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The problem of combinational circuits synthesis in the basis of two-input gates is
considered. Those gates are AND, OR, NAND and NOR. A method for solving this
problem by means of Boolean functions bi-decomposition is suggested. The method
reduces the problem to the search for a weighted two-block cover of the orthogonality
graph of ternary matrice rows representing the given Boolean function by complete
bipartite subgraphs (bi-cliques). Each bi-clique in the obtained cover is assigned in a
certain way with a set of variables that are the arguments of the function. This set is
the weight of the bi-clique. Each of those bi-cliques defines a Boolean function whose
arguments are the variables assigned to it. The functions obtained in such a way
constitute the required decomposition. The process of combinational circuit synthesis
consists in successively applying bi-decomposition to the functions obtained. The
method for two-block covering the orthogonality graph of ternary matrice rows is
described.
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Рассматривается задача синтеза комбинационных схем в базисе двухвходовых
элементов И, ИЛИ, И–НЕ и ИЛИ–НЕ. Предложен метод её решения с помощью
применения алгебраической декомпозиции булевых функций. Метод сводит реше-
ние задачи к поиску взвешенного двублочного покрытия полными двудольными
подграфами (бикликами) графа ортогональности строк троичной матрицы, пред-
ставляющей заданную булеву функцию. Каждой биклике в полученном покрытии
определённым образом приписывается в качестве веса множество переменных,
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являющихся аргументами заданной функции. Каждая из этих двух биклик опре-
деляет булеву функцию с аргументами, приписанными соответствующей бикли-
ке. Полученные таким образом функции составляют искомое разложение. Про-
цесс синтеза комбинационной схемы состоит из последовательного применения
алгебраической декомпозиции к получаемым функциям. Описан способ получе-
ния двублочного покрытия бикликами графа ортогональности строк троичной
матрицы.

Ключевые слова: синтез комбинационных схем, булева функция, декомпози-
ция булевых функций, троичная матрица, полный двудольный подграф, двублоч-
ное покрытие.

1. Introduction
The problem of bi-decomposition of a Boolean function is set as follows. Given a Boolean

function y = f(x), where the components of the vector x = (x1, x2, . . . , xn) are Boolean
variables constituting a set X, a superposition f(x) = ϕ(g1(z1), g2(z2)) must be obtained,
where the components of the vectors z1 and z2 are the variables from the sets Z1 ⊂ X and
Z2 ⊂ X respectively. The kind of the function ϕ in two variables is given as well. It can
be any of the ten Boolean functions which essentially depend on both arguments and are
represented by the operations of logic algebra. Usually, the sets Z1 and Z2 are given and
Z1 ∩ Z2 = ∅. Such a decomposition is called disjoint, otherwise it is called non-disjoint,
where the condition Z1∩Z2 = ∅ is optional, but some restrictions on the cardinalities of Z1

and Z2 can be imposed.
There are known examples of applying methods for bi-decomposition to reduce the delay

of combinational circuits [1, 2] and in the synthesis of circuits in the base of FPGA [3].
The problem of bi-decomposition with ϕ expressed by XOR operation and given partition
(Z1, Z2) has been considered in [4], where the logical equations are used. The probability
of existence of any decomposition of a completely specified Boolean function is very low,
but there is another situation with incompletely specified (partial) functions, especially
when the domain of their specification is a very small part of Boolean space of arguments.
Therefore, the main attention is paid to the decomposition (including bi-decomposition) of
partial Boolean functions. Such a case of disjoint bi-decomposition with a given partition
(Z1, Z2) has been investigated in detail in [5]. A method for bi-decomposition (disjoint or
non-disjoint) of partial Boolean functions with non-given partition (Z1, Z2) is described
in [6], where only the demand is made that the numbers of arguments of g1 and g2 be
less than the number of arguments of f . This method can be applied also for completely
specified functions, but as it was said above, the probability that the mentioned demand can
be fulfilled is very low. At the same time, if ϕ is in the class of non-linear Boolean functions,
then the functions g1 and g2 turn out to be simpler than f in the sense that the amount
of their dependence on some arguments is less than that of f . This parameter has been
considered in [7]. The amount of dependence of f on xi is the number of pairs (x∗,x∗∗) of
adjacent values of the vector x with different values of xi, where f(x∗) 6= f(x∗∗). Moreover,
if gi (i = 1, 2) has the same number of arguments as the completely specified function f ,
then gi will be partial in any case. This increases the probability of its decomposability.

