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We study the additive differential probabilities adp? of compositions of k — 1 bitwise
XORs. For vectors ol, ... off! e 73, it is defined as the probability of transfor-
mation input differences o', ...,a" to the output difference o**! by the function
'@ ... @ xF, where z,... 2k € 235 and k > 2. It is used for differential crypt-
analysis of symmetric-key primitives, such as Addition-Rotation-XOR, constructions.
Several results which are known for audpg9 are generalized for adp?. Some argument
symmetries are proven for adp?. Recurrence formulas which allow us to reduce the
dimension of the arguments are obtained. All impossible differentials as well as all
differentials of adp? with the probability 1 are found. For even k, it is proven that
max, adp? (al,...,a% = o*1) = adpP(0,...,0,aF 1 — oFF1). Matrices that can

al,..,
be used for efficient calculating adp? are constructed. It is also shown that the cases
of even and odd k differ significantly.
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PASHOCTHBIE XAPAKTEPUCTUKUA I10 MOAVJIIO 2" KOMIIO3UIINN
HECKOJIBKUX ITIOBNUTOBbBIX NCKJ/IOYAIOIIINX NJIN

N. A. Cyropmun*, H. A. Komomeer™

* Hosocubupckuti 2ocydapcmeennniti yrnusepcumem, 2. Hosocubupck, Poccus
* Uuemumym mamemamury, um. C.JI. Coboresa CO PAH, 2. Hosocubupck, Poccus

Uccnenyrorest pa3HOCTHBIE XapaKTEPUCTUKHI adp? o momysro 2" xkommosunuu k — 1
nobuToseix XOR. s BexTopos o, ... oft! € Z5 oHM OIpenendioTcsS KaK Bepo-
ATHOCTD IpeobpasoBanns ¢yuknmeit x' @ ... @ ¥ BxomHbx pasmocreit o, ..., o B
BBIXOHYIO pasHocTe ot e !, ... 2F € 75 n k > 2. Jlanaple XapaKTepUCTUKN
HCIIOJIb3YIOTCS IIPU PA3HOCTHOM KPHIITOAHAJN3€ CUMMETPUYHBIX AJITOPUTMOB, B TOM
quciie ARX-KOHCTPYKIINIA, HCITOIB3YIOIIIX TOJIBKO TPH OIIEPAIH: CJI0KEHNE 110 MOJLY-
go 2", nmoburopeiit XOR n mukinndeckmii casur 6uros. Ilokazano, 9To MHOrHME CBOM-
CTBA, U3BECTHBIE JIJIst adpga, 006001IaIoTCs Ha adp? JlokazaHbl CUMMETPHUHU apryMeH-
TOB adp?. [Tosy4gens! pekyppeHTHBIE POPMYJIbI, ITO3BOJISIONINE YMEHLIIUTh Ha 1 pas3-

MEpHOCTH apryMeHToB n. Hail/ieHbl Bce HeCOBMECTHDBIE PA3HOCTH M BCE PA3HOCTH, IIPHU

KOTOPBIX adp? paBua 1. Jlns géraoro k mokasaHo, 9TO max adp?(al, ok
al,..akeZy
— aktl) = audplef((),...,O,Ozk‘*'1 — aF*1). TlocTpoeHbl MATPHIIE, KOTOPBIE MOMKHO

I'The work was carried out within the framework of the state contract of the Sobolev Institute of
Mathematics (project no. FWNF-2022-0018).
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HUCIIOJb30BaTh JJId BBIYUCJICHUS adp? 3a JimHeitHOe 110 N BpeMs. [lokazaHo, 4TO CITy-
qau YETHOrO W HEYETHOTO k CYIECTBEHHO PAa3INIaiOTCH.

Kirouesbie ciioBa: ARX, XOR, pasnocmmbie Tapaxmepucmury, CAOHCEHUE NO MO-
dYa10, PasHOCMHBIT KPUNMOGHANUS.

1. Introduction

Symmetric cryptography is used in many areas in the modern world: for fast data
encryption (block and stream ciphers), for checking data integrity, for creating an electronic
signature (cryptographic hash functions), etc. ARX is one of the constructions being used
to develop these algorithms. All cryptographic primitives of this architecture use only three
operations: addition modulo 2" (Addition, H), circular shift (Rotation, <) and bitwise
addition modulo 2 (XOR, @). Examples of ARX-based ciphers include the block ciphers
FEAL [1], Threefish [2], one of the eSTREAM winners, the stream cipher Salsa20 [3| and
its modification ChaCha20 [4] (it is a part of TLS 1.3), as well as SHA-3 finalists hash
functions BLAKE [5] and Skein [2]. One of the well known problems of ARX ciphers is the
complexity of their differential cryptanalysis.

Differential cryptanalysis is a statistical method for the analysis of symmetric-key
primitives. It was proposed by E. Biham and A. Shamir in [6]. This attack uses pairs of
the input differences AP and output differences AC' with a high probability of ccurrence.
The ordered pair (AP, AC) is called a differential. A common way to find such differential
with a high probability is to construct a differential trail, i.e., a sequence (AP = AX,,
AXy,...,AX,, AC = AX,11), where AXy,...,AX, are some intermediate values that
would occur after some operations. A common technique to construct a differential trail
is to use a “greedy” strategy to pick the intermediate differences AX;,; which have the
highest probability of occurring for fixed AX;. Under some assumptions, we can multiply
all the probabilities of a differential trail and obtain an estimation for the probability of the
differential (AP, AC).

