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We study the additive differential probabilities adp⊕k of compositions of k − 1 bitwise
XORs. For vectors α1, . . . , αk+1 ∈ Zn2 , it is defined as the probability of transfor-
mation input differences α1, . . . , αk to the output difference αk+1 by the function
x1 ⊕ . . . ⊕ xk, where x1, . . . , xk ∈ Zn2 and k > 2. It is used for differential crypt-
analysis of symmetric-key primitives, such as Addition-Rotation-XOR constructions.
Several results which are known for adp⊕2 are generalized for adp⊕k . Some argument
symmetries are proven for adp⊕k . Recurrence formulas which allow us to reduce the
dimension of the arguments are obtained. All impossible differentials as well as all
differentials of adp⊕k with the probability 1 are found. For even k, it is proven that
max
α1,...,αk

adp⊕k (α1, . . . , αk → αk+1) = adp⊕k (0, . . . , 0, αk+1 → αk+1). Matrices that can

be used for efficient calculating adp⊕k are constructed. It is also shown that the cases
of even and odd k differ significantly.
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РАЗНОСТНЫЕ ХАРАКТЕРИСТИКИ ПО МОДУЛЮ 2n КОМПОЗИЦИИ
НЕСКОЛЬКИХ ПОБИТОВЫХ ИСКЛЮЧАЮЩИХ ИЛИ
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Исследуются разностные характеристики adp⊕k по модулю 2n композиции k − 1
побитовых XOR. Для векторов α1, . . . , αk+1 ∈ Zn2 они определяются как веро-
ятность преобразования функцией x1 ⊕ . . . ⊕ xk входных разностей α1, . . . , αk в
выходную разность αk+1, где x1, . . . , xk ∈ Zn2 и k > 2. Данные характеристики
используются при разностном криптоанализе симметричных алгоритмов, в том
числе ARX-конструкций, использующих только три операции: сложение по моду-
лю 2n, побитовый XOR и циклический сдвиг битов. Показано, что многие свой-
ства, известные для adp⊕2 , обобщаются на adp⊕k . Доказаны симметрии аргумен-
тов adp⊕k . Получены рекуррентные формулы, позволяющие уменьшить на 1 раз-
мерность аргументов n. Найдены все несовместные разности и все разности, при
которых adp⊕k равна 1. Для чётного k доказано, что max

α1,...,αk∈Zn2
adp⊕k (α1, . . . , αk →

→ αk+1) = adp⊕k (0, . . . , 0, αk+1 → αk+1). Построены матрицы, которые можно

1The work was carried out within the framework of the state contract of the Sobolev Institute of
Mathematics (project no. FWNF–2022–0018).
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использовать для вычисления adp⊕k за линейное по n время. Показано, что слу-
чаи чётного и нечётного k существенно различаются.

Ключевые слова: ARX, XOR, разностные характеристики, сложение по мо-
дулю, разностный криптоанализ.

1. Introduction
Symmetric cryptography is used in many areas in the modern world: for fast data

encryption (block and stream ciphers), for checking data integrity, for creating an electronic
signature (cryptographic hash functions), etc. ARX is one of the constructions being used
to develop these algorithms. All cryptographic primitives of this architecture use only three
operations: addition modulo 2n (Addition, �), circular shift (Rotation, ≪) and bitwise
addition modulo 2 (XOR, ⊕). Examples of ARX-based ciphers include the block ciphers
FEAL [1], Threefish [2], one of the eSTREAM winners, the stream cipher Salsa20 [3] and
its modification ChaCha20 [4] (it is a part of TLS 1.3), as well as SHA-3 finalists hash
functions BLAKE [5] and Skein [2]. One of the well known problems of ARX ciphers is the
complexity of their differential cryptanalysis.

Differential cryptanalysis is a statistical method for the analysis of symmetric-key
primitives. It was proposed by E. Biham and A. Shamir in [6]. This attack uses pairs of
the input differences ∆P and output differences ∆C with a high probability of ccurrence.
The ordered pair (∆P , ∆C) is called a differential. A common way to find such differential
with a high probability is to construct a differential trail, i.e., a sequence (∆P = ∆X0,
∆X1, . . . ,∆Xp, ∆C = ∆Xp+1), where ∆X1, . . . ,∆Xp are some intermediate values that
would occur after some operations. A common technique to construct a differential trail
is to use a “greedy” strategy to pick the intermediate differences ∆Xi+1 which have the
highest probability of occurring for fixed ∆Xi. Under some assumptions, we can multiply
all the probabilities of a differential trail and obtain an estimation for the probability of the
differential (∆P,∆C).

As for ARX ciphers, the difference ∆ is typically one of their basic operations (addition
or XOR). There are also approaches that use other ∆ or even several different ∆, see,
for instance, [7–10]. If we express the differences using addition modulo 2n, the additive
differential probabilities are what we need. For an arbitrary function f : (Zn2 )k → Zn2 the
probability adpf (α1, . . . , αk → αk+1), where α1, . . . , αk+1 ∈ Zn2 , is defined as

1

2nk
∣∣{x1, . . . , xk ∈ Zn2 : f(x1 � α1, . . . , xk � αk) = f(x1, . . . , xk)� αk+1}

∣∣ .
However, the probability obtained by “greedy” strategy may be significantly different

from the real one. For instance, even simple composition x ⊕ y ⊕ z can produce a high
error. Let us choose the input differences α, 0, 0 for the first, second and third arguments
respectively. Then the “greedy” strategy gives us

P = adp⊕(α, 0→ ∆X1) · adp⊕(∆X1, 0→ ∆X2).

It is known [11] that max
γ

adp⊕(α, 0 → γ) = adp⊕(α, 0 → α). Thus, we should choose

∆X1 = α and then ∆X2 = α and obtain the result P = (adp⊕(α, 0 → α))2. At the same
time, the function is symmetric, i.e., we can swap the first and the last arguments without
changing the value/probabilities:

P = adp⊕(0, 0→ ∆X1) · adp⊕(∆X1, α→ ∆X2).
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But adp⊕(0, 0 → 0) = 1 is obviously the maximum value and max
β,γ

adp⊕(β, α → γ) =

= adp⊕(0, α→ α) = adp⊕(α, 0→ α). In this case, the “greedy” strategy gives us a different
result: P = adp⊕(α, 0→ α).

Thus, if we apply this for the function x1⊕x2⊕ . . .⊕xk, we obtain two different results:
P = (adp⊕(α, 0 → α))k and P = adp⊕(α, 0 → α). We can make the difference between
them as big as we want by choosing α and k. Similar examples for other compositions can
be found in [12].

