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Abstract. We consider a single server retrial queue with general distri-
bution of service times, collisions and r-persistent customers. The last
phenomena describes the behaviour of customers that are leaving the
system immediately if the server is busy upon arrival. We consider the
system with customers, which leave the system without servicing with
constant probability r. We provide the numerical stability analysis in
such system using the following approach. First, we build the diffusion
limit for the number of customers in the orbit and then analyze its drift
coefficient. For different system parameters, we have different stability
conditions.

Keywords: retrial queue · collisions · r-persistent customers ·
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Introduction

Retrial queues arose as models of communication systems. The basic phe-
nomenon of such systems is the retrial behavior of customers: if the server is
busy upon arrival, the customer enters the orbit and repeats the attempt to
access the server after a random amount of time.

There are several modifications of retrial queues that reflect the system
features such as collisions and non-persistent customers, which appear in vari-
ous switching communication systems and CSMA-based networks [1]. In recent
years, queueing systems with collisions are of interest due to the reborn of IEEE
802.11 wireless LANs. In papers [8,9], authors describe the markovian retrial
queue with collisions and shows applications of persistence to modeling CSMA-
CD protocols. In paper [6], the author consider similar markovian model and
takes into account the impatience of customers.

Nazarov and Sztrik with their research group have considered several models
of finite-source retrial queues with collisions [7,13,14,17–19]. The phenomena of
non-persistent customers in retrial queues was considered by [4,5]. Lakaour and
his colleagues have considered markovian models with collisions, transmission
errors and unreliable server [10,11].
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Retrial queues with collisions and impatient customers were considered in
[2,3,16]. The phenomena of impatient customers is similar to the r-persistence
due to the fact that a customer, which have not received the service upon arrival
can leave the system. However, there is some difference, because non-persistent
customers leave the system immediately with some probability and never join
the orbit.

Another model of queueing system with collisions is considered by Phung-
Duc and Fiems [15]. The model is markovian and has two phases of service. The
authors study how the division into phases affects queueing performance.

We consider retrial queue with arbitrary distribution of service times, colli-
sions and r-persistent customers. We build diffusion approximation for the num-
ber of customers in the orbit and construct the approximation of its probability
distribution under the limit condition of growing delay in the orbit. Considering
different sets of parameters, we show the numerical examples of system stability
using the obtained approximation.

The rest of the paper is organized as follows. In Sect. 1, we describe the model
structure and derive the equations for the probability distribution of system
states. Section 2 is devoted to the asymptotic-diffusion analysis of the system
under consideration. The approach is described in the paper [12]. After that, we
show the results of numerical experiments in Sect. 3. Section 4 is dedicated to
the conclusion.

1 Model Description and Problem Definition

We consider a retrial queue with an arbitrary distribution of service times defined
by the distribution function B(x). The input is stationary Poisson process with
rate λ. If the server is idle upon arrival, the incoming customer occupies it for
service. Otherwise, the collision occurs and one of the customers joins the orbit.
The other customer can also join the orbit with probability r or leave the system
with probability (1 − r).

At the orbit, a customer waits for some random time and tries again to occupy
the server. The duration of delay follows an exponential distribution with rate
σ.

Let k(t) denote the state of the server at instant t: 0, if the server is idle;
1, if the server is busy. Let i(t) denote the number of customers in the orbit at
instant t. We also introduce process z(t), which represents the residual service
time. Thus, process {k(t), i(t), z(t)} has variable number of components and
exhaustively describes the system state. We denote the probability distribution
of process {k(t), i(t), z(t)} as follows:

P0(i, t) = P{k(t) = 0, i(t) = i}, P1(i, z, t) = P{k(t) = 1, i(t) = i, z(t) < z},

and introduce the partial characteristic functions

H0(u, t) =
∞∑

i=0

ejuiP0(i, t), H1(u, z, t) =
∞∑

i=0

ejuiP1(i, z, t),
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where j is the imaginary unit. The Kolmogorov system of differential equations
for the partial characteristic functions has the following form:

∂H0(u, t)
∂t

= −λH0(u, t) + jσ
∂H0(u, t)

∂u
+

∂H1(u, 0, t)
∂z

+λeju(1 + r(eju − 1))H1(u, t) − jσ(1 + r(eju − 1))
∂H1(u, t)

∂u
,

∂H1(u, z, t)
∂t

=
∂H1(u, z, t)

∂z
− ∂H1(u, 0, t)

∂z
− λH1(u, z, t)

+ jσ
∂H1(u, z, t)

∂u
+ λH0(u, t)B(z) − jσe−ju ∂H0(u, t)

∂u
B(z).

