
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2020- 

2023 

Modeling Individual Activity and Mobility Behavior and Assessing Modeling Individual Activity and Mobility Behavior and Assessing 

Ridesharing Impacts Using Emerging Data Sources Ridesharing Impacts Using Emerging Data Sources 

Jiechao Zhang 
University of Central Florida 

 Part of the Civil Engineering Commons, and the Transportation Engineering Commons 

Find similar works at: https://stars.library.ucf.edu/etd2020 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Electronic Theses and Dissertations, 2020- by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Zhang, Jiechao, "Modeling Individual Activity and Mobility Behavior and Assessing Ridesharing Impacts 
Using Emerging Data Sources" (2023). Electronic Theses and Dissertations, 2020-. 1703. 
https://stars.library.ucf.edu/etd2020/1703 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd2020
https://network.bepress.com/hgg/discipline/252?utm_source=stars.library.ucf.edu%2Fetd2020%2F1703&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1329?utm_source=stars.library.ucf.edu%2Fetd2020%2F1703&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd2020
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd2020/1703?utm_source=stars.library.ucf.edu%2Fetd2020%2F1703&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


 
 

MODELING INDIVIDUAL ACTIVITY AND MOBILITY BEHAVIOR AND 

ASSESSING RIDESHARING IMPACTS USING EMERGING DATA SOURCES 

by 

JIECHAO ZHANG 

B.Sc. Beijing Jiaotong University, 2015 

M.Sc. University of Central Florida, 2020 

 

A dissertation submitted in partial fulfillment of the requirements  

for the degree of Doctor of Philosophy 

in the Department of Civil, Environmental and Construction Engineering 

in the College of Engineering and Computer Science 

at the University of Central Florida 

Orlando, Florida 

 

 

Spring Term 

2023 

 

 

Major Professor: Samiul Hasan 

  



ii 
 

 

 

 

 

 

 

 

 

 

 

 

© 2023 Jiechao Zhang 

 

 

 

 

 

 

 

 

 

 

  



iii 
 

ABSTRACT 

Predicting individual mobility behavior is one of the major steps of transportation planning 

models. Accurate prediction of individual mobility behavior will be beneficial for transportation 

planning. Although previous studies have used different data sources to model individual 

mobility behaviors, they have several limitations such as the lack of complete mobility sequences 

and travel mode information, limiting our ability to accurately predict individual movements. In 

recent years, the emergence of GPS-based floating car data (FCD) and on-demand ride-hailing 

service platforms can provide innovative data sources to understand and model individual 

mobility behavior. Compared to the previously used data sources such as mobile phone and 

social media data, mobility data extracted of the new data sources contain more specific, 

detailed, and longitudinal information of individual travel mode and coordinates of the visited 

locations. This dissertation explores the potential of using GPS-based FCD and on-demand ride-

hailing service data with different modeling techniques towards understanding and predicting 

individual mobility and activity behaviors and assessing the ridesharing impacts through three 

studies.  

Keywords: Individual Activity Behavior; Individual Mobility Prediction; Intelligent 

Transportation System; IOHMM; Big Data 

EXTENDED ABSTRACT 

First, we developed a method to infer individual activity participation type and developed an 

individual-level activity prediction model—an input-output hidden Markov model (IOHMM)—

to generate the activity sequences, durations, and destinations of consecutive trips made by an 
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individual over a day. Two datasets including vehicle trajectory and point of interest (POI) data 

were used in this study. The developed IOHMM model can generate the activity sequence with 

about 90% accuracy for afternoon, evening, and night and more than 80% accuracy for morning 

and midday periods. With the generated activity type, the model can also predict activity type 

and locations accurately. The model presents strong interpretability since we can obtain the 

activity probabilities from model parameters, such as initial, transition and emission parameters.  

Second, using large-scale data extracted from 50,000 ride-hailing service users’ anonymized 

mobility records, we applied a multi-layer hidden Markov model to predict on-demand ride-

haling service trips for each individual considering the heterogeneity of the travel purposes, 

including the trip decision, the number of daily trips, the origin, and the destination. The results 

show that the trip decision model can achieve up to 65% accuracy. The origin and destination 

prediction model can work well on the commute-based users which can achieve nearly 70% 

accuracy. To better evaluate the performance of origin prediction model, we discovered that the 

accuracy of origin prediction model is strongly correlated with the predictability of a mobility 

sequence.  

Third, an agent-based model was developed to simulate the influence of a ridesharing strategy 

with real-world data available from a ride-hailing service. To better satisfy the passengers’ 

requests, we proposed a real-time vehicle-passenger matching algorithm both for the ridesharing 

and non-ridesharing scenarios. The results show that the ridesharing system can decrease up to 

55% of the fleet size and 51% of the unoccupancy rate compared to a system without any 

ridesharing option available. The average waiting time of the ridesharing system can be lowered 

by 79.2% with a fleet size of 300. Besides, the ridesharing system can decrease between 7.6% 

and 65.6% of the total vehicle kilometers traveled and between 7.2% and 40% of carbon dioxide 
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(CO2) emissions considering different fleet sizes. In addition, the results indicate that the 

ridesharing strategy can work better in high demand areas and peak hours. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Analyzing spatio-temporal patterns of individual mobility is one of the core elements of 

transportation analysis and modeling. Thus, understanding and modeling individual mobility 

behavior, from different perspectives and data sources, is beneficial to many transportation 

applications such as transportation planning [1], intelligent transportation system (ITS) [2] 

design, development of smart cities [3], and traffic management [4].  Traditionally, individual 

mobility behavior analysis is mainly based on travel surveys [5]. Although travel survey methods 

have evolved from traditional pen-and-paper based data collection to nowadays web and 

smartphone-based data collection, it also has disadvantages due to low-efficiency and high-cost 

limiting the ability to understand and model the individual mobility behaviors [6].  

In recent years, to understand individual mobility behavior, various large-scale high-

resolution datasets with varying capabilities have been used [7, 8]. For instance, call details 

records (CDR) extracted from mobile phones can provide information of human movement 

behavior in different spatio-temporal scales [9-12]. Besides, massive social media data [13] 

extracted from online social media platforms are also used in the individual mobility and activity 

analysis. However, both CDR and social media data have their own limitations in understanding 

human mobility behavior. First, the data can be recorded only when the user is utilizing the 

mobile device or log in the social media platform which will be challenging to provide the whole 

mobility or activity sequence of an individual. Second, we cannot identify the travel mode when 

an individual makes a trip or have an activity which limits the application of the data for solving 

transportation problems. Third, both the CDR and social media data are difficult to provide the 

precise location visited by individuals. For CDR data, since the data is collected based on tower 
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locations, we can only obtain the approximate area of the visited location. For social media data, 

since not all the users will share their geolocation information, it is difficult to get enough 

location-based data. It will provide more valuable insights if we can learn the patterns of human 

activity and mobility patterns with the data sources that contain more precise transportation 

related information such travel mode and specific origin and destination of a trip. 

With the rapid development of GPS-based trajectory data and on-demand ride-hailing 

service platform, massive innovative transportation related data sources have been available for 

understanding and modeling mobility behavior [14]. Both GPS-based trajectory data and on-

demand ride-hailing data can overcome some of the limitations of previous data sources which 

can be beneficial in revealing the individual mobility patterns. For instance, GPS-based 

trajectory data can provide information of travel mode, the timestamp of the activities or 

movements, the complete mobility sequence and the precise locations of the visited places. The 

on-demand ride-hailing service data can also share the information of time, mode, and specific 

visited location.  

In addition, on-demand ride-hailing platforms like Uber and Lyft offer convenient, 

flexible transportation options for users, allowing them to book a ride anytime, anywhere 

through a simple smartphone app. This innovative ride-hailing service has created opportunities 

for individuals to use ridesharing as a means of transportation, since passengers with similar 

routes and schedules can share a ride. Ride-sharing services can help reduce traffic congestion, 

decrease air pollution, and reduce the overall carbon footprint of transportation systems [15, 16]. 

Additionally, by reducing the number of vehicles on the road, ridesharing can help to save 

valuable resources, such as fuel and minerals [17], which are used to produce and maintain 
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vehicles. Overall, the trend towards ridesharing is a positive development for both the 

environment and society. 

This dissertation utilizes emerging mobility data such GPS-based trajectory and on-

demand ride-hailing service data for developing new methodologies to understand and model 

individual mobility behavior. Furthermore, using on-demand ride-hailing service data, it 

develops an agent-based simulation model for real-time ridesharing strategies and evaluates the 

impacts of implementing such strategies at a system level. The understanding of human mobility 

behavior and the impacts of ridesharing strategies will enable us to make better transportation 

planning and traffic management tools and better transportation policies, which will increase the 

efficiency of transportation networks. 

1.2 Motivation 

The overarching goal of this dissertation is to better understand human mobility behavior and the 

effects of ridesharing strategy using GPS-based FCD and on-demand ride-hailing service data. 

To do that, we work on three inter-dependent studies. The motivation of choosing these studies is 

discussed below.  

1.2.1 Individual Activity Behavior Prediction from Vehicle Trajectory Data  

Predicting the next activity and the corresponding location of individual mobility behavior is one 

of the important topics in human movement or travel behavior modeling. Although previous 

researchers have utilized data from mobile phone records [18-24], smart card transactions [25, 

26] and social media posts [27, 28] to understand mobility patterns and develop individual 

mobility prediction model, the use of other data sources is also gaining interest. Research are 

also interested to use the data sources that can provide more transportation related information, 
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since both mobile phone or social media data have limits in observing precise mobility behavior, 

and smart card data cannot provide continuous human trajectories. 

Since most of the traffic are generated by private vehicle trips, which is the primary mode 

of transportation for the people in the USA [29], a generative model for individual activity 

behaviors using trajectory information of individual vehicles (i.e., private car) will be essential 

for future urban and transportation planning and management. Although a variety of studies have 

been conducted for modeling individual activity behaviors, there exist several research gaps. 

First, due to a lack of long-term individual-level vehicle trajectories, few studies have focused on 

identifying the activities from individual trajectories. Second, no previous studies have 

developed a generative model for individual activity sequence with the trajectories available 

from private vehicles.  

The above limitations motivate us to develop a generative model for individual activity 

sequence using GPS-based individual trajectory data. A generative model for individual activity 

sequence using GPS-based individual trajectory data can provide a powerful tool for 

understanding human behavior and generating personalized recommendations. 

1.2.2 Individual Mobility Behavior Prediction from Ride-hailing Service Data 

Previous studies [30-35] developed algorithms for the next activity prediction or next location 

prediction. However, for some specific travel modes such as on-demand ride-hailing service 

trips, there is no existing model for predicting trip decisions and generating trip sequences at an 

individual level. The trip decision of ride-hailing service trips represents whether or not an 

individual will use the ride-hailing service trip given a specific contextual information such as 

the day of the week and weather; this element is also important to understand individual mobility 

behavior by a specific travel mode. By modeling individual trip decisions, a transportation 
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network company can design appropriate strategies and offer incentives to manage the demand 

for ride-hailing services and improve rider experience.  

Individual mobility behaviors show both regularities and uncertainties. For instance, daily 

commuting behaviors of individuals show strong regularities. However, an individual may also 

explore new places indicating the uncertainty in mobility behavior. Several previous studies have 

investigated the predictability of human mobility using mobile phone data. However, most of the 

previous studies focused on predictability when forecasting the individual location in the next 

time step. Such an approach cannot reflect the predictability of individual mobility in a realistic 

way since individuals may stay in the same place for a longer period of time. 

The above limitations have motivated us to investigate alternative data sources and 

approaches for understanding human mobility behavior. In recent years, the rapid development 

of on-demand ride-hailing service platforms provide us more innovative transportation related 

data which created an opportunity towards developing mobility prediction models and analyze 

the predictability of mobility sequence of trips made by private vehicles and on-demand ride-

hailing services. 

1.2.3 Impacts of Ridesharing 

In recent years, the wide adoption of on-demand ride-hailing service platforms such as Uber, 

Lyft and Didi has significantly influenced individual mobility options in their daily life. The 

development of smart-phone based technology and the on-demand ride-haling service platforms 

have enabled ridesharing services which will not only reduce traffic volume in the transportation 

network but also have significant environmental benefits [17]. Besides, while a ride-sharing 

strategy can reduce the number of vehicles on the road, it can also have negative effects. One of 

the main drawbacks is that the detour distance can increase as the ride-sharing vehicle may need 
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to pick up or drop off multiple passengers along the way. This can lead to longer travel times 

and decreased efficiency for the passengers. Additionally, the detour distance can also result in 

increased fuel consumption and higher emissions, which can have a negative impact on the 

environment.  

Moreover, in some cases, ridesharing can lead to increased traffic congestion, especially 

during peak hours, as multiple vehicles are picking up and dropping off passengers along the 

same routes. To minimize these negative effects, it's important to continuously optimize their 

algorithms and routing strategies to minimize detour distances and reduce the number of 

vehicles on the road. In order to fully understand the potential impacts of ridesharing, it is 

essential to evaluate the ridesharing strategy using real-world data. This can help to accurately 

measure the benefits and drawbacks of ridesharing and inform future decisions about 

transportation policy and planning.  

1.3 Dissertation Objectives 

This dissertation presents studies to improve our understanding of individual mobility behavior 

and to fill the gaps in existing studies using GPS-based floating car data and on-demand ride-

hailing service data. Besides, we assess the impacts of a proposed ridesharing strategy at the 

level of a system. The dissertation has the following specific objectives: 

i. Develop a method to identify the activity type of individual mobility sequence. Then, 

develop an individual-level mobility prediction model, to predict the trajectories of daily 

consecutive vehicle trips. 

ii. Develop a model to predict the ride-hailing service trips including the trip decision, the 

daily trip number, and the origin and destination of a trip; analyze mobility patterns with 
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on-demand ride-hailing service data; and determine the predictability of individual 

mobility sequence.  

iii. Develop a method to evaluate the traffic and environmental impacts of a real-time 

ridesharing strategy on urban traffic network using ride-hailing service data. To do that, 

we need to build a real-time ridesharing system using an agent-based simulation model to 

extract the trajectories of passengers and vehicles which can provide valuable 

information to evaluate the potential environment and transportation impacts. 

1.4 Contributions 

This dissertation has made the following contributions:  

i. This dissertation augments vehicle trajectory data with a database of point of interests 

(POI) to infer activity type from the POI category and the start time and duration of an 

activity. Besides, it develops an input-output hidden Markov model (IOHMM) using real-

world vehicle trajectory data to predict the type and location of the next activity and 

generate activity sequence.  To the best of our knowledge, this is the first study to develop 

a generative model of activity sequence from vehicle trajectory data. 

ii. In addition, it develops an individual-level mobility prediction model, to predict the trip 

making behavior of ride-hailing service users. To the best of our knowledge, this is one of 

the few studies predicting individual mobility behavior using massive ride-hailing service 

data which will not only provide insights for urban planning and traffic management 

applications but also can improve the services offered by transportation network 

companies. 

iii. This dissertation investigates the entropy and predictability of the mobility sequence of 

ride-hailing service users and validates the performance of individual mobility prediction 
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model using the concept of predictability. The method of predictability can be applied to 

improve the performance of models predicting individual mobility behavior. 

iv. This dissertation develops an agent-based simulation model that can evaluate the traffic 

and environmental impacts of ridesharing strategies on urban traffic networks using real-

world ride-hailing service data. 

1.5 Structure of the Dissertation  

Chapter 2 presents the study that applied an input-output hidden Markov model (IOHMM) to 

develop a generative individual activity behavior model using the data extracted from a telematic 

vehicle survey conducted in Ann Arbor, Michigan. We identified the activity types based on the 

spatio-temporal scales of human mobility and tested the proposed model using the individual 

mobility sequence generated from the continuous vehicle trips. 

Chapter 3 presents an innovative multi-layer Markov chain-based model to predict 

individual mobility behaviors using the data extracted from Didi platform which is one of the 

largest on-demand ride-hailing platforms of the world. In this research, we focus on predicting 

the next ride-hailing service trips, including the trip decision, the daily trip number, the origin 

and destination of the trip. Besides, we use the predictability concept calculated by entropy to 

evaluate the performance of the mobility sequence prediction model. 

Chapter 4 presents an agent-based simulation model to evaluate the travel and 

environmental impacts of ride-sharing strategies. Using a real-time agent-based simulation 

model and incorporating real-world data from a ride-hailing service platform and mapping API, 

we aim to provide valuable insights into the benefits and drawbacks of ridesharing. The use of 

real demand data from a ride-hailing service platform and traffic condition data from Google 
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Map API will help to increase the realism of the simulation and make the results more 

representative of the real-world situation. 