One of the possible ways to reduce the error is to use the differential probabilities for
the whole composition x1 ⊕ . . .⊕ xk:

adp⊕k (α1, . . . , αk → αk+1) =
1

2nk

∣∣∣∣{x1, . . . , xk ∈ Zn2 :
k⊕
i=1

(αi � xi) = αk+1 �
k⊕
i=1

xi}
∣∣∣∣ ,

where α1, . . . , αk+1 ∈ Zn2 . Though it is difficult to meet this operation for large k in real
ciphers, at least x1 ⊕ x2 ⊕ x3 is used, for instance, in EDON-R [13].

In this paper, we study the properties of adp⊕k . As a rule, n = 32 is used in ARX
constructions that makes an exhaustive search inefficient. We generalize results obtained
in [11, 14] for adp⊕ = adp⊕2 . Symmetries, impossible differentials, maximums, where one
of the arguments is fixed, are considered. All these things are interesting for constructing
differential trails. In [14] a way to compute adp⊕ in linear time multiplying special matrices
was proposed. It was also generalized in [15]. We describe special matrices that can be used
for calculating adp⊕k .

The outline. Section 2 gives us necessary definitions. In Section 3, symmetries of adp⊕k
are proven (Theorem 1). Section 4 contains recurrence formulas that can be used to reduce
the dimension of the arguments (Theorem 2). All impossible differentials (Theorem 3)
and all differentials with the probability 1 (Theorem 4) are found in Section 5 (see also
Remark 3). Section 6 provides maximums of the adp⊕k , where one of its argument is fixed
and k is even (Theorem 5). In Section 7, matrices that allow us to calculate adp⊕k are
constructed (Theorem 6 and eq. (6)). We note that the cases of even and odd k significantly
differ. Some operations are not symmetries for odd k. The structure of the matrices is a
little bit more complex for odd k. The maximums for odd k do not generalize the maximums
for k = 2.

2. Definitions
Let Zn2 be a vector space of dimension n over a field consisting of two elements. Let

x = (x1, . . . , xn) and y = (y1, . . . , yn) be elements of Zn2 . Then x1 and x0 are the vectors
(x1, . . . , xn, 1) and (x1, . . . , xn, 0) from Zn+1

2 respectively. The bitwise XOR is denoted by
x⊕ y. Also, x = (x1⊕ 1, . . . , xn⊕ 1) ∈ Zn2 . We say that y � x if yi 6 xi for all i, 1 6 i 6 n.
We denote the Hamming weight of the vector x by wt(x). We associate the vector x with the
integer x12n−1+x22

n−2+. . .+xn. Thus, x�y = (x+y) mod 2n, where x and y are considered
as the corresponding integers. Also, −x is the vector from Zn2 whose corresponding integer
is −x mod 2n.

Additive differential probability of the function f(x1, . . . , xk) = x1⊕. . .⊕xk, x1, . . . , xk ∈
∈ Zn2 , for a differential α1, . . . , αk+1 ∈ Zn2 is defined as

adp⊕k (α1, . . . , αk → αk+1) =
1

2nk

∣∣∣∣{x1, . . . , xk ∈ Zn2 :
k⊕
i=1

(αi � xi) = αk+1 �
k⊕
i=1

xi}
∣∣∣∣ . (1)

Also, we denote adp⊕2 by adp⊕. Hereinafter we assume that k > 2.
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3. Argument symmetries of adp⊕k
Argument symmetries were proven for adp⊕ in [11]. In this Section, we generalize that

result for adp⊕k , k > 3. It is straightforward that we can rearrange α1, . . . , αk calculating
adp⊕k (α1, . . . , αk → αk+1), see the definition of adp⊕k . Let us show that we can rearrange all
α1, . . . , αk+1.

Proposition 1. For any α1, . . . , αk+1 ∈ Zn2 and j ∈ {1, . . . , k} the following holds:

adp⊕k (α1, . . . , αj, . . . , αk → αk+1) = adp⊕k (α1, . . . , αk+1, . . . , αk → αj).

In other words, adp⊕k is symmetric.
Proof. Since we can rearrange the arguments α1, . . . , αk, we can only show that

adp⊕k (α1, . . . , αk → αk+1) = adp⊕k (αk+1, α2, . . . , αk → α1).

Substituting in (1)
k⊕
i=1

xi = y1, xi = yi for all i = 2, . . . , k, we get that

1

2nk

∣∣∣∣{y1, . . . , yk ∈ Zn2 :

((
k⊕
i=1

yi
)
� α1

)
⊕

k⊕
i=2

(αi � yi) = y1 � αk+1

}∣∣∣∣ ,
which is equivalent to

1

2nk

∣∣∣∣{y1, . . . , yk ∈ Zn2 : (y1 � αk+1)⊕
k⊕
i=1

(αi � yi) =

(
k⊕
i=1

yi
)
� α1

}∣∣∣∣ .
We have the definition of adp⊕k (αk+1, α2, . . . , αk → α1).

Proposition 2. For any α1, . . . , αk+1 ∈ Zn2 the following holds:

adp⊕k (α1, . . . , αk → αk+1) = adp⊕k (α1 � 2n−1, α2 � 2n−1, α3, . . . , αk → αk+1).

Proof. It is not difficult to see that a�2n−1 = a⊕2n−1 since the vector 2n−1 ∈ Zn2 has 1
only in the most significant position. We can transform the condition from the definition
of adp⊕k :

(α1 � x1)⊕ (α2 � x2) = (α1 � x1)⊕ 2n−1 ⊕ (α2 � x2)⊕ 2n−1 =

= (α1 � x1 � 2n−1)⊕ (α2 � x2 � 2n−1) =

=
(
(α1 � 2n−1)� x1

)
⊕
(
(α2 � 2n−1)� x2

)
.

There is no need to change the terms containing α3, . . . , αk+1.

Proposition 3. For any α1, . . . , αk+1 ∈ Zn2 the following holds:

adp⊕k (α1, . . . , αk → αk+1) = adp⊕k (−α1, . . . ,−αk → −αk+1).

Proof. By definition,

adp⊕k (α1, . . . , αk → αk+1) =
1

2nk

∣∣∣∣{x1, . . . , xk ∈ Zn2 :
k⊕
i=1

(αi � xi) =

(
k⊕
i=1

xi
)
� αk+1

}∣∣∣∣ =

=
1

2nk

∣∣∣∣{x1, . . . , xk ∈ Zn2 :
k⊕
i=1

xi =
k⊕
i=1

(αi � xi)�−αk+1

}∣∣∣∣ .
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Substituting yi = xi � αi for all i = 1, . . . , k and using xi = yi � −αi, we can rewrite the
definition:

1

2nk

∣∣∣∣{y1, . . . , yk ∈ Zn2 :
k⊕
i=1

(−αi � yi) =

(
k⊕
i=1

yi
)
�−αk+1

}∣∣∣∣ .
We have got exactly adp⊕k (−α1, . . . ,−αk → −αk+1).

Proposition 4. For any α1, . . . , αk+1 ∈ Zn2 the following holds:

adp⊕k (α1, . . . , αk → αk+1) = adp⊕k (−α1,−α2, α3, . . . , αk → αk+1).