As for ARX ciphers, the difference A is typically one of their basic operations (addition
or XOR). There are also approaches that use other A or even several different A, see,
for instance, [7—10]. If we express the differences using addition modulo 2", the additive
differential probabilities are what we need. For an arbitrary function f : (Z})* — Z3 the
probability adp’(al,...,a* — o1, where o', ..., a1 € Z2, is defined as

1
ﬁ‘{l’lu"ka GZgif(xlﬁﬂal,,..,xkEak) :f<171,~--,$k>5304k+1}’,

However, the probability obtained by “greedy” strategy may be significantly different
from the real one. For instance, even simple composition x & y @ z can produce a high
error. Let us choose the input differences «a, 0, 0 for the first, second and third arguments
respectively. Then the “greedy” strategy gives us

P = adp@(oz, 0— AXl) . adp@(AXl, 0— AXQ)

It is known [11] that maxadp®(a,0 — 7) = adp®(a,0 — «a). Thus, we should choose
y

AX; = o and then AX, = o and obtain the result P = (adp®(a,0 — «))?. At the same
time, the function is symmetric, i.e., we can swap the first and the last arguments without
changing the value/probabilities:

P = adp®(0,0 = AX;) - adp®(AXy, a0 — AXy).
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But adp®(0,0 — 0) = 1 is obviously the maximum value and maxadp®(8,a — 7) =
7’y

= adp®(0,a — a) = adp®(a, 0 — «). In this case, the “greedy” strategy gives us a different
result: P = adp®(a, 0 — «).

Thus, if we apply this for the function ' @22 ® ... ® 2", we obtain two different results:
P = (adp®(a,0 — «))* and P = adp®(a,0 — «). We can make the difference between
them as big as we want by choosing o and k. Similar examples for other compositions can
be found in [12].

One of the possible ways to reduce the error is to use the differential probabilities for
the whole composition z' @ ... @ z*:

1 k k

adpP(al,...,a" = o) = S (o', .. 2" € Z) P’ Br’) =B},
1

i=1 1=

where o!, ..., o1 € Z2. Though it is difficult to meet this operation for large k in real

ciphers, at least x! @ 2% @ 3 is used, for instance, in EDON-R [13].

In this paper, we study the properties of adpy. As a rule, n = 32 is used in ARX
constructions that makes an exhaustive search inefficient. We generalize results obtained
in [11, 14| for adp® = adpy. Symmetries, impossible differentials, maximums, where one
of the arguments is fixed, are considered. All these things are interesting for constructing
differential trails. In [14] a way to compute adp® in linear time multiplying special matrices
was proposed. It was also generalized in [15]. We describe special matrices that can be used
for calculating adpy .

The outline. Section 2 gives us necessary definitions. In Section 3, symmetries of adpy’
are proven (Theorem 1). Section 4 contains recurrence formulas that can be used to reduce
the dimension of the arguments (Theorem 2). All impossible differentials (Theorem 3)
and all differentials with the probability 1 (Theorem 4) are found in Section 5 (see also
Remark 3). Section 6 provides maximums of the adpy, where one of its argument is fixed
and k is even (Theorem 5). In Section 7, matrices that allow us to calculate adpy are
constructed (Theorem 6 and eq. (6)). We note that the cases of even and odd k significantly
differ. Some operations are not symmetries for odd k. The structure of the matrices is a
little bit more complex for odd k. The maximums for odd £ do not generalize the maximums
for k = 2.

2. Definitions

Let Z3 be a vector space of dimension n over a field consisting of two elements. Let
x = (x1,...,2,) and y = (y1,...,Yyn) be elements of Z§. Then x1 and z0 are the vectors
(z1,...,2n,1) and (z1,...,2,,0) from ZJ*! respectively. The bitwise XOR is denoted by
r@y. Also, T = (18 1,...,2,B1) € Z). Wesay that y 2z if y; < z; forall i, 1 <i < n.
We denote the Hamming weight of the vector x by wt(z). We associate the vector x with the
integer £12" 1 +2,2" 2+ . . +x,. Thus, By = (z+y) mod 2", where z and y are considered
as the corresponding integers. Also, —x is the vector from Z7 whose corresponding integer
is —x mod 2".

Additive differential probability of the function f(z',...,2%) =2'®.. . @2k ot ... 2k €

€ 73, for a differential o, ... oft € Z2 is defined as
@ 1 k k+1 1 1 A N T B M R i
adpy (a, ..., 0" = « ):W{x,...,x €Zy PlaBa")=a""HP'}. (1)

=1 =1

Also, we denote adpy by adp®. Hereinafter we assume that k > 2.
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3. Argument symmetries of adp;

Argument symmetries were proven for adp® in [11]. In this Section, we generalize that

result for adpy, k > 3. It is straightforward that we can rearrange o', ..., a* calculating

adpy (o, ..., af — aft1), see the definition of adp} . Let us show that we can rearrange all
1 k+1

a, .. ali

Proposition 1. For any o!,..., o™ € Z2 and j € {1,...,k} the following holds:

adpP(al,...,ad, ... a" = o) = adpl(al,..., " ... " — o).

In other words, adp} is symmetric.

k

Proof. Since we can rearrange the arguments o', ..., o, we can only show that

adpl(al, ..., " = o) = adpl (@™, a?, ..., 0 = ob).
k . . .
Substituting in (1) @' = y!, 2' =y for all i = 2,..., k, we get that
i=1

1
ok

Y

k k
{yl,-u,y"’ € Zy ((@yi) 59a1> e @ (o' By =y153a’““}

=1 =2

which is equivalent to

1 L . ko
ok {yl, O VL /A (Vo == Re e e @(oﬂ By = (Q_;lyl> Eﬂal}‘ :
We have the definition of adpy (a®*1,a?,..., 0% — al). =
Proposition 2. For any o!, ..., o' € Z2 the following holds:
adpf(a',...,a" = o) = adpP (' 2" a?B2" ! a®, ... aF — oFth).

