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Abstract. In the paper, a multi-server retrial queueing system with
MMPP arrivals is considered. The service and retrial times are expo-
nentially distributed. The two-dimension stochastic process of number
of calls in the orbit and states of service unit is analyzed. The system
of Kolmogorov differential equations is composed. The matrix form of
the equations in steady-state regime for partial characteristic functions
is written. The method of asymptotic analysis under the heavy load
condition for its solving is proposed. It is proved that the asymptotic
characteristic function of the number of calls in the orbit has the gamma
distribution with obtained parameters. Some numerical examples of com-
parison asymptotic and simulate distributions are presented.
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1 Introduction

Retrial queueing systems are mathematical models widely used in telecommu-
nication networks, computer systems, call centers, etc. [1–5]. The distinguishing
feature of such models is that an arriving call, which can not be served, does
not join a queue and does not leave the system immediately (as in classical
queueing systems). It joins to an orbit (virtual place), where a call waits some
random time and then it tries to be served. Now a large number of publications
are devoted to retrial queues. The most detailed description, the comparison of
classical queueing systems and retrial queues and detailed overviews up to 2008
are contained in monographs of J. Artalejo and A. Gómez-Corral [6], G. Falin
and J. Templeton [7].

In most papers devoted retrial queues with MAP (or MMPP), authors use
truncation methods [6,8–11] or matrix methods [12–14] and further numerical
analysis. While explicit formulas for probability distributions or performance
characteristic of complex retrial queues (e.g. with MMPP arrivals, several orbits,
non-exponential retrial or service times) cannot be usually obtained. But some
approximations or asymptotic solutions can be proposed. One of approximate
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methods is the method of diffusion approximation of retrial queue proposed in
[15,16], etc.

In this paper, the asymptotic analysis method [17,18] is used for the multi-
server retrial queue with MMPP arrivals. This method is developed in Tomsk and
has different modifications for different types of queueing models and queueing
networks. It consists of a derivation of some asymptotic equations determin-
ing models characteristics and further getting formulas for asymptotic functions
under some limit condition. In previous papers [19,20], we have obtained asymp-
totic solutions under the heavy load condition for different types of single-server
retrial queues: M/M/1, M/GI/1 and even MMPP/M/1, MMPP/GI/1. So
here, we are going to generalize our results to more complex RQ: the multi-server
system with MMPP arrivals. Retrial queues with non-Poisson arrival processes
are also studied in [1,10,12,21].

The paper is organized as follows. In Sect. 2, the considered mathematical
model is described and the stochastic process under study is defined. Section 3 is
devoted to method of asymptotic analysis and study of the retrial queue under
a limit condition of heavy load. The theorem about the gamma form of the
asymptotic characteristic function is proved and parameters of the distribution
are obtained. In Sect. 4, numerical examples of the comparison of the asymp-
totic distributions with simulation ones are shown. The last section contains
conclusions.

2 Mathematical Model

Let us describe the model under study. We consider a multi-server retrial queue-
ing system MMPP/M/N . Primary calls arrive at the system according to
Markovian Modulated Poisson Process (MMPP) defined by matrices D0 and
D1 [22,23]. If a primary call finds a server free, it starts service with exponen-
tially distributed service time with rate μ′. If all servers is busy, the call goes to
an orbit, where it stays during random time distributed by the exponential law
with rate σ. After the delay, the call makes an attempt to get service again. If
any server is free, the call gets the service, otherwise, the call instantly returns
to the orbit. The arrival process, the service times, the retrial times are assumed
to be mutually independent. The system structure is presented in Fig. 1.

The MMPP underlying process n(t) is a Markov chain with continuous time
and finite set of states n = 1, 2, . . . , W . Matrix Q = D0 + D1 = (qmv) is a
generator of the process n(t), where m, v = 1, 2, . . . , W . Matrix D1 is diagonal
with elements λn (n = 1, 2, . . . , W ). Further, we will use denotation D1 = Λ =
diag{λn}.

Let us denote a stationary probability distribution of n(t) by r, which is
row-vector uniquely determined by the following system

{
rQ = 0,
re = 1,

(1)

where e = {1, 1, . . . , 1}T and 0 = {0, 0, . . . , 0}.
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Fig. 1. Retrial queueing system MMPP/M/N

Obviously, that the fundamental rate of the arrival process is λ = r · Λ · e.
Let process i(t) define the number of calls in the orbit and k(t) define the

service unit state in the following way

k(t) =

⎧⎪⎪⎨
⎪⎪⎩

0, if all servers are free,
1, if one server is busy,
...,
N, if all servers are busy.