Finally, Chapter 5 concludes the dissertation by discussing the overall findings of the 

chapters, stating the limitations of the studies, and providing directions for future research.   
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CHAPTER 2: MODELING INDIVIDUAL ACTIVITY BEHAVIOR USING VEHICLE 

TRAJECTORY DATA  

2.1 Introduction 

Human activity is one of the most fundamental drivers of transportation demand [21]. Previous 

research has identified strong regularities in individual movement patterns [36, 37]. A better 

understanding of human activity participation behavior will facilitate improvement in various 

sectors including traffic operations and management [38], implementation of mobility-as-a-

service (MaaS), ridesharing [39-41], and urban transportation planning [1]. In recent years, data-

driven methods have been widely applied to analyze and model human mobility patterns [42]. In 

the pioneering study, using mobile phone data, Gonzalez et al. [23] revealed that individual 

mobility behavior shows strong regularities in a spatio-temporal scale. Additionally, data from 

social media [43, 44], public transportation [25, 45], taxi GPS [46, 47], and smartphones [42] 

have also been utilized to understand human mobility behavior. 

Predicting individual mobility and activity behavior such as next activity location [37] or 

next trip [25] is an important topic in travel behavior modeling. The data used for individual 

mobility prediction can be broadly divided into two groups – extrinsic mobility data and intrinsic 

mobility data [25]. Data from smartphones and social media are defined as extrinsic mobility 

data since these data are passively generated as a consequence of activity participation process. 

Therefore, information about travel modes and visited locations are not directly available from 

extrinsic mobility data. Additionally extrinsic mobility data cannot capture the continuous trace 

of human mobility sequence. Mobility information from extrinsic data is recorded only when an 

individual uses a smartphone or an application (also referred to as app such as Facebook or 

Twitter), resulting in non-consecutive mobility sequence. As such, using extrinsic mobility data 
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without any correction can lead to biased model parameters and inaccurate prediction of activity 

attributes such as duration and frequency.  

On the other hand, intrinsic mobility data are directly extracted from the mobility 

behavior associated with specific travel modes, such as public transport, taxi, or bike sharing 

systems. This data can provide precise information on individual movement including visited 

locations, travel durations, and activity start and end times. Intrinsic mobility data are frequently 

used in transportation system modeling. However, most intrinsic data rely on traditional survey 

methods that require direct input from the respondents. Since individuals need to actively 

participate in the data collection process, such data cannot capture mobility and activity patterns 

beyond a couple of days, with most surveys collecting mobility behavior for a weekday [48]. 

However, previous research has identified that individual mobility information from a single day 

cannot capture the true trends in mobility patterns necessary for shaping transportation system 

performance [49]. In recent years, the rapid development of connected vehicles has shown the 

great potential for collecting massive individual mobility data through continuous logging of 

successive vehicle trips. Such datasets have significant potential for understanding human 

movement patterns since they preserve the continuity of visited locations (unlike smartphone 

data) and span across multiple days (unlike traditional survey data).  

In this paper, we use vehicle trajectory data collected from Ann Arbor, Michigan to 

develop a predictive model of individual activity behavior. We first investigate the spatio-

temporal patterns of vehicle users’ mobility behavior to understand their travel distance and 

frequency. Based on the historical sequence of an individual, we identify activity types using 

point of interest (POI) information, activity start time, and activity duration. To predict 

individual activity and mobility behaviors, we develop an input-output hidden Markov model 
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(IOHMM). In the IOHMM model, activity types are considered as the hidden states, the inputs 

contain contextual information, such as time of the day and day of the week, and the output 

contains information on activity location.  

The contributions of this research can be summarized as follows: 

• The study augments vehicle trajectory data with a database of point of interests 

(POIs) to infer the activity type from a POI category and the start time and duration of an activity.   

• The study develops an input-output hidden Markov model (IOHMM) using real 

world vehicle trajectory data to predict the type and location of the next activity and generate 

activity sequence using individual-level vehicle trajectory data. To the best of our knowledge, this 

is the first study to develop a generative model of activity sequence from vehicle trajectory data. 

• The study uses real-world vehicle trajectory data collected from a city to train the 

IOHMM model at an individual level, evaluates model performance with respect to model 

accuracy and precision, and provides insights on how the results from such a model can be 

interpreted.       

2.2 Literature Review 

In recent years, many studies have been conducted to understand individual mobility behaviors 

[50]. Existing individual mobility research can be grouped into three categories: analyzing 

individual mobility patterns [23, 43, 45, 51-54], predicting individual mobility behaviors [25, 31, 

35, 37, 38, 55, 56], and revealing uncertainty and predictability of human movement [21, 57-62].   

The analysis of individual mobility patterns has received extensive attention since 

massive human movement data have become available. The widespread adoption of mobile 

devices and emerging technologies has generated high-quality mobility data from smartphone 

usage [14], social media platforms [43], smart card transactions [45], and GPS observations [63], 



13 
 

providing insights into human mobility patterns. For instance, analyzing mobile phone data, 

Gonzalez et al. [63] found that human movement has strong regularities with a higher probability 

associated with more frequently visited places. Zhao et al. discovered that the power law 

distribution of individual travel distance can be decomposed into multiple lognormal 

distributions specific to a travel mode. Similarly, using subway smart card transaction data, 

Hasan et al. [45] found that the distribution of the rank of visited locations follows Zipf’s law 

when the rank is high. Using mobile phone data, Kang et al. [64] showed that the intra-urban 

travel generation of individuals follows an exponential distribution. These studies mainly 

focused on understanding human mobility patterns by fitting movement data through appropriate 

statistical distributions.   

Since individual movement patterns have both regularities and uncertainties, researchers 

have analyzed the ability to forecast the future movement of individuals [21]. In previous studies, 

researchers mainly used entropy to capture the value of the predictability of individual mobility. 

Song et al. [21] analyzed 50,000 mobile phone users’ mobility patterns and found a 93% 

predictability for individual mobility behaviors. Lu et al. [58] also used mobile phone call detail 

records (CDR) data to estimate the predictability of individual mobility behavior. Based on the 

entropy value, it was shown that the theoretical maximum predictability of human mobility can 

reach 88%. However, these two studies only focused on the predictability of visiting a location in 

the next time step, which leads to a high value of predictability as individuals tend to stay longer 

at a visited location. In the study [62], using 604 individual GPS traces data, the paper analyzed 

the predictability of forecasting the next visited location. The study reported 71% predictability 

in forecasting the next visited location which is substantially less than the previous study. It 

means that the next location is more difficult to predict than the location in the next time step. 
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Although the concept of predictability can inform us how much human mobility can be forecast, 

appropriate data-mining algorithms can learn individual mobility behaviors and predict the actual 

individual movement. 

Many predictive models have been developed using emerging mobility data [58]. Such 

models include neural networks [65, 66], generic algorithms-based models [35], Bayesian n-

gram models [25], and Markov based models [31, 37, 58, 67-70]. These studies also utilized 

multiple types of datasets including mobile phone data [58], smart card data [25], simulation data 

[68], and GPS data [67]. Although Markov chain models have achieved a great performance in 

predicting individual mobility, these models cannot capture the influence of mobility contexts 

such as time of the day and day of the week. However, such temporal information usually 

ignored in the Markov chain model is likely to have a significant influence on individual activity 

behavior. Lv et al. [31] developed a Hidden Markov Model (HMM) for predicting the point of 

interest from historical trajectory data with an accuracy ranging between 20% and 70% 

depending on the travel behavior of an individual. The individuals who have regular life patterns 

have the highest prediction accuracy (around 70% for all periods). For the other people who 

always move (day postman, party person, or hard postman), the prediction accuracy was less 

than 50% from 7:00 am to 8:00 pm.  Zong et al. [67] combined multinomial logit and Markov 

chain model to predict the destination of only 10 individuals using multi-day GPS data. The 

model has 90% accuracy for weekday trips and 85% accuracy for weekends. 

Although a variety of methods have been proposed for modeling individual activity 

behaviors, there are still several research gaps. First, due to a lack of long-term individual-level 

vehicle trajectories, very few studies have focused on identifying the activities from individual 

trajectories. Second, no previous studies have developed a generative model for individual 
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activity sequence using individual vehicles (private car) trajectory information, which is the 

primary mode of transportation for people in the USA [29]. In this paper, we develop an 

individual-level model to generate individual activity behavior including activity type and 

activity location using continuous vehicle trajectory data. 

2.3 Study Area and Data Description 

This study has used the data gathered from a telematic data collection effort conducted by the 

University of Michigan, Transportation Research Institute and Argonne National Laboratory 

between May 2017 and November 2018. The survey recruited around 500 vehicles and the data 

were collected over the 18 months recording almost 8M vehicle miles. The information collected 

during the survey could be grouped into three categories: GPS information, fuel information, 

battery information, and the time stamp of the GPS information. The GPS information includes 

latitude, longitude, altitude of the vehicle, and the number of satellites used. This study builds on 

the GPS information collected during the survey. The initial survey logged the GPS information 

every 5 seconds which was reduced to every 3 seconds by the end of the year 2017. A map-

matching algorithm was applied to the raw data to identify the routes and the trip start/end 

points. To anonymize the data, a stochastic algorithm was applied to randomize the trip start and 

end location within an admissible radius. All the data were stored in a server owned by Argonne 

National Laboratory and the models presented in this paper were run in that server. Individual 

mobility data was accessible to Argonne Lab researchers only. Figure 2.1 shows some of the 

sample trip trajectories collected in May 2018 with the red and blue dots indicating the trip start 

and end points, respectively. 
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Figure 2.1 Sample trips from the telematic data collection survey 

In this research, we represent a visited place through the coordinates (latitude and 

longitude) of the locations observed in the vehicle trajectory data. However, two different 

coordinates may represent the same visited place. For example, Figure 2.2 (a) shows two 

different visited coordinates of an individual, which are located within the same school campus. 

If we define these two coordinates as two separate locations, then we would not be able to 

capture the regularities in the activity pattern, because these two coordinates are essentially the 

same location with respect to an individual’s activity participation. Thus, the two coordinates 

should be clustered into a group as shown in Figure 2.2 (b). Such a cluster is also commonly 

referred to as a point of interest [35]. In this research, the visited coordinates are clustered based 
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on a threshold so that if the distance between two visited coordinates is less than 200 meters, the 

coordinates are considered to be the part of a single point of interest. 

 

                           (a)                                                                           (b) 

Figure 2.2 The visited coordinates (a) vs. visited place or point of interest (b) 

The number of visited places varied across individuals as shown in Figure 2.3 (a). It 

reveals that most individuals have visited fewer than 50 different places. Although an individual 

makes many visits, those visits concentrate on a limited number of locations, such as the home 

and work locations. This corroborates the findings from previous studies [45]. For each 

individual, we ranked her visited places based on the frequency of visits i.e., the most frequently 

visited place was ranked one, the 2nd most frequently visited place was ranked 2 and so on. 

Figure 2.3 (b) shows the probability of different ranks of the visited places across all the users. 

The first rank of the visited place accounts for more than 10% probability and the probability 

decreases sharply when the rank of the visited place increases. It also illustrates that when the 

rank of a visited place is more than 10, the probability that an individual would visit that place 

will be less than 1%, which means that an individual would seldom visit a low-ranked location. 
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                                 (a)                                                             (b) 

Figure 2.3 (a) The distribution of visited places number; (b) The probability of rank of 

visited places 

 

In this research, we aim to predict the type and location of the next activity that an 

individual is going to participate in given some contextual information and the sequence of 

previous activities.  To do this, we identify and label each activity participated by individuals 

based on the activity sequence. Since activity sequence can provide information on the type of 

visited places, the start time, and the activity duration, we can label activities using a set of rules. 

For instance, if a person starts an activity at 12 pm, continued the activity for 30 min, and the 

visited place was around a restaurant, then that activity is more likely to be an eating activity. 

The decision rules used to identify activities are listed in Table 2.1. The type of a place is 

defined based on the point of interest (POI) information data collected from the SafeGraph 

platform (https://www.safegraph.com/). From the SafeGraph platform, we extracted the POI 

coordinates located in Michigan. We extracted 151,561 POI records containing 147 categories 

such as restaurants and other eating places, supermarkets, malls, personal care services, and 

religious organizations. 

Since the activity sequence of an individual is continuous, we consider that on each day, 

an individual will start his/her first activity from home and end the last activity at home. Thus, 

https://www.safegraph.com/
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among all the places visited by an individual, the most frequently last visited place is defined as 

the home place for that individual. In addition, for individuals with a regular job (they are 

expected to go to work on weekdays), we consider that the workplace will have the longest 

activity duration between 7 am and 5 pm and will be active at least 40% of the total active days 

(i.e., the days with GPS coordinates recorded). If the identified workplace is recorded in less than 

40% of the total active days, the individual is defined as a non-working person. 

The rest of the activities are labeled based on the start hour, duration, and the POI of the 

place. We label an activity when it satisfies all three requirements: start hour, POI information, 

and activity duration. For example, if an activity starts anytime between 11 am and 1 pm, the 

POI information shows that the activity happens near a food-related place, and the activity 

duration is 5 to 120 min, then the activity is identified as an eating activity. Otherwise, the 

activity cannot be identified as an eating activity and we will continue to infer the activity type. 

In terms of the POI information, since multiple POIs can be very close to each other, we do not 

choose the nearest POI of the activity location. For each activity location, we extract all the POIs 

which are within 200 meters of the specific activity location. When identifying an activity type, 

if the required POI information is in these POIs, we will consider that the activity location meets 

the requirement of the POI information. 

 To avoid having multiple labels for a visited place, we identify the activity type 

following a hierarchy using the level of the activity type. The home activity category is given the 

highest priority and the personal activity has the lowest. For example, if an activity is labeled as 

an eating activity, we will stop the identification process. Otherwise, we will check whether the 

activity is a shopping activity. If the activity cannot be identified as any of the 6 selected 

categories, we label the activity as ‘Not Identified’. 
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Table 2.1 Activity type identification rules 

Level Activity Type Start Hour POI information Activity Duration (min) 

0 Home Any Time Home location Any Time 

1 Work Any Time Work location Any Time 

2 Eating 
11 – 13 hr 

17 – 19 hr 
Food, Restaurant… 5-120 

3 Shopping 
10 – 12 hr 

14 – 22 hr 
Supermarket, mall… 5-120 

4 Pickup/Dropoff Any Time Any Place < 10 

5 Personal 5 – 22 hr Gym, park, Hospital, dentist… 5- 240 

 

One of the advantages of predicting activity behavior at an individual level is that we can 

not only predict the activity type, but also the specific activity locations. However, if activity 

locations are represented by GPS coordinates, they will be harder to predict. For example, two 

different coordinates may refer to the same visited places (home or work locations). To better 

predict activity locations, we divide the study area (Ann Arbor city, Michigan) into 10 by 10 

grids. And each activity location is represented by a grid ID. Figure 4 shows that each grid is 

given a grid ID between 0 and 99 and all the visited locations outside the study area have a grid 

ID 100. Each grid covers an area of about 0.42 square miles.  
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Figure 2.4  Grid division of the study area 

2.4 Input-Output Hidden Markov Model (IOHMM) 

Individual activity behaviors can be modeled from the historical trajectory sequence due to the 

presence of strong regularities as discovered from previous studies. However, the majority of the 

previous studies applied hidden Markov models (HMMs) to predict human movement. An HMM 

model uses homogeneous probability matrices for transition, and emission processes [69]. Since 

individual activity patterns have daily, weekly, and monthly periodicity, the HMM cannot 

identify all the periodicity with homogenous parameters. Thus, to better model individual 

activity sequences, we utilized an input-output hidden Markov model (IOHMM) which 

overcomes the shortcomings of the traditional HMMs. 

Similar to the previous study [69], the framework of IOHMM adopted in this research 

contains three layers: input layer, hidden state layer, and output layer (observation layer) as 

shown in Figure 5. Compared to the traditional HMM, the IOHMM contains an additional input 
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layer that allows to introduce non-homogeneous parameters associated with different contexts of 

activity participation behavior. From Figure 5, it can be noted that the input layer affects both 

the hidden state, and the output layers and the hidden state layer influences only the output layer. 

To predict the next hidden state, the model will consider the information of the previous state 

and the corresponding input. 

 

Figure 2.5  The framework of input-output hidden Markov model (IOHMM) 

In the model, the input layer 𝐼𝑡 provides the contextual information, such as time of the 

day (0 to 23 hr) and day of the week (Monday – Sunday). The IOHMM assumes that the 

contextual information contributes to the prediction of the hidden state which is behaviorally 

more plausible.  

Since we cannot identify the types of all activities of a sequence, we use a semi - 

supervised learning algorithm with the hidden states as the targets while training the IOHMM. 

