Data Augmentation

Sufficient training data are critical to DNN training. Lots of approaches are proposed to improve

data augmentation effectiveness. AutoAugment [40] optimizes augmentation policies given a

range of image processing techniques. Mixup [1] blends different images with linear combina-

tion and generates the labels with linear interpolation. Inspired from the striking perforamnce of
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pretrained models in natural language processing tasks, contrastive learning based pretraining is

carried out for computer vision DNNs. SimClr [98] employs stronger data augmentation to signif-

icantly enhance model recognition on image variation in a self-supervised learning manner. MoCo

[99] incorporates self-attention mechanism in Transformer network into contrastive learning pro-

cess, thus improving image recognition.

Recently, increasing number of work starts to study the impact of data augmentation on model

uncertainty performance. For example, Mixup is explored and found effective on model calibra-

tion improvement when models are trained from scratch [100]. However, combining mixup with

ensemble model can adversely affect model calibration performance [101].

5.3 Point Estimation

According to [46], the source of DNN uncertainty is composed of data and model uncertainty,

which can be formulated as:

P(y|x∗,D) =
∫

p(y|x∗,θ)︸ ︷︷ ︸
Data

p(θ |D)︸ ︷︷ ︸
Model

dθ , (5.1)

where P is the inference probability for test input x∗ on label y given the model θ trained with

data D. This formulation shows that data uncertainty is confounded with model uncertainty. This

confounding harms model prediction confidence, resulting in inferior InD model calibration and

weaker OoD data detection [46]. To alleviate this confounding, probability density function (PDF)

of p(θ |D) is required for integration. Unfortunately, it is intractable, so estimation is needed.

Point estimation is a simple but effective approach to approximate model parameters [92]. As

shown by [46], it approximates the PDF of p(θ |D) to a Delta function concentrating on the true
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parameter θ̂ , as shown in eq.5.2.

p(θ |D) = δ (θ − θ̂) (5.2)

A good point estimator requires both unbiasness and efficiency [92]. An unbiased estimator indi-

cates that the derived θ is sufficiently close to θ̂ . An efficient estimator indicates that the variance

of θ is small to ensure the concentration on θ̂ . To obtain an unbiased estimator, we select en-

semble model average as a solution to bias reduction. Suppose that the members in ensemble

models are independent and identically distributed (i.i.d.). They are viewed as model estimators.

When estimators are consistent, the more number the sampled models include, the more accurate

the average estimation is [102]. To derive an efficient estimator, we distill ensemble model with

data augmentation, which significantly reduces estimator variance. Particularly, this approach is

not tailored for any specific task, such as model calibration improvement or OoD data detection.

Accordingly, it can generalize better to any uncertainty improvement task, or be integrated with

uncertainty improvement algorithms, like temperature scaling.

5.4 Method

We present our proposed ensemble knowledge distillation (EKD) method in this section. Since a

good point estimator reduces model uncertainty, the objective of our approach is narrowed down

to achieve a bias-reduced and efficient point estimator. This estimator is a single model θ with

parameter probability density function p(θ |D) = δ (θ − θ̂). Therefore, p(θ |D) = δ (θ − θ̂) is our

objective and the optimization is carried out with p(θ |D)→ δ (θ − θ̂).

The approach is specified to two stages including self-distillation ensemble training and ensemble

distillation. It consists of three steps including: 1) training a stochastic ensemble teacher to re-

duce the bias of θ from θ̂ ; 2) self-distilling each ensemble member for model regularization; 3)
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distilling this ensemble to reduce variance. We conduct stronger data augmentation to enhance the

distillation.

5.4.1 Self-distillation Ensemble Training

We first train an ensemble to reduce the model estimator bias based upon the assumption of i.i.d.

and consistency. The ensemble can be obtained in different manners. According to [5], randomly

initialized ensemble members are independently trained with cross-entropy minimization as eq.5.3.

θ = argmin
θ

LCE(P(y|D ,θ),y), (5.3)

where θ is model parameter, LCE is cross-entropy loss, P is model inference probability, y is the

label encoded by one-hot vector, and D denotes input data.

Algorithm 3 Simple and Scalable Deep Ensemble (DE) [5]

1: Initialize θ1, θ2, . . . , θN randomly
2: for i = 1 : N do
3: Train a model θi with D //Train a teacher ensemble in parallel
4: end for
5: Return ensemble teacher Θ =

⋃
θi

Different from DE [5], we propose to use self-distillation to derive the ensemble. This extra dis-

tillation step can enhance model regularization [43], improve individual model calibration [13],

and thus, help seek a better ensemble candidate for distillation. Moreover, self-distillation can be

easily parallelized and ensure algorithm efficiency with high scalability.

Self-distillation is the knowledge distillation where the labeled data and architectures of teacher

and student are identical. This scheme can effectively boost model generalization [11, 12] in

virtue of its amplifying model regularization [43]. Some regularization techniques can help model
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calibration, such as weight decay [13] and label smoothing [44]. Since knowledge distillation can

be taken as an learned label smoothing regularization[37], we use self-distillation to regularize

ensemble member for better calibration distillation.

Take the obtained model θ as a teacher model. Following self-distillation, we distill each teacher

model θ to a student model φ with identical model architecture, the same labeled data, and the

logits queried from teacher model θ . Given eq.5.3, self-distillation can be reformulated as:

φ = argmin
φ

αLCE(P(y|D ,φ),y)+βLKD(P(y|D ,φ),qθ ), (5.4)

where φ denotes self-distilled model parameters, LKD indicates distillation loss, and qθ is the soft

targets, i.e. the probabilities queried from θ . We do not tune the two hyperparameters of α and β

and set them to α = β = 0.5 for simplification. Note that we select soft targets as query labels, so

LKD is cross-entropy loss between the soft targets and student model probability outputs.

Algorithm 4 Our Self-distillation Scalable Ensemble

1: Initialize θ1, θ2, . . . , θN randomly
2: Initialize φ1, φ2, . . . , φN randomly
3: for i = 1 : N do
4: Train a model θi with D //Train a teacher
5: Train self-distilled model φi from θi with D //ensemble in parallel
6: end for
7: Return ensemble teacher Φ =

⋃
φi

We collect N self-distilled student models in parallel and combine them as an ensemble model Φ.

For inference, the ensemble prediction is the arithmetic average of the probability outputs across

all student models as shown in eq.5.5.

P(y|x∗,Φ) =
1
N

N

∑
i=1

P(y|x∗,φi), (5.5)
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where Φ is the ensemble model, x∗ is test data, and φi is individual self-distilled student model.

Compared to DE[5] in Algorithm 3, the only additional overhead from our Algorithm 4 is self-

distillation process, but it could be reduced by early stopping for θ . Also, the overhead cost will

be insignificant when ensemble model size increases. More importantly, we find model calibration

gain is significant.

5.4.2 Ensemble Distillation

We conduct ensemble distillation to improve estimator efficiency by model estimator variance

reduction. Ensemble model can reduce estimator bias, but it increases estimator variance from

ensemble process. In particular, a biased estimator with smaller variance may be more useful than

an unbiased estimator with large variance [92]. Accordingly, it is imperative to reduce estimator

variance in ensemble model. We select knowledge distillation to solve this problem. This distil-

lation can help a single model derive the unbiasness from ensemble model and reduce estimator

variance. Therefore, the distilled single model is a good point estimator with better unbiasness and

efficiency. The distillation is formulated in eq.5.6.

κ = argmin
κ

αLCE(P(y|D ,κ),y)+βLKD(P(y|D ,κ),qΦ) (5.6)

where κ is the parameter of distilled model, qΦ is the soft target, i.e., the probability output from

ensemble model Φ, and α : β = 1 : N. Here we set the temperature to 1 since we would like the

student model to better imitate the posterior probability distribution of ensemble model for better

calibration.

We also take efficient distillation into consideration. We separate classification and distillation into

two branches to accelerate the convergence of model training. The inference uses the combined
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outputs from two branches with combination ratio α : β = 1 : N.

Data Augmentation is imperative to our EKD. Since the ensemble model is significantly larger

than single student network, it is difficult for the student to capture complex feature in the en-

semble teacher. Recently, [36] reveals that ensemble model exhibits the recognition on data from

multiple views and it is critical to capture these multi-view features over distillation. [36] points

out that data augmentation, such as cropping, is a means to enforce networks learn multi-views.

Thus, we adopt data augmentation as an effective approach to efficiently distill ensemble model.

Considering storage efficiency, we employ online augmentation strategy and select AutoAugment

[40] to enlarge training data space.

The effectiveness of data augmentation on boosting knowledge distillation has been empirically

justified by lots of work, such as Active Mixup[35], DeiT[4], and ensemble distillation [15]. How-

ever, the enlargement of data space can not always boost performance, especially on model un-

certainty reduction. Different data augmentation strategies can yield different distillation perfor-

mance. To the best of our knowledge, the efficiency comparison between different augmentations

on model uncertainty reduction has not be studied yet. We will discuss this point in Section 5.

Query Efficiency is critical to ensemble distillation. Conventionally, all ensemble members are

queried over each batch for output average. This is time-consuming and limits the practical use.

To improve query efficiency, we adopt switched training [103] to reduce query cost and keep

distillation accuracy. This scheme of switched training randomly samples one teacher from the

ensemble pool for query over each batch. Compared to the average of ensemble member outputs,

it significantly reduces the query cost to 1
N . It may introduce some variance over training, but

distillation accuracy is still ensured[103].

With data augmentation and switched training, the optimization formulation for our EKD is final-

ized with eq.5.7. Moreover, intuitively, this training strategy can moderately augment data labels
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through randomly querying ensemble member model over each batch. It can absorb some diver-

sity in ensemble model since it acquires the output from each member instead of the average of the

ensemble.