Proof. First of all, we show that −x = x� 1 for any x ∈ Zn2 :

−x = (2n − 1− x)� 1 = x� 1.

Therefore, x = −x�−1 and for any y ∈ Zn2

x� y = −(x� y)�−1 = −x�−1�−y = x�−y.

It is easy to see that for any bits xi, yi ∈ Z2 the equality xi ⊕ yi = xi ⊕ yi holds. Therefore,
for any x, y ∈ Zn2 it holds that x ⊕ y = x ⊕ y. Now, we transform the condition from the
definition of adp⊕k :

(α1 � x1)⊕ (α2 � x2) = (α1 � x1)⊕ (α2 � x2) = (−α1 � x1)⊕ (−α2 � x2).

Using yi = xi for i = 1, 2, we obtain the following:

(−α1 � y1)⊕ (−α2 � y2).

We have got the condition from the definition of adp⊕k (−α1,−α2, α3, . . . , αk → αk+1).

Finally, Propositions 1–4 give us the following theorem.
Theorem 1. Let k > 2, α1, . . . , αk+1 ∈ Zn2 and β1, . . . , βk+1 ∈ Zn2 . Then

adp⊕k (α1, . . . , αk → αk+1) = adp⊕k (β1, . . . , βk → βk+1)

if β1, . . . , βk+1 are any of the following:
1) βi = απ(i) for all i, 1 6 i 6 k+ 1, where π is a permutation on the set {1, . . . , k+ 1};
2) for arbitrary S ⊆ {1, . . . , k + 1}, where |S| is even,

βi = αi � 2n−1 for all i ∈ S and βi = αi for all i ∈ {1, . . . , k + 1} \ S;

3) for arbitrary S ⊆ {1, . . . , k + 1}, where |S| is even,

βi = −αi for all i ∈ S and βi = αi for all i ∈ {1, . . . , k + 1} \ S;

4) if k is even, for arbitrary S ⊆ {1, . . . , k + 1}

βi = −αi for all i ∈ S and βi = αi for all i ∈ {1, . . . , k + 1} \ S.
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Proof. The first point directly follows from Proposition 1. To prove the second point,
we just need to apply |S|/2 times Proposition 2 together with the first point. The same
applies to the third point: it is sufficient to use Proposition 4 instead of Proposition 2. Let
us prove the last point. Since k is even, the third point guaranties that

adp⊕k (α1, . . . , αk → αk+1) = adp⊕k (−α1, . . . ,−αk → αk+1).

By Proposition 3,

adp⊕k (−α1, . . . ,−αk → αk+1) = adp⊕k (α1, . . . , αk → −αk+1),

which implies that

adp⊕k (α1, . . . , αk → αk+1) = adp⊕k (α1, . . . , αk → −αk+1).

Applying this equality |S| times together with the first point gives us the last point.

4. Recurrence formulas for the adp⊕k
The recurrence formulas for the adp⊕ obtained in [11] can be generalized for adp⊕k . Note

that all our further results will use them.
Theorem 2. For all α1, . . . , αk+1 ∈ Zn2 , k > 2, and a vector of the least significant

bits A ∈ Zk+1
2 the following holds:

1) if wt(A) is odd, then

adp⊕k (α1A1, . . . , α
kAk → αk+1Ak+1) = 0; (2)

2) if k is odd and A = (1, . . . , 1) = 2k+1 − 1, then

adp⊕k (α1A1, . . . , α
kAk → αk+1Ak+1) =

=
1

2k
∑

B∈Zk+1
2 ,

wt(B) is even

adp⊕k (α1 �B1, . . . , α
k �Bk → αk+1 �Bk+1); (3)

3) otherwise

adp⊕k (α1A1, . . . , α
kAk → αk+1Ak+1) =

=
1

2wt(A)

∑
B∈Zk+1

2 ,
B�A

adp⊕k (α1 �B1, . . . , α
k �Bk → αk+1 �Bk+1). (4)

Note that αi �Bi is the addition modulo 2n, i.e., αi determines n, 1 6 i 6 k + 1.
Proof.
1) Let us prove that adp⊕k (α1A1, . . . , α

kAk → αk+1Ak+1) = 0 if wt(A) is odd. First of
all, we define odd(x) = xn+1 for x ∈ Zn+1

2 , i.e., odd(x) = 1 if and only if x is odd as integer.
It is clear that odd(x� y) = odd(x⊕ y) = odd(x)⊕ odd(y). By definition,

adp⊕k (α1A1, . . . , α
kAk → αk+1Ak+1) =

=
1

2(n+1)k

∣∣∣∣{x1, . . . , xk ∈ Zn+1
2 :

k⊕
i=1

(xi � αiAi) =
k⊕
i=1

xi � αk+1Ak+1

}∣∣∣∣ .
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Since wt(A) is odd,

odd(

(
k⊕
i=1

(xi � αiAi)

)
⊕
(

k⊕
i=1

xi � αk+1Ak+1

)
) =

k⊕
i=1

odd(xi)⊕
k⊕
i=1

odd(xi)⊕
k+1⊕
i=1

Ai = 1.

It implies that for any x1, . . . , xk ∈ Zn+1
2

k⊕
i=1

(xi � αiAi) 6=
k⊕
i=1

xi � αk+1Ak+1.

In other words, adp⊕k (α1A1, . . . , α
kAk → αk+1Ak+1) = 0 since the condition from its

definition cannot be satisfied.
2) Let us prove the equality (3). We rewrite the definition of adp⊕k as

adp⊕k (α11, . . . , αk1→ αk+11) =

=
1

2(n+1)k

∣∣∣∣{x1, . . . , xk ∈ Zn2 , a1, . . . , ak ∈ Z2 :
k⊕
i=1

(αi1� xiai) =

(
k⊕
i=1

xiai

)
� αk+11

}∣∣∣∣ .
We fix a tuple a1, . . . , ak. Using Proposition 1, we rearrange the adp⊕k arguments so that
a1 = a2 = . . . = aj = 0 and aj+1 = . . . = ak = 1 for some j 6 k. Then we rewrite the
condition from the definition:

j⊕
i=1

(αi1� xi0)⊕
k⊕

i=j+1

(αi1� xi1) =

(
j⊕
i=1

xi0⊕
k⊕

i=j+1

xi1

)
� αk+11 =

=

(
j⊕
i=1

(αi � xi)1

)
⊕

(
k⊕

i=j+1

(αi � xi � 1)0

)
=

(
j⊕
i=1

xi0 ⊕
k⊕

i=j+1

xi1

)
� αk+11.