The hidden state layer 𝑆𝑡  represents the activity type. Here, the number of hidden states is 6 

representing six activity types: home, work, eating, shopping, pickup/drop off, and personal. The 

input layer 𝐼𝑡 contains the contextual information, such as the time of the day (morning, lunch, 

afternoon, dinner, and evening), the day of the week (Monday, Tuesday, etc.), and whether the 

trip is the last trip of the day. The output layer 𝑂𝑡 contains information on activity location. 
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In the standard HMM, the hidden states follow a Markov process with homogeneous 

transition and emission probabilities. It means that the current hidden state 𝑠𝑡 depends only on 

the previous state 𝑠𝑡−1. Unlike the traditional HMM, in IOHMM, the current hidden state 𝑠𝑡 

depends both on previous state 𝑠𝑡−1 and the input 𝑖𝑡 at time 𝑡. For the framework of IOHMM, 

there are three main factors – initial probability, transition probability and emission probability. 

The initial probability decides the probability of the first hidden state 𝑠1 given the first input 𝑖1. 

The transition probability defines the relationship between the previous hidden state 𝑠𝑡−1 and the 

current hidden state 𝑠𝑡  given the current input 𝑖𝑡 . The emission probability provides the 

probability of the output 𝑜𝑡 given the current hidden state 𝑠𝑡 and current input 𝑖𝑡. 

We define the initial probability as: 

𝑝(𝑠1|𝑖1; 𝛼𝑖𝑛)                                                                           (1) 

The transition probability is defined as:  

𝑝(𝑠𝑡 = 𝑗|𝑠𝑡−1 = 𝑘; 𝑖𝑡, 𝛼𝑡𝑟)                                                            (2) 

The emission probability is defined as:  

𝑝(𝑜𝑡|𝑠𝑡 = 𝑗; 𝑖𝑡, 𝛼𝑒𝑚)                                                                (3) 

The likelihood of an activity sequence of the IOHMM can be calculated by: 

𝐿(𝛼, 𝑜, 𝑖) =  ∑ (𝑝(𝑠1|𝑖1;  𝛼𝑖𝑛) ∗ ∏ 𝑝(𝑠𝑡|𝑠𝑡−1, 𝑖𝑡;  𝛼𝑡𝑟) ∗

𝑇

𝑡=2

∏ 𝑝(𝑜𝑡|𝑠𝑡, 𝑖𝑡;  𝛼𝑒𝑚)

𝑇

𝑡=1

)

𝑠

          (4) 

In the equation, 𝑖, 𝑠, 𝑜  are input variables, hidden states, and output variables, 

respectively; the  𝛼𝑖𝑛, 𝛼𝑡𝑟 , 𝛼𝑒𝑚 are the parameters for initial, transition, and emission process, 

respectively.  
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To estimate the parameters, we utilized the commonly used Expectation-Maximization 

(EM) algorithm. The E-step calculates the log likelihood given the parameters and corresponding 

dataset and the M-step maximizes the log-likelihood by tuning the parameters. We run the EM 

algorithm using the code developed by [69]. 

For the initial layer, the variables are the time of the day and day of the week, which are 

discrete. Thus, we applied a multinomial logistic regression model to estimate the initial 

probability. If the number of hidden states is 𝑘, the initial probability can be calculated by the 

following Equation 5: 

𝑝(𝑠1 = 𝑗|𝑖1; 𝛼𝑖𝑛) =
𝑒𝛼𝑖𝑛

𝑗
∗𝑖1

∑ 𝑒𝛼𝑖𝑛
𝑘 ∗𝑖1

𝑘

                                                             (5) 

 

Where 𝛼𝑖𝑛 represents the initial parameters and 𝛼𝑖𝑛
𝑗

 is the initial parameters for the initial 

state being at state 𝑗. 

For the transition layer, the hidden states are the activity types. Since the activity types 

are discrete variables. We used a multinomial logistic regression model to estimate the transition 

probability from the previous hidden state 𝑠𝑡−1  to the current hidden state 𝑠𝑡 . The transition 

process can be modeled as Equation 6: 

𝑝(𝑠𝑡 = 𝑗|𝑠𝑡−1 = 𝑞; 𝑖𝑡, 𝛼𝑡𝑟) =
𝑒𝛼𝑡𝑟

𝑞,𝑗
∗𝑖𝑡

∑ 𝑒𝛼𝑡𝑟
𝑞,𝑘

∗𝑖𝑡
𝑘

                                                (6) 

Where 𝛼𝑡𝑟 represents the transition parameters and 𝛼𝑡𝑟
𝑞,𝑗

 is the transition parameters for 

transitioning the hidden state 𝑞 to hidden state 𝑗. 
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For the output layer, we have two output variables – activity duration and activity 

locations. The activity duration is a continuous variable, and we used a linear regression model 

for the output model. The output model can be written as Equation 7. 

𝑝(𝑜𝑡
𝑑|𝑠𝑡 = 𝑗; 𝑖𝑡, 𝛼𝑑

𝑒𝑚
) =

1

√2𝜋𝜎𝑗

e
−

(𝑜𝑡
𝑑−𝛼𝑒𝑚

𝑑,𝑗
∗𝑖𝑡)2

2𝜎𝑗
2

                                       (7) 

Where 𝛼𝑒𝑚
𝑑,𝑗

 represents the emission parameters for the activity duration when the hidden 

state is 𝑗 and 𝜎𝑗  is the standard deviation of the linear regression model. 

For the output variable activity location, we used a multinomial logistic regression model 

for the outcome (Equation 8): 

𝑝(𝑜𝑡
𝑙|𝑠𝑡 = 𝑗; 𝑖𝑡, 𝛼𝑙

𝑒𝑚
) =

𝑒𝛼𝑒𝑚
𝑙,𝑗

∗𝑖𝑡

∑ 𝑒𝛼𝑒𝑚
𝑙,𝑘 ∗𝑖𝑡

𝑘

                                                     (8) 

Where 𝛼𝑒𝑚
𝑙,𝑗

 represents the emission parameters for the activity location when the hidden 

state is 𝑗. 

To estimate the parameters of the IOHMM, we used the code shared by Yin et al. [69], 

which is available from https://github.com/Mogeng/IOHMM. 

2.5 Results 

2.5.1 Inferring activity type 

To evaluate the performance of the activity type identification, we analyzed the results from 

three aspects: distribution of the start time of each activity type (Figure 2.6), distribution of 

activity duration (Figure 2.7), and activity sequence of an individual (Figure 2.8). 

Figure 2.6 shows that the start time distribution of home activity peaks at 16 – 17 hr 

which is the time people finish their work. For the work activity, we can see most of the start 

time is during the morning peak hour which aligns with our expectations. Eating activity mainly 
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happens during lunchtime (11 – 13 hr) and dinnertime (17 – 19 hr). The shopping activities are 

conducted mostly after lunchtime and dinnertime. For pickup/drop off and personal activity, we 

can see that the distribution of the start time is quite random i.e., they can happen at any time of 

the day. 

 

Figure 2.6  Distribution of start time for different activities 

Figure 2.7 shows the distributions of activity duration by activity type. From the figure, 

we can find that the home and work activities have the largest duration – 8 hours peak for work 

and 7 hours peak for home (excluding overnight home activity). For eating and shopping 

activities, we can see most of them are less than 2.5 hours long. The pickup/drop off and 

personal activity have the shortest activity duration – less than one hour for personal activity and 

less than 10 min for pickup/drop off activity. 
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Figure 2.7 Activity duration distribution for each activity type 

In addition to the start hour and the activity duration, we can generate individual-level 

daily activity sequence which is shown in Figure 2.8. We selected two randomly selected 

vehicles to generate the daily activity sequence plot with data covering 60 days. To present the 

activity sequence organized over multiple days, for each day, we assume that the last activity 

will be a home-based activity and the first activity in the next day will be a non-home-based 

activity; one needs to travel from home to participate to that activity. In the figure, the y axis 

indicates the day count, and the x axis presents the time of the day (in hour). Different colors in 

the figure represent distinct activity types, such as home, work, eating, and so on. As we can see 

from the two vehicles, we can easily identify the commuting patterns of each individual. On each 
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day, the first activity started at around 7 am, which was coded as a work activity by the 

algorithm. The green bars represent eating activities; some eating activities were identified 

during work hours while others were attended during the evening periods. These two users 

mostly participated in shopping activities right after work. 

 

                                    (a)                                                                       (b) 

Figure 2.8 Individual daily activity sequence with activity types for two vehicles (a) 

vehicle 9 and (b) vehicle 10 

2.5.2 IOHMM model results 

In this section, we analyze the results of the IOHMM for generating individual activity 

sequences. To train and evaluate the IOHMM, we applied the model to the trajectory data of 274 

individuals. For each individual, we used 70% and 30% of activity sequences to train and 

evaluate model performance, respectively. 

Since this is a generative model its prediction performance is evaluated first at an 

aggregate level. To do this, the generated number of activities of each activity type for different 

time periods are compared against the actual number of activities in the corresponding periods. 

We use mean absolute error (MAE) and mean absolute percentage error (MAPE) to evaluate the 
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performance of the developed generative model. The MAE and MAPE can be calculated by the 

following equations: 

𝑀𝐴𝐸 = ∑ |𝑛𝑝𝑟𝑒𝑑
𝑖 − 𝑛𝑟𝑒𝑎𝑙

𝑖 |
𝑡

𝑖=1
                                                      (8) 

 

𝑀𝐴𝑃𝐸 =  
∑ |𝑛𝑝𝑟𝑒𝑑

𝑖 − 𝑛𝑟𝑒𝑎𝑙
𝑖 |𝑡

𝑖=1

𝑛𝑡𝑜𝑡𝑎𝑙
𝑖

                                                      (9) 

Where 𝑖 is different time periods (morning, lunch, afternoon, dinner and evening), 𝑛𝑝𝑟𝑒𝑑 

is the number of predicted activities in the time period 𝑖, 𝑛𝑟𝑒𝑎𝑙 is the actual number of activities 

in the time period 𝑖, and 𝑛𝑡𝑜𝑡𝑎𝑙 is the total actual value of activity number in the time periods 𝑖. 

We present the results of MAE and MAPE values in Table 2.2. It shows that for different 

time periods, the range of MAPE is from 9% to 18.7% which means that, in terms of activity 

number, our model can achieve accuracy levels between 81.3% and 91.0%.  It also shows that 

the morning and lunch time periods have higher MAPE values, indicating that it is more difficult 

to correctly predict activities in the morning and lunch periods. The model can work better in the 

afternoon, dinner and evening periods, since the MAPE values in these three periods are around 

10%. 

Table 2.2 Results of comparison of activity number 

Time Periods Total Number of Activities MAE MAPE 

Morning (5am – 10am) 22582 4214 18.66% 

Lunch (11am – 1pm) 20243 3790 18.72% 

Afternoon (2pm – 4pm) 22690 2494 10.99% 

Dinner (5pm – 7pm) 18589 2236 12.03% 

Evening (8pm – 12am) 7425 674 9.01% 

 

To analyze the performance of the model for different activity types, we compare the 

generated and actual number of activities for each activity type as shown in Figure 2.9. It shows 
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that the model will generate more work activities in the morning period and more eating 

activities in the lunch period. Since holidays were included in selected data collection periods, 

the model would generate work activities while individuals may have participated in other 

activities (such as home or shopping activities) in the holiday periods. Besides, eating activities, 

which are done outside the home, will have more randomness. Both of these factors will generate 

more errors in the morning and lunch periods. For the other periods, we can see all the activities 

will have a similar number between the predicted value and the actual value.  

We also compare the duration for each activity type in different time periods in Figure 

2.10. The results show that the distributions of predicted activity duration are similar to that of 

the actual activity durations. For all the time periods, the distributions of activity duration have 

two peaks. In the morning periods, the first peak is the same for both the predicted value and the 

actual value which is about 50 minutes, and for the second peak, the predicted value is a little 

less than the actual value which may be due to more work activities generated. In the lunch 

periods, the two peaks of activity duration distribution are nearly the same for both the predicted 

value and the actual value. The first peak is between 50 minutes and 1 hour, and the second peak 

is about 650 minutes (probably home activity). For the afternoon periods, the predicted value and 

actual value also have similar distributions with two peaks (50 minutes and 500 minutes, 

separately). In the dinner activity, although the predicted value and actual value have similar 

peaks, the density of peaks of predicted value is higher than the actual value, since more eating 

activities are in the predicted value. In the evening period, there is only one peak which is about 

200 minutes (most of the activities in the evening period are home activities). 



31 
 

 

 

Figure 2.9  Results of number of generated and actual activities by type 
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Figure 2.10 Results of number of generative activity duration vs. real activity types  
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When we know the type of a participated activity, we can further generate the activity 

location with contextual information and the results are presented in Figure 2.11. The developed 

model generated activity location in the output layer given the information of the input layer and 

hidden state layer. We evaluated the performance of activity location generation by calculating 

accuracy which is defined as the ratio of the number of correctly generated activity locations to 

the number of total activity locations. The activity location generation results show that the 

distribution of accuracy peaks at nearly 100% and more than 81% of individuals have at least 

50% accuracy, which indicates the prediction model works well in predicting activity location. 

Some activities are conducted at fixed locations such as home activity at home and work activity 

as workplace which helped to attain higher prediction accuracy for activity location. 

 

Figure 2.11 Distribution of model accuracy for activity location prediction 

We show the initial probability distribution of each activity type for all the time periods 

in Figure 2.12. In the model, we assume that all the individuals will stay at home before making 



34 
 

a trip to participate in their first activity. Thus, the first activity of each individual for each day 

should not be a home activity. Due to this assumption the results show that the initial 

probabilities of home activity are 0 across all the time periods. 

The results show that, in the morning period, work and shopping activities have the 

highest probability, followed by pickup/drop-off and personal activities. The initial probabilities 

of the other activities are near 0. It indicates that in the morning, individuals tend to go to work 

or shopping as the first activities and some individuals have pickup/drop-off and personal 

activities. In the lunch period, eating activity is the most popular among all the activities. Most 

people tend to have an eating activity as their first vehicle trip at lunch time.  The shopping 

activity dominates the afternoon period. There are also some individuals who take work, 

pickup/drop-off and personal activities for them for trip of each day. In the afternoon, shopping 

activity is the most likely initial activity, which means that people prefer to participate in a 

shopping activity if they need to make a trip in the afternoon. If an individual takes the first 

vehicle trip, in the results, we can find that the work, eating, shopping, pickup/drop-off, and 

personal activities show a similar probability. 
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Figure 2.12 Distribution of initial probability in different time periods 

We present the distribution of transition probability across all the periods for test 

individuals in Figure 2.13. For each period, we have a transition matrix with the distribution of 

transition probabilities. From the transition matrix associated with each time period, the labels on 

the left indicate the state the user is transitioning from and the labels on the bottom indicate the 

state the user is transitioning to. The most significant transitions are from the other activities to 

the home activity. Since it has been assumed that the first activity of each day cannot be a home 

activity, the first activity is more likely to be shopping and work activity, which will lower the 

probability of other activities transitioning to shopping and work activities. In the lunch time 

periods, individuals tend to transition from the home and work activities to eating activities. 

Besides, pickup/drop off activities are more likely to transition to work activity. In the afternoon 

time periods, there is a high probability for the users staying at home to transition to shopping 
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activity. And all the other states to home activity is significant. In the dinner period, patterns are 

similar to lunch period except for the pickup/drop off activity. Home and work activity will have 

a higher probability to transition to eating activity and users with all the other activities are more 

likely to go home. In the evening period, users tend to go home from all their other activities. 
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Figure 2.13  Distribution of transition probability in different time periods 
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One of the applications of our individual-level activity prediction model is that we can 

generate an activity sequence given the contextual information. We use vehicle 9 as an example 

to compare the ground truth of the activity sequence and the generated activity sequence. The 

results can be seen in Figure 2.14. First, we can find that in the ground truth of the vehicle 9 

activity sequence, there are several activities that cannot be identified. In the generated activity 

sequence, the model can identify the corresponding activities based on the historical dataset 

which shows the potential of the individual activity prediction model in future applications. 

Besides, we can see the generated activity sequences are very similar to the ground truth activity 

sequence, which shows that although the general accuracy level is not high enough, the model 

can be used to generate realistic activity sequences for individuals. 

 

                (a)                                                                           (b) 

Figure 2.14  Ground truth of activity sequence vs. generated activity sequence: (a) ground 

truth of vehicle 9 activity sequence and (b) generated vehicle 9 activity sequence 

 

2.6 Conclusions 

In this paper, we present an input-output hidden Markov model (IOHMM) to generate individual 

activity sequences given contextual information. We first applied an algorithm to identify the 
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type of an activity based on POI category, start time of the activity, and duration of the activity. 

The results show that our algorithm works well on the activity type identification. We tested our 

model using massive individual vehicle trajectory data. To the best of our knowledge, the model 

used in this research is the first to predict individual activity patterns using full consecutive 

activity sequence available from vehicle trajectory data. Since the activity patterns for 

individuals are highly heterogeneous, we trained the IOHMM separately for each individual. 

From the comparison of activity number and activity duration between the predicted value and 

ground truth, it indicates the developed model can work well in predicting the activity sequence 

at an individual level. Besides, the results also show that if we know the activities of individual, 

the model can accurately predict the corresponding activity locations. To explain the model 

parameters, we analyze the distribution of initial and transition probabilities for different time 

periods.  