Proof. Tt is not difficult to see that alH2"~! = a®2" ! since the vector 2"~! € Z has 1
only in the most significant position. We can transform the condition from the definition
of adpy:

(@'Br)® (B2 =Bz )Ye2" ' (PHH)@2" ! =
=@ BB (BB =
= ((«'B2"HBE2") @ ((«*B2" ") Ba?).

There is no need to change the terms containing o?,...,o*". m
Proposition 3. For any o!,...,a*"! € Z2 the following holds:
adpP(al,..., " = o) = adp?(—al,..., —a" = —a*™).

Proof. By definition,

1
adp?(al, e gt ozk“) = Sk

k k

{‘Tx’“ €23 @lo Bai) = (@x") Bﬂak*l}‘ -
i=1 i=1

_ 1

2nk

k k
{xl,...,xk EZS:@xi:@(aiaﬂxi)@_akﬂ}‘-

i=1 i=1
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Substituting y* = ' @ o’ for all i = 1,...,k and using 2* = y* @ —a’, we can rewrite the

definition: .

{yl,...,yk €7l P(—a'By) = (éy) E—a’““}‘.

i=1

1
onk

We have got exactly adpy (—at,...,—a¥ — —af*1). =
Proposition 4. For any o!, ..., o*" € Z2 the following holds:
adpf(a',...,a" = ") = adpf (—a', —a?, a®, ... o — oFth).
Proof. First of all, we show that —x =7 H 1 for any x € Z7:
—r=(2"—1—2)B1l=7H1
Therefore, * = —x H —1 and for any y € Z}

ctBHy=—(ByB-1=—-—axB-1H-y=72H—y.

It is easy to see that for any bits x;,y; € Z, the equality x; ® y; = x; @ y; holds. Therefore,
for any z,y € Z7 it holds that T @y = x @ y. Now, we transform the condition from the
definition of adpy:

(Bz)® (*Br?) = (' Bal)® (a2Ba2?) = (—a'Bal) @ (—a’Ba2).
Using y* = ' for i = 1,2, we obtain the following:
(—a'By') @ (—a?By?).
We have got the condition from the definition of adpy (—al, —a? a?,...,a* — oft1). =

Finally, Propositions 1-4 give us the following theorem.
Theorem 1. Let k >2 ot,... ot € Z} and B',..., ¥ € Z%. Then

adp,?(ozl, o ,ozk — akH) = adp?(ﬁl, o ,6’“ — 6’”1)

if 1, ..., B**! are any of the following:

1) B =a % foralli, 1 <i< k+1, where 7 is a permutation on the set {1,...,k+1};
2) for arbitrary S C {1,...,k + 1}, where |S| is even,

Br=a'B2" forallic Sand f'=a' forallic {1,...,k+1}\S;
3) for arbitrary S C {1,...,k+ 1}, where |S| is even,
f'=—a'forallic Sand f'=a'forallic {1,...,k+1}\S;
4) if k is even, for arbitrary S C {1,...,k + 1}

B'=—a'forallic Sand f'=a'forallic {1,...,k+1}\S.
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Proof. The first point directly follows from Proposition 1. To prove the second point,
we just need to apply |S|/2 times Proposition 2 together with the first point. The same
applies to the third point: it is sufficient to use Proposition 4 instead of Proposition 2. Let
us prove the last point. Since k is even, the third point guaranties that

adpy (o, . .. Jaf = M) = adpy (—a', ..., —af — o).
By Proposition 3,
adpy(—at, ..., —a" = o) = adpP(al, ..., " = —a),
which implies that
adpP(al,...,af = o) = adpP(at,..., o — —aF™h).

Applying this equality |S| times together with the first point gives us the last point. m

4. Recurrence formulas for the adp{

The recurrence formulas for the adp® obtained in [11] can be generalized for adpy. Note
that all our further results will use them.

Theorem 2. For all o!,..., o € Z2 k > 2, and a vector of the least significant
bits A € Z5*! the following holds:

1) if wt(A) is odd, then
adpy (o' Ay, ..., 0" Ay = o Api) = 0; (2)

2) if kisodd and A = (1,...,1) = 2¥1 — 1, then

adpy (o' Ay, ..., a" Ay — o™ AL =
1
T ok So adpl (@' B By,..., o B By = "B By ); (3)
Bezlzﬂﬂ7

wt(B) is even

3) otherwise

adpl(a'Ay, ..., a" A, — " Ap) =
1
~ owi(A) > adpg (o' BBy,...,o" BBy — o B Biy). (4)
2 B€Z§+l,
B=A

Note that o' B B; is the addition modulo 27, i.e., o determines n, 1 <i < k+ 1.

Proof.

1) Let us prove that adpy (a'Ay,...,a* A, — o1 A1) = 0 if wt(A) is odd. First of
all, we define odd(z) = x,,4, for x € Z3™ i.e., odd(x) = 1 if and only if x is odd as integer.
It is clear that odd(z By) = odd(x ® y) = odd(z) & odd(y). By definition,

adpl(a'Ay, ..., a" A, — o AL =

1
2(n+1)k

k k
{xl, Lt ez P BaiA) = Pt B ak“AkHH :

i=1 =1
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Since wt(A) is odd,

odd|( (é(:c i oziAi)> ® (é z' B o/‘”“AkH)) éodd( @ @odd( Y e %Ai = 1.