In the case of even j, we can rewrite the condition from the definition as(
j⊕
i=1

(αi � xi)

)
0⊕

(
k⊕

i=j+1

(αi � xi � 1)

)
0 =

(
j⊕
i=1

xi ⊕
k⊕

i=j+1

xi

)
1� αk+11,

(
j⊕
i=1

(αi � xi)

)
0⊕

(
k⊕

i=j+1

(αi � xi � 1)

)
0 =

((
j⊕
i=1

xi ⊕
k⊕

i=j+1

xi

)
� αk+1 � 1

)
0.

Now look at the corresponding condition from the definition of adp⊕k (α1, . . . , αj, αj+1 � 1,
. . . , αk � 1→ αk+1 � 1):

j⊕
i=1

(αi � xi)⊕
k⊕

i=j+1

(αi � xi � 1) =

(
j⊕
i=1

xi ⊕
k⊕

i=j+1

xi

)
� αk+1 � 1.

It is easy to see that if a tuple x1, . . . , xk satisfies one of these conditions, then it must also
satisfy the other.

In the case of odd j, we can rewrite the condition from the definition as(
j⊕
i=1

(αi � xi)

)
1⊕

(
k⊕

i=j+1

(αi � xi � 1)

)
0 =

(
j⊕
i=1

xi ⊕
k⊕

i=j+1

xi

)
0� αk+11,

(
j⊕
i=1

(αi � xi)

)
1⊕

(
k⊕

i=j+1

(αi � xi � 1)

)
0 =

((
j⊕
i=1

xi ⊕
k⊕

i=j+1

xi

)
� αk+1

)
1.
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Now look at the corresponding condition from the definition of adp⊕k (α1, . . . , αj, αj+1 � 1,
. . . , αk � 1→ αk+1):

j⊕
i=1

(αi � xi)⊕
k⊕

i=j+1

(αi � xi � 1) =

(
j⊕
i=1

xi ⊕
k⊕

i=j+1

xi

)
� αk+1.

It is easy to see that if a tuple x1, . . . , xk satisfies one of these conditions, then it must also
satisfy the other.

The total number of tuples satisfying the conditions from the definitions for vectors of
dimension n + 1 is 2(n+1)kadp⊕k (α11, . . . , αk1 → αk+11), and for vectors of dimension n it
is equal to 2nkadp⊕k (α1, . . . , αk → αk+1). For every fixed tuple a1, . . . , ak, there is a unique
adp⊕k such that xiai and xi, 1 6 i 6 k, satisfy the corresponding conditions. Choosing all
possible combinations of a1, . . . , ak, we obtain that

2(n+1)kadp⊕k (α1A1, . . . , α
kAk → αk+1Ak+1) =

=
∑

B∈Zk+1
2 ,

wt(B) is even

2nkadp⊕k (α1 �B1, . . . , α
k �Bk → αk+1 �Bk+1).

We recall that after the rearranging a1, . . . , ak we have the following: B1, . . . , Bj must be
zero, Bj+1, . . . , Bk must be one, and Bk+1 = 1 if and only if j is even. That is why we
consider only B of even weight. The equality (3) is proven.

3) Now, we prove the equality (4). Since we exclude the previous cases, wt(A) is even
and there exists i, 1 6 i 6 k + 1, such that Ai = 0. Using Proposition 1, we rearrange the
arguments of adp⊕k so that Aj+1 = Aj+2 = . . . = Ak+1 = 0, where j 6 k, and A1 = . . . =
= Aj = 1. We rewrite the definition of adp⊕k (α11, . . . , αj1, αj+10, . . . , αk0→ αk+10):

1

2n(k+1)

∣∣∣{x1, . . . , xk ∈ Zn2 , a1, . . . , ak ∈ Z1
2 :

j⊕
i=1

(αi1� xiai)⊕
k⊕

i=j+1

(αi0� xiai) =
( j⊕
i=1

xiai ⊕
k⊕

i=j+1

xiai

)
� αk+10

}∣∣∣.
We also fix the first j elements from the tuple a1, . . . , ak. Using Proposition 1, we

rearrange the arguments of adp⊕k so that a1 = . . . = aq = 1 and aq+1 = . . . = aj = 0 for
some q 6 j. Then we can rewrite the condition from the definition as

q⊕
i=1

(αi1� xi1)⊕
j⊕

i=q+1

(αi1� xi0)⊕
k⊕

i=j+1

(αi0� xiai) =

=

(
q⊕
i=1

xi1 ⊕
j⊕

i=q+1

xi0 ⊕
k⊕

i=j+1

xiai

)
� αk+10,

q⊕
i=1

(αi � xi � 1)0⊕
j⊕

i=q+1

(αi � xi)1⊕
k⊕

i=j+1

(αi � xi)ai =

=

(
q⊕
i=1

xi ⊕
j⊕

i=q+1

xi ⊕
k⊕

i=j+1

xi

)(
q⊕
i=1

1⊕
k⊕

i=j+1

ai

)
� αk+10.
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Next, we rewrite it in the following way:(
q⊕
i=1

(αi � xi � 1)⊕
j⊕

i=q+1

(αi � xi)⊕
k⊕

i=j+1

(αi � xi)

)(
j⊕

i=q+1

1⊕
k⊕

i=j+1

ai

)
=

=

(
k⊕
i=1

xi � αk+1

)(
q⊕
i=1

1⊕
k⊕

i=j+1

ai

)
.

Let us extract the condition for the least significant bit:

j⊕
i=q+1

1⊕
k⊕

i=j+1

ai =
q⊕
i=1

1⊕
k⊕

i=j+1

ai,which is equivalent to
j⊕
i=1

1 = 0.

It is always satisfied since j = wt(A) is even. Now we consider the transformed condition
without the least significant bit:

q⊕
i=1

(αi � xi � 1)⊕
j⊕

i=q+1

(αi � xi)⊕
k⊕

i=j+1

(αi � xi) =
k⊕
i=1

xi � αk+1.

It obviously matches the condition from the definition of

adp⊕k (α1 � 1, . . . , αq � 1, αq+1, . . . , αk → αk+1).

If the tuple x1, . . . , xk satisfies the condition from the definition, then the tuple consisting
of vectors xi1 for all i, i 6 q, vectors xi0 for all i, q < i 6 j and vectors xiai for all
i, j < i 6 k, also satisfies the condition from the definition of adp⊕k (α1A1, . . . , α

kAk →
→ αk+1Ak+1) for all ai, j < i 6 k. There are 2k−j such solutions. We can also see that
αi � 1 can occur only when Ai = 1. The total number of solutions of the conditions from
the definitions for vectors of dimension n+ 1 is 2(n+1)k adp⊕k (α1A1, . . . , α

kAk → αk+1Ak+1),
and for vectors of dimension n it is equal to 2nk adp⊕k (α1, . . . , αk → αk+1). Choosing all
possible combinations of ai, we obtain

2(n+1)kadp⊕k (α1A1, . . . , α
kAk → αk+1Ak+1) =

=
∑

B∈Zk+1
2 ,

B�A

2nk2k−jadp⊕k (α1 �B1, . . . , α
k �Bk → αk+1 �Bk+1).

