
APPLYING INSIGHTS FROM 

MACHINE LEARNING TOWARDS 

GUIDELINES FOR THE DETECTION 

OF TEXT-BASED FAKE NEWS 

 

 

 

 

OKUHLE NGADA 

 

 

 

2021 

  



 

APPLYING INSIGHTS FROM MACHINE LEARNING TOWARDS 

GUIDELINES FOR THE DETECTION OF TEXT-BASED FAKE NEWS 

 

By 

 

Okuhle Ngada 

 

 

 

 

Submitted in fulfilment of the requirements for the degree of 

Master of Information Technology 

to be awarded at the  

Nelson Mandela University 

December 2021 

 

 

 

 

 

Supervisor: Prof. Bertram Haskins 

 

 



 
 

 

 

PERMISSION TO SUBMIT FINAL COPIES 

OF TREATISE/DISSERTATION/THESIS TO THE EXAMINATION OFFICE 

 

Please type or complete in black ink 

 
FACULTY:    

 

SCHOOL/DEPARTMENT:    
 

I, (surname and initials of supervisor)    
 

and (surname and initials of co-supervisor)    
 

the supervisor and co-supervisor respectively for (surname and initials of 
 
candidate)   

 

(student number)  a candidate for the (full description of qualification) 
 
 
 

with a treatise/dissertation/thesis entitled (full title of treatise/dissertation/thesis): 
 
 

 
 

 
 
 
 
 

 

It is hereby certified that the proposed amendments to the treatise/dissertation/thesis have been 
effected and that permission is granted to the candidate to submit the final copies of his/her 
treatise/dissertation/thesis to the examination office. 

 
 
 

 
 

SUPERVISOR DATE 

 
And 

 
 
 
 
 

 

CO-SUPERVISOR DATE 

213215136

Applying Insights From Machine Learning Towards Guidelines for the Detection of Text-Based

Fake News

Faculty of Engineering, the Built Environment and Technology 

School of Information Technology

 Haskins, BP

Ngada, O

Master of Information Technology

1 November 2021



 

i 
 

DECLARATION 

I, Okuhle Ngada s213215136, hereby declare that the treatise/ dissertation/ thesis for 

Students qualification to be awarded is my own work and that it has not previously 

been submitted for assessment or completion of any postgraduate qualification to 

another University or for another qualification. 

 

_________________________________ 

Okuhle Ngada 

 

 

 

 

 

 

 

 

 

Official use: 

In accordance with Rule G5.11.4, 

5.11.4 A treatise/dissertation/thesis must be accompanied by a written declaration on 

the part of the candidate to the effect that it is his/her own work and that it has not 

previously been submitted for assessment to another University or for another 

qualification. However, material from publications by the candidate may be embodied 

in a treatise/dissertation/thesis 



 

ii 
 

Abstract 

Web-based technologies have fostered an online environment where information can 

be disseminated in a fast and cost-effective manner whilst targeting large and diverse 

audiences. Unfortunately, the rise and evolution of web-based technologies have also 

created an environment where false information, commonly referred to as “fake news”, 

spreads rapidly. The effects of this spread can be catastrophic.  

Finding solutions to the problem of fake news is complicated for a myriad of reasons, 

such as: what is defined as fake news, the lack of quality datasets available to 

researchers, the topics covered in such data, and the fact that datasets exist in a 

variety of languages. The effects of false information dissemination can result in 

reputational damage, financial damage to affected brands, and ultimately, 

misinformed online news readers who can make misinformed decisions.  

The objective of the study is to propose a set of guidelines that can be used by other 

system developers to implement misinformation detection tools and systems. The 

guidelines are constructed using findings from the experimentation phase of the 

project and information uncovered in the literature review conducted as part of the 

study. A selection of machine and deep learning approaches are examined to test the 

applicability of cues that could separate fake online articles from real online news 

articles. Key performance metrics such as precision, recall, accuracy, F1-score, and 

ROC are used to measure the performance of the selected machine learning and deep 

learning models. To demonstrate the practicality of the guidelines and allow for 

reproducibility of the research, each guideline provides background information 

relating to the identified problem, a solution to the problem through pseudocode, code 

excerpts using the Python programming language, and points of consideration that 

may assist with the implementation.  
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1 Chapter 1 - Introduction 

The world has entered an era where facts are being replaced by emotions and 

personal beliefs. The truth is not easy to identify at first glance, given the rise of online 

web technologies facilitating the easy spread of information. Fake News is a 

catchphrase used to discredit sources lacking substantial evidence (Fernandez, 2017). 

The catchphrase has seen a rise in popularity thanks to social media, mainstream 

news firms, and public figures. The term has a much broader meaning – widely 

accepted definitions are clickbait, propaganda, commentary/opinion, and 

humour/satire (Campan, Cuzzocrea, & Truta, 2017). Social media platforms, news 

firms, individuals and organisations with malicious intent have aided in the propagation 

of fake news. 

1.1.1 The Global Fake News Epidemic 

Social networking platforms have demonstrated the wide reach and impact they have 

on society. Facebook has a global user base of 2.2 billion, while Twitter has 310 million 

users worldwide (Statistica, 2018). In the South African social networking space, 

Goldstuck & Patricios (2017) note 16 million Facebook users and 8 million Twitter 

users. Social media use is widespread, and many posts shared on these platforms 

relate to the dissemination of news. In a report published by Stockling, Barthel, & 

Grieco (2018), which sampled 9.7 million tweets on the topic of immigration, it was 

found that 75% of the tweets had a link to at least one online news organisation. In the 

subset of tweets that included links to any websites, 42% of such tweets linked to news 

organisations, while 29% linked to other information providers, such as blogs, non-

profit websites and governmental websites (Stockling, Barthel, & Grieco, 2018).   

At the same time, advancements in technology make it faster, simpler, and cheaper 

to create professional websites. Such advancements have been exploited to create 

polished websites, capable of generating substantial revenue (Fernandez, 2017). 

Online fake news websites often generate revenue by displaying adverts on related 

websites, through online advertising networks. During the 2016 US Elections, 

teenagers in the city of Veils, Macedonia created 100 websites that favoured 

presidential candidate, Donald Trump (Subramanian & Martin, 2017). One of the 

teenagers reported he had earned as much as $16,000 from running online 

advertisements through advertising networks (Subramanian & Martin, 2017). Allcott & 
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Gentzkov (2017) state two reasons which motivate an author to create false content. 

The first reason is the substantial monetary gains made through running adverts for 

advertising networks. The second reason is to spread the ideals of the author (Allcott 

& Gentzkov, 2017).  

1.1.2 Fake News in South Africa 

In recent years, South Africa has experienced several instances of misinformation 

dissemination. The effects of such misinformation in South Africa can be seen through 

high racial tensions, a general distrust in the government and related organisations, 

and the shifting viewpoints of many South Africans. The most notable instances of 

false information dissemination in the country include the Bell Pottinger scandal, and 

the former UNISA employee exposed for operating a network of fake news websites.  

During a time where state capture took the centre stage of South African politics, 

Wasserman  (2017) found that the infamous Gupta family used PR firm, Bell Pottinger, 

to create a storyline that the supporters of the former president, Jacob Zuma, were 

victims of ‘white monopoly capital’. Media houses and organisations, such as Africa 

News Network 7, The New Age, and Black First Land First (BLF) were linked to tweets 

aimed at countering allegations made in the former Public Protector’s report on state 

capture (Wasserman, 2017).  

In an investigation led by popular South African news firm News24, it was found a 

University of South Africa (UNISA) employee and his sibling were responsible for a 

series of fake news websites and social media accounts (le Roux, 2018). The authors 

generated advertising revenue through 15 of the fake news websites, by using a single 

Google AdSense ID (le Roux, 2018).  

In the cases briefly introduced, it is evident that reputable organisations, such as well-

known news firms and agencies, can be used to spread false narratives on topics. The 

Bell Pottinger scandal and the related fake tweets have played a role in rising racial 

tensions and mistrust in South Africa. Online news consumers are led to formulate 

misguided opinions on organisations, brands, or people due to consuming fake news. 

The rapid spread of information online makes the task of manually identifying fake and 

real news articles a time-consuming, and complicated task.  
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1.1.3 Current Initiatives in Addressing the Spread of Fake News 

The rapid advancements in technology have facilitated the formation of many online 

fact-checking organisations. A few of the most popular organisations are Snopes 

(https://www.snopes.com/), Africa Check (https://africacheck.org/), PolitiFact 

(https://www.politifact.com/) and FactCheck (https://www.factcheck.org/). Fact check 

organisations employ teams of journalists who verify claims and the authenticity of 

articles on the internet (Batchelor, 2017). Though many fact-checking organisations 

exist, Batchelor (2017) notes these organisations vary in thoroughness, and points out 

such organisations have shown bias (Batchelor, 2017).  

Other initiatives aimed at combatting false information dissemination include the 

contributions made by Zimdar (2016). Zimdar (2016) provides a collection of fake news 

websites, and a set of guidelines that assist with assessing the credibility of news 

sources (Zimdar, 2016). In South Africa, forum users of the popular website, 

MyBroadband, created a forum thread where a collection of fake news sites are 

regularly updated (MyBroadband, 2017).  

 

Figure 1.1: List of known fake news websites curated by forum users of the MyBroadband forums 

(MyBroadband, 2017).

https://www.snopes.com/
https://africacheck.org/
https://www.politifact.com/
https://www.factcheck.org/
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1.1.4 Machine Learning and Fake News Detection 

Research in the Natural Language Processing (NLP) and Machine Learning fields 

have shown the usefulness and effectiveness of such technologies in the detection of 

fake news. Advancements in the availability of data (in terms of dataset size, lengths 

of texts, and languages used) have facilitated research capable of producing state-of-

the-art results. A summary of such developments is described below.  

Vlachos and Riedel (2014) released a dataset consisting of statements taken from 

Channel 4 and PolitiFact. Both websites maintain collections of statements, which 

have been verified (Vlachos & Riedel, 2014a). Noting the shortcomings in the dataset 

released by Vlachos & Riedel (2014), Wang (2017) released the LIAR dataset, 

consisting of 12 836 statements. Dyson & Golab (2017) used datasets authored by 

OpenSources (n.d.) and Signal Media (2016) to perform the fake news detection 

classification task, using 5 machine learning algorithms, namely Support Vector 

Machines, Stochastic Gradient Descent, Gradient Boosting, Bounded Decision Trees 

and Random Forests. Hassan, Arslan, Li, & Tremayne (2017) created ClaimBuster – 

a system that uses a selection of machine learning algorithms, such as Multinomial 

Naïve Bayes Classifier, Support Vector Machine and the Random Forest to classify 

statements into one of three possible classes.  Ahmed, Traore, & Saad (2017) perform 

the task of fake news detection, using 6 machine learning algorithms, namely, Support 

Vector Machine (SVM), Linear Support Vector Machine (LVSM), K-Nearest Neighbour 

(KNN), Decision Tree (DT), Stochastic Gradient Descent (SGD) and Linear 

Regression (LR) and a custom dataset that sources real online news articles from 

Reuters, an online news firm, and a fake online news collection from a dataset hosted 

on Kaggle.com (Ahmed et al., 2017).  

From a text-analysis perspective, researchers have highlighted some common 

differences that should be considered when discerning false from real news articles.  

Conroy, Rubin, & Chen (2015) mention two key differences that can be used in 

differentiating false articles from real articles. The first difference is observed by 

assessing the correlation between an article’s title and body – article titles and 

contents in fake news articles tend not to correlate (Conroy, Rubin, & Chen, 2015). 

The second difference, according to Conroy, Rubin, & Chen (2015), can be observed 

in articles that use questioning headlines when the contents of the article may not be 

truthful. The authors add that questioning headlines make online news readers 
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assume the article is truthful (Conroy, Rubin, & Chen, 2015). Such differences can be 

quantified to a numeric value. Wu, Cheng, & Chai (2017) employ cosine similarity to 

calculate the similarity of an article’s headline to the article body. Choudary & Arora 

(2020) use parts of speech tags to quantify grammar usage in articles.  When it comes 

to online reviews, Feng & Hirst (2013) state two attributes found in fake online reviews. 

Fake reviews contain contradictions, and they often fail to mention aspects seen in 

other truthful reviews (Feng & Hirst, 2013).  

1.2 Research Problem 

Fake news-based misinformation has many consequences such as distrust in firms, 

brands, or organisations, as well as social and economic ramifications. Online news 

readers cannot accurately differentiate fake news articles from real news articles due 

to the ease of creating fake news websites that appear professional and legitimate. 

This problem is further exacerbated by inadequate fact verification on social media 

websites. Additionally, the rapid spread of information online makes manual fact 

verification a time-consuming task.  Though numerous fact-checking organisations 

exist, such organisations have had their thoroughness questioned, and in some cases, 

had been criticised for showing bias.  

1.3 Problem Statement 

Due to the rapid spread of online misinformation, in the form of fake news, manual 

approaches employed to differentiate fake news from real news articles, are time 

consuming and inadequate, given the rapid dissemination of online news.  

1.4 Thesis Statement 

Using common indicators that differentiate fake online news articles from real online 

news articles, machine learning approaches could be used to automate the detection 

of fake news articles. 

1.5 Research Objectives 

The defined primary research objective for the study is:  

Develop guidelines for the use of machine learning to identify text-based fake 

news. 

To support the primary research objective, three secondary research objectives are 

defined:  
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1. Identify the motives behind the propagation of fake news.  

2. Identify appropriate indicators, from literature, which could suggest an article is 

fake news.  

3. Validate the identified indicators through the application of selected machine 

learning algorithms. 

1.6 Research Methodology 

The project employs numerous quantitative research methods, following a systematic 

approach. Research methodology describes a systematic way of undertaking 

research and solving research questions (Sarkar & Sahu, 2018). Quantitative research 

methods collect numeric, statistical, measurable data to provide answers for a 

phenomenon (Earl, 2010). Figure 1.2 illustrates the research process undertaken for 

this project. This study employs the following research methods: Literature Review, 

Experimentation, and Argumentation. 

1.6.1 Literature Review 

The objective of the literature review is to paint a clear picture as to what fake news 

entails, uncover what academics in the fake news research realm have published, as 

well as serve as guidance in this research project. The literature review identifies gaps 

in current research and allows the researcher to place their work relative to current 

findings (Jaidka, Khoo, & Na, 2013). Research in automated fake news detection is 

particularly useful in this project – it gives insight into what techniques are most 

applicable, as well as highlighting shortfalls of current automated fake news 

implementations. The literature review defines possible indicators of articles being 

fake news, and it makes a case as to why fake news is a problem worth investigating. 

The literature review addresses secondary research objectives 1 and 2, making clear 

the common characteristics and criteria constituting fake news, as well as the motive 

behind the propagation of fake news. To better present the case of why fake news is 

a problem, and what parties stand to gain or lose from the spread of fake news, it is 

necessary to unpack the reasons why an individual or organisation would create fake 

news.  

1.6.2 Experimentation 

Experiments are performed to test a theory, prove a theory, or explore an idea (Olivier, 

2009). The purpose of using experimentation in this project is to validate the 
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effectiveness of indicators, highlighted in the literature review, using machine learning. 

Ahmed, Traore, & Saad (2017) explore the applicability of n-gram features for fake 

news detection, using 6 machine learning algorithms namely, Stochastic Gradient 

Descent (SGD), Support Vector Machine (SVM), Linear Support Vector Machine 

(LSVM), K-Nearest Neighbour (KNN) and Decision Tree (DT) (Ahmed, Traore, & Saad, 

2017). For deep learning, Yang, et al. (2018) used a convolutional neural network 

architecture as part of a model for fake news detection. Experimentation addresses 

the secondary research objective 3. 

1.6.3 Argumentation 

Argumentation aims at convincing critics of the acceptability of your viewpoint, using 

a collection of statements (usually facts) as the premise (Van Eemeren & Grootendorst, 

2004). Argumentation is used in defining an initial set of fake news identifiers from the 

literature in conjunction with selecting applicable machine learning and deep learning 

algorithms to test the effectiveness of the identified fake news indicators. The premise 

of arguments is based on findings uncovered in the literature review, in conjunction 

with findings from the experimentation phase of the project. Argumentation addresses 

secondary objectives 2 and 3. 
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Figure 1.2: Research process diagram for this research project 
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1.7 Delineation 

Publicly available datasets of online news articles, authored by Bisaillon (2020) and 

Szpakowski (2018), are employed as sources of data for the experimentation phase 

of the project. For experimentation purposes, the task of fake news detection is treated 

as a binary classification problem. The experimentation phase of the project is 

conducted using only historic datasets; it is not applied to a live, real-world 

environment. 

1.8 Ethical Consideration 

In the experimentation phase, the required data is sourced from multiple, full online 

news datasets, which are curated and maintained by various organisations for fake 

news research. Furthermore, the related organisations have licensed such datasets 

free for the public to use. University ethical clearance, in connection to this project, is 

not required as this project’s primary source of data relies on publicly available fake 

news datasets.  

1.9  Layout of the Thesis 

 

Figure 1.3: Chapter layout for the research project 

Chapter 1 introduces the domain area of this research project. The chapter provides 

a high-level view of fake news and the problems the info-demic presents. The effects 

of such misinformation, in a global and South African context, are also presented. The 

chapter provides an overview of some related work carried out by authors who have 
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investigated the use of machine learning in the detection of fake news. These works 

serve as the necessary foundation needed to prove automated fake news detection is 

possible. Using the high-level view, defined in Chapter 1, Chapter 2 further expands 

on this by reporting on fake news in a computational context. This chapter describes 

what fake news is, explains why it is a problem that should be resolved, and highlights 

current difficulties in addressing this phenomenon. The chapter ends off by introducing 

various solutions tested by leading researchers in this realm. Using the suggested 

solutions from Chapter 2, Chapter 3 reports on machine learning and deep learning 

approaches and how these methods have been used to tackle online misinformation. 

Extensive coverage of related works is also provided. Chapter 4 expands on the 

research methodology and design undertaken in this research project. Using 

background information uncovered in Chapters 2 and 3. Chapter 5 deals with the 

experimentation component of the project. Using possible indicators for fake news, as 

highlighted in Chapter 2, and the available machine learning and deep learning 

approaches mentioned in Chapter 3, the effectiveness of such indicators and the 

viability of automated fake news detection is thoroughly examined. Chapter 5 closes 

with a discussion and further analysis of the results obtained, and how the 

experimentation observations and results compare with existing literature. Chapter 6 

presents a set of guidelines for the detection of text-based fake news stories. Chapter 

7 summarizes the work undertaken in this project and concludes the research project.  

1.10 Conclusion 

This chapter introduces fake news and why it is a problem worthy of investigation. 

Machine learning, and its potential use for mitigating the fake news problem, is also 

introduced. To solve the issue highlighted in the problem area, a primary objective and 

a series of secondary objectives are stated.  Finally, the research process, delineation, 

and chapter layout are presented. Chapter 2 provides more background on the 

concept of fake news by exploring literature on the problem, discussing how fake news 

benefits its authors while negatively impacting the public, and examining current 

solutions to the problem.   
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2 Chapter 2 - Fake News in the Online News World 

2.1 Introduction 

Advancements in technology have made the global communication and distribution of 

information easier, more effective, and more cost-efficient. These advancements have 

given rise to social networking platforms like Facebook and Twitter, which are 

implicated in the spread of online misinformation. News firms use these networks to 

expand their reach and rapidly engage with their audience. Bloggers, public figures, 

and small organisations enjoy the same, cost-effective power, vested in technology 

when it comes to communicating and distributing information. At the same time, 

several issues arise, including the credibility of information distributed and the potential 

dangers surrounding the distribution of false information. The dissemination of fake 

news is a multi-dimensional problem, which this chapter aims at unpacking. 

Rochlin (2017) describes fake news as falsified stories which are published on 

websites built to imitate the aesthetics and functionality of legitimate news websites. 

Rubin, Chen, & Conroy (2015) expand on ‘fake news’, in that it presents itself in many 

forms, namely, satire, bad reporting, false stories, rumours, and hoaxes, and note the 

rapid, widespread dissemination of such information on the internet. Kshetri & Voas 

(2017) state fake news has two general classes, namely disinformation and 

misinformation – disinformation is false information distributed with the purposeful 

intent to mislead its audience, while misinformation is incorrect information shared 

without necessarily malicious intent. Large media organisations realise their influence 

on society, and as such, these organisations have been known to manipulate 

information (Granik & Mesyura, 2017).  Granik & Mesyura (2017) suggest the objective 

of fake news is to influence a reader’s opinion on various matters. The effects of fake 

news can be seen through confusion among online readers, distrust in large firms, 

organisations, and entities, as well as negative economic effects on respective 

organisations. With the proliferation of fake news, news consumers may find it harder 

to differentiate real news from fake news and may increase their scepticism of real 

news (Kogan, Moskowitz, & Niessner, 2019).  

Fake news is not limited to text; false information can be disseminated in the form of 

manipulated images and video. YouTube, a popular video platform, allows users to 

upload videos and monetize them (Vishwakarma, Varshney, & Yadav, 2019). The 
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headline/body dissonance, as described by Conroy, Rubin, & Chen (2015) applies to 

some YouTube videos, in that some users upload videos where the title of the video 

does not coincide with the video’s content, in an attempt to sway uses towards their 

channel (Vishwakarma, Varshney, & Yadav, 2019). Computer algorithms derived from 

fake news research exist in two categories: image-based algorithms and text-based 

algorithms. The authors state that the majority of researchers work with text-based 

features, thus resulting in limited research on image-based fake news detection 

(Vishwakarma, Varshney, & Yadav, 2019).  

2.2 Social Media and Online Misinformation 

Researchers in the fake news community have made several findings on the influence 

social networking platforms have on the dissemination of online fake news. A 2017 

online publication by the Pew Research Center reveals key online news readers’ 

behaviour. Gottfried & Shearer (2017) report 67% of Americans use social networks 

as a source of online news. The figure increased by 5% compared to 2016, where it 

was reported 62% of Americans used social media as a source of online news 

(Gottfried & Shearer, 2017).  In a 2018 online publication by the Pew Research Center, 

it was found that 57% of surveyed adults believe that information served on social 

media is highly inaccurate (Matsa & Shearer, 2018). Similarly, in a survey conducted 

by Singhal, Shah, Chakraborty, Kumaraguru, & Satoh (2019), it was found that 44,3% 

of users could not differentiate fake news articles from real news articles. The survey 

forms part of the manifestation of the SpotFake framework, proposed by Singhal et al., 

(2019).  

Social networking platforms are aware of the detrimental effects relating to fake news 

and are working to address the problem. Facebook’s efforts revolve around three key 

areas: eliminate the economic benefits associated with the spread of fake news, build 

products that will limit the spread of false information, and aid people in making better 

decisions when encountering fake news (Mosseri, 2017). Part of the company’s 

strategy includes working with third-party fact-checking organisations, enforcing 

stricter advertisement-related policies for individuals known for posting fake news, and 

employing machine learning technology in detecting fraudulent and fake Facebook 

accounts (Mosseri, 2017).  
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Google collaborates with various organisations in addressing the spread of 

misinformation. The technology-based organization co-launched First Draft, a non-

profit organisation, aimed at addressing the spread of misinformation and 

disinformation through technology and collaborations with other institutes (Google, 

2018) 

The rise of social media being the primary source of information for many online news 

readers reaffirms the view of social media platforms contributing to the dissemination 

of false information.  

2.3 What Makes Fake News a Problem 

To further understand fake news, and how it has plagued modern society, this section 

aims at unpacking what makes fake news a ‘problem’. Hyman (2018) describes how 

informing people to simply do their research on a topic is inadequate; most individuals 

often lack time, motivation, and resources to perform such a task.  Kshetri & Voas 

(2017) note some consumers (online news readers) find it difficult to assess the quality 

and credibility of information. In a survey conducted by Common Sense Media, among 

853 children and teenagers between the ages of 10 – 18, 44% of participants claimed 

they could tell a fake news story from a real one, and 31% shared a story online, only 

to find out a few months later that the story was fake (Robb, 2017). Hassan, Arslan, 

Li, & Tremayne (2017) add that fact-checkers cannot keep up with the rate at which 

information is spread due to this task being constrained by time, labour, and human 

intellect. It is near impossible to manually label fake news and real news, given its 

rapid spread on social media and the immense amount of content published (Shu, 

Mahudeswaran, & Liu, 2018). Aiding the spread of fake news on social media 

platforms is the use of bots, which can post information on social media and participate 

in engage in community discussions (Zhang & Ghorbani, 2019). Such bots are created 

by humans with the intent of disseminating false information. From a legal perspective, 

several countries have the right to free speech as part of their constitution. As such, 

law enforcement agencies cannot easily monitor and censor free speech, which fake 

news uses (Kshetri & Voas, 2017). One of the most notable cases where fake news 

had a major influence was in the 2016 US elections (Hassan et al., 2017). This is 

expanded in section 2.5 of this chapter. 
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2.4 The Economics Behind the Fake News Epidemic 

Kshetri & Voas (2017) note how advertising networks care less about the websites 

running their advertisements. The website should adhere to guidelines stipulated by 

the advertising network, and website traffic should be legitimate, and not be generated 

through bots (Kshetri & Voas, 2017).   

Boris, a teenager from a small town called Veils, in Macedonia, revealed how he made 

$16 000 US dollars in advertising revenue from just two of the 100 pro-Trump fake 

news websites he created (Subramanian & Martin, 2017). In 2016, National Public 

Radio (NPR) tracked down Justin Coler, the owner of Disinfomedia – a company that 

owns many fake news websites. Coler revealed he had approximately 20 to 25 writers, 

and his fake news websites at the time made their revenue through online ads (Sydell, 

2016). Coler suggests other fake news owners make $10 000 to $30 000 US dollars 

a month (Sydell, 2016).  

Kshetri & Voas (2017) suggest 3 reasons that may drive an individual or organization 

to the creation of fake news. Monetary gain, the psychological impact, and the reduced 

legal risk are some factors considered by authors of fake news (Kshetri & Voas, 2017).  

2.5 Fake News and the US 2016 Election 

Following an investigation by BuzzFeed News relating to fake news and the 2016 US 

Elections, it was found that top-performing fake news stories on Facebook 

experienced higher user engagement than top stories from reputable news firms. A 

combined 8,711,000 shares, comments and user reactions were recorded from the 

top 20 fake news stories circulating on Facebook (Silverman, 2016). In contrast, top-

performing online news stories, originating from reputable news firms, generated 

7,367,000 shares, comments, and user reactions on Facebook (Silverman, 2016). A 

possible explanation to justify the mentioned figures could be attributed to the findings 

of Fernandez (2017) on the spread of fake news on social networking sites during the 

2016 US Elections: people resonate with ideals they believe in, more than ideals they 

don’t believe in (Fernandez, 2017).  

An example of this spread is illustrated by Allcott & Gentzkov (2017): in July 2016, 

wtoe5news fabricated a story about Pope Francis endorsing Donald Trump as 

presidential candidate for the United States of America. What was not made clear in 

the presentation of the article is that wtoe5news is a self-proclaimed “fantasy news 
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website.” Information about the site and its purpose were only placed on the site’s 

About page. The story received more than 1 million shares on Facebook (Allcott & 

Gentzkov, 2017).  

Sydell (2016) reports on another example, in which NPR performed an extensive 

investigation into Denverguardian.com, a website that published a viral, false news 

story days before the election. The story, titled "FBI Agent Suspected In Hillary Email 

Leaks Found Dead In Apparent Murder-Suicide," was shared more than 500,000 times 

on Facebook (Sydell, 2016). The investigation uncovered several fake news websites 

that were created by the same person who authored the DenverGuardian.com story: 

NationalReport.net, USAToday.com.co, and WashingtonPost.com.co were hosted on 

a single server owned by Jestin Coller, CEO of Disinfomedia (Sydell, 2016). 

2.6 Fake News and the Global Health Crisis COVID19 

In December 2019, China informed the World Health Organization of an unknown 

pneumonia with a range of symptoms such as dry coughs, fever, and tiredness. The 

World Health Organization labelled the disease as COVID19 (Elhadad, Li, & Member, 

2020). Since the start of the pandemic, social media has played its role in spreading 

misinformation about the virus. During the COVID19 pandemic, scientific and medical 

professionals have been faced with the challenge of individuals being able to create 

fake news content with ease (Scerri & Grech, 2020). The effects of such 

misinformation could lead to loss of trust in government, economic ramifications and 

persuasion into believing certain brands over others (Elhadad, Fun Li, & Gebali, 2020).  