κ = argmin
κ

αLCE(P(y|DA ,κ),y)+βLKD(P(y|DA ,κ),qφi) (5.7)

where DA is augmented data based upon D , qφi is the soft target queried from a randomly selected

teacher φi in ensemble, and the other denotations follow eq.5.6.

5.4.3 Algorithm

We present our algorithm in this section. The distillation consists of two main stages, including

ensemble training and ensemble distillation. To fulfill these two stages, there are three steps,

including stochastic teacher training, self-distillation, and ensemble teacher distillation. The first

step of stochastic teacher training aims at collecting a set of i.i.d. models to get a better unbiased

model estimator. The second step of self-distillation intends to regularize each ensemble member,

improve model calibration performance, and prepare better ensemble candidate for distillation.

The third step of ensemble distillation focuses on deriving the unbiasness from ensemble model

and reducing estimator variance for higher estimation efficiency.

We summarize our approach in Algorithm 5. First, we train an initial teacher model θ with labeled

data D . Secondly, we obtain an ensemble network Φ, i.e., a set of DNNs φ by distilling the teacher

model θ separately. Both are carried out in parallel to ensure efficient computation with good

scalability, which is the first stage of ensemble training. Thirdly, given the obtained ensemble

network Φ, ensemble knowledge distillation is conducted with efficient augmented training. The

data augmentation policy Ω is an effective data augmentation, like AutoAugment[40], and model
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Algorithm 5 Ensemble Knowledge Distillation (EKD)

INPUT: Training data D , hyper-parameters (learning rate, batch size, etc.)
OUTPUT: Inference model κ

Stage 1: Self-distillation Ensemble Training

1: // Train a teacher ensemble model Φ in parallel
2: Initialize θ1, θ2, . . . , θN randomly
3: Initialize φ1, φ2, . . . , φN randomly
4: for i = 1 : N do
5: Train a model θi with D //Stochastic teacher training.
6: Obtain a self-distilled model φi from stochastic teacher model θi with D
7: end for
8: Return ensemble teacher Φ =

⋃
φi

Stage 2: Ensemble Distillation

1: // Train a student model κ by distilling ensemble teacher Φ =
⋃

φi with DA

2: Augment data DA = Ω(D)+D //where Ω is augmentation policy.
3: Initialize κ randomly
4: for epoch = 1, 2, ... do
5: for s = 1, 2, ... do
6: Sample i∼U (1,N) // U is a uniform distribution.
7: Sample ds ∼DA // Randomly sample a batch of data.
8: κ = κ +∇κ(αL ds

CE +βL ds

KD(qφi)) //where α : β = 1 : N
9: end for

10: end for
11: Return κ for inference

query is reduced by switched training.

5.5 Experiments

We design various experiments to evaluate our approach including comparing with state-of-the-

art(SoTA) methods. The comparative study focuses on InD model calibration and OoD data de-

tection. Meanwhile, we assess the integration of our approach with different post-processing tech-

niques for OoD data detection. Next, we study the effectiveness of different data augmentation on

our ensemble distillation for model uncertainty reduction. We also conduct ablation study to show
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the variability among different distillation schemes. Last but not least, we extend our experiments

to ViT[104] variants.

5.5.1 Experiment Setting

InD Model Calibration. We select four popular image classification benchmark datasts, includ-

ing CIFAR-10 [72], CIFAR-100[72], Tiny-ImageNet[105], and ImageNet[106]. We compare our

approach with the four most relevant SoTA approaches, including DE[5], ensemble distribution

distillation (EnD2)[14], batch ensemble (BE)[15], and temperature scaling (TS)[13]. We select

four metrics for performance evaluation: 1) classification error (Error); 2) negative log likelihood

(NLL); 3)Brier score (Brier); 4) expected calibration error (ECE).

OoD Data Detection. We select six benchmark datasets as OoD datasets for CIFAR-10 and

CIFAR-100, including Textures [107], SVHN[108], Places365[66], LSUN-Crop[109], LSUN-

Resize[109], and iSUN[109]. For ImageNet, we select ImageNet-O[110] and ImageNet-A[110]

as OoD data. We compare our approach with DE[5], EnD2 [14], and PD-EnD2[3]. Note that the

compared models are the same as the ones from InD ones. We also select three OoD detection

strategies, including maximum over softmax probability (MSP) [95], energy score [97], and ODIN

[96], to identify OoD data. We select three evaluation metrics: (1) the false positive rate of OoD

data when true positive rate of InD data is is 95% (FPR95); (2) the area under the receiver operating

characteristic curve (AUROC); and (3) the area under the precision-recall curve (AUPR).

5.5.2 InD Model Calibration

Table 5.1 shows that our method significantly outperforms the other four SoTA approaches on

model calibration metrics. Since stronger data augmentation is incorporated into knowledge dis-
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tillation, it is not surprising that the error of EKD is lower than other approaches. NLL and Brier

of EKD are also lower.

Table 5.1: Comparison of SoTA on InD calibration with five runs. PD denotes PD-EnD2[3]. Best
performance is bold, * results are reported in the original paper, - denotes no result reported from
the paper, and ↓ denotes the less the better.

Methods Error↓ NLL↓ Brier↓ ECE↓ Error↓ NLL↓ Brier↓ ECE↓
VGG16 on CIFAR-10 ResNet34 on CIFAR-10

EKD 5.7±0.1 0.17±0.01 0.08±0.00 0.7±0.1 5.6±0.1 0.17±0.01 0.08±0.00 0.5±0.1
DE [5] 6.3±NA 0.18±NA 0.09±NA 1.3±NA 5.8 ±NA 0.18±NA 0.09±NA 0.9±NA

EnD2[14] 7.3±0.2
∗ 0.25±0.01

∗ - 1.0±0.2
∗ 7.9±NA

∗ 0.26±NA
∗ 0.12±NA

∗ 1.7±NA
∗

BE [15] - - - - 6.0±0.2
∗ 0.18±0.01

∗ 0.09±0.0
∗ 0.7±0.1

∗

TS [13] 8.3±0.4 0.25±0.02 0.12±0.01 0.9±0.1 6.4±0.3 0.20±0.01 0.10±0.01 0.8±0.1
VGG16 on CIFAR-100 WideResNet28-10 on CIFAR-100

EKD 23.8±0.1 0.84±0.01 0.32±0.01 1.1±0.1 16.6±0.2 0.59±0.01 0.23±0.01 1.5±0.1
DE [5] 25.0±NA 0.89±NA 0.34±NA 2.1±NA 17.7±NA 0.68±NA 0.25±NA 2.2±NA

EnD2[14] 27.9±0.3
∗ 1.14±0.01

∗ - 4.9±0.5
∗ - - - -

BE [15] - - - - 18.1±0.3
∗ 0.67±0.01

∗ 0.26±0.01
∗ 2.4±0.0

∗

TS [13] 31.2±0.5 1.15±0.03 0.43±0.01 2.0±0.2 20.2±0.5 0.79±0.01 0.29±0.01 3.6±0.1
VGG16 on Tiny ImageNet WideResNet28-5 on Tiny ImageNet

EKD 34.2±0.1 1.40±0.01 0.47±0.01 1.2±0.3 29.1±0.2 1.18±0.04 0.40±0.02 2.3±0.2
DE [5] 36.6±NA 1.51±NA 0.52±NA 3.8±NA 30.1±NA 1.24±NA 0.43±NA 2.9±NA

EnD2[14] 37.6±0.2
∗ 1.83±0.02

∗ - 7.2±0.4
∗ - - - -

BE[15] - - - - 34.0±NA
∗ 1.44±NA

∗ 0.46±NA
∗ 5.9±NA

∗

TS [13] 40.5±0.4 1.68 ±0.02 0.52±0.02 3.1±0.1 39.3±0.4 1.58±0.02 0.51±0.02 2.1±0.1
ResNet-50 on ImageNet ResNet-18 on ImageNet

EKD 20.5±0.2 0.82±0.01 0.29±0.01 1.1±0.1 27.0±0.2 1.06±0.02 0.37±0.1 1.7±0.1
DE[5] 21.0±NA 0.83±NA 0.30±NA 2.3±NA 27.3±NA 1.07±NA 0.38±NA 2.1±NA
PD[3] 23.0±0.1

∗ - - 1.6±0.1
∗ - - - -

TS [13] 24.5±0.3 0.92±0.2 0.33±0.2 1.5±0.2 30.2±0.4 1.24±0.03 0.41±0.02 1.8±0.2

However, interestingly, EKD can consistently outperform on ECE. Compared to DE, EKD reduces

ECE by half in average. This improvement indicates that ensemble distillation not only imitates

the posterior distribution pattern of the ensemble, but also can outperform ensemble when stronger

augmentation is carried out. Compared to EnD2, the performance gain is more significant in larger

datasets, like Tiny-Imagent. This implies that simple data augmentation can depict posterior dis-

tribution of ensemble model without explicit complex formulation, such as Dirichlet distribution.
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The implicit depiction by augmented data query may be more accurate since ensemble may follow

more complex multi-modal distribution. Compared to BE, the improvement from EKD indicates

that effective data augmentation can outperform adversarial perturbation on ensemble distillation

efficiency. Compared to TS, calibration improvement from EKD implies that ensemble plays a

prominent role in better calibration.

5.5.3 OoD Data Detection

Next, we evaluate our EKD on OoD data detection. Note that the evaluated models are exactly

the same as the models for InD model calibration assessment in Table 5.1 for fair comparison. We

compare our approach with DE[5], EnD2 [14], and PD-EnD2[3]. The comparison in Table 5.2

shows that our EKD significantly improves AUROC and outperforms DE and EnD2. Interestingly,

the OoD detection of our approach is more independent from model classification error. This

implies that the posterior distributions between OoD and InD data are more separated and the

confounding is reduced.