Since j = wt(A), the equality (4) is proven.

Remark 1. We can extend the recurrence formulas for “empty” α1, . . . , αk+1, i.e., for
αiAi ∈ Z1

2. It is sufficient to assume that adp⊕k (∅, . . . ,∅ → ∅) = 1. Indeed, we obtain by
the recurrence formulas exactly that adp⊕k (A1, . . . , Ak → Ak+1) = 1 ⇐⇒ wt(A1, . . . , Ak+1)
is even and adp⊕k (A1, . . . , Ak → Ak+1) = 0 ⇐⇒ wt(A1, . . . , Ak+1) is odd.

Remark 2. Using symmetries from Section 3 and the equality

α� 1 = (2n − 1)�−α� 1 = 2n �−α�−1� 1 = 2n �−α = −α,

we can replace α�1 with α for a pair of arguments in the recurrence formulas (and for any
argument if k is even). For instance,

adp⊕3 (α1, α1, α1→ α1) =

=
1

8
adp⊕3 (α, α, α→ α) +

3

4
adp⊕3 (α, α, α→ α) +

1

8
adp⊕3 (α, α, α→ α).
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5. Zeros and ones of the adp⊕k
For the purposes of cryptanalysis, it is important to distinguish the set of arguments on

which adp⊕k is equal to zero.
Theorem 3. For any k > 2 and any α1, . . . , αk+1 ∈ Zn2 , the equality adp⊕k (α1, . . . ,

αk → αk+1) = 0 holds if and only if there exists i, 1 6 i 6 n, such that (α1
i , . . . , α

k+1
i ) 6=

6= (0, . . . , 0), (α1
j , . . . , α

k+1
j ) = (0, . . . , 0) for all j, i < j 6 n, and one of the following

conditions is true:
1) the vector (α1

i , . . . , α
k+1
i ) has odd weight;

2) (α1
i , . . . , α

k+1
i ) = (1, . . . , 1), k is odd, i > 1, and (α1

i−1, . . . , α
k+1
i−1 ) is of odd weight.

Proof. Let us use induction by n. For n = 1, adp⊕k (α1, . . . , αk → αk+1), where
α1, . . . , αk+1 ∈ Z2, is equal to 0 if and only if (α1, . . . , αk+1) is of odd weight. It is the
base of the induction. Suppose that the statement holds for n. Let us prove that it is true
for n+1. We represent elements from Zn+1

2 as α1A1, . . . , α
k+1Ak+1, where α1, . . . , αk+1 ∈ Zn2

and A = (A1, . . . , Ak+1) ∈ Zk+1
2 . First of all, we can assume that A 6= (0, . . . , 0). Indeed,

adp⊕k (α10, . . . , αk0 → αk+10) = adp⊕k (α1, . . . , αk → αk+1) by Theorem 2. Moreover, the
statement of the theorem takes it into account. Next, we need to consider three cases.

1) wt(A) is odd. According to Theorem 2, adp⊕k (α1A1, . . . , α
kAk → αk+1Ak+1) = 0. It

proves that the first condition is sufficient.
2) A = (1, . . . , 1) and k is odd. In this case

adp⊕k (α11, . . . , αk1→ αk+11) =

=
1

2k
∑

B∈Zk+1
2 ,

wt(B) is even

adp⊕k (α1 �B1, . . . , α
k �Bk → αk+1 �Bk+1).

The least significant bits of α1�B1, . . . , α
k+1�Bk+1 are α1

n⊕B1, . . . , α
k+1
n ⊕Bk+1. Moreover,

wt(B) is even. Thus, if wt(α1
n, . . . , α

k+1
n ) is odd, then wt(α1

n ⊕ B1, . . . , α
k+1
n ⊕ Bk+1) is odd

as well. It means that any of adp⊕k (α1 � B1, . . . , α
k � Bk → αk+1 � Bk+1) is equal to zero

by induction.
Let wt(α1

n, . . . , α
k+1
n ) be even. Choosing (0, . . . , 0) or (1, 1, 0, . . . , 0) as B and taking

into account that k > 2, we obtain that at least one of (α1
n, . . . , α

k+1
n ) and (α1

n ⊕ 1, α2
n ⊕

1, α3
n, . . . , α

k+1
n ) does not belong to {(0, . . . , 0), (1, . . . , 1)}. Moreover, both of them are of

even weight. It means that at least one of adp⊕k (α1, . . . , αk → αk+1) and adp⊕k (α1 � 1, α2 �
1, α3, . . . , αk → αk+1) is not zero by induction. Therefore, adp⊕k (α11, . . . , αk1 → αk+11) is
not zero as well.

Thus, in this case adp⊕k (α11, . . . , αk1→ αk+11) is zero if and only if wt(α1
n, . . . , α

k+1
n ) is

odd. It proves the correctness of the second condition.
3) wt(A) is even and A /∈ {(0, . . . , 0), (1, . . . , 1)}. In this case

adp⊕k (α1A1, . . . , α
kAk → αk+1Ak+1) =

=
1

2wt(A)

∑
B∈Zk+1

2 ,
B�A

adp⊕k (α1 �B1, . . . , α
k �Bk → αk+1 �Bk+1).

Without loss of generality we assume that A1 = A2 = 1, otherwise we can rearrange
arguments by Theorem 1. Similarly to the previous point, at least one of (α1

n, α2
n, α3

n, . . . ,
αk+1
n ), (α1

n⊕1, α2
n, α

3
n, . . . , α

k+1
n ), (α1

n, α
2
n⊕1, α3

n, . . . , α
k+1
n ) and (α1

n⊕1, α2
n⊕1, α3

n, . . . , α
k+1
n )

is of even weight and does not belong to {(0, . . . , 0), (1, . . . , 1)}. Thus, the corresponding
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adp⊕k is not zero by induction. Therefore, adp⊕k (α1A1, . . . , α
kAk → αk+1Ak+1) is not zero as

well.
It proves that the first condition is necessary, except for the cases A = (0, . . . , 0) and

A = (1, . . . , 1) for odd k.

Note that the zeros of the function in the case of even k look similar to the zeros
for adp⊕. The second point appears only for odd k and generates an additional set of zeros.