One of the advantages of the proposed model is the explainability compared to the 

previous methods such as neural networks and other machine learning algorithms. From the 

model parameters, we can understand the transition probability for different activities 

considering contextual information such as the time of the day and day of the week. The 

explainable results can help us understand and validate models which can also be beneficial for 

improving the model accuracy through iteration. The proposed model can be used to generate the 

activity sequence for individuals given the contextual information. The results show that the 

generated activity sequence is very similar to the real activity sequence. In addition, the 

developed model can predict the activity of a sequence even if the types of activities are missing 

in the training data. The generated activity sequence shows the potential of the proposed model 

in generating realistic activity sequences at an individual level. These results show the great 
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potential of the developed model in real-world transportation planning applications such as 

traffic simulation, travel demand estimation, and OD matrix prediction. 

There are also some limitations in this paper. First, although the proposed activity 

identification algorithm can achieve great performance by analyzing the activity’s start time and 

duration, the ground truth data about activity participation will be required to validate the results 

of the algorithm. In the future, if more real-world individual activity data are available, the 

predictive model can be improved. Second, the developed model has a poor performance in 

predicting personal activities since we do not have socio demographic information such as age, 

gender, and the job of individuals.  



42 
 

CHAPTER 3: PREDICTING INDIVIUDAL MOBILITY BEHAVIOR OF RIDE-

HAILING SERVICE USERS 

3.1 Introduction 

1 Understanding individual mobility behavior can provide insights for transportation planning and 

traffic management. Based on the historical travel patterns, an individual’s daily travel activities 

can be predicted. Combining individual travel patterns, we can forecast aggregate traffic demand 

so that transportation agencies can make strategies to mitigate congestion problems. To predict 

individual mobility behavior, researchers have made significant efforts using a wide variety of 

data sources. Traditionally, household travel surveys [71, 72] are the main data source to predict 

individual mobility behavior. However, high cost, low efficiency, and low sampling rates limit the 

application of travel surveys. Recently, data from banknotes [53], smartphones [42, 58], social 

media [28, 43, 44], and smart card transactions [25, 45] have been used to reveal spatio-temporal 

patterns of individual mobility. However, these data sources have limitations in modeling human 

movement. For instance, data from banknotes, smartphones and social media platforms have 

missing activities and they do not have information on the travel mode of each trip. On the other 

hand, data from public transport smart card transactions can provide the information of the travel 

mode (e.g., bus, train); but they do not offer the precise origin and destination of a trip since each 

trip starts/ends at a train station or a bus stop. Thus, to better understand individual mobility 

behavior, data with precise transportation related information (e.g., origin, destination, travel 

mode) are essential. 

 
1 Zhang, J., Hasan, S., Roy, K.C. and Yan, X., 2021, September. Predicting Individual Mobility Behavior of 

Ride-Hailing Service Users considering Heterogeneity of Trip Purposes. In 2021 IEEE International Intelligent 

Transportation Systems Conference (ITSC) (pp. 3685-3690). IEEE. 
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In recent years, on-demand ride-hailing services (such as Uber, Lyft, and Didi) have 

become emerging transportation modes in our daily life. These companies provide an online 

platform for individuals so that users can book a private ride-hailing service vehicle or a taxi for 

the next trip by giving the origin and destination of the trip. This innovative transportation 

platform can serve millions of users per day. The data from the ride-hailing services offer us a 

great opportunity to understand and model individual mobility behavior over many days. 

Although previous studies analyzed on-demand ride-hailing service data for travel demand 

prediction [73] and ride-splitting behavior analysis [74] at an aggregate level, there are few 

models predicting the travel behavior of on-demand ride-hailing service users at an individual 

level.  

Besides, mobility behaviors of ride-hailing service users are prone to irregularity or 

randomness [21]. However, previous studies have seldom investigated the role of randomness for 

ride-hailing service users’ mobility behavior. Thus, one important question remains to what 

degree the mobility behavior of ride-hailing service users is predictable.  The predictability of 

mobility behavior can be also used to evaluate the performance of potential individual mobility 

prediction models. 

In this study, we develop an innovative Markov chain-based model, multi-layer hidden 

Markov model, to predict individual mobility behaviors using the data extracted from Didi which 

is one of the largest on-demand ride-hailing platforms of the world. To validate the performance 

of the proposed model, we compare our results against a hidden Markov model (HMM). Besides, 

we also calculate the predictability based on Fano’s inequality [75] to investigate whether the 

accuracy of individual mobility prediction model can achieve the theoretical limits of 

predictability of the mobility of ride-hailing service users.  
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The main contributions of this study can be summarized as follows: 

• We develop an individual-level mobility model using a multi-layer hidden Markov 

based approach to predict both the trip making and origin and destination of ride-hailing service 

users. To the best of our knowledge, this is one of the few studies forecasting individual mobility 

behavior using massive ride-hailing service data. 

• To consider the heterogeneity of mobility behavior among ride-hailing service 

users, we classify the users into four groups using their historical mobility characteristics and 

develop models to predict the mobility behavior of each group.  

• We investigate the predictability of the mobility sequence of ride-hailing service 

users and validate the performance of trip origin prediction results using the concept of 

predictability of human movement.  

3.2 Literature Review 

Individual mobility behavior is one of the main elements of urban transportation systems 

modeling. Based on and emerging data sources (e.g., mobile phone, transit smart card, social 

media data), many studies analyzed individual movement patterns [23, 53, 54] or developed 

models for individual mobility behavior [35, 37, 71] using various modeling techniques. Recently 

researchers have developed statistical models to predict individual mobility behavior, such as 

Bayesian n-gram model [25] and Markov chain-based model [31, 58, 67, 69, 70, 76]. In addition, 

various machine learning based models such as neural networks [65] and genetic algorithms [35] 

have been developed.  

Among all the models used for predicting individual mobility behavior, the Markov chain-

based model attracts more attention. Using smartphone data, Xiu Lu et al. [58] developed a 

Markov chain model to predict the visited locations with a range of  87% - 95% accuracy, which 
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shows that individual mobility behaviors have strong regularities. Other studies [17, 27, 28][77] 

also reported that the Markov chain model can reach a range of 65% - 95 % accuracy with Wi-Fi 

wireless or GPS data of individual movement. Furthermore, in the study [37], the researchers 

applied an inhomogeneous continuous-time Markov model to predict the origin time and 

destination of the next trips of individuals with an accuracy of 67%. Besides, Qiujian Lv et al. 

[69] proposed a hidden Markov model to predict the individuals’ points of interest using the data 

from cellular data networks. Differentiating with the previous studies, this study divided the 

individuals into distinct groups by their living habits based on entropy. The results show that the 

accuracy of the model varies from 20% to 70% with different time periods. 

Human movement patterns reveal both regularities and uncertainties which will limit the 

predictability of mobility sequence. Researchers investigated the predictability of mobility 

sequence in recent years [21, 58, 62, 78]. In the study [21], using around 50,000 individuals’ 

smartphone data, it reported a 93% predictability of individual mobility. However, the study did 

not investigate the relationship between predictability and the accuracy of prediction models. 

Using mobile phone data, Xin Lu et al. [58] showed that the predictability of more than 500,000 

users’ mobility behavior is around 88%. They also developed a Markov chain model showing a 

range of 87% - 95 % accuracy which indicates that the method of predictability can be the 

approachable goal for the real prediction accuracy.  

Based on the aforementioned information, there is still a research gap in the literature to 

develop individual-level mobility models from ride-hailing service data and understand the 

predictability of user mobility behaviors. To fill this research gap, here we develop an innovative 

Markov chain-based model, an input-output hidden Markov model, to predict individual mobility 
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behavior and investigate the relationship between model accuracy and predictability of trips made 

by ride-hailing service users. 

3.3 Data and Methods  

3.3.1 Data Description 

In this study, to develop the proposed prediction model, we used user-level mobility data 

extracted from the Didi ride-hailing service, which is the largest on-demand ride-hailing service 

platform in China serving more than 400 cities [74]. The dataset contains more than 5,000,000 on-

demand ride-hailing users with the identification of trips and passengers, the coordinates of 

origins and destinations of each trip and trip attributes (travel time, travel distance and cost) from 

March 1, 2017 to June 31, 2017. The study region covers the area inside Beijing’s 6th ring road 

(Figure 3.1). To reduce the computational cost, we randomly selected 50,000 users to develop the 

prediction model. Besides, we also collected the weather information from the National Weather 

Science Data Center [79], since previous studies [32, 77] reported that weather may affect 

individual mobility behavior. We divided the weather information into two fields – weather and 

air quality. The details can be seen in Table 3.1. 
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Table 3.1 Detailed Data Attributes 

Mobility Data 

Field Name Field Description 

Record ID The encrypted record id of one trip 

Passenger ID The encrypted passenger id of one trip 

Driver ID The encrypted driver id of on trip 

Longitude of Origin The longitude of the origin 

Latitude of Origin The latitude of the origin 

Longitude of Destination The longitude of the destination 

Latitude of Destination The latitude of the destination 

Start Time The timestamp of the origin 

Arrive Time The timestamp of the destination 

Travel Distance The travel distance of the trip (km) 

Cost The price of the trip record (RMB) 

Weather Data 

Field Name Field Description 

Weather 0: no rain; 1: slight rain; 2: heavy rain 

Air Quality 0: no air pollution; 1: slight air pollution; 2: heavy air pollution 
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Figure 3.1  The study region: area inside Beijing 6th ring road 

3.3.2 Data Exploration 

Figure 3.2 shows some trip-related metrics of the selected 50,000 users. We find that that most of 

the selected users have made about 50 trips in four months (see Figure 3.2 (a)). Since not all the 

users have a trip every day, we also investigated the distribution of active days for individuals. 

Figure 3.2 (b) demonstrates that during the four months, the majority of the users were active in 

around 30 days. Besides, we also found that some users have less than 10 active days revealing 

that these users may be visitors. Since our study aims to find the typical mobility patterns, we 

removed the individuals who have less than 10 active days in the dataset. After removing the 

visitors, our final dataset contains 34,311 users. 
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We convert the coordinates of the trip origins and destinations as clusters, because 

sometimes two different coordinates do not indicate two different places. In terms of the historical 

origins and destinations of each individual, we defined that if the distance between two 

coordinates (either origins or destinations) is less than 300 meters, the two coordinates will be 

clustered as one visited place. Figure 3.2 (c) shows that most of the individuals have visited less 

than 20 different places by using the ride-hailing service in four months.  

After we identify all the visited places for each individual, we also sort each one’s visited 

places by their frequency and create a new variable called the rank of a visited place to represent 

each identified visited place. We also checked the distribution of the rank of visited places on a 

log-log scale in Figure 3.2 (d) for individuals with different numbers of visited places. It reveals 

that the top two ranks of visited locations have similar probability, but from the third ranked 

visited place and onward, the distribution decays following a Zipf’s law. Similar pattern was 

observed for public transportation users in a previous study [45]. For individuals with a smaller 

number of visited places, the probability of the top two ranked locations will be higher. We can 

also find the probability that individuals travel to a higher rank (more than 10) visited place is 

nearly 1%. Thus, when developing the model, we limited the rank of the places up to 11, where 

all ranks higher than 10 are considered as 11. 
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Figure 3.2  Exploratory data analysis: (a) the distribution of the number of trips; (b) the 

distribution of the number of active days; (c) the distribution of the number of visited 

places; (d) the distribution of rank of visited places in log-log scale 

3.3.3 Clustering Users 

From the dataset, we found the travel purpose for using the ride-hailing service is different across 

all the users. For example, some users utilize service vehicles only to come back home from 

his/her workplace and some users may use ride-hailing services for visiting different places for 

work purposes only. Thus, to better model the mobility patterns of ride-hailing service users, we 

cluster individuals based on their mobility habits. To cluster users, we mainly focus on their 

commuting patterns. To characterize individual commuting characteristics and to determine 

whether historical ride-hailing service data can reveal someone’s home or workplace, we utilized 

two heuristic rules: 
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Home: For individual user, for a visited place 𝑗, we define the number of trips started from 

𝑗 in the extended morning peak hour (6 am – 11 am) as 𝑞𝑠
𝑗
; the number of trips ended at 𝑗 in the 

extended evening peak hours (3 pm – 8 pm) as 𝑞𝑒
𝑗
, the total number of trips of individual is 𝑞𝑡𝑜𝑡𝑎𝑙.  

For an individual, if 𝑞𝑠
𝑗

+ 𝑞𝑒
𝑗
 is higher than the similar value for other visited places, the 

visited place 𝑗 will have a higher probability to be the home place. To be sure, in this study, if 

max
𝑗 (𝑞𝑠

𝑗
+𝑞𝑒

𝑗
)

𝑞𝑡𝑜𝑡𝑎𝑙
> 0.4, which means if the ratio of the largest sum of 𝑞𝑠

𝑗
 and 𝑞𝑒

𝑗
 to the total number of 

trips is more than 40%, then location 𝑗 is defined as the home place. Otherwise, the individual’s 

home place cannot be identified.  

Workplace: For individual user, for a visited place 𝑘, we define the number of trips ended 

at 𝑘 in the extended morning peak hour (6 am – 11 am) as 𝑞𝑒
𝑘; the number of trips started from 𝑘 

in the extended evening peak hours (3 pm – 8 pm) as 𝑞𝑠
𝑘, the total number of trips of individual is 

𝑞𝑡𝑜𝑡𝑎𝑙.  

Likewise, for individual 𝑖, if 𝑞𝑠
𝑘 + 𝑞𝑒

𝑘  is higher than the similar value for other visited 

places, then the visited place 𝑘 will have a higher probability to be the workplace. In this study, if 

max
𝑘 (𝑞𝑠

𝑘+𝑞𝑒
𝑘)

𝑞𝑡𝑜𝑡𝑎𝑙
> 0.25, which means that if the ratio of the largest sum of 𝑞𝑠

𝑘  and 𝑞𝑒
𝑘  to the total 

number of trips is more than 25%, then, the location 𝑘 is defined as the workplace. Otherwise, the 

individual’s workplace cannot be identified.  

According to whether the users’ home and workplace can be identified, we clustered the 

ride-hailing users into four groups: 

1) Home-based users: we can identify only the home of a user, which means that 

these users mainly use ride-hailing service for home-based trips. 
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2) Work-based users: we can identify only the workplace, which means that these 

users mainly use ride-hailing service for work-based trips. 

3) Commute-based users: we can identify both home and workplace, which means 

that these users mainly use ride-hailing services for commuting purposes. 

4) Random users: we can identify neither home nor workplace, which means that 

these users mainly use ride-hailing service for other purposes (neither home- nor work-based 

trips). 

To show these four groups, Figure 3.3 presents the hourly distribution of the number of 

origins by rank of visited places for a randomly selected user from each cluster.  For instance, 

Figure 3.3(a) depicts a home-based individual mobility behavior, and we can see the user 

frequently starts from the rank 0 visited place in the morning peak hours, which represents that the 

rank 0 visited place is the home place of this individual. However, we cannot identify his/her 

workplace since he/she does not take many ride-hailing services in the evening peak hours. 

Figure 3.3(b) – 3.3(d) respectively show the samples of spatio-temporal mobility patterns of 

work-based users, commute-based users, and random users. From selected passengers, 6100 users 

are home-based, 4985 users are work-based, 11048 users are commute-based, and the remaining 

12,178 users are random users. 



53 
 

 

Figure 3.3  The distribution of rank of visited places in different hour: (a) home-based 

users; (b) work-based users; (c) commute-based users; (d) random users. 

3.3.4 Multi-Layer Hidden Markov Model 

A user may not use ride-hailing service every day. Thus, to better model the mobility behavior of 

on-demand ride-haling service users, one needs to predict the decision to take a ride-hailing 

service for a specific day and the characteristics of the ride-haling trips to be made in that day. 

The trip decision of the users represents whether the user will make a trip given the contextual 

information, and the characteristics of a ride-hailing trip will contain both the trip origin and 

destination. As such, the method used in this research is a multi-layer hidden Markov model 

which contains two parts: i) trip decision model and ii) mobility sequence generation model. We 

first use the trip decision model to predict whether the user will have a trip and then, if the user 
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has a trip, we will use the mobility sequence generation model to predict the ride-hailing service 

trips on that day.  

Figure 3.4 shows the integrated modeling framework of trip decision and mobility 

sequence generation models. The trip decision model uses an input-output hidden Markov model 

(IOHMM) that includes three layers: input layer, hidden state layer, and output layer. The input 

layer (I) contains the contextual information such as the temporal information (day of the week), 

weather information, and individual characteristics (such as travel frequency level, radius of 

gyration, average travel cost and so on) extracted from the historical mobility sequence. The 

hidden state layer (S) will be the trip decision (whether to have a trip given the contextual 

information). The output layer (O) will be the number of trips on the specific day given the 

information of contextual and hidden state. Since the individual mobility sequence has weekly 

periodicity, for each individual, we process the data as a weekly sequence. 