(1)

After that, we sum up the equations of system (1). Taking the limit by
z → ∞, we obtain

∂H(u, t)
∂t

= (eju − 1)

×
{

jσe−ju ∂H0(u, t)
∂u

+ λ(1 + reju)H1(u, t) − jσr
∂H1(u, t)

∂u

}
.

(2)

Solving system (1) and equation (2) in the limit by σ → 0, we derive drift
and diffusion coefficients of approximating diffusion process.

2 Asymptotic-Diffusion Analysis

In system (1) and equation (2), we introduce the following notations:

σ = ε, u = εw, τ = εt,

H0(u, t) = F0(w, τ, ε), H1(u, z, t) = F1(w, z, τ, ε),
(3)

and obtain the system of equations

ε
∂F0(w, τ, ε)

∂τ
= −λF0(w, τ, ε) + j

∂F0(w, τ, ε)
∂w

+
∂F1(w, 0, τ, ε)

∂z

+λejwε(1 + r(ejwε − 1))F1(w, τ, ε) − j(1 + r(ejwε − 1))
∂F1(w, τ, ε)

∂w
,

ε
∂F1(w, z, τ, ε)

∂τ
=

∂F1(w, z, τ, ε)
∂z

− ∂F1(w, 0, τ, ε)
∂z

− λF1(w, z, τ, ε)

+ j
∂F1(w, z, τ, ε)

∂w
+ λF0(w, τ, ε)B(z) − je−jwε ∂F0(w, τ, ε)

∂w
B(z),

ε
∂F (w, τ, ε)

∂τ
= (ejwε − 1)

×
{

je−jwε ∂F0(w, τ, ε)
∂w

+ λ(1 + rejwε)F1(w, τ, ε) − jr
∂F1(w, τ, ε)

∂w

}
.

(4)

We solve system (4) in the limit by ε → 0 and formulate the following theorem.
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Theorem 1. In considered retrial queue, under the limit condition σ → 0, the
following equality holds:

lim
σ→0

Eejwσi( τ
σ ) = ejwx(τ),

where x(τ) is a solution of differential equation

x′(τ) = −x(τ)r0 + [λ + (λ + x(τ))r]r1, (5)

values r0, r1 have the following form:

r0 =
1

2 − B∗(λ + x)
, r1 =

1 − B∗(λ + x)
2 − B∗(λ + x)

. (6)

Here B∗(s) is the Laplace-Stieltjes transform (LST) of the distribution function
of the service times B(x).

Proof. We assume that lim
ε→0

Fk(w, z, τ, ε) = Fk(w, z, τ) and consider system (4)
in the limit by ε → 0. After that, we seek the solution in the form

F0(w, τ) = r0e
jwx(τ), F1(w, z, τ) = r1(z)ejwx(τ),

which give us the following system:

−(λ + x)r0 + r′
1(0) + (λ + x)r1 = 0,

r′
1(z) − r′

1(0) − (λ + x)r1(z) + (λ + x)r0B(z) = 0,
x′(τ) = −x(τ)r0 + [λ + (λ + x(τ))r]r1.

(7)

Here r1 = r1(∞). The last equation of system (7) coincides with (5). From the
first equation of system (7), we have

r′
1(0) = (λ + x)(r0 − r1).

Substituting the equality into the second equation yields

r′
1(z) − (λ + x)(r0 − r1) − (λ + x)r1(z) + (λ + x)r0B(z) = 0.

We apply the Laplace-Stieltjes transform to the obtained differential equation
and obtain

r∗
1(s)(λ + x − s) = (λ + x)r1 − (λ + x)r0(1 − B∗(s)).

If we set s = λ + x in the last equation, we can write

(λ + x)r1 − (λ + x)r0(1 − B∗(λ + x)) = 0,

which we finally consider as system together with the normalization condition
r0 + r1 = 1. We have

r0 =
1

2 − B∗(λ + x)
, r1 =

1 − B∗(λ + x)
2 − B∗(λ + x)

,

which coincides with (6).
We note that r0 and r1 depend on τ since they depend on x. We omit the

arguments to simplify the expressions.
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From (5), we denote function

a(x) = −xr0 + (λ + (λ + x)r)r1. (8)

For the second step of analysis, we make the following substitutions in equa-
tions (1)–(2):

H0(u, t) = ej u
σ x(σt)H

(2)
0 (u, t), H1(u, z, t) = ej u

σ x(σt)H
(2)
1 (u, z, t).