The aim of the study is to obtain the stationary probability distribution of
the number of calls in the orbit.

Because of process i(t) is not Markovian, we consider the multi-dimensional
process {k(t), n(t), i(t)}, which is a continuous time Markov chain.

Denote P (k, n, i, t) = P{k(t) = k, n(t) = n, i(t) = i}. The system of Kol-
mogorov equations is written for i > 0, n = 1,W as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P (0, n, i, t)

∂t
= −(λn + iσ − qnn)P (0, n, i, t) + μ′P (1, n, i, t) +

∑

v �=n

P (0, v, i, t)qvn,

∂P (k, n, i, t)

∂t
= −(λn + kμ′ + iσ − qnn)P (k, n, i, t) + λnP (k, n, i − 1, t)

+ λnP (k − 1, n, i, t) + (i + 1)σP (k − 1, n, i + 1, t)

+ (k + 1)μ′P (k + 1, n, i, t) +
∑

v �=n

P (k, v, i, t)qvn for 1 ≤ k ≤ N − 1,

∂P (N, n, i, t)

∂t
= −(λn + Nμ′ − qnn)P (N, n, i, t) + λnP (N, n, i − 1, t)

+ λnP (N − 1, n, i, t) + (i + 1)σP (N − 1, n, i + 1, t) +
∑

v �=n

P (N, v, i, t)qvn.

(2)
In steady-state regime, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(λn + iσ − qnn)P (0, n, i) + μ′P (1, n, i) +
∑
v �=n

P (0, v, i)qvn = 0,

−(λn + kμ′ + iσ − qnn)P (k, n, i) + λnP (k, n, i − 1)
+λnP (k − 1, n, i) + (i + 1)σP (k − 1, n, i + 1)
+ (k + 1)μ′P (k + 1, n, i) +

∑
v �=n

P (k, v, i)qvn = 0 for 1 ≤ k ≤ N − 1,

−(λn + Nμ′ − qnn)P (N,n, i) + λnP (N,n, i − 1)
+λnP (N − 1, n, i) + (i + 1)σP (N − 1, n, i + 1) +

∑
v �=n

P (N, v, i)qvn = 0,

(3)
where P (k, n, i) = lim

t→∞ P (k, n, i, t).

Let us introduce row-vectors Pk(i) = {P (k, 1, i), P (k, 2, i), . . . , P (k,W, i)}.
Then System (3) can be written in matrix form as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−P0(i)(Λ + iσI − Q) + μ′P1(i) = 0,
−Pk(i) (Λ + kμ′I + iσI − Q) + Pk−1(i)Λ
+σ(i + 1)Pk−1(i + 1) + (k + 1)μ′Pk+1(i) = 0 for 1 ≤ k ≤ N − 1,
−PN (i) (Λ + Nμ′I − Q) + PN−1(i)Λ
+σ(i + 1)PN−1(i + 1) + PN (i − 1)Λ = 0.

(4)

where I is the identity matrix.
Denoting partial characteristic functions by Hk(u) =

∑
i

ejuiPk(i), where

k = 0, 1, ..., N and j =
√−1, System (4) is rewritten as follows⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H0(u)(Q − Λ) + jσH′
0(u) + μ′H1(u) = 0,

Hk(u) (Q − Λ − kμ′I) + jσH′
0(u) + Hk−1(u)Λ

−jσe−juH′
k−1(u) + (k + 1)μ′Hk+1(u) = 0 for 1 ≤ k ≤ N − 1,

HN (u) (Q − Λ − Nμ′I) + HN−1(u)Λ + HN (u)Λeju

−jσe−juH′
N−1(u) = 0,

(5)

System (5) can not be exactly solved. Thus, we propose the method of asymp-
totic analysis under the heavy load condition [19,20] for its solution.
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3 Asymptotic Analysis Under Heavy Load Condition

Let us introduce load parameter ρ = (rΛe)/(Nμ′). Denoting μ = ρNμ′ (such as
μ = rΛe), System (5) is rewritten as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H0(u)(Q − Λ) + jσH′
0(u) +

μ

ρN
H1(u) = 0,

Hk(u)
(
Q − Λ − kμ

ρN
I
)

+ jσH′
0(u) + Hk−1(u)Λ

−jσe−juH′
k−1(u) +

(k + 1)μ
ρN

Hk+1(u) = 0 for 1 ≤ k ≤ N − 1,

HN (u)
(
Q − Λ − Nμ

ρN
I
)

+ HN−1(u)Λ + HN (u)Λeju

−jσe−juH′
N−1(u) = 0,

(6)

Let us prove the following theorem.