i=1 i=1 i=1 = i=1
. . 1
It implies that for any z!,..., 2% € Zj*
@(IEZ tH OéZAi) 75 @ x' H ak+1Ak+1.
i=1

i=1

In other words, adpy(a'Ay,...,a"4;, — o1 A,) = 0 since the condition from its
definition cannot be satisfied.
2) Let us prove the equality (3). We rewrite the definition of adpy as

adpf(a'l,..., a1 — o"1) =
1 1 k n A i N i k+1
= SerE || T8 € 7y, al,...,akEZQ.i@l(&lﬁﬂxai): i@lxai Ha 153,
We fix a tuple aj, ..., a;. Using Proposition 1, we rearrange the adp} arguments so that
ap =ay = ... =a; = 0and aj4; = ... = a; = 1 for some j < k. Then we rewrite the

condition from the definition:

E]D(oﬂl EE’Q:N)) st é (Oéil a= Ill) _ <® 20 @ @ T 1) B okt =

i=1 i=j+1 i=j+1
J k ) ,

—<@(oz Hﬂx))@ P («Bz'B1)0 @xZO@ @ 2’1 | Baft.
=1 i=j+1 i=j+1

In the case of even j, we can rewrite the condition from the definition as

§

(ura)oe (G waran)o- (g b ) maman)o

Now look at the corresponding condition from the definition of adpy (a?,...,a’, a1 B 1,
LaPBT = oM E):

P~

1 i=j+1 i=j+1

(o/HEI:c’))O@(é (o/EExiEHl)> (@x ® @ )1530/““1,

EjB(o/Eaxi)EB é ('B2iH1) = (@x ® @ )Hﬂak+1aﬂl,

=1 i=j+1 i=j+1

It is easy to see that if a tuple ', ..., 2" satisfies one of these conditions, then it must also
satisfy the other.
In the case of odd 7, we can rewrite the condition from the definition as

(
(

o

1 i=j+1 =1 i=j+1

(a EEx))lEB(GEKMEBﬂEEl)) :((ééx’@ G?Ll )EE]akJrl)l.

<
I

(aiExi)) 1o ( é (o/EE!acTE!l)) (éx’ ® @ >0EEozk+11,

P~

I
—
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Now look at the corresponding condition from the definition of adpy (a?,...,a’, a1 B 1,
Lol B — of ).

@(a Baz') @ é(aiEExiEl):<®x@ D =z >EEO/“H.

i=j+1 i=j+1

It is easy to see that if a tuple z!, ..., 2" satisfies one of these conditions, then it must also
satisfy the other.

The total number of tuples satisfying the conditions from the definitions for vectors of
dimension n + 1 is 21k adp (a'l,...,a*1 — o**'1), and for vectors of dimension n it
is equal to Q”kadpk( ool — ozk“) For every fixed tuple aq,...,ax, there is a unique
adpy such that z'a; and 2, 1 < i < k, satisfy the corresponding Condltlons Choosing all
possible combinations of a4, ..., a;, we obtain that

n+1 adp ( 1A1, Ce. ,OékAk — ak+1Ak+1) =
= Y 2%adpP(a'@B,...,a* BB, — oL@ Byyy).

Bezs !,
wt(B) is even

We recall that after the rearranging a,...,a; we have the following: By,..., B; must be
zero, Bji1,..., By must be one, and By = 1 if and only if j is even. That is why we
consider only B of even weight. The equality (3) is proven.

3) Now, we prove the equality (4). Since we exclude the previous cases, wt(A) is even

and there exists 7, 1 <7 < k+ 1, such that A; = 0. Using Proposition 1, we rearrange the
arguments of adpy’ so that Ajpr = Ajpo = ... = Ay = 0, where j < k, and A; = ... =
= A; = 1. We rewrite the definition of adpy(a'l,...,a/1,a/*10, ..., a*0 — o*10):
1 1 1.
m{l‘ .I' EZQ, al,...,akEZz.
J ) ) k ) .
P (a1 Brla;) d P (a'0Bx'a;) = (@x a; @ @ r'a; > & 0/“’10}’.
i=1 i=j+1 i=j+1
We also fix the first j elements from the tuple aq,...,ax. Using Proposition 1, we
rearrange the arguments of adp) so that a; = ... =a, =1 and g, = ... = a; = 0 for

some ¢ < j. Then we can rewrite the condition from the definition as

q ' k
P'1Hz2')d P («'1BHz0)d P («'0H 2'a;)
i=1 i=q+1 i=j+1
k
@xl = GD 20 & @ 2'a; | B0,
i=q+1 i=j+1

q J , , k . .

o H ' D o x')1l D o xh)a; =
Dl'BrBL0® P (¢'Ba’)le P (o Ba')
i=1 i=q+1 i=j+1

= éx @,EJB T’ @'é )(@1@ @ al)aaa"f*lo.

i=j+1



On additive differential probabilities of a composition of bitwise XORs 67

Next, we rewrite it in the following way:
, A J A : k , . J k
(vBzBHl)® @B (oBa")ed @ (o Ba") P 1o P a | =
=1 i=q+1 i=j+1 i=q+1 i=j+1

= (lé;lxiaaa’f“) (§1€B é a)

i=j+1
Let us extract the condition for the least significant bit:
J k q k J
P 1o P a,=P1ld @ a;,which is equivalent to P 1 = 0.
i=q+1 i=j+1 i=1 i=j+1 i=1

It is always satisfied since j = wt(A) is even. Now we consider the transformed condition
without the least significant bit:

a . , J , 4 k 4 , ko
DB BL)G P (B2 P (o'B2h) =Pt @HaF
i=1 i=q+1 i=j+1 i=1

It obviously matches the condition from the definition of
adP?(Oél H 17 s 704q H 17 Oéq+1, e ,Oék — ak+1).

