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The problem of combinational circuits synthesis in the basis of two-input gates is
considered. Those gates are AND, OR, NAND and NOR. A method for solving this
problem by means of Boolean functions bi-decomposition is suggested. The method
reduces the problem to the search for a weighted two-block cover of the orthogonality
graph of ternary matrice rows representing the given Boolean function by complete
bipartite subgraphs (bi-cliques). Each bi-clique in the obtained cover is assigned in a
certain way with a set of variables that are the arguments of the function. This set is
the weight of the bi-clique. Each of those bi-cliques defines a Boolean function whose
arguments are the variables assigned to it. The functions obtained in such a way
constitute the required decomposition. The process of combinational circuit synthesis
consists in successively applying bi-decomposition to the functions obtained. The
method for two-block covering the orthogonality graph of ternary matrice rows is
described.
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CHUHTE3 KOMBMHAIIMOHHBIX CXEM IIYTEM

AJITEBPAMYECKOM JEKOMIIO3UIINN BYJIEBBIX ®YHKIINN

IO. B. IlorTocun

Ob6sedunernviti unemumym npobaem ungpopmamuruy HAH Beaapycu,

Beaopyceruti eocydapemeenmnuidi yHusepcumem uHGopmamury u paduoasekmponuku, . Munck,

Beaapyco

PaccmarpuBaercs 3ajada cuHTe3a KOMOMHAIMOHHBIX CXeM B 0a3uce JIBYXBXO/IOBBIX
snemenToB U, IJIN, N-HE u NJIN-HE. Ilpeaioxen MeTos e€ penieHus ¢ MTOMOIIBIO
IpUMeHeHus aaredpandecKkoil qekoMmo3uruu 0yieBbix GpyHkimit. Meto 1 cBoauT perire-
HUE 33J[a9¥ K [IOUCKY B3BEIIEHHOI'O JIBYOJIOUHOTO HMOKPBITHUS IMOJTHBIMU JIBY/I0JIbHBIME
noarpadamu (6ukarkamu) rpada OPTOrOHATBHOCTH CTPOK TPOUIHON MATPHIIB, TIPE/I-
CTaBJISIONIECH 3a/1aHHYT0 OyJieBy dyHKIm0. Kaxk1oit OMK/IMKe B MOy 9€HHOM TOKPBITHH
OIIpEJIE/IEHHBIM 00pa30M IPUIUCHLIBACTCSI B KAUECTBE BECA MHOXKECTBO IIE€PEMEHHBIX,
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SIBJISTFOIIAXCST apryMeHTaMu 3aJjanHoi dpyHknmu. KaxKaast u3 3Tux AByX OUKJIMK OIpe-
JessgeT OyJsieBy (PYHKIUIO C apTyMEHTaMU, TPUITUCAHHBIMUA COOTBETCTBYIOIIEH OUK/IN-
ke. [losiyuennbie Takum 06pa3oM (PYHKIUU COCTABJISIOT UCKOMOEe pazjoxkenue. [Ipo-
IeCC CUHTEe3a KOMOMHAIIMOHHOW CXEMbI COCTOUT U3 II0C/IeIOBATEILHOIO0 IPUMEHEHUS
aJIredpanvIecKoil JIEKOMIIO3UITUH K MOJydaeMbiM (hyHKIusgM. Omucan crocod moJrytde-
HUS ABYOJIOYHOrO MOKPBITHS OWKIMKaMu rpada OpTOrOHAJBHOCTH CTPOK TPOUIHOM
MaTPHUIIBIL.

KiroueBble ciioBa: cunmes KOMOUHAUUOHHBLE cxem, byaesa Gynkyus, 0exomnosu-
UuA 6Ysesvr GYHKUUL, MPOUHHAA MATMPUUE, NOAHIT d6YA0AbHYIT nodepad, d6ybA0Y-
HOE NOKPHLUMUE.

1. Introduction

The problem of bi-decomposition of a Boolean function is set as follows. Given a Boolean
function y = f(x), where the components of the vector x = (xy,za,...,x,) are Boolean
variables constituting a set X, a superposition f(x) = ©(g1(2z1), g2(22)) must be obtained,
where the components of the vectors z; and z, are the variables from the sets Z; C X and
Zy C X respectively. The kind of the function ¢ in two variables is given as well. It can
be any of the ten Boolean functions which essentially depend on both arguments and are
represented by the operations of logic algebra. Usually, the sets Z; and Z, are given and
Z1 N Zy = . Such a decomposition is called disjoint, otherwise it is called non-disjoint,
where the condition Z; N Z, = & is optional, but some restrictions on the cardinalities of Z;
and Z, can be imposed.