For OoD detection, we also extensively evaluate our approach with the integration of the three

different OoD detection techniques, including MSP [95], energy score (Energy) [97], and ODIN

[96]. The results in Table 5.3 show that our EKD consistently outperforms DE across different

benchmarks except the case of ResNet-50 on ImageNet with ODIN. This performance gain fur-

ther justifies that our EKD better separates OoD from InD data than DE due to model variance

reduction. Also, the OoD detection is more improved when EKD is integrated with Energy since

both boost OoD and InD distribution separation [97]. For ImageNet, ImageNet-A and ImageNet-O

are natural adversarial samples, which are more challenging for OoD detection, and the improve-

ment by distillation is less. For ODIN, it is optimized with image pre-processing with adversarial

samples to identify OoD data [96]. When OoD data are adversarial samples, like ImageNet-A
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or ImageNet-O, this optimization may be limited and cause significant performance degradation,

such as the case of ResNet-50 with ImageNet.

Table 5.2: Comparison of the OoD detection with AUROC (the higher the better) across SoTA
methods. The evaluated models are the same as the one from Table 5.1. The best performance is
bold and * results are reported in the original paper.

InD CIFAR-10 CIFAR-100 Tiny-ImageNet ImageNet
OoD LSUN TIM LSUN TIM LSUN C100 ImageNet-O ImageNet-A

EnD2[14] 92.2∗ 88.8∗ 83.8∗ 77.2∗ 70.4∗ 76.7∗ 48.80∗ 87.20∗
PD[3] - - - - - - 53.20∗ 86.80∗

DE[5]+[95] 92.3 85.4 72.9 78.5 84.8 81.8 54.04 88.36
DE[5]+[97] 93.1 85.9 73.7 79.0 86.6 83.2 54.68 89.24
DE[5]+[96] 93.1 86.2 78.0 80.1 91.5 87.5 54.85 84.38
EKD+[95] 93.2 88.8 66.5 79.3 89.5 86.8 54.84 87.25
EKD+[97] 96.7 90.3 85.1 81.8 91.4 88.4 59.80 89.47
EKD+[96] 97.1 89.7 86.2 79.3 94.1 92.2 58.81 74.56

Table 5.3: Comparison among a single model (Single), DE with five members, and our EKD with
five teachers. The mean performance is reported and the best is bold.

Method MSP Energy ODIN (T=1e3)
F95↓ AUROC↑ AUP↑ F95↓ AUROC↑ AUP↑ F95↓ AUROC↑ AUP↑

VGG16 Single 64.17 88.94 97.69 40.17 93.13 98.54 34.96 94.01 98.72
CIFAR DE[5] 55.37 90.03 97.61 48.40 90.63 97.70 25.26 94.76 98.39

10 EKD 49.74 92.70 98.51 23.59 95.78 99.10 19.82 96.43 99.23
ResNet34 Single 67.18 88.08 97.50 66.69 88.17 97.51 41.23 91.09 97.96
CFIAR DE[5] 58.05 89.01 97.53 52.72 91.00 98.15 32.42 93.78 98.63

10 EKD 57.71 89.29 97.72 33.01 94.09 98.73 29.25 94.56 98.80
VGG16 Single 84.76 72.53 93.09 83.59 72.84 93.10 75.23 78.10 94.49
CIFAR DE[5] 87.45 71.74 92.94 84.85 74.83 93.81 78.42 79.82 95.18

100 EKD 80.30 74.73 93.78 63.07 85.77 96.74 61.43 86.19 96.83
WRN28-10 Single 79.69 77.71 94.47 78.29 78.01 94.48 59.76 83.64 95.75

CIFAR DE[5] 76.18 80.73 95.43 74.73 81.18 95.51 54.93 86.43 96.67
100 EKD 71.61 82.01 95.70 65.54 84.76 96.28 52.07 86.89 96.55

ResNet50 Single 73.91 71.16 96.32 66.40 80.20 97.53 70.86 77.43 96.91
IMAGE DE[5] 67.59 81.13 97.13 65.59 81.96 97.45 70.85 78.16 96.92
-NET EKD 66.33 81.71 97.78 64.09 83.22 97.59 77.21 71.24 96.83
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5.5.4 Data Augmentation

We discuss the effectiveness of data augmentation in this section. Different augmentation policies

Ωs can yield different distillation efficiencies [111]. We evaluate four augmentation techniques to

assess which is more effective to our method. The evaluated techniques include AutoAugment[40],

Mixup[1], SimClr[98], and MoCo[99], which are popular in supervised and self-supervised learn-

ing. In our study, AutoAugment employs the best policy for each benchmark dataset; Mixup adopts

the mix ratio of 0.2 suggested from [100]; SimClr and MoCo (MoCo-V2) pretrained models are

used as augmented features for distillation fine-tuning.
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Figure 5.1: Data augmentation interaction between teacher and student models on CIFAR-10 with
the size of 32 × 32. Ensemble distillation error is classification error based upon percentage. The
results are reported over the average of three runs of distillations.

We first conduct the experiments on CIFAR-10 across different teachers and students. The inter-

action in Figure 5.1 reveals that Mixup is not good on either teacher or student due to its largest

Error, ECE, and FPR95. This significant degradation mainly results from the linear interpolation

on the label. The mix pseudo labels harm model prediction confidence, which affects distillation

fidelity to teacher model, especially on uncertainty calibration. To justify this, we conduct hard

label based Mixup and the obtained ECE is improved, which is shown in Table 5.4. Figure 5.1 also

shows that the augmentation fidelity can help improve calibration. When the teacher and student
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Table 5.4: Comparison of data augmentation on InD model calibration and OoD detection. CIFAR-
10 images are resized to 224 × 224. Mixup(hard) denotes mixup with hard label[4]. The best
performance is highlighted in bold. Three runs are averaged.

Methods Error↓ NLL↓ Brier↓ ECE↓ FPR95↓ AUROC↑ AUPR↑

ResNet50
AutoAug 4.0±0.1 0.11±0.01 0.05±0.01 0.3±0.1 11.07 98.00 99.58

Mixup 4.5±0.1 0.14±0.01 0.06±0.01 1.4±0.5 13.24 97.45 99.38
CIFAR-10 Mixup(hard) 4.4±0.1 0.13±0.01 0.06±0.01 0.9±0.1 13.67 97.42 99.44

SimClr 3.4±0.1 0.10±0.01 0.05±0.01 0.3±0.1 12.31 97.91 99.56
MOCO-V2 3.4±0.1 0.10±0.01 0.05±0.01 0.6±0.1 12.27 97.68 99.50

ResNet50
AutoAug 22.3±0.2 0.84±0.01 0.30±0.02 1.2±0.1 65.78 82.01 97.49

Mixup 22.8±0.0 0.91±0.00 0.32±0.00 2.1±0.3 66.13 81.53 97.48
ImageNet Mixup(hard) 22.9±0.1 0.91±0.01 0.33±0.01 1.5±0.2 66.32 81.99 97.51

SimClr 22.9±0.0 0.88±0.00 0.33±0.00 2.1±0.0 65.66 82.17 97.50
MOCO-V2 22.1±0.1 0.84±0.01 0.29±0.02 1.6±0.1 65.21 82.57 97.53

are both from AutoAugment, Error and ECE both outperform. For AutoAugment outperforming

SimClr and MoCo, it is possibly due to that AutoAugment more focuses on the current distillation

task while the representation from SimClr or MoCo is more general. Therefore, SimClr and MoCo

are both moderately good on teachers and students in Figure 5.1. Especially, they both yield better

OoD detection with lower FPR95. This performance benefits from contrastive learning feature,

which helps identify OoD data. The features are further enhanced through distillation.

We next extend the experiments to larger scale data. The evaluated benchmarks are 224 × 224

CIFAR-10 and ImageNet. The ensemble teacher is set to the vanilla model trained with only ran-

dom cropping and horizontal flipping. For SimClr and MoCo, we employ ImageNet pretrained

feature for both CIFAR-10 and ImageNet assessment. From Table 5.4, AutoAugment still shows

the best performance on InD model calibration for both CIFAR-10 and ImageNet. SimClr and

MoCo both show lower Error, NLL, and Brier due to stronger augmentation features from con-

trastive learning. AutoAugment still outperforms on ECE. Also, the ECE difference between Sim-

Clr or MoCo and AutoAugment is less. It implies the augmentation feature from extra data like

ImageNet is helpful for InD model calibration. Interestingly, compared to AutoAugment, SimClr

and MoCo exhibit better OoD detection when InD data is ImageNet, but worse for CIFAR-10.
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The possible reason is that the pretrained features from ImageNet may contain OoD features and

interfere OoD recognition confidence for CIFAR-10 model. Thus, pretrained features from InD

data may be a good option for OoD detection improvement.

Table 5.5: Comparison among different distillation strategies. Stochastic Ensemble (ST) [5] and
our Self-distillation Ensemble (SD) are compared. Average of outputs (Avg) and switched training
(Switch) are compared. The query cost is assessed with one run of feed forward network. The best
performance is bold and three runs are averaged.