During the initial days of the pandemic, the medical community aided in the spread of 

misleading information by releasing inaccurate and contractionary information relating 

to COVID19 (Tagliabue, Galassi, & Mariani, 2020). Some medical professionals made 

statements to the media, often backed by no scientific evidence – the effects of such 

misinformation include the sudden hoarding of personal protective equipment (PPE) 

which in turn, led to limited PPE availability and a sudden rise in PPE pricing 

(Tagliabue, Galassi, & Mariani, 2020). 

Governments around the world have taken measures against curbing the spread of 

misinformation related to the novel coronavirus (Rodrigues & Xu, 2020). In a South 

African provincial context, the Western Cape Government has compiled guidelines 

users can employ in determining the authenticity of COVID19 related news (Western 
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Cape Government, 2020). At a national level, the Government of South Africa has 

compiled a list of online fake news media that circulated in the country during the 

pandemic (South African Government, 2020). The fake news media items are a 

collection of images, short messages, and screenshots of fake documents. In Malta, 

researchers developed a website and Facebook page to deliver accurate, scientific 

information related to COVID19 (Scerri & Grech, 2020).  

Presently, various organisations and researchers are collaborating in the fight against 

the spread of COVID19-related misinformation. From an information access 

perspective, the IEEE is providing free access to COVID19 research and standards 

on the IEEE Xplore Digital Library, in support of researchers working to tackle various 

spheres of the pandemic (Stickel & Tardo, 2020). Like the IEEE, SAGE Publishing is 

also offering free access to COVID19 related research (SAGE, 2020). In addition, the 

publisher compiled a document that lists all publications related to COVID19 (SAGE, 

2020).  

2.7 Fake News in South Africa 

In recent years, South Africa has witnessed several cases of fake news and the effects 

that transpired from such cases. A notable example was that of a University of South 

Africa (UNISA) employee, who was exposed for running a fake news network. 

Following an extensive investigation, South African media firm, News24, found the 

UNISA employee, William Mahlatse Ramatseba, and his sibling authored multiple fake 

news websites and social media profiles (le Roux, 2018). The investigation also 

revealed Ramatseba used a single Google AdSense ID to generate revenue on 15 

fake news websites and hid his WHOIS domain registration information on most 

domains (le Roux, 2018). MzantsiStories.com, MzantsiNewsOnline.com, 

GautengPraise.com and AllNews.co.za are a few of many fake news websites 

authored by Ramatseba (le Roux, 2018). Figure 2.1 illustrates the fake news network, 

as described in the text.  

In a political context, Wasserman (2017) describes one particular case, where political 

debates sparked over the influence of the Gupta family and the former president of 

South Africa, Jacob Zuma. The premise of such debates emanates from serious 

allegations of corrupt deals between the family and associates, originating from a 

report authored by Thuli Madonsela, the former Public Protector of South Africa 
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(Wasserman, 2017). To sway public opinion, several fake Twitter accounts, which 

were found to be linked to media firms owned by the Guptas, and the Black First Land 

First (BLF) political party, were created (Wasserman, 2017).   

A known fake news website, AllAfricaNews, published an article stating President 

Jacob Zuma resigned. News of this event triggered a positive response to the value 

of the South African Rand, until reports surfaced which refuted the claim made by 

AllAfricaNews (Kawa & Goko, 2018). 

In addition to the mentioned key cases, the country had witnessed instances of alleged 

breaking news turning out to be a hoax; an example of this were reports claiming the 

former president of South Africa, Nelson Mandela, had passed away long before his 

death (Rodny-Gumede, 2018). In 2016, the ruling party, the African National Congress 

(ANC), had allegedly set up a ‘War Room’, which was intended to discredit opposition 

parties through the use of modern methods, such as buying Twitter accounts, use of 

social media influencers, and use of independent news websites and chat shows, 

without any links to the ruling party (Comrie, 2017).  

Whilst South Africans debate the notion of nationalising the country’s Reserve Bank, 

claims surfaced that a German citizen, Michael Duerr, owns 57.5% of the bank. Such 

claims were made by an Instagram post from Mzandile Masina, Mayor of Ekurhuleni 

(Clifford, 2019). After consulting the Reserve Bank, and studying the bank’s 

shareholder index, Africa Check found that Michael Durr owned about 0.5% of the 

Reserve Bank’s 2 million shares. (Clifford, 2019). Duerr further stated that he and his 

relatives own 12.5% of shares at the Reserve Bank, and not the 57% claimed on social 

media. The fact-verification organisation thus concluded this story as false. Figure 2.2 

displays the Instagram post, which has since been deleted.   
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Figure 2.1: Fake news network exposed by 

News24 (le Roux, 2018). 

 
Figure 2.2: Claim made by Mzwandile Masina in 

an Instagram post claiming Michael Duerr owns 

57.5% of the South African Reserve Bank 

(Clifford, 2019). 

2.8 Current Initiatives in Curbing the Spread of Fake News 

With the proliferation of fake news, several strategies have been devised, and are 

being used or actively developed. The fight against fake news is a multi-disciplinary 

endeavour, involving a combination of social and computational solutions. In a social 

context, there has been a rise in fact-checking organisations. In a computational 

context, several researchers have shown machine learning technology could be a 

useful technology in fighting online misinformation. The first step in combatting fake 

news through the use of automated tools is understanding the fake news creator and 

the methods employed to spread the fake news content (Gravanis, Vakali, 

Diamantaras, & Karadais, 2019).  
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Online organisations, which verify the veracity of claims made by people and 

organisations, such as Snopes and PolitiFact, continue on an upward trajectory. Fact-

checking organisations are led and managed by journalists who assess the credibility 

of a given news story and deliver judgement on whether a given story is true or false. 

In an African context, Africa Check was founded in London in 2012 and operates in 

Kenya, Nigeria, Senegal and South Africa (Africa Check, 2013). The African fact-

checking organisation receives its support from many companies, with the 

Shuttleworth Foundation, Bill & Melinda Gates Foundation and the Luminate Group 

being the most notable supporters (Africa Check, 2013).  

Fact-checking organisations have been received with mixed reviews. People generally 

do not question the credibility of information unless the information does not align with 

their ideals and beliefs, which in turn, could hinder the effectiveness of fact-checking 

organisations (Lazer, et al., 2018). Many fact-checking websites have been criticised 

for showing bias in their evaluation of news articles (Batchelor, 2017). In some cases, 

fact-checking might be fruitless – research has shown people tend to remember 

information and their emotions about a piece of information whilst, in most cases, 

forgetting the context behind the information. This, in turn, could increase a user’s 

chance of accepting a given piece of information as truthful, even in a fact-checking 

context (Lazer, et al., 2018).  

In a computational context, researchers have shown how machine learning techniques 

can address the problem of fake news. Machine Learning allows machines to solve 

problems through learning, and without manual programming (Stanescu, Mata-Toledo, 

& Gupta, 2018). Researchers have shown promising results, in fake news detection, 

by employing various supervised/semi-supervised machine learning algorithms with 

varying feature extraction techniques and data sets.  

Over the years, rich data sets to aid research in online misinformation have emerged. 

Using fact-checked statements from Channel 4 and PolitiFact, Vlachos & Riedel (2014) 

constructed a dataset for misinformation detection, consisting of 221 statements, 

covering various topics in the United Kingdom and the United States. This dataset was 

later followed by Wang (2017) who created the LIAR dataset, consisting of 12386 short 

statements. Szpakowski (2018) released FakeNewsCorpus, a fake news dataset 

containing millions of articles, based on OpenSources’ (n.d.) curated list of websites. 
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SignalMedia (2015) released a news dataset, consisting of 1 million articles, from 

various sources such as popular websites and blog articles.  

Apart from mentioned solutions, education and training on assessing information 

credibility and quality have surfaced. Lazer et al. (2018) note such training might 

reduce an individual’s view of the credibility of information on real news.   

2.9 Indicators of Fake News 

In a study aimed at understanding differences between fake online news articles and 

real online news articles from a writing style and language perspective, Horne & Adali 

(2017) note several characteristics of fake news articles, including longer headlines, 

shorter article bodies and the manner in which nouns, proper nouns and conjunctions 

are used (Horne & Adali, 2017).  

Through the use of data analysis techniques, Yang et al. (2018) find that fake news 

articles tend to have a limited number of words whilst others have many words. The 

authors also add that real news articles generally have more sentences than fake 

news articles (Yang et al., 2018). Other observations include a higher number of 

question marks present on fake news articles than real news articles, and a higher 

number of capitalized words on fake news articles than real news articles (Yang et al., 

2018). To calculate the similarity of the article headline to the article body, Wu, Cheng, 

& Chai ( 2017), Sreekumar & Chitturi (2019) and Masood & Aker (2018) calculate the 

cosine similiarity score. If the article headline and article body vectors are similar, a 

score of 1 is computed while a score of 0 is computed if the article headline and body 

vectors are not similar (Silva, Santos, Almeida, & Pardo, 2020). Owing to the literature 

covered in this chapter, some key indicators which can be used in the identification of 

text-based fake news, are:  

1. Fake news articles generally contain short article bodies and longer article titles.  

2. Fake news articles generally use simpler sentence structures. 

3. Fake news article’s generally have headlines which aren’t related to the article 

body. 

2.9.1  Fake News Articles Generally Contain Short Article Bodies and Longer 

Article Titles 

Based on the observations noted by several authors in this chapter, this indicator 

considers the text lengths of article title’s and bodies. In chapter 5, this indicator is 
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mapped to appropriate features, such as the article headline length, and article body 

length.  

2.9.2 Fake News Articles Generally use Simpler Sentence Structures 

This indicator encapsulates several properties of the texts, such as the number of 

punctuation marks, the counts on the parts of speech present, the average sentence 

lengths, and the readability of the texts. The features which cover these properties are 

defined greater detail in chapter 5.  

2.9.3 Fake News Article’s Generally have Headlines Which are not Related to 

the Article Body 

The relatedness of a given article to it’s body has been examined by numerous authors. 

Chen, Conroy, & Rubin (2016) describe the “headline/body dissonance”, where the 

headline of an article may not correlate with the article body. The cosine similiarity 

formula has been used by several authors to calculate the similiary of two texts. The 

results derived from this equation are included in the feature set and described further 

in chapter 5.  

2.10 Conclusion 

The fight against fake news will require collaborative efforts from stakeholders across 

multiple disciplines, namely the social sciences, journalism, computing sciences and 

technology fields. In addition, leading technology giants should contribute to reducing 

the spread of online misinformation. Fake news is useful to a given entity for many 

reasons; whether it is to generate revenue from advertising networks, sway public 

opinion into buying a narrative, or to bring forth financial or reputational repercussions 

to an individual or organisation. Confusion, mistrust, and financial damages are some 

of the many effects emanating from the phenomena.  

This chapter provides coverage on online fake news and substantiates why online 

misinformation is a problem that needs investigation. This chapter also introduces 

some common differences that can be spotted in fake online news articles and real 

online news articles, which can be useful for computational solutions to the problem. 

These differences are transformed into a set of indicators, which are revisited in 

Chapter 5. The purpose of providing literature into this area is to address secondary 

objectives 1 and 2:  

1. Identify the motives behind the propagation of fake news. 
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2. Identify appropriate indicators, from literature, which could suggest an article 

is fake news. 

In this chapter, the challenges of tackling fake news are presented, from a 

technological and legislative perspective. The financial benefits of authoring fake news 

are also included in the body of literature. Chapter 3 provides extensive literature 

coverage of machine learning, and how the technology has been applied for 

automated solutions which combat online fake news.
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3 Chapter 3 - Machine Learning in the Fight Against Fake 

News 

3.1 Introduction 

Machine Learning has seen a rise in popularity due to the rapid growth in 

computational capabilities and the greater availability of data (Stanescu, Mata-Toledo, 

& Gupta, 2018). The utilisation of this technology has solved various problems across 

multiple disciplines. In a business and commerce context, Khodabandehlou & Rahman 

(2017) evaluate several machine learning algorithms in predicting customers who are 

likely to end their relationship with one company for another company (defined as 

‘customer churning’). In a social networking context, Adewole & Anuar (2019) propose 

a framework for detecting spam messages and spam accounts, through experimenting 

with ten machine learning algorithms and presenting the best algorithms for spam 

message detection and spam account detection.  

As noted by Adewole & Anuar (2019), machine learning uses two possible methods: 

supervised learning, where a classification model is built using sample training data, 

or unsupervised learning, where the algorithm learns from identifying patterns in the 

unlabelled data.  

From a computational context, detecting fake news can be described as a multi-

faceted task, with each task complementing one or more other tasks. Saquete, Tomás, 

Moreda, Martínez-Barco, & Palomar (2020) describe stance detection, deception 

detection, and polarity as sub-tasks that lead to the broader task of automated fake 

news detection. Stance detection involves examining the relationship between a given 

article’s headline and body as well as people’s sentiment on a given topic, whilst 

deception detection involves searching for certain cues or keywords in text (Saquete 

et al., 2020). Text polarity refers the human emotion (positive, neutral, or negative) 

contained in the text (Zhang & Ghorbani, 2019). Applying Natural Language 

Processing (NLP) techniques is a complex task due to the complex nature of human 

language.  Although many machine learning algorithms exist, some of the frequently 

used machine learning models in the misinformation detection field include the 

Support Vector Machine, K-Nearest Neighbour and Random Forest. These algorithms 

are briefly introduced in sections 3.1.1, 3.1.2 and 3.1.3. To transform text to numeric 
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feature spaces, where relationships between words are maintained, NLP models such 

as Word2Vec, Doc2Vec and GLoVe have been used by numerous researchers.  

3.1.1 Support Vector Machine 

The support vector machine is a popular machine learning model that can be used in 

linear and non-linear classification along with regression problems (Geron, 2017). In 

a classification task where data is labelled within two classes, a void space, referred 

to as the margin, separates the data into two classes (Manning, Raghavan, & Schütze, 

2008). Data points that reside on the edge of the margins are referred to as the support 

vectors (Geron, 2017). The support vectors define the classification function, which 

determines where the separator is placed (Manning, Raghavan, & Schütze, 2008). 

Figure 3.1 illustrates a graphical representation of the Support Vector Machine, using 

data consisting of two classes, namely, circles and triangles.  

 

Figure 3.1: Support Vector Machine using data consisting of two classes (circles and triangles) 

(Manning, Raghavan, & Schütze, 2008). 

3.1.2 K-Nearest Neighbour  

The K-Nearest Neighbour (KNN) algorithm labels a data point to a class by 

determining the most dominant class by the number of samples present (Zhang Z. , 

2016). Two key points relating to the algorithm are the function used to calculate the 

distance of a given data point, relative to other data points, and the k-parameter, which 

is used to define the neighbours (Zhang Z. , 2016). The Euclidian Distance formula is 

commonly used to calculate the distance of a data point, relative to other data points 
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(SciKit-Learn, 2012). Figure 3.2 illustrates the classification process employed by the 

K-Nearest neighbour algorithm.  

 

Figure 3.2: Graphical representation of the classification process employed by the K-Nearest 

Neighbour algorithm (Zhang Z., 2016) 

3.1.3 Decision Trees 

Decision Trees use a series of structured questions to determine the classification 

label for a given sample (Dangeti, 2017). A few advantages of using a Decision Tree 

to model a classification problem are the simplicity of the model and the low data 

preparation costs (SciKit-Learn, 2012). Figure 3.3 shows an example of a Decision 

Tree classifier. For illustration purposes, the maximum depth of the model is set to 2, 

and maximum features is set to 3. The fake real news dataset authored by Bisaillon 

(2020) is used. 

  

Figure 3.3: Graphical representation of a Decision Tree classifier.
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3.1.4 Random Forest 

The Random Forest classifier uses numerous Decision Tree models and averages the 

performance of all Decision Trees to optimize accuracy and reduce over-fitting (SciKit-

Learn, 2020). At the end of each Decision Tree, voting determines the class of a 

sample (Dangeti, 2017). Figure 3.3 illustrates the composition of a Random Forest 

model. 

 

Figure 3.4: Overview of the Random Forest classifier and the collection of Decision Trees contained 

in the model (Dangeti, 2017) 

3.2 Related Work: Automated Fake News Detection 

In building a fact-checking system, Zhang & Ghorbani (2019) state that analysing the 

news content on its own is ineffective; such systems should include analysis of 

contextual information associated with an article, such as the author, the source, the 

target audience, and content (X. Zhang & Ghorbani, 2019).  

Granskogen (2018) describes two approaches in the detection of fake news. The first, 

that being a linguistic approach, uses natural language processing to better 

understand the frequency of words, and the patterns present in the text. Examples of 

such techniques include Term Frequency Inverse Document Frequency (TF-IDF), 

sentiment analysis, and N-gram (Granskogen, 2018). Term Frequency-Inverse 

Document Frequency evaulates the importance of a word, relative to the document, 

and relative to the collection of documents (Granskogen, 2018). Sentiment analysis 

measures the polarity of the text (Granskogen, 2018). N-grams can be described as a 

selected sequencial subset of words or characters from a body of text. A unigram 
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contains one value (or word), bigram contains two values, a tri-gram contains three 

words (Granskogen, 2018). The second approach, that being a contextual approach, 

takes into account the information surrounding the corpora, such as traffic, user 

relationships, links, and other relevant features (Granskogen, 2018).  

Wu, Cheng, & Chai (2017) note how evaluating the stance – evaluating the 

relationship between the title and body of a given text – is an important indicator in 

detecting fake news. This coincides with the ‘title/body dissonance’, as described by 

Chen, Conroy, & Rubin (2016). Wu, Cheng, & Chai (2017) select 4 machine learning 

classifiers, namely, Support Vector Machine (SVM), Multinomial Naïve Bayes, 

Multilayer Perceptron (MLP), and softmax, for the task of determing the stance of an 

article. Stance detection is the process of determining the corrlation of a given article’s 

title to the article’s body (Wu, Cheng, & Chai, 2017). The authors calculate the 

relevance of an article title to its body by calculating the cosine similiarity for each 

article. In addition, the authors also select baseline features present in the dataset, 

provided by the FNC-1 task, which includes the a count on overlapping words, a count 

on the number of negative words, a count on overlapping n-grams, and a count on the 

polarity of article headlines and bodies (Wu, Cheng, & Chai, 2017). Polarity can be 

described as the number of negative words in a given text (Wu, Cheng, & Chai, 2017) . 

In the experiment, the multilayer perceptron classifier provides the best weighted 

accuracy among all classes, with an accuracy score of 77,74% (Wu, Cheng, & Chai, 

2017). Similarly, Masood & Aker (2018) use the same dataset provided by the FNC-1 

challenge to explore the detection of fake news articles by detecting stance of each 

model. Owing to the number of samples contained in each class (agree, disagree, 

discuss, related, unrelated) being imbalanced, the authors create two machine 

learning classification pipelines. The first pipeline, described as the 2-step classifier, 

has two L1-regularized logistic regision clasifiers, while the 2nd pipeline, described as 

the 3-steps classifier, has two L1 regularized logistic regression classifiers, and a 

random forest (RF) classifier (Masood & Aker, 2018). A detailed view of the 3-step 

classifier, using settings 1 and 2 is provided in Figure 3.5, Figure 3.6 and Figure 3.7.In 

the experiments, the authors find the 3-step classifier, using setting 2, delivers the best 

peformance, with an accuracy score of 89,18% (Masood & Aker, 2018). An overview 

of the 2-steps and 3-steps classifier is provided in Figure 3.5 and Figure 3.7.  
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In selecting features appropriate for the task of fake news detection, Choudhary & 

Arora (2020) justify the use of sentiment-related features on the premise that fake 

news authors typically embed a positive or negative stance in articles.  The author 

also includes readability metrics to differentiate content written by professional 

journalists versus content written by fake news authors (Choudhary & Arora, 2020).   

Hassan, Arslan, Li, & Tremayne (2017) developed ClaimBuster, a live fact-checking 

platform which leverages machine learning and natural language processing 

techniques to classify statements. The live fact checking platform contains several 

modules, such as the Claim Monitor, Claim Spotter, Claim Matcher, Claim Checker 

and Fact-Check Reporter (Hassan, et al., 2017). For the process of extracting features 

from the text, the authors use natural language processing technqiues such as 

obtaining sentiment, parts of speech tags, entity recgonition, and term frequency-

inverse document frequency. A brief description of each module is provided below:  

• The Claim Monitor module retrieves texts from a variety of sources such as live 

TV, Twitter and online websites (Hassan, et al., 2017).   

• The Claim Spotter module computes a score between 0 and 1 for a given 

sentence. A score closest to 1 indicates the sentence contains check-worthy 

claims, while a score closest to 0 indicates the sentence contains non-factual, 

and subjective claims (Hassan, et al., 2017). 

• The Claim Matcher module selects sentences identified by the Claim Monitor 

module, and searches a collection of fact-checks for matches (Hassan, et al., 

2017).  

• The Claim Checker selects appropriate evidence from the internet, supporting 

or negating a supplied claim (Hassan, et al., 2017).   

• The Fact-check Reporter module generates a claim assessment report, 

including the supporting evidence and the computed claim spotter score. In 

addtion to delivering the report to the requesting user on Claim Buster’s website, 

the report is also published on the Claim Buster’s official accounts on various 

platforms such as Twitter and Slack (Hassan, et al., 2017).  

Having noted the challenges associated with fake news dissemination on social media, 

Shu, Mahudeswaran, & Liu (2018) present FakeNewsTracker, a system for for fake 

news detection. In the system, the Social Article Fusion (SAF) model considers the 
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social context and linguistic context in classifying fake news articles (Shu, 

Mahudeswaran, & Liu, 2018). The social context captures information related to user 

engagement on articles, such as the tweets and related replies (Shu, Mahudeswaran, 

& Liu, 2018). The linguistic context considers the contents of a given article. To capture 

linguistic context features, an Autoencoder network is selected. To capture social 

context, the authors use a Recurrent Neural Network, with Long Short Term Memory 

(LSTM) cells (Shu, Mahudeswaran, & Liu, 2018). Social context and linguistic feature 

vectors are concattenated for classification. The output layer of the model uses the 

softmax function to classify the articles (Shu, Mahudeswaran, & Liu, 2018). To test the 

efficiency of the model, the authors experiment with varying configurations of the SAF 

model. In the first setting, the model is configured to only consider the article 

contents.In the 2nd setting, the model is configured to consider only the social context, 

and in the 3rd setting, the model is configured to use both social and linguisitic contexts 

(Shu, Mahudeswaran, & Liu, 2018). Using accuracy, precision, recall and F1 score, 

the authors find the SAF model which considers both social and linguistic context 

features provides the best overall results for the BuzzFeed and PolitiFact datasets 

used (Shu, Mahudeswaran, & Liu, 2018).    

Vishwakarma, Varshney, & Yadav (2019) propose a fake news detection system that 

examines both text and image. The process-flow employed examines a given image, 

extracts text from a given image, extracts entities from the extracted text, scrapes 

Google and identified links for related articles, then performs numerous operations, 

such as summarizing the content retrieved from the web, extract entities contained in 

the summarized text, and ensuring the entities extracted from images are related to 

the titles of web links  (Vishwakarma, Varshney, & Yadav, 2019). The final step of the 

process is to classify an article as real or fake. If the Reality Parameter is greater than 

40, the article is classified as real, otherwise, the article is classified as false 

(Vishwakarma, Varshney, & Yadav, 2019). For a given article, the Reality Parameter 

is calculated using equation 1 (Vishwakarma, Varshney, & Yadav, 2019): 

𝑅𝑝 =  
𝑁𝑟𝑙

𝑇𝑛𝑙
∙ 100 (1) 

Where: 

• 𝑁𝑟𝑙: Total number of reliable links 

• 𝑇𝑛𝑙: Total number links 
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Gravanis, Vakali, Diamantaras, & Karadais (2019) explore automated fake news 

detection through extensive research in several facets of the machine learning 

workflow. In the experiment, the authors define a pipeline which is selects the best 

feature combination. The best feature combination is provided to the machine learning 

algorithmn benchmark pipeline, where 6 machine learning algorithms, namely, Naïve 

Bayes, Support Vector Machine, Decision Tree, K-Nearest Neighbour, AdaBoost and 

Bagging are selected and evaluated. Following experimentation, the authors find the 

Support Vector Machine, and ensamble methods, such as AdaBoost and Bagging, 

provide the classification results (Gravanis, Vakali, Diamantaras, & Karadais, Behind 

the cues: A benchmarking study for fake news detection, 2019).  

Zhang, Gupta, Kauten, Deokar, & Qin (2019) propose the FEND (Fake News 

Detection) framework, one which employs topic modelling and data clustering 

techniques in fake news detection. Using topic modelling, FEND can group data in a 

given dataset according to topic. FEND is able to determine whether a given article is 

fake or real by finding a relevant topic cluster. In the event an appropriate topic cluster 

is not found, the article is rendered fake. In cases where an appropriate topic cluster 

is found, the language structure of the article is compared against articles in the 

selected topic cluster. Should the article’s structure poorly resemble those in the 

selected news cluster, the article is rendered false (C. Zhang et al., 2019).  

Rubin, et al. (2019) build a news verification tool, LIT.RL, which can classify online 

news articles into three categories, namely, clickbait, satire fake news, and fake news. 

The tool uses the support vector machine algorithm in making inferences (Rubin, et 

al., 2019).  

In a non-English context, Al-Ash & Wibowo (2018) study fake news detection using 

Term Frequency (TF) and Inverted Term Frequency (TF) to extract features from a 

collection of documents in Bahasa Indonesian (Al-Ash & Wibowo, 2018). The dataset 

used in this research is comprised of fake articles taken from https://turnbackhoax.id/ 

whilst data containing real news is taken from an Indonesian online news website, 

kompas.com (Al-Ash & Wibowo, 2018).   

https://turnbackhoax.id/
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Figure 3.5: Overview of the 3-step classifier, using setting 2 (Masood & Aker, 2018). 

 

Figure 3.6: Overview of the 2-step classifier process (Masood & Aker, 2018). 
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Figure 3.7: Overview of the 3-step classification process, using setting 1 (Masood & Aker, 2018). 

Similarly, in a Korean context, Kim & Jeong (2019) note an alternate approach to 

discerning false news from real news can be achieved by examining the article 

structure and comparing such article structures with other externally hosted articles. 

The authors propose a Korean fake news detection system that takes a given input, 

and compares the similarity of the input with articles contained in an article database 

(Fact DB) (Kim & Jeong, 2019). The authors propose a model which uses the Bi-

Directional Multi-Perspective Matching for Natual Language Sentences (BiMPM), 

which has shown good results in sentence classification tasks (Kim & Jeong, 2019).   

3.3 Datasets for Fake News Research 

Publicly available datasets have been published and maintained by various 

organisations. Each of these datasets differs in terms of dataset size, topics and length 

of samples in the datasets. Rubin, Chen, & Conroy (2015) define nine conditions that 

should be fulfilled by any dataset to be applied in automated fake news detection. 

These requirements are:  

1. Availability of both truthful and deceptive instances 
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2. Digital textual format accessibility 

3. Verifiability of ‘ground truth’ 

4. Homogenous in lengths 

5. Homogeneity in writing matter 

6. Predefined timeframe 

7. The manner of news delivery 

8. Pragmatic concerns 

9. Language and culture (Rubin, Chen, & Conroy, 2015).  

Predictive models should be able to find patterns in the data. Data should ideally be 

kept in text format, and items in the dataset should ideally come from credible sources, 

have appropriate text lengths, and touch on similar news topics (Rubin, Chen, & 

Conroy, 2015).  

Datasets can be constructed in an automated or manual fashion; each workflow 

comes with its advantages and disadvantages. Though manual creation results in fine-

tuned datasets, a notable drawback is that such datasets are prone to human error 

(Saquete et al., 2020). On the other side of the spectrum, automated datasets may not 

be of a high standard, but the methodologies employed to create such datasets offer 

flexibility (Saquete et al., 2020).   

FakeNewsCorpus, created by Szpakowski (2018), is an open-source dataset of full 

news articles, constructed using a curated list of websites from OpenSources.co. 

Though this dataset is still in development, it currently contains 9,408,908 articles from 

745 websites (Szpakowski, 2018). For each sample in the dataset, a tag, which 

identifies the type of article, is assigned. The tags assigned to samples in the dataset 

are fake, satire, bias, conspiracy, state, junk-sci (for junk science), hate, clickbait, 

unreliable, political and reliable (Szpakowski, 2018). SignalMedia (2015) released a 

news dataset, consisting of 1 million full news articles, from various news websites, 

published in the 1st to 30th September 2015 timeframe.  

Ferreira & Vlachos (2016) use the Emergent dataset for the application of stance-

based fake news detection. The dataset is based on the works of Silverman, (2015) 

which highlight the shortfalls and bad practices in current online media outlets and 

journalists. The labelled dataset contains 300 claims, which are linked to 2595 full 

news articles and related social media metrics. Each item in the dataset contains a 
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label to describe its stance (for, against or observing) and a label to describe whether 

a given story was evaluated as false or true by journalists (veracity) (Ferreira & 

Vlachos, 2016).  