There are known examples of applying methods for bi-decomposition to reduce the delay
of combinational circuits |1, 2| and in the synthesis of circuits in the base of FPGA [3].
The problem of bi-decomposition with ¢ expressed by XOR operation and given partition
(Z1, Zs) has been considered in [4], where the logical equations are used. The probability
of existence of any decomposition of a completely specified Boolean function is very low,
but there is another situation with incompletely specified (partial) functions, especially
when the domain of their specification is a very small part of Boolean space of arguments.
Therefore, the main attention is paid to the decomposition (including bi-decomposition) of
partial Boolean functions. Such a case of disjoint bi-decomposition with a given partition
(Z1,Z3) has been investigated in detail in [5]. A method for bi-decomposition (disjoint or
non-disjoint) of partial Boolean functions with non-given partition (Z;, Zs) is described
in [6], where only the demand is made that the numbers of arguments of g; and g» be
less than the number of arguments of f. This method can be applied also for completely
specified functions, but as it was said above, the probability that the mentioned demand can
be fulfilled is very low. At the same time, if ¢ is in the class of non-linear Boolean functions,
then the functions g; and g, turn out to be simpler than f in the sense that the amount
of their dependence on some arguments is less than that of f. This parameter has been
considered in [7]. The amount of dependence of f on x; is the number of pairs (x*,x*) of
adjacent values of the vector x with different values of z;, where f(x*) # f(x**). Moreover,
if g; (i = 1,2) has the same number of arguments as the completely specified function f,
then g; will be partial in any case. This increases the probability of its decomposability.

In this paper, we propose a method for synthesizing combinational circuits based on
two-input gates that implement nonlinear Boolean functions. These gates are NOR, NAND
and OR, AND with variable complements available. The method is based on successive
application of bi-decomposition to the functions using the approach described in [6].
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2. The proposed approach

Let a Boolean function f(x) (completely or partially specified) be given by two sets: M*
is a domain of Boolean space, where it has value 1, and M? is a domain of Boolean space,
where it has value 0. We represent these sets by ternary matrices M; and My, respectively,
whose rows represent the intervals in M*' and M°, and columns correspond to arguments
x1, %, ..., T, of the given function.

Let us consider a complete bipartite graph G = (V!,V° E) whose vertices from V*
correspond to the rows of M; and vertices from V° correspond to the rows of My. The edges
of G are all the pairs of vertices v'v? (v! € V1, v € V) corresponding to orthogonal rows
of the matrices. Two ternary vectors are orthogonal according to a component z; if z; = 1
in one of them and z; = 0 in the other [8]. Naturally, any row-vector m' of M! is orthogonal
to any row-vector m® of M. So the bipartite graph G is complete.

We assign the elementary disjunction z; V z; V...V x; of the arguments of the given
function to each edge v'1° of G if the row-vectors m' and m® of M! and M corresponding
to the vertices v! and v are orthogonal according to the components z;, ;, ..., ). Each
complete bipartite subgraph (bi-clique) of the graph G is assigned with conjunctive normal
form (CNF) having, as its terms, the elementary disjunctions assigned to the edges from
that bi-clique. After removing possibly absorbed terms, we transform the obtained CNF
into disjunctive normal form (DNF) and assign a term of minimal rank from the DNF to
the corresponding bi-clique.

Let a Boolean function f(x) (completely or partially specified) must be expressed as
f(x) = p(g1(z1), g2(z2)), where ¢ is a Boolean function in two variables, g; and ¢, that
are a functions of vectorial variables z; and z; being parts of the vector x, and symbol “=<”
denotes the relation of realization. A Boolean function ¢ (completely or partially specified)
realizes a partial Boolean function f if ¢ takes the same values as f in the entire domain
of f [9]. Further, it is convenient to consider the function equality relation as a special case
of the realization, and so we use the equality symbol “=" for denoting realization as well.