Method Query InD Calibration OoD Detection
Cost↓ Error↓ NLL↓ Brier↓ ECE ↓ F95↓ AUROC↑ AUP↑

ResNet ST + Avg O(N) 4.9±0.1 0.14±0.01 0.07±0.01 1.0±0.2 14.22 97.25 99.39
18 ST + Switch O(1) 5.1±0.1 0.15±0.01 0.08±0.01 1.2±0.2 14.28 97.23 99.39

CIFAR SD + Avg O(N) 5.0±0.1 0.15±0.01 0.08±0.01 0.3±0.0 16.34 96.71 99.22
10 SD + Switch O(1) 5.2±0.1 0.15±0.01 0.08±0.01 0.4±0.0 16.30 96.73 99.21

ResNet ST + Avg O(N) 21.9±0.1 0.78±0.01 0.31±0.01 3.6±0.1 57.14 87.41 97.08
18 ST + Switch O(1) 22.2±0.1 0.79±0.01 0.31±0.01 3.8±0.1 56.46 87.44 97.10

CIFAR SD + Avg O(N) 21.7±0.1 0.76±0.01 0.30±0.01 1.4±0.1 61.44 86.30 96.83
100 SD + Switch O(1) 21.8±0.1 0.77±0.01 0.30±0.01 1.5±0.1 59.41 86.67 96.92

ResNet ST + Avg O(N) 22.3±0.1 0.85±0.01 0.30±0.01 1.5±0.1 65.50 82.99 97.54
50 ST + Switch O(1) 22.6±0.1 0.88±0.01 0.31±0.01 1.7±0.2 65.30 82.69 97.53

IMAGE SD + Avg O(N) 22.4±0.1 0.87±0.01 0.31±0.01 1.2±0.1 65.75 82.40 97.45
-NET SD + Switch O(1) 22.3±0.1 0.86±0.01 0.30±0.01 1.2±0.1 65.78 82.01 97.49

5.5.5 Ablation Study of Ensemble Distillation Strategies

We evaluate different distillation strategies for our EKD. Since EKD is optimized with self-distillation

for ensemble and switched training for query, we study how they affect distillation. We compare

self-distillation with the stochastic scheme [5], and compare switched training [103] with ensemble

average.

Table 5.5 shows that self-distillation can consistently yield significantly lower ECE across all cases.

This indicates that self-distillation optimization is critical to model calibration improvement of

EKD. Switched training yields comparable or slightly worse performance than average query, but

the query cost is significantly reduced. This indicates that switched training can replace ensemble
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average for higher query efficiency.

Table 5.6: Comparison on CIFAR-10 and ImageNet distillation results in ViT variant models. The
performance is averaged over three runs.

Method InD Calibration OoD Detection
Error↓ NLL↓ Brier↓ ECE ↓ F95↓ AUROC↑ AUP↑

CIFAR DeiT[4] 2.5±0.1 0.08±0.01 0.04±0.00 1.4±0.1 13.62 97.38 99.42
10 T2T-DeiT [113] 2.5±0.1 0.08±0.01 0.04±0.00 1.9±0.1 5.30 98.85 99.76

DE(ResNet18) 3.7±NA 0.18±NA 0.06±NA 2.2±NA 29.26 95.85 99.16
IMAGE DeiT[4] 25.7±0.1 1.06±0.00 0.36±0.01 0.7±0.1 73.42 83.42 97.91
-NET T2T-DeiT[113] 25.8±0.1 1.06±0.00 0.37±0.00 0.8±0.1 74.27 79.36 96.60

DE(ResNet18) 26.6±NA 1.07±NA 0.37±NA 1.1±NA 79.03 72.91 96.44

5.5.6 Architecture Extension to ViT

Last, but not least, we further extend our experiment to ViT [104] for performance evaluation.

Since ViT variant models demand stronger data augmentation for training, we combine multi-

ple augmentation techniques for ensemble distillation. These techniques include AutoAugment,

Mixup, and CutMix[112]. To fit our EKD framework, we select DeiT[4] (DeiT-Tiny) for ViT

study. In addition, we include another SoTA ViT variant of T2T[113] (T2T-10) for distillation

assessment. We modify T2T-ViT to T2T-DeiT with an extra distillation token for our ensemble

distillation. The ensemble teacher consists of five members of ResNet-18. Table 5.6 shows that the

improvement still holds for ViT models. Concerning InD model calibration, it shows significant

reduction in ECE. Compared to convolution neural networks, ViT variants yields more significant

improvement in OoD detection. The possible reason is that data augmentation is stronger, which

helps recognize the difference between InD and OoD data.
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5.6 Summary

We propose a simple yet effective approach of EKD to reduce model uncertainty by leveraging

point estimation. For a better unbiased and more efficient point estimator, we blend ensemble

model with knowledge distillation to reduce estimator bias and variance. Stronger data augmenta-

tion and switched training are incorporated to enhance distillation efficiency. We conduct extensive

experiments and justify that our approach significantly outperforms SoTA methods like DE on InD

model calibration and OoD data detection. We also discuss the data augmentation efficiency for

EKD and show that AutoAugment yields better InD model calibration while SimClr or MoCo

shows better OoD detection when pretrained features come from InD data. We also conduct abla-

tion study to examine EKD, extend EKD to ViT variants, and justify its efficacy.
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CHAPTER 6: EXTENSION OF KNOWLEDGE DISTILLATION TO

SEMANTIC SEGMENTATION

6.1 Problem Introduction

Deep neural networks (DNNs) have become the “go-to” models in various computer vision tasks,

such as image classification, object detection, semantic segmentation. However, recent work found

that DNNs are often overconfident when they make mistakes [13], misleading downstream appli-

cations. To calibrate DNNs’ confidence in prediction, researchers have developed a rich line of

works on image classification using regularized training [114, 115, 100, 44], post-hoc process-

ing [13, 116, 117, 118], and Bayesian modeling [5, 119, 120, 45], to name a few.

However, the extensive pursuit of image classification has left it unclear how to calibrate DNNs

for other computer vision tasks and how well existing calibration methods generalize to the tasks

beyond image classification. In this paper, we conduct a comprehensive study of the calibration of

deep semantic segmentation models.

Semantic segmentation tags a semantic label to every pixel in an image. Over the past years, we

have witnessed increasingly accurate DNN models [121, 122, 123, 124, 125, 126] for semantic

segmentation over various benchmark datasets [127, 128, 129, 130, 131, 132]. The progress bene-

fits many downstream applications, such as medical imaging and diagnostics, autonomous driving,

and robotics. While accuracy is essential for the applications, the segmentation models’ uncertain-

This chapter contains previously published materials from “ADCNN: Towards learning adaptive dilation for con-
volutional neural networks", by Jie Yao, Dongdong Wang, Hao Hu, Weiwei Xing, and Liqiang Wang, published in
Pattern Recognition, 123, 108369
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ties also provide crucial signals, especially for safety-critical applications — by a segmentation

model’s uncertainty, we refer to its confidence in the label it assigns to a pixel. For example, an

autonomous driving system can use the uncertainty of a semantic segmentation model (e.g., about

drivable areas) to make informed decisions.

To better understand how to calibrate semantic segmentation models, a thorough study on how se-

mantic segmentation modeling works is imperative. This chapter starts from understanding seman-

tic segmentation modeling from convolution neural network perspective. Then, an improvement

algorithm is proposed to increase segmentation prediction accuracy. Given the thorough analysis

and study, ensemble knowledge distillation is further extended to semantic segmentation calibra-

tion. The investigated models also extend from convolution neural networks to Vision Transform-

ers. Extensive experiments are carried out to justify ensemble knowledge distillation and compare

it with other existing calibration methods.

6.2 Semantic Segmentation: Investigation and An Improvement Method

Convolutional kernels are the critical components for Convolutional Neural Networks (CNNs),

which have been dominant approaches for majority of computer vision tasks in recent years [133,

134, 135]. Their power relies on the ability of hierarchically representing spatial features over input

regions called Receptive Fields (RFs), by stacking a number of convolutional layers into deep

structures [136]. Nowadays, among common practices for designing CNN architectures, which

usually prefer large RFs in order to achieve superior performances, Dilated Convolutional Kernels

(DCKs) serve as a popular choice not only because of their simplicity, but also the effectiveness

[137, 138]. Unlike their conventional equivalents, DCKs are able to exponentially enlarge RFs

without increasing kernel sizes. CNN models with dilated kernels also report the impressive results

on fundamental tasks such as object recognition [139] and semantic segmentation [138]. Moreover,
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DCKs perform well in some more specific tasks such as object detection with multi-model [140]

and monocular depth estimation [141], demonstrating significant performance gain by employing

dilated convolutional kernels.

To further improve the dilated kernels, two obvious problems that universally reside in most of

existing dilated CNN structures need to be properly tackled: fixed RF size and manually selected

dilation range. First, the dilation value for a convolutional layer is shared across all pixels, which

means that every output location has the same size of RF. However, this could be very counter-

intuitive: sizes of Region of Interest (ROIs) usually vary dramatically over different positions,

and thus, the sizes of RFs are also expected to be adjusted accordingly to encode diverse spatial

information. Therefore it is reasonable to believe that a fixed RF across every position is hard

to capture such intra and inter sample diversities especially for large-scale, high-resolution image

datasets.

(a) No dilation (b) Regular dilation (c) Pixel-wise adaptive dilation

Figure 6.1: Comparison of regular and pixel-wise adaptive dilation. Different colors stand for
different dilation.

Second, the mainstream approaches of selecting a dilation value is mainly feature-independent;

for each dilated convolution layer, we need to specify dilation values arbitrarily before it can be

integrated into the base structure. This usually requires a strong domain knowledge about input and

output contexts for hand-crafting; and for many specific tasks, there is no clear guidance available

for selecting proper dilation values in practice. In recent years, deformable convolutional neural
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networks [142, 143] have been proposed to enhance the transformation modeling capability of

CNNs by augmenting the spatial sampling locations in the modules with additional offsets and

learning the offsets from the target tasks. However, they set a small value such as 1 for offset as

the upper bound, which means that it usually needs to stack deformable convolutional layers to

enlarge the RFs and get a better performance. On the other aspect, if we choose a bigger value as

the upper bound of the offset, it will degenerate the deformable convolutional layer into an attention

mechanism due to some incorrect focus on minute details, which makes learning a proper offset

need either a well-prepared dataset or an adequate training process.