In this paper, we propose a method for synthesizing combinational circuits based on
two-input gates that implement nonlinear Boolean functions. These gates are NOR, NAND
and OR, AND with variable complements available. The method is based on successive
application of bi-decomposition to the functions using the approach described in [6].
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2. The proposed approach
Let a Boolean function f(x) (completely or partially specified) be given by two sets:M1

is a domain of Boolean space, where it has value 1, and M0 is a domain of Boolean space,
where it has value 0. We represent these sets by ternary matrices M1 and M0, respectively,
whose rows represent the intervals in M1 and M0, and columns correspond to arguments
x1, x2, . . . , xn of the given function.

Let us consider a complete bipartite graph G = (V 1, V 0, E) whose vertices from V 1

correspond to the rows of M1 and vertices from V 0 correspond to the rows of M0. The edges
of G are all the pairs of vertices v1v0 (v1 ∈ V 1, v0 ∈ V 0) corresponding to orthogonal rows
of the matrices. Two ternary vectors are orthogonal according to a component xi if xi = 1
in one of them and xi = 0 in the other [8]. Naturally, any row-vector m1 of M1 is orthogonal
to any row-vector m0 of M0. So the bipartite graph G is complete.

We assign the elementary disjunction xi ∨ xj ∨ . . . ∨ xk of the arguments of the given
function to each edge v1v0 of G if the row-vectors m1 and m0 of M1 and M0 corresponding
to the vertices v1 and v0 are orthogonal according to the components xi, xj, . . . , xk. Each
complete bipartite subgraph (bi-clique) of the graph G is assigned with conjunctive normal
form (CNF) having, as its terms, the elementary disjunctions assigned to the edges from
that bi-clique. After removing possibly absorbed terms, we transform the obtained CNF
into disjunctive normal form (DNF) and assign a term of minimal rank from the DNF to
the corresponding bi-clique.

Let a Boolean function f(x) (completely or partially specified) must be expressed as
f(x) � ϕ(g1(z1), g2(z2)), where ϕ is a Boolean function in two variables, g1 and g2, that
are a functions of vectorial variables z1 and z2 being parts of the vector x, and symbol “�”
denotes the relation of realization. A Boolean function ϕ (completely or partially specified)
realizes a partial Boolean function f if ϕ takes the same values as f in the entire domain
of f [9]. Further, it is convenient to consider the function equality relation as a special case
of the realization, and so we use the equality symbol “=” for denoting realization as well.

The functions g1 and g2 are constructed in the following way. Choose two bi-cliques,
B1 = (V 1

1 , V
0
1 , E1) and B2 = (V 1

2 , V
0
2 , E2), in the graph G so that any edge of G would be

at least in one of the sets E1 or E2. In other words, the bi-cliques B1 and B2 must cover
the entire set E with their edges. It is sufficient to define bi-cliques B1 and B2 with pairs
(V 1

1 , V
0
1 ) and (V 1

2 , V
0
2 ), because any vertex in one part of a bi-clique is connected to all the

vertices in the other part with edges.
The arguments of the function gi, i ∈ {1, 2}, are the variables that are assigned to the

bi-clique Bi. The set M1
i of values of the vectorial variable zi for which gi = 1 consists of

the parts of the vectors from M1 or M0 (depending on the kind of ϕ) that correspond to
the vertices in V 1

i . The parts of these vectors are defined by the variables assigned to the
bi-clique Bi, i.e., these variables are the components of the vector zi. Similarly, the setM0

i is
formed from parts of the vectors that correspond to the vertices from V 0

i . Thus, each vector
from M1 or from M0 corresponds to a pair of values of g1 and g2. If this pair corresponds
to a vector in M1, then it is an element of the set M1