The functions g; and gy are constructed in the following way. Choose two bi-cliques,
By = (VL VP Ey) and By = (V}, V3, E), in the graph G so that any edge of G would be
at least in one of the sets Fy or Es. In other words, the bi-cliques B; and B, must cover
the entire set E with their edges. It is sufficient to define bi-cliques B; and B, with pairs
(VEH V) and (V3 V), because any vertex in one part of a bi-clique is connected to all the
vertices in the other part with edges.

The arguments of the function g;, i € {1,2}, are the variables that are assigned to the
bi-clique B;. The set M} of values of the vectorial variable z; for which g; = 1 consists of
the parts of the vectors from M! or M° (depending on the kind of ¢) that correspond to
the vertices in V;'. The parts of these vectors are defined by the variables assigned to the
bi-clique B;, i.e., these variables are the components of the vector z;. Similarly, the set M} is
formed from parts of the vectors that correspond to the vertices from V,°. Thus, each vector
from M?" or from M corresponds to a pair of values of ¢; and g¢,. If this pair corresponds
to a vector in M, then it is an element of the set Mé, where ¢ = 1. If it corresponds to
a vector in M, then it is an element of the set M?. So the function ¢ is defined. Note the
pairs (V1 V) and (V;}, V) should be considered as ordered because they are related to the
values of g; and gs.

The described method involves the similar decomposition of g1, g» and the next obtained
functions until obtaining functions in two variables from the set X = {x, 22, ..., x,} of the
arguments of the given function.
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The method for bi-decomposition of Boolean functions described in [6] is based on the
finding of a cover of the graph GG with two bi-cliques having the best weight that leads to the
minimum sum of arguments of the superposition functions. The cover is searched for among
possibly many maximal bi-cliques of G [10] which takes much time without guarantee of
obtaining an optimal circuit in our case. The synthesis of combinational circuits by the
proposed method involves multiple application of performing the cover task. Therefore, a
heuristic method for covering is used, which does not minimize that sum, but takes less
time for its realization.

3. Covering the graph G by two bi-cliques
The Table shows the values that g; and g, must have at the given values of the function ¢
and at the given kinds of it. It is seen that there must be Vi' = V! = V! for AND operation,
VP =V = V0 for OR operation, V}! = V' =V for NAND operation, and V? = V) = V!
for NOR operation.

AND OR NAND NOR
Y g1 g2 | ¥ G1 g2 | ¥ g1 G2 | ¥ g1 G2
1 1 1 0 O 010 1 1 1 0 0
o — 0 1 - 1 1 - 0|0 - 1
o o0 -1 1 -]/1 0 —1]10 1 —

So one of the bi-cliques is always defined by the kind of ¢ as one of the parts of the
complete bipartite graph G and it is one of the parts of both By and Bs. The other parts
of By and B, are formed as blocks of a partition of the other part of GG. For instance,
it V2 = VY = V! then By = (V}!},V!) and By = (V3}, V1), where V! UV} = V0 and
Vinvl=o.

The initial information to obtain the desired cover of G is the set of starred graphs that
are subgraphs of G. A starred graph (or a star) is a complete bipartite graph K, [11].
Its one-element part is its center. In our case, the set of starred graphs is the set of all
bi-cliques of G having one part as one-element set with v € V% or v € V!, and the other
part as V! or V?, respectively. We call them starred bi-cliques.

As it was said above, each bi-clique is assigned with CNF that is transformed into
DNF. We choose a term K of minimum rank from DNF and assign the set X; of variables
from K to the corresponding starred bi-clique B;. Two starred bi-cliques, B; and Bj;, with
the intersection X; N X, of minimal cardinality are chosen among all the pairs of starred
bi-cliques under consideration. If there are several variants of such pairs, the preference is
given to the sets X; and X; of maximal cardinality. Naturally, the variant X; N X; = @ is
desirable. The pair (B;, B;) is taken as the initial value of the pair of bi-cliques that must
cover the graph G, and we denote it (B, Bs).