Theorem 1. The limit characteristic function h(u) of the process of the number
of calls in the orbit in the MMPP/M/N retrial queueing system in the steady-
state regime under the heavy load condition has the gamma distribution form

h(u) = lim
ρ→1

E
{

ejw(1−ρ)i(t)
}

=
(

1 − ju

(1 − ρ)β

)−γ

,

with parameters
β =

μ

vΛe + μ
, γ = 1 +

μ

Nσ
β, (7)

where vector v is a solution of the following system
{

vQ = r(μI − Λ),
ve = 0.

Proof. The proof consists of two parts: deriving of asymptotic equations and its
solving.

Derivation of Asymptotic Equations
First of all, we introduce the notations:

ε = 1 − ρ, u = εw,

H0(u) = εNF0(w, ε),H1(u) = εN−1F1(w, ε), ...,HN (u) = FN (w, ε).
(8)

The condition of heavy load is defined as ρ ↑ 1 (or ε ↓ 0).
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System of Eqs. (6) can be rewritten in Notations (8) as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εNF0(w, ε)(Q − Λ) + jσεN−1 ∂F0(w, ε)
∂w

+
μ

(1 − ε)N
εN−1F1(w, ε) = 0,

εN−kFk(w, ε)
(
Q − Λ − kμ

(1 − ε)N
I
)

+ jσεN−k−1 ∂Fk(w, ε)
∂w

+ εN−(k−1)Fk−1(w, ε)Λ − jσe−jεwεN−(k−1)−1 ∂Fk−1(w, ε)
∂w

+
(k + 1)μ
(1 − ε)N

εN−(k+1)Fk+1(w, ε) = 0 for 1 ≤ k ≤ N − 1,

FN (w, ε)
(
Q − Λ − μ

(1 − ε)
I
)

+ εFN−1(w, ε)Λ

+FN (w, ε)Λejεw − jσe−jεw ∂FN−1(w, ε)
∂w

= 0,

After some transformations, we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε(1 − ε)F0(w, ε)(Q − Λ) + jσ(1 − ε)
∂F0(w, ε)

∂w
+

μ

N
F1(w, ε) = 0,

εFk(w, ε)
(

(Q − Λ)(1 − ε) − kμ

N
I
)

+ jσ(1 − ε)
∂Fk(w, ε)

∂w

+ ε2(1 − ε)Fk−1(w, ε)Λ − jσe−jεwε(1 − ε)
∂Fk−1(w, ε)

∂w

+
(k + 1)μ

N
Fk+1(w, ε) = 0 for 1 ≤ k ≤ N − 1,

FN (w, ε) ((Q − Λ)(1 − ε) − μI) + ε(1 − ε)FN−1(w, ε)Λ

+ (1 − ε)ejεwFN (w, ε)Λ − jσ(1 − ε)e−jεw ∂FN−1(w, ε)
∂w

= 0,

(9)

First of all, in System (9) we make limit ε → 0 .⎧⎪⎪⎨
⎪⎪⎩

jσF′
0(w) +

μ

N
F1(w) = 0,

jσF′
k(w) +

(k + 1)μ
N

Fk+1(w) = 0,

FN (w) (Q − μI) − jσF′
N−1(w) = 0,

(10)

where Fk(w) = lim
ε→0

Fk(w, ε).

Let us consider expansions of functions Fk(w, ε) in the form

Fk(w, ε) = Fk(w) + εfk(w) + O(ε2), (11)

where O(ε2) is an infinitesimal value of order ε2.
Substituting Expansions (11) into System (6) and making some transforma-

tions, we obtain the following system of equations in limit ε → 0⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

F0(w)(Q − Λ) − jσF′
0(w) + jσf ′

0(w) +
μ

N
f1(w) = 0,

Fk(w)
(
Q − Λ − kμ

N
I
)

− jσF′
k(w)

+ jσf ′
k(w) − jσF′

k−1(w) +
(k + 1)μ

N
fk+1(w) = 0 for 1 ≤ k ≤ N − 1,

−FN (w)Q + fN (w) (Q − μI) + FN−1(w)Λ
+ jwFN (w)Λ + jσ(1 + jw)F′

N−1(w) − jσf ′
N−1(w) = 0.