The arguments on which adp⊕k is equal to 1 are also interesting.
Theorem 4. For any k > 2 and any α1, . . . , αk+1 ∈ Zn2 , the equality adp⊕k (α1, . . . ,

αk → αk+1) = 1 holds if and only if the vector (α1
1, . . . , α

k+1
1 ) has even weight, and one of

the following conditions is true:
1) (α1

i , . . . , α
k+1
i ) = (0, . . . 0) for all i, 2 6 i 6 n;

2) (α1
2, . . . , α

k+1
2 ) = (1, . . . , 1), k is odd, n > 2, and (α1

i , . . . , α
k+1
i ) = (0, . . . 0) for all i,

3 6 i 6 n.
Proof. Let us use induction by n. For n = 1, adp⊕k (α1, . . . , αk → αk+1), where

α1, . . . , αk+1 ∈ Z2, is equal to 1 if and only if (α1, . . . , αk+1) is of even weight. It is the base
of the induction. Suppose that the statement holds for n. Let us prove that it is true for
n + 1. We represent elements from Zn+1

2 as α1A1, . . . , α
k+1Ak+1, where α1, . . . , αk+1 ∈ Zn2

and A = (A1, . . . , Ak+1) ∈ Zk+1
2 . Similarly to the proof of Theorem 3, we assume that

A 6= (0, . . . , 0) (otherwise the statement is true by induction) and consider three cases.
1) wt(A) is odd, which means that adp⊕k (α1A1, . . . , α

kAk → αk+1Ak+1) = 0 6= 1.
2) A = (1, . . . , 1) and k is odd. In this case

adp⊕k (α11, . . . , αk1→ αk+11) =

=
1

2k
∑

B∈Zk+1
2 ,

wt(B) is even

adp⊕k (α1 �B1, . . . , α
k �Bk → αk+1 �Bk+1),

which implies that adp⊕k (α11, . . . , αk1→ αk+11) = 1 if and only if adp⊕k (α1 � B1, . . . , α
k �

�Bk → αk+1 �Bk+1) = 1 for all B ∈ Zk+1
2 of even weight.

The least significant bits of α1 � B1, . . . , α
k+1 � Bk+1 are α1

n ⊕ B1, . . . , α
k+1
n ⊕ Bk+1.

Choosing (0, . . . , 0) or (1, 1, 0, . . . , 0) as B and taking into account that k > 2, we obtain
that at least one of (α1

n, . . . , α
k+1
n ) and (α1

n ⊕ 1, α2
n ⊕ 1, α3

n, . . . , α
k+1
n ) does not belong

to {(0, . . . , 0), (1, . . . , 1)}. In other words, at least one of adp⊕k (α1, . . . , αk → αk+1) and
adp⊕k (α1 � 1, α2 � 1, α3, . . . , αk → αk+1) is not equal to 1 if n > 1 by induction. If n = 1,
then all adp⊕k (α1 � B1, . . . , α

k � Bk → αk+1 � Bk+1) = adp⊕k (α1
1 ⊕ B1, . . . , α

k
1 ⊕ Bk →

→ αk+1
1 ⊕Bk+1) = 1 if and only if wt(α1

1, . . . , α
k+1
1 ) is even.

Thus, in this case adp⊕k (α11, . . . , αk1 → αk+11) = 1 if and only if n = 1 and
wt(α1

1, . . . , α
k+1
1 ) is even. It proves the correctness of the second condition.

3) wt(A) is even and A /∈ {(0, . . . , 0), (1, . . . , 1)}. In this case

adp⊕k (α1A1, . . . , α
kAk → αk+1Ak+1) =

=
1

2wt(A)

∑
B∈Zk+1

2 ,
B�A

adp⊕k (α1 �B1, . . . , α
k �Bk → αk+1 �Bk+1).

This means that adp⊕k (α1A1, . . . , α
kAk → αk+1Ak+1) = 1 if and only if adp⊕k (α1 �

�B1, . . . , α
k �Bk → αk+1 �Bk+1) = 1 for all B ∈ Zk+1

2 such that B � A.
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Without loss of generality we assume that A1 = 1, otherwise we can rearrange arguments
by Theorem 1. Next, one of (α1

n, α
2
n, . . . , α

k+1
n ) and (α1

n ⊕ 1, α2
n, . . . , α

k+1
n ) is of odd weight.

Thus, one of adp⊕k (α1, . . . , αk → αk+1) and adp⊕k (α1 � 1, α2, . . . , αk → αk+1) is zero by
Theorem 2 and adp⊕k (α1A1, . . . , α

kAk → αk+1Ak+1) 6= 1.
Together with the first point, it proves the correctness of the first condition.

Remark 3. The conditions from Theorems 3 and 4 for α1, . . . , αk+1 ∈ Zn2 can be
simplified. Let us define the following pattern symbols for elements of Zk+1

2 :
— * means any x ∈ Zk+1

2 ,
— e and d mean any x ∈ Zk+1

2 of even and odd weight respectively,
— 0 and 1 mean (0, . . . , 0) and (1, . . . , 1) from Zk+1

2 respectively.
Then adp⊕k (α1, . . . , αk → αk+1) = 0 if and only if the vector(

(α1
1, . . . , α

k+1
1 ), . . . , (α1

n, . . . , α
k+1
n )

)
(5)

matches
(*, . . . , *, d,0, . . . ,0) for any k or
(*, . . . , *, d,1,0, . . . ,0) for odd k.

Similarly, adp⊕k (α1, . . . , αk → αk+1) = 1 if and only if the vector (5) matches

(e,0, . . . ,0) for any k or
(e,1,0, . . . ,0) for odd k.

6. Maximums of the adp⊕k
Also, for the purposes of cryptanalysis, the maximum values of adp⊕k are of interest,

where some argument (or arguments) is fixed. In the case of even k, it is not difficult to
show that the maximum of the characteristic, where one its argument is fixed, is similar to
the maximum for k = 2.

Theorem 5. Let k > 2 be even and γ ∈ Zn2 . Then

max
x1,...,xk∈Zn2

adp⊕k (x1, . . . , xk → γ) = adp⊕k (0, . . . , 0, γ → γ).

Proof. Let us use induction by n. If n = 1, adp⊕k (0, . . . , 0, γ → γ) = 1 for any γ ∈ Z2,
see Theorem 4. It is the base of the induction.

Next, we assume that adp⊕k (β1, . . . , βk → γ) 6 adp⊕k (0, . . . , 0, γ → γ) for any
β1, . . . , βk, γ ∈ Zn2 . Let α1, . . . , αk, γ ∈ Zn2 , A ∈ Zk+1

2 . We need to prove that
adp⊕k (α1A1, . . . , α

kAk → γAk+1) 6 adp⊕k (0, . . . , 0, γAk+1 → γAk+1). We divide the proof
into the following cases.

C a s e 1 . A = (0, . . . , 0). According to Theorem 2, adp⊕k (α1A1, . . . , α
kAk → γAk+1) =

= adp⊕k (α1, . . . , αk → γ) and adp⊕k (0, . . . , 0, γAk+1 → γAk+1) = adp⊕k (0, . . . , 0, γ → γ).
Thus, the induction hypothesis provides that adp⊕k (α1A1, . . . , α

kAk → γAk+1) 6
6 adp⊕k (0, . . . , 0, γAk+1 → γAk+1).

C a s e 2 . wt(A) is odd. According to Theorem 2, adp⊕k (α1A1, . . . , α
kAk → γAk+1) = 0.