The subsequent process is successive extending the parts of bi-cliques B; and Bs that
were one-element sets by means of adding the vertices which are the centers of the considered
starred bi-cliques. The sets X; and X, change correspondingly. For example, let By =
= (VL VD), By = (VL VD), VP UV} = VO and the set V' consists of the vertices of G
which do not belong to either V? or V). Let the vertex v; € V' be the center of a starred
bi-clique By and V% (i = 1,2) be such a set that cardinality of X; U X}, differs from that
of X; or X} minimally among all bi-cliques By corresponding the vertices belonging to V.
The set V,° changes to V. U{uv;}, and the vertex vy is removed from V’. The process comes
to the end when V' = @. The pair (B, By) will be the desired cover of G.
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4. Synthesis of a combinational circuit in the NOR basis

Let’s build a combinational circuit of NOR gates that implements the completely
specified Boolean function f(xy, 2, x3,24,25). The function is given by the following
matrices (through numeration is used):

Ty X2 T3 T4 Ts

_ o 1 T2 T3 Ty Ts
S 0100 178
1 - 1009
1 _ g 0 _—
MY Yy ol Mol o0 - |
A 1010 — |11
1 -0 0 1]7

To reduce the size the bipartite graphs, it would be better to represent the domain
of the function by the minimum number of intervals. The complete bipartite graph G =
= (V1, V% E) is given by matrix G similar to an adjacency matrix:

8 9 10 11
I T3 vV Ty Ty T3 Tq i 1
T3 T 1 Va3 T 2
Ty Ty To roVay |8
G = T2 z1 x1 x1 4
Is I3 X9 To vV T3 5
X1 Is xro i) 6
L T 3V s Ty T3 i 7

The rows of G correspond to the vertices in the set V! = {vy,v9,v3,v4,v5,v6, v7} (t0
the rows of M'), and the columns — to the vertices in the set V° = {vg, vg, v19,v11} (to the
rows of M"). The elementary disjunction or single variable assigned to the edge v;v; is at
the i-th row and j-th column of G.

The bi-cliques B; = (V}, V) and By = (V3}, V) covering the graph G have a common
part. According to Table on page 98, for the NOR basis, we have V? = V)Y = V. The
starred bi-cliques with the assigned variables are the following:

({Us},{U17027@3>U4,U5,U6,U7}) —  T1T2X3T4XT5;
({Ug},{U17U27U37U4,U5706,U7}) —  T1T3T4Ts;
({U1o}, {01, V2, V3, V4, Us, Vg, U?}) —  T1T2X3T4;
({1)11},{vl,vg,vg,v4,v5,v6,v7}) — T1T2X3T4.

The first step, decomposition into functions ¢g; and g¢9, can be easy made
because to reduce the total number of arguments one should form bi-cliques By =
= ({vs, v}, {v1,v2,v3,v4,v5,v6,v7}) and By = ({vig,v11}, {v1, V2, v3, V4, V5, V6, v7}) With
corresponding sets of variables {x1, z9, x5, x4, 25} and {x, z9, x5, 24}. The given function
f(z1, 9, 23, 24, 5) is decomposed into two functions, g; (1, o, 3, T4, x5) and ga(x1, T2, T3, 4),
linked by NOR operation (Pierce function): f = ¢ = ¢; 1 g2. They can be given by the
matrices M}, M? and M., MY, the lower indices of which coincide with the indices of
the functions. The matrices look as follows, where M3 represents the minimum number of
intervals with value 0 of gs:
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r1 X9 X3z Ty Ty

- -1 1 - 183
-1 - 1 =14
T1 T2 T3 T4 Ts 0 0 . 5
1 0 1 0 0 1|1 0
M; = : M{=|- 1 0 — 0 |6;
1 — 1 0 012’ 1 — 0 0 1 7’
O — — — 0 |8
- 1 1 - 119
Tl T2 X3 T4
1 T2 T3 T4 [ — — 1 173
1 0 0 1|1 - = 0 0 [4
1 _ . 0 _
MQ_[lOlO}Q’ M; = 0o — — — 15"
| - 1 - — 6

The function g is specified in the entire Boolean argument space, and g, is a partial
one. The value of g; is not defined at (xy, s, x3,24,25) = (1,0,1,0,1),(1,0,0,0,0) and
the interval represented by vector (1,0,0,1,—). For the decomposition of g; and gy, the
complete bipartite graphs G and G5 are constructed with the parts V1! = {vf, vi}, VO =
= {vi, v, v} 08, vl v i} and V12 = {vf 03}, V92 = {v3 vi v, 03}, respectively. The
graphs G'; and G5 are given by the matrices G; and Go:

3 4 5 6 7 8 9 8 4 5 6
T3V Xy Ty To Ty T x5 x3 |1 T3 T4 T1 To |1
G, = i Go = :
T4 Ty T1 T3 x3VIy T Ty |2 Ty T3 T1 To |2

The starred bi-cliques of Gy (left) and G (right) with assigned variables are

{osh {vrm0}) = au (o3t {vf,v3}) — wsay
{oid {vi00}) = o ({vit {vf,v3}) — wsay
{osh {vi,v2}) = @y ({vs {vi,03}) — @
({Ué}v{v%71}%}) —  T3Ts; ({Ug}a{v%avg}) - T2
{vrtvi o)) — (s Voas);

({vé},{v%,v%}) - T1Ts;

{vo}. {vi,va}) = wsas;

The function g¢o is decomposed trivially as the given function f. The bi-cliques
({v3,v2}, {v},v3}) with variables x3, 4 and ({vZ 02}, {v},v3}) with variables z;,xs cover
the graph Gs. So g2 = gs3(w3,74) T ga(x1,22), and g3 and g4 are given by the following
matrices obtained from M} and MY:

T3 Tq T3 Tq Ty I2 T1 To

11 0 1 0 -
M%{OO]; Mg{lo]? Mi{ 1}; Mi=[1 0]

Finally, for g, we have g3 = z324 V 737y = (23 1 T4) T (T3 T x4) and g4 = T1 V 29 =
= (T1 T 22) T (T1 T 22).

To decompose g;, the way to cover graph GG; by two bi-cliques described in Section 3
can be applied. The initial meanings of bi-cliques B; and By are ({vi},{vi,vi}) and

({ve}, {vi,v3}), because the intersection of X; = {xy, 25} and X, = {z3,25} is empty
and these sets have the maximum cardinality. As a result of the next step, we have
({Ué}7 {U%7 2]21}) — T122, ({'Ué, ’Ué}, {'U%, 'U%}) — X3Ts5.

The sequence of transformations of B; and Bs is presented below, where the last row
presents the desired cover of G:
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({U§7Ué}a{vivv%}) —  T1T274; ({vé,véh{v%,v%}) —  I3Ts5;
({Uéavé},{vi,vé}) —  T1T2Ty; ({vflbv%?q};}a{viuvé}) -  T1T3Ts;
({U%,Ui,ﬂé},{’l}%,?}%}) —  T1T2X4; ({’Ué,U%,Ué,U;},{U%,U%}) — I173%s.

The g1 (x1, z2, 3, T4, T5) is decomposed into two functions, gs(x1, z2, z4) and ge(x1, T3, T5),
linked by NOR operation: g; = g5 1 gs. They can be given by the matrices M}, M? and
Mg, MQ:

2 Tr1 T3 Iy

1 L2 24 T1 T2 T4 1 0 - 11 Ty T3 Ts

- - 1|1 o_ |0 1 018, B ) o_ |0 0 114
Ms {00 }2’M5 [1—0}4’1\46 [21 ?]?’M6_{110}5

4 5
fc i 1 el

GS:[$4 3?4:|2; GGZ Irs X1 2.
2 Tr3 I 3

Graph Gj is covered by bi-cliques ({v3}, {v7,v3}) with variables 2, x4 and ({v3}, {v?,v })
with variables x1,z4. Then g5 = g7(x2,24) T gs(x1,24) and g; and gg are given by the
following matrices:

To T4 - 1
Mi=[1 0]; M?[

Hence, g; =Ty 1 x4 and gs = T1 T 24.

Graph Gg is covered by bi-cliques ({v§}, {v§,0§,05}) with variables 1, z3,75 and
({vg}, {v?,v5,v§}) with the same variables. Then gs = gg(xl,arg,x5) T qro(x1, 3, 25) and
go and gy are given by the following matrices:

Tyl T3 Ts xr1 T3 s
Tr1 T3 Iy 1 0 — 2 Tr1 T3 Iy 1 0 — 2
Mi=[0 0 1]1; Mj=|0 I (1) j;M{Oz[llo]z;Mgoz 0 I (1) j

The corresponding graphs Gy and Gy are given by the matrices

2 8 4 2 8 4
ng[l'l Ts5 1’3]1, Gl():[xg T 1’5]1

Graph Gy is covered by bi-cliques ({v3,v]}, {v]}) with variables z1, z3 and ({v3}, {v{})
with x5 that define g9 = g11 T 75 and g3 = 21 V oz = (21 T x3) T (21 T x3). Graph Gy is
covered by bi-cliques ({v3?, vi%}, {v{°}) and ({v;°}, {vi®}) with the same variables. Those
bi-cliques define g1 = g12 T x5 and g10 =71 VT3 = (71 T Z3) T (71 1 T3).