If the tuple ', ..., z¥ satisfies the condition from the definition, then the tuple consisting
of vectors 2’1 for all i, i < ¢, vectors z'0 for all i, ¢ < ¢ < j and vectors z'a; for all
i, j < i < k, also satisfies the condition from the definition of adpy (a'Ay,...,a*4; —
— af Ay y) for all a5, j < i < k. There are 2°77 such solutions. We can also see that
a; B 1 can occur only when A; = 1. The total number of solutions of the conditions from
the definitions for vectors of dimension n 4 1 is 2"+*V* adpf (ot Ay, ..., a* A — aF 1 Ag),
and for vectors of dimension n it is equal to 2"* adp{(a?,...,a* — o). Choosing all
possible combinations of a;, we obtain

2(”+1)kadp?(a1A1, L adk AL > akHAkH) =
= > 2"RokdadpP ('@ By, ...,a" B B, — ot 8 Byyy).
Bezkt!,
B=A

Since j = wt(A), the equality (4) is proven. m

Remark 1. We can extend the recurrence formulas for “empty” o!, ..., o**! ie., for
a'A; € Z3. Tt is sufficient to assume that adpy(&,...,9 — &) = 1. Indeed, we obtain by
the recurrence formulas exactly that adpy (A, ..., Ay — Ap1) =1 <= wt(Ay, ..., Apy1)
is even and adpy (A, ..., Ay = Apy1) =0 <= wt(Ay, ..., Ap) is odd.

Remark 2. Using symmetries from Section 3 and the equality

we can replace a1 with @ for a pair of arguments in the recurrence formulas (and for any
argument if & is even). For instance,

adpy (al,al,al = al) =

1 3 1
= gadpée(a, a,a— ) + Zadpga(a, a,a— a)+ gadp;?(a, a,a — Q).
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5. Zeros and ones of the adp{

For the purposes of cryptanalysis, it is important to distinguish the set of arguments on
which adpy is equal to zero.

Theorem 3. For any k > 2 and any ol,...,o*! € Z2, the equality adpy (al,...,
af — 1) = 0 holds if and only if there exists i, 1 < i < n, such that (a},..., o) £
# (0,...,0), (a},...,af“) = (0,...,0) for all j, i < j < n, and one of the following
conditions is true:

e k“) has odd weight;

1) the vector (af,..
2) (al,...,a™y=(1,...,1), kisodd, i > 1, and (a} ,,...,a"]) is of odd weight.
1 k

Proof. Let us use 1nduct10n by n. For n = 1, adp{(al,...,a* — of*1), where
al, ... ot € Z,, is equal to 0 if and only if (a!,...,a") is of odd weight. It is the
base of the induction. Suppose that the statement holds for n. Let us prove that it is true

for n+4 1. We represent elements from Z5 ™ as o' Ay,..., a1 Ay, 1, where o, ..., o+ € 7
and A = (Ay,..., Apy1) € ZETL. First of all, we can assume that A # (0,...,0). Indeed,
adpy (a'0,...,a*0 — o**10) = adpy(al,...,af — oFl) by Theorem 2. Moreover, the

statement of the theorem takes it into account. Next, we need to consider three cases.
1) wt(A) is odd. According to Theorem 2, adpy (atAy, ..., afA, — ofF 1AL ) = 0. Tt
proves that the first condition is sufficient.
2) A= (1,...,1) and k is odd. In this case
adpP(a'l,... a1 = ") =

1
=— Y adpf(a'BBy,...,a" BB, — " E Byyy).

k
2 Bezs ™!,
wt(B) is even
The least significant bits of !By, ..., o BBy, ate ol ® By, ..., a1 @ By, . Moreover,
wt(B) is even. Thus, if wt(al, ..., ") is odd, then wt(al @ By, ..., o @ By ) is odd
as well. It means that any of adpy (o' 8 By,...,of B B, — o**' B B,4) is equal to zero

by induction.

Let wt(al,...,a*") be even. Choosing (0,...,0) or (1,1,0,...,0) as B and taking
into account that k& > 2, we obtain that at least one of (al,...,a**!) and (ol ® 1,02 @
a3, ..., af) does not belong to {(0,...,0),(1,...,1)}. Moreover, both of them are of
even weight. It means that at least one of adpy(al, ..., a* — o*1) and adp} (o' B 1,0 B
1,a3,...,aF = o*1) is not zero by induction. Therefore, adpy (a'l,...,a*1 — o*t11) is
not zero as well.

Thus, in this case adp} (a'l,...,a*1 — o#11) is zero if and only if wt(al, ..., k1) is
odd. It proves the correctness of the second condition.

3) wt(A) is even and A ¢ {(0,...,0),(1,...,1)}. In this case

adpl(a'Ay, ..., a" A, — " Ap) =
1
:m Z adp?(alEEBl,...,o/"’EElBk—>ozk+1EEBk+1).
2 Bezht1,
B=A
Without loss of generality we assume that A; = Ay = 1, otherwise we can rearrange
arguments by Theorem 1. Similarly to the prev10us point, at least one of (al, a2, a2, ...,
o) (al@l,a2,a3,. . o), (al, a2 @103, ... af ) and (ol @1,a2®1,a3,. .., okt

is of even weight and does not belong to {(0,...,0),(1,...,1)}. Thus, the corresponding
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adp}’ is not zero by induction. Therefore, adp} (a4, ..., aF A, — o1 A4, 1) is not zero as
well.
It proves that the first condition is necessary, except for the cases A = (0,...,0) and

A=(1,...,1) for odd k. m

Note that the zeros of the function in the case of even k look similar to the zeros
for adp®. The second point appears only for odd k and generates an additional set of zeros.
The arguments on which adpy is equal to 1 are also interesting.