ϕ, where ϕ = 1. If it corresponds to
a vector in M0, then it is an element of the set M0

ϕ. So the function ϕ is defined. Note the
pairs (V 1

1 , V
0
1 ) and (V 1

2 , V
0
2 ) should be considered as ordered because they are related to the

values of g1 and g2.
The described method involves the similar decomposition of g1, g2 and the next obtained

functions until obtaining functions in two variables from the set X = {x1, x2, . . . , xn} of the
arguments of the given function.
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The method for bi-decomposition of Boolean functions described in [6] is based on the
finding of a cover of the graph G with two bi-cliques having the best weight that leads to the
minimum sum of arguments of the superposition functions. The cover is searched for among
possibly many maximal bi-cliques of G [10] which takes much time without guarantee of
obtaining an optimal circuit in our case. The synthesis of combinational circuits by the
proposed method involves multiple application of performing the cover task. Therefore, a
heuristic method for covering is used, which does not minimize that sum, but takes less
time for its realization.

3. Covering the graph G by two bi-cliques
The Table shows the values that g1 and g2 must have at the given values of the function ϕ

and at the given kinds of it. It is seen that there must be V 1
1 = V 1

2 = V 1 for AND operation,
V 0
1 = V 0

2 = V 0 for OR operation, V 1
1 = V 1

2 = V 0 for NAND operation, and V 0
1 = V 0

2 = V 1

for NOR operation.

AND OR NAND NOR
ϕ g1 g2 ϕ g1 g2 ϕ g1 g2 ϕ g1 g2
1 1 1 0 0 0 0 1 1 1 0 0
0 − 0 1 − 1 1 − 0 0 − 1
0 0 − 1 1 − 1 0 − 0 1 −

So one of the bi-cliques is always defined by the kind of ϕ as one of the parts of the
complete bipartite graph G and it is one of the parts of both B1 and B2. The other parts
of B1 and B2 are formed as blocks of a partition of the other part of G. For instance,
if V 0

1 = V 0
2 = V 1, then B1 = (V 1

1 , V
1) and B2 = (V 1

2 , V
1), where V 1

1 ∪ V 1
2 = V 0 and

V 1
1 ∩ V 1

2 = ∅.
The initial information to obtain the desired cover of G is the set of starred graphs that

are subgraphs of G. A starred graph (or a star) is a complete bipartite graph K1,n [11].
Its one-element part is its center. In our case, the set of starred graphs is the set of all
bi-cliques of G having one part as one-element set with v ∈ V 0 or v ∈ V 1, and the other
part as V 1 or V 0, respectively. We call them starred bi-cliques.

As it was said above, each bi-clique is assigned with CNF that is transformed into
DNF. We choose a term K of minimum rank from DNF and assign the set Xi of variables
from K to the corresponding starred bi-clique Bi. Two starred bi-cliques, Bi and Bj, with
the intersection Xi ∩ Xj of minimal cardinality are chosen among all the pairs of starred
bi-cliques under consideration. If there are several variants of such pairs, the preference is
given to the sets Xi and Xj of maximal cardinality. Naturally, the variant Xi ∩Xj = ∅ is
desirable. The pair (Bi, Bj) is taken as the initial value of the pair of bi-cliques that must
cover the graph G, and we denote it (B1, B2).