Fake News Challenge (2016), a project aimed at tackling fake news through the 

exploration of artificial intelligence technologies, released the FNC-1 dataset as part 

of the first phase of their project, which focuses on stance detection. The dataset 

consists of 49 972 articles, of which are classified into four classes – agrees, disagrees, 

unrelated, and discusses (Misback & Pfeifer, 2017).  

Other data collection techniques include scraping or crawling websites for content. In 

the FakeNewsTracker project, Shu, Mahudeswaran, & Liu (2019), devised a data 

collection strategy that entails collecting fake news articles from fact-checking 

websites like PolitiFact, then collecting related tweets and Twitter metrics related to 

the news articles from Twitter’s API (Shu et al., 2019).  

FakeNewsNet is a publicly available and regularly maintained data repository 

containing two datasets that provide news-related content, social engagement content 

and dynamic information (Shu, Mahudeswaran, Wang, Lee, & Liu, 2018). In the 

construction of the dataset, the PolitiFact and GossipCop web crawlers were 

employed in collecting labels associated with news articles. With regards to collecting 

social engagement data, the authors utilise Twitter’s Advanced Search API, using 

news article headlines as the search query. Social engagement data collected include 

tweets, number of likes, reposts, user interaction and user profile metadata (Shu, 

Mahudeswaran, Wang, Lee, & Liu, 2018). Lastly, the dynamic aspect of the dataset 

includes regular updates to news content and social-related content – metrics 

associated with the dynamic context include timestamps of updates, and changes in 

user engagement (Shu, Mahudeswaran, Wang, Lee, & Liu, 2018).   

Horne & Adali (2017) study fake news detection by using three datasets from three 

different sources, namely BuzzFeed, a self-authored dataset, and a dataset from 

(Burfoot & Baldwin, 2009), containing 233 satiric news articles and 4000 real news 

articles. In this study, Horne & Adali (2017) evaluate articles collected across the 

mentioned datasets, which can be categorized into one of three categories; namely 

fake news, real news, and satire news. In selecting articles for the respective datasets 

for the study, several filtering rules were applied to refine the first dataset; opinion-
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based articles and satirical articles were removed from the first dataset (Horne & Adali, 

2017). The articles used in constructing the second dataset were based on the work 

of Zimdar (2016), who curated a list of known online fake news websites. The third 

dataset used in this study originates from the work of Burfoot & Baldwin (2009) which 

contains 223 satire news stories and 4000 real news stories (Horne & Adali, 2017).  

Similarly, Rashkin, Choi, Jang, Volkova, & Choi (2018) used 13,995 full news articles 

from the English Gigaword dataset and crawled seven unreliable news websites in 

constructing a custom dataset for the fake news detection task.  

Though there are numerous publicly available datasets for fake news detection in the 

English language, such availability is highly limited for other languages. In a study 

towards automated fake news detection in the Portuguese language, Silva, Santos, 

Almeida, & Pardo (2020) construct the FAKE.BR dataset for fake news detection, 

which comprises 3600 fake news articles and 3600 real news articles. The articles 

contained in the dataset are articles that were published between the January 2016 - 

February 2018 timeframe (Silva et al., 2020).  

3.4 Datasets for COVID19 Misinformation 

In light of the recent global health crisis, COVID19, Elhadad, Li, & Gebali (2021) 

construct the COVID-19-FAKES (Mohaddad, 2020) dataset, consisting of 3 263 464 

tweets related to the global health crisis, in the English and Arabic languages (Elhadad 

et al., 2021). The authors collected COVID19-related tweets between 4 February 2020 

and 10 March 2020, during the time of the disease’s outbreak and the declaration of 

the global pandemic. The COVID-19-FAKES dataset is automatically labelled (real or 

misleading) using 13 machine learning algorithms, namely, Decision Tree (DT), K-

Nearest Neighbour (KNN), Logistic Regression (LR), Linear Support Vector Machine 

(LSVM), Multinomial Naïve Bayes (MNB), Bernouli Naïve Bayes (BNB), Perceptron, 

Neural Network (NN), Ensamble Random Forest (ERF), Extreme Gradient Boosting 

(XGBoost), Bagging Meta-Estimator (BME), AdaBoost, and Gradient Boosting (GB) 

(Elhadad, Fun Li, & Gebali, 2020). The machine learning models are trained on tweets 

collected from official Twitter accounts and short statements verified by fact-checking 

organisations such as Snopes, PolitiFact and Poynter (Elhadad, Fun Li, & Gebali, 

2020).   
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Hossain, et al. (2020) release the COVIDLIES dataset, which contains 6761 

COVID19-related tweets. The dataset is built around 86 misconceptions about the 

virus. Each tweet is examined to determine if there is a match with any of the 86 

misconceptions (Hossain, et al., 2020). In cases where a tweet does not match any 

misconception, the tweet is assigned the ‘No Stance’ label. For tweets matching any 

misconception, the tweet is further analysed to determine whether the tweet aligns 

with the misconception or contradicts the misconception. The classes ‘Agree’ and 

‘Disagree’ are assigned respectively (Hossain, et al., 2020).  

Patwa, et al. (2020) release a COVID19 dataset consisting of 10 700 fake and real 

news articles taken from social media sites like Facebook and Twitter, and also from 

fact verification websites like Snopes and PolitiFact. Using the dataset, the authors 

select 4 machine learning algorithms, namely, Decision Tree (DT), Logistic Regression 

(LR), Support Vector Machine (SVM) and Gradient Boost (GB) and find the Support 

Vector Machine classifier provides the best results, with an F1-score of 93.46% (Patwa, 

et al., 2020).  

Banik (2020) released a ‘COVID Fake News Data’ dataset, which consists of 10 201 

COVID-related claims that circulated on the internet. Claims are organised into two 

classes; namely 0 for fake, and 1 for truthful claims (Banik, 2020).  

3.5 Fake News: Approaches to Preparing the Data 

Upon collecting relevant data, the next step in the machine learning workflow is to 

ensure the data is ready for feature extraction. This process involves filtering out data 

for noise – removing abbreviations and removing words that add no value to the 

sentences are a few of the many strategies employed in cleaning the data.  

In evaluating the effectiveness of various machine learning algorithms in fake news 

detection, Ahmed, Traore, & Saad (2017) employ various data pre-processing 

techniques commonly used. In the experiment, the authors use stop words removal, 

which is the process of discarding meaningless words in a text, such as conjunctions 

and pronouns (Ahmed et al., 2017). In addition, the authors employ stemming, a 

process that involves changing a word to its simplest form, to ensure the effective 

classification of text (Ahmed et al., 2017). In the process of cleaning articles contained 

in the curated dataset, Gilda (2017) removed article source names, social media 

handles and email addresses from a given articles’ body (Gilda, 2017).  
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Al-Ash & Wibowo (2018) explore the applicability of natural language techniques, such 

as Term-Frequency (TF), and Term Frequency – Inverted Document Frequency (TF-

IDF) for the detection of fake news. The authors use a collection of online news articles, 

in the Indonesian Bahasa language, and the Support Vector Machine algorithm for the 

task of detecting fake news (Al-Ash & Wibowo, 2018). The authors conclude the study 

by stating Term-Frequency is a feature that can be used to differentiate fake news 

articles from real news articles, owing to the 96,74% performance score (Al-Ash & 

Wibowo, 2018). 

3.6 Fake News: Approaches to Extracting Features 

The next process in the machine learning workflow is to extract meaningful features 

from the data, following data pre-processing techniques. Feature Extraction involves 

transforming data into meaningful features (in the form of vectors) that a machine 

learning algorithm can interpret (Stanescu, Mata-Toledo, & Gupta, 2018). 

Researchers in the fake news realm have extracted various features for various, 

logical reasons.  

Ahmed et al. (2017) explore two feature extraction techniques, namely Term 

Frequency (TF) and Term Frequency – Inverse Document Frequency (TF-IDF). Term 

Frequency counts the occurrence of words in a document. Following the word count, 

each identified word and its count (vector) are normalized in such a manner that all 

elements add up to 1 (Ahmed et al., 2017). TF-IDF considers the importance of a word 

in a collection of documents in the dataset (Ahmed et al., 2017). Equations 2 (Tanvir, 

Mahir, Akhter, & Huq, 2019) and Equation 3 (SciKit-Learn, 2012) show the 

mathematical calculations used to calculate TF and IDF features:  

𝑡𝑓(𝑡) =  (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡𝑒𝑟𝑚 𝑡 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑
) (2) 

𝑖𝑑𝑓(𝑡) =  log (
𝑛

𝑑𝑓(𝑡) + 1
) (3) 

Where:  

 df(t): The document frequency of term t 

 n: number of documents in the collection of documents 

 tf(t): term frequenct of term t 
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 idf(t): iverted document frequency for term t 

In the ClaimBuster project, Hassan et al., (2017) extract multiple features from the 

data. These include extracting sentiment scores, between -1 and 1, as well as 

extracting TF / TF-IDF features,  Parts of Speech (POS) tags and Entity Types 

(Hassan et al., 2017).   

Mikolov, Sutskever, Chen, Corrado, & Dean (2013) introduce word2vec, a neural 

network model which generates word embeddings in a given set of words. Le & 

Mikolov (2014) highlight that simple document vector extraction techniques, such as 

the bag-of-words, do not capture the order of words and meaning for words and 

sentences. The relationships between words in a vector matrix produced by the 

word2vec model can be represented in a series of simple arithmetic expressions 

(Mikolov, Sutskever, Chen, Corrado, & Dean, 2013). Le & Mikolov (2014) present the 

paragraph vector framework, where each paragraph and word contained in a 

document, are assigned a vector. The next word is predicted by concatenating the 

paragraph and word vectors (Le & Mikolov, 2014).   

Horne & Adali (2017) select features that assist in understanding the differences 

between fake news articles and real news articles, in three areas: from a sentence 

style perspective, sentence complexity perspective and psychological perspective. 

The authors employ Parts of Speech (POS) tagging, and a count on several 

grammatical indicators (punctuation, capital letters, etc.) to describe the structure of a 

sentence. To comprehend the complexity of words used, the authors calculate the 

readability of articles using three grading systems, namely, Gunning Fog, SMOG 

Grade and Flesh-Kincaid (Horne & Adali, 2017). The authors also calculate the Type-

Token Ratio for each document, which is a ratio of distinct words divided by the total 

words in a document. Finally, to obtain features that describe the psychological context 

of the articles, the authors use a sentiment analysis tool to measure the emotion for 

each document (Horne & Adali, 2017).  

Several authors employ cosine similarity to calculate the distance between vectors 

belonging to the text. Similar texts will have a higher cosine similarity score, whilst 

unrelated texts will have a low cosine similarity score. Wu, Cheng, & Chai (2017) 

employ cosine similarity to determine the similarity of an article’s title and body. The 
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cosine similarity produces a score between 0 and 1, where 0 indicates low relativity 

and 1 represents high relativity (Silva et al., 2020).   

In the context of stance detection, Ferreira & Vlachos (2016) extract features from a 

given article title and article body. From the headline, the author employs the Bag-of-

Words and RootDist techniques for extracting features.  

Various models for text summarization have been developed and utilised as a means 

of extracting features from the text. Text summarisation exists in two categories, 

namely, abstractive text summarisation and extractive text summarisation (Liu, 2019). 

Abstractive summaries paraphrase the original text, whilst extractive text 

summarization results in a summary that contains the most important words from the 

original text (Liu, 2019).   

3.7 Transfer Learning in Machine Learning Tasks 

In the field of machine learning, transfer learning is increasingly gaining popularity due 

to the promising results the technique yields. In a natural language processing context, 

transfer learning is the process of pre-training a model, which can be used for other 

tasks in a machine learning workflow (Raffel et al., 2019). Over the years, several 

natural language processing frameworks, and pre-trained models, have been 

developed for use by the research and business communities. Researchers at 

Facebook introduce the InferSent model, which generates sentence embeddings, 

which can be used for other supervised learning tasks (Conneau, Kiela, Schwenk, 

Barrault, & Bordes, 2018). The encoder is based on Bidirectional Long Short Term 

Memory (BiLSTM) architecture with max-pooling (Conneau, Kiela, Schwenk, Barrault, 

& Bordes, 2018). The authors train the model using the labelled Sandford Natural 

Language Inference (SNLI) dataset, consisting of 570 000 sentence pairs and 3 labels, 

namely, entailment, contradiction, and neutral (Conneau, Kiela, Schwenk, Barrault, & 

Bordes, 2018). The Natural Language Inference task employed by Conneau, Kiela, 

Schwenk, Barrault, & Bordes (2018) aims to understand the relationship between 

sentences in texts. Using 12 NLP transfer tasks to test the efficacy of the sentence 

embeddings. The BiLSTM model provides superior results, compared to the other 

models, and further provides state-of-the-art results for 2 of the transfer tasks, namely 

SICK-R and SICK-E (Conneau, Kiela, Schwenk, Barrault, & Bordes, 2018). Given the 

known best sentence encoding model, SkipThought-LN, the authors find their model 
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provides superior results compared to the SkipThought-LN model, whilst being trained 

on less data, and taking less time to train (Conneau, Kiela, Schwenk, Barrault, & 

Bordes, 2018).    

Wolf et al. (2019) release the Python transformers library, which provides simple-to-

use APIs that cover a variety of natural language processing tasks, such as text 

generation, text classification, text summarization, text translation, etc. (Wolf et al., 

2019). The library allows developers to provide a pre-trained model, which is 

downloaded and used for a given natural language processing task. The models 

implemented in the library consist of three key components: namely, a tokenizer, a 

transformer, and a head. The tokenizer transforms text into numeric, index values. The 

transformer creates contextual text embeddings by processing index values produced 

by the tokenizer. Finally, the head is responsible for producing a prediction using the 

contextual embeddings produced by the transformer (Wolf et al., 2019).  

Several authors have used the outputs generated from a document and word 

embedding models, such as word2vec and doc2vec as part of inputs for classification 

problems. Wang (2017) uses a pre-trained word2vec model to generate text 

embeddings for their proposed hybrid neural network architecture, aimed at fake news 

detection. Ngada & Haskins (2020) use the doc2vec model to generate document 

embeddings as part of inputs for the task of fake news detection using several machine 

learning algorithms, namely K-Nearest Neighbour (KNN), Support Vector Machine 

(SVM), Random Forest (RF), Extreme Gradient Boost (XGBoost), Random Forest 

(RF), AdaBoost (AB) and the Decision Tree (DT).   

3.8 Transformers and Natural Language Processing 

Transformer architecture has brought a disruptive change in the Natural Language 

Processing field. Structurally, the Transformer model consists of an encoder and a 

decoder. The encoder transforms a given input into an output. The decoder transforms 

the output generated by the encoder and generates outputs one element at a time 

(Vaswani et al., 2017). The decoder portion of the transformer architecture uses 

previously generated outputs as part of its inputs when generating subsequent outputs 

(Vaswani, et al., 2017). In the encoder and decoder, the transformer includes self-

attention and feed-forward layers. Both the encoder and decoder consist of six layers 

and two sub-layers. A few popular transformer architectures include the Bidirectional 
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Encoder Representations from Transformers (BERT), Generative Pre-trained 

Transformer (GPT) and the Text-To-Text Transfer Transformer (T5). A crucial 

component of the Transformer architecture is the self-attention layers, which is briefly 

discussed in section 3.8.1. 

 

Figure 3.8: Overview of Transformer architecture (Vaswani et al., 2017) 

3.8.1 Self-Attention in Transformer Architecture 

The transformer architecture uses a multi-head attention layer. The attention function 

associates a query, keys and values to output. Each value is assigned a weight, which 

is calculated through the use of a compatibility function, using the query and key 

(Vaswani, et al., 2017). In the multi-head attention layer, the queries, keys and values 

are projected a certain number of times, with each projecting containing different 

linearly projected keys and values. The Scaled Dot-Product Attention function is 

applied in parallel, to each version of the queries, keys and values (Vaswani, et al., 
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2017). If 𝑄 represents the query, 𝐾 represents the keys, 𝑉 represents the values, and 

𝑑𝑘  represents the dimension of the keys and queries, the attention function is 

computed using equation 4 (Vaswani, et al., 2017):  

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 (4) 

Therefore, the Multi-Head Attention function can be represented, using equation 5 

(Vaswani, et al., 2017). 𝑊𝑖
𝑄

, 𝑊𝑖
𝐾, 𝑊𝑖

𝑉  and 𝑊𝑂 represent the linear projections of the 

queries, keys and values (Vaswani, et al., 2017).  

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1 … ℎ𝑒𝑎𝑑ℎ)𝑊𝑂 

𝑤ℎ𝑒𝑟𝑒 ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) 

(5) 

 

3.8.2 Generative Pre-Trained Transformer (GPT) 

(Radford, Narasimhan, Salimans, & Sutskever (2018) introduce the Generative Pre-

Trained Transformer (GPT) model. The model employs the decoder portion of the 

Transformer architecture. In the creation of the GPT model, which uses transformer 

architecture, Radford, Narasimhan, Salimans, & Sutskever (2018) state two reasons 

for selecting transformer architecture. The first is the model’s successes in numerous 

natural language tasks, such as machine translation, document generation and 

syntactic parsing (Radford, Narasimhan, Salimans, & Sutskever, 2018). The second 

is the model’s ability to handle long term-dependencies better, compared to recurrent 

neural networks, due to the availabilty of more memory (Radford, Narasimhan, 

Salimans, & Sutskever, 2018).  

3.8.3 Bidirectional Encoder Representations from Transformers (BERT) 

Devlin, Chang, Lee, & Toutanova (2019) introduce the Bidirectional Encoder 

Representations from Transforms (BERT) model, which is also based on the 

Transformer architecture. The authors state 2 advantages of the BERT model over 

previous works. The first advantage is the model employs a single architecture for pre-

training and fine-tuning tasks (Devlin, Chang, Lee, & Toutanova, 2019). The second 

advantage is BERT’s use of a bidirectional transformer architecture. BERT uses a 

Masked Language Model (MLM) and the Next Sentence Prediction (NSP) to pre-train 

the bidirectional Transformer (Devlin, Chang, Lee, & Toutanova, 2019). In the MLM 

model, tokens are randomly masked. The objective of the MLM is to predict the 
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masked word, by using the word’s context. The left-to-right and right-to-left context’s 

of the masked word are concatenated (Devlin, Chang, Lee, & Toutanova, 2019). 

Through experimentation, using the BERT-BASE and BERT-LARGE models, the 

authors find the BERT model provides superior performance compared to other 

language models such as GPT, ELMo and SOTA in 11 natural language processing 

benchmark tests (Devlin, Chang, Lee, & Toutanova, 2019).  

3.8.4 Text-To-Text Transfer Transformer (T5)  

Raffel, et al. (2020) introduce the Text-To-Text Transfer Transformer (T5) model. The 

T5 model accepts text as inputs and provides text as outputs (Raffel, et al., 2020). The 

T5 model provides a single model for a range of natural language processing tasks 

such as machine translation, question answering, text summarization and text 

classification (Roberts & Raffel, 2020). An overview of the model is illustrated in Figure 

3.9. 

The transformers Python-based library, released by (Hugging Face, 2020) provides 

access to several pre-trained natural language processing models, such as T5, BERT, 

etc. To action a specific task for the T5 model, such as text translation or 

summarization, the text must be pre-appended with the appropriate task. To translate 

text from English to German, text must be pre-appended with ‘translate English to 

French: ‘ and to summarize text, the text must be pre-appended with the ‘summarize: ’ 

keywords (Hugging Face, 2020).   

3.8.5 Related Work: Transformers in Fake News Detection 

From a COVID-19 perspective, Chen, et al. (2021) propose the Robust-COVID-

Twitter-BERT (Ro-CT-BERT) model for the detection of COVID-19 misinformation. 

The model combines CT-BERT and RoBERTa transformer architecture. In this work, 

the authors argue the performance of classification models for COVID fake news 

detection can be improved by expanding the models’ dictionary with terms specific to 

COVID19, providing a heated softmax function so the model can pay more attention 

to COVID19 specific terms, and employ adversarial training on the model to improve 

the models’ generalization capabilities (Chen, et al., 2021). Using several variants of 

the BERT, RoBERTa, and ALBERT models, and the CT-BERT model for comparison, 

the Ro-CT-BERTA model outperforms all selected models, with an accuracy score of 

99,01%, precision of 99,02%, recall of 99,01% and F1-Score of 99,01%.   
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Figure 3.9: Overview of the T5 model and several tasks the model can process (Raffel, et al., 2020). 

Using two collections, containing fake and real news articles, authored by (Shu, 

Mahudeswaran, Wang, Lee, & Liu (2018), Kula, Kozik, Choras, & Wozniak (2021) 

investigate the application of transformer neural network-based methods for fake news 

detection, using the Flair Python-based library. To evaluate the performance of the 

selected transformer models, namely, xlNET-LARGE-CASED, RoBERTA-LARGE, 

DistilGPT2, BERT-LARGE-CASE-TDE, BERT-LARGE-CASED-DRE, DistilBERT-

BASE-UNCASED, the authors select performance metrics precision, recall and F1 

Score (Kula, Choras, Kozik, Ksieniewicz, & Wozniak, 2020).  

(Kula, Kozik, & Choras (2021) present 2 hybrid models for the task of fake news 

detection, which employ BERT, RoBERTa and RNN architecture. The authors use two 

datasets, namely the ISOT dataset authored by (Bisaillon, ISOT Fake News Dataset, 

2020)  

Using the FNC-1 dataset, which was used in the Kaggle competition Fake News 

Challenge (stage 1) Slovikovskaya & Attardi (2020) revisit the fake news stance 

detection problem, through the use of 3 Transformer based architectures such as 

BERT, XLNet and RoBERTa. Using the featMLP model, authored by (Hanselowski, 

PVS, Schiller, & Caspelherr, 2017) as the baseline for experimentation, the authors 

find the transformer-based models BERT, XLNet and RoBERTa provide performance 

gains in the region of 8% to 20% for the ‘related’ class classification (Slovikovskaya & 
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Attardi, 2020). In addition, BERT, XLNet and RoBERTa provided improved precision, 

recall and F1-Scores compared to the baseline featMLP model (Slovikovskaya & 

Attardi, 2020). In the Fake News Challenge – 1 competition, the featMLP model 

outperformed all other models for stance detection (Slovikovskaya & Attardi, 2020).     

3.9 Machine Learning Algorithms for Fake News Detection 

Several machine learning algorithms are available and can be applied in many topics. 

The underlying data supplied to such algorithms can originate from data that exists in 

many forms, such as textual data, images, audio and so forth. Extensive research has 

been carried out on analysing and solving the problem of text-based fake news, using 

supervised and unsupervised learning approaches.  

In the ClaimBuster project, Hassan et al. (2017) use nine machine learning algorithms 

with three classes present in the underlying dataset (NFS – Non-Factual Sentence, 

UFS – Unimportant Factual Sentence, CFS – Check-worthy factual sentence). Using 

varying combinations of features, the authors found the Support Vector Machine (SVM) 

classifier to yield the best accuracy overall. The Support Vector Machine algorithm is 

a classification algorithm that separates its classes with a hyperplane, a defined space 

between the classes represented (Bondielli & Marcelloni, 2019). When increasing the 

dataset size, SVM’s performance was not affected, whilst the Naïve Bayes Classifier 

(NBC) experienced performance improvements (Hassan et al., 2017).  

Ahmed et al. (2017) experiment with six machine learning algorithms, namely 

Stochastic Gradient Descent (SGD), Support Vector Machine, Linear Support Vector 

Machine (LSVM), K-Nearest Neighbour (KNN) and Decision Trees (DT). The 

experiment examines feature extraction techniques TF-IDF and TF, changes to 

feature sets, and changes to the n-gram (Ahmed et al., 2017). In the experiment, the 

authors make several observations: the linear classifiers used in the experiment 

returned better results than the non-linear classifiers, and with an increase to the n-

gram, the machine learning algorithms experience a drop in accuracy. The resultant 

model in this experiment attains an accuracy rate of 92%, using LSVM and unigram 

features (Ahmed et al., 2017).  

Machine Learning algorithms have several parameters which can influence the overall 

classification performance of a machine learning model. The majority of machine 

learning frameworks provide systematic approaches in determining the optimal 
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configuration for such models. The hyperparameter selection process determines the 

best configuration for a given classifier, after examining all possible configurations. 

Two of the most common hyperparameter selection techniques are grid search and 

randomised search (SciKit Learn, 2012). Grid search examines all combinations of 

provided parameters whilst randomised search selects several parameters from a 

given collection of parameters (SciKit Learn, 2012). Such techniques have been used 

by researchers in the fake news realm. Wang (2017) employs grid search to establish 

optimal parameters for machine learning algorithms Logistic Regression and Support 

Vector Machine respectively. Similarly, Silva et al. (2020) use the grid search 

technique to find optimal parameters for SVM, RF, Bagging and AdaBoost. Silva et al. 

(2020) note that the performance of models is dependent on the configuration of the 

provided parameters.  

3.10 Evaluating Machine Learning Algorithm Performance 

Part of the machine learning workflow is ensuring the built models work as expected 

and can make accurate predictions. Apart from observing results after the machine 

learning algorithm has been built, several methods have been developed to evaluate 

the performance of a machine learning algorithm.  

With most machine learning workflows, data is split between a training portion and a 

testing portion. The machine learning algorithm is trained using the training portion, 

and the model is tested using the test portion of the data (Vierra, Pinaya, & Mechelli, 

2019).  

The confusion matrix is a table that measures a machine learning model’s ability to 

make accurate predictions (Adewole & Anuar, 2019). Figure 3.5 represents the 

confusion matrix model used to quantify a classification algorithm’s performance.  
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Figure 3.10: Graphical representation of the confusion matrix model (Vierra, Pinaya, & Mechelli, 

2019). 

The confusion matrix can be used to calculate four measures, namely, accuracy, 

precision, recall and the F-Measure score (Deng, Liu, Deng, & Mahadevan, 2016). 

Khodabandehlou & Rahman (2017) defines the four performance-related equations: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
 (6) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (7) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (8) 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =  
2 𝑥 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (9) 

Where:  

• True Positive (TP) = Instances that are correctly labelled as true.  

• False Positive (FP) = Instances that are falsely labelled as true.  

• False Negative (FN) = Truthful instances which are falsely labelled as false. 

• True Negative (TN) = Instances that are correctly labelled as false.  

The accuracy metric determines the overall number of samples correctly identified as 

truthful, relative to the provided dataset (Brownlee, 2014). Recall measures a 

classification models’ ability to correctly classify all known truthful samples in a dataset 
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(SciKit-Learn, 2021). Precision is a metric that measures a classification models’ ability 

not to misclassify a truthful sample (SciKit-Learn, 2021). F-Measure is a metric that 

calculates the average of a classification models’ precision and recall. A good score 

is a figure close to 1, while a bad score is a figure close to 0 (SciKit-Learn, 2021).  

The k-fold cross-validation methodology is a popular validation methodology.  In 10-

fold cross-validation, the dataset is divided into 10 subsets. At each iteration, one of 

the subsets are used as the testing dataset, whilst the remaining nine are used as the 

training data for the machine learning classifier (Adewole & Anuar, 2019). Figure 3.2 

illustrates 10-fold cross-validation. At each iteration, a different portion of the dataset 

(shaded in black), is selected as the test data, whilst the remaining data is used as 

training data. The overall performance result is calculated by taking aggregating 

performance results at all iterations (Vierra, Pinaya, & Mechelli, 2019).  

 

Figure 3.11: Example illustration of 10-fold cross-validation (Vierra, Pinaya, & Mechelli, 2019). 