It proves the induction step.
C a s e 3 . wt(A) is even and Ak+1 = 0. Without loss of generality, we can assume

that A1 = . . . = Aw = 1 and Aw+1 = . . . = Ak = 0, where w = wt(A). Indeed,
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Proposition 1 allows us to rearrange the arguments of adp⊕k . Then, Theorem 2 and the
induction hypothesis give us that

adp⊕k (α1A1, . . . , α
kAk → γ0) = 2−w

∑
B∈Zw2

adp⊕k (α1�B1, . . . , α
w�Bw, α

w+1, . . . , αk → γ)6

6 2−w · 2w · adp⊕k (0, . . . , 0, γ → γ) = adp⊕k (0, . . . , 0, γ0→ γ0).

C a s e 4 . wt(A) is even and Ak+1 = 1. Similarly to the previous case, we assume
without loss of generality that A1 = . . . = Aw = 1 and Aw+1 = . . . = Ak = 0, where
w = wt(A)− 1. According to Theorem 2,

adp⊕k (α1A1, . . . , α
kAk → γAk+1) =

= 2−w−1
∑
c∈Z2

∑
B∈Zw2

adp⊕k (α1 �B1, . . . , α
w �Bw, α

w+1, . . . , αk → γ � c) =

= 2−w−1
∑

B∈Zw2
adp⊕k (α1 �B1, . . . , α

w �Bw, α
w+1, . . . , αk → γ)+

+2−w−1
∑

B∈Zw2
adp⊕k (α1 �B1, . . . , α

w �Bw, α
w+1, . . . , αk → γ � 1).

Also, if the vector of the least significant coordinates has odd weight, i.e., wt(B) + c +
+ wt(α1

n, . . . , α
k
n, γn) is odd, then adp⊕k (α1 � B1, . . . , α

w � Bw, α
w+1, . . . , αk → γ � c) = 0.

It means that at least half of adp⊕k (α1 � B1, . . . , α
w � Bw, α

w+1, . . . , αk → γ) are zero and
at least half of adp⊕k (α1 � B1, . . . , α

w � Bw, α
w+1, . . . , αk → γ � 1) are zero. At the same

time,

adp⊕k (0, . . . , 0, γ1→ γ1) =
1

4
adp⊕k (0, . . . , 0, γ → γ) +

1

4
adp⊕k (0, . . . , 0, γ � 1→ γ � 1),

since adp⊕k (0, . . . , 0, γ → γ � 1) = adp⊕k (0, . . . , 0, γ � 1→ γ) = 0. Finally, by the induction
hypothesis and due to the least significant vectors of odd weight, we obtain that

2−w−1
∑

B∈Zw2
adp⊕k (α1 �B1, . . . , α

w �Bw, α
w+1, . . . , αk → γ) 6

6 2−w−1 · 2w−1 · adp⊕k (0, . . . , 0, γ → γ) =
1

4
adp⊕k (0, . . . , 0, γ → γ).

Similarly,

2−w−1
∑

B∈Zw2
adp⊕k (α1 �B1, . . . , α

w �Bw, α
w+1, . . . , αk → γ � 1) 6

6 2−w−1 · 2w−1 · adp⊕k (0, . . . , 0, γ � 1→ γ � 1) =
1

4
adp⊕k (0, . . . , 0, γ � 1→ γ � 1).

Thus, adp⊕k (α1A1, . . . , α
kAk → γ1) 6 adp⊕k (0, . . . , 0, γ1→ γ1).

For odd k the maximum looks different.
Corollary 1. For any odd k > 3 and γ = 2n−1 + 2n−2 ∈ Zn2 the following holds:

adp⊕k (γ, γ, 0, . . . , 0→ 0) < 1 = adp⊕k (γ, . . . , γ → γ).

It directly follows from Theorem 4. However, for some cases we can generalize results
of Theorem 5.
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Corollary 2. Let k > 3 be odd. Then for any γ ∈ Zn2 the following holds:

max
x1,...,xk−1∈Zn2

adp⊕k (0, x1, . . . , xk−1 → γ) = adp⊕k (0, . . . , 0, γ → γ).

Indeed, the proof of Theorem 5 is correct for this case since the first argument is zero.
Thus, we will never use the case (1, . . . , 1) in the recurrence formulas which is the only
difference between even and odd k. At the same time, we believe that for an arbitrary
odd k the following holds.

Hypothesis 1. Let k > 3 be odd and γ ∈ Zn2 . Then

max
x1,...,xk∈Zn2

adp⊕k (x1, . . . , xk → γ) = adp⊕k (γ, . . . , γ → γ).

Note that a problem connected with the values adp⊕(0, γ → γ) can be found in [16].
NSUCRYPTO-2014 [17] also included a problem related to ARX constructions.

7. A matrix approach for calculating adp⊕k
The section is devoted to a generalization of the approach proposed in [14] for calculating

adp⊕, i.e., adp⊕2 . There is also the S-function technique [15], which provides a matrix
calculation algorithm that help to compute values of any S-function (including adp⊕k ).
However, it does not allow us to obtain analytic expressions for the matrix elements, as
well as relationship between matrices.

In this section, we will consider a vector space Q̂2k+1 over rationals. We assume that the
coordinates of the vectors from Q̂2k+1 start with zero and for coordinate x12k + x22

k−1 +
+. . .+xk+1 we use both integer and binary vectors (x1, . . . , xk+1) representations, x ∈ Zk+1

2 .
Let A ∈ Zk+1

2 and k > 2. We define matrices Mk
A of size 2k+1 × 2k+1 in the following way:

(Mk
A)y,x =


2−k, if x = A, k is odd and wt(y) is even,
2−wt(x⊕A), if wt(x⊕ A) is even and y ⊕ A � x⊕ A,
0, otherwise,

(6)

where x, y ∈ Zk+1
2 . Similarly to the elements of Q̂2k+1 , we use both integer (starting with 0)

and binary vector notations for the matrix indexes.
The next theorem follows from the Theorem 2 and gives us a way to calculate adp⊕k .
Theorem 6. Let k > 2 and α1, . . . , αk+1 ∈ Zn2 . Then

adp⊕k (α1, . . . , αk → αk+1) = (1, . . . , 1)Mk
(α1

1,...,α
k+1
1 )
· . . . ·Mk

(α1
n,...,α

k+1
n )

(1, 0, . . . , 0)T.