(12)
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In addition, we sum up all equations of System (6) and multiply the result by
vector e.

FN (w, ε)ejwεΛe + jσ

N−1∑
k=0

εN−k−1 ∂Fk(w, ε)
∂w

e = 0.

Substituting Expansions (11) and writing equalities for members with equal
powers of ε, we obtain two additional scalar equations

{
FN (w)Λe + jσF′

N−1(w)e = 0,
jwFN (w)Λe + fN (w)Λe + jσF′

N−2(w)e + jσf ′
N−1(w)e = 0.

(13)

Thus, we have System (10), (12), (13) of 2(N + 1) matrix and two scalar differ-
ential equations.

Analysis of the Equations
The partial characteristic function of the number of calls in the orbit is calculated
as follows

H(u) = E
{

ejui(t)
}

=
N∑

k=0

Hk(u)e.

Under the heavy load condition, the asymptotic characteristic function h(u)
can be written as

h(u) = lim
ρ→1

E
{

ejw(1−ρ)i(t)
}

= FN

(
u

1 − ρ

)
e + O(ε). (14)

Therefore, it is necessary to find only scalar function FN (w)e from Equations
(10), (12), (13). We make it in three steps.

Step 1. By using Equations (10), we obtain that

− jσF′
k(w) =

(k + 1)μ
N

Fk+1(w) for k < N. (15)

Comparing the equation for k = N in (10) and the equation for k = N − 1
of (15), we get

FN (w)Q = 0.

Taking into account (1), function FN (w) can be written as the following product:

FN (w) = r · Φ(w), (16)

where Φ(w) is an unknown scalar function.
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Step 2. From Eqs. (12) and Equalities (15), it can be written that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

jσf ′
0(w) = −F0(w)(Q − Λ) − μ

N
F1(w) − μ

N
f1(w),

jσf ′
k(w) = −Fk(w)(Q − Λ − kμ

N
I)

− (k + 1)μ

N
Fk+1(w) − kμ

N
Fk(w) − (k + 1)μ

N
fk+1(w) for 1 ≤ k ≤ N − 2,

jσf ′
N−1(w) = −FN−1(w)(Q − Λ − N − 1μ

N
I)

− (N)μ

N
FN (w) − N − 1μ

N
F(N−1)(w) − (N)μ

N
fN (w),

jσf ′
N−1(w) = −fN (w)(Q − μI) + FN−1(w)Λ + jwFN (w)Λ − (1 + jw)μFN (w).

(17)
Subtracting the two last equations of System (17), we obtain

(FN−1(w) + fN (w))Q = FN (w)Q + jwFN (w)(Λ − μI).

Substituting Formula (16), we have the following equation

(FN−1(w) + fN (w))Q = −jwΦ(w)r(Λ − μI). (18)

Let us introduce the following notation:

FN−1(w) + fN (w) = −jwΦ(w)v, (19)

where vector v is a solution of the equation

vQ = r(μI − Λ). (20)

For Eq. (20) solution existence, it is necessary that ranks of the system matrix
and augmented one will be equal. Because r(μI − Λ)e = 0, that it is true.

Matrix Eq. (20) has infinitely many solutions. We can present the general
solution as follows

v = Cr + v0,

where C = const and v0 is a particular solution, for example, v0e = 0.
Step 3. Substituting (10), (15), (17) into the last equation of System (13),

we obtain the following equation:

2jwFN (w)Λe + fN (w)Λe − (N − 1)μ
N

FN−1(w)e

−μfN (w)e + FN−1(w)Λe − (1 + jw)μFN (w)e = 0.

Taking into account Equality (19), we have

jwΦ(w)(2rΛe + v(Λe − μe) − μ) − μΦ(w) +
μ

N
FN−1(w)e = 0. (21)

The we differentiate this equation. Taking into account (15), we obtain the
following differential equation

jΦ(w)
(
v(Λe − μe) + μ +

μ2

Nσ

)
− Φ′(w) (μ − jw(v(Λe − μe) + μ)) = 0.

(22)
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Let us divide (22) by (vΛe − μve + μ) and introduce denotations

β =
μ

vΛe − μve + μ
, γ = 1 +

μ

Nσ
β.

Thus Eq. (22) is rewritten as

Φ′(w)(β − jw) = jγΦ(w).

Clearly, the solution of this equation has the form

Φ(w) = C0

(
1 − jw

β

)−γ

.