In scenarios where a strong imbalance exists between classes in a dataset, the 

stratified k-fold cross-validation technique can be used. The stratified k-fold cross-

validation technique ensures the imbalanced dataset is split in such a manner that the 

same class distributions are maintained at each split (Brownlee, 2020). Pathak & 

Srihari (2019) select the stratified k-fold cross-validation technique to evaluate 

classification performance on the selected Bi-Directional LSTM neural network model, 

for fake news detection.   
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3.11 Deep Learning in Fake News Detection 

Deep learning, a subset of machine learning, is an artificial intelligence-based function 

that resembles much of its behaviours from the human mind. Deep learning involves 

the construction of artificial neural networks, where data flows through layers of the 

neural network. The basic anatomy of a neural network consists of multiple hidden 

layers, and each layer contains multiple, interconnected nodes, with each node having 

an activation function (Sharma, Sharma, & Athaiya, 2020). In the field of fake news 

detection, neural network-based methodologies have been examined by researchers 

in the AI community. The performance of a neural network is dependent on the number 

of hidden layers, the selected activation function, training methodologies, and selected 

hyperparameters (Sharma et al., 2020). Neural networks accept numeric inputs and 

perform a series of arithmetic operations to optimise network parameters (Nasir, Khan, 

& Varlamis, 2021). The most popular neural network architectures for natural language 

processing are Recurrent Neural Networks (RNN) and Convolution Neural Networks 

(CNN) (Deepak & Chitturi, 2020). From a high-level view, the basic anatomy of an 

artificial neural network is illustrated below:  

 

Figure 3.12: Basic Artificial Neural Network Architecture (Sharma et al., 2020) 



Chapter 3 – Machine Learning and Fake News Detection 

47 
 

Artificial Neural networks learn through the process of back-propagation. In these 

techniques, the cost function is responsible for updating weights at each of the 

networks’ layers (Cuevas, Kaliyah, Goswami, Narang, & Sinha, 2020). Activation 

functions in neural networks generate an output by taking inputs and weights and 

applying an applicable function (Sharma et al., 2020). The output is sent to the next 

layer in the neural network.  

Frequently used activation functions include the Rectified Linear Unit (ReLU), tanh, 

and sigmoid. ReLU is a commonly used activation function for neural networks, and 

its main function is to replace negative values in its input with zeroes in the network 

(Cuevas et al., 2020). One notable advantage of the ReLU activation function is certain 

neurons are active; only neurons that have an output greater than zero will be activated 

(Sharma et al., 2020). Equation 10 defines the ReLU activation function (Cuevas et 

al., 2020).   

𝜎 = max (0, 𝑧) (10) 

      

3.11.1 Recurrent Neural Networks (RNN) 

A Recurrent Neural Network (RNN) is a good choice when working with sequential 

data due to the RNN’s ability to retain calculated results from a previous state and 

apply this data to the current state (Deepak & Chitturi, 2020). RNNs are the backbone 

of prominent applications like Google’s voice search and Apple’s Siri (Mittal & Umesh, 

2020). RNNs have several advantages over traditional neural networks. Firstly, 

traditional neural networks usually accept a fixed-size vector as the input and return a 

fixed-size vector as the output. Secondly, some traditional neural networks use a fixed 

number of steps (Alom, Moody, Maruyama, Essen, & Taha, 2018). An RNN uses the 

outputs as inputs for the hidden layers. Though RNNs show major promise, one 

downside to the architecture is the high computational cost in terms of training time 

and memory usage (Mittal & Umesh, 2020). Alom, Moody, Maruyama, Van Essen, & 

Taha (2018) define basic formulae for an RNN, using equations 11 and 12:  

ℎ𝑡 =  𝜎ℎ(𝑤ℎ𝑥𝑡 + 𝑢ℎℎ𝑡−1 + 𝑏ℎ) (11) 

𝑦𝑡 =  𝜎𝑦(𝑤𝑦 ℎ𝑡 +  𝑏𝑦) (12) 

Where:  
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• 𝑥𝑡 = input vector  

• ℎ𝑡 = hidden layer vector 

• 𝑦𝑡 = output vector 

• 𝑏ℎ = bias vector 

• 𝑤 and 𝑢 being the weights. 

Two popular RNN architectures are the Long Short-Term Memory (LSTM) units and 

Gated Recurrent Unit (GRU). 

3.11.1.1 Long Short-Term Memory (LSTM)  

Long Short-Term Memory, initially proposed by Hochreiter (1997) was designed to 

solve the exploding or vanishing gradient problem (Hochreiter, 1997). Long Short-

Term Memory (LSTM) architecture consists of memory units that contain an input gate, 

output gate, and forget gate (Sak, Senior, & Beaufays, 2014). The input gate controls 

the flow of information into the memory cell; the output gate controls the output of 

information from the memory cell into the neural network, whilst the forget gate scales 

the current state of the memory cell before adding data from a previous state (Sak et 

al., 2014). From a high-level view, the LTSM memory cell can be illustrated as follows:  

 

Figure 3.13: High-level view of the LSTM Memory cell (Bahad, Saxena, & Kamal, 2019). 

3.11.1.2 Gated Recurrent Unit (GRU) 

Another variant of the recurrent neural network architecture utilises the Gated 

Recurrent Unit (GRU). This architecture is said to be simpler and exhibit a lower 
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computational cost (Alom et al., 2018). Similar to the LSTM cell, the GRU has gates 

that control the flow of information; the difference is that the gates are not contained 

in separate cells (Chung, Gulcehre, Cho, & Bengio, 2014). The GRU’s update gate 

combines the input and output gates, and the cell’s state and hidden state are merged. 

The update gate controls the extent to which a GRU cell should update the activation 

function or content. Owing to the GRU harbouring a simpler design, the resultant 

training time is lower than the LSTM’s training time (Mittal & Umesh, 2020).  

The output, update and reset functions of the Gated Recurrent Unit (GRU) cell can be 

represented, using equations 13, 14, 15 and 16 (Chung, Gulcehre, Cho, & Bengio, 

2014).  

ℎ𝑡
𝑗

= (1 −  𝑧𝑡
𝑗)ℎ𝑡−1

𝑗
+  𝑧𝑡

𝑗
ĥ𝑡

𝑗
 (13) 

𝑧𝑡
𝑗

=  𝜎(𝑊𝑧𝑥𝑡 +  𝑈𝑧ℎ𝑡−1)𝑡 (14) 

ĥ𝑡
𝑗

= tanh (𝑊𝑥𝑡 + 𝑈(𝑟𝑡 ⊙  ℎ𝑡−1))𝑗 (15) 

𝑟𝑡
𝑗

=  𝜎(𝑊𝑟𝑥𝑡 +  𝑈𝑟ℎ𝑡−1)𝑗 (16) 

Where:  

• ℎ𝑡
𝑗
 = activation of a GRU cell at time t 

• 𝑧𝑡
𝑗
 = update function for update gate 

• ℎ𝑡−1
𝑗

 = previous activation function for GRU cell 

• ĥ𝑡
𝑗
 = next activation function 

• 𝑟𝑡
𝑗
 = reset function 

3.11.2 Convolutional Neural Networks (CNN) 

Convolutional Neural Networks (CNN) embody a simple structure and are effective in 

extracting features from the text in an environment where computational resources are 

limited (Li, Li, & Lo, 2020). The most common use-cases for Convolutional Neural 

Networks are image classification tasks (Phung & Rhee, 2019). At each convolution 

layer, a convolution filter slides through every part of the input, producing a resultant 

feature map. Every part of the input is multiplied with the filter and then used in an 

applicable activation function, which in turn produces a feature map for the 

convolutional filter (Li, Li, & Lo, 2020). Following the creation of a resultant feature-

map, is the process of max-pooling, which selects the most relevant feature (highest 
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value) from a feature map for a filter (Kim, 2014). Figure 3.9 presents a high-level 

representation of a Convolutional Neural Network.  

 

Figure 3.14: Anatomy of a typical Convolutional Neural Network (Phung & Rhee, 2019) 

3.11.3 Hybrid Deep Learning Models 

Researchers in online misinformation detection have explored and demonstrated the 

effectiveness of hybrid deep learning models in the detection of fake news. Hybrid 

deep learning models are a combination of multiple deep learning architectures. Nasir, 

Khan, & Varlamis (2021) propose a fake news detection model by combining two 

artificial neural network architectures – the Convolutional Neural Network and 

Recurrent Neural Network. The premise of introducing such a model was to address 

the limited research in fake news detection, where a combination of multiple deep 

learning architectures are used (Nasir et al., 2021). The authors use the Convolutional 

Neural Network to extract latent features from the text, and the Long-Short Term 

Memory (LSTM) cell for the Recurrent Neural Network, to extract long-term 

dependency related features from the text (Nasir et al., 2021). Using the hybrid model, 

the authors attain their highest accuracy reading, at 99%, using the ISOT dataset 

(Nasir et al., 2021). 

3.11.4 Related Work: Deep Learning and Fake News Detection 

Kaliyar, Goswami, & Narang (2020) explore the problem of fake news detection 

through the use of a machine learning approach, and a deep learning approach. The 

authors use BuzzFeed (Mahudeswaran & Shu, 2019) and PolitiFact datasets for the 

experiments. In the machine learning approach, the authors use the XGBoost machine 

learning algorithm in three separate experiments. The first experiment considers 

features related to the contents of articles contained in the news dataset, the second 
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considers features related to user interactions for articles, and the third experiment 

considers the news-user interactions (Kaliyar, Goswami, & Narang, 2020). An n-gram 

feature set is employed to represent the contents of articles in the dataset. In a deep 

learning approach, the authors create DeepFake, a neural network consisting of four 

hidden layers (Kaliyar et al., 2020). In the neural network, the first, second and third 

hidden layers consist of 128 neurons whilst the last layer consists of 32 neurons 

(Kaliyar et al., 2020). The DeepFake model attains a precision of 82.10%, recall of 

84.60% and F1-Score of 84.04%. Using the BuzzFeed dataset, the model attains a 

precision of 83.33%, recall of 86.96% and an F1-Score of 85.11% (Kaliyar et al., 2020).  

Goldani, Safabakhsh, & Momtazi (2021) explore the use of deep learning technology 

using a Convolutional Neural Network with margin loss as the cost function and 

word2vec-generated word embeddings. The authors use the LIAR and ISOT datasets 

in the experiment. In the classification experiments, the authors show that their CNN 

model with margin-loss as the cost function outperforms a CNN with cross-entropy as 

its cost function by 2.1% (Goldani et al., 2021).    

Deepak & Chitturi (2020) present an approach that explores the problem of online fake 

news detection through neural network and data mining techniques. The authors 

argue that the detection of online fake news can be addressed through the creation of 

a feature set that considers the contents of articles, as well as features that describe 

the interactions of users on articles. In the experiment, the authors employ two deep 

learning models: the Long Short Term Memory (LTSM) architecture and Feed Forward 

architecture (Deepak & Chitturi, 2020). GloVe, word2vec and bag of words (BoW) 

models were chosen, creating vectors that represent articles in the respective datasets. 

Using features obtained from data mining techniques, the authors achieve as much as 

an 8% increase in model performance versus the same model without data mining-

related features (Deepak & Chitturi, 2020). Using the LSTM architecture and data 

mined features, the authors attain 91,32 % accuracy, 89,19% precision, 94.21% recall 

and an F1 score of 91,63%. Excluding features obtained through data mining, the 

authors obtain an accuracy of 83,66%, precision of 79,03%, recall of 92,02% and an 

F1 score of 85,03% (Deepak & Chitturi, 2020).  

In a social media context, Ranjan & Gupta (2021) design a framework that addresses 

online fake news detection by examining Facebook users’ account data alongside the 



Chapter 3 – Machine Learning and Fake News Detection 

52 
 

news article through the use of machine learning and deep learning technologies. The 

framework includes the development of a Google Chrome plugin that displays a popup 

window on the user’s browser. A web crawler and Facebook API is used to collect 

information relating to the user and the article (Ranjan & Gupta, 2021). The machine 

learning classifiers selected include the Support Vector Machine, Logistic Regression, 

Decision Tree, and Naïve Bayes, whilst the deep learning architecture selected is the 

Long Short Term Memory (LSTM) (Sahoo & Gupta, 2021). Of all the machine learning 

algorithms, the authors found the Support Vector Machine provided a better accuracy 

score compared to other classifiers. Additionally, it was found that the deep learning 

model yielded a better accuracy score than the machine learning classifiers. In the 

experiment, the LSTM architecture, considering user profile features and news 

features, achieve a high accuracy score of 99.4%, thus outperforming machine 

learning classifiers using the same feature set (Sahoo & Gupta, 2021).     

In an alternative view, Zhang, Dong, & Yu (2016) describe the problem of fake news 

detection as one which can be solved by observing the credibility of news articles and 

sources. The intuition behind such a view is that credible sources will have a high 

credibility score while less credible sources will have a low credibility score. The 

authors construct the FakeDetector framework, which aims to determine the credibility 

of articles, authors and article subjects by examining the relationships between such 

entities (Zhang, Dong, & Yu, 2016). To extract hidden (latent) features from the union 

of articles, news subjects and authors, the Recurrent Neural Network (RNN) with a 

Gated Recurrent Unit (GRU) architecture is employed. The authors also introduce the 

Hybrid Feature Learning Unit (HFLU), which can learn hidden features from the explicit 

feature set. The network consists of three layers; one input layer, one hidden layer 

and one fusion layer (Zhang, Dong, & Yu, 2016). Whilst extracting explicit features, 

the authors construct a vocabulary of all unique words in the PolitiFact datasets, and 

subsets of unique words that appear in articles, subjects and authors (J. Zhang et al., 

2016). The resulting feature sets for articles, subjects and authors represent words 

and the number of times a said word appeared in an article (Zhang, Dong, & Yu, 2016). 

The explicit features and latent features are concatenated and fed into a deep diffusive 

network.  

Some researchers have explored the combination of various artificial neural network 

models in the fake news detection task. Drif, Hamida, & Giordano (2019) explore fake 
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news detection by creating a CNN-LSTM neural network that combines the 

Convolutional Neural Network and Long-Short Term Memory architectures. The first 

layer in the network, the embedding layer, accepts vectorized textual data as input, in 

the form of a vector space. A pre-trained, 300-dimensional GloVe model using Google 

News vectors was used in generating word embeddings (Drif, Hamida, & Giordano, 

2019). Following the embedding layer, a drop-out layer was added to prevent over-

fitting. A CNN layer, with 10 filters of size 3, and a ReLU activation function, takes 

input from the previous dropout layer (Drif, Hamida, & Giordano, 2019). A max-pooling 

layer is selected to reduce the size of the input by selecting relevant (highest) features. 

Following the max-pooling layer, an LSTM layer is employed and accepts inputs from 

the max-pooling layer. The last layer, being the dense layer, uses the sigmoid function 

and converts the array into a range. The LIAR (Wang, 2017) and News Articles 

datasets were used. Through experimentation, Drif, Hamida, & Giordano (2019) found 

the CNN-LSTM model outperformed the Support Vector Machine (SVM) model, CNN, 

and RNN models, the highest accuracy score being 72.50% (Drif, Hamida, & Giordano, 

2019).  

Similarly, Agarwal, Mittal, & Goyal (2020) use a model for fake news detection that 

combes RNN (LSTM) and CNN architectures. Using a publicly available Kaggle 

dataset (Kaggle, 2018) from a Kaggle competition, the authors consider a given 

article’s title and text in the binary classification of fake news (reliable, unreliable). The 

authors note that RNNs come with high computational costs when working with large 

datasets; a solution to the problem could involve the use of a CNN to extract features 

from the data (Agarwal, Mittal, & Goyal, 2020). From a high-level view, the proposed 

model uses two 1-Dimensional convolutional layers, a max-pooling layer, and an 

LSTM layer. Using a model which combines CNN and LSTM architectures, the authors 

achieve a precision score of 97,21%, a sensitivity score of 91,89%, a specificity score 

of 91,89% and a training accuracy of 99.54% in the model’s last epoch (Agarwal, Mittal, 

& Goyal, 2020). The GLoVe model was used in generating word embeddings for 

articles in the dataset.  

Using the Convolutional Neural Network (CNN) architecture, Kaliyah, Goswami, 

Narang, & Sinha (2020) develop the FNDNet model. To validate the efficacy of the 

FNDNet model, the authors select 4 machine learning algorithms and 2 other deep 

learning architectures. To generate word embeddings from the text, the authors select 
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pre-trained GloVe and Word2Vec models for the experiment (Kaliyah, Goswami, 

Narang, & Sinha, 2020). The 4 selected machine learning models are Multinomial 

Naïve Bayes, Decision Tree, Random Forest, and K-Nearest Neighbour. The 2 

selected deep learning architectures were Convolutional Neural Network, Recurrent 

Neural Network (Long Short Term Memory) (Kaliyah, Goswami, Narang, & Sinha, 

2020). In the experiments, the authors find the FNDNet model, using GloVe 

embeddings, delivered superior results, compared to the other models, with an 

accuracy of 98,36%, a precision score of 99,40%, a recall score of 96,88% and an F1 

score of 98,12% (Kaliyah, Goswami, Narang, & Sinha, 2020).  

In a deep learning context, Choudhary & Arora (2020) devise a sequential neural 

network model for the detection of online fake news. Syntactical features, sentiment 

features and grammatical features are provided as inputs to the neural network. 

Through the process of fine-tuning, the authors construct a deep learning network that 

consists of two hidden layers, with each layer consisting of four neurons (Choudhary 

& Arora, 2020). At the two hidden layers, the ReLU activation function is selected, 

whilst at the output layer, the SoftMax function is employed (Choudhary & Arora, 2020). 

The authors define the fake news detection problem as a binary classification problem; 

an article is either truthful or fake. The feature groups are split into three models. Model 

1 consists of syntactical, sentimental, and grammatical features; model 2 consists of 

readability features; model 3 is a combination of models 1 and 2 (Choudhary & Arora, 

2020). Highlights from the experiment show that model 1 outperforms models 2 and 

3, achieving an accuracy rate of  82% (Choudhary & Arora, 2020). Models 2 and 3 

attained accuracy rates of 72% and 80.22% respectively.    

Numerous researchers propose models for the detection of online fake news, which 

evaluate both the textual contents and visual contents (images). Singhal, Shah, 

Chakraborty, Kumaraguru, & Satoh (2019) propose the SpotFake – a fake news 

detection framework that considers both text and images for the task of fake news 

detection. SpotFake consists of three modules. The first module uses Bidirectional 

Encoder Representations from Transformers (BERT), a language representation 

module, to extract textual features from the data. The second module employs a pre-

trained VGG19 convolutional neural network to extract image features. Finally, the last 

module combines textual features and image features and feeds the combined vectors 

to a fully connected neural network for classifying articles as fake or real news (Singhal 
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et al., 2019). BERT is a bidirectional language-based model, proposed by Kenton, 

Kristina, & Devlin (2019) which has shown promising results for several natural 

language processing tasks (Devlin, Chang, Lee, & Toutanova, 2019).  

Kula & Chora (2020) explore the use of deep learning technology, specifically 

recurrent neural networks with the Gated Recurrent Unit (GRU) and Long Short-Term 

Memory (LSTM) architectures, using the Flair library. At the time of publication, the 

authors noted that the implementation of deep learning models in fake news detection 

using the Flair library had not been covered (Kula & Chora, 2020). The ISOT Fake 

News Dataset and Getting Real about Fake News (GRaFN) are selected to train two 

separate deep learning models. Using GloVe word embeddings, the authors achieve 

the highest accuracy, recall and precision scores of 99.86%, 99.81% and 99.82% 

respectively (Kula & Chora, 2020). Owing to the definition of fake news being wide 

(inclusive of one or more subcategories like propaganda or conspiracy), the true intent 

behind an article may not always be clear by examining just the article’s textual data 

(Kula & Chora, 2020).  

3.12 Machine Learning and COVID19 

With COVID19 misinformation on the rise, researchers have explored various machine 

learning and deep learning solutions which could be used in the fight against COVID19 

misinformation. Abdelminaam, et al. (2021) explore automated detection of COVID19 

online misinformation, using six machine learning algorithms, namely, Decision Tree 

(DT), Logistic Regression (LR), K-Nearest Neighbour (KNN), Random Forest (RF), 

Support Vector Machine (SVM), Naïve Bayes (NB), and two recurrent neural network 

architectures, such as Long Short Term Memory (LSTM) and Gated Recurrent Unit 

(GRU). The authors use four Twitter datasets that span a range of topics, such as 

healthcare misinformation, politics, disaster management, and general gossip 

(Abdelminaam, et al., 2021). In their findings, the authors note the LSTM model 

achieved the best cross-validation results compared to the six observed machine 

learning models (Abdelminaam, et al., 2021). 

3.13 Conclusion 

Machine learning and deep learning technologies have shown great promise in 

combatting online misinformation.  The continuous development of datasets that can 

be used for research into online fake news further justifies the relevance of the work 
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done in this research area. The literature mentions several machine learning and deep 

learning models used by several researchers, together with the benefits and 

disadvantages of using some models for the problem. 

This chapter aims to provide extensive coverage of machine learning technology and 

how the technology has been applied to combat online misinformation. Chapter 4 

provides an in-depth view of the research process and design for the study. 
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4. Chapter 4 - Research Methodology and Design 

This section presents the research methodology and design undertaken in this 

research project.  As mentioned in Chapter 1, the objective of this study is to design a 

set of guidelines that could be used in developing tools or solutions for automated fake 

news detection.  

4.1 Overview 

The purpose of devising a research methodology and design plan is to outline a 

systematic process as to how knowledge will be uncovered. A research methodology 

describes a systematic way of undertaking research and solving research questions 

(Sarkar & Sahu, 2018). Quantitative research methods collect numeric, statistical, 

measurable data to provide answers for a phenomenon (Earl, 2010). In contrast, 

qualitative research involves the collection of data through non-numeric means such 

as using questionnaires, observations, and audio.  

A research project can take a positivism or interpretivism approach. Positivism 

research bases findings on factual and logical information (Hughes, Sharrock, Hughes, 

& Sharrock, 2011). In positivism, data is presented in its raw form, without further 

processing and interpretation (Hughes et al., 2011). Positivism often includes 

experimentation and quantitative research. Positivists typically formulate conclusions 

and findings on facts that can be verified (Ryan, 2018). In contrast, interpretivism deals 

with the central theme of truth being subjective, depending on several factors.  

4.2 Research Design 

The research takes a positivist approach to uncover facts and information. Quantitative 

research methods are employed in the research process. Through a series of 

experiments, constructed in a systematic manner, knowledge and facts related to the 

applicability of automated fake news detection are uncovered. Furthermore, the results 

and data collected during the experimentation phase are discussed and compared 

against findings by other researchers, through Logical Argumentation.   

4.2.1 Literature Review 

The purpose of the literature review is to better understand the research problem and 

examine existing literature related to the research problem. The literature review 

extensively covers the idea of fake news, why it is a problem and why such a problem 
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is worthy of investigation. Through this method, the literature review reveals possible 

indicators which may suggest a given article may be fake news. These indicators are 

crucial for the experimentation phase, where features that best fit such indicators are 

selected. In addition, the literature review makes clear numerous machine learning 

and deep learning models which have been applied by researchers, in the task of 

misinformation detection. The advantages and disadvantages of such models 

determine which models are selected for experimentation.  The literature review 

addresses secondary research objectives 1 and 2: 

1. Identify the motives behind the propagation of fake news. 

2. Identify appropriate indicators, from literature, which could suggest an article is 

fake news.  

4.2.2 Experimentation 

Through experimentation, the notion of detecting online fake news is tested using 

technologies highlighted in the literature review, namely Machine Learning and Deep 

Learning technology. The purpose of the experiment is to validate the effectiveness of 

fake news detection, using a collection of features derived from identified indicators. 

To determine the effectiveness of the experiments, a range of well-known performance 

metrics are selected. The objective of the experiment is to provide answers to research 

secondary objective 3: 

3. Validate the identified indicators through the application of selected machine 

learning algorithms. 

The experiments are set up systematically, like other researchers who have worked in 

this field of study. A discussion and a brief analysis of the results are given in this 

chapter. 

4.2.3 Logical Argumentation 

Finally, logical argumentation is employed to examine the results obtained in the 

experimentation chapter. Argumentation aims at convincing critics of the acceptability 

of your viewpoint, using a collection of statements as the premise (Van Eemeren & 

Grootendorst, 2004). Logical argumentation is used to discuss the results obtained, 

compare them with results that other researchers have obtained, and position the 

results alongside other research into fake news detection using technological solutions. 

Logical argumentation is employed as a means to systematically set up experiments 
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related to this project, based on experimental set-ups used by other researchers in the 

fake news detection community.  

Using information collected through literature review, data collected through 

experimentation, and findings discussed through logical argumentation, guidelines 

into fake news detection can be formulated. Figure 1.1 illustrates the overall research 

design process undertaken for the project.  

 

Figure 4.1: Overall research process employed in this study 

4.3 Experiment Implementation Details 

To carry out the experimentation, a number of tools, packages and benchmarking 

standards are required. The Python programming language is selected for the 

construction of the selected machine learning and deep learning models. The 

PyCharm IDE is selected for creating the necessary Python scripts. To construct the 

necessary machine learning and deep learning models, the Sci-Kit Learn and Keras 

Python libraries are selected respectively. Finally, to determine optimal configuration 

for the deep learning models, the Keras-Tuner library is selected.  

To quantify the performance of the machine learning and deep learning models, 

performance metrics such as accuracy, precision, recall, and F1-score are selected. 
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These metrics derive their results from values present on the confusion matrix, such 

as the number of true positives, false positives, false negatives and true negatives. 

The formulae for the selected performance metrics are discussed in Chapter 3. Further 

details surrounding the use of machine learning and deep learning packages are 

discussed in Chapter 5 and Chapter 6.    

4.4 Guidelines For the Detection of Text-Based Fake News 

Using data collected through experimentation, and the interpretation of the results 

through logical argumentation, the deliverable for this project, guidelines for the 

detection of text-based fake news are constructed. The purpose of the guidelines is to 

list key points which should be considered when developing systems for text-based 

fake news detection. The practicality of such guidelines is supported by findings in the 

experimentation phase and findings from other authors in the literature review.  

4.5 Conclusion 

This chapter presents a detailed overview of the research process employed in the 

project. This chapter also makes it clear how the selected research methods address 

the primary and secondary objectives and contribute towards the development of 

machine learning guidelines for text-based fake news detection. Chapter 5 covers the 

experimentation phase of the project. 
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5 Chapter 5 - Experiment 

This chapter presents the experiment undertaken in the research project. The 

objective of the experiment is to determine the effectiveness of automated tooling in 

the detection of fake news, through examining various combinations of identifiers and 

machine learning algorithms.  

5.1 Introduction 

The experiments covered in this chapter aim to determine the effectiveness of 

machine learning and deep learning approaches for the task of automated fake news 

detection. The task of detecting fake news is a complex task for a myriad of reasons, 

such as language, text lengths, and additional metadata. In Chapters 2 and 3, 

indicators that could suggest a given article or statement is fake are outlined; such 

indicators are discussed in greater lengths in this chapter.  

The experiment explores and provides an answer to secondary objective 3 of the 

research objectives: 

3. Validate the identified indicators through the application of selected machine 

learning algorithms. 

In Chapter 2, the possible indicators of a given article being a fake news article are 

outlined. Given the findings outlined by various researchers, the following properties 

of online news articles are considered as indicators that could differentiate a fake news 

article from a real news article:  

1. Fake news articles generally contain short article bodies and longer article titles.   

2. Fake news articles generally use simpler sentence structures. 

3. Fake news article’s generally have headlines which aren’t related to the article 

body. 

In the series of experiments that follow, a broader definition of fake news is applied; 

that is, any articles that mislead online readers by publishing unverified facts or false 

content. As such, news articles can be fit into one of two classes: truthful or false.  

5.2 Hardware Configuration 

The experimentation undertaken in this study involves the use of machine learning 

and deep learning approaches to text-based fake news detection. The experiments 
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are performed offline, on a notebook computer. The notebook has a 500GB NVMe 

M.2 SSD, an Intel Core i5-7700HQ processor, 16GB of DDR4 RAM, and an Nvidia 

GeForce GTX 1050 4GB Graphics card, which is useful for deep learning. The 

notebook uses Windows 10 Pro (64 bit) as the operating system. All Python scripts 

are written and executed using the JetBrains PyCharm IDE.  

5.3 Datasets and Tooling 

Figure 5.1 illustrates the overall process employed to generate a feature set which 

best describes the problem. In the experiment, two datasets are used. Dataset A is a 

collection of the online news articles used for the classification task, whilst dataset B 

is used to train the Doc2Vec model to generate document-based vectors. Following 

data pre-processing, feature extraction processes ensue. Finally, the generated 

document vectors are concatenated with the generated features, creating an initial 

feature set for the experiment.  

 

Figure 5.1: Overall feature extraction process employed in the experiment. 
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5.3.1 Datasets 

Two datasets are employed in the experiments. One dataset is used for the 

classification task of discerning between false and real news articles, and the second 

dataset is used to train a doc2vec model to generate document vectors for each article 

contained in the first dataset. The fake-real news dataset created by Bisaillon (2020) 

is used for the classification task, and the FakeNewsCorpus dataset, created by 

Szpakowski (2018) is used to train a doc2vec model. The Bisaillon (2020) dataset 

contains 23 481 fake online news articles and 21 417 real online news articles 

published between the years 2015 and 2018. Real news articles were collected from 

Reuters.com, an online news firm. Fake news articles were collected from websites 

that were flagged as ‘unreliable’ by PolitiFact (Bisaillon, 2020). The fake news articles 

span six categories, namely, government news, Middle-East news, US news, left-

news, politics, and news (Bisaillon, 2020) 

The FakeNewsCorpus dataset, created by Szpakowski (2018), contains over 9.5 

million articles and is 28 GB in size. Owing to the limited memory and processing 

power present on the computer used to perform the experiments, the first 12 000 

articles, spanning over all news categories contained in the dataset, are selected. The 

merged dataset is a collection of 120 000 articles, evenly distributed across 10 news 

categories. Table 5.1 shows all news article categories and the number of articles 

selected for each category.  