Proof. We use the recurrence formulas obtained in Theorem 2. First of all, we define
[β]m = (β1, . . . , βm) for any β ∈ Zn2 and 1 6 m 6 n. Also, [β]m� a means [β]m + a mod 2m,
where a ∈ Z2. Let x ∈ Zk+1

2 . We apply Theorem 2 to adp⊕k ([α1]m+1�x1, . . . , [αk]m+1�xk →
→ [αk+1]m+1 � xk+1). Let A = (α1

m+1, . . . , α
k+1
m+1). Then the vector of the least significant

bits of the arguments is x⊕A. After applying the recurrence formulas, we obtain a sum of

adp⊕k ([[α1]m+1 � x1]m � y1, . . . , [[α
k]m+1 � xk]m � yk → [[αk+1]m+1 � xk+1]m � yk+1)

for some y ∈ Zk+1
2 , y � x⊕ A. Let us show that

[[αi]m+1 � xi]m � yi = [αi]m � (yi ⊕ xi · Ai), (7)
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where i = 1, . . . , k + 1 and y � x ⊕ A. Indeed, if (Ai, xi) = (αim+1, xi) 6= (1, 1), i.e.,
xi ·Ai = 0, then the addition of xi to [αi]m+1 may change only its least significant bit. Thus,
[[αi]m+1 � xi]m = [αi]m. If (Ai, xi) = (1, 1), then yi = 0 since xi ⊕ Ai = 0 and y � x ⊕ A.
Thus, [[αi]m+1 � xi]m � yi = [[αi]m+1 � 1]m = [αi]m � 1 = [αi]m � (yi ⊕ xi · Ai).

Next, we denote by x · A the vector (x1 · A1, . . . , xk+1 · Ak+1). Let us show that

{y ⊕ (x · A) : y ∈ Zk+1
2 and y � x⊕ A} = {z ∈ Zk+1

2 : z ⊕ A � x⊕ A}. (8)

Indeed, {y ⊕ (x ·A) : y ∈ Zk+1
2 and y � x⊕A} = {z ∈ Zk+1

2 : z ⊕ (x ·A) � x⊕A}. At the
same time, z ⊕ (x ·A) � x⊕A ⇐⇒ z ⊕A � x⊕A since for any i = 1, . . . , k + 1 we have
the following: xi 6= Ai (i.e., xi⊕Ai = 1) implies that both zi⊕ (xi ·Ai) 6 1 and zi⊕Ai 6 1
always hold for any zi ∈ Z2; also, xi = Ai implies that zi ⊕ (xi · Ai) = zi ⊕ Ai.

Moreover, the following holds for x = A:

{y ⊕ (x · A) : y ∈ Zk+1
2 , wt(y) is even} = {z ∈ Zk+1

2 : wt(z) is even}. (9)

It is straightforward since in this case x⊕ A = (1, . . . , 1) and x · A = (0, . . . , 0).
Theorem 2 allows us to express r = adp⊕k ([α1]m+1�x1, . . . , [αk]m+1�xk → [αk+1]m+1�

� xk+1) in the following way:
1) If wt(x⊕ A) is odd, then r = 0.
2) If x⊕A = (1, . . . , 1) and k is odd, then according to (7) and (9) the following holds:

r = 2−k
∑

z: wt(z) is even
adp⊕k ([α1]m � z1, . . . , [αk]m � zk → [αk+1]m � zk+1).

3) Otherwise, due to (7) and (8) we have that

r = 2−wt(x⊕A) ∑
z: z⊕A�x⊕A

adp⊕k ([α1]m � z1, . . . , [αk]m � zk → [αk+1]m � zk+1).

At the same time, we know how the matrix Mk
A transforms the standard basis êT

x

(it has 1 in the coordinate x and 0 in all other coordinates) for all x ∈ Zk+1
2 : (Mk

A)y,x is the
y-th coordinate of Mk

Aê
T
x , where y ∈ Zk+1

2 , which is equal to
2−k, if x = A, k is odd and wt(y) is even,
2−wt(x⊕A), if wt(x⊕ A) is even and y ⊕ A � x⊕ A,
0 otherwise.

It is not difficult to see that the mapping Mk
A completely corresponds to the points 1, 2,

and 3. It other words, we can consider it as a “state” transformation: it maps all multipliers of
adp⊕k ([α1]m+1�x1, . . . , [αk]m+1�xk → [αk+1]m+1�xk+1) (for all x ∈ Zk+1

2 ) to all multipliers
of adp⊕k ([α1]m� y1, . . . , [αk]m� yk → [αk+1]m� yk+1) (for all y ∈ Zk+1

2 ). Since we start with
adp⊕k (α1, . . . , αk → αk+1), it corresponds to the “state” êT

0 . Thus, the final multipliers are

s = Mk
(α1

1,...,α
k+1
1 )

. . .Mk
(α1
n,...,α

k+1
n )

êT
0 ,

see Remark 1 for the case n = 1. Finally, adp⊕k (α1, . . . , αk → αk+1) = (1, . . . , 1) · s.

Corollary 3. If k is even, then (Mk
A)y,x = (Mk

0 )y⊕A,x⊕A, A, x, y ∈ Zk+1
2 . It means that

all Mk
A can be obtained from each other using some permutations of rows and columns.

This does not hold for odd k. However, almost the same thing is true: we swap x and
x ⊕ A columns, after that we swap y and y ⊕ A rows of Mk

0 except for the rows A and
(1, . . . , 1).



74 I. A. Sutormin, N. A. Kolomeec

The proof follows directly from the definition of Mk
A. Thus, the difference in recurrence

formulas gives us some difference in the calculation of the adp⊕k for odd and even k.
Some matrices for k = 3 are presented bellow:

8 ·M3
(0,0,0,0) 8 ·M3

(0,0,0,1) 8 ·M3
(1,1,1,1)

8 0 0 2 0 2 2 0 0 2 2 0 2 0 0 1
0 0 0 2 0 2 0 0 0 2 0 0 0 0 0 0
0 0 0 2 0 0 2 0 0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 2 2 0 0 0 0 0 2 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 2 0 2 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


,



0 0 2 0 2 0 0 0 2 0 0 0 0 0 1 0
0 8 2 0 2 0 0 2 2 0 0 2 0 2 0 0
0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 2 0 0 0 2 0 0 1 0
0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 2 0 0 0 0 0 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 0 0 2 0 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0


,



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
0 0 0 2 0 2 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 0 0 2 2 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 2 0 0 0 2 0 0 2 0 0 0
0 0 0 0 0 0 2 0 0 0 2 0 2 0 0 0
1 0 0 2 0 2 2 0 0 2 2 0 2 0 0 8


.

For instance, if α1 = (0, 0, 1), α2 = (0, 0, 1), α3 = (0, 0, 1), and α4 = (0, 1, 1), we obtain that

adp⊕3 (α1, α2, α3 → α4) = (1, . . . , 1︸ ︷︷ ︸
16

)M3
(0,0,0,0)M

3
(0,0,0,1)M

3
(1,1,1,1)(1, 0, . . . , 0︸ ︷︷ ︸

16

)T.

8. Conclusion
We have generalized some properties of adp⊕ to adp⊕k . The results obtained show us

that there is the difference between odd and even k, it looks like the case of odd k is more
complicated. A generalization of other properties such as maximum for odd k is a topic for
future research.

The authors would like to thank Nicky Mouha for interesting discussions and valuable
advice.
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