The subsequent process is successive extending the parts of bi-cliques B1 and B2 that
were one-element sets by means of adding the vertices which are the centers of the considered
starred bi-cliques. The sets X1 and X2 change correspondingly. For example, let B1 =
= (V 1

1 , V
0
1 ), B2 = (V 1

2 , V
0
2 ), V 1

1 ∪ V 1
2 = V 0 and the set V ′ consists of the vertices of G

which do not belong to either V 0
1 or V 0

2 . Let the vertex vk ∈ V ′ be the center of a starred
bi-clique Bk and V 0

i (i = 1, 2) be such a set that cardinality of Xi ∪ Xk differs from that
of Xi or Xk minimally among all bi-cliques Bk corresponding the vertices belonging to V ′.
The set V 0

i changes to V 0
i ∪{vk}, and the vertex vk is removed from V ′. The process comes

to the end when V ′ = ∅. The pair (B1, B2) will be the desired cover of G.
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4. Synthesis of a combinational circuit in the NOR basis
Let’s build a combinational circuit of NOR gates that implements the completely

specified Boolean function f(x1, x2, x3, x4, x5). The function is given by the following
matrices (through numeration is used):

x1 x2 x3 x4 x5

M1 =



− − 1 1 −
0 − 1 − −
− 1 − 1 −
0 0 − − −
− 1 0 − 0
1 1 − − 1
1 − 0 0 1



1
2
3
4
5
6
7

;

x1 x2 x3 x4 x5

M0 =


0 1 0 0 1
1 − 1 0 0
1 0 0 1 −
1 0 1 0 −


8
9
10
11

.

To reduce the size the bipartite graphs, it would be better to represent the domain
of the function by the minimum number of intervals. The complete bipartite graph G =
= (V 1, V 0, E) is given by matrix G similar to an adjacency matrix:

8 9 10 11

G =



x3 ∨ x4 x4 x3 x4
x3 x1 x1 ∨ x3 x1
x4 x4 x2 x2 ∨ x4
x2 x1 x1 x1
x5 x3 x2 x2 ∨ x3
x1 x5 x2 x2
x1 x3 ∨ x5 x4 x3



1
2
3
4
5
6
7

.

The rows of G correspond to the vertices in the set V 1 = {v1, v2, v3, v4, v5, v6, v7} (to
the rows of M1), and the columns — to the vertices in the set V 0 = {v8, v9, v10, v11} (to the
rows of M0). The elementary disjunction or single variable assigned to the edge vivj is at
the i-th row and j-th column of G.

The bi-cliques B1 = (V 1
1 , V

0
1 ) and B2 = (V 1

2 , V
0
2 ) covering the graph G have a common

part. According to Table on page 98, for the NOR basis, we have V 0
1 = V 0

2 = V 1. The
starred bi-cliques with the assigned variables are the following:

({v8}, {v1, v2, v3, v4, v5, v6, v7}) − x1x2x3x4x5;
({v9}, {v1, v2, v3, v4, v5, v6, v7}) − x1x3x4x5;
({v10}, {v1, v2, v3, v4, v5, v6, v7}) − x1x2x3x4;
({v11}, {v1, v2, v3, v4, v5, v6, v7}) − x1x2x3x4.

The first step, decomposition into functions g1 and g2, can be easy made
because to reduce the total number of arguments one should form bi-cliques B1 =
= ({v8, v9}, {v1, v2, v3, v4, v5, v6, v7}) and B2 = ({v10, v11}, {v1, v2, v3, v4, v5, v6, v7}) with
corresponding sets of variables {x1, x2, x3, x4, x5} and {x1, x2, x3, x4}. The given function
f(x1, x2, x3, x4, x5) is decomposed into two functions, g1(x1, x2, x3, x4, x5) and g2(x1, x2, x3, x4),
linked by NOR operation (Pierce function): f = ϕ = g1 ↑ g2. They can be given by the
matrices M1

1, M0
1 and M1

2, M0
2, the lower indices of which coincide with the indices of

the functions. The matrices look as follows, where M0
2 represents the minimum number of

intervals with value 0 of g2:
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x1 x2 x3 x4 x5

M1
1 =

[
0 1 0 0 1
1 − 1 0 0

]
1
2 ;

x1 x2 x3 x4 x5

M0
1 =



− − 1 1 −
− 1 − 1 −
0 0 − − −
− 1 0 − 0
1 − 0 0 1
0 − − − 0
− 1 1 − 1



3
4
5
6
7
8
9

;

x1 x2 x3 x4

M1
2 =

[
1 0 0 1
1 0 1 0

]
1
2 ;

x1 x2 x3 x4

M0
2 =


− − 1 1
− − 0 0
0 − − −
− 1 − −


3
4
5
6

.