Table 5.1: Summary of news article categories for selected articles used to train the Doc2Vec model 

Article Category Number of Selected Articles 

Fake News 12 000 

Satire 12 000 

Bias 12 000 

Conspiracy 12 000 

Junk Science 12 000 

Hate News 12 000 

Clickbait 12 000 

Unreliable 12 000 

Political 12 000 

Credible 12 000 
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The diagrams below represent common words associated with fake and real news 

articles in the dataset. Figure 5.2 and Figure 5.3 represent the topmost 3000 words 

found in the online fake news and online real news datasets authored by Bisaillon 

(2020). The most frequent words appear larger than the least frequent words. The 

SciKit-Learn’s TfIdfVectorizer class was used to calculate a TF-IDF score as a way of 

calculating the significance of words contained in both datasets. The fake news 

dataset resulted in a vocabulary size of 94137 words, whilst the real news dataset 

resulted in a vocabulary size of 66 355 words. Using both fake and real news 

vocabulary sets, a total of 38 806 words were found which were present in both fake 

and real news vocabularies.  

 

Figure 5.2: Word cloud representation of the most frequent words contained in the online fake news 

articles dataset, authored by Bisaillon (2020). 

 

Figure 5.3: Word cloud representation of the most frequent words contained in the online real news 

articles dataset, authored by Bisaillon (2020)
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5.4 Data Pre-processing 

This research employs various data pre-processing techniques to ensure the raw, 

textual article data is in a state ready for the feature extraction and selection processes. 

This step of the process mostly involves the removal of noise in the data.  

5.4.1 Stop words and special character removal. 

Stop words removal is a process where common words, which add little value to text, 

are removed from bodies of text. Special characters and any other common words, 

such as is, as, etc. are removed from articles.   

5.5 Feature Extraction 

Having considered the information presented in the literature, it is evident that a tool 

for fake news detection should consider the article title, article contents, the 

relationship between the title and body, and the article’s anatomy. In this study, the 

work of Masood & Aker (2018) is used as a reference for possible features that capture 

the points above. Such features are listed below: 

5.5.1 Title and Article Body Word Count 

Total counts on the number of words contained in article titles and article bodies are 

kept as separate metrics for each article. The inclusion of this metric as a feature is 

based on an observation by Horne & Adali (2017), who state fake news articles have 

shorter article bodies. 

5.5.2 Title and Body Punctuation Count 

The total number of punctuation marks found in an article’s body is added to the 

feature matrix. The rationale supporting the inclusion of this metric in the feature set 

is based on several observations relating to title length, sentence length and 

punctuation counts in fake and real news articles.  

5.5.3 Sentence Length 

For each article, the average sentence length for each article in the corpora is 

calculated. The inclusion of this metric relates to the observation that fake news 

articles generally contain shorter article bodies and sentences, compared to truthful 

articles.  
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5.5.4 Type-Token Ratio 

The type-token is calculated by tallying the total number of unique words in a document 

and dividing this by the total word count present in a document. To calculate the type-

token ratio for article bodies contained in the dataset, the LexicalRichness (YS, 2018) 

Python module is used. The type-token ratio can be calculated using equation 17 (YS, 

2018).  

𝑡𝑡_𝑟𝑎𝑡𝑖𝑜 =  
𝑁𝑡

𝑁𝑤
 (17) 

Where: 

• Nt: unique words present in each document 

• Nw: total word count per document 

5.5.5 Cosine Similarity 

An averaged cosine similarity score is calculated for each article contained in the 

dataset. The average score is calculated by considering the article title against all 

sentences in each article. The inclusion of cosine similarity as a metric to measure the 

relationship between article titles and texts are supported by the work of Masood & 

Aker (2018), who employ the metric as a means of measuring the similarity of article 

titles and article bodies. Given document vectors A and B, cosine similarity is 

calculated using equation 18 (Han, Kamber, & Pei, 2012): 

cos_𝑠𝑖𝑚 = 𝑠𝑖𝑚(𝐴, 𝐵) =  
𝐴 ∙ 𝐵

||𝐴||||𝐵||
 (18) 

5.5.6 Text Readability Metrics 

Several text readability metrics are selected to measure the readability of article texts. 

The inclusion of such metrics is based on the work of Horne & Adali (2017), who use 

text readability metrics as a means of examining article structure. The py-readability-

metrics (DiMascio, 2019) Python package is used to perform the necessary 

calculations. The selected readability metrics are defined below.  

5.5.6.1 Gunning Fog Index 

This metric derives its score from the US schooling system, indicating the educational 

grade required to comprehend a piece of text (Bilal & Huang, 2019) The py-readability-

metrics package calculates the Gunning Fog Index metric using equation 19 (DiMascio, 

2019): 
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𝑡𝑒𝑥𝑡_𝑔𝑓 = 0.4 ∙ (
𝑇𝑤

𝑇𝑠
+ 100 ∙

𝐶𝑤

𝑇𝑤
) (19) 

Where:  

• Tw: Total words 

• Ts: Total Sentences 

• Cw: Total complex words 

5.5.6.2 Flesch Kincaid Grade Level Index 

This is another text readability metric where scores correlate to the educational grade 

required to comprehend a given piece of text (Bilal & Huang, 2019). The py-readability-

metrics calculates the related reading index using equation 20 (DiMascio, 2019): 

𝑡𝑒𝑥𝑡_𝑓𝑘𝑔 = (0.39 ∙ 𝐴𝑤𝑠 + 11.8 ∙ 𝐴𝑠) − 15.59 (20) 

Where:  

• Aws: The average word count per sentence, per document 

• As: Average syllables per word, per document 

5.5.6.3 Automated Readability Index 

This metric considers sentences and the word count. The score relates to the 

educational grade level required to comprehend a piece of text (Bilal & Huang, 2019). 

The py-readability-metrics package calculates the related index using equation 21 

(DiMascio, 2019):  

𝑡𝑒𝑥𝑡_𝑎𝑟𝑖 = 4.71 ∙ 𝐿𝑃𝑊 + 0.5 ∙ 𝑊𝑠 − 21.43 (21) 

Where:  

• LPW: Number of letters per word, per document 

• Ws: Number of words per sentence, per document 

5.5.7 Doc2vec 

The doc2vec model is used to transform article texts into document vectors. The model 

is pre-trained using a subset of articles contained in the FakeNewsCorpus authored 

by Szpakowski (2018). After model training, article texts from the fake news dataset 

used for the classification task are fed into this model, which in turn, generates the 

necessary document vectors.  
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In the experiment, the Gensim implementation of the Doc2vec model is selected. For 

the model’s configuration, the window size is set to 8, and the Paragraph Vector-

Distributed Bag of Words (PV-DBOW) model is selected as the training algorithm. Due 

to limited computational resources, the first 120 000 articles, spanning over 10 news 

categories, is selected from the FakeNewsCorpus authored by Szpakowski (2018). 

The decision to create a subset of articles, containing 120 000 news articles is inspired 

by Le & Mikolov (2014) sentiment analysis experiment. In the experiment, the selected 

dataset contained 100 000 movie reviews. In all experiments undertaken, Le & Mikolov 

(2014) set the window size to 8 and the number of vector dimensions to  400, for both 

PV-DBOW and PV-DM models (Le & Mikolov, 2014).  

5.5.8 Text Summarization 

Due to high computational costs associated with training recurrent neural networks, 

and limited computational resources, a separate dataset consisting of summarized 

articles are created. Following basic text pre-processing highlighted in section 5.4, the 

text is sent to the T5 model for text summarization. The experiment uses the Hugging 

Face (Wolf, et al., 2019)  implementation of Google’s T5 (Text-To-Text Transfer 

Transformer) model. As part of the T5 framework release, Google provided several 

pre-trained models along with source code. This experiment uses the ‘t5-base’ pre-

trained model, which contains 220 million parameters. Following summarization, the 

longest summarized document contained 98 words. Articles containing no text were 

removed. As a result, 631 rows were removed.  

Following basic data cleansing techniques, the first step of the process is to encode 

the text. This experiment uses the T5Tokenizer to handle this aspect. To summarize 

text, the input text is pre-appended with the ‘summarize:’ token, as described by Raffel 

et al. (2019). To generate document summaries, we set the max_length parameter to 

200, num_beams to 4, min_length to 20 and no_repeat_ngram_size to 2. The final 

step of the process is to decode the summaries into human-readable text. For 

sequence-to-sequence generation, Hugging Face (2020) recommends using the 

T5ForConditionalGeneration.generate() method (Hugging Face, 2020).  

5.5.9 Parts of Speech Tagging (POS) 

For each document, the parts of speech found are collected. Each part of speech 

contains a count on the number of occurrences found in each article. The Parts of 
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Speech tags assist in better understanding the grammatical composition of fake and 

real news articles. This accumulative feature addresses part of the 2nd fake news 

identifier:  

2. Fake news articles generally use simpler sentence structures. 

5.6 Initial Feature Set 

Table 5.2 represents the features extracted from fake and real news articles (Ngada 

& Haskins, 2020). The dataset authored by Bisaillon (2020) was selected. From the 

articles, a collection of 49 features that capture sentence structure and composition is 

created. Document vectors are generated using a trained doc2vec model. The 

doc2vec model is trained with data from the FakeNewsCorpus dataset. Following 

model training, document vectors are generated – the resultant vectors are appended 

to the feature set. The resultant feature set contains 458 vectors.  

5.7 Machine Learning Algorithms 

The Support Vector Machine, Random Forest, AdaBoost, XGBoost, and K-Nearest 

Neighbour machine learning algorithms are selected for the experiment. The results 

of each classifier are discussed in section 5.8.  

The resultant feature set, generated from processing the fake and real news dataset, 

authored by Bisaillon (2020), are provided as inputs into the selected machine learning 

algorithms. 80% of the dataset is selected as training data, whilst the remaining 20% 

is selected as the test dataset.   

5.7.1 Machine Learning Algorithm Configuration 

The GridSearchCV hyperparameter selection technique is employed to determine an 

optimal parameter set, for each selected machine learning model. Silva et al. (2020) 

use the grid search technique to determine the best configuration for the number of 

estimators, and regularization parameters for the AdaBoost, Support Vector Machine, 

Random Forrest and Bagging classifiers (Silva et al., 2020). Wang (2017) employs 

grid search to determine optimal parameter configurations for the Logistic Regression 

and Support Vector Machine models. Table 5.3 illustrates all hyperparameters 

explored in the grid search process. Due to limited computational capacity, grid search 

is performed over three folds.  
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Table 5.2: Initial feature set for fake news detection 

Calculated Features Name 

text_ari Automated Readability Index 

text_gf Gunning Fog Index 

text_fkg Flesch Kincaid Grade Level Index 

tt_ratio Type-Token Ratio 

cos_sin Cosine Similarity 

Accumulative Features 

Count of unique words Average sentence length 

Title Word Count Article Body Word Count 

POS Tag for ‘Adjective’ POS Tag For ‘Noun’ 

POS Tag For ‘,’ POS Tag for ‘Proper Noun’ 

POS Tag For ‘Cardinal Digit’ POS Tag For ‘Verb - Present Participle’ 

POS Tag For ’.’ POS Tag For ‘Determiner’ 

POS Tag For ‘Verb - Past Participle’ POS Tag for ‘(’ 

POS Tag For ‘Preposition’ POS Tag for ‘)’ 

POS Tag for ‘Adverb’ POS Tag for ‘Verb – Single’ 

POS Tag for ‘Personal Pronoun’ POS Tag for ‘:’ 

POS Tag for ‘Adjective’ POS Tag for ‘Verb’ 

POS Tag for ‘Possessive pronoun’ POS Tag for ‘Modal’ 

POS Tag for ‘3rd person verb’ POS tag for ‘Proper Noun’ 

POS Tag for ‘ ” ’ POS Tag for ‘Adverb’ 

POS tag for ‘Proper Noun’ POS Tag for ‘coordinating conjunction’ 

POS Tag for ‘Pronoun’ POS tag for ‘Possessive pronoun’ 

POS tag for ‘Whdeterminer’ POS Tag for ‘Existential’ 

POS Tag for ‘Adjective’ POS Tag for ‘Adverb - Comparative’ 

POS Tag for ‘Particle’ POS Tag for ‘Symbol’ 

POS Tag for ‘to’ POS Tag for ‘Foreign word’ 

POS Tag for ‘Adverb - superlative’ POS Tag for ‘Possessive wh-pronoun’ 

POS Tag for ‘Predeterminer’ POS tag for ‘List item marker’ 

Implicit Document Features 

Doc2Vec Features 
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Table 5.3:  Parameters and values explored through SciKit Learn's GridSearch  

Classifier Parameter 

Configuration  

Best Configuration Accuracy 

K-Nearest Neighbour 'n_neighbors': [2, 3, 4, 
5, 6, 7, 8, 9, 10], 
 
'algorithm': 
['ball_tree', 'kd_tree', 
'brute'] 

n_neighbors: 5 

algorithm: ball_tree 

0.908 

Support Vector 

Machine 

'kernel': ['linear', 'rbf'], 
 
'C': [0.001, 0.01, 0.1, 1, 
10, 100, 1000], 

kernel: linear 

C: 0.1 

0.994 

Random Forest 'n_estimators': [2, 5, 
7, 10], 
'max_depth': [0, 1, 3, 
5, 7] 

‘n_estimators:’: 10 

‘max_depth’: 7 

0.971 

XGBoost Classifier 'n_estimators': [7, 10, 
50, 100], 
 'max_depth': [1, 3, 5, 
7] 

‘n_estimators:’: 100 

‘max_depth’: 5 

0.988 

AdaBoost Classifier 'n_estimators': [20, 
50, 100, 150], 
 
'algorithm': 
['SAMME', 
'SAMME.R'] 

'algorithm': 'SAMME.R', 

'n_estimators': 150 

0.992 

5.8 Machine Learning Algorithms Classification Results 

To quantify a machine learning algorithm’s classification performance, five metrics are 

selected. These metrics are Precision, Accuracy, Recall, F-Measure and Receiving 

Operator Characteristic(ROC) curve. The confusion matrix models provide data points 

that the five metrics use. Data normalization and feature selection techniques were 

not considered. The selected classifiers are configured using optimal configuration as 

outlined in Table 5.3. The dataset is split into training and testing sets; 80% of data is 

used as training data, whilst the remaining 20% is used as testing data.  

In the experiment, Support Vector Machine is denoted as SVM, Decision Tree as DT, 

K-Nearest Neighbour as KNN, AdaBoost Classifier as AB, and XGBoost Classifier as 

XGB. Table 5.4 shows precision, accuracy, recall, F-Measure and ROC scores 

attained for each classifier. Table 5.5 shows the accuracy rates obtained at each fold, 

in 10-fold cross-validation, for each of the selected classifiers. In table 5.6, each 

numeric column represents the iteration (the fold) in the k-fold cross-validation. Finally, 
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figures 5.4 to figure 5.8 illustrate the area under the curve graphs for the selected 

machine learning algorithms.  

Table 5.4: Performance results obtained through each classifier, following the hyperparameter 

selection process.  

Classifier Precision Accuracy Recall F- Measure AUC 

Support Vector Machine 0.993 0.994 0.994 0.994 0.993 

Decision Tree Classifier 0.950 0.949 0.953 0.952 0.948 

Random Forest Classifier  0.994 0.989 0.984 0.989 0.999 

K-Nearest Neighbour  0.964 0.912 0.864 0.912 0.915 

XGBoost Classifier 0.991 0.988 0.986 0.988 0.988 

AdaBoost Classifier 0.993 0.993 0.994 0.993 0.993 

 

Table 5.5: K-Fold cross-validation results obtained with each classifier. 

Classifier  1 2 3 4 5 6 7 8 9 10 

SVM 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.992 0.996 

RF  0.988 0.989 0.985 0.990 0.989 0.988 0.988 0.988 0.987 0.989 

KNN  0.911 0.913 0.914 0.906 0.920 0.914 0.919 0.916 0.911 0.911 

AB 0.990 0.992 0.993 0.991 0.989 0.991 0.992 0.991 0.993 0.992 

XGB 0.990 0.988 0.989 0.989 0.985 0.991 0.987 0.989 0.990 0.987 

 

 
Figure 5.4: ROC AUC for Random Forest 

 
Figure 5.5: ROC AUC for K-Nearest 

Neighbours 
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Figure 5.6: ROC AUC for XGBoost 

 
Figure 5.7: ROC AUC for AdaBoost Classifier 

 
Figure 5.8: ROC AUC for Support Vector 

Machine 

 

 

5.9 Deep Learning Experiments 

The following section describes the experiments undertaken using deep learning 

approaches. This part of the experiment uses the same dataset described in section 

5.2.1 and the same feature set described in section 5.5. The experiments described 

in this section were carried out using the Keras (Chollet, et al., 2020) Python library. 

The Keras-Tuner (O'Malley, et al., 2019) library is selected to perform the hyper-

parameter selection process. The experiments were performed on a notebook with an 

Nvidia GeForce GTX 1050 4GB GPU, Intel Core i5-7300 HQ CPU and 16GB of DDR4 

RAM. The operating system present on the notebook is Windows 10 Pro 64-bit. The 

experiments were done through a series of Python scripts, written using the JetBrains 

PyCharm IDE (Professional 2020.3).   

5.9.1 Deep Learning Architecture Selection and Design 

In the exploration of deep learning architecture, several designs, as described by 

several researchers, are employed. The experiments below use a selection of a hybrid 

neural network and vanilla neural network designs used by other authors. The Fake 
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Real News dataset authored by Bisaillon (2020) is selected. A brief explanation of 

each architecture is described in the sections below.  

5.9.2 Hybrid Convolutional Neural Network  

In the experiment, fake news detection through the use of a hybrid Convolutional 

Neural Network that can draw on explicit (handcrafted) features, and implicit features 

present in the articles is explored. The decision to explore such a design is supported 

by the work of Yang et al. (2018), who construct a model for fake news detection that 

uses both explicit and implicit features present in the body of text. The textual features 

used are described in section 5.5. The set contains 53 features. Following the 

concatenation of the explicit and implicit text features branches, the following Dense 

layer is configured to contain 128 neurons, and the output layer is configured to have 

1 neuron. For the Dense and Conv1D layers within the model, the ReLU activation 

function is selected.  The output layer is configured to use the sigmoid function as the 

activation function.  

To extract latent features in the articles, the Convolutional Neural Network architecture 

is employed. The decision to include the CNN architecture is supported by a strategy 

noted by Agarwal et al. (2020): To overcome the high computation costs exhibited by 

Recurrent Neural Networks (RNN), the authors use the CNN architecture to extract 

features from the article text. Furthermore, the combination of explicit and implicit 

features is used in the work of Yang et al. (2018), who extract features from text and 

images in both explicit and implicit contexts. This experiment considers only the textual 

data of articles. Figure 5.9 depicts a high-level view of the proposed hybrid 

convolutional neural network. For the Dense and Conv1D layers found at numerous 

layers in the hybrid CNN model, the ReLU activation function was selected. The 

sigmoid activation function is used at the output layer of the hybrid CNN model.   
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Figure 5.9: Overview of the proposed hybrid CNN-DNN neural network 
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5.9.2.1 Hyperparameter selection process 

To determine the best parameter configuration for the convolutional neural network, 

the Keras-Tuner (O'Malley, et al., 2019) library is selected. Table 5.7 shows selected 

parameters explored in the hyperparameter selection process. The number of 

executions is set to 2 and the number of trials per execution is set to 3. The 

hyperparameter selection process employed in Keras-Tuner includes creating the 

model and feeding the model training and testing data. As such, the Fake Real News 

dataset authored by Bisaillon (2020) is selected. The dataset is split into an 80% 

training set, and 20% testing set. Basic data pre-processing techniques outlined in 

section 4 are applied. The hyperparameter selection was done over 20 epochs. Word 

embeddings for the model were generated using a pre-trained news word2vec model. 

The resultant word embeddings were used as weights for the Convolutional Neural 

Network. Table 5.6 shows the final configuration selected for the Convolutional Neural 

Network. Table 5.7 illustrates the configuration selected at each trial of the 

hyperparameter process. Due to the model consisting of multiple inputs, layers that 

are associated with the explicit textual features are signified with E whilst layers 

associated with implicit text features are signified with I. Finally, M signifies the last 2 

layers following concatenation of the two models.  

Table 5.6: Parameters selected for Hyperparameter selection process for the Convolutional Neural 

Network (CNN) 

Parameter Tested Values Best Values 

E: Dense: units 160, 192, 256, 384 384 

E: Dropout: rate 0.2, 0.3, 0.4, 0.5 0.5 

E: Dense: units 32, 48, 64, 96 48 

I: Conv1D: filters 50, 70, 90, 120 90 

I: Conv1D: kernels 3, 4, 5 4 

I: Conv1D: strides 2, 3, 4 4 

I: MaxPool1D: pool_size 3, 4, 5 3 

I: Dropout: rate 0.3, 0.4, 0.5 0.5 

M: Dense: units 128, 160, 192 128 

M: Dropout: rate 0.3, 0.4, 0.5 0.3 
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Table 5.7: Hyperparameter selection results using Keras-Tuner RandomSearch algorithm. 

Best Configuration 2nd Best Configuration 3rd Best Configuration 

Score 99,97% Score 99,95% Score 99,49% 

E: Dense: units 384 E: Dense: units 256 E: Dense: units 192 

E: Dropout: rate 0.5 E: Dropout: rate 0.3 E: Dropout: rate 0.2 

E: Dense: units 48 E: Dense: units 32 E: Dense: units 64 

I: Conv1D: 
filters 

90 I: Conv1D: filters 120 I: Conv1D: 
filters 

120 

I: Conv1D: 
kernels 

4 I: Conv1D: 
kernels 

4 I: Conv1D: 
kernels 

5 

I: Conv1D: 
strides 

4 I: Conv1D: 
strides 

4 I: Conv1D: 
strides 

4 

I: MaxPool1D: 
pool_size 

3 I: MaxPool1D: 
pool_size 

4 I: MaxPool1D: 
pool_size 

4 

I: Dropout: rate 0.5 I: Dropout: rate 0.5 I: Dropout: rate 0.4 

M: Dense: units 128 M: Dense: units 192 M: Dense: units 128 

M: Dropout: 
rate 

0.3 M: Dropout: rate 0.5 M: Dropout: rate 0.4 

 

5.9.2.2 Hybrid Convolutional Neural Network: Experimental Results 

In section 5.9.2.1, a brief overview of the explicit and implicit models to be combined 

are discussed in detail. The decision to employ a hybrid CNN design is based on the 

work of Yang et al. (2018) who follow a similar structure in analysing explicit and 

implicit features for an article’s text and image contents.  

The data used was split into two subsets; 80% for training the model, and 20% to 

validate the model during training. The training was performed over 20 epochs. A 

detailed view of the hybrid CNN is presented in Figure 5.10. The model had 

65 548 274 parameters, of which 579 674 were trainable. 64 968 600 parameters 

were non-trainable. Each epoch took roughly 1 minute and 25 seconds to complete. 

The Adam optimizer is selected as the optimizer. The hybrid CNN model achieved a 

weighted accuracy score of 99,66%, 0,0090 for loss, 99,88% as the validation 

accuracy and 0,0129 as the validation loss. Detailed experimental data can be seen 

in Appendix B.   
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Figure 5.10: Overall architecture of the neural network. The model accepts two inputs, one for the 

explicit features and one for implicit features extracted by the Convolutional Neural Network. 

Due to the problem being modelled as a binary classification problem, the sigmoid 

function is used on the output layer as the activation function. The SoftMax function is 

useful in scenarios where the problem is modelled as a multi-class problem. Binary 

Cross-Entropy is employed as the loss function for the model. Given a range of values, 

the sigmoid function transforms such values to a figure between 0 and 1 (Sharma, 
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Sharma, & Athaiya, 2020). If 𝑥 is the input in numeric form, the sigmoid function is 

expressed, using equation 22 (Keras, 2020):  

𝑓(𝑥) =  
1

1 +  𝑒−𝑥
 (22) 

The Binary Cross-Entropy function is recommended for binary classification problems. 

The function calculates loss between the predicted class and the expected class. If 𝑦 

is the class (true or fake news) and 𝑝(𝑦) is the predicted class, and 𝑁 is the total 

number of samples, the loss function 𝐿 can be expressed using equation 23 (Agarwal, 

Mittal, & Goyal, 2020):  

𝐿 =  − 
1

𝑁
 ∑ 𝑦𝑖 ∙ log(𝑝(𝑦𝑖)) + ( 1 −  𝑦𝑖 ) ∙ log (1 − 𝑝(𝑦𝑖))

𝑁

𝑖=1

 (23) 

 

5.9.3 Hybrid Recurrent Neural Network (LSTM) + CNN Model 

In the experiment, a hybrid deep learning model for fake news detection is constructed, 

using Recurrent Neural Network, Convolutional Neural Network and Dense Neural 

Network architectures. The decision to include the CNN architecture is due to the 

architecture’s ability to extract latent features from data. As part of the RNN 

architecture, the Long Short-Term Memory cell is used. The decision to follow such a 

design, and to include RNN technology, is based on an observation made by Nasir et 

al. (2021) regarding Long Short-Term Memory cells; in a hybrid RNN-CNN neural 

network model, the LSTM cell could be used in capturing information that relates to 

the flow of information.  

Like the experiment carried out in section 5.8, this experiment uses explicit, 

handcrafted features, and implicit (sequential) data from the text. The Keras functional 

API is employed to create a multi-input model; the first model is a Dense Neural 

Network model, whilst the second model stacks both Convolutional Neural Network 

and Long Short-Term Memory architecture. The inputs are then concatenated, and a 

decision is made on the output layer.  

5.9.3.1 Hybrid Model: RNN and CNN Details 

The Convolutional Neural Network layer is responsible for extracting latent features 

from the text, whilst the Long Short-Term Memory (LSTM) is responsible for learning 

from time-series data within the text. All documents are one-hot encoded, using the 
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Keras Tokenizer API. In terms of the article body, the longest document had 98 words. 

To ensure all documents have equal lengths, following the one-hot encoding process, 

zero-padding is employed; zeros are appended to the end (right) of all documents. 

Figure 5.11 provides a detailed view of the hybrid RNN (LSTM) model.  

 

 

Figure 5.11: Hybrid CNN-RNN model for fake news detection
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5.9.3.2 Long Short-Term Memory Cell Configuration 

For the LSTM cell, the configuration is kept in line with the documentation specified by 

Keras. When using an Nvidia GPU to build the RNN, Keras can utilise Nvidia CuDNN 

technology, which yields faster training times (Zhu & Chollet, 2019). As per the Keras 

documentation, the activation function is set to tanh, recurrent dropout is kept at 0, use 

bias is set to true and unroll is set to False.  

A pre-trained word2vec model is employed to generate word embeddings for all words 

contained in the corpus. The Google News pre-trained word2vec model is selected. 

For each word sent to the word2vec model, a 300-dimensional vector space is 

generated. Words that are not found in the word2vec model’s dictionary are replaced 

with 0. A total of 19 876 words were not found; such words were misspelt words or 

slang. On the Keras Random Search initializer, the max_trials parameter is set to 3 

and the executions_per_trial parameter is set to 2 

5.9.3.3 Hybrid Model: RNN and CNN Hyperparameter Selection 

Like in section 5.9.1, the Keras-Tuner library is selected for determining the best model 

configuration. The experiment uses the Random Search technique to determine the 

best model configuration. The purpose of the model is to make a prediction on the 

data, whilst considering latent text features and features describing long-term 

dependencies. Table 5.8 illustrates parameters explored in the Random Search. The 

best configuration is used for the final model, as shown in Table 5.9.  

Table 5.8: Hyperparameter selection criteria used by Keras Random Search technique 

Layer Configuration Best Configuration 

Conv1D Filters: 50, 70, 90 

Kernel Size: 3, 4, 5 

Strides: 3, 4, 5 

Filters: 50 

Kernel Size: 3 

Strides: 4 

MaxPool1D Pool Size: 4, 5, 6 Pool Size: 3 

Dropout Rate: 0.2, 0.3, 0.4 Dropout: 0.3 

LSTM Units: 16, 24, 32 Units: 32 

Dropout Rate: 0.2, 0.3, 0.4 Dropout: 0.2 

Dense Units: 6, 10, 14 Units: 14 

Adam Optimizer: Learning Rate Rate: 0.001, 0.0005, 0.005 Learning Rate: 0.001 

 

Through the Random search process, the best configuration achieves a score of 

89.49%. The 2nd and 3rd best configurations were close to the best configurations, with 

scores of 89.38% and 89.49% respectively. Table 5.9 shows a detailed breakdown of 
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scores attained and selected hyperparameter configuration, following the Random 

Search.    