We define the initial probability of trip decision model as: 

𝑝(𝑠1|𝑖1; 𝛼𝑖𝑛)                                                                    (9) 

The transition probability of trip decision model is defined as:  

𝑝(𝑠𝑡 = 𝑗|𝑠𝑡−1 = 𝑘, 𝑖𝑡; 𝛼𝑡𝑟)                                                     (10) 

The emission probability of trip decision model is defined as:  

𝑝(𝑜𝑡|𝑠𝑡 = 𝑗, 𝑖𝑡; 𝛼𝑒𝑚)                                                           (11) 

The likelihood of the sequence of a trip decision model can be estimated by: 

𝐿(𝛼, 𝑜, 𝑖) =  ∑ (Pr(𝑠1|𝑖1;  𝛼𝑖𝑛) ∗ ∏ Pr(𝑠𝑡|𝑠𝑡−1, 𝑖𝑡;  𝛼𝑡𝑟) ∗𝑇
𝑡=2 ∏ Pr(𝑜𝑡|𝑠𝑡, 𝑖𝑡;  𝛼𝑒𝑚)𝑇

𝑡=1 )𝑠       (12) 

In the equation, 𝑖, 𝑠, 𝑜  are input variables, hidden states, and output variables, 

respectively; the  𝛼𝑖𝑛, 𝛼𝑡𝑟 , 𝛼𝑒𝑚 are the parameters for initial, transition, and emission processes, 

respectively.  
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Figure 3.4 Multi-layer hidden Markov model framework 

The second part of the model will be the mobility sequence generation model, which uses 

the results of the trip decision model. When the trip decision model shows that there will be a trip 

under a specific context, the mobility sequence generation model will generate the ride-hailing 

service trips (including the origin and destination of the trips) of the day. Instead of using the 

actual coordinates or stations of the visited places [25], we use the rank of a visited place as a 

target variable in the model. Similar approach has been used in previous research [80]. 

The mobility sequence generation model also uses an input-output hidden Markov model 

framework. The input contains two types of information – the contextual information (𝐼) and the 

number of trips (𝑂). The hidden state layer (𝐼′) will be the origin of each trip and the output layer 

(𝑂′) will be the destination of each trip. 

We define the initial probability of mobility sequence generation model as: 
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𝑝(𝑠′1|𝑖1, 𝑜1; 𝛼′𝑖𝑛)                                                                     (13) 

The transition probability of mobility sequence generation model is defined as:  

𝑝(𝑠′𝑡 = 𝑗|𝑠′𝑡−1 = 𝑘, 𝑖𝑡, 𝑜𝑡; 𝛼′𝑡𝑟)                                                       (14) 

The emission probability of mobility sequence generation model is defined as:   

𝑝(𝑜′𝑡|𝑠′𝑡 = 𝑗, 𝑖𝑡, 𝑜𝑡; 𝛼′𝑒𝑚)                                                            (15) 

The likelihood of the sequence of mobility sequence generation model can be estimated 

by: 

𝐿(𝛼, 𝑜, 𝑖) =  ∑ (Pr(𝑠′1|𝑖1, 𝑜1;  𝛼′𝑖𝑛) ∗ ∏ Pr(𝑠′𝑡|𝑠′𝑡−1, 𝑖𝑡, 𝑜𝑡;  𝛼′𝑡𝑟) ∗𝑇
𝑡=2 ∏ Pr(𝑜′𝑡|𝑠′𝑡 = 𝑗, 𝑖𝑡, 𝑜𝑡;  𝛼′𝑒𝑚)𝑇

𝑡=1 )              𝑠  (16)   

In the equation, 𝑖, 𝑠′, 𝑜′  are input variables, hidden states, and output variables, 

respectively of a mobility sequence generation model; the  𝛼′𝑖𝑛, 𝛼′𝑡𝑟 , 𝛼′𝑒𝑚 are the parameters for 

initial, transition, and emission processes, respectively, of the mobility sequence generation 

model.  

The model selection depends on the type of variables. For example, in the trip decision 

model, the hidden state variables are discrete. Thus, to specify the initial and transition processes 

of the trip decision models, we use multinomial logistic regression models (Equation 17 and 18). 

We define the emission model with a linear regression model (Equation 19) to determine the 

number of daily trips. 

𝑝(𝑠1|𝑖1, 𝑜1; 𝛼𝑖𝑛) =
𝑒𝛼𝑖𝑛∗𝑖1∗𝑜1

∑ 𝑒𝛼𝑘∗𝑖1∗𝑜1
𝑘

                                                       (17) 

𝑝(𝑠𝑡 = 𝑗|𝑠𝑡−1 = 𝑘, 𝑖𝑡, 𝑜𝑡; 𝛼′𝑡𝑟) =
𝑒𝛼𝑘

𝑗
∗𝑖𝑡∗𝑜𝑡

∑ 𝑒𝛼𝑘
𝑛∗𝑖𝑡∗𝑜𝑡

𝑛

                                        (18) 

𝑝(𝑜𝑡|𝑠𝑡 = 𝑗, 𝑖𝑡, 𝑜𝑡; 𝛼𝑒𝑚) =
1

√2𝜋𝜎𝑗

𝑒
−

(𝑜𝑡−𝛼𝑒𝑚∗𝑖𝑡∗𝑜𝑡)2

2𝜎𝑗
2

                                  (19) 
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The 𝛼𝑘
𝑗
 represents the transition probability from the state 𝑘 to the next state 𝑗 and 𝜎𝑗  is the 

standard deviation of the linear regression model when the hidden state is 𝑗. 

In addition, in the mobility sequence generation model, both the hidden state variable (the 

origin of a trip) and the emission variable (the destination of a trip) are discrete. Thus, all of the 

initial, transition and emission models are defined as multinomial logistic regression models 

shown in Equation 20 – 22, respectively. 

𝑝(𝑠′1|𝑖1; 𝛼′𝑖𝑛) =
𝑒𝛼′𝑖𝑛∗𝑖1∗𝑜𝑡

∑ 𝑒𝛼′𝑘∗𝑖1∗𝑜𝑡
𝑘

                                                     (20) 

𝑝(𝑠′𝑡 = 𝑗|𝑠′𝑡−1 = 𝑘, 𝑖𝑡, 𝑜𝑡; 𝛼′𝑡𝑟) =
𝑒𝛼′𝑘

𝑗
∗𝑖𝑡∗𝑜𝑡

∑ 𝑒𝛼′𝑘
𝑛∗𝑖𝑡∗𝑜𝑡

𝑛

                                  (21) 

𝑝(𝑜′𝑡|𝑠′𝑡 = 𝑗, 𝑖𝑡, 𝑜𝑡; 𝛼′𝑒𝑚) =
𝑒𝛼′𝑒𝑚

𝑗
∗𝑖𝑡∗𝑜𝑡

∑ 𝑒𝛼′𝑒𝑚
𝑛 ∗𝑖𝑡∗𝑜𝑡𝑛

                                     (22) 

To train the IOHMM, we used a supervised learning algorithm with the hidden states as 

the targets. Due to the heterogeneity in individual mobility behaviors, we train the mobility 

sequence generation model for home-based users, work-based users, commute-based users, and 

random users separately. For each group, we combined 70% of the historical mobility sequence of 

each individual to create the training dataset and the remaining 30% of the mobility sequence of 

each individual as the test dataset. To evaluate the performance of the proposed prediction 

models, we utilized accuracy as a metric. For each target variable (trip decision, origin rank, or 

destination rank), the accuracy is defined by the ratio of accurate predictions to all predictions.  

To estimate the parameters, we utilized an Expectation-Maximization (EM) algorithm [81] 

which is commonly used for parameter estimation of hidden-Markov based models. The E-step 

calculates the log likelihood given the parameters and corresponding dataset and the M-step 
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maximizes the log-likelihood by tuning the parameters. We adopted the EM algorithm following 

the descriptions given in [26, 69]: 

In the E-step, the estimated parameters at iteration 𝑤 − 1 are defined as 𝛼𝑤−1. If 𝑤 = 1, 

then the initial parameters are used. With 𝛼𝑘−1, we can obtain the initial, transition and emission 

probabilities, defined as 𝜋𝑗
𝑤−1, 𝜑𝑗,𝑘;𝑡

𝑤−1, and 𝛿𝑗;𝑡
𝑤−1 . Then, the forward (𝛽𝑗;𝑡

𝑤 ) and backward (𝛾𝑗;𝑡
𝑤 ) 

variables can be calculated as: 

𝛽𝑗;𝑡
𝑤 = 𝛿𝑗;𝑡

𝑤−1  ∑ 𝜑𝑙,𝑗;𝑡
𝑤−1

𝑙∈𝑆

∗ 𝛽𝑙;𝑡−1
𝑤                                                       (23) 

𝛾𝑗;𝑡
𝑤 = ∑ 𝜑𝑗,𝑙;𝑡

𝑤−1

𝑙∈𝑆

∗ 𝛾𝑙;𝑡+1
𝑤 ∗ 𝛿𝑙;𝑡+1

𝑤−1                                                      (24) 

With the forward and backward variables, we can calculate the posterior state probability 

𝜀𝑗;𝑡
𝑤  and posterior transition probability 𝜃𝑗,𝑘;𝑡

𝑤  as: 

𝜀𝑗;𝑡
𝑤 = 𝛽𝑗;𝑡

𝑤 ∗ 𝛾𝑗;𝑡
𝑤 /𝐿𝑐

𝑤                                                               (25) 

𝜃𝑗,𝑘;𝑡
𝑤 = 𝜑𝑗,𝑘;𝑡

𝑤−1 ∗ 𝛽𝑗;𝑡−1
𝑤 ∗ 𝛾𝑘;𝑡

𝑤 ∗ 𝛿𝑘;𝑡
𝑤−1/𝐿𝑐

𝑤                                            (26) 

where 𝐿𝑐
𝑤  is the complete log likelihood at iteration 𝑤 , which can be calculated by 

∑ 𝛽𝑗;𝑇
𝑤

𝑗𝜖𝑆 . 

In the M-step, the parameters in iteration 𝑤 are updated by maximizing the expected 

log likelihood: 

𝑄(𝛼; 𝛼𝑤−1) = ∑ 𝜀𝑗;1
𝑤

𝑗𝜖𝑆

∗ 𝑙𝑜𝑔𝑃(𝑠1|𝑖1; 𝛼𝑖𝑛) + 

∑ ∑ 𝜃𝑗,𝑘;𝑡
𝑤

𝑗,𝑘𝜖𝑆

𝑇

𝑡=2

∗ 𝑙𝑜𝑔𝑃(𝑠𝑡 = 𝑗|𝑠𝑡−1 = 𝑘, 𝑖𝑡; 𝛼𝑡𝑟) + ∑ ∑ 𝜀𝑗;𝑡
𝑤 ∗

𝑗𝜖𝑆

𝑇

𝑡=1

𝑙𝑜𝑔𝑃(𝑜𝑡|𝑠𝑡 = 𝑗, 𝑖𝑡; 𝛼𝑒𝑚)  (27) 

Then, we can obtain 𝛼𝑤 = 𝑎𝑟𝑔𝑚𝑎𝑥𝛼𝑄(𝛼; 𝛼𝑤−1). We run the EM algorithm using the 

code developed by [69], which is available in https://github.com/Mogeng/IOHMM. 
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3.3.5 Predictability of Mobility 

Since individual mobility have both regularities and uncertainties [21, 58, 62, 78], it is 

challenging to evaluate the performance of the prediction models. Previous studies investigated to 

uncover the relationships between randomness (unforeseeable) or regularity (predictable) of 

individual mobility behavior mainly using mobile phone data [21] and GPS traces [62]. However, 

the predictability of ride-hailing service users’ mobility behavior is seldom uncovered. Since the 

characteristics of ride-hailing service users’ mobility behavior is different from the movement 

patters of mobile phone users and regular individuals, it is essential to capture the degree of 

predictability of ride-hailing service users mobility behavior. Thus, in this study, we have 

calculated the predictability using the entropy measures based on the historical mobility sequence 

of each individual. Predictability of mobility sequence can be defined into three ways: random 

predictability, temporal-uncorrelated predictability, and real predictability. In this study, we use 

real entropy to calculate the predictability of mobility sequence. 

The real entropy (e𝑟𝑒𝑎𝑙) is not only associated with the probability of visited locations in 

historical data but is also related to the frequency of the order of visited locations. For each 

individual, the real entropy can be calculated by Equation 20. 

e𝑟𝑒𝑎𝑙 = − ∑ 𝑝(𝐿𝑖
′)𝑙𝑜𝑔2[𝑝(𝐿𝑖

′)]
𝐿𝑖
′∈𝐿𝑖

                                        (28) 

where 𝐿𝑖 is the sequence of visited locations of individual i; 𝑝(𝐿𝑖
′) is the probability that a 

specific order of visited places happened in the historical time series. 

According to Fano’s inequality [75], to uncover the predictability, we calculate the 

probability Π𝑚𝑎𝑥 , which means the maximum predictability for a specific sequence. For each 

individual, given the entropy and the number of locations, the predictability of the visited location 

sequence can be calculated by Equation 21. 
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e𝑟𝑒𝑎𝑙 =  𝐻(Π𝑚𝑎𝑥) + (1 − Π𝑚𝑎𝑥)𝑙𝑜𝑔2(𝑁 − 1)                              (29)                    

where, e𝑟𝑒𝑎𝑙 is real entropy of the individual; 𝐻(Π𝑚𝑎𝑥) is a function of Π𝑚𝑎𝑥, which can 

be calculated by  𝐻(Π𝑚𝑎𝑥) =  −Π𝑚𝑎𝑥𝑙𝑜𝑔2(Π𝑚𝑎𝑥)– (1 – Π𝑚𝑎𝑥)𝑙𝑜𝑔2(1 – Π𝑚𝑎𝑥); N is the total 

number of visited locations. 

3.4 Empirical Results 

3.4.1 Mobility Patterns 

To uncover the spatial-temporal mobility patterns of ride-hailing service users, we have analyzed 

the distributions of the jump length, radius of gyration and the hourly trip generation volume 

across the whole user population, shown in Figure 3.5.  The jump length represents the travel 

distance of individuals for each trip and the radius of gyration refers to the root mean square 

distance of all the visited points to the center of mass for each individual’s mobility sequence. The 

jump length and radius of gyration reveal the spatial patterns of user mobility. The hourly trip 

generation volume shows the ride-hailing service demand in each hour of a day revealing the 

temporal patterns of user movement. 

Figure 3.5 (a) indicates that almost all the jump length of ride-hailing service trip is less 

than 100 km, and the majority of jump length is less than 10 km which shows that individuals 

seldom travel longer distance when using an on-demand ride-hailing service. Similarly, Figure 

3.5 (b) shows that most of the individuals have a less than 10 km radius of gyration indicating 

that users tend to have a small size of activity region when they take the ride-hailing service. For 

temporal patterns, we find a typical bimodal distribution of hourly trip generation volume 

including morning peak hours (7 am – 9 am) and afternoon peak hours (6 pm – 8 pm) (see 

Figure 3.5 (c)). It shows a strong temporal regularity of mobility behavior of ride-hailing service 

users indicating that the hour of the day has a significant influence on mobility patterns. 
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(a) 
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(b) 

 

(c) 

Figure 3.5 Spatio-Temporal patterns of ride-hailing service: (a) the distribution of jump 

length; (b) the distribution of radius of gyration; (c) the distribution of hourly trip 

generation 

3.4.2 Trip Decision Prediction 

In this section, we use real-world on-demand ride-hailing service data to validate the performance 

of the proposed trip decision model. Due to the heterogeneity in individual mobility behaviors, we 

train the trip decision prediction model for home-based users, work-based users, commute-based 

users, and random users, separately. The input features used in this model contain the day of the 

week (Mon, Tue, Wed, Thu, Fri, and Sat), the number of trips of the individuals (NTS), the 

number of active days (NAS), the radius of gyration (RGS), the average distance record (ADRS) 

(distance between a passenger and the vehicle when the on-demand ride-hailing service driver 
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receives the order), the average travel cost (ACS), the average travel distance (ADS), the average 

travel time (ATS), the weather (Wea), the air quality (AQ) and the last week active days (LA). To 

evaluate the proposed trip decision model, we also applied a logistic regression model to predict 

whether an individual will make a trip as a benchmark model. 