The function g2 is specified in the entire Boolean argument space, and g1 is a partial
one. The value of g1 is not defined at (x1, x2, x3, x4, x5) = (1, 0, 1, 0, 1), (1, 0, 0, 0, 0) and
the interval represented by vector (1, 0, 0, 1,−). For the decomposition of g1 and g2, the
complete bipartite graphs G1 and G2 are constructed with the parts V 11 = {v11, v12}, V 01 =
= {v13, v14, v15, v16, v17, v18, v19} and V 12 = {v21, v22}, V 02 = {v23, v24, v25, v26}, respectively. The
graphs G1 and G2 are given by the matrices G1 and G2:

3 4 5 6 7 8 9

G1 =

[
x3 ∨ x4 x4 x2 x5 x1 x5 x3
x4 x4 x1 x3 x3 ∨ x5 x1 x5

]
1
2 ;

3 4 5 6

G2 =

[
x3 x4 x1 x2
x4 x3 x1 x2

]
1
2 .

The starred bi-cliques of G1 (left) and G2 (right) with assigned variables are

({v13}, {v11, v12}) − x4;
({v14}, {v11, v12}) − x4;
({v15}, {v11, v12}) − x1x2;
({v16}, {v11, v12}) − x3x5;
({v17}, {v11, v12}) − x1(x3 ∨ x5);
({v18}, {v11, v12}) − x1x5;
({v19}, {v11, v12}) − x3x5;

({v23}, {v21, v22}) − x3x4;
({v24}, {v21, v22}) − x3x4;
({v25}, {v21, v22}) − x1;
({v26}, {v21, v22}) − x2.

The function g2 is decomposed trivially as the given function f . The bi-cliques
({v23, v24}, {v21, v22}) with variables x3, x4 and ({v25, v26}, {v21, v22}) with variables x1, x2 cover
the graph G2. So g2 = g3(x3, x4) ↑ g4(x1, x2), and g3 and g4 are given by the following
matrices obtained from M1

2 and M0
2:

x3 x4

M1
3 =

[
1 1
0 0

]
;

x3 x4

M0
3 =

[
0 1
1 0

]
;

x1 x2

M1
4 =

[
0 −
− 1

]
;

x1 x2
M0

4 =
[

1 0
]
.

Finally, for g2, we have g3 = x3x4 ∨ x3x4 = (x3 ↑ x4) ↑ (x3 ↑ x4) and g4 = x1 ∨ x2 =
= (x1 ↑ x2) ↑ (x1 ↑ x2).

To decompose g1, the way to cover graph G1 by two bi-cliques described in Section 3
can be applied. The initial meanings of bi-cliques B1 and B2 are ({v15}, {v11, v12}) and
({v16}, {v11, v12}), because the intersection of X1 = {x1, x2} and X2 = {x3, x5} is empty
and these sets have the maximum cardinality. As a result of the next step, we have

({v15}, {v11, v12})− x1x2, ({v16, v19}, {v11, v12})− x3x5.

The sequence of transformations of B1 and B2 is presented below, where the last row
presents the desired cover of G:
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({v13, v15}, {v11, v12}) − x1x2x4;
({v13, v15}, {v11, v12}) − x1x2x4;
({v13, v14, v15}, {v11, v12}) − x1x2x4;

({v16, v19}, {v11, v12}) − x3x5;
({v16, v17, v19}, {v11, v12}) − x1x3x5;
({v16, v17, v18, v19}, {v11, v12}) − x1x3x5.