Table 5.9: Hyperparameter selection processing, using Random Search functionality in the Keras-

Tuner library. 

3rd Best Configuration 2nd Best Configuration Best Configuration 

Score 86.83% Score 89.38% Score 89.49% 

Conv1D: filters 50 Conv1D: filters 50 Conv1D: filters 70 

Conv1D: strides 4 Conv1D: strides 3 Conv1D: strides 3 

Conv1D: 
kernel_size 

3 Conv1D: 
kernel_size 

3 Conv1D: 
kernel_size 

5 

MaxPooling1D: 
pool_size 

5 MaxPooling1D: 
pool_size 

4 MaxPooling1D: 
pool_size 

4 

Dropout: rate 0.3 Dropout: rate 0.2 Dropout: rate 0.3 

LSTM: units 24 LSTM: units 32 LSTM: units 32 

Dropout: rate 0.2 Dropout: rate 0.2 Dropout: rate 0.3 

Dense: units 14 Dense: units 14 Dense: units 10 

Adam: 
learning_rate 

0.001 Adam: 
learning_rate 

0.001 Adam: 
learning_rate 

0.001 

 

5.9.3.4 Hybrid Recurrent Neural Network (LSTM) Results 

The data used in the hybrid RNN model was split into an 80% training and 20% training 

set. The hybrid model was trained over 20 epochs, with the batch size set to 64. The 

model had a total of 15 522 395 parameters, 118 595 of which were trainable, whilst 

15 403 800 were non-trainable parameters. The Adam optimizer is selected, with a 

learning rate of 0.001. The hybrid RNN model attains a weighted accuracy score of 

88,81%, loss of 25,43%, validation accuracy of 88,86% and a validation loss of 25,81%. 

A detailed view of results obtained at each epoch can be seen in Appendix E.  

5.9.4 Convolutional Neural Network Experiment 

In this experiment, the task of fake news detection is explored using Convolutional 

Neural Network architecture. Convolutional Neural Networks are useful in extracting 

meaningful features from data. Like other neural network experiments, the 

hyperparameter selection process is undertaken using the Keras-Tuner library. The 

neural network is constructed using the Keras Functional API. Figure 5.12 illustrates 

a high-level view of the proposed model. 
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Figure 5.12: Overview of proposed CNN model for fake news detection 

5.9.4.1 Convolutional Neural Network Experiment: Hyperparameter selection 

Before training and testing any given model, it is vital to determine the optimal 

hyperparameters systematically. As such, this experiment uses the Keras-Tuner 

library to determine the best model configuration. The Random Search technique is 

selected, where combinations of parameter configurations are selected and tested 

over a certain number of trials. The number of trials is set to 3, and the number of 

executions per trial is set to 2. Table 5.11 shows parameter configurations selected 

together with the best parameter values, as determined by the Random Search 

technique in the Keras-Tuner library. The Input and Embedding layers are not included 

in the parameter selection process. The hyperparameter selection process is 
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performed over 20 epochs. The final output layer has 1 unit, and the sigmoid activation 

function is employed. The model is compiled using the Adam optimizer, with the Binary 

Cross-Entropy function as the loss function. Basic data pre-processing techniques 

outlined in section 5.5 are employed. Data is split into 80% training set, and 20% 

testing set. Table 5.11 shows the top 3 configurations explored using Keras random 

search technique. The best configuration provides optimal results, scoring 99,44%.  

Table 5.10: Parameter values explored in the hyperparameter selection process 

No. Layer and Parameter Values Tested Best Value 

1 Conv1D: filters 70, 90, 120 70 

1 Conv1D: kernel_size 2, 3, 4 3 

1 Conv1D: strides 2, 3, 4 4 

2 MaxPool1D: pool_size 2, 3, 4 2 

3 Dropout: rate 0.3, 0.4, 0.5 0.5 

4 Conv1D: filters 30, 50, 70 70 

4 Conv1D: kernel_size 2, 3, 4 4 

4 Conv1D: strides 2, 3, 4 4 

5 MaxPool1D: pool_size 2, 3, 4 3 

6 Dropout: rate 0.3, 0.4, 0.5 0.3 

7 Dense: units 16, 32, 64 64 

 Adam Optimizer: 

learning_rate 

0.001, 0.0001, 0.0005 0.001 

Table 5.11: Results obtained at each trial, after the hyperparameter selection process 

Top Result 2nd Best Result 3rd Best Result 

Score 99,48% Score 99,43% Score 99,22% 

Conv1D: filters 70 Conv1D: filters 110 Conv1D: filters 110 

Conv1D: 

kernel_size 

3 Conv1D: 

kernel_size 

3 Conv1D: 

kernel_size 

2 

Conv1D: strides 4 Conv1D: strides 4 Conv1D: strides 4 

MaxPool1D: 

pool_size 

2 MaxPool1D: 

pool_size 

4 MaxPool1D: 

pool_size 

2 

Dropout: rate 0.5 Dropout: rate 0.5 Dropout: rate 0.3 
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Table 5.12: Results obtained at each trial, after the hyperparameter selection process (continued) 

Conv1D: filters 70 Conv1D: filters 30 Conv1D: filters 30 

Conv1D: 

kernel_size 

4 Conv1D: 

kernel_size 

4 Conv1D: 

kernel_size 

3 

Conv1D: strides 4 Conv1D: strides 3 Conv1D: strides 3 

MaxPool1D: 

pool_size 

3 MaxPool1D: 

pool_size 

3 MaxPool1D: 

pool_size 

2 

Dropout: rate 0.3 Dropout: rate 0.5 Dropout: rate 0.4 

Dense: units 64 Dense: units 32 Dense: units 16 

Adam 

Optimizer: 

learning_rate 

0.001 Adam 

Optimizer: 

learning_rate 

0.001 Adam 

Optimizer: 

learning_rate 

0.001 

 

5.9.4.2 Hyperparameter selection training and validation scores 

The tables contained in this section outline results obtained at each trial of the 

hyperparameter selection process. The loss, accuracy, validation loss and validation 

accuracy metrics are selected. The training was performed over 20 epochs. Owing to 

the CNN architecture not being computationally expensive, no batch size was 

specified. The batch size parameter is useful in scenarios where memory resources 

are limited. Furthermore, details about the number of parameters, trainable and non-

trainable, are reported in this section.  

5.9.4.3 Convolutional Neural Network – Experimentation Results 

Using the best configuration in Table 5.11, the model is trained and evaluated over 20 

epochs. Figure 5.13 illustrates the final design of the convolutional neural network 

model. The final model has 65 288 609 parameters. 320 309 were trainable 

parameters and 64 968 300 are non-trainable parameters. The CNN model achieves 

a weighted accuracy score of 98,61%, loss of 3,50%, validation accuracy of 98,85% 

and a validation loss score of 3,72%. Detailed training and testing results obtained at 

each epoch can be found in Appendix C. 
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Figure 5.13: Convolutional Neural Network (CNN) design, using the best configuration determined by 

the hyperparameter selection process 

 

Like the previous deep learning experiments, a pre-trained word2vec model is used to 

generate word embeddings, which are used as weights for the model. The Keras 

Tokenizer API is used to encode documents contained in the dataset through the 

process of one-hot encoding – each unique word is assigned a numeric value. Each 

occurrence of a word contained in the vocabulary is replaced with its corresponding 

numeric value. The encoded documents are used as inputs into the model. An OOV 

(Out of Vocabulary) value is assigned for words that are not contained in the word 
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vocabulary. The longest document found in the dataset contained 5102 words. Data 

pre-processing techniques outlined in this chapter are employed in this experiment.  

5.9.5 Recurrent Neural Network Experiment – Gated Recurrent Unit 

In this experiment, a recurrent neural network using the Gated Recurrent Unit (GRU) 

cell is constructed. Like the hybrid model constructed in section 5.9.2, this model uses 

summarized texts generated using Hugging Face’s T5 transformers library. The 

decision to use document summaries is to address the limited memory and computing 

power present on the computer used for the experiments. Summarized texts are 

encoded using Keras Tokenizer API, and word embeddings are generated using a 

pre-trained word2vec model. To use the optimized, cuDNN implementation of the GRU 

cell, basic layer configuration is kept in line with Keras documentation; activation 

function set to tanh, recurrent activation set to sigmoid, recurrent dropout set to 0, use 

bias set to True, reset after set to True, and unroll set to False (Keras, 2021). The 

model is constructed using the Keras Functional API (Chollet, 2019). A basic overview 

of the model is presented in figure 5.14. 

 

Figure 5.14: Recurrent Neural Network, using GRU cells.



Chapter 5 - Experiment 

88 
 

5.9.5.1 RNN Experiment – Hyperparameter Selection 

Before training and testing any given model, the best model configuration should be 

determined systematically. As such, this experiment uses the Keras-Tuner library to 

determine the best model configuration. The Random Search technique is selected, 

where combinations of parameter configuration are selected and tested over a certain 

number of trials. The number of trials is set to 3, and the number of executions per trial 

is set to 2. Table 5.13 shows parameter configurations selected together with the best 

parameter values, as determined by the Random Search technique in the Keras-Tuner 

library. The hyperparameter selection process is performed over 20 epochs. The final 

output layer has one unit, and the sigmoid activation function is employed. The model 

is compiled using the Adam optimizer, with the Binary Cross-Entropy function as the 

loss function. Data is split into an 80% training set, and a 20% testing set. Table 5.13 

and Table 5.14 illustrate the parameters selected and the results obtained given the 

configuration selected by the Keras Random Search technique. The best configuration 

scores at 89,33%.  

Table 5.13: Summary of parameters explored during the hyperparameter selection process. 

No. Layer and Parameter Tested Values Best Values 

1 GRU: units 64, 96, 128 96 

2 Dropout: rate 0.3, 0.4, 0.5 0.3 

3 GRU: units 24, 32, 48 48 

4 Dense: units 8, 16, 24 16 

5 Dropout: rate 0.3, 0.4, 0.5 0.3 

 Adam Optimizer: learning rate 0.01, 0.05, 0.005 0.005 

Table 5.14: Summary of results and configuration used at each trial of the Random Search 

Top Result 2nd Best Result 3rd Best Result 

Score 89,33% Score 88,25% Score 86,86% 

GRU: units 96 GRU: units 64 GRU: units 96 

Dropout: rate 0.3 Dropout: rate 0.3 Dropout: rate 0.4 

GRU: units 48 GRU: units 24 GRU: units 32 

Dense: units 16 Dense: units 24 Dense: units 24 

Dropout: rate 0.3 Dropout: rate 0.3 Dropout: rate 0.5 

learning rate 0.005 learning rate 0.01 learning rate 0.01 
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5.9.5.2 RNN (GRU) Experiment – Results 

Using the summarized documents dataset generated from original articles, and the 

hyperparameter configuration deemed best by the Keras-Tuner Random Search 

technique, the tables that follow represent the results obtained whilst training and 

validating the model. The model was trained over 20 epochs, with the dataset being 

split into an 80% training set, and 20% validation set. Figure 5.15 illustrates the final 

model design. Generated word embeddings are used as weights for the model, and 

encoded documents are used as inputs for the model. The longest summary contained 

98 words. Like other neural network models in the series of experiments contained in 

this chapter, the sigmoid function is applied at the last output layer. The RNN (GRU) 

model attains a weighted accuracy score of 89,70%, a loss of 24,10%, validation 

accuracy of 88,79% and validation loss of 26,04%. Detailed training and testing data 

for the RNN (GRU) model can be found in Appendix D. 

 

Figure 5.15: Final GRU model, using the configuration deemed best by Keras-Tuner Random Search 
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5.10 Summary of Experimental Results 

In the preceding sections of this chapter, numerous deep learning and machine 

learning models were selected for the detection of text-based fake news. Before the 

execution of the selected models, a feature set that best embodies the indicators of 

fake news was selected. A summary of these indicators, and how they map to the 

feature set, is presented in Table 5.15. A summary of the selected deep learning 

models and the weighted performance results are shown in Tables 5.16 and 5.17.  

5.10.1 Indicators of Fake News 

The table below shows the selected indicators of text-based fake news. For each 

indicator, one or more features that map to the indicator are listed.  

Table 5.15: Summary of indicators of text-based fake news and the corresponding features 

Text-Based Fake News Indicator Mapped Features 

Fake news articles generally contain 

short article bodies and longer article 

titles. 

Title word count 

Article body word count 

Average sentence length 

Fake news articles generally use 

simpler sentence structures. 

Title punctuation count 

Article body punctuation count 

Parts of speech tag counts 

Gunning Fog Index 

Flesch Kincaid Grade Level Index 

Automated Readability Index 

Type-Token Ratio 

Fake news article’s generally have 

headlines which aren’t related to the 

article body. 

Cosine Similarity 

 

To transform the text into logical, numeric representations where relationships 

between words are kept, a Doc2vec model is trained and used to generate document 

features for each article.  
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5.10.2 Summary of Classification Model Results 

This section provides a summary of the results obtained, using the feature set outlined 

in Table 5.2. For each deep learning model, an average accuracy, precision, and recall 

score are provided. Training and testing are performed over 20 epochs, using optimal 

model configurations determined by hyper-parameter tuning processes. Detailed 

performance results are included in Appendices B, C, D and E. Using common 

performance metrics such as precision, recall, Area Under the Curve (AUC) and F1-

Score, Table 5.17 provides detailed performance results for the selected deep learning 

models in the experiments. The performance results reported in Table 5.17 consider 

the test portion of the selected dataset (20% of data). The results presented in this 

section are revisited in section 5.11, where a detailed analysis of the results is 

examined.    

Table 5.16: Summarized training and validation results for the selected deep learning models 

Deep Learning 

Model 

Accuracy Loss Validation 

Accuracy 

Validation 

Loss 

Hybrid CNN 

Model 

99,66% 0,0090 99,88% 0,0129 

Hybrid RNN 

(LSTM) - CNN 

Model 

88,81% 0,2543 88,86% 0,2581 

CNN Model 98,61% 0,0350 98,85% 0,0372 

RNN (GRU) 

Model 

89,70% 0,2410 88,79% 0,2604 

 

Table 5.17: Weighted Precision, Recall, F1-Score and AUC metrics for the selected neural network 

models. 

Deep Learning Model Precision Recall F1-Score AUC 

Hybrid CNN Model 99,95% 99,81% 99,88% 100,00% 

Hybrid RNN (LSTM) - CNN 

Model 

87,53% 
 

91,19% 
 

89,32% 
 

96,04% 
 

CNN Model 98,25% 99,59% 98,91% 99,83% 

RNN (GRU) Model 87,73% 91,48% 89,57% 95,92% 
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Table 5.18: Summary of performance results of each machine learning classifier 

Classifier Precision Accuracy Recall F- Measure ROC 

SVM 99,30% 99,40% 99,40% 99,40% 99,30% 

DT 95,00% 94,90% 95,30% 95,20% 94,80% 

RF 99,40% 98,90% 98,40% 98,90% 99,90% 

KNN 96,40% 91,20% 86,40% 91,20% 91,50% 

XGB 99,10% 98,80% 98,60% 98,80% 98,80% 

AB 99,30% 99,30% 99,40% 99,30% 99,30% 

 

5.11 Discussion 

In the preceding sections, fake news detection using machine learning and deep 

learning techniques were explored, using several strategies and models. In this 

section, a brief discussion of the results exhibited in the preceding sections is 

presented.  

In the experiments, various machine learning classifiers and deep learning models are 

selected for the task of automated fake news detection. Such selections are primarily 

based on the works of other researchers who have explored automated fake news 

detection using a variety of machine learning and/or deep learning models. In the 

machine learning portion of experiments, this study selects a combination of 

readability metrics, vector representation of documents, and accumulative features 

that describe sentence structure and composition. These features are fed into various 

machine learning classifiers after optimal configurations for each classifier are 

established.  

In a deep learning context, a selection of hybrid deep learning models and base deep 

learning models are selected. In the experiment, a hybrid deep learning model is 

constructed, using convolutional neural network technology, and fully connected 

dense layers. The hybrid CNN model attains fewer false positives and false negatives 

compared to the selected machine learning classifiers. Additionally, the hybrid model 

attains higher true positives and true negatives than the machine learning classifiers. 

These observations are an indicator that deep learning models, specifically hybrid 
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models, can achieve superior results compared to machine learning classifiers. Such 

an observation is supported by experimentation results reported by Cuevas et al. 

(2020). The authors select neural network models such as Long Short-Term Memory 

(LSTM), Convolutional Neural Networks (CNN), and several machine learning 

classifiers, namely, Decision Tree, Random Forest, K-Nearest Neighbour, Support 

Vector Machine, Xtreme Gradient Boost. Using Precision, Recall, F1-Score, False 

Positive Rate and False Negative Rates as metrics, the authors achieve better results 

through the use of deep learning architecture compared to traditional machine learning 

classifiers (Cuevas et al., 2020).  

Recurrent Neural Networks (RNN) are known to use more computational resources 

and are slower to train. This statement is supported by an observation made by Mittal 

& Umesh (2020) who state that recurrent neural networks use more memory due to 

the model requiring more training epochs to converge. Due to limited computational 

resources on the notebook used to carry out experiments, text summarization is 

employed, to reduce the number of parameters whilst considering articles in their 

entirety. The Hugging Face implementation of the T5 framework is selected to 

summarize documents contained in the fake and real news datasets. The summarized 

documents are used in an RNN that uses Gated Recurrent Unit (GRU) cells, and a 

hybrid neural network that stacks LSTM and CNN layers. Though the results obtained 

fall short when compared to the hybrid models and base CNN experiments, they do 

show that summarized texts and deep learning models can achieve promising results 

in classification problems. The experiments show that text summarization could be 

one of many options for researchers and developers with limited computational 

resources, though the use of such an approach may depend on the expected 

outcomes and use-cases of the model. In cases where computational resources are 

limited, it may be worthwhile exploring several strategies, for example, using cloud 

providers such as Google or Microsoft, which often have more resources specific to 

machine learning and deep learning workflows. 

In terms of the stacked CNN-LSTM model compared to the GRU model, the GRU 

model converged quicker than the CNN-LSTM model. Furthermore, from epoch 10 of 

the results obtained through the GRU model, a general decrease in accuracies and 

an increase in loss is observed. This observation is a sign the model could be 

overfitting, and strategies such as early stopping or including more training epochs 
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could overcome this. Additionally, experimentation could be extended to include 

exploring the effects varying optimizers such as Stochastic Gradient Descent, 

RMSProp, and AdaGrad have on the models contained in the experiment. Through 

experimentation, Bahad, Saxena, & Kamal, (2020) select RMSProp, AdaGrad, and 

the Adam optimizers, and find the RMSProp optimizer provides the best model 

performance (Bahad et al., 2020). The hybrid, stacked CNN-LSTM model continuously 

improved over 20 epochs, with a general decline in loss and a general increase in 

accuracy.  

The hybrid CNN model depicted in section 5.9.2 considers manually created textual 

features, as well as implicit features present in the text. Given the hybrid CNN model 

depicted in section 5.9.2 attains the best overall results,  Though the hybrid model in 

section 5.9.2 considers just textual data and not images and other metadata 

associated with articles, it can be deduced that hybrid approaches can deliver 

promising results.  

In all experiments carried out, vectors that best represent words, relationships 

between words given a certain context, and vectors that best represent documents, 

are selected. The performance-related results attained by each of the selected 

machine learning algorithms and deep learning models prove the efficacy of 

generating features through pre-trained models within the transfer learning domain 

(word2vec, doc2vec, GloVe, etc.). Though pre-trained models such as word2vec, 

doc2vec, and GloVe exist and can retain relational information between words, such 

models do not necessarily outperform simpler word representation methods such as 

Bag of Words or TF/TF-IDF features. Through a series of experiments on various 

machine learning classifiers, Silva et al. (2020) found models which used word2vec 

and FastText word embeddings produced results that were as much as 11% lower 

than models which used Bag of Words features. The authors further add that such an 

observation could be the result of word embeddings models being trained on clean 

text, whilst fake news articles often contain noise such as slang and misspelt words. 

In light of the experiments contained in this chapter, the explanation presented by Silva 

et al. (2020) could be supported by the high number of words not found in the 

word2vec model – a total of 19 876 words for the summarized articles derived from 

the dataset authored by Bisaillon (2020), and a total of 161 846 words for the full Fake 

Real News dataset.  
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Table 5.17 presents a detailed view of the performance results for the selected deep 

learning architectures selected for the experiment. The precision, recall, AUC and F1-

score metrics are selected. The results reported in Table 5.17  consider the test portion 

of the fake and real news articles dataset curated by (Bisaillon, 2020). The numbers 

reported in this table are a weighted average between all 20 epochs. The best 

performing model is the Hybrid CNN model, with a precision of 99,95%, recall of 

99,81%, F1-Score of 99,88% and an AUC score of 100%. The worst performing model 

was the Hybrid RNN (LSTM) – CNN Model, with a precision score of 87,53%, recall of 

91,19% and an F1-score of 89,32%. The fact the Hybrid CNN model, which uses 

explicit and implicit text features yielded the best performance results can be 

supported by the model achieving the lowest weighted validation loss of 0,0129. This 

observation is further supported by the model attaining fewer false positives and fewer 

false negatives, and higher true positives and true negatives. These observations 

further prove hybrid neural network models which combine explicit text features and 

implicit text features can produce promising results. The results exhibited by the worst 

performing model could be attributed to the model attaining the worst validation loss 

of 0,2581, and that some vital textual information may have been lost as a result of 

text summaries being used.  

Though the experiments contained in this chapter demonstrate that promising results 

are achievable through analysing the textual aspect of fake and real news articles, the 

models could be extended to include other information about the articles, such as 

media (images, video), information about the source and information about the author. 

In reality, most articles often contain images and video. Yang et al. (2018) construct a 

hybrid TI-CNN (Text and Image Convolutional Neural Network) which considers 

textual and image data contained in fake and real news articles. The TI-CNN model 

outperforms other vanilla models which consider text or image data (Yang et al., 2018).   

Finally, the accepted definition of fake news can have a significant influence on the 

experiment design and results. Whilst several works consider fake news as a binary 

classification problem (an article can be truthful or false), the definition of fake news 

could be refined into subcategories, such as propaganda, satire, etc. For training 

purposes, the Doc2Vec model, a subset of the FakeNewsCorpus dataset authored by 

Szpakowski (2018) is selected. The first 12 000 articles, in the 12 categories of articles 

present in the FakeNewsCorpus dataset is selected. In addition, the ClaimBuster 
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project analyses statements through traditional machine learning approaches and 

classify the statements into three categories (Hassan et al., 2017). The Fake Real 

News dataset by Bisaillon (2020) has been used by several authors for the task of fake 

news detection. Table 5.19 shows publications that used the ISOT dataset, and the 

results obtained. The results obtained from the selected machine learning and deep 

learning models in Table 5.16, Table 5.17 and Table 5.18 are within margin of results 

obtained by other authors in Table 5.18. The hybrid CNN model constructed in section 

5.9.2 outperforms the accuracy result obtained by Ahmed, Traore, & Saad (2017) as 

listed in Table 5.18, with a difference of 0,66%. From a precision and and recall 

perspective, the hybrid CNN model outperforms the precision and recall results 

obtained by Nasir, Khan, & Varlamis (2021) as listed in Table 5.18, with differences of 

0,95% and 0,81% respectively. For simplicity, the best results from each study are 

selected. For studies where certain performance metrics are not provided, these are 

marked with a dash symbol  

Table 5.19: Comparison of results obtained by other researchers using the Fake Real News Dataset 

by Bisaillon (2020) 

Author Accuracy Precision Recall F1 Model 

Ahmed, Traore, & Saad 

(2017) 

92% - - - Linear 

SVM 

Jiang, Ping Li, Ul Haq, 

Saboor, & Ali (2021) 

99.94 100% 100% 100% Stacking 

Model 

(CNN, 

LSTM, 

GRU + 

DT, RF, 

KNN, LR, 

SVM + 

RF) 

Kula, Choras, Kozik, 

Ksieniewicz, & Wozniak 

(2020) 

99,86% 99,82% 99,91% >90% RNN 

(LSTM) 

 



Chapter 5 - Experiment 

97 
 

Table 5.20: Comparison of results obtained by other researchers using the Fake Real News Dataset 

by Bisaillon (2020) (continued) 

Nasir, Khan, & Varlamis 

(2021) 

99% 99% 99% 99% Hybrid 

CNN-

RNN 

Goldani, Safabakhsh, & 

Momtazi (2021) 

99,9% - - - CNN (with 

margin 

loss) 

 

5.12 Conclusion 

The purpose of experimentation in the research project is to test various methods for 

fake news detection, using machine learning and deep learning approaches reported 

by other researchers in the field of fake news.  Whilst the technology to carry out 

automated fake news detection is available, it is also important to understand what 

makes fake news fake news, and to determine indicators that could suggest an article 

is a fake news article. To that end, the experiments use features that are based on 

observations made by other researchers as to what best separate fake news from real 

news articles. The results obtained by all models show the effectiveness of such 

indicators through both machine and deep learning approaches. The selected models 

could be improved and possibly extended to capture more key information that could 

be used for the task of detecting fake news.  

Using the foundation outlined in the literature related to machine learning in Chapter 

3, the indicators defined in this chapter, and the common differences found in fake and 

real news articles, this chapter addresses secondary objective 3: 

3. Validate the identified indicators through the application of selected machine 

learning algorithms. 

Chapter 6 presents guidelines for automated fake news detection. The experimental 

results obtained in this chapter, and observations from literature found in chapters 2 

and 3, serve as the foundational basis for constructing the guidelines.  
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6 Chapter 6 - Guidelines For the Detection of Online Text-

Based Fake News 

This chapter presents a collection of guidelines that could be used in the development 

of machine learning and deep learning models for the task of automated fake news 

detection. The foundational basis supporting such guidelines is derived from 

observations noted in the experiments undertaken in Chapter 5, and other indicators 

highlighted by researchers in the fake news detection realm. The guidelines aim to 

address three key areas, namely, the data aspect, the fake news detection model 

aspect, and the evaluation aspect. Each guideline describes the problem, presents a 

solution, and mentions other points of consideration.  

6.1 Implementation Details 

The guidelines described below were implemented using the Python programming 

language. A series of Python libraries were used for various aspects of the process, 

such as data cleaning, classifier performance optimization, and performance 

evaluation. For this study, SciKit-Learn, Keras, Keras-Tuner, Pandas, NLTK, Py-

readability-metrics and lexical-richness libraries were used. The decision to use 

Python and the mentioned Python libraries are based on the popularity, widespread 

support, and maturity of Python for research. The decision to use Python libraries such 

as py-readability-metrics and lexical-richness to calculate text readability and structure 

is due to the ease of implementation in an existing machine learning workflow, and the 

fact that mathematical calculations are already implemented within these libraries. The 

widespread use of these tools by other researchers in the fake news detection 

community further solidifies the use of these libraries.  Ahmed, et al. (2019) recognise 

the popularity of Python due to its simplicity and wide availability of libraries for data 

science.  

Though other programming languages provide their machine learning frameworks, 

such as Microsoft’s ML.NET framework  (Ahmed, et al., 2019), these frameworks are 

relatively new, so have not reached the level of maturity seen with Python and its 

various packages designed for data science and machine learning. Microsoft launched 

the ML.NET framework in 2019, to provide .NET developers with a machine learning 

implementation that can be integrated with existing .NET applications (Ahmed, et al., 

2019).  
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A summary of the Python packages used for the experiments are described below:  

1. SciKit-Learn: A popular Python-based machine learning framework, which 

was authored in 2007.  

2. Keras: A simple-to-use Deep Learning library, which is built on top of the 

TensorFlow 2.0 libraries.  

3. Keras-Tuner: A performance optimization library used for deep learning 

models built with Keras.  

4. Pandas: A popular data analysis and data manipulation Python library (Pandas, 

2012) 

5. NLTK (Natural Language Tool Kit): A popular Python package for working 

with textual language data (NLTK, 2021). 

6. Py-readability-metrics: A Python module that calculates the readability of 

texts, using 9 readability metrics, namely, Flesch Kincaid Grade Level, Flesch 

Reading Ease, Dale Chall Readability, Automated Readability Index, Coleman 

Liau Index, Gunning Fog, SMOG, Spache and Linsear Write (DiMascio, 2019). 