Now, the given function f is completely decomposed into superposition of Pierce
functions in two variables. The system of functions f,gi,..., g2 gives the circuit with
NOR gates and inverters shown in Fig. 1.
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X3

xX)

Fig. 1. Circuit with NOR gates and inverters

5. Synthesis of a combinational circuit in the AND, OR basis

We now obtain a combinational circuit that implements the same function in the basis of
AND, OR gates with accessible variable complements. According to the Table in Section 3,
the bi-cliques B; = (V}}, V) and By = (V3},V3Y) covering the graph G have V! =V} = V!
for AND operation and V;? = V) = V; for OR operation. It can be noted in the matrix G
that the AND operation for ¢ is desirable for the best variant of superposition f = ¢(g1, g2)
if the matrix M° has more rows than the matrix M! has. Vice versa, the OR operation is
desirable if the matrix M! has more rows than the matrix M has. A variant is considered
better if g; and go have the less number of essential arguments. We choose OR operations
for the output function (f = g1 V g2). Then, the starred bi-cliques, from which the initial
meanings of By and B, must be chosen, look as follows:

({U1}7 {US’UQ’Ulo’Ull}) T3l ({UQ}a {USa Vg, V10, Ull}) —  X1T3;
({vs}, {vs, v, V10, vn1}) = Tay; ({va}, {vs,v9,v10,011})  — @129
({vs}, {vs, v, v10,011}) = 22325 ({ve}, {vs, vg, v10,011})  —  T1T2W5;
({U7}7 {U87 Vg, V10, U11}) —  X1T3%4.
The bi-cliques By = ({vi,v2,v3,v7}, {vs, V9, V10, v11}) With variables @1, o, 73, 24 and

By = ({v4,vs,v6}, {vs, vo, V109, v11}) with variables x1, x5, x3, x5 are obtained by the same
way as in the case of NOR operation. To decompose the function f in the form f = g1 V g¢o,
the following matrices are used:

Tyl T2 T3 T4

L1 T2 T3 T4
0 _ } i 2 01 0075
M} = ;s MY=|1 — 1 0 |6;
PN 100 1)]7
1 — 0 0 |4
T1 T2 T3 Ts L1 X2 T3 Ts
00 — =71 01 0 174
Mi=|—- 1 0 0 |2; MI=|1 — 1 0 |5.
11 - 13 10 — — |6
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The graphs GG; and G5 corresponding to the functions ¢g; and g, are given by the
matrices GGy and Go:

5 6 7

5 60
T3V Iy T4 T3 1 4

Tog X1 X1 1

X3 r1 X1 Va3 2
Gl = H G2 = Irs T3 X2 2.

Ty Ty To 3

T T T |8
x1 x3 Ty 4

For decomposition g; = g3 V g4 and g = g5 V gg, the starred bi-cliques of G; and G5 are

({v%},{vé,vé,v%}) —  T3T4; ({U%}a{vé?}gw?}) — X1T9;
({U%L{U%?Uéav%}) - I1T3; ({U%}:{U§7U§>U$}) —  X9T3Ts;
({U§}> {v%,vé,v%}) - T2Ty ({U?Q)}v {U%,’U%,U%}) -  T1X2Ts5;
({Ui}, {U%7U(157U%}) —  T1T3T4.

From these bi-cliques, the pairs (B{, Bi) and (B?, B2) covering GG; and G5 are obtained,
where
By = ({vi,v5} . {vs, v, 07}) = wowszy; BY = ({vf, 03}, {v3, 05,02})  —  aimaws;
B% = <{U%7Ui}7 {U;,Ué,v%}) —  T1T3Ty, B22 = ({U%}7 {U;,U%,U%}) - L2X3T5.