Theorem 4. For any k > 2 and any ol,...,o*! € Z2, the equality adpy (al,...,
of — o#*t1) = 1 holds if and only if the vector (al,...,a’™) has even weight, and one of

the following conditions is true:
1) (al,...,a") =(0,...0) for all i, 2 < i < n;

2) (ad,...,as™) =(1,...,1), kisodd, n > 2, and (a},..., o) = (0,...0) for all 4,

)

3 <1< n.

Proof. Let us use induction by n. For n = 1, adp{(al,...,a* — of*1), where
al, ..., aft € Z,, is equal to 1 if and only if (al,...,a**1) is of even weight. It is the base
of the induction. Suppose that the statement holds for n. Let us prove that it is true for
n + 1. We represent elements from Z3™ as a'A;, ..., a1 A1, where ol ... o**! ¢ Z7
and A = (Ay,..., Apy1) € Z5T Similarly to the proof of Theorem 3, we assume that
A #(0,...,0) (otherwise the statement is true by induction) and consider three cases.

1) wt(A) is odd, which means that adpy (a'A;, ..., %A, — oA, ) =0 # 1.
2) A=(1,...,1) and k is odd. In this case

adpf(a'l,...,a*1 = ") =

1
=0 S adp (@' @B By,...,af B By — o B Byyy),
Bezkt!,

wt(B) is even

which implies that adpy(all,...,a*1 — o**11) = 1 if and only if adp} (o' 8 By, ...,a* B
B By, — o @ By,,) = 1 for all B € ZE*! of even weight.

The least significant bits of o' B By,...,o*" B B, are ol @ By,...,a ™ @ Byy1.
Choosing (0,...,0) or (1,1,0,...,0) as B and taking into account that k > 2, we obtain

that at least one of (al,...,af™) and (ol ® 1,02 @ 1,a2,...,a%) does not belong
to {(0,...,0),(1,...,1)}. In other words, at least one of adpy(al,...,af — o**1) and
adpy (' B 1,02 B 1,03,...,a% — o**1) is not equal to 1 if n > 1 by induction. If n = 1,
then all adpy (o' B8 By,...,a* B By — o*!' B By,,) = adpy(al @ By,...,af & B, —
— o™ @ Byyy) = 1if and only if wt(al,..., o) is even.

Thus, in this case adpy (a'l,...,a*1 — o*"11) = 1 if and only if n = 1 and
wt(al, ..., o) is even. It proves the correctness of the second condition.

3) wt(A) is even and A ¢ {(0,...,0),(1,...,1)}. In this case

adp{(a'Ay, ..., a A, — oA =
1
= sog L adpP(a' B By,...,a" B By — ol 8 Byy).
2 Bezs ™!,
B=A

This means that adpy(alAi,...,a*4, — of*14;,,,) = 1 if and only if adpy(a! B
B B,...,af BB, — " '@l B,,) =1forall B¢ Zg“ such that B < A.



70 I.A. Sutormin, N. A. Kolomeec

Without loss of generality we assume that A; = 1, otherwise we can rearrange arguments
by Theorem 1. Next, one of (al, a2, ... af1) and (ol @ 1,a2,...,aF" ) is of odd weight.
Thus, one of adpy(al,...,af — of™1) and adpy (o B 1,02,...,aF — off1) is zero by

Theorem 2 and adpy (a4, ..., ok Ay — o1 A, ) # 1.
Together with the first point, it proves the correctness of the first condition. m

Remark 3. The conditions from Theorems 3 and 4 for a,..., a1 € Z% can be
simplified. Let us define the following pattern symbols for elements of Z4*:

— % means any z € Zot!
— e and d mean any z € Z5! of even and odd weight respectively,
— 0 and 1 mean (0,...,0) and (1,...,1) from Z5*! respectively.

Then adpy (a?, ..., a* — of*t1) = 0 if and only if the vector

((ag,...,af ™), (ad, .o ol th) (5)

nr n

matches
(*,...,%,d,0,...,0) for any k or

(*,...,%,d,1,0,...,0) for odd k.

1) = 1 if and only if the vector (5) matches

Similarly, adpy (a!, ..., af — «
(e,0,...,0) for any k or

(e,1,0,...,0) for odd k.

6. Maximums of the adp

Also, for the purposes of cryptanalysis, the maximum values of adp; are of interest,
where some argument (or arguments) is fixed. In the case of even k, it is not difficult to
show that the maximum of the characteristic, where one its argument is fixed, is similar to
the maximum for k = 2.

Theorem 5. Let k > 2 be even and v € Zj. Then

| max adpl(xt, ..., 2" = 7) = adpP(0,...,0,7 = 7).
xl,..xhEeLy

Proof. Let us use induction by n. If n = 1, adp{ (0,...,0,7 — ) = 1 for any v € Z,,
see Theorem 4. It is the base of the induction.

Next, we assume that adpy(8',...,8% — v) < adp?(0,...,0,y — ~) for any
Bl B85y € ZP. Let o',...,af vy € Z%, A € ZE'. We need to prove that
adpy (@t Ay, ..., aF Ay — yAr) < adpP(0,...,0,7Ar1 — YAr1). We divide the proof
into the following cases.

Case 1. A=(0,...,0). According to Theorem 2, adpy (ol Ay, ..., %A, — YAp1) =
= adp{(al,...,a* — 7) and adpy(0,...,0,7Ars1 — YAr1) = adpy(0,...,0,7 — 7).
Thus, the induction hypothesis provides that adp)(a'4;,...,afAy — ~YAp) <
<adpy(0,...,0,7Akr1 = YAr4).