7. Lexical-richness: A Python library that calculates the richness of texts using 

various metrics, such as the unique term count, Type-Token Ratio (TTR), Root 

Type-Token Ratio (RTTR), Corrected Type-Token Ratio (CTTR), mean-

segmental type-token ratio (MSTTR), Moving-Average Type-Token Ratio 

(MATTR), Measure of Textual Lexical Diversity (MTLD), and Hypergeometric 

Distribution Diversity (HD-D) (Shen YS, 2018).   
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6.2 Guidelines for Fake News Detection 

This section presents the guidelines resulting from this study. For each guideline, a 

brief description of the problem, a solution, and possible constraints are provided. The 

problem definition describes key issues which should be addressed when developing 

systems for text-based fake news detection. The solution describes a certain method 

of resolving the identified text-based fake news problem. Finally, to demonstrate the 

practicality and effectiveness of the solution, code examples through pseudocode and 

Python code are presented.   

6.2.1 Define an Applicable Definition of ‘Fake News’ 

6.2.1.1 Problem Description 

Various organisations and authors have differing definitions of what is considered ‘fake 

news’. A standardised definition of fake news is not slated in the field of misinformation 

detection. In a practical sense, an online news reader might have a different view of 

what is considered ‘fake news’ over other readers. Fernandez (2017) describes fake 

news as misleading news articles which lack a factual foundation. Ahmed et al. (2017) 

describe fake news as another category of spam. Wasserman (2017) describes how 

satirical shows and websites have been labelled as sources of fake news, though not 

in a negative connotation. The accepted definition of fake news can influence the 

designs of systems built for online fake news detection. 

6.2.1.2 Solution 

Before attempting any experimentation, an acceptable definition of fake news, related 

to the study, must be defined. The selected definition will affect other decisions such 

as the data selection, the number of categories, the selected models and/or 

performance metrics. In Chapter 5, articles are fit into two broad categories, truthful or 

false. 

6.2.1.3 Example 1 

In a project aimed at verifying statements from presidential debates, Hassan, Arslan, 

Li, & Tremayne (2017) define spoken statements as being one of three possible 

categories:  

1. Non-Factual Sentence (NFS) 

2. Unimportant Factual Sentence (UFS) 

3. Check-Worthy Factual Sentence (CFS) 
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6.2.1.4 Example 2 

In the work of Shu, Mahudeswaran, & Liu (2018), the authors define fake news as a 

binary classification problem. Therefore, articles are split into two categories:  

1. Fake 

2. Truthful  

6.2.2 Select Appropriate Data for the Task of Fake News Detection  

6.2.2.1 Problem Definition 

Presently, various datasets for fake news detection exist. Such datasets vary in 

language, lengths of text, size of the dataset, the age of datasets, and additional data 

fields. An applicable dataset will depend on the accepted definition of ‘fake news’ and 

other permutations surrounding the classification problem. Selecting datasets with a 

limited number of samples, or articles that are not long enough may lead to poor 

classification results. Jain & Kasbe (2018) suggest that the use of a larger dataset, 

greater than 11 000 articles as stated in their experiment, could improve learning, 

because of the larger availability of news content. 

6.2.2.2 Solution 

Select a dataset that contains a balanced number of articles across all fake news 

categories and contains a large number of samples. Articles should be closely related 

to real-world articles in terms of article lengths. The recommendations made by Jain 

& Kasbe (2018) include the use of datasets that contain lengthy articles. Part of the 

basic dataset requirements for fake news detection outlined by Conroy et al. (2015) 

includes datasets containing articles that have similar article lengths.  

For multi-class fake news detection problems, the dataset authored by Szpakowski 

(2018) is recommended. The dataset contains full news articles, spread over 11 

categories of fake news. Furthermore, the dataset contains 9 408 908 articles 

(Szpakowski, 2018). For binary fake news classification scenarios, the dataset 

authored by Bisaillon (2020) is recommended. The dataset contains 23 481 fake news 

articles and 21 417 real news articles.  

Data visualization techniques, such as creating word clouds using the wordcloud 

(Mueller, 2020) and matplotlib Python libraries, can assist with illustrating word 

importance and word distributions among the varying article classes.  



Chapter 6 – Guidelines For the Detection of Online Text-Based Fake News 

102 
  

To demonstrate the practical implementation of this guideline, Figure 6.1 shows the 

pseudocode required to set up word cloud generation. Figure 6.2 shows the Python 

code required to set up word cloud generation.  

START 

define function generate_word_cloud(): 

    initialize empty fake news dataset 

    initialize empty real news dataset 

    for each index and row in articles: 

       if the label of the current article is real news: 

          add article text to real news dataset 

       else: 

          add article text to fake news dataset 

    initialize word vectorizer for fake news articles 

    get fake news word vectors by fitting the fake news set into the word 

vectorizer 

    initialize real news word vectorizer for real news articles 

    get real news word vectors by fitting the real news set into the real 

news word vectorizer 

    initiate an empty fake news word frequency object 

    initiate an empty real news word frequency object 

    for each word and index in fake news word vectorizer’s vocabulary: 

       calculate the word frequency of the current word by adding up all 

values in the current column of the fake news vectors 

       add word frequency total to fake news word frequencies object  

 

    for each word and index in the real news word vocabulary: 

calculate the word frequency of the current word by adding up all values 

in the current column of the real news vectors 

  add word frequency total to real news word frequencies object 

  

 create an empty word cloud using fake news word frequencies 

 plot the fake news word cloud 

 save fake news word cloud as an image 

 

 initialize empty word cloud using real news word frequencies 

 plot the real news word cloud 

 save the real news word cloud as an image 

END 

Figure 6.1: Pseudocode example for the word cloud generation 
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def generate_word_cloud(self): 

 

    fake_news_data = DataFrame() 

    real_news_data = DataFrame() 

 

    for index, row in self.data_frame.iterrows(): 

        if not isinstance(row["text"], str): 

            continue 

        if len(row["text"]) == 0: 

            continue 

        if row["label"] == 0: 

            newRow = {"title": row["title"], 

                      "text": row["text"], 

                      "label": row["label"]} 

            real_news_data = real_news_data.append(newRow, 

ignore_index=True) 

        else: 

            newRow = {"title": row["title"], 

                      "text": row["text"], 

                      "label": row["label"]} 

            fake_news_data = fake_news_data.append(newRow, 

ignore_index=True) 

 

    word_vectors = TfidfVectorizer(lowercase=True, analyzer="word", 

stop_words="english", max_features=None) 

    fake_news_vectors = 

word_vectors.fit_transform(fake_news_data["text"]) 

    news_vectors2 = TfidfVectorizer(lowercase=True, analyzer="word", 

stop_words="english", max_features=None) 

    real_news_vectors = 

news_vectors2.fit_transform(real_news_data["text"]) 

 

    fakeWordsFreq = {} 

    realWordsFreq = {} 

 

    for word, index in word_vectors.vocabulary_.items(): 

        sumOfColumn = fake_news_vectors.getcol(index).sum() 

        fakeWordsFreq[word] = sumOfColumn 

 

    for word, index in news_vectors2.vocabulary_.items(): 

        sumOfCol = real_news_vectors.getcol(index).sum() 

        realWordsFreq[word] = sumOfCol 

 

    fake_word_cloud = WordCloud(width=1280, height=720, mode='RGBA', 

background_color='white', max_words=3000).fit_words(fakeWordsFreq) 

    plt.imshow(fake_word_cloud) 

    plt.axis("off") 

    plt.show() 

    plt.savefig("C:/outputs/fake_news_tags.png", format="png") 

 

    real_word_cloud = WordCloud(width=1280, height=720, mode='RGBA', 

background_color='white', max_words=3000).fit_words(realWordsFreq) 

    plt.imshow(real_word_cloud) 

    plt.axis("off") 

    plt.show() 

    plt.savefig("C:/outputs/real_news_tags.png", format="png") 

 

Figure 6.2: Python code example for the word cloud generation 
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6.2.2.3 Constraints 

The selected dataset(s) will depend on the problem definition. To process larger 

datasets, where the number of articles exceeds 1 million records, more computational 

power may be required.   

6.2.3 Select Appropriate Data Cleansing Techniques 

6.2.3.1 Problem Definition 

Presently, many data cleansing techniques exist, but evidence uncovered by 

researchers suggests that the application of some techniques might not improve 

classification results. In parts of the experiments conducted by Silva et al. (2020), the 

authors use various combinations of data cleaning techniques, such as stop word 

removal and stemming, and found such approaches did not improve the performance 

of the models, compared to experiments that had no data cleaning techniques applied 

(Silva et al., 2020).   

6.2.3.2 Solution 

Before attempting any data cleansing, it would be worthwhile exploring literature 

specific to the problem domain. Furthermore, using a simpler set of data cleansing 

techniques, such as stop words removal and special characters removal, can produce 

great results. Stop words removal is the process of removing words that do not add 

value to a given sentence. Figure 6.3 and Figure 6.4 show the pseudocode and Python 

code required to implement stop words removal. Figure 6.5 and Figure 6.6 show the 

pseudocode and Python code required to implement special characters removal.  

START 

define function remove_stop_words(): 

 get a list of well-known stop words  

 for each column in title and text columns of the articles dataset: 

  initialize counter to 0 

  for each index and row in the articles dataset: 

   split words in the current column by tokenizing the words 

   only store words which do not appear in the stop words list 

   update the current article’s title or text by storing the 

filtered word tokens 

   increment counter by 1    

END 

Figure 6.3: Pseudocode example for stop words removal 
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def remove_stop_words(self): 

    """This function handles the removal of stop words from the corpus. Stop 

words are words that do not add value to the body of text""" 

    #:cp = ntlk.corpus alias 

    #load the pre-populated English stop words list (part of the nltk package) 

    stopWords = cp.stopwords.words('english') 

    #two columns are loaded into this class, the title and body columns 

    for column in self.columnNames: 

 

        row_number = 0 

        #dataFrame is the loaded fake and real news dataset.  

        for index, row in self.dataFrame.iterrows(): 

            if not isinstance(row[column], str): 

                row_number = row_number + 1 

                continue 

            #split the text into word tokens 

            tokenizedWords = tk.word_tokenize(row[column], language='english', 

preserve_line=False) 

            #only keep words that do not appear in the stopwords list 

            cleansedWords = [w for w in tokenizedWords if w not in stopWords] 

            self.dataFrame.at[index, column] = ' '.join(cleansedWords) 

            row_number = row_number + 1 

 

Figure 6.4: Python code example for stop words removal 

 

START 

define function remove_special_characters(): 

 initialize empty list of characters 

 get list containing characters to filter against 

 for each symbol in the characters list: 

  for each column in the article dataset’s column’s title and text: 

   for each index and row in articles set 

    split words in the current row and column of the article 

set by tokenizing the words 

    only keep words that do not appear in the special 

characters array 

    update current article row and column text by storing 

the filtered words 

END 

Figure 6.5: Pseudocode example for special characters removal 
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def remove_special_characters(self, specialCharacters): 

 

    charArray = [] 

    #specialCharacters is a dataFrame(text file) in which column 0 contains symbols 

    symbols = specialCharacters[0].tolist() 

     

    for i in symbols: 

        charArray.append(i.strip()) 

    #there are two columns to be processed - title and body 

    for column in self.columnNames: 

 

        for index, row in self.dataFrame.iterrows(): 

 

            cleansedWords = [] 

            if not isinstance(row[column], str): 

                continue               

            #tokenize text into word tokens  

            wordTokens = tk.word_tokenize(row[column], language='english') 

            #only keep words (tokens) that do not appear in the list of special characters 

            cleansedWords = [w for w in wordTokens if w not in charArray] 

            self.dataFrame.at[index, column] = ' '.join(cleansedWords) 

 

Figure 6.6: Python code example for special characters removal 

6.2.4 Select Features That Best Differentiate Fake from Real News 

6.2.4.1 Problem Definition 

In the natural language processing field, a wide range of textual features can be 

extracted from text. Examples include parts of speech tags, number of named entities, 

punctuation counts, sentence counts, and more. Simplistic, accumulative features can 

deliver promising classification results, but these features do not account for all the 

indicators which can differentiate fake news articles from real news articles. Fake news 

articles are underpinned with stylistic, sentence and article compositions, and 

readability differences.  The exclusion of such features could result in a classification 

model that is not able to learn from indicators or cues highlighted by other researchers 

for identifying fake news articles.    

6.2.4.2 Solution 

An optimal feature set for fake news detection should not solely rely on simplistic, 

accumulative features like word counts and document lengths. Instead, the feature set 

should be supplemented with additional features that capture other aspects of fake 

news, such as the relevance of the article title and body, the readability of articles, and 

more. Through literature review and experimentation, the following set of indicators 

are defined: 

1. Fake news articles generally contain short article bodies and longer article titles.  

2. Fake news articles generally use simpler sentence structures. 

3. Fake news article’s generally have headlines which aren’t related to the article 

body. 
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To create a feature set that addresses the above indicators, the following calculative 

features are included, and should be included with any feature sets for text-based fake 

news detection:  

1. Cosine Similarity: A calculation that measures the similarity between two 

pieces of text.  

2. Type-Token Ratio: A calculation that measures the total number of unique 

words against the total number of words in a document 

3. Text Readability Metrics: Gunning Fog Index, Automated Readability Index 

and Flesch Kincaid Grade Level Index. These are readability metrics that grade 

the readability of text.  

4. Other lengths: Average sentence lengths, title and article body word counts, 

title and body punctuation counts.  

The py-readability-metrics Python package can assist in streamlining the process 

around calculating the readability metrics. The lexical-richness Python library can be 

used for calculating the Type-Token ratio. To quantify the readability of news articles, 

Horne & Adali (2017) use the Gunning Fog, SMOG and Flesch-Kincaid Grade 

readability scores to measure the readability of articles. Several researchers have 

employed cosine similarity to calculate the similarity between a given article title and 

text (Ferreira & Vlachos, 2016; Silva et al., 2020; Wu et al., 2017). Figures 6.7 and 6.8 

show code and pseudocode examples of a function that calculates the type-token ratio 

and unique word count for each article in a dataset. Figures 6.9 and 6.10 show 

examples of pseudocode and code for calculating text readability scores.  

START 

define function calculate_type_token_and_unique_words(): 

 add a column to the feature set to keep type-token ratio scores 

 add a column to the feature set to keep unique word count scores 

 initialize row counter to 0 

for each item and row in the articles set: 

get the type-token ratio score for the current article’s 

text 

get the unique words score for the current article’s text 

add the type-token ratio score to the feature set 

add the unique words score to the feature set 

increment row counter by 1 

return feature set 

END 
Figure 6.7: Pseudocode example for type-token ratio and unique word count calculations 
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def calculate_ttr_and_unique_words(self, featureDataFrame): 

    print("Calculating Type-Token Ratio and Unique Words: ") 

    featureDataFrame["tt_ratio"] = float(0.0) 

    featureDataFrame["uq_words"] = 0 

    rowCounter = 0 

 

    for i, row in self.dataFrame.iterrows(): 

        #get a reference to the text (article body) 

        content = row["text"] 

        #instantiate the lexical richness object, pass the text (article 

body) 

        lex = lr.LexicalRichness(use_TextBlob=True, text=content) 

        #calculate the type-token ratio score... round to 2 decimal 

points 

        ttr_score = round(float(lex.ttr), 2) 

        featureDataFrame.at[rowCounter, "tt_ratio"] = 

str(float(ttr_score)) 

        #the lexical richness library can also be used to calculate the 

number of unique words in a given text.  

        featureDataFrame.at[rowCounter, "uq_words"] = 

pd.to_numeric(lex.terms) 

        rowCounter = rowCounter + 1 

        print("TTR Ratio for Article " + str(rowCounter) + " is: " + 

str(ttr_score)) 

        print("Unique Words for Article " +str(rowCounter) + " is: " + 

str(lex.terms)) 

 

Figure 6.8: Python code example to calculate the type-token ratio and unique word counts.



Chapter 6 – Guidelines For the Detection of Online Text-Based Fake News 

109 
  

START 

define function get_readability_score(): 

add automated readability index feature to the features dataset 

add gunning fog index feature to the features dataset 

add flesch Kincaid grade level index to the features dataset 

set counter to 0 

for each index and article row in articles: 

initialize metrics to Readability(row[‘text’]) instance 

calculate automated readability index for an article’s text 

calculate gunning fog index score for an article’s text 

calculate flesch Kincaid grade level score for an article’s text 

add calculated automated readability score to the features set 

add calculated gunning fog index score to the features set 

add calculated flesch Kincaid score to the features set 

increment counter by 1  

return features dataset   

END 

Figure 6.9: Pseudocode example to calculate text readability scores 

  

def get_readability_score(self, featureDataFrame): 

 

    #initialize a few variables 

    ari =  "text_ari" 

    gfIndex = "text_gf" 

    fkIndex = "text_fkg" 

    featureDataFrame[ari] = float(0.0) # automated readability index 

    featureDataFrame[gfIndex] = float(0.0) # fog index 

    featureDataFrame[fkIndex] = float(0.0) # Flesch Kincaid Grade Level index 

 

    counter = 0 

    #iterate through all articles in the dataset 

    for index, row in self.dataFrame.iterrows():          

        #create an instance of the Readability metrics  

        readabilityMetrics = Readability(row["text"]) 

         

        #get the automated readability index score 

        featureDataFrame.at[counter, ari] = readabilityMetrics.ari().score 

        #get the gunning fog index score 

        featureDataFrame.at[counter, gfIndex] = 

readabilityMetrics.gunning_fog().score 

        #get the flesch-Kincaid score 

        featureDataFrame.at[counter, fkIndex] = 

readabilityMetrics.flesch_kincaid().score 

        counter = counter + 1 

 

Figure 6.10: Python code example for calculating text readability metrics 

6.2.4.3 Other Considerations 

Due to the design of the py-lexical-richness library, to calculate readability scores for 

any piece of text, the text must contain a minimum of 100 words.  (DiMascio, 2019).  
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6.2.5 Consider Various Classification Models for Fake News Detection 

6.2.5.1 Problem Definition 

Both traditional machine learning and deep learning realms have models which can 

be useful for the task of fake news detection. The experimentation in chapter 5 shows 

that results are variable, depending on data cleansing, feature extraction processes 

and the selected model. Therefore, the process of simply selecting a single model may 

not be sufficient to determine the optimal classification model. Furthermore, some 

machine learning or deep learning models have limitations that may not be suitable 

for all classification problems. Presently, there exists a wide variety of traditional 

machine learning algorithms, vanilla deep learning models, and hybrid deep learning 

models for the task of fake news detection. In the case of recurrent neural networks, 

Agarwal et al. (2020) highlight the high computation costs exhibited as a result of large 

texts.  

6.2.5.2 Solution 

For deep learning approaches that can handle explicit features and latent features 

present in the body of text, hybrid deep learning architectures are recommended. For 

classification problems where large volumes of texts are supplied, the CNN-DNN 

hybrid model is recommended owing to its speed, simplicity, and lower computation 

costs. Keras is the recommended Python library to construct such a hybrid model. 

For machine learning approaches, the Support Vector Machine algorithm is 

recommended, owing to the superior results it obtains compared to other machine 

learning algorithms. Figure 6.11 shows the pseudocode required to build the hybrid 

CNN model. Figures 6.12 to 6.17 show the Python code required to build the hybrid 

CNN model.  
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START 

Define a model for explicit text features:  

get implicit features data from file 

create Keras explicit model by setting the Input layer as the first 

layer. Use the implicit features as input 

add a dense layer to the Keras model 

add a dropout layer to the Keras model 

add a dense layer to the Keras model 

add a dropout layer to the Keras model 

Define a model for implicit text features:  

create Keras implicit model by adding the Input layer as the first layer.  

Add embedding layer to the Keras implicit model 

add convolutional neural network layer to the Keras implicit model 

add a max-pooling layer to Keras implicit model  

add dropout layer to the Keras implicit model 

add flatten layer to the Keras implicit model 

Merge the two models (concatenate):  

merge the explicit and implicit Keras models through concatenation 

create final Keras layer, using the merged model  

add dense layer to the final Keras layer 

add dropout layer to the final Keras layer 

add the output layer (dense layer) to the final Keras layer 

Compile the hybrid model:  

create final Keras model by adding the explicit and implicit inputs 

and final output layer  

compile the final Keras model by specifying the metrics and optimizer to 

use.  

END 

 
Figure 6.11: Pseudocode example for the construction of a hybrid CNN model 
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Define Model for Explicit Text Features:  

# import the layers module from keras library: 

import tensorflow.keras.layers as l 

explicitModelInput = l.Input(name=”InputLayer1”, 

shape=(explicitModelFeatures.shape[1],)) 

explicitModel = l.Dense(name=”DenseLayer1”, units=192,   

              activation=tf.keras.activations.relu,  

              bias_initializer=tf.keras.initializers.Zeros(),                        

              kernel_initializer=tf.keras.initializers.GlorotUniform()) 

             (explicitModelInput) 

explicitModel = l.Dropout(name=”Dropout1”, rate=0.5)(explicitModel) 

explicitModel = l.Dense(name=”DenseLayer2”, units=64, 

activation=tf.keras.activations.relu)(explicitModel) 

 
Figure 6.12: Python code example for hybrid CNN 

Define Model for Implicit Text Features:  

# import the layers module from Keras library: 

import tensorflow.keras.layers as l 

 

embedding_inputs = l.Input(name=”InputLayer2”, shape=(maximum_words,)) 

# Define embedding layer – use word embeddings as initial weights 

embedding_layer = Embedding(len(unique_words_array), 300,  

                trainable=False, weights=[document_word_embeddings], 

                input_length=len(unique_words_array),name=”EmbeddingOne”) 

 

implicitModel = embedding_layer(embedding_inputs) 

 

Figure 6.13: Python code example for hybrid CNN (continued) 

# Declare and configure Conv1D cell 

implicitModel = Conv1D(name=”Conv1Done”, filters=5, kernel_size=3,  

              activation=’relu’,strides=2,  

              kernel_initializer=tf.keras.initializers.GlorotUniform(), 

              padding=’same’,                    

              bias_initializer=tf.keras.initializers.Zeros()) 

             (implicitModel) 

# Add Max-Pooling layer 

implicitModel = MaxPool1D(name=”MaxPoolOne”, pool_size=3)(implicitModel) 

# Regularization technique: Add dropout layer 

implicitModel = Dropout(name=”DropoutLayer3”, rate=0.5)(implicitModel) 

implicitModel = Flatten()(implicitModel) 

 
Figure 6.14:  Python code example for hybrid CNN (continued) 
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Merge (concatenate) the two models:  

merged = Concatenate(name=”Merge”)([explicitModel, implicitModel]) 

# add final layers 

finalLayer = Dense(units=128,activation=tf.keras.activations.relu)(merged) 

finalLayer = Dropout(rate=0.4)(finalLayer) 

 

# output layer – use the sigmoid function for binary classification 

problems 

finalLayer = 

       Dense(units=1,activation=tf.keras.activations.sigmoid)(finalLayer) 

“””Merge both implicit and explicit inputs – one output for the predicted 

class””” 

finalModel = Model(inputs=[embedding_inputs, explicitModelInput],  

       outputs=[finalLayer], name=”CNN_DNN”) 

# OPTIONAL: Log training results to CSV file for further analysis 

csvFile = CSVLogger(filename=”../data/cnn_dnn_2_1.csv”, separator=’;’,  

       append=False) 

Figure 6.15: Python code example for hybrid CNN (continued) 

Compile the Hybrid Model and Perform Training:  

# Compile the model – add performance metrics 

finalModel.compile(optimizer=tf.keras.optimizers.Adam(),   

   metrics=[‘accuracy’,                                                                  

           tf.keras.metrics.TrueNegatives(),                                                

           tf.keras.metrics.TruePositives(),                                                                 

           tf.keras.metrics.FalseNegatives(),                                                               

           tf.keras.metrics.FalsePositives(),                                                      

           tf.keras.metrics.AUC(),                                                       

           tf.keras.metrics.Recall(),                                                        

           tf.keras.metrics.Precision(), 

           ], 

   loss=tf.keras.losses.BinaryCrossentropy()) 

plot_model(finalModel, to_file=”../data/merged_model_final13_2.png”,  

   show_shapes=True, show_layer_names=True) 

Figure 6.16: Python code example for hybrid CNN (continued) 

finalModel.summary() 

finalModel.fit(x=[np.asarray(imp_x_train), np.asarray(explicit_x_train)], 

               y=np.asarray(imp_y_train),  

               callbacks=[csvFile], 

               validation_data=([np.asarray(imp_x_test),  

                   np.asarray(explicit_x_test)], np.asarray(imp_y_test)), 

               epochs=20) 

 

Figure 6.17: Python code example for hybrid CNN (continued) 

6.2.5.3 Constraints 

The selected models will be dependent on the dataset, sample sizes, and the problem 

definition. 
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6.2.6 Determine Optimal Configuration for Selected Classification Model(s) 

6.2.6.1 Problem Definition 

The effectiveness of machine and deep learning models are greatly influenced by the 

supplied hyperparameters. Although researchers mention the use of specific 

parameters and values, there is no guarantee such metrics can produce optimal 

performance results, relative to the classification problem. Though several Python 

libraries, such as Keras-Tuner and SciKit-Learn, provide APIs which assist in 

determining the optimal model configuration, the use of such APIs can be dependent 

on other factors, such as available system resources. The two most used selection 

processes are Grid Search and Random Search. Both techniques operate differently, 

and their usage depends on expectations. Given a set of hyperparameter values, 

Random Search randomly selects a combination of hyperparameters, whilst Grid 

Search selects and evaluates all hyperparameter values (Brownlee, Hyperparameter 

Optimization With Random Search and Grid Search, 2020). Cuevas et al. (2020) state 

deep learning algorithms have hyperparameters that can influence memory usage and 

execution cost. Such parameters are dependent on the task and selected dataset 

(Cuevas et al., 2020).  

6.2.6.2 Solution 

Both Keras-Tuner and SciKit-Learn libraries provide systematic approaches to 

determine a given model’s best configuration. For machine learning workflows, the 

APIs provided by Sci-Kit Learn is recommended. For deep learning workflows, the 

APIs provided by Keras-Tuner are recommended. Grid Search could be used in cases 

where hardware limitations are not an issue, whereas Random Search could be used 

in cases where hardware limitations would otherwise cause much longer processing 

times.   

define function grid_search_param_selection(model, parameters, features, 

labels): 

 initialize grid search using the declared machine learning 

classifier and features  

fit the labels into the grid search instance 

get the best parameters scores from the grid search instance 

return best parameters 

END 

Figure 6.18: Pseudocode example to implement the GridSearch technique 

 



Chapter 6 – Guidelines For the Detection of Online Text-Based Fake News 

115 
  

START 

def perform_grid_search_param_selection(estimator, param_dictionary, 

x_dataset, y_labels): 

    """This function performs the Grid Search technique, given a set of 

parameters 

    Parameters 

    -------------- 

    estimator: A pre-built machine learning SciKit-Learn model 

    param_dictionary: A JSON style object containing hyper-parameter and 

values to test 

    x_dataset: The dataset to fit model 

    y_labels: A collection of labels for each sample in the x_dataset 

    """ 

    #define the Grid Search Model 

    grid_searcher = ms.GridSearchCV(estimator=estimator, 

param_grid=param_dictionary, scoring="accuracy", n_jobs=4, cv=3, 

return_train_score=True) 

    #fit the model with features and labels data - may take a while 

depending on model type and data sizes 

    grid_searcher.fit(x_dataset, y_labels) 

    #get the best parameter configurations 

    return grid_searcher.best_score_ 

Figure 6.19: Python code example for implementing grid search technique 

xgboost_params = [ 

    {'n_estimators': [7, 10, 50, 100], 

     'max_depth': [1, 3, 5, 7] 

     }] 

Figure 6.20: Example of setting up hyperparameter search space for the grid search. 