Figure 3.6 shows the results of the trip decision model for each group of users. As we can 

see from the figure, all groups have similar results for the trip decision model with a median 

accuracy value around 65%. And it also indicates that the proposed trip decision prediction mode 

works better than the logistic regression model across all the groups. The results demonstrate that 

the travel purpose of on-demand ride-hailing users does not have significant influence on whether 

the users will have a trip or not. 
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Figure 3.6  Trip decision prediction model results: (a) home-based users; (b) work-based 

users; (c) commute-based users; (d) random users 

In addition, we can also find the patterns of daily trip numbers in the trip decision 

prediction model. Table 3.2 presents the emission parameters of the trip decision model. We can 

find that all the four groups make on average 1.6 to 1.7 trips per day. Since the average number of 

trips per day is similar across the four clusters, it indicates that the travel purpose does not 

significantly influence the number of trips made per day. We can find that the number of trips and 

the number of active days have significant influence on the daily number of trips. Also, the 

coefficient of the distance shows a negative relationship with the number of trips per day. It 
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indicates that if an individual has a larger average distance record, she will prefer to make less 

trips by using a ride hailing service. 

Table 3.2  Emission parameters of daily trip number of trip decision prediction model 

 

Home-based 

users 

Work-based 

users 

Commute-based 

users 

Random 

users 

Constant 1.726 1.64 1.557 1.679 

Mon -0.051 -0.021 -0.016 -0.033 

Tue -0.043 -0.005 -0.008 -0.006 

Wed -0.025 -0.002 0 -0.001 

Thur -0.04 0.001 -0.001 -0.013 

Fri -0.051 0 -0.003 -0.025 

Sat -0.015 -0.016 0.008 -0.004 

Number of Trips 5.266 4.588 4.596 5.061 

Number of Active Days -2.536 -2.186 -1.999 -2.516 

Radius of Gyration 0.014 -0.008 0.026 0.012 

Average Distance 

Record -0.809 -0.313 -0.241 -0.062 

Average Travel Cost 0.144 0.098 -0.15 0.063 

Average Travel Distance -0.206 -0.18 -0.095 -0.122 

Average Travel Time 0.188 0.165 0.245 0.228 

Weather -0.01 0.003 0.009 0 

Air Quality 0.002 0.004 0.004 0.002 

Last Week Active Days 0.018 0.02 0.015 0.021 

 

3.4.3 Next Origin and Destination Prediction 

In this section, we present the results of mobility sequence generation model estimated over the 

data from the selected 34,311 users extracted from the Didi ride-hailing service platform to 

generate the mobility sequence of each individual if they have a trip based on trip decision model. 

In the testing process, we calculated the accuracy for each individual so that we can analyze the 

distribution of accuracy across all the users in the test dataset to provide a more detailed 

evaluation of the prediction models. To compare the IOHMM with a benchmark model, we also 

trained a traditional HMM in the same ways (same training and test datasets). We visualize the 

results of the origin prediction models in Figure 3.7 and the destination prediction models in 

Figure 3.8. 
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In general, for origin prediction, we find that IOHMM outperforms the benchmark model 

– HMM for every cluster. Figures 3.7 (a) – 3.7 (d) demonstrate the distribution of prediction 

models for home-based users, work-based users, commute-based users, and random users, 

respectively. It indicates that prediction models of home-based users and work-based users have 

52% (50% for HMM) and 50% (46% for HMM) accuracy, respectively. The prediction model 

for commute-based users achieves the highest accuracy with the median of the accuracy 

distribution is 71% (51% for HMM) (Figures 3.7 (c)). 

 

Figure 3.7 Origin prediction model results: (a) home-based users; (b) work-based users; (c) 

commute-based users; (d) random users 
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For destination prediction model, it shows the similar results with the origin prediction 

model in Figure 3.8. The commute-based users have the highest accuracy among all the groups. 

However, the general accuracy of destination prediction is less than the origin prediction. The 

accuracy of destination prediction model for commute-based users can reach 67% followed by 

the home-based users (44%) and work-based users (40%). The random users have a low 

accuracy (33%) which also indicates the randomness present in the mobility behavior of these 

users. Except for the random users, we found that the IOHMM model outperforms the HMM 

model over all other user groups. 

 

Figure 3.8 Destination prediction model results: (a) home-based users; (b) work-based 

users; (c) commute-based users; (d) random users 
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We have compared our results with previous studies that developed individual travel 

behavior prediction models. Using transit smart card data, Zhao et al. [25] developed an n-gram 

model to predict the trip decision, origin and destination of the users. They reported accuracy 

values of 80% for the trip decision prediction, 66.7% for the origin prediction, and 46.7% for the 

destination prediction. Since most smart card users are likely to travel for a commuting purpose, 

their mobility behavior may have more regularities than ride-hailing service users. Our results 

show that for commuting-based users our model can also achieve accuracy levels similar to that 

for smart card users. In another study, Lv et al. [31] used data from 3000 mobile phone users to 

develop an HMM for the prediction of the next place to visit at an individual level. The results 

show that for individuals with a more regular lifestyle, such as those classified as “family 

persons”, an accuracy value between 60% and 70% can be achieved in most of the time, while for 

individuals with less regular lifestyles only an accuracy value between 20% and 50% can be 

achieved. It is worth noting that the prediction accuracy for individuals with regular travel 

patterns is relatively high, which is similar to our findings that for commuting-based users higher 

accuracy levels can be achieved. Individual mobility patterns captured by transit smart card 

transactions or mobile phone records are likely to have more regularities; hence, models 

developed over such data are likely to have better accuracy levels. Considering the randomness in 

the mobility behavior of ride-hailing service users, we believe that the models presented in this 

paper are producing promising results. 

3.4.4 Temporal Patterns of Model Accuracy 

In addition, we investigated the relationship between temporal features and model accuracy. To 

calculate the model accuracy over different time periods, we extracted both the ground truth and 

the predicted values given by the models for each specific period (indicated by time of the day 
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and day of the week). To visualize the correlation between the temporal features (time of the day 

and day of the week) and model accuracy, we plot the accuracy distribution of mobility sequence 

generation model (origin and destination prediction) across the user groups over different 

temporal variables, which can be seen in Figures 3.9(a) – 3.9(d). We found that in the morning 

and afternoon peak hours, the model accuracy will be higher. For example, the origin prediction 

can achieve more than 90% accuracy in the morning peak hours for home-based users and 

commute-based users. Figures 3.9(c) and 3.9(d)   also show that the day of week can also 

influence model accuracy. For all home-based, work-based, and commute-based users, the 

accuracies for weekends are lower than the accuracies obtained from the same users over 

weekdays. 

The findings that both time of the day and day of the week have significant influence on 

model accuracy show that the mobility sequence generation model can capture the temporal 

patterns of the context information. On peak hours and weekdays, since individuals always have 

predictable mobility behavior (commuting), the model accuracy should be higher than other time 

periods. 
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Figure 3.9 Model accuracy for different temporal features for each cluster 

3.4.5 Predictability vs. Model Accuracy 

Since ride-hailing service users are likely to have uncertainties in their travel patterns, to better 

evaluate the performance of the mobility sequence generation model, we calculated the 

predictability of individual mobility sequence based on Fano’s inequality [21, 75]. The patterns of 

the predictability (see Figure 3.10 (a)) are consistent with entropy patterns observed in previous 

studies that the real predictability is higher than the time-uncorrelated predictability [21]. It 

reports that the distribution of real predictability peaks at around 60% with a lower bound at about 

40% across all the individuals. The results indicate that a model can predict the origin of the ride-

hailing service trips for 60% of the time. As such, predictability values can be considered as the 

limits of accuracy levels for mobility prediction models.  
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To evaluate the relationship between predictability and model prediction accuracy, we 

also investigated the correlation between the calculated predictability with model accuracy for 

each group. Figure 3.10 (b) shows that the prediction accuracies are correlated with the real 

predictability of individual mobility sequence. For an increase in the real predictability values, 

the prediction models’ accuracy of all the four user groups will also increase. We can find that 

the commute users (green points in Figure 3.10 (b)) have the highest predictability (average = 

73%) and the random users (orange points) have the lowest predictability (average = 58%). It 

shows the model accuracy levels for most of the commuter users, home-based users and work-

based users are close to the corresponding predictability values. 

 

Figure 3.10  The results of mobility behavior predictability 

3.5 Conclusions 

In this research, based on the historical mobility sequence, we applied an innovative mobility 

prediction model – a supervised learning-based multi-layer hidden Markov model to predict trip 

decision and the next ride-hailing service trip at an individual level—using massive ride-hailing 

service data considering the heterogeneity of travel purpose. To the best of our knowledge, this is 

the first study to develop a model to predict the mobility behavior of on-demand ride-hailing 

service users at an individual level. Considering the heterogeneous mobility patterns of ride-
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hailing service users, we divided individuals into four groups – home-based users, work-based 

users, commute-based users, and random users. We train the proposed model separately for each 

group. From the results, we can find the trip decision model works better than the logistic 

regression model which can achieve an accuracy of around 65%. The emission parameters also 

capture the patterns of the daily trip number of the individuals. Besides, it shows that the mobility 

generation model can work well for home-based users, work-based users and commute-based 

users for origin and destination predictions. We also investigated whether the temporal variation 

would have an influence on the accuracy of the proposed model for each group. It indicates that 

the accuracy of prediction models is higher in peak hours and weekdays for home-based users, 

work-based users, and commute-based users. To validate the performance of the proposed 

individual mobility prediction model, we also checked the entropy and predictability of the 

mobility sequence for each individual. The results show that the distribution of predictability 

peaks at around 60%. In terms of the correlation between the predictability and prediction model 

accuracy, it reveals that the accuracy levels of model predictions for each user group are 

proportional to the corresponding predictability values of their mobility sequence. This is an 

important discovery since it means that the predictability method can be used for model 

improvement and evaluation in the future. 

This study has some limitations such as: (i) since the visited places with a higher rank are 

challenging to predict, we cluster all visited places with a rank higher than 10 as low-frequent 

visited locations. As such, the model cannot forecast any place with the high rank as the next 

visited place. To solve this problem, future work should focus on identifying activity types of 

each ride-hailing trips (such as home, work, foods or shopping trip); (ii) due to the lack of 

available data on individual characteristics (e.g., age, gender or job), the proposed model cannot 
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have higher performance since it cannot capture individual characteristics contributing to the 

heterogeneity. In future research, with more individual-level socio-demographic data, the 

proposed model can be improved. However, such information about the ride-hailing service 

users will be hard to obtain due to privacy concerns. 
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CHAPTER 4: ASSESSING THE IMPACTS OF A REAL-TIME RIDESHAING SYSTEM 

USING AN AGENT-BASED SIMULATION MODEL  

4.1 Introduction 

2 Nowadays, increasing growth of population and private vehicles in most cities cause severe 

congestion problems and associated environmental pollution [15]. To mitigate the congestion, 

fuel consumption and pollution (e.g., greenhouse gases (GHG) emissions), one of the major 

solutions is to improve the efficiency of transportation modes using emerging trends such as car 

sharing and ridesharing. Recently, with the wide adoption of online ride-hailing services such as 

Uber, Lyft, and Didi, the number of options to move individuals has increased. Users can now 

easily use a smartphone app to request a ride-hailing service. This provides a new opportunity to 

bring individual passengers together with similar routes and time schedules, to decrease the 

number of service vehicles and to reduce the negative impacts of transportation systems.  

With on-demand ride-hailing service platform, a user can request a service vehicle with 

the origin and destination of her trip. And then the platform will assign one of the nearest 

available service vehicles to serve the request. However, currently, most of the ride-hailing 

service vehicles only serve for one person or group, which lowers the efficiency of the service 

vehicle. To improve the efficiency of the ride-hailing service, dynamic ride-sharing strategy can 

be utilized.  

The ridesharing strategy can support more than one person or group in one service 

vehicle, which can decrease the fleet size, and save costs to the users. It has also been claimed 

that dynamic ridesharing can mitigate traffic congestion in high density areas [16]. However, 

 
2 Zhang, J., Hasan, S. and Yan, X., 2023. Assessing the Impacts of a Real-time Ridesharing System using 

an Agent-based Simulation Model. In Transportation Research Board 102nd Annual Meeting. (accepted) 
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since the ridesharing may have to detour to meet all the users in the vehicle, the travel mileage of 

the users will increase. Thus, assessing the impact of ridesharing is important for the future 

policy making.  

In this research, we focus on assessing the travel and environmental impacts of 

ridesharing strategies. We built a real-time ridesharing system using an agent-based simulation 

model to extract the trajectories of passengers and vehicles which can provide valuable 

information. To reflect more about the real-world situation, we use the real demand data 

extracted from Didi ride-hailing service platform and traffic condition data from Google Map 

API. In addition, we proposed a heuristic matching algorithm (vehicle - passenger) for both 

ridesharing and non-ridesharing system in real-time so that all passenger requests can be served.  

The contribution of this paper can be summarized as follows: 

• We built an agent-based model to simulate the operations and impacts of both 

ridesharing and non-ridesharing systems with a real-time matching algorithm. 

• We use real world on-demand ride-hailing service data and real traffic status data 

to test the operations of both ridesharing and non-ridesharing systems. 

4.2 Literature Review 

Since the high density of population and vehicle ownership occur in many large cities, such as 

New York, London, Beijing, and so on, congestion has been one of the major concerns for 

transportation system management. Thus, how to improve the efficiency of different 

transportation modes has been an important research area. In addition, with the wide availability 

and adoption of ride hailing services, policymakers are concerned with how to improve the 

efficiency of these services and reduce their negative impacts on city traffic.  A potential solution 

is to offer a ride-sharing option within these ride-hailing services.   
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Initially, researchers focused on ridesharing with fixed stations [82, 83] or pre-arranged 

trips [84, 85]. For the fixed stations, they preset the taxi stations and the passenger should arrive 

at the station first to take a taxi. For the pre-arranged trips, individuals with similar 

characteristics (ex. start location, age, gender, et al.) will negotiate first to decide whether they 

will make a car pooling. However, with the development of internet technology, the on-demand 

ride-hailing service has become more popular in individuals travel mode. It requires the service 

vehicle to satisfy the passengers’ requests in real time. Thus, the fixed stations and pre-arranged 

method cannot meet the requirements of the on-demand ride-hailing service users, which cannot 

evaluate the impacts of the ridesharing or carpooling for these users. 

In recent years, researchers have focused on analyzing the influence of ridesharing or 

carpooling strategies on on-demand ride-hailing service users [17, 86-88]. It has been stated that 

the ridesharing strategy will mitigate traffic congestion [16], reduce greenhouse gas emissions 

[17], save travel cost [89, 90], and decrease vehicle-miles traveled (VMT) [91, 92]. Alisoltani et 

al. [16] proposed a complete framework to operate the ridesharing system using a dynamic trip-

based macroscopic simulation in two cities with different trip density. The results show that the 

ridesharing strategy can significantly mitigate the congestion problem in high demand density 

areas. However, in cities with low shareability, ridesharing will cause extra travel mileage. 

Fagnant and Kockelman [93] analyzed the impacts of shared autonomous vehicle (SAV) using 

agent– and network–based simulation with a dynamic ridesharing strategy. The study suggests 

that the application of SAV can improve the service quality and save travel costs of passengers. 

In addition to the impacts on traffic conditions, environment and economy, ridesharing can also 

affect urban parking demand. Zhang et al. [94] used an agent-based simulation model to evaluate 

the potential influence of ridesharing on urban parking demand under different scenarios. It 
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shows that up to 90% of urban parking demand can be reduced if enough SAVs are deployed in 

the system. 

Based on the aforementioned studies, agent-based simulation model (ABM) has been 

widely adopted in optimizing the ridesharing system or evaluating the impacts of the ridesharing 

strategy [94-97]. The agent-based model contains a collection of agents which can make 

decisions automatically based on preset rules [98]. The agent-based model is a powerful tool to 

simulate the dynamic travel behavior in the real world, even if the model is simple [99]. In the 

ridesharing system, the service vehicles and passengers are always regarded as the agents. With 

the operation of the agent-based simulation model, the motion patterns of agents can be recorded 

which can provide valuable information for analyzing the performance of the system. Besides, 

the movement of agents in the agent-based simulation model relies on a set of rules [98]. 

However, most of the previous agent-based models for ridesharing systems made simplified 

assumptions, regarding traffic demand, travel distance and travel time, without considering real-

world demand and traffic conditions [87].  In Fagnant and Kockelman [86], an agent-based 

simulation model is operated with generated trips, trip distance and fixed travel speed. Since the 

study area and the trips in the system are based on assumptions, it is difficult to reflect the real-

world situation. To improve the reality of the simulation, Liu et al. [100] generate the trip with an 

activity-based simulation model in the City of Austin. This study investigated the influence of 

different fare levels of SAV on the operation of ridesharing system. The results indicate that with 

a higher fare, the percentage of SAV demand in total trips will decrease. 

One of the most essential challenges in a ride-sharing system is how to match the user 

and service vehicles efficiently. Since the vehicle will take more than one rider group, it will 

lower the efficiency of the service if the shared rider groups do not have enough overlapping of 
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their routes.  In recent years, researchers have proposed several ridesharing matching algorithms 

[87]. Lokhandwala and Cai [87] proposed an algorithm using two rectangular bounding boxes to 

match the users and service vehicles. The first bounding box contains all the pick-up and drop 

off points of current trip chain of the service vehicles. A new origin-destination location should 

be in the first bounding box to share the vehicle. Otherwise, the second bounding box is formed 

with both the new and previous pick-up and drop off points. If the second bounding box covers 

the first bounding box, then it allows the new requests to be shared with the previous trip chain. 