Case 2. wt(A)is odd. According to Theorem 2, adpy (ol Ay, ..., ok A, — yAr1) = 0.
It proves the induction step.

Case 3. wt(A) is even and Ay = 0. Without loss of generality, we can assume
that Ay = ... = A, = 1 and A,y = ... = Ay = 0, where w = wt(A). Indeed,
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Proposition 1 allows us to rearrange the arguments of adpy. Then, Theorem 2 and the
induction hypothesis give us that

adpl (' Ay, ... a" A, — 70)=2"" 3 adpP(a'BBy,...,a" B B,,a"" ... o* = 7)<
BeLy
< 272" adpp(0,...,0,7 =) = adpg(0,...,0,70 = 70).

Case 4. wt(A) is even and Ag.; = 1. Similarly to the previous case, we assume
without loss of generality that A, = ... = A, = 1 and A,11 = ... = A, = 0, where
w = wt(A) — 1. According to Theorem 2,

adp?(alAla s 7&kAk — ’}/AkJrl) =
=273 Y adpP (! BBy, ..., aY B By, av . aF — yHc) =

c€ZL, BELY
=277 ¥ adpf(a' B By,...,a" BB,,a",. .. af = 9)+
BeZy
+2_w_1 Z adp?(al EB B17 . e 7Oéw Bﬂ Bwy aw+17 ct 7ak - ’y Hﬂ 1>
BeZy

Also, if the vector of the least significant coordinates has odd weight, i.e., wt(B) + ¢ +
+wt(al,...,ak ~,) is odd, then adp (ol B By,...,a” B By, a* " ... af — yHBc) = 0.
It means that at least half of adpy(a! B8 By,...,a% B B,,a%" ... o* — v) are zero and
at least half of adpy (o' B By,...,a% B B,,a%" ... a* — vy @ 1) are zero. At the same
time,

1 1
adp?(O,...,O,’yl — 1) = Zadp?(O,...,O,fy—>7)+Zadp?(0,...,0,7531 —vH1),

since adpy (0,...,0,7 — y@B1) = adp(0,...,0,7y @1 — 7) = 0. Finally, by the induction
hypothesis and due to the least significant vectors of odd weight, we obtain that

271 ST adpP (@' B By, ..., B By, ot af — ) <
BEZY

1
<277 207t adpy(0, -, 0,7 = 9) = Jadpp (0,0, = 7).
Similarly,

271 S adpf (@ B By, ..., B By, ot .o — yB1) <
BezZY

1
<27w71.wal_adp?(o’.__’()’yﬁﬂl%f}/EEl):Zadpf(O,...,O,’yBﬂl%’yEEl).

Thus, adpy (a4, ..., aFA, — 1) < adpP(0,...,0,71 — v1). m

For odd k the maximum looks different.
Corollary 1. For any odd k > 3 and v = 2""! + 2772 € Z? the following holds:

adp (7,7,0,...,0 = 0) <1 =adpi(v,...,7 = 7).

It directly follows from Theorem 4. However, for some cases we can generalize results
of Theorem 5.
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Corollary 2. Let k > 3 be odd. Then for any v € Z3 the following holds:

max  adpy(0,2%,..., 2"t = ) = adp(0,...,0,7 — 7).

zl,...ak—tezy

Indeed, the proof of Theorem 5 is correct for this case since the first argument is zero.
Thus, we will never use the case (1,...,1) in the recurrence formulas which is the only
difference between even and odd k. At the same time, we believe that for an arbitrary

odd k the following holds.
Hypothesis 1. Let £ > 3 be odd and v € Z3. Then

max_adpy (z',...,2" = 7) =adpy(v,...,7 = 7).

zl,...xzkeZl

Note that a problem connected with the values adp®(0,7 — ) can be found in [16].
NSUCRYPTO-2014 [17] also included a problem related to ARX constructions.

7. A matrix approach for calculating adp{

The section is devoted to a generalization of the approach proposed in [14] for calculating
adp?, i.e., adpy. There is also the S-function technique [15], which provides a matrix
calculation algorithm that help to compute values of any S-function (including adpy).
However, it does not allow us to obtain analytic expressions for the matrix elements, as
well as relationship between matrices.

In this section, we will consider a vector space @2k+1 over rationals. We assume that the
coordinates of the vectors from @Qkﬂ start with zero and for coordinate x;2%F + 2,251 +
+. ..+ 24 we use both integer and binary vectors (21, . .., Zx41) representations, x € Zstt.
Let A € ZE™ and k > 2. We define matrices M¥ of size 254! x 2541 in the following way:

2=k if z = A, k is odd and wt(y) is even,
(M), o =27V if wi(x @ A)isevenand y S A <z ® A, (6)
0, otherwise,

where z,y € Z’;“. Similarly to the elements of @Qkﬂ, we use both integer (starting with 0)
and binary vector notations for the matrix indexes.
The next theorem follows from the Theorem 2 and gives us a way to calculate adp; .

Theorem 6. Let k> 2 and o!,..., o*"! € Z2. Then

adp?(al,...,o/“%&k*l):(1,...,1)Mk1 k+1 Mk k+1)(1,0,...,O)T.