In this section, we answer the above challenges by combining the dilation selection with conven-

tional CNN modules and incorporating them into a unified data-driven framework. We propose

Adaptive Dilation Convolutional Neural Networks (ADCNN), a simple yet powerful extension for

general DCKs, which treats dilation values as learnable weights and can be jointly optimized with

other CNN weights in an end-to-end fashion. As shown in Fig. 6.1, in the newly formulated

ADCNN kernels, dilation is learned to change at different input positions to reflect input spatial

diversity, resulting in dynamic RFs with irregular shapes in a single layer. In practice, there are

two major difficulties to overcome.

How to decide the dilation value online. We handle this by regarding the dilation as a func-

tion of input at individual pixels. More specifically, the function samples dilation values through

certain probability distributions that are conditioned by pixel-wise input features. To solve non-

differentiable nature of general sampling process, we approximate it by Gumbel-Softmax [144] as

a differentiable estimation to keep ADCNN end-to-end trainable.

What are proper dilation values for inputs. Since there is no clear explanation on how network

layers work, we believe that it still remains an open question and can only be answered with valid

hypotheses. For ADCNN kernels, we make the assumption that dilation values are related to inter-
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layer patterns between convolution layers due to their hierarchical nature. In such cases, RF size

at each location is adjusted based on information flows between corresponding inter-layer pixels

during forward propagation.

Following the strategies described above, ADCNN-kernels evolve into light-weighted modules that

can be easily plugged into various CNN architectures. Moreover, sampling dilation space through

inter-layer pattern modeling also demonstrate that adaptive networks can be achieved in a simpler

manner without engaging high dimensional spaces. We evaluate the proposed ADCNNs via several

fundamental tasks including large-scale, fine-grained visual classification, semantic segmentation

and optical flow estimation. Moreover, several ablation studies are performed to examine various

properties of ADCNNs. Our experimental results indicate in most cases ADCNNs are able to

consistently yield better performances across various popular backbone architectures with trivial

cost.

6.2.1 Understanding of Semantic Segmentation from CNN

Content-Adaptive Networks. This research direction is focused on building dynamic internal

structures via data-driven approaches to better leverage larger spatial variations from inputs. A set

of related techniques tend to develop differentiable approximations for traditional image-adaptive

filters and integrate them as end-to-end trainable layers for CNN models. For example, Jampani et

al. [145] include bilateral filters [146, 147] in CNN models as a layer to generalize the parameter-

ization and derive a gradient descent algorithm so the filter parameters can be learned from data;

Wang et al. [148] and Wu et al. [149] introduce their trainable version of non-local means filters

[150] and guided filters [151], respectively. These approaches conduct content-adaptive enhance-

ments in separate layers without interacting with convolution kernels. Another set of techniques

propose the idea of directly generating kernel weights based on layer inputs and extend it with
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attention mechanism as well as other task-specific improvements. For example, Xue et al. [152]

proposed Cross Convolutional Network which encodes image and motion information as feature

maps and convolutional kernels to aid in synthesizing future frames; Jia et al. [153] proposed

the Dynamic Filter Network, where filters are generated dynamically conditioned on an input in

a sample-specific way; Su et al. [154] proposed a pixel-adaptive convolution (PAC) operation in

which the filter weights are multiplied with a spatially varying kernel that depends on learnable,

local pixel features; Wu et al. [155] proposed a dynamic filtering strategy with large sampling field

for ConvNets (LS-DFN) to learn dynamic position-specific kernels and takes advantage of very

large receptive fields and local gradients. In recent years, a new kind of dynamic convolutional

network, which is Deformable Convolutional Networks [142], has been proposed to enhance the

transformation modeling capability of CNNs. Based on the idea of augmenting the spatial sam-

pling locations in the modules with additional offsets, Deformable Convolutional kernels learn

such offsets from the target tasks, without additional supervision. Following the similar direction,

Zhu et al. [143] proposed a reformulation of Deformable ConvNets that improves its ability to

focus on pertinent image regions.However, most of them rely on additional modules with large

kernel sizes, being incapable of scaling up to more general structures.

Dynamic Receptive Fields. Comparing to the above approaches to build content-adaptive net-

works, there is much less work aiming at enabling the content-aware ability via adjusting receptive

fields (RFs). Majority of RF-related researches focus on how to effectively enlarge RFs in order to

achieve better performance. Among them, dilated convolution kernels [137], which support expo-

nential expansion of the receptive field without loss of resolution or coverage, become a popular

choice as it can exponentially increase RF sizes while maintaining small kernel sizes. However,

this could also lead to negative impacts, such as sparsity and “gridding" effect [138]. Unlike static

RFs produced by dilation, recent works such as Dai et al. [142] and Zhu et al. [143] argue that

RFs should be more diverse in order to capture rich spatial variations. They propose deformable
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CNNs that learn to adjust the positions for convolving, resulting in free-form RFs that are totally

data-dependent. Besides, Shelhamer et al. [156] attempt to create diverse yet controllable RFs by

composing the structured Gaussian kernels and unstructured ordinary convolution kernels.

Figure 6.2: Overview of an ADCNN kernel.

6.2.2 Pixel-wise Adaptive Dilated Convolution

We elaborate the proposed approach for extending conventional dilated convolution kernels into

ADCNN kernels. Without loss of generality, we assume all the convolutions in the rest of this

paper are 2D operations. Suppose we are considering the (l− 1)-th layer, whose input is Xl−1

with Xl−1 ∈ Rwl−1×hl−1
. wl−1,hl−1 are the width and height of the input xl−1 respectively. KW;d

is a dilated convolutional kernel with dilation value d and weights W. The output of convolution

between K and X is

Yl
i, j =

K

∑
m=0

K

∑
n=0

wm,n×Xl−1
i+dm, j+dn (6.1)
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where K is the kernel size and i, j are coordinates for dimensions w and h, respectively. Apparently,

d is a constant variable independent to i and j. Our goal is to convert d into a function Di, j such

that the output of Di, j could be aware of location-specific contents. More specifically, we treat Di, j

as an inference process that generates dilation values by sampling from position-dependent hidden

distributions. Fig. 6.2 sketches the basic idea of a ADCNN kernel.

Dilation inference Sampling dilation values directly from categorical distributions is straightfor-

ward. However, gradients are unable to backpropagate through sampled nodes in such cases, mak-

ing the entire training process intractable. Inspired by [157, 158] and [159], we employ Gumbel-

Softmax (GS) [144, 160] as Di, j to approximate the inference of discrete dilation values. Suppose

that there are D valid options for dilation value, and di, j ∈ [0,1]D is the estimation of one-hot vec-

tor that corresponds to the dilation value at position (i, j), then sampling di, j ∼ GS(hi, j) can be

achieved by

di, j = Di, j(h) =
exp((hi, j +gi, j)/τ)

∑exp((hi, j +gi, j)/τ)
(6.2)

where ∑ means summation of all tensor elements here; h,hi, j are content-related hidden priors

and their subtensors at each positions, respectively; gi, j ∈ RD are i.i.d. samples drawn from the

Gumbel(0,1) distribution and τ controls how much the GS is close to a true categorical distribu-

tion.

Hidden Prior Generation As mentioned in Section 6, we believe dilation adaptation should be

governed by feature hierarchy, hence build up our dilation inference mechanism upon inter-layer

pattern modeling to capture dependencies between abstraction levels. Inspired by [161, 162] and

[163], we consider aggregation as a feasible way and will generate hidden priors h through sequen-

tially aggregating multiple Y from hierarchical layers. Let l denote the newly added layer index,

there are several aggregation options for inter-layer patterns modeling.
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Recurrent Aggregation. A straightforward way for sequential aggregation can be written as

hl
i, j = f (Wl

hhl−1
i, j +Ul

hYl−1
i, j ) (6.3)

where Wl
h and Ul

h are 1×1 kernels weights with output channel of D; f (·) is a non-linear activation

function. In this case, hl
i, j continuously accumulates information from each layer as l goes deeper,

implying layers are highly dependent on each other to mutually decide proper RF sizes.

Gated Aggregation. To model inter-layer pattern smarter, we introduce a gate variable al
h to

modulate information from each layer in a data-driven manner. We use a similar way to [164] and

[165] for computing al
h, with which the entire aggregation can be formulated as following

hl
i, j = f (al

h ◦ (W
l
hhl−1

i, j )+(1−al
h)◦ (U

l
hYl−1

i, j )) (6.4)

al
h = σ(Wl

ahl−1
i, j +Ul

aYl−1
i, j ) (6.5)

where σ(·) is the sigmoid activation and ◦ means element-wise multiplication. In this way, layers

are not strictly dependent on their hierarchical order and will impact dilation sampling in a more

complicated way.

Markov Aggregation. An important extreme case of Recurrent Aggregation, Markov Aggregation

sets the kernel weights Wl
h from equation (6.3) to 0.

hl
i, j = f (Ul

hYl−1
i, j ) (6.6)

Similar to the Markov model [166], this means RF sizes are dominated by the last layer. No other

inter-layer patterns need to be aggregated for multiple hierarchical layers.
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6.2.3 Dilation Adaption vs. Kernel Adaption

To better understand advantages of proposed adapted dilation, it is worth comparing ADCNN with

other related approaches. Recently, there are several works [152, 153, 155, 142, 143] also targeting

on learning dynamic kernels based on different input contents. We give their approaches a unified

name called kernel adaption, since they achieve content-awareness via directly manipulating the

kernel space. For example, the modulated deformable convolution[143] can be expressed as

y(p) =
K

∑
k=1

wk · x(p+ pk +∆pk) ·∆mk (6.7)

where x is the input feature map and y is the output feature map at location p. ∆pk and ∆mk are the

learnable offset and modulation scalar for the k-th location, respectively. This method changes the

shape of convolutional kernel by using the offsets and learning these offsets from the target task.