The incompletely specified functions g3, g4, g5 and gg are given by the following matrices:

To X3 X4 T2 T3 T4 Tl XT3 T4 T T
2y 1 00783 o 1 1 000783
Mé:[1 _1}2;1\/1%: - Lo 4;M}*:[10 O}Q;Mgz RS
0 011|5 10 115
Tr1 X2 Ts T2 T3 T
5%”62 z51 01 11783 To T3 T 1 0 172
Mgz{ll I}Q;Mgzll— 0]4;1\/[}).:[100}1;1\/1%:{— 1 0]3.
1 0 — 19 0 — — |4

The corresponding graphs G3, G4, G5 and Gg are represented by the following matrices:

3 4 5 3 4 5
_ T3 VIy x4 T3 1 . _ r3 X1 T1 vV I3 1 .
GB_[ Ta T4 m}?’ G4_[x1 T3 T4 }2’
3 4 5 2 3 4

| x2 w1 x| 1 .
G5|:x1 s x2:|2, G(;—[J)5 T3 .1‘2}1.

To implement the functions gs, g4, g5 and gg, take the AND operation. Then, the starred
bi-cliques of the graphs G3, G4, G5 and Gg are

({vi s} {vs}) —aas - (forvah o) —wwws; ({0705}, {0s}) — wama; ({00}, {05}) — s
({vr s} {vi}) —aas - (foroah {vi}) —wwws; ({705}, {vd}) — zaws; ({00}, {05}) — s
({v? 03}, {vs}) = wazs; ({for,vs} {vs}) —wswa; ({0703} {03}) —wazws; ({of}, {vi}) — 22

The covers of GGz, G4, G5 and G are

313 = ({U?’U%}v {U§7Ui}) - T4, Bil = ({U%,Ug}, {U?nv%}) - I173,
B3 = ({v},v3}, {v3i}) — w3 By = ({vi, v}, {vs}) —  T3T4;
By = ({v}, 3}, {v5,v8}) — wwe,  BY = ({v}}, {05,v5}) — T35,

B3 = ({01, v3}, {v}) — maws; By =({of} {vi}) — T2
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These pairs define the following decompositions:

93(22, 23, 24) = gr(xa, x3) N 24,

94(x2, 3, 74) = gs(x1, 23) A go(T3, 24),
g5(x1, T2, w5) = qro(z1, 22) A g11 (21, T5),

g6(21, T3, 5) = g1a(x3, x5) A T9.

The functions g7, gs, g9, 910, 911 and gi2 are given by the following matrices:

T2 T3 xr1 T3 xr1 T3

1 -1 . 0 2 ‘T3' 1 01 . 0 00 .
Mp= | s Mp=[0 0] Mi=| | Mi=| | ||
xl3ﬂil T3 T4 1'01 32 3(0)1 ?2

1 _ . 0 _ . 1 _ . 0 _ .
M9_|: 0:|a MQ_[O 1}7 M10_|:1 1:|a M10_|:1 0:|7
:(L).l fiS 1 Ts T3 Ts %3 ?5
e R R R F R K SR R

These matrices are used to obtain the algebraic representations of the completely specified
functions g7, gs, g9, 910, g11 and the realization of the partial function gs:
g7 = X2 V T3, g8 = X1 D w3 = T173 V 2173,

J10 = T1 ~ X = T1T2 V 122, gi1 =71V Ts,

99 = T3 V T4,
gi2 = T3Ts.
The corresponding combinational circuit with AND and OR gates is shown in Fig. 2.

X1 XX X2X3 X3X4 X4 X5 X5

Fig. 2. Circuit with AND and OR gates

6. Conclusion
The paper shows how to apply the method for bi-decomposition in the synthesis of

combinational circuits. The advantage of the suggested approach is the possibility of
constructing circuits of short delay that is characterized by the number of levels in the
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circuit. The method is convenient to be applied for incompletely specified Boolean functions,
where the functions are given by two domains of Boolean space, as opposed to completely
specified functions when the zero domains must be obtained. The “bottle-neck” of the
proposed approach is transformation CNF into DNF which is a non-polynomial problem.
Thus, the scope of application of the proposed method is limited. It would be established
by computer experiment, which is an independent research. The joint implementation of
a system of Boolean functions demands reveling the function coincidence at every level of
decomposition.

10.

11.
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