The g1(x1, x2, x3, x4, x5) is decomposed into two functions, g5(x1, x2, x4) and g6(x1, x3, x5),
linked by NOR operation: g1 = g5 ↑ g6. They can be given by the matrices M1

5, M0
5 and

M1
6, M0

6:

x1 x2 x4

M1
5 =

[
− − 1
0 0 −

]
1
2 ;

x1 x2 x4

M0
5 =

[
0 1 0
1 − 0

]
3
4 ;

x1 x3 x5

M1
6 =

 1 0 −
0 − 0
− 1 1

1
2
3

;

x1 x3 x5

M0
6 =

[
0 0 1
1 1 0

]
4
5 .

The corresponding graphs G5 and G6 are given by the matrices G5 and G6:

3 4

G5 =

[
x4 x4
x2 x1

]
1
2 ;

4 5

G6 =

 x1 x3
x5 x1
x3 x5

1
2
3
.

GraphG5 is covered by bi-cliques ({v53}, {v51, v52}) with variables x2, x4 and ({v54}, {v51, v52})
with variables x1, x4. Then g5 = g7(x2, x4) ↑ g8(x1, x4) and g7 and g8 are given by the
following matrices:

x2 x4
M1

7 =
[

1 0
]

;

x2 x4

M0
7 =

[
− 1
0 −

]
;

x1 x4
M1

8 =
[

1 0
]

;

x1 x4

M0
8 =

[
− 1
0 −

]
.

Hence, g7 = x2 ↑ x4 and g8 = x1 ↑ x4.
Graph G6 is covered by bi-cliques ({v64}, {v61, v62, v63}) with variables x1, x3, x5 and

({v65}, {v61, v62, v63}) with the same variables. Then g6 = g9(x1, x3, x5) ↑ g10(x1, x3, x5) and
g9 and g10 are given by the following matrices:

x1 x3 x5
M1

9 =
[

0 0 1
]
1 ;

x1 x3 x5

M0
9 =

 1 0 −
0 − 0
− 1 1

2
3
4

;
x1 x3 x5

M1
10 =

[
1 1 0

]
1 ;

x1 x3 x5

M0
10 =

 1 0 −
0 − 0
− 1 1

2
3
4
.

The corresponding graphs G9 and G10 are given by the matrices

2 3 4
G9 =

[
x1 x5 x3

]
1 ;

2 3 4
G10 =

[
x3 x1 x5

]
1 .

Graph G9 is covered by bi-cliques ({v92, v94}, {v91}) with variables x1, x3 and ({v93}, {v91})
with x5 that define g9 = g11 ↑ x5 and g11 = x1 ∨ x3 = (x1 ↑ x3) ↑ (x1 ↑ x3). Graph G10 is
covered by bi-cliques ({v102 , v103 }, {v101 }) and ({v104 }, {v101 }) with the same variables. Those
bi-cliques define g10 = g12 ↑ x5 and g12 = x1 ∨ x3 = (x1 ↑ x3) ↑ (x1 ↑ x3).

Now, the given function f is completely decomposed into superposition of Pierce
functions in two variables. The system of functions f, g1, . . . , g12 gives the circuit with
NOR gates and inverters shown in Fig. 1.
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Fig. 1. Circuit with NOR gates and inverters

5. Synthesis of a combinational circuit in the AND, OR basis
We now obtain a combinational circuit that implements the same function in the basis of

AND, OR gates with accessible variable complements. According to the Table in Section 3,
the bi-cliques B1 = (V 1

1 , V
0
1 ) and B2 = (V 1

2 , V
0
2 ) covering the graph G have V 1

1 = V 1
2 = V 1

for AND operation and V 0
1 = V 0

2 = V0 for OR operation. It can be noted in the matrix G
that the AND operation for ϕ is desirable for the best variant of superposition f = ϕ(g1, g2)
if the matrix M0 has more rows than the matrix M1 has. Vice versa, the OR operation is
desirable if the matrix M1 has more rows than the matrix M0 has. A variant is considered
better if g1 and g2 have the less number of essential arguments. We choose OR operations
for the output function (f = g1 ∨ g2). Then, the starred bi-cliques, from which the initial
meanings of B1 and B2 must be chosen, look as follows:

({v1}, {v8, v9, v10, v11}) − x3x4;
({v3}, {v8, v9, v10, v11}) − x2x4;
({v5}, {v8, v9, v10, v11}) − x2x3x5;
({v7}, {v8, v9, v10, v11}) − x1x3x4.