More specifically, kernel adaption tends to learn a mapping function F such that Wm,n =Fm,n(X),

where m and n are the pixel index of the convolutional kernel, respectively.

Compared with kernel adaption, ADCNN kernels do so through a more indirect way of engaging

dilation rate. Instead of kernel space, dilation function D sets the target on a dilation space, which

contains all D possible dilation values. Theoretically, mapping inputs to dilation space rather than

kernel space could have several benefits.

Low dimensional vs. high dimensional complexity. It is easy to see from previous discussions

that the dimension of dilation space equals to the number of all dilation options D, while kernel

space needs to keep a dimension of Cl−1×Cl such that it can be consistent with input and output

channel size. Practically speaking, there is no need to keep a large group of dilation candidates

due to their ability of exponentially enlarging RFs [137, 138]. Meanwhile, channel size usually

increases dramatically as network goes deeper in order to capture more complicated high level
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abstractions. These facts make D significantly smaller than Cl−1×Cl and leads to an easier learning

process with less need of worrying about feature sparsity. Besides, low dimensional complexity

also allows ADCNN kernels to be deployed to a wider level range of layers.

Dilation space sharing vs. kernel space orthogonality. Basically, kernel adaption generates ker-

nel values using a single function for a convolution layer. So generated kernels could be highly

correlated with each other. However, recent work [167] indicates spaces regularized by orthog-

onality constrains lead to better results and more stable training process. Therefore, it is hard to

balance kernel generation and space orthogonality at the same time. Unlike kernel adaption ap-

proaches, ADCNNs mainly rely on dilation spaces, which are not only separated from individual

kernel spaces but also can be shared by all convolution layers of a CNN. This means inter-layer

patterns are easier to be carried over multiple layers and are able to be more coherently propa-

gated into deeper layers through shared dilation space. Thus compared to kernel adaption, it is

expected that ADCNN kernels could be aware of different input contents without interfering the

orthogonality among kernel spaces.

6.2.4 ADCNNs for Semantic Segmentation

Since the proposed ADCNN module is highly related to RF adaptation, dense prediction tasks

could be ideal to test its effectiveness. Thus, we first evaluate ADCNNs through semantic segmen-

tation to explore their properties from various aspects. We will show that ADCNNs is designed for

general purpose and can be applied to solve more problems in later sections.

Experiments and Assessment. We implement ADCNNs with various backbone architectures

via PyTorch library [168]. In the following sections, unless otherwise specified, we will employ

VGG-16 [169] as backbone net and follow the same training protocol of FCN-8s [170] as task

specific framework for evaluation. All ADCNN kernels will follow Markov Aggregation with
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three available dilation options {1,2,4} (D = 3). We selected the dataset of Pascal VOC 2012

[171] and report mean Intersection over Union (mIoU) on its validation set as evaluation results.

All the models are optimized via Adam optimizer [172].

Table 6.1: mIoU for feature level study. σ2(di, j) is variance of pixel dilation sampling.

conv3 conv4 conv5 σ2(di, j) mIoU
✓ 1.96×10−4 63.9

✓ 1.84×10−4 64.7
✓ 4.01×10−6 66.5

✓ ✓ 2.45×10−4 65.4
✓ ✓ 1.24×10−4 66.1

✓ ✓ ✓ 1.93×10−4 65.9

Feature Level Study. In this section, we conduct several experiments to answer the question:

Which convolution level is suitable for ADCNN kernels? For example, considering the convolution

blocks, conv3, conv4 and conv5, of a VGG-16 backbone network, if either one is evolved into

ADCNN kernel, then which one can yield largest RF on the top layer (conv5-3 in this case) after

training? Although for static dilation, RF size of conv5-3 should be the same no matter which block

is dilated, this might not hold for ADCNN kernels with multiple dilation candidates, since dilation

values are subject to various level of sensitivities due to hierarchical representations. To confirm

this, we investigate several cases including both individual and combined ADCNN kernels.

Table 6.1 summarizes the mIoU for different cases. When only one block is modified, mIoU in-

creases when the feature level for ADCNN changes from low to high. This matches our expectation

that ADCNN kernels for higher level features perform better than ADCNN kernels in lower level,

as low-level ADCNN kernels are more sensitive to local variances and tend to focus on capturing

information in a smaller region; while high-level kernels are usually related to complicated and

abstract concepts, leading them to be more responsive for larger input regions. To further support

such a claim, we visualize both RFs and Effective RFs (ERFs) [136] for a randomly picked image
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and put them along with their segmentation results in Fig. 6.3. As we can see, both RFs and ERFs

continuously expand their sizes as feature level for ADCNN goes higher; meanwhile, visually bet-

ter segmentation results can be achieved with larger RFs and ERFs. This provides us a supportive

example that encourages ADCNN extension for higher feature level in practice.

(a) Image & Ground
Truth

(b) conv3 only (c) conv4 only (d) conv5 only (e) conv3 + conv4 +
conv5

Figure 6.3: The top row indicates the input image and its visualized RFs and ERFs on conv5-3
layer of LSD-VGG16 with different conv blocks modified. Patches means RFs and red dots inside
are ERFs. The bottom row shows the ground truth and corresponding segemtation results. GT
stands for groundtruth.

(a) Markov Pattern (b) Gated Pattern (c) Recurrent Pattern

Figure 6.4: Mathematical expectation of dilation sampling at each pixel for individual sub-layers
(from left to right: conv5-1 to conv5-3). Brighter color means higher dilation and vise versa. The
input is the same as the one in Figure 6.1.

Besides, we also test several cases of combining multiple extended blocks into more complicated

ADCNN architectures (the last three lines of Table 6.1). To our surprise, stacking additional

ADCNN-blocks may result in inferior performances to single block even with better ERF. We

further investigate possible explanations by calculating the variances of dilation sampling for each

cases. We find performances always decrease when conv5 is combined with more ADCNN-blocks,
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along with notable variance increments. Such increments brought by additional sampling might be

the reason for performance downgrading as they make the entire structure more unstable.

Table 6.2: Aggregation study on different backbones and varied tasks

Task Semantic Segmentation
Backbone VGG-16 ResNet-101

Vanilla Non-Aggregation 64.7 75.1
ADCNN Markov Aggregation 66.5 77.2
ADCNN Gated Aggregation 65.5 76.7

ADCNN Recurrent Aggregation 65.3 75.6

Pattern Aggregation Study. Now we focus on studying the impacts brought by each pattern

aggregation strategies described in Section 6. As suggested from Section 6, we only extend conv5

block of a VGG-16 backbone into ADCNN kernels to avoid too much dilation sampling. All three

(conv5-1, conv5-2 and conv5-3) sub-layers are upgraded with ADCNN kernels and connected as

each aggregation asks. We also include ResNet-101 [173] combined with DeeplabV3+ [174] as an

additional backbone to see if skip connections may result in different impacts.

Table 6.3: Performance of ADCNN-ResNet-101 on the CityScapes validation set.

Backbone road sidewalk building wall fence pole light sign vegetation terrain
ADCNN-ResNet-101 0.984 0.867 0.934 0.610 0.654 0.668 0.737 0.817 0.930 0.653

ResNet-101 0.983 0.860 0.931 0.625 0.638 0.648 0.726 0.801 0.929 0.659
Backbone sky person rider car truck bus train motorcycle bicycle mIoU

ADCNN-ResNet-101 0.954 0.840 0.674 0.956 0.810 0.919 0.808 0.722 0.796 0.807
ResNet-101 0.953 0.833 0.658 0.953 0.797 0.912 0.815 0.720 0.787 0.801

The results are concluded in Table 6.2. Basically, all three strategies have better results than back-

bone networks. However, for both cases Markov Aggregation always yields a better result than

other two options. To further dig up the roots behind such phenomenon, in Fig. 6.4, we calculate

and visualize the mathematical expectations at each pixel for all three sub-convolution layers of

ADCNN-VGG16. We can see that during the streaming from conv5-1 to conv5-3, ADCNN with
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Markov Aggregation is more likely to choose larger dilation everywhere without carrying spatial

patterns of input; while both Gated and Recurrent Aggregation are more willing to adjust RF sizes

according to spatial structures from input and reserve some spatial clues for dilation sampling. In

such cases, information aggregated by lower level features could be too local-sensitive, forcing

next layer to put its RF in a smaller region in order to capture such local variations. Thus, our

results for semantic segmentation indicate Markov Aggregation is the best option among the three

without overly aggregating inter-layer patterns.