Thus, we obtain the equations for the partial characteristic functions of cen-
tered number of customers in the orbit. After that, we introduce the following
substitutions:

σ = ε2, u = wε, τ = tε2,

H
(2)
0 (u, t) = F

(2)
0 (w, τ, ε), H

(2)
1 (u, z, t) = F

(2)
1 (w, z, τ, ε),

(9)

and obtain the system of equations

ε2
∂F

(2)
0 (w, τ, ε)

∂τ
+ jwεa(x)F (2)

0 (w, τ, ε) = −(λ + x)F (2)
0 (w, τ, ε)

+ jε
∂F

(2)
0 (w, τ, ε)

∂w
+

∂F
(2)
1 (w, 0, τ, ε)

∂z

+ (λejwε + x)(1 + r(ejwε − 1))F (2)
1 (w, τ, ε)

− jε(1 + r(ejwε − 1))
∂F

(2)
1 (w, τ, ε)

∂w
,

ε2
∂F

(2)
1 (w, z, τ, ε)

∂τ
+ jwεa(x)F (2)

1 (w, z, τ, ε) =
∂F

(2)
1 (w, z, τ, ε)

∂z

− ∂F
(2)
1 (w, 0, τ, ε)

∂z
− (λ + x)F (2)

1 (w, z, τ, ε) + jε
∂F

(2)
1 (w, z, τ, ε)

∂w

+ (λ + xe−jwε)F (2)
0 (w, τ, ε)B(z) − jεe−jwε ∂F

(2)
0 (w, τ, ε)

∂w
B(z),

ε2
∂F (2)(w, τ, ε)

∂τ
+ jwεa(x)F (2)(w, τ, ε)

= (ejwε − 1)

{
jεe−jwε ∂F

(2)
0 (w, τ, ε)

∂w
− xe−jwεF

(2)
0 (w, τ, ε)

+ (λ + r(λejwε + x))F (2)
1 (w, τ, ε) − jεr

∂F
(2)
1 (w, τ, ε)

∂w

}
.

(10)

Solving system (10) in the limit by ε → 0, we present Theorem 2.
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Theorem 2. Function lim
ε→0

F
(2)
k (w, τ, ε) = F

(2)
k (w, τ) has the following form:

F
(2)
k (w, τ) = Φ(w, τ)rk,

where rk is given by (6), function Φ(w, τ) is the solution of equation

∂Φ(w, τ)
∂τ

= w
∂Φ(w, τ)

∂w
a′(x) +

(jw)2

2
Φ(w, τ)b(x). (11)

Function a(x) is defined by (8), b(x) is determined as follows:

b(x) = a(x) + 2[−(λ + x)(1 + r)g0 + xr0 + rλr1], (12)

where

g0 =
(a(x) + x)(1 − B∗(λ + x)) + (λ + x)a(x)B∗′(λ + x)

(λ + x)(2 − B∗(λ + x))2
.

Proof. Making the following substitutions in the system (10):

F
(2)
0 (w, τ, ε) = Φ(w, τ){r0 + jwεf0} + O(ε2),

F
(2)
1 (w, z, τ, ε) = Φ(w, τ){r1(z) + jwεf1(z)} + O(ε2), (13)

we obtain the system of equations for f0 and f1(z).

− (λ + x)f0 + f ′
1(0) + (λ + x)f1

= a(x)r0 − ∂Φ(w, τ)/∂w

wΦ(w, τ)
r0 − (λ + r(λ + x))r1 +

∂Φ(w, τ)/∂w

wΦ(w, τ)
r1,

f ′
1(z) − f ′

1(0) − (λ + x)f1(z) + (λ + x)f0B(z)

= a(x)r1(z) − ∂Φ(w, τ)/∂w

wΦ(w, τ)
r1(z) + xr0B(z) +

∂Φ(w, τ)/∂w

wΦ(w, τ)
r0B(z),

(14)

We solve system (14) using the following substitutions:

f0 = Cr0 + g0 − ∂Φ(w, τ)/∂w

wΦ(w, τ)
ϕ0,

f1(z) = Cr1(z) + g1(z) − ∂Φ(w, τ)/∂w

wΦ(w, τ)
ϕ1(z),

which yield three systems of equations. The first system coincide with the system
for r0 and r1(z). It is easy to see that the second system for ϕ0 and ϕ1(z) can be
obtained by differentiating of system (7). Thus, we can conclude that ϕk = r′

k(x).
The last system is given by

−(λ + x)g0 + g′
1(0) + (λ + x)g1 = a(x)r0 − (λ + r(λ + x))r1,

g′
1(z) − g′

1(0) − (λ + x)g1(z) + (λ + x)g0B(z) = a(x)r1(z) + xr0B(z).
(15)
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We add an additional condition g0+g1 = 0 and obtain the solution of the system
in the following form:

g0 =
(a(x) + x)(1 − B∗(λ + x)) + (λ + x)a(x)B∗′(λ + x)

(λ + x)(2 − B∗(λ + x))2
, g1 = −g0.