({v2}, {v8, v9, v10, v11}) − x1x3;
({v4}, {v8, v9, v10, v11}) − x1x2;
({v6}, {v8, v9, v10, v11}) − x1x2x5;

The bi-cliques B1 = ({v1, v2, v3, v7}, {v8, v9, v10, v11}) with variables x1, x2, x3, x4 and
B2 = ({v4, v5, v6}, {v8, v9, v10, v11}) with variables x1, x2, x3, x5 are obtained by the same
way as in the case of NOR operation. To decompose the function f in the form f = g1∨ g2,
the following matrices are used:

x1 x2 x3 x4

M1
1 =


− − 1 1
0 − 1 −
− 1 − 1
1 − 0 0


1
2
3
4

;

x1 x2 x3 x4

M0
1 =

 0 1 0 0
1 − 1 0
1 0 0 1

5
6
7

;

x1 x2 x3 x5

M1
2 =

 0 0 − −
− 1 0 0
1 1 − 1

1
2
3

;

x1 x2 x3 x5

M0
2 =

 0 1 0 1
1 − 1 0
1 0 − −

4
5
6
.
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The graphs G1 and G2 corresponding to the functions g1 and g2 are given by the
matrices G1 and G2:

5 6 7

G1 =


x3 ∨ x4 x4 x3
x3 x1 x1 ∨ x3
x4 x4 x2
x1 x3 x4


1
2
3
4

;

4 5 6

G2 =

 x2 x1 x1
x5 x3 x2
x1 x5 x2

1
2
3
.

For decomposition g1 = g3 ∨ g4 and g2 = g5 ∨ g6, the starred bi-cliques of G1 and G2 are

({v11}, {v15, v16, v17}) − x3x4;
({v12}, {v15, v16, v17}) − x1x3;
({v13}, {v15, v16, v17}) − x2x4;
({v14}, {v15, v16, v17}) − x1x3x4.

({v21}, {v25, v26, v27}) − x1x2;
({v22}, {v25, v26, v27}) − x2x3x5;
({v23}, {v25, v26, v27}) − x1x2x5;

From these bi-cliques, the pairs (B1
1 , B

1
2) and (B2

1 , B
2
2) covering G1 and G2 are obtained,

where

B1
1 = ({v11, v13}, {v15, v16, v17}) − x2x3x4;

B1
2 = ({v12, v14}, {v15, v16, v17}) − x1x3x4;

B2
1 = ({v21, v23}, {v25, v26, v27}) − x1x2x5;

B2
2 = ({v22}, {v25, v26, v27}) − x2x3x5.

The incompletely specified functions g3, g4, g5 and g6 are given by the following matrices:

x2 x3 x4

M1
3 =

[
− 1 1
1 − 1

]
1
2 ;

x2 x3 x4

M0
3 =

 1 0 0
− 1 0
0 0 1

3
4
5

;

x1 x3 x4

M1
4 =

[
0 1 −
1 0 0

]
1
2 ;

x1 x3 x4

M0
4 =

 0 0 0
1 1 0
1 0 1

3
4
5

;

x1 x2 x5

M1
5 =

[
0 0 −
1 1 1

]
1
2 ;

x1 x2 x5

M0
5 =

 0 1 1
1 − 0
1 0 −

3
4
5

;
x2 x3 x5

M1
6 =

[
1 0 0

]
1 ;

x2 x3 x5

M0
6 =

 1 0 1
− 1 0
0 − −

2
3
4
.