Table 6.4: ADCNN-FCN8s IoUs on VOC-2012 across all classes

Backbone background aeroplane bicycle bird boat bottle bus car cat chair cow
ADCNN-FCN8s 0.914 0.833 0.388 0.751 0.627 0.740 0.802 0.744 0.805 0.252 0.805

FCN8s 0.908 0.798 0.363 0.776 0.581 0.742 0.775 0.749 0.799 0.292 0.712
Backbone dining table dog horse motorbike person potted plant sheep sofa train tv/monitor mIoU

ADCNN-FCN8s 0.474 0.724 0.729 0.783 0.791 0.510 0.729 0.370 0.773 0.600 0.665
FCN8s 0.375 0.684 0.673 0.765 0.780 0.490 0.760 0.344 0.789 0.572 0.647

Table 6.5: ADCNN-ResNet-101 IoUs on VOC-2012 across all classes

Backbone background aeroplane bicycle bird boat bottle bus car cat chair cow
ADCNN-ResNet-101 0.932 0.838 0.393 0.848 0.622 0.756 0.908 0.848 0.918 0.373 0.874

ResNet-101 0.922 0.770 0.388 0.853 0.626 0.698 0.913 0.836 0.886 0.225 0.835
Backbone dining table dog horse motorbike person potted plant sheep sofa train tv/monitor mIoU

ADCNN-ResNet-101 0.584 0.879 0.851 0.805 0.833 0.554 0.852 0.534 0.835 0.648 0.772
ResNet-101 0.568 0.862 0.791 0.810 0.815 0.452 0.764 0.461 0.824 0.691 0.751

Table 6.6: ADCNN-DRN-54 IoUs on VOC-2012 across all classes

Backbone background aeroplane bicycle bird boat bottle bus car cat chair cow
ADCNN-DRN-54-D 0.927 0.823 0.384 0.845 0.668 0.729 0.915 0.838 0.852 0.294 0.876

DRN-54-D 0.921 0.799 0.345 0.846 0.660 0.723 0.868 0.848 0.884 0.313 0.820
Backbone dining table dog horse motorbike person potted plant sheep sofa train tv/monitor mIoU

ADCNN-DRN-54-D 0.568 0.839 0.836 0.814 0.813 0.491 0.805 0.434 0.781 0.693 0.772
DRN-54-D 0.528 0.840 0.801 0.805 0.800 0.475 0.739 0.492 0.750 0.675 0.754

Performance Boosting for Backbone Architectures. Finally, we verify ADCNNs can be easily

combined various popular base architectures to further improve their performance. In addition

to VGG-16, we also employ another four representative architectures, ResNet-101 [173], Dilated
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Table 6.7: Semantic Segmentation Experiments on validation sets of VOC 2012 and Cityscapes

Task Method
mIoU

regular ADCNN

Pascal VOC 2012

VGG-16+FCN-32s 62.8 65.1
VGG-16+FCN-8s 64.7 66.5

ResNet-101+Deeplabv3+ 75.1 77.2
Xception+Deeplabv3+ 73.5 74.4

DRN-D-54+Deeplabv3+ 75.4 77.2

Cityscape
MobileNetv2+Deeplabv3+ 70.3 71.5

Xception+Deeplabv3+ 77.5 79.0
ResNet-101+Deeplabv3+ 80.1 80.7

Residual Networks (DRN) [138], Xception [175] and MobileNet-v2 [176], as additional backbone

nets. We combined these base structures with FCN [170] and Deeplabv3+ [174] framework and

evaluate them on CityScapes [177], a more challenging dataset.

(a) Image (b) Groundtruth (c) ResNet-101 (d) ResNet-101 + AD-
CNN

Figure 6.5: Semantic segmentation results on CityScapes dataset.

We report mIoUs for each backbone network and corresponding ADCNN in Table 6.8, respec-
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Table 6.8: Semantic Segmentation Experiments on validation sets of VOC 2012 and CityScapes

TASK METHOD
MIOU

REGULAR ADCNN

PASCAL VOC 2012

VGG-16+FCN-32S 62.8 65.1
VGG-16+FCN-8S 64.7 66.5

RESNET-101+DEEPLABV3+ 75.1 77.2
XCEPTION+DEEPLABV3+ 73.5 74.4
DRN-D-54+DEEPLABV3+ 75.4 77.2

CITYSCAPES

MOBILENETV2+DEEPLABV3+ 70.3 71.5
XCEPTION+DEEPLABV3+ 77.5 79.0

RESNET-101+DEEPLABV3+ 80.1 80.7

tively, along with other state-of-the-art results for comparison. From these results we can see

ADCNNs could always yield better results for every backbone structure on both datasets, exhibit-

ing strong robustness and versatility. We also visualize part of segmentation results in Fig. 6.5,

which coincides with mIoU that ADCNNs have more correctly labeled pixels and more details

preserved. And the results on class Iou of Cityscapes is shown in Table 6.3. We report more class

IoUs, which are included in Table 6.4, Table 6.5 and Table 6.6. Each IoU is reported based on each

segmentation class. The final mean of IoU (mIoU) over all classes is reported in the end column

of each table. The higher IoUs are bold.

6.2.5 Summary

In this paper we formulate the dilation as a learnable weight for convolution kernels such that

its value can be dynamically decided during the running time. This leads to ADCNNs, a light-

weighted, end-to-end trainable framework that allows their kernels to adjust pixel-wise RFs in a

data-driven manner. To infer proper dilation values based on feature hierarchy, we model inter-

layer patterns via several sequential aggregation strategies. Our studies on semantic segmentation

explore various properties of ADCNNs. Results indicate better performance can be achieved with
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all three aggregation strategies when ADCNN kernels are with higher feature levels, and dilation

boundary can be learned to avoid overlarge RFs. We also demonstrate ADCNNs can consistently

boost performances over several popular backbone architectures, and be a valuable option for more

general visual tasks such as large-scale and fine-grained image classifications.

Figure 6.6: The sensitivity analysis on τ by performing semantic segmentation task on VOC 2012
validation set with three backbone nets. The mean and variance at each τ value are computed by
repeating 5 times with same settings.
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6.3 Calibrating Semantic Segmentation Models through Ensemble Distillation

Given the investigation study on semantic segmentation modeling, this dissertation further explores

semantic segmentation calibration with knowledge distillation. The problem is formulated by the

optimization on both model accuracy and model reliability. To achieve this goal, the proposed

approach has to integrate accurate training with calibration techniques. The proposed framework

is ensemble knowledge distillation since both higher accuracy and better calibration can derived.

In addition to ensemble modeling, some existing post-hoc calibration techniques are employed to

compare ensemble knowledge distillation and justify its performance.

6.3.1 Preliminaries

Similar to image classification, semantic segmentation can be formulated to a multiclass classifi-

cation problem with a deep neural network. Let x ∈ X and y ∈ Y denote an input and its label,

respectively. A deep neural network h(x) = (ŷ, p̂) yields ŷ as the predicted label with confidence

p̂. We expect a well-calibrated model to provide accurate prediction when its confidence is high.

ECE: There are several metrics to measure a model’s calibration, and one of the most popular

and accepted metrics is expected calibration error (ECE)[178], which reflects the gap between

predictive confidence and accuracy. The formal definition with continuous variable is as follows.

ECE = E [|P(ŷ = y|p̂)− p̂|] , (6.8)

where ŷ is the predicted label, y is the true label, p̂ is the model confidence or probability in its

prediction, and P(ŷ = y|p̂) is the probability for correct prediction. The expectation is about the

discrepancy between accuracy and confidence. A perfectly calibrated model has zero ECE.
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In practical problems, statistical binning is used to quantize continuous variables and estimate

eq. (6.8) by equally binning the probability interval,

ÊCE =
m

∑
i=1

|Bi|
n
|acc(Bi)− conf(Bi)|, (6.9)

where n is the number of samples, m is the number of bins, Bi denotes a set of samples falling

into it, and acc(Bi) and conf(Bi) are accuracy and confidence averaged over the samples in the bin.

ÊCE can be visualized with the gaps in reliability diagram [179].

ECE in semantic segmentation: We extend ECE to semantic segmentation by considering each

pixel as a sample. Instead of pooling all pixels of different images into a set, we calculate ECE

over each image first before taking an average across images,

ECE =
1
N

N

∑
I=1

ECEI, (6.10)

where I is an inference image, and N is the total number of images. ECEI may significantly vary

across images.

6.3.2 Existing Calibration Methods

Temperature Scaling is a simple but effective approach for multi-classification model calibration

[13]. The calibration is carried out with a single temperature parameter to scale logits for overfitting

problem resolution.

p̂ = σSM(z/T ), (6.11)

where T is a scaler of temperature to scale logit vector z.

Logistic Scaling is an extension of temperature scaling a.k.a. vector scaling [13]. The scaling
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model is formulated with linear transformation for more complex calibration map.

p̂ = σSM(w⊙ z+b), (6.12)

where w and b are two vectors to scale the logit vector z.

Dirichlet Scaling is the extension of logistic scaling and derived with probability output distribu-

tion [117], which enriches calibration map for better optimization with Dirichlet distribution. We

adopt linear paramenterization [117] for Dirichlet scaling, which is formulated as follows.

p̂ = σSM(W · log(σSM(z))+b), (6.13)

where W is a matrix and b is a vector for linear parametrisation of the probability σSM(z).

Ensembling is proposed to solve medical image segmentation uncertainty prediction [180]. It

carries out calibration improvement with simple average of ensemble model, a simplified version

of Bayesian inference [45]. Also, deep ensemble is a strong baseline for image classification

calibration [5, 45]. We compare its performance with other post-hoc approaches.

p̂ =
1
N

Σ
N
n=1 p̂n, (6.14)

where N is the number of ensemble members.

6.3.3 Experiments

Models. We consider five recent state-of-the-art semantic segmentation models. Our selection of

models covers CNN and ViT architectures.
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1. SegFormer[126] is a ViT-based encoder-decoder model based upon lightweight multilayer

perception (MLP) decoders with pyramid architecture.

2. Segmenter[125] is an encoder-decoder model based exclusively on Transformer.

3. Knet [123] is a unified segmentation decoder module which includes two important vari-

ants, Knet-DeepLab and Knet-SWIN. Knet-DeepLab consists of ResNet-50 [69] backbone

and DeepLab-V3 [121] decoder. Knet-SWIN is contructed with SWIN [181] backbone and

UperNet [182] decoder.

4. ConvNeXt [183] is a CNN backbone, but shaped to ViT-like architecture for better scaling.

We select ConvNeXt backbone with UperNet [182] decoder as a segmentation model.

Dataset. We examine existing calibration methods across six important benchmarks from various

applications. Figure 6.7 illustrates the example images from benchmarks.

Figure 6.7: Segmented examples from ADE20K, COCO-164K, and BDD100K (left to right).

1. Scene and stuff segmentation. We use ADE20K [127] and COCO-164K [128] as large-

scale segmentation benchmark. ADE20K contains 150 object and stuff classes with 20,210/2,000

images in the training/validation set. COCO-164K, ∼164K images for 91 stuff and 80 thing

classes, includes 118K/5K images in the training/validation set.