During the analysis, we also obtain equation for Φ(w, τ):

∂Φ(w, τ)
∂τ

= w
∂Φ(w, τ)

∂w
a′(x) +

(jw)2

2
Φ(w, τ)b(x),

which coincide with (11). Here a(x) and b(x) are given by (8) and (12), respec-
tively.

Here equation (11) is the Fourier transform of the Fokker-Planck equation for
the process approximating the number of customers in the orbit of considered
retrial queue. If we make the inverse Fourier transform, we can see that the drift
coefficient of the obtained diffusion limit is a(x) and diffusion coefficient if b(x).

Discrete function PD(i) is the approximation of the probability distribution
of the number of customers in the orbit and has the following form:

PD(i) =
D(iσ)

∞∑
n=0

D(nσ)
, (16)

where

D(z) =
1

b(z)

z∫

0

2
σ

a(x)
b(x)

dx.

We have briefly prooven theorems 1 and 2. The approach is widely described
in [12]. In this paper, we concentrate at analysis of drift coefficient of the diffusion
limit a(x), which is given by (8).

3 Numerical Examples

3.1 Bistability Case

For the numerical examples, we show the analysis of the drift coefficient a(x).
Based on the number of roots of the equation a(x) = 0, we can consider several
modes of stability. The first case occurs (Fig. 1) when the parameters of the
system are as follows:

λ = 0.258, α = 2, β = α, σ = 0.1, r = 0.98,

where α and β are the shape and scale parameters of Gamma distribution of
the service times. We note that in all cases we show graphics of a(σx), because
the number of calls in the orbit is normalized by σ. When a(x) > 0 the number
of customers in the orbit grows. On the other hand, if a(x) < 0, the number of
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Fig. 1. Drift coefficient a(x)

customers in the orbit decreases. Here we have two stability areas around roots
of equation a(x) = 0, when the sigh of a(x) turns from plus to minus. In such
case, the distribution of the number of customers in the orbit is bimodal (Fig. 2).
We also note that if a(x) < 0 when x → ∞, then the system is stable. If not,
the steady state does not exist for the current set of parameters.

3.2 Standard Stability Case

The next case occurs when the parameters of the system are as follows:

λ = 0.258, α = 1.8, β = α, σ = 0.1, r = 0.98,

where α and β are the shape and scale parameters of Gamma distribution. In
Fig. 3, we show that equation a(x) = 0 have only one root. Here we have the
standard distribution with only one mode (Fig. 4) and a(x) < 0 when x grows
to the infinity. Thus, the system is stable with such set of parameters.

3.3 Mixed Bistability Case

Another case occurs when the parameters of the system are as follows:

λ = 0.312, α = 2, β = α, σ = 0.1, r = 0.96,

where α and β are the shape and scale parameters of Gamma distribution. Here
we also can observe the bistability phenomena (Fig. 5), but the modes are too
close and affect on each other (Fig. 6).
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Fig. 2. Diffusion approximation of distribution of the number of customers in the orbit

Fig. 3. Drift coefficient a(x)

3.4 Stabilization Area in Unstable System

The last case (Fig. 7) arise when the parameters of the system are given by

λ = 0.2, α = 2, β = α, σ = 0.1, r = 1,
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Fig. 4. Diffusion approximation of distribution of the number of customers in the orbit

Fig. 5. Drift coefficient a(x)

where α and β are the shape and scale parameters of Gamma distribution.
Even if a(x) > 0 when x grows to the infinity, the distribution has a stability
area around the point where a(x) = 0. The process can spend a lot of time
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Fig. 6. Diffusion approximation of distribution of the number of customers in the orbit

Fig. 7. Drift coefficient a(x)

before leaving the stability area. Thus, if we use zero of the function a(x) as the
truncation point, we can build an approximation (Fig. 8) for the distribution of
the number of customers in the orbit using formula (16).
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Fig. 8. Diffusion approximation of distribution of the number of customers in the orbit

4 Conclusion

We have considered the retrial queue with collisions and r-persistent customers.
For the number of customers in the orbit, we have derived the approximation of
the probability distribution (16). The analysis was prepared to show that there
are several stability phenomena arise in such system. We show the numerical
examples and the cases of stability for some sets of parameters based on the
analysis of drift coefficient a(x) of the obtained diffusion limit. For the future
study, we plan to investigate the transition time between stability points in
bistable retrial queue with collisions.
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