The corresponding graphs G3, G4, G5 and G6 are represented by the following matrices:

3 4 5

G3 =

[
x3 ∨ x4 x4 x3
x4 x4 x2

]
1
2 ;

3 4 5

G4 =

[
x3 x1 x1 ∨ x3
x1 x3 x4

]
1
2 ;

3 4 5

G5 =

[
x2 x1 x1
x1 x5 x2

]
1
2 ;

2 3 4
G6 =

[
x5 x3 x2

]
1 .

To implement the functions g3, g4, g5 and g6, take the AND operation. Then, the starred
bi-cliques of the graphs G3, G4, G5 and G6 are

({v31,v32}, {v33})−x4;
({v31,v32}, {v34})−x4;
({v31,v32}, {v35})−x2x3;

({v41,v42}, {v43})−x1x3;
({v41,v42}, {v44})−x1x3;
({v41,v42}, {v45})−x3x4;

({v51,v52}, {v53})−x1x2;
({v51,v52}, {v54})−x1x5;
({v51,v52}, {v55})−x1x5;

({v61}, {v62})−x5;
({v61}, {v63})−x3;
({v61}, {v64})−x2.

The covers of G3, G4, G5 and G6 are

B3
1 = ({v31, v32}, {v33, v34}) − x4,

B3
2 = ({v31, v32}, {v35}) − x2x3;

B5
1 = ({v51, v52}, {v53, v55}) − x1x2,

B5
2 = ({v51, v52}, {v54}) − x1x5;

B4
1 = ({v41, v42}, {v43, v42}) − x1x3,

B4
2 = ({v41, v42}, {v45}) − x3x4;

B6
1 = ({v61}, {v62, v63}) − x3x5,

B6
2 = ({v61}, {v64}) − x2.
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These pairs define the following decompositions:

g3(x2, x3, x4) = g7(x2, x3) ∧ x4, g4(x2, x3, x4) = g8(x1, x3) ∧ g9(x3, x4),
g5(x1, x2, x5) = g10(x1, x2) ∧ g11(x1, x5), g6(x1, x3, x5) = g12(x3, x5) ∧ x2.

The functions g7, g8, g9, g10, g11 and g12 are given by the following matrices:

x2 x3

M1
7 =

[
− 1
1 −

]
;

x2 x3
M0

7 =
[

0 0
]

;

x1 x3

M1
8 =

[
0 1
1 0

]
;

x1 x3

M0
8 =

[
0 0
1 1

]
;

x3 x4

M1
9 =

[
1 −
− 0

]
;

x3 x4
M0

9 =
[

0 1
]

;

x1 x2

M1
10 =

[
0 0
1 1

]
;

x1 x2

M0
10 =

[
0 1
1 0

]
;

x1 x5

M1
11 =

[
0 −
− 1

]
;

x1 x5
M0

11 =
[

1 0
]

;
x3 x5

M1
12 =

[
0 0

]
;

x3 x5

M0
12 =

[
0 1
1 0

]
.

These matrices are used to obtain the algebraic representations of the completely specified
functions g7, g8, g9, g10, g11 and the realization of the partial function g12:

g7 = x2 ∨ x3, g8 = x1 ⊕ x3 = x1x3 ∨ x1x3, g9 = x3 ∨ x4,
g10 = x1 ∼ x2 = x1x2 ∨ x1x2, g11 = x1 ∨ x5, g12 = x3x5.

The corresponding combinational circuit with AND and OR gates is shown in Fig. 2.

Fig. 2. Circuit with AND and OR gates

6. Conclusion
The paper shows how to apply the method for bi-decomposition in the synthesis of

combinational circuits. The advantage of the suggested approach is the possibility of
constructing circuits of short delay that is characterized by the number of levels in the
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circuit. The method is convenient to be applied for incompletely specified Boolean functions,
where the functions are given by two domains of Boolean space, as opposed to completely
specified functions when the zero domains must be obtained. The “bottle-neck” of the
proposed approach is transformation CNF into DNF which is a non-polynomial problem.
Thus, the scope of application of the proposed method is limited. It would be established
by computer experiment, which is an independent research. The joint implementation of
a system of Boolean functions demands reveling the function coincidence at every level of
decomposition.
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