However, the proposed algorithm can only group the riders with similar directions. If the 

bounding box of trip chain is large, the time of detour for ridesharing will be long, which will 

make it inefficient of the service. In addition, there is another type of matching algorithm which 

requires the users to request the service vehicle in advance and then the system will make the 

schedule based on the requests [100]. However, this matching strategy will limit the ability of 

ridesharing services. Individuals prefer to be served immediately rather than request a service 

vehicle many hours in advance. Thus, a real time matching algorithm will be more useful in 

ridesharing systems. 

Nowadays, on-demand ride-hailing services play an essential role in urban transportation 

research providing large-scale valuable data for passengers’ mobility behaviors with a potential 

in developing ridesharing systems for real world scenarios. From above mentioned literature, 

there is limited research focusing on real-time vehicle-passenger matching methods. And the 

simulation models in most of the previous studies are based on assumptions which may not 

reflect real-world situations. In this research, we have developed an agent-based model to 

evaluate the potential impacts of ridesharing system with a real-time vehicle-passenger matching 
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algorithm using real-world trip demand data from the Didi platform and traffic conditions data 

from Google map API. 

4.3 Data and Methods  

4.3.1 Agent-based Model 

In this study, we build an agent-based model to simulate the process of all the ridesharing 

services in the system. In the agent-based model, we have two types of agents – passengers and 

vehicles. We can collect all the parameters of the two types of agents which can provide the data 

for statistical analysis both at a system-level and an individual-level. To compare with the 

ridesharing, we also built a basic agent-based model to simulate the scenario without a 

ridesharing option.  

We assume that the system would operate in a real-world city, Beijing, as we have the 

ride hailing demand data available for the city. To save the cost of computation, we selected one 

of the busiest regions in Beijing, which can be seen in Figure 4.1. The study area is 5 * 5 km2 

rectangular. To generate and attract trips, we divided the whole area into 40 * 40 grids. And we 

also use the grid to update the position of passengers and service vehicles.   
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Figure 4.1 Study area 

 

We initialize the simulation with the earliest timestamp of the dataset and update the 

system (the position of the service vehicles and passengers) every 10 seconds. To reflect the real 

traffic status, we extracted the travel distance and travel time of all the OD pair from Google 

Map API (https://developers.google.com/maps/) based on the timestamp.  

However, the Google Map API can only provide the travel time and travel distance with 

the best route for current time and a time in the future. We collected the travel time and travel 

distance matrix for four periods – morning peak hour (7am-10am), afternoon (10am - 7pm), 

afternoon peak hour (7pm – 9pm), and evening (9pm – 7 am). Then, we matched the departure 

time of each trip with these four periods to obtain the real travel time and travel distance.  

Once there is a request from a passenger, the system will immediately check the nearest 

available service vehicle based on our matching algorithm. We present the details of the 

matching algorithm below. For the scenario without ridesharing, the capacity of the service 

vehicle is set as 1 and for the scenario with ridesharing the capacity of service vehicle is set as 2. 
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4.3.2 Matching Algorithm - Base Scenario 

For the scenario without ridesharing, if there is a request from a passenger, we will simply find 

the nearest empty service vehicle and then update the position of the vehicle, until the vehicle 

drops off the passenger. 

We match the passengers and service vehicles using the following steps: 

Step 1: if there is a request, find the nearest empty service vehicle based on the travel 

distance extracted from Google Map API. After the match is scheduled, change the service 

vehicle status to 0.5 (matched but empty service vehicle). 

Step 2: Set the origin of the matched but empty vehicle as the current position of the 

vehicle and the destination as the origin of the matched passenger. Then, update the position of 

the service vehicle until the vehicle picks up the passenger (arrive at the destination of the 

service vehicle), and change the service vehicle status as 1 (occupied service vehicle).  

Step 3: After the service vehicle drops off the passenger, set the service vehicle status as 

0 (empty service vehicle). 

Step 4: Run step 1-3 continuously until all the requests are satisfied. 

4.3.3 Matching Algorithm - Ridesharing Scenario 

For the scenario with ridesharing, when there is a request from the passenger, we will not only 

consider the empty service vehicle, but also find the vehicle which has not reached its capacity. 

However, if the vehicle already has 1 passenger, then we also need to consider the service quality 

(total travel time and comfort level) of the current passenger. Thus, in this study, we set the 

capacity of the shared service vehicle as 2. Besides, we also calculate the detour time to verify 

whether the service vehicle is available based on a preset threshold. 
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Figure 4.2  Ridesharing simulation modeling framework 

The ridesharing simulation modeling framework can be seen in Figure 4.2. We match the 

passengers and service vehicles using the following steps: 

Step1: if there is a request, then find the nearest available service vehicle based on the 

travel distance extracted from Google Map API. After the match is scheduled, change the service 

vehicle status to 0.5 (matched service vehicle which is not full). If the matched service vehicle is 

empty, then the service vehicle is available for the request. Otherwise, we need to verify whether 
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the service vehicle is available based on the following rules. After we find the nearest available 

service vehicle, we change the status of the service vehicle to 0.5 and record the best route.  

To check whether a service vehicle is available for ridesharing, first, we should calculate 

all the potential routes for the paired passengers considering the vehicle position, the origin and 

destination of the two passengers. There are two types of service vehicles when matching with 

two users – empty service vehicle and 1-passenger service vehicle, which can be seen as Figure 

4.3.  

For empty service vehicles, based on the algorithm, there should be one passenger 

matched earlier and the matched service vehicle does not pick up the passenger at the timestamp 

when the second passenger requests. In this situation, there are 4 potential routes for the two 

passengers, shown in Figure 4.3 (A). The 4 potential routes are separately: 

• empty service vehicle – passenger 1 origin – passenger 2 origin – passenger 1 

destination – passenger 2 destination 

• empty service vehicle – passenger 1 origin – passenger 2 origin – passenger 2 

destination – passenger 1 destination 

• empty service vehicle – passenger 2 origin – passenger 1 origin – passenger 1 

destination – passenger 2 destination 

• empty service vehicle – passenger 2 origin – passenger 1 origin – passenger 2 

destination – passenger 1 destination 

For 1-passenger service vehicle, based on the algorithm, there should be one passenger 

matched earlier and the matched service vehicle has picked up the passenger at the timestamp 

when the second passenger requests. In this situation, there are 2 potential routes for the two 

passengers, shown in Figure 4.3 (B). The 2 potential routes are separately:  
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• 1-passenger service vehicle – passenger 2 origin – passenger 1 destination – 

passenger 2 destination 

• 1-passenger service vehicle – passenger 2 origin – passenger 2 destination – 

passenger 1 destination 

 

Figure 4.3 Potential routes for ridesharing strategy 

We calculate the total travel time for each potential route and the associated detour time 

for each matched passenger. To satisfy the comfort level of the passengers, we also set up rules 

to avoid that the passenger will not have excessive detour distance caused by the ridesharing.  

The rules are: 

• If the matched service vehicle is empty, the waiting time for each passenger 

cannot exceed the maximum waiting time. 

• If the matched service vehicle is empty, the detour time for each passenger should 

be less than 40% of the travel time that they would have spent without ridesharing. 
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• If the matched service vehicle has 1 passenger, the waiting time for the second 

passenger cannot exceed the preset maximum waiting time. 

• If the matched service vehicle has 1 passenger, the remaining travel time for the 

first passenger should be less than 40% of the initial remaining travel time that he/she will spend 

without matching the second passenger. 

Step 2: For the service vehicles without ridesharing, set the origin of the service vehicle 

as the current position and the destination as the origin of the matched passenger. Then, update 

the position of the service vehicle until the vehicle picks up the passenger (arrive at the 

destination of the service vehicle), and change the service vehicle status as 1 (1-passenger 

service vehicle).  

For the service vehicles with ridesharing, we set the status of empty vehicles and 1-

passenger vehicles separately. For the empty vehicles, the service vehicle will go to the first 

passenger based on the recorded best route, until the vehicle picks up the first passenger and then 

changes the service vehicle status as 1 (1-passenger service vehicle). For the 1-passenger 

vehicles, they will directly go the step 3. 

Step 3: For all the 1 – passenger vehicles, there are two types – vehicles without 

ridesharing and vehicles with ridesharing. If the 1-passenger vehicles do not have the second 

matched passenger, then it will go to the destination of the current passenger and change the 

status to 0 (empty vehicle). If the vehicles have a second matched passenger, then the vehicle 

will go to pick up the second passenger and change the status of the vehicle to 1.5 (1-passenger 

to pick up another). 

Step4: After the second user is picked up, set the status of the vehicle as 2 (full vehicle). 



86 
 

Step5:  For all the full vehicles, based on the recorded best route, they will go to the first 

destination. Once the vehicle arrives at the first destination, the vehicle will drop off one of the 

passengers and the service vehicle will change to 1-passenger vehicle. Then, we will change the 

status of the vehicle as 1 (1-passenger service vehicle). Then we will do step 3 for the vehicle. 

Step 6: Run step 1-5 continuously until all the requests are satisfied. 

4.3.4 Empty Service Vehicle Relocation 

Due to the unbalanced spatial distribution of trip requests in the system, the empty service 

vehicle in low-demand areas will be inefficient if we do not relocate these vehicles, because the 

vehicles may stay a long time for the next user. Thus, in this paper, we will relocate the empty 

service vehicles from the low-demand areas to high-demand areas. Since the raw grid of the 

system is too small to calculate the demand, we divided the whole study area into 8*8 large 

grids. We will consider both the supply and demand of these large grids to decide how to 

relocate the empty service vehicles. 

In the system, for each 5-min, we will relocate all the empty service vehicle by following 

rules, shown as Figure 4.4: 

Step1: we calculate the aggregated trip requests number 𝐷𝑖  for each neighboring large 

grid and current large grid 𝑖 (Figure 4.4 testing large grid) of the current large grid of the empty 

service vehicle. 

Step2: we calculate the number of empty service vehicles and non-full vehicles for each 

neighboring large grid and current large grid 𝑖 as 𝑆𝑖. Then for each neighboring large grid and 

the current large grid 𝑖, we calculate the difference between  𝑆𝑖  and 𝐷𝑖  as 𝑇𝑖 . We define the 

target relocation large grid as the gird with the minimum 𝑇𝑖. 
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Step3: for the empty service vehicle, we set up the origin as the current location and the 

destination as the center of the target relocation large grid. Then the system will update the 

empty vehicle’s position until the vehicle arrives at the destination or matches with a new user. 

 

Figure 4.4 Empty service vehicle relocation strategy 

4.4 Simulation Results 

In this study, we collected one month trip data (March 2017) from Didi ride-hailing service 

platform for the simulation. Since we selected a subarea in Beijing, we extracted all the trips 

from which both the origin and destination are in the selected subarea. The data contains 433,242 

trips (average 14,441 trips per day), including the request timestamp, the origin and destination 

of the passengers, and the travel distance. We plotted the temporal distribution of trip requests in 

two scales – daily and hourly, shown as Figure 4.5. We aggregated the demand of requests in 

hourly level across the whole month data. For example, in Figure 4.5(B), the requests number 

shown in hour 0 is the aggregated trip number of the whole month at time 0am. The demand of 

the data shows typical weekly periodicity for the passenger’s travel behavior. From Figure 
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4.5(A), most of the on-demand service users tend to travel more frequently on weekdays 

compared to weekends. For each day, it shows most of the passengers start their movements at 

8am and ends at 11pm from Figure 4.5(B). The travel behavior of on-demand service passengers 

also has morning peak hour (9am) and afternoon peak hour (6pm). 

We generate the demand in the simulation system based on the real demand data from the 

on-demand service platform. Although we operate our simulation model in the Beijing area, the 

proposed approach can also be applied in other regions. To run the simulation, we update the 

system with the frequency of 6 per minute. For each time window (10s), we update the position 

of the vehicles and match the latest requests of passengers.  

      
(A)                                                                            (B) 

Figure 4.5  Daily (A) and Hourly (B) distribution of trip number 

4.4.1 Fleet Size vs. Maximum Waiting Time 

To initialize the simulation, we need to set up the fleet size of the system. The fleet size of 

service vehicles is related to the waiting time of the passengers. If passengers can wait longer for 

a service vehicle, it will lower the fleet size of service vehicles in the system. Thus, we first 

analyze the relationship between the fleet size and the preset maximum waiting time of the 
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passengers with the following steps. We take one day demand in the simulation including 16,356 

total trips. 

Step 1: Set a maximum waiting time 𝑇𝑤. 

Step 2: Run the simulation with the matching algorithm. If there is a request, check 

whether there is an available vehicle around the passenger. Then, generate a new service vehicle 

at the position of the request if no available service vehicle for the passenger in the system.  

Step 3: Run the simulation for one day until all the requests are satisfied by the service 

vehicle. Record all the service vehicles and the final number of service vehicles will be fleet size 

given the maximum waiting time. 

Following the steps, we recorded the maximum number of vehicles as the fleet size.  We 

set up different maximum waiting time in the simulation system – from 2 min to 15 min. The 

fleet sizes for different maximum waiting time are summarized as Table 4.1. From the result, we 

can find that ridesharing strategy can significantly decrease the fleet size regarding the same 

maximum waiting time. For the scenario without ridesharing, the fleet size starts from 2093 with 

a 2-min maximum waiting time. With the increase of the maximum waiting time, the fleet size 

decreased to 428 with a 15-min maximum waiting time. The pattern is the same for the scenario 

with ridesharing. However, the fleet size starts from 1406 with a 2-min maximum waiting time 

for the scenario with ridesharing, which is 33% lower compared to the fleet size (2 min 

maximum waiting time) without ridesharing. The fleet size reduces as the maximum waiting 

time increases for the ridesharing scenario up to 349 with a 15-min maximum waiting time. 

Besides, compared to the fleet size without ridesharing, the fleet size with ridesharing decreases 

more rapidly until the maximum waiting time reaches 7 min. When the maximum waiting time is 

7 min, the fleet size decreases 53% for the ridesharing scenario compared to the scenario without 
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ridesharing. If the maximum waiting time is higher, the difference in fleet size between the two 

scenarios will be lower.  

Table 4.1 Relationship between the maximum waiting time and fleet size 

 
Maximum Waiting Time (min) 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Non-

Ridesharing 
2093 1584 1430 1177 1009 941 806 705 621 590 507 468 452 428 

Ridesharing 1406 940 817 615 498 445 400 380 357 353 356 354 346 349 

Decrease Rate 33% 41% 43% 48% 51% 53% 50% 46% 43% 40% 30% 24% 23% 18% 

 

In addition, we also compare the unoccupancy rate between the ridesharing scenario and 

the scenario without ridesharing. The unoccupancy rate is defined as the ratio of the number of 

unoccupied service vehicles over the total number of service vehicles. The unoccupancy rate can 

reflect the efficiency of the service system, since with more unoccupied service vehicles, the 

efficiency of the system will be reduced. From the results (Table 4.2), we can find that the 

unoccupancy rate will decrease when the maximum waiting time is higher, which means that the 

efficiency of the service vehicle will increase if passengers can wait more time. It indicates that 

with ridesharing, the unoccupancy rate will decrease sharply from 81% (2 min maximum waiting 

time) to 29% (13 min maximum waiting time). However, if the system does not accept 

ridesharing strategy, the unoccupancy rate is still high (54%) although the passenger can wait for 

a long time (15 min). The results show that a ridesharing strategy can significantly improve the 

efficiency of the system. 

Table 4.2  Relationship between the maximum waiting time and unoccupancy rate 

 
Maximum Waiting Time (min) 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Non-Ridesharing 88% 85% 83% 80% 77% 76% 72% 69% 65% 63% 59% 56% 55% 54% 

Ridesharing 81% 72% 68% 59% 50% 45% 40% 36% 32% 31% 31% 29% 29% 29% 

Decrease Rate 8% 15% 18% 26% 35% 41% 44% 48% 51% 51% 47% 48% 47% 46% 
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4.4.2 Fixed Fleet Size 

In this section, we create different scenarios with fixed fleet size [300, 400, 500, 600, 700, 800, 

900, 1000] for analyzing the influence of ridesharing. In the operation of the ridesharing 

simulation model, we will generate the service vehicle continuously until the maximum number 

of vehicles reaches the preset fleet size. As we know that the maximum waiting time can 

significantly influence the system fleet size, we set the maximum waiting time as 4 minutes for 

each scenario. When the fleet size is less than the threshold, if there is no available service 

vehicle for the request, the system will generate a new vehicle at the location of the request 

origin. When the fleet size reaches the threshold, if there is no available service vehicle for the 

request, the system will assign the nearest no-load vehicle for the request. After the fleet size is 

satisfied in the system, the passenger will request the vehicles in the model until all the requests 

are finished. We record all the trajectories of passengers and vehicles for data analysis. 