(al,.0bt1) (ko

Proof. We use the recurrence formulas obtained in Theorem 2. First of all, we define
1Blm = (B1,. .., Bm) for any § € Z3 and 1 < m < n. Also, [],, B a means [3],, + a mod 2™,

where a € Z,. Let € ZE™'. We apply Theorem 2 to adp{ ([a! i1 By, . .., [0F] s Bay, —
— [ B agg). Let A = (alq,...,af). Then the vector of the least significant

bits of the arguments is x @ A. After applying the recurrence formulas, we obtain a sum of
adp?(“&l]erl B ], By, ..., Hak]m+1 B ] By, — [[ak+1]m+1 B Zpi1)m B Yrs1)
for some y € ZE+! y < 2 @ A. Let us show that

[0 )1 B 23] Bys = [ B (y; ® i - Ay), (7)
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where ¢ = 1,...,k +1 and y < = @& A. Indeed, if (4;,2;) = (a1, 7)) # (1,1), Le,
z;-A; = 0, then the addition of z; to [a],,+1 may change only its least significant bit. Thus,
[ ]mi1 B z)m = [ If (A, 25) = (1,1), then y; = 0 since x; ® A; = 0 and y < = & A.
Thus, [[a]mi1 B 2i]m By = [[0f]mer B 1] =[], B1 = [af],, B (y; ®x; - Ay).

Next, we denote by = - A the vector (1 - Ay, ..., xp1 - Ags1). Let us show that

{y®(z-A):yecZit andy <@ A} ={2€Z" . 20 A<z A} (8)

Indeed, {y @ (- A):ycZi andy <ax @ Ay = {2 € Zi™ . 2@ (v - A) <2 ® A}. At the
same time, 2@ (- A) Rx @A < 20 A xd Asince for any i =1,...,k+ 1 we have
the following: x; # A; (i.e., z; ® A; = 1) implies that both z;® (z;- A;) < land z; & A; < 1
always hold for any z; € Z,; also, x; = A; implies that z; ® (z; - A;) = z; ® A;.

Moreover, the following holds for z = A:

{y® (x-A):y e Zh wt(y) is even} = {z € ZE*! : wt(2) is even}. (9)

It is straightforward since in this case t & A = (1,...,1) and z - A = (0,...,0).

Theorem 2 allows us to express r = adpy ([a!] 1 By, ..., [0 By — [oFFY,, 1 B
B x)41) in the following way:

1) If wt(x @ A) is odd, then r = 0.

2) Ifad®A=(1,...,1) and k is odd, then according to (7) and (9) the following holds:

r=2" Z adp?([@l]m Bz, [ak]m Bz, — [ak—H]m &5 Zk+1)'

z:wt(z) is even

3) Otherwise, due to (7) and (8) we have that

r=27eed Z adp?([al]m Bz, ., [ak]m B 2, — [ak+1]m B Zk:—i—l)'
z: zDA<THA

T

At the same time, we know how the matrix M% transforms the standard basis ¢

(it has 1 in the coordinate = and 0 in all other coordinates) for all x € Z&™': (M%), , is the
y-th coordinate of M%eT where y € Z’;“, which is equal to

27k if v = A, kis odd and wt(y) is even,
27 Vt@®A) - if wi(z @ A) iseven and y © A <1 D A,
0 otherwise.

It is not difficult to see that the mapping M% completely corresponds to the points 1, 2,
and 3. It other words, we can consider it as a “state” transformation: it maps all multipliers of

adpf ([0 ]i1 By, . . ., [0F ] By — [0 Bagyy) (for all 2 € Z5™) to all multipliers

of adpy ([ ], Byr, - - ., [aF]; By — [0*F],, Bygy) (for all y € ZET). Since we start with

adpy (o, ..., af — of*1) it corresponds to the “state” ¢r. Thus, the final multipliers are
Y R

see Remark 1 for the case n = 1. Finally, adpy (o, ..., 0 = o) =(1,...,1) - s. =

Corollary 3. If k is even, then (M%), . = (M})yoazwa, 4,2,y € Z51. It means that
all M% can be obtained from each other using some permutations of rows and columns.

This does not hold for odd k. However, almost the same thing is true: we swap x and
7 @ A columns, after that we swap y and y @ A rows of M} except for the rows A and

1,...,1).
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The proof follows directly from the definition of M¥%. Thus, the difference in recurrence
formulas gives us some difference in the calculation of the adp{ for odd and even k.
Some matrices for £ = 3 are presented bellow:

3 3 3
8 M(O,O,O,O) 8 M(O,O,O,l) 8 M(l,l,l,l)
8002022002202001 0020200020000010 1000000000000000
0002020002000000 0820200220020200 000000000000000O0
0002002000200000 0020000000000000 00000000000000O0O
0002000000000001 0020000200020010 1002000000000000
0000022000002000 0000200000000000 000000000000000O0
0000020000000001 0000200200000210 1000020000000000
0000002000000001 000000000000O0OO010O0 1000002000000000
00000000000000O0O 0000000200000000 0002022000000000
0000000002202000 |- 0000000020000000 ’ 00000000000000O0O
0000000002000001 0000000020020210 1000000002000000
0000000000200001 00000000O00O0O0OOO10O 1000000000200000
0000000000000OO0OO 00000000O00O020000 0002000002200000
0000000000002001 0000000000000O010 1000000000002000
00000000000000O0OO 00000000O00O000200 0000020002002000
0000000000000OO0OO 0000000O0O0OO0O0OOOOO 0000002000202000
0000000000O00OCOOO1 0000000O000OOOOO010O 1002022002202008

For instance, if o' = (0,0,1), o = (0,0,1), a® = (0,0,1), and a* = (0, 1, 1), we obtain that
adp? (a!,a?,0® = oM =(1,..., )M} M} M} 1,0,...,0)T.
s ( )= ( v ) (0,0,0,0044(0,0,0,1) (1,1,1,1)( . )

8. Conclusion

We have generalized some properties of adp® to adpy. The results obtained show us
that there is the difference between odd and even k, it looks like the case of odd k is more
complicated. A generalization of other properties such as maximum for odd k is a topic for
future research.

The authors would like to thank Nicky Mouha for interesting discussions and valuable
advice.
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