2. Autonomous driving. We choose BDD-100K [129], a latest benchmark for urban driv-

ing scene segmentation. BDD-100K contains 7K/1K 1280×720 images in 19 classes for

training/validation set. We select the validation set of CityScapes [184] as test set from tar-

get domain for domain-shift calibration assessment. CityScapes has 2975/500 1024×2048

images for training/validation set. BDD-100K and CityScapes share the same label space.
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Training. All training settings are unified for fair comparison. For ADE20K, all models except

Knet-DeepLab are trained with 640×640 crop size. For BDD100K, the crop size is 512×1024.

For other benchmarks, the crop size is 512×512. The batch size is set to 8. For data augmentation,

stronger random crop and longer training are used to carry out ensemble knowledge distillation.

6.3.4 Results

We present ECEs for five models and compare ensemble knowledge distillation with four calibra-

tors. Table 6.9 shows that majority of calibrators yield very limited improvement in model cal-

ibration. However, surprisingly, ensemble knowledge distillation consistently outperforms these

scaling approaches. This calibration gain is attributed to both calibration property derivation form

ensemble model and more reduction on mispredictions. Moreover, this improvement is more sig-

nificant for scene and object benchmarks such as ADE20K and COCO-164K than street view

datasets like BDD-100K. This observation is related to scenery variation. When variation in scene

is large, background and object identification is more challenging for models, and thus, confidence

becomes lower. This phenomena can be alleviated by distillation to some extent, but the improve-

ment is still limited.

Furthermore, we find that BDD100K yields more calibrated models than other benchmarks. We

associate it with larger crop size (512× 1024) and higher model accuracy. We also find that en-

sembling exhibits weaker calibration. We connect it with model accuracy since we restrain the

ensemble accuracy for fair comparison, which limits its calibration performance. Moreover, across

models, Segmenter exhibits better calibration. Since it is a Transformer-exclusive model, we link

it to different spatial inductive bias which is speculated in [185].

This experiment reveals that ensemble knowledge distillation successfully inherits scaling compe-

tence of ensemble model, and furthermore, improves the ensembling calibration through stronger
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data augmentation. Stronger data augmentation enhances model generalization to unseen data,

which both reduces mispredictions and corrects overconfidence on these unseen samples. It is

effectively integrated with ensemble modeling through knowledge distillation and further boosts

model performance. This is the speculation on the observation of ensemble knowledge distillation

for higher accuracy and lower calibration errors.

Table 6.9: Segmentation accuracy (mIoU) and calibration error (ECE) on different benchmarks.
TempS, LogS, DirS, Ens., and EKD denote temperature, logistic, Dirichlet, ensembling, and en-
semble knowledge distillation, respectively. For ensembling, we achieve three models with re-
duced size for comparable mIoU.

Dataset Model mIoU Uncal TempS LogS DirS Ens. mIoU EKD
ADE20K SegFormer-B5 [126] 49.13 0.111 0.109 0.110 0.110 0.109 49.70 0.100
ADE20K Segmenter-L [125] 51.65 0.087 0.086 0.086 0.087 0.086 52.01 0.080
ADE20K Knet-DeepLab [123] 45.06 0.111 0.105 0.107 0.106 0.110 45.74 0.101
ADE20K Knet-SWIN-L [123] 52.46 0.098 0.094 0.093 0.097 0.096 52.79 0.089
ADE20K ConvNeXt-L [183] 53.16 0.097 0.092 0.094 0.091 0.094 53.43 0.089

COCO-164K SegFormer-B5 [126] 45.78 0.151 0.149 0.141 0.151 0.149 46.01 0.140
COCO-164K Segmenter-L [125] 47.09 0.152 0.149 0.149 0.151 0.150 47.40 0.142
COCO-164K Knet-DeepLab [123] 37.24 0.170 0.170 0.168 0.171 0.169 37.61 0.161
COCO-164K Knet-SWIN-L [123] 46.49 0.161 0.159 0.161 0.160 0.160 46.77 0.151
COCO-164K ConvNeXt-L [183] 46.48 0.160 0.157 0.158 0.159 0.159 46.69 0.151
BDD100K SegFormer-B5 [126] 65.08 0.064 0.055 0.054 0.053 0.059 65.70 0.051
BDD100K Segmenter-L [125] 61.33 0.055 0.045 0.043 0.042 0.052 61.81 0.041
BDD100K Knet-DeepLab [123] 62.89 0.060 0.049 0.047 0.048 0.057 63.10 0.045
BDD100K Knet-SWIN-L [123] 67.59 0.065 0.055 0.054 0.054 0.063 67.99 0.053
BDD100K ConvNeXt-L [183] 67.26 0.064 0.054 0.053 0.056 0.063 67.91 0.052

6.3.5 Summary

This chapter focuses on extension of the research about accuracy and reliability to semantic seg-

mentation tasks. It starts with investigation on modeling of semantic segmentation task and un-

derstanding of its mechanism from convolution modeling. Given the understanding, an algorithm

is proposed based upon adaptive dilation across images which improves perceiving dynamics on
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receptive field. This algorithm increases segmentation accuracy compared to other state-of-the-art

convolution models. Through further analysis on different information aggregation pattern, the

study finds that within network, connecting layers yield more correlated information flow which

helps segmentation modeling. After this study, model calibration is carried out through knowledge

distillation on ensemble model with stronger data augmentation. Large scale datasets are evaluated

and used for comparing ensemble knowledge distillation with other calibration approaches, such as

ensemble model. The results show that ensemble knowledge distillation outperforms on both ac-

curacy of mIoU and the calibration error of ECE. This justifies that knowledge distillation enables

improving semantic segmentation deep neural network training on both accuracy and calibration.

93



CHAPTER 7: CONCLUSION

7.1 Overall Summary

This dissertation explores how to improve deep neural network training with knowledge distil-

lation. As an effective compression approach, knowledge distillation has been widely used to

solve deep neural network reduction problems. The primary idea of knowledge distillation is to

obtain a smaller neural network which can imitate the outputs of the large model. The smaller

model is named student model while the larger one is teacher model. Given the optimization based

upon imitation training with knowledge distillation, the student network is capable of retaining

the teacher’s accuracy while the model size is significantly reduced. Moreover, its effectiveness

is not only reflected on model reduction, but more research finds knowledge distillation enables

better model generalization as well. Furthermore, there are still problems for applying knowledge

distillation to solve network training. This dissertation attempts to tackle some of these challenges

to promote application of knowledge distillation.

According to the literature review on knowledge distillation and its related topics, including accu-

rate model training, model reliability improvement, data augmentation, ensemble modeling, and

semantic segmentation, this dissertation addresses four questions:

1. How to efficiently distill a blackbox teacher model in a data-efficient manner? Given formu-

lated blackbox knowledge distillation, this dissertation attempts to solve the problem with

constraints of limited labeled data, restricted model query, and limited computation source

(cf. Chapter 3).

2. How to accurately predict time series trend through calibrating physics-based model with

limited observation data? Inspired from blackbox knowledge distillation, this dissertation
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proposes a new method to render calibration possible and reliable when observation data are

limited (cf. Chapter 4).

3. How to derive an accurate and well-calibrated deep neural network? This dissertation inte-

grates ensemble modeling and knowledge distillation to obtain a well-calibrated model while

accuracy is also boosted over distillation (cf. Chapter 5).

4. How to extend the proposed methods based upon knowledge distillation to semantic seg-

mentation task? This dissertation starts with an investigation on semantic segmentation from

perspective of convolution neural network. An algorithm is proposed to improve semantic

segmentation accuracy. Given the understanding, ensemble knowledge distillation is used to

further improve semantic segmentation calibration (cf. Chapter 6).

From extensive experiments across different latest benchmarks, all proposed methods are justified

to outperform corresponding state-of-the-art approaches. Given the results, more detailed analysis

on observation data is conducted to provide more insights for further improvement in proposed

approaches. The experiments for ablation study also reveal more information on the effectiveness

of proposed approaches and facilitate the application of the proposed method to other real-world

problems.

7.2 Future Work

7.2.1 Distillation Calibration on Temporal Modeling

Current work focuses on spatial model distillation and calibration. With rapid development of

deep learning techniques, more applications are developed with temporal modeling. Similar to

spatial modeling, temporal model can also encounter the problems like data limitation and severe

miscalibation. It is critical to tackle these challenges before getting these temporal-model-based
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applications into practice. Accordingly, one future research direction from this dissertation is to

extend the proposed distillation methods to temporal modeling, such as temporal model calibra-

tion. Due to different modeling strategies, the optimization approaches will differ, especially for

data augmentation. How to design an effective and efficient augmentation pipeline to improve

temporal model calibration? How to distill temporal model with lower cost but yielding higher

accuracy? Would semantic segmentation be easily solved with current modeling approaches in a

temporal manner? These questions will be explored in future. Over the exploration, well-designed

experiments on challenged benchmarks will be carried out to ensure the findings are reliable.

7.2.2 On Calibration of Semantic Segmentation Models

Semantic segmentation is a core fundamental computer vision task for a variety of applications,

such as autonomous driving. Although the current work from this dissertation provides a solution

to efficiently improving semantic segmentation on both accuracy and calibration, the optimization

approaches are still not fully explored and there is a possibility to further enhance calibration.

Will post-hoc calibration help reduce miscalibration? If so, how to develop a simple yet effective

approach to calibrate semantic segmentation models? Is that possible to derive a unified and gen-

eral calibration solution to both spatial and temporal segmentation modeling? These remaining

questions will be studied in future. More extensive experiments on more challenged benchmarks

will be conducted to justify speculations or proposed methods. A more systematic study will be

conducted to understand this topic.
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