Figure 4.6 (A) illustrates the average waiting time of passengers with different fleet size. 

From the figure, it indicates that the ridesharing strategy can significantly reduce the average 

waiting time of passengers especially when the fleet size is low. When the fleet size is 300, the 

average waiting time is 825.18s and the average waiting time is 171.26s. The average waiting 

time drops sharply when the fleet size changes to 400, which means that 300 vehicles cannot 

satisfy the demand of the system without a ridesharing system. For the fleet size 500, the system 

with ridesharing can reach a 2min average waiting time, however, without ridesharing, the 

passengers have to wait 40s longer for the service vehicle on average. 

In addition, when the fleet size increased, the difference of average waiting time between 

the scenarios with and without ridesharing becomes lower. It indicates that the ridesharing 

strategy will be more beneficial when the system does not have enough service vehicles. If the 
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system has enough service vehicles, the ridesharing strategy will no longer be sufficiently 

dominant. Although the ridesharing system can improve the efficiency of response time of 

service vehicles by decreasing the average waiting time of passengers, the passengers also need 

to detour more distance.  

Figure 4.6 (B) presents the average travel time of passengers with and without the 

ridesharing strategy. Since the passengers do not have extra trave distance, the average travel 

time of passengers are very similar (around 767s) for each fleet size scenario. The average travel 

time of passenger is higher for the ridesharing scenario. And the greater the fleet size, the lower 

the average waiting time. We can find that for the fleet size 300, the average travel time for 

passengers is 869s, and it will decrease to 821s for the scenario with fleet size 800. It means, 

when the fleet size is low, the vehicle needs to detour more travel distances to finish the request. 

 

Figure 4.6 Average waiting time (A) and average travel time (B) with different fleet size 

 

A lower fleet size will cause a higher ridesharing rate. The ridesharing rate is defined as 

the ratio of the passengers choosing ridesharing over the total number of passengers. Table 4.3 

shows the results of ridesharing rate of the passengers with different fleet size. It is notable that, 

with 300 fleet size in the system, the ridesharing rate can reach to 53.33%, which means more 
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than half of the passengers will choose the ridesharing vehicles to decrease the waiting time. 

However, when the system has enough service vehicles, the rate of passengers selected 

ridesharing will lower. In our system, when the preset maximum waiting time is 4 min, if there 

are 800 vehicles or more, the ridesharing rate will decrease to 30.53% and more passengers will 

choose to take the service vehicle alone.   

Table 4.3 Ridesharing rate for different fleet size 

 Fleet Size 

300 400 500 600 700 800 900 1000 

Ridesharing 8717 7284 6628 5752 5120 4996 4996 4996 

Non-Ridesharing 7628 9067 9724 10608 11239 11367 11367 11367 

Ridesharing Rate 53.33% 44.55% 40.53% 35.16% 31.30% 30.53% 30.53% 30.53% 

 

4.4.3 Vehicle Kilometers Traveled (VKT) 

Another benefit of ridesharing is the reduction of vehicle kilometers traveled (VKT). Since 

different passengers with similar routes can share with one service vehicle, the overlapping 

distance of these two routes can be saved. Thus, in the operation of the ridesharing simulation 

system, we recorded the trajectories of each vehicle and calculated the total VKT for both the 

system with and without ridesharing under different fleet sizes.  

Figure 4.7 presents the recorded VKT for the system with and without ridesharing. With 

different fleet sizes, the VKT shows different patterns with distinguished scenarios. For the 

system with ridesharing, the VKT shows limited differences with the 8 selected fleet sizes. With 

the increase of the fleet size, the VKT decreased slowly from 7.45 x 104 km to 7.28 x 104 km. 

The pattern implies that with the ridesharing strategy, the fleet size only has slight influence on 

the VKT. However, if the system is without ridesharing, the fleet size can significantly affect the 

VKT. The results show that with the fleet size of 300, the VKT of the total system will be 1.23 x 

105 km, which is 65.6% more than the VKT of ridesharing system. The results reflect that 

without ridesharing, if the system does not have enough vehicles, the vehicles must travel more 
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distance to pick up a passenger, which greatly reduces the efficiency of the system. However, the 

ridesharing system can solve this problem by sharing the vehicles with different passengers, and 

passengers do not need to wait for the farther service vehicle. When the fleet size is increased, 

the total VKT will decrease to 7.85 x 104 km, which is also 7.8% higher than the VKT of 

ridesharing system.  

 

Figure 4.7  VKT with different fleet size 

 

4.4.4 Environment Benefits 

The reduction of VKT in the ridesharing system can bring environmental benefits, especially for 

lowering the emission of greenhouse gas (GHG). Based on [101], transportation is the major 

source of greenhouse gas emissions. In 2020, around 33% of the total CO2 emissions and 26 % of 

the total greenhouse gas emissions in United States are caused by human and goods movement. 

Ridesharing is one of the solutions to decrease the greenhouse gas emissions caused by 

transportation. In [101], for each travel mile of passenger vehicles, it will generate 4.03 x 10-
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4 metric tons CO2 emissions. And the CO2 emissions in our system can be calculated as Table 

4.4.  

For different fleet sizes, the total CO2 emissions in the system are calculated. We 

compared the CO2 emissions between the two scenarios under 8 selected fleet sizes. It shows that 

the CO2 emissions reduction of the ridesharing system under 300 fleet size compared to the 

system without ridesharing is 12.3 metric tons per day (which is 39.6% of the total CO2 

emissions of the system without ridesharing). The CO2 emissions reduction value will change if 

we consider the different size of the area. For a larger region, the ridesharing strategy will lower 

CO2 emissions. The results also reflect that the ridesharing strategy can be more useful when the 

system’s fleet size is lower. It implies that in congested areas or peak hour, the ridesharing 

strategy can present better performance. 

Table 4.4 CO2 emissions for different fleet sizes 

 Fleet Size 

300 400 500 600 700 800 900 1000 

Non-Ridesharing 31.08 22.86 21.37 20.97 20.66 20.30 20.03 19.79 

Ridesharing 18.77 18.53 18.39 18.40 18.40 18.35 18.35 18.35 

CO2 Emissions 

Reduction 
12.30 4.33 2.98 2.57 2.26 1.95 1.67 1.43 

 

4.5 Conclusions 

In recent years, with an increasing number of problems caused by human movements, such as 

congestion and GHG emissions, ridesharing can be one of the potential solutions to improve the 

efficiency of the transportation system. In this study, we built a real-time ridesharing system 

based on an agent-based simulation model to evaluate the impacts of the ridesharing strategy 

both for its travel and environmental benefits. To make the simulation model closer to the real-

world situation, we extract the traffic demand data from Didi ride-hailing service platform and 

the traffic conditions data using Google Map API. Our model applied a heuristic algorithm to 
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match the passengers and vehicles in real time under both ridesharing and non-ridesharing 

scenarios. We tested our model with Didi ride-hailing service data and compared the model 

performance between the ridesharing and non-ridesharing scenarios. 

The major findings of this study are: (1) the system fleet size is related to the preset 

maximum waiting time of the passengers. If the passengers can wait more time for the service 

vehicle, the system can lower the fleet size to satisfy the passengers requests. The results show 

that the ridesharing system can decrease up to 55% of the fleet size and 51% of the unoccupancy 

rate compared to the system without ridesharing. (2) with 8 fixed fleet sizes, we compared the 

performance of the average waiting time and average travel time for both ridesharing and non-

ridesharing systems. With a lower fleet size, ridesharing can decrease the waiting time for the 

passengers. The average waiting time can lower 79.2% with fleet size 300 in our system. (3)  

ridesharing strategy can also reduce the vehicle kilometers traveled in the system. The 

ridesharing system can decrease a range from 7.6% to 65.6% of the total vehicle kilometers 

traveled considering different fleet size in the system. In addition, the reduction of vehicle 

kilometers traveled can also bring environmental benefits. By calculation, we can find with 

ridesharing, the study area can reduce a range of 7.2% to 40% CO2 emissions under the system 

with different fleet size. 

There are also some limitations in this paper. First, we selected a subarea in Beijing for 

the simulation, which means all the influence reported in this paper are based on the specific 

area. In the future, we will apply this model to a larger area to provide more valuable insights. 

Second, the ridesharing strategy will bring associated fare change policies since the passengers 

are more likely to take a ridesharing vehicle with a discount. Third, we assumed that all the 

passengers will accept the ridesharing strategy which may enlarge the benefits of ridesharing in 
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real world applications. In the future, we will improve our study by considering the fare 

structure, which may provide additional valuable information.   
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CHAPTER 5: CONCLUSIONS 

Previous studies on human mobility have mainly used travel surveys, mobile phone, and social 

media data which may not provide enough details of individual travel choices. Alternatively, 

emerging data sources can provide more comprehensive transportation-related information. Such 

data sources include GPS records and ridesharing platforms that can be used to understand and 

model individual mobility behavior. These data sources can provide information on travel 

patterns, trip origins and destinations, and mode of transportation used. By analyzing such data, 

researchers can identify factors that influence travel behavior and develop models to predict 

future mobility patterns. 

In addition, these data sources can be used to evaluate the impact of ridesharing strategies 

on individual mobility behavior. For example, by comparing travel behavior before and after the 

introduction of a ridesharing service, researchers can assess the effect of this service on travel 

patterns, including mode of transportation, trip frequency, and trip length. This information can 

be used to improve ridesharing strategies and inform transportation policy decisions. 

The dissertation aims to analyze human mobility and activity behavior using emerging 

data sources such as GPS-based trajectory data and on-demand ride-hailing service data. The 

goal is to develop new methodologies for understanding and modeling individual mobility 

behavior, which can be useful for transportation planning, intelligent transportation systems, 

smart cities, and traffic management. The dissertation also aims to evaluate the impact of 

ridesharing strategies on transportation systems using on-demand ride-hailing service data. 

Overall, the aim is to gain insights of human mobility and activity behavior and to inform 

transportation policy to improve the efficiency of transportation networks.  
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In summary, this study has focused on three objectives, the first objective is to develop an 

individual activity generative model using long-term GPS-based individual-level trajectory data. 

The second objective is to develop an individual travel behavior prediction model using large-

scale on-demand ride-hailing service data and the third and final objective is to assess the 

potential of the ride-sharing system using an agent-based simulation model. 

5.1 Summary of Major Results 

This study provides key insights on understanding and modelling human mobility and activity 

behavior and evaluating the potential impacts of a ride-sharing strategy using emerging data 

sources, such as GPS-based trajectory data and on-demand ride-hailing service data. By 

achieving the objectives, the study aims to gain a deeper understanding of individual mobility 

behavior and contribute to the development of transportation policy and management strategies. 

We have summarized the key findings of the study as follows:  

• In the second chapter, we first developed an algorithm that can identify the type 

of activities based on the POI (Point of Interest) category, start time, and duration of the activity. 

According to the results, the algorithm performs well in identifying activity types. We also 

developed an input-output hidden Markov model (IOHMM) to generate individual activity 

sequences given contextual information. Since individual activity patterns are highly 

heterogeneous, we trained the IOHMM separately for each individual. Trained with massive 

individual-level GPS-based trajectory data, the results imply that the developed model can 

accurately generate individual activity sequences, as evidenced by the comparison of predicted 

values and ground truth values for both the number and duration of activities. It also suggests 

that if the activities of an individual are known, the model can accurately predict the 

corresponding activity locations. This means that the model can generate realistic activity 
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sequences for individuals and can be used to predict the locations where the activities are likely 

to occur. The model's explainability is a key advantage over previous methods like neural 

networks and tree-based machine learning model since it enables us to understand the transition 

probabilities for different activities based on contextual information such as the time of day and 

day of the week, which can aid in validating and refining the model for improved accuracy 

through iteration. These results demonstrate the significant potential of the developed model for 

use in practical transportation planning applications such as transportation simulation, travel 

demand estimation, and OD matrix prediction, indicating that it can provide accurate predictions 

to aid in decision-making and optimization. 

• In the third chapter, we employed a novel individual-level mobility prediction 

model - a supervised learning-based multi-layer hidden Markov model - to predict trip decisions 

and next ride-hailing service trips for each individual using large ride-hailing service data while 

accounting for travel purpose heterogeneity. To account for the heterogeneous mobility patterns 

of ride-hailing service users, we divided individuals into four groups - home-based, work-based, 

commute-based, and random users - and trained the model separately for each group. Results 

show that the proposed trip decision model outperforms the logistic regression model, achieving 

an accuracy of around 65%. The emission parameters accurately capture the patterns of daily trip 

number, and the mobility generation model works well for home-based, work-based, and 

commute-based users for origin and destination prediction. We also examined the impact of 

temporal variation on model accuracy and found that accuracy is higher during peak hours and 

weekdays for the aforementioned groups. To validate the model's performance, we evaluated 

entropy and predictability for each individual and found that predictability peaks at around 60%. 

This study is the first to forecast the mobility behavior of on-demand ride-hailing service users, 
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which could provide valuable insights for policymakers, urban planners, and other stakeholders 

in the transportation industry. 

• In the fourth chapter, we developed an agent-based simulation model to evaluate 

potential impacts of a real-time ridesharing strategy on transportation efficiency and 

environmental sustainability. The use of real-world data from a ride-hailing service platform, the 

traffic status extracted from Google Map API and a heuristic algorithm to match passengers and 

vehicles in real-time add realism to the simulation model. The results show that if the passengers 

are willing to wait for a longer period of time for the service vehicle, the ridesharing system can 

lower the fleet size and unoccupancy rate while still meeting the passengers' requests. 

Specifically, the results showed that the ridesharing system can decrease up to 55% of the fleet 

size and 51% of the unoccupancy rate compared to the system without ridesharing. In addition, 

the ridesharing system can reduce the total vehicle kilometers traveled by a range of 7.6% to 

65.6% depending on the fleet size used in the system. Implementing a ridesharing system can 

also lead to a reduction in CO2 emissions in the study area. Specifically, the reduction in CO2 

emissions can range from 7.2% to 40% with different fleet sizes in the system. 

5.2 Limitations and Future Research Directions 

While this dissertation offers important contributions towards developing a generative 

model for individual activity sequence, a predictive model for individual mobility behavior, and 

evaluating the environment and transportation impacts of real-time ridesharing system, there are 

also some limitations that should be addressed in future research. 

• In the individual activity identification process, one limitation is the need for 

ground truth data to verify the activity identification algorithm used in the model. Obtaining 

more real-world individual activity data could improve the algorithm's performance in the future. 
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Another limitation is the model's poor performance in predicting personal activities due to the 

lack of characteristics of the individuals. Since the heterogeneity of individual travel patterns will 

increase the randomness of their activities, it will be harder to predict individual activity 

sequence with high accuracy. Future research could incorporate individual characteristics such as 

age, gender, and occupation to improve the model's accuracy. 

• For individual mobility behaviors predictive model, the dissertation focuses 

primarily on on-demand ride-hailing services, but the transportation system is complex and 

involves various modes of transportation. Future research can focus on integrating the findings 

with other modes of transportation to provide a more comprehensive understanding of the 

transportation system.  

• In the study of evaluating the impacts of a ride-sharing system, first, the study 

relies on specific data sources, such as a ride-hailing service platform and a mapping API, which 

may not be representative of all transportation systems. Future research should consider using 

additional data sources to validate and expand upon the findings of this study. Second, the study 

focuses on a specific geographic area and may not be generalizable to other regions with 

different traffic patterns, infrastructure, and travel behaviors. Future research should test the 

applicability of the proposed methodology in different regions and contexts. Third, the study 

employs a computationally intensive agent-based simulation model to evaluate the impacts of 

ridesharing on travel and environmental benefits. Future research should explore alternative 

methodologies that can achieve similar results with less computational burden. Finally, the study 

assumes that all passengers will accept the ridesharing strategy. In reality, some passengers may 

not be willing to share a vehicle with strangers or may have other preferences. Future research 
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should investigate the user acceptance of ridesharing strategies and incorporate this into the 

simulation model. 

Despite the limitations, this dissertation contributes to the advancement of understanding 

and modeling individual activity and mobility behavior, as well as evaluating the impacts of a 

real-time ridesharing systems through the utilization of emerging data sources. Understanding 

and modeling individual activity and mobility behavior can lead to a better understanding of how 

people move and interact with their environment. This knowledge can be used to design more 

effective transportation systems, including public transit, bike share, and ridesharing services. By 

evaluating the impacts of ridesharing systems, we can identify potential benefits, such as reduced 

traffic congestion and improved air quality, as well as any negative impacts, such as increased 

traffic in certain areas or reduced use of public transit. This information can help transportation 

planners make informed decisions about how to design and implement ridesharing systems to 

maximize their benefits while minimizing any negative impacts. 
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