From formula (16), we obtain

FN (w) = r · C0

(
1 − jw

β

)−γ

.

Taking into account v = Cr + v0, it is easy to show that the parameters β and
γ do not depend on C. Choosing a solution v0 such as

{
v0Q = r(μI − Λ),
v0e = 0,

we can write that
β =

μ

v0Λe + μ
, γ = 1 +

μ

Nσ
β,

Returning to characteristic function (14), we can write that

h(u) = C0

(
1 − ju

β

)−γ

,

where C0 = 1 due to the normalisation requirement.
Thus, we have proved that the asymptotic characteristic function of the prob-

ability distribution of the number of calls in the orbit under the heavy load
condition has the gamma distribution form.

4 Numerical Analysis

In this section, we present some numerical examples and make conclusions about
the asymptotic method applicability area. First of all, we denote the probability
distribution function of the gamma distribution with parameters (7) as Γ (x).
We will calculate of the discrete probability distribution of the number of calls
in the orbit p(i) as follows

p(i) = Γ (i + 1) − Γ (i).
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Further, we present the comparison of asymptotic and simulated distributions
for different values of the retrial queuing system parameters.

In the first example, let the retrial queue have three server (N = 3), and the
arrival MMPP have three states and be defined by following matrices

Λ =

⎡
⎣1 0 0

0 2 0
0 0 3

⎤
⎦ , Q =

⎡
⎣ -0.5 0.2 0.3

0.1 -0.3 0.2
0.3 0.6 -0.9

⎤
⎦ .

The retrial rate is σ = 1, the service rate equals μ =
rΛe
Nρ

, then the load

parameter ρ has values 0 < ρ < 1.
In Fig. 2, the comparison of the asymptotic and simulated distributions is

presented for ρ = 0.90 and ρ = 0.95, where dashed lines are the asymptotic
distributions and solid lines are simulated ones.

Fig. 2. Comparison of the asymptotic and the simulated distributions for MMPP/M/3
with a) ρ = 0.90 and b) ρ = 0.95

In the second example, let us consider a particular cases of the retrial queue
- the single-server retrial queue with following values of parameters

N = 1, σ = 1, μ =
rΛe
ρ

,

the comparison of the asymptotic and simulated distributions is presented in
Fig. 3 and 4.

Also we demonstrate a numerical example for multi-server retrial queue with

Poisson arrival process (Fig. 4), where λ = 1, N = 10, σ = 1, μ =
λ

Nρ
(Fig. 5).

In this example, the main difference between asymptotic and the simulation
distributions is in point i = 0.
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Fig. 3. Comparison of the asymptotic and the simulated distributions for the single-
server retrial queue with a) ρ = 0.90 and b) ρ = 0.95

Fig. 4. Comparison of the asymptotic and the simulated distributions for the single-
server retrial queue ρ = 0.97

Fig. 5. Comparison of the asymptotic and the simulated distributions for Poisson
arrival process with a) ρ = 0.95 and b) ρ = 0.97
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For the method accuracy estimation, we use Kolmogorov distance between
respective distribution functions:

d = max
i≥0

∣∣∣∣∣
i∑

l=0

[p̃(l) − p(l)]

∣∣∣∣∣,

where p(l) is an asymptotic probability distribution and p̃(l) is a simulated one.
In Table 1, there are values of the Kolmogorov distance for all presented numer-
ical examples.

Table 1. Kolmogorov distances d for various values of the parameter ρ

N = 1 N = 3 N = 10, λ = 1

ρ = 0.90 0.070 0.070 0.068

ρ = 0.95 0.043 0.043 0.040

ρ = 0.97 0.036 0.038 0.035

Note, we have obtained the same results of the numerical analysis for dif-
ferent arrivals and number of servers. For our purpose, the asymptotic analysis
method under the heavy load condition can be applied for ρ ≥ 0.95, where
the Kolmogorov distance between asymptotic and the simulation distributions
d ≤ 0.05.

5 Conclusions

In the paper, the multi-server retrial queueing system with MMPP arrivals has
been studied by the asymptotic analysis method under the heavy load condition.
We have proved that the asymptotic characteristic function of the number of calls
in the orbit has the gamma distribution form, as for single-server retrial queue.
In this way, we generalize our results for more complex model. By means of the
numerical analysis, we have shown a good accuracy of the proposed approxima-
tion in the applicability area ρ ≥ 0.95.
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