START 

define function build_model(hp): 

 create Keras model by adding Input layer  

 add embedding layer to the Keras model 

 add convolution neural network layer to the Keras model. Use Keras-

Tuner to set up parameter test values.  

 add a dense layer to the Keras model. Use Keras-Tuner to set up 

parameter test values. 

add dropout layer to the Keras model. Use Keras-Tuner to set up 

parameter test values. 

add output layer to the Keras model 

create the final model by using inputs (Keras model) and output layer 

return final model 
Figure 6.21: Pseudocode example for setting up a neural network model, for hyperparameter 

selection 
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initialize random search instance using the function to build the Keras 

model. Specify trials and maximum executions per trial. 

execute random search 

get the best random search results 

get results summary from the random search  

END 

Figure 6.22: Pseudocode for performing hyperparameter tuning, after building a test  neural network 

model 

# create a function that accepts an object which is used to define hyper-parameter search  

# bands for parameters of a given model 

def test_model(hp): 

    #The purpose of this function is to build a model that Keras-Tuner uses to determine 

the optimal configuration 

    cnn_input_model = Input(shape=(encoded_documents.shape[1],), name="InputLayer") 

 

    model_one = Embedding(len(unique_words_array), 

                          300, 

                          input_length=maximum_words, 

                          trainable=False, 

                          weights=[document_word_embeddings], 

                          name="EmbeddingLayer")(cnn_input_model) 

     

    #The hp.Choice class is used to define the values used for hyperparameter selection 

    model_one = Conv1D(filters=hp.Choice( 

                          name="conv_layer_one_filters",  

                          values=[70, 90, 110]),  

                       kernel_size=hp.Choice( 

                          name="conv_layer_one_kernel",  

                          values=[2, 3, 4]),  

                       activation='relu',  

                       strides=hp.Choice( 

                          name="conv_layer_one_strides", 

                          values=[2, 3, 4]), 

                       kernel_initializer=k.initializers.GlorotNormal(), 

                       bias_initializer=k.initializers.Zeros(), 

                       name="Conv1DOne")(model_one) 

     

   #"NOTE: Other layers have been omitted. These layers would also follow the same process 

when defining values to test against 

    output_layer = Dense(name="DenseLayerFinal",    

units=hp.Choice( 

name="dense_final_layer_units", 

                                    values=[16, 32, 64])) 

Figure 6.23: Python code example for constructing a test neural network model for hyperparameter 

tuning 

model_training_results = kt.RandomSearch(test_model, 

                                         objective='val_accuracy', 

                                         directory='CNN_Implicit_2', 

                                         project_name='cnn_implicit_2', 

                                         max_trials=3, 

                                         executions_per_trial=2) 

 

#Similiar to the fit() method, this method performs the search, using provided data 

model_training_results.search(np.asarray(x_train),  

 
Figure 6.24: Python code example for executing hyperparameter tuning of a neural network. 

6.2.6.3 Constraints 

Available computational resources, such as memory and CPU, could be a factor that 

influences the chosen hyperparameter selection method.   
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6.2.6.4 Other Considerations 

The SciKit-Learn implementation of Grid Search has two parameters that could be 

useful, in terms of performance: ‘n_jobs’ and ‘cv’. The n_jobs parameter determines 

the number of jobs to run concurrently whilst the ‘cv’ parameter determines the number 

of folds to perform cross-validation (SciKit Learn, 2012).  

The Random Search implementation of the Keras-Tuner library provides two 

parameters that control the number of models to be built, and the number of tests 

performed on each model, namely, the ‘max_trials’ and ‘executions_per_trial’ 

parameters (Keras-Tuner, 2019).  

6.2.7 Determine Applicable Metrics to Measure Performance of the 

Classification Model 

6.2.7.1 Problem Definition 

Several performance metrics exist which can measure the effectiveness of machine 

learning and deep learning models. Each performance metric reports on a different 

aspect of the overall model’s performance. Using a single metric, such as the accuracy 

of the model, may not be enough to truly quantify the overall performance of a 

classification model. This is evident in cases where there could be data imbalances 

between several classes. A poor selection in performance metrics may create 

misleading results, which in turn, could create a model that does poorly when 

evaluating unseen data. 

6.2.7.2 Solution 

Cross-validation techniques should be used to give a better view of the model’s 

classification performance. In cases where a data imbalance exists in several classes, 

the stratified k-fold cross-validation technique should be used. Pathak (2019) uses the 

stratified k-fold cross-validation over 5 folds, owing to the data being imbalanced 

across several classes. In cases where there is an approximate or equal balance in 

samples across all classes, the k-fold cross-validation should be used. Most authors 

employ cross-validation over a set number of folds (Elhadad et al., 2020; Hassan et 

al., 2017; Horne & Adali, 2017; J. Zhang et al., 2016). In addition to the cross-validation 

data (stratified or k-fold), the following performance metrics should be included:  
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1. Confusion Matrix Results: Tallies on the number of true positives, true 

negatives, false positives, and false negatives identified for a given 

classification problem. 

a. True Positives: The number of positive (truthful) samples correctly 

identified as positive samples. 

b. True Negatives: The number of negative (untruthful) samples correctly 

identified as negative samples. 

c. False Positives: The number of negative samples identified as positive 

samples.  

d. False Negatives: The number of positive samples identified as negative 

samples.   

2. Accuracy: This metric measures the overall number of correctly labelled 

samples (positive and negative) samples, across all samples in the dataset. 

The mathematical expression can be denoted as:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
 

3. Precision: This metric measures a model’s ability to identify positive (true) 

samples. Mathematically, this metric can be expressed as:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

4. Recall: This metric measures a model’s ability to correctly label positive 

samples amongst all known positive samples. Mathematically, this metric can 

be expressed as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

5. F-Measure: This metric is the average between Precision and Recall 

(Abdullah-All-Tanvir, Mahir, Akhter, & Huq, 2019). Mathematically, this metric 

can be expressed as:  

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =  
2 𝑥 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

6. Receiving Operator Characteristics: This metric measures the trend 

between the True Positive Rate (TPR) and False Positive Rate (FPR) at 

different thresholds (Nasir, Khan, & Varlamis, 2021). The True Positive Rate 

(TPR) is calculated by summing up the total true positives, divided by the sum 
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of false positives and true negatives. The TPR can be expressed as 

(Tchakounté & Hayata, 2016):  

𝑇𝑃𝑅 =  
𝐹𝑃

𝑇𝑃 + 𝐹𝑁
 

The False Positive Rate (FPR) is calculated by summing up all false positive 

samples, divided by the sum of false positive and true negative samples. The 

FPR can be experessed as (Tchakounté & Hayata, 2016):  

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

START 

define function perform_k_fold_cross_validation(num_folds, classifier, 

features, labels): 

 print name of classification model 

 initialize counter as 1 

 using classification model, features, and labels as parameters, get 

cross-validation results scores 

for each score in scores: 

 print current fold number and the score obtained 

 increment counter by 1 

END 
Figure 6.25: Pseudocode example for K-Fold cross validation 

Figure 6.26: Python code example for implementing k-fold cross-validation 

6.2.7.3 Constraints 

The selected metrics will depend on the problem definition; for classification problems, 

a set of applicable metrics exist. For regression problems, other applicable metrics 

also exist. 

def perform_kfold_cross_validation(self, numFolds, classifier, x_dataset, y_dataset): 

    """This function performs cross-validation for a given classification model. 

    Parameters 

    -------------   

    numFolds: The number of folds for the cross-validation 

    classifier: The SciKit-Learn machine learning model 

    x_dataset: The feature set to be used for cross-validation (features). 

    y_dataset: labels for each sample in the provided feature set""" 

    crossValScore = cross_val_score(classifier, x_dataset, y_dataset, cv=numFolds, 

n_jobs=4) 

    print("K-Fold Cross Validation Complete for "+classifier.__class__.__name__) 

 

    counter = 1 

    for i in crossValScore: 

        #Output score for each fold 

        print("Fold " + str(counter) + " Cross Validation Score: " + str(i)) 

        counter = counter + 1 
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6.3 Conclusion 

In this chapter, a comprehensive set of guidelines is presented. Such guidelines are 

supported by the work of other researchers in the natural language processing field, 

and data obtained in the experimentation phase of this study. In addition, code 

examples and references to useful tooling required to build such systems are included. 

These guidelines aim to serve as a guide for developers or researchers studying or 

building systems for combatting online misinformation.   Part of what makes fake news 

detection a complex problem to solve can be attributed to many reasons; presently, 

due to the many definitions of what is deemed as fake news, there is not a single, 

accepted definition of fake news. In addition, there is no single fake news dataset – 

numerous datasets for the classification task vary in terms of article lengths, the age 

of the dataset, the topics covered in each of the datasets, and the languages (locality) 

of the datasets. To add to the complexity, several machine learning and deep learning 

approaches are available, however, some approaches may not be suitable, depending 

on constraints such as system resources and the problem at hand. In the 

experimentation covered in Chapter 5, text summarization was employed to lower the 

high computation costs exhibited by recurrent neural networks. The guidelines 

presented in this chapter provide insight into fake news detection which can be used 

in developing systems aimed at combatting this problem.  

To conclude, the guidelines presented in this chapter address the primary research 

objective of the project:  

Develop guidelines for the use of machine learning to identify text-based fake 

news 

Chapter 7 provides an overview of all the work carried out in this project and how the 

work collectively addresses the problem statement and research objectives. 

Additionally, Chapter 7 also discusses the contributions this work makes and lists 

some limitations which can be overcome in future works. 
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7 Chapter 7 - Conclusion 

This chapter aims to conclude the study undertaken in this project by presenting a 

summary of the research objectives and how they were answered, at various phases 

of the project. A summary of chapters is presented and the common thread between 

the chapters is also shown. Limitations and future work related to this study are also 

addressed.  

7.1 Introduction 

The spread of misinformation can lead to many consequences from a social and 

economic perspective. What makes fake news a complex problem to solve is the 

varying definitions of what is deemed fake news, and the multitude of datasets that 

span across various text lengths. The rapid spread of online fake news makes it 

difficult for users to verify the credibility of articles that circulate on the internet. The 

lack of fact-checking on social media platforms further adds to the difficulty in 

preventing the spread of misinformation. Researchers in the fake news detection 

community have shown successes in using machine learning and deep learning 

approaches to tackle the problem of online misinformation. Through the literature of 

other researchers, a set of indicators that can differentiate fake news articles from real 

news articles is defined. Using the set of indicators, machine learning and deep 

learning approaches are employed to validate the effectiveness of automated fake 

news detection and the applicability of the defined indicators. Through experimentation, 

the performance results obtained show that such approaches can prove to be effective 

in combatting online misinformation.  

This chapter presents a summary of all chapters in this study, followed by the problem 

statement and how this statement is addressed in this study. A section that describes 

the contributions this study makes, and the limitations of this research project, is also 

included in this chapter. Finally, the chapter concludes by presenting suggestions that 

could be used in future work related to this study.   

7.2 Research Objectives 

The primary objective of this study was to develop guidelines for the use of machine 

learning to identify fake news. To address this objective, a set of guidelines are 

presented, which can be used in developing computational systems and tooling that 

tackles online misinformation. To support the credibility and validity of the guidelines, 
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information uncovered from examining the literature and information uncovered from 

experimentation are considered.  

Following the primary objective, the study defines three secondary objectives. These 

are:  

1. Identify the motives behind the propagation of fake news.  

2. Identify appropriate indicators, from literature, which could suggest an article is 

fake news.  

3. Validate the identified indicators through the application of selected machine 

learning algorithms. 

The purpose of the first secondary objective was to understand why fake news is a 

problem that should be investigated. The problem of online misinformation, and the 

complexities around addressing the issue, are highlighted in literature chapters 2 and 

3, and further revisited in the experimentation chapter. Using information uncovered 

in secondary objective 1, secondary objective 2 aims to define a list of indicators, or 

cues, which could differentiate fake news articles from real news articles. The premise 

for such guidelines is based on observations made by other researchers, and literary 

information on differences in fake and real online news. Using the guidelines defined 

through provisions of secondary objective 2, the effectiveness of these are indicators 

are evaluated through existing machine learning and deep learning approaches. In a 

machine learning workflow, the guidelines translate to useful features that can best 

differentiate fake articles from real news articles. The study selects several machine 

learning and deep learning models, based on the information and the results obtained 

by other researchers pertaining to the selected models. To quantify the effectiveness 

of the identifiers, a host of performance-related metrics are selected. Chapter 5 

presents the results obtained, a discussion of the results, and how such results align 

with existing literature. Suggestions around improving the obtained results are 

included in the experimentation chapter.  

The information uncovered through secondary objective 1, together with the indicators 

of fake news articles defined by secondary objective 2, and the results obtained by 

performing automated fake news detection using machine learning approaches and 

the defined indicators, are used as the supporting logic in the development of the 

guidelines for fake news detection proposed in this project.  
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7.3 Problem Statement 

The problem statement defined in this study is “Due to the rapid spread of online 

misinformation, in the form of fake news, manual approaches employed to differentiate 

fake news from real news articles, are time consuming and inadequate, given the rapid 

dissemination of online news”. Through findings uncovered in the literature review, it 

is shown that online news readers’ stances on certain topics can change, depending 

on the information disseminated online. Furthermore, cases in which fake news has 

caused economics-related shifts have been outlined in the literature. To address the 

problem, indicators that can differentiate false from real news articles are defined. The 

premise supporting the indicators are based on findings and observations made by 

other researchers in the fake news detection community. Following the definition of 

indicators, a selection of machine learning algorithms and deep learning models are 

examined. The results obtained show the problem of misinformation can be averted, 

using computational remedies.   

7.4 Summary of Chapters 

Chapter 1 provides a brief overview of the research project by presenting literature 

about the problem. A problem definition, a thesis statement, research objectives, 

ethical considerations, and the overall research process and design are defined. The 

chapter concludes by presenting an overview of the proposed chapters for the study, 

and how the structure of the study is designed to answer the research question.   

Chapter 2 expands on the foundations laid by chapter 1, by covering online fake news 

in detail. Through examining existing literature, this chapter defines fake news from a 

global and South African context. This chapter outlines the consequences of fake 

news, the benefits for the creators of fake news content, the current efforts around 

detecting fake news, and the complexities around detecting fake news. This chapter 

is necessary to understand fake news, and why it is a problem worth solving.  

Chapter 3 continues the literature review, this time examining the best machine and 

deep learning approaches used to detect fake news. This chapter touches on the 

available technologies, and how these approaches were applied by other researchers. 

Performance results and notable performance-related issues are also mentioned in 

this chapter. This chapter serves as the foundation needed to carry out 

experimentation for fake news detection.  
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Chapter 4 presents an overview of the research process and design undertaken. The 

selected methods are defined with a clear connection to the secondary objectives 

defined in chapter 1. The chapter concludes by presenting an overview as to how the 

research methods employed support the primary research objective. 

Chapter 5 covers all experimentation undertaken in this study. Using the identified 

indicators, and several machine learning and deep learning models, the concept of 

fake news detection is examined over two datasets. The results of the experimentation 

are discussed and compared with existing literature.   

Chapter 6 presents a set of guidelines for the task of fake news detection. For each 

guideline, a brief description of the problem, a solution and in some cases, code 

snippets are provided. This chapter aims to present a set of guidelines that can be 

used by other researchers and developers, to aid in the task of misinformation 

detection.  

Chapter 7 reflects on all the work undertaken in this study and concludes the project. 

7.5 Contributions of the Study  

Through the process of literature review, this study shows that fake news detection, 

using machine learning and deep learning approaches, is possible, using indicators 

that best separate fake news from real news articles. The effectiveness of these 

indicators, and the applicability of computational approaches to the problem, are 

shown in the promising results obtained through experimentation in Chapter 5. Part of 

the machine learning related experimental data and findings have been published, in 

the form of a conference paper. Details about the conference paper can be found in 

Appendix A.  

In addition, the study presents a set of guidelines that could be used for future work in 

building systems for automated fake news detection. The guidelines aim to provide a 

point of reference that could be considered at various stages of an automated fake 

news detection development workflow. The guidelines are built using information 

uncovered in the literature, and experimentation carried out in chapter 5, as the 

founding logic. To illustrate the practicality of the guidelines, some concepts 

highlighted in the guidelines are presented in the form of source code.  
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7.6 Limitations and Future Work 

This study explores the applicability of indicators, or cues, which could be used in 

differentiating fake news articles from real news articles. Through experimentation 

covered in chapter 5, the applicability of such indicators is examined using several 

machine learning and deep learning approaches. The high accuracy results show that 

models aimed at detecting false news content, using the selected indicators, are viable.  

7.6.1 Limitations 

Though the experiments show that promising results are attainable using the 

approaches described in chapter 5, there are several limitations, which could be 

improved on in future studies: 

1. Only textual article headlines and bodies are considered: In a real-world 

sense, it is common for articles to include images and videos which can be 

fabricated for the intent of spreading fake news. In this study, only textual article 

headlines and article bodies are examined.  

2. User metrics and news source information are not examined: It is common 

for online news articles to include user information, such as user comments, 

number of likes or dislikes, and shares. Additionally, information relating to the 

source of the online article, such as the site’s online ranking and age, are not 

examined. As highlighted in chapter 3, researchers have included such metrics 

in their fake news detection and have shown that such metrics can influence 

the overall accuracy of developed models.  

3. Hardware-related limitations: The experiments were performed offline, on a 

personal computer. Deep learning architectures, such as Recurrent Neural 

Networks, can be expensive to run on systems with limited computational 

resources. In chapter 5, text summarization is used to reduce computational 

costs exhibited with the selected Recurrent Neural Network.   

7.6.2 Future Work 

Future work in fake news detection could include a framework that classifies articles 

using features that consider an article’s images, videos, authors, user interaction, and 

the credibility of the source. Frontend tools, which could be used by online news 

readers, could be developed and tested in a focus group. Additionally, the future study 

could explore the use of cloud computing platforms, such as Google Cloud, Amazon 
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AWS, or Microsoft Azure, for the development and implementation of user-facing tools 

and systems. Cloud computing platforms have virtualized solutions built for Machine 

Learning and Deep Learning workflows, which could be beneficial for solutions that 

require a large amount of computational power.  

7.7 Conclusion 

This project aimed to present a set of guidelines that can be used by other developers 

and researchers looking to explore fake news detection using machine learning 

approaches. Some difficulties in this field include the complex nature of language, the 

variances in available datasets, and the varying definitions of what is perceived as 

fake news. Through examining the work of other researchers, a set of indicators are 

devised, which serve their purpose in the experimentation phase of the project. The 

study also shows automated fake news detection is possible, using existing machine 

learning and deep learning models. Though there is still room for improvement, a set 

of guidelines has been presented and promising experimentation results were 

obtained. These guidelines, alongside the growing body of research and development 

in this field, will hopefully prove to be a useful tool in the fight against fake news.
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Appendix A - Academic Publications 

This section lists all publications related to this study 

Fake News Detection Using Content-Based Features and Machine Learning 

O. Ngada and B. Haskins, "Fake News Detection Using Content-Based Features and 

Machine Learning," 2020 IEEE Asia-Pacific Conference on Computer Science and 

Data Engineering (CSDE), 2020, pp. 1-6, DOI: 10.1109/CSDE50874.2020.9411638. 

Abstract: The problem of fake news is a complex problem and is accompanied by 

social and economic ramifications. Targeted individuals and entities may lose 

trustworthiness, credibility and ultimately, suffer from reputation damages to their 

brand. Economically, an individual or brand may see fluctuations in revenue streams. 

In addition, the complex nature of the human language makes the problem of fake 

news a complex problem to solve for currently available computational remedies. The 

fight against the spread of fake news is a multi-disciplinary effort that will require 

research, collaboration and rapid development of tools and paradigms aimed at 

understanding and combating false information dissemination. This study explores 

fake news detection techniques using machine learning technology. Using a feature 

set that captures article structure, readability, and the similarity between the title and 

body, we show such features can deliver promising results. In the experiment, we 

select 6 machine learning algorithms, namely, AdaBoost as AB, Decision Tree as DT, 

K-Nearest Neighbour as KNN, Random Forest as RF, Support Vector Machine as 

SVM and XGBoost as XGB. To quantify a classifier’s performance, we use the 

confusion matrix model and other performance metrics. Given the structure of the 

experiment, we show the Support Vector Machine classifier provided the best overall 

result.
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Appendix B - Hybrid Convolutional Neural Network 

Experimental Data 

Hybrid CNN Training Results 

Table B.1: Training and validation results obtained for the hybrid CNN model over 20 epochs 

Epoch Accuracy Loss Validation 

Accuracy 

Validation 

Loss 

1 95,00% 0,1119 99,87% 0,0078 

2 99,77% 0,093 99,81% 0,0086 

3 99,83% 0,0065 99,88% 0,0071 

4 99,85% 0,0047 99,86% 0,0091 

5 99,87% 0,0049 99,86% 0,0092 

6 99,82% 0,0066 99,88% 0,0081 

7 99,96% 0,0019 99,86% 0,0140 

8 99,93% 0,0020 99,91% 0,0091 

9 99,87% 0,0046 99,91% 0,0085 

10 99,90% 0,0041 99,92% 0,0084 

11 99,94% 0,0028 99,86% 0,0123 

12 99,93% 0,0022 99,90% 0,0132 

13 99,91% 0,0041 99,89% 0,0141 

14 99,95% 0,0019 99,89% 0,0130 

15 99,95% 0,0016 99,88% 0,0131 

16 99,96% 0,0015 99,86% 0,0164 

17 99,95% 0,0019 99,87% 0,0181 

18 99,96% 0,0018 99,88% 0,0192 

19 99,91% 0,0036 99,88% 0,0241 

20 99,93% 0,0030 99,89% 0,0242 
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Table B.2: Confusion Matrix results obtained at each epoch of training the neural network model, 

using the training portion of data (80% of data) 

Epoch TP TN FP FN AUC Precision Recall 

1 17696 14805 2247 1170 97,22% 88,73% 93,80% 

2 18465 16338 714 401 99,55% 96,28% 97,87% 

3 18538 16528 524 328 99,73% 97,25% 98,26% 

4 18560 16564 488 306 99,77% 97,44% 98,38% 

5 18580 16631 421 286 99,79% 97,78% 98,48% 

6 18604 16690 362 262 99,85% 98,09% 98,61% 

7 18601 16668 384 265 99,84% 97,98% 98,60% 

8 18630 16720 332 236 99,86% 98,25% 98,75% 

9 18629 16732 320 237 99,86% 98,31% 98,74% 

10 18648 16739 313 218 99,88% 98,35% 98,84% 

11 18641 16752 300 225 99,87% 98,42% 98,81% 

12 18652 16777 275 214 99,87% 98,55% 98,87% 

13 18686 16776 276 180 99,90% 98,54% 99,05% 

14 18672 16775 277 194 99,89% 98,54% 98,97% 

15 18670 16793 259 196 99,90% 98,63% 98,96% 

16 18685 16779 273 181 99,88% 98,56% 99,04% 

17 18698 16797 255 168 99,91% 98,65% 99,11% 

18 18694 16805 247 172 99,91% 98,70% 99,09% 

19 18684 16787 265 182 99,91% 98,60% 99,04% 

20 18686 16782 270 180 99,90% 98,58% 99,05% 
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Table B.3: Confusion Matrix results obtained at each epoch of training the neural network model, 

using the validation portion of data (20% of data) 

Epoch TP TN FP FN AUC Precision Recall 

1 4594 4358 7 21 100,00% 99,85% 99,54% 

2 4610 4357 8 5 100,00% 99,83% 99,89% 

3 4608 4361 4 7 99,99% 99,91% 99,85% 

4 4596 4365 0 19 100,00% 100,00% 99,59% 

5 4611 4362 3 4 100,00% 99,93% 99,91% 

6 4597 4365 0 18 100,00% 100,00% 99,61% 

7 4611 4362 3 4 100,00% 99,93% 99,91% 

8 4604 4363 2 11 100,00% 99,96% 99,76% 

9 4612 4364 1 3 100,00% 99,98% 99,93% 

10 4604 4365 0 11 100,00% 100,00% 99,76% 

11 4607 4364 1 8 100,00% 99,98% 99,83% 

12 4614 4362 3 1 100,00% 99,94% 99,98% 

13 4611 4363 2 4 100,00% 99,96% 99,91% 

14 4606 4364 1 9 100,00% 99,98% 99,80% 

15 4606 4363 2 9 100,00% 99,96% 99,80% 

16 4607 4365 0 8 100,00% 100,00% 99,83% 

17 4610 4365 0 5 100,00% 100,00% 99,89% 

18 4613 4363 2 2 100,00% 99,96% 99,96% 

19 4605 4363 2 10 100,00% 99,96% 99,78% 

20 4602 4363 2 13 100,00% 99,96% 99,72% 
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Appendix C - Convolutional Neural Network Epxerimental 

Data 

CNN Training Results 

 

Table C.1: Training and validation results obtained using the best configuration determined by the 

hyperparameter selection process 

Epoch Accuracy Loss Validation 

Accuracy 

Validation 

Loss 

1 87,70% 0,2538 96,66% 0,0876 

2 97,19% 0,0796 97,30% 0,0753 

3 98,16% 0,0530 98,73% 0,0406 

4 98,53% 0,0397 98,55% 0,0421 

5 98,94% 0,0317 98,48% 0,0450 

6 99,00% 0,0274 99,01% 0,0319 

7 99,24% 0,0251 99,09% 0,0255 

8 99,23% 0,0214 99,06% 0,0278 

9 99,32% 0,0184 99,24% 0,0267 

10 99,40% 0,0169 99,24% 0,0263 

11 99,41% 0,0170 99,32% 0,0249 

12 99,43% 0,0163 99,15% 0,0291 

13 99,51% 0,0132 99,29% 0,0243 

14 99,50% 0,0148 98,94% 0,0403 

15 99,47% 0,0161 98,63% 0,0467 

16 99,61% 0,0125 99,21% 0,0327 

17 99,65% 0,0108 98,96% 0,0412 

18 99,60% 0,0113 99,29% 0,0271 

19 99,55% 0,0127 99,44% 0,0230 

20 99,77% 0,0081 99,40% 0,0267 
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Table C.2: AUC, Precision, Recall and confusion matrix results obtained at each epoch using the 

training portion of the dataset 

Epoch AUC Precision Recall TN TP FN FP 

1 95,78% 85,24% 92,50% 12344 15217 1233 2634 

2 99,54% 96,74% 97,92% 14436 16108 342 542 

3 99,76% 97,95% 98,55% 14638 16212 238 340 

4 99,86% 98,47% 98,73% 14726 16241 209 252 

5 99,91% 98,94% 99,04% 14803 16292 158 175 

6 99,92% 99,00% 99,09% 14813 16301 149 165 

7 99,91% 99,27% 99,28% 14858 16331 119 120 

8 99,95% 99,19% 99,34% 14844 16341 109 134 

9 99,95% 99,33% 99,37% 14868 16346 104 110 

10 99,97% 99,40% 99,45% 14880 16360 90 98 

11 99,97% 99,45% 99,43% 14887 16356 94 91 

12 99,96% 99,45% 99,47% 14887 16362 88 91 

13 99,97% 99,53% 99,53% 14900 16373 77 78 

14 99,96% 99,49% 99,55% 14894 16376 74 84 

15 99,96% 99,46% 99,53% 14889 16373 77 89 

16 99,97% 99,63% 99,62% 14917 16387 63 61 

17 99,97% 99,67% 99,65% 14924 16393 57 54 

18 99,97% 99,64% 99,59% 14919 16383 67 59 

19 99,97% 99,55% 99,60% 14904 16384 66 74 

20 99,98% 99,78% 99,78% 14942 16413 37 36 
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Table C.3: AUC, Precision, Recall and confusion matrix metrics results obtained at each epoch, using 

the test portion of the dataset 

Epoch AUC Precision Recall TN TP FN FP 

1 99,53% 94,62% 99,25% 6042 6978 53 397 

2 99,72% 95,27% 99,77% 6091 7015 16 348 

3 99,83% 98,69% 98,88% 6347 6952 79 92 

4 99,82% 97,67% 99,60% 6272 7003 28 167 

5 99,84% 97,34% 99,82% 6247 7018 13 192 

6 99,89% 98,40% 99,73% 6325 7012 19 114 

7 99,92% 98,88% 99,39% 6360 6988 43 79 

8 99,90% 98,58% 99,63% 6338 7005 26 101 

9 99,88% 99,08% 99,46% 6374 6993 38 65 

10 99,86% 99,05% 99,50% 6372 6996 35 67 

11 99,89% 99,04% 99,66% 6371 7007 24 68 

12 99,88% 98,83% 99,56% 6356 7000 31 83 

13 99,91% 99,36% 99,29% 6394 6981 50 45 

14 99,76% 98,17% 99,83% 6308 7019 12 131 

15 99,77% 97,59% 99,84% 6266 7020 11 173 

16 99,80% 98,75% 99,76% 6350 7014 17 89 

17 99,80% 98,20% 99,84% 6310 7020 11 129 

18 99,89% 98,97% 99,67% 6366 7008 23 73 

19 99,89% 99,35% 99,59% 6393 7002 29 46 

20 99,86% 99,15% 99,70% 6379 7010 21 60 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix D - Recurrent Neural Network (GRU) Experimental Data 

152 
 

Appendix D - Recurrent Neural Network (GRU) 

Experimental Data 

RNN (GRU) Training Results 

Table D.1: GRU model training results over 20 epochs 

GRU Model Results 

Total Parameters 15 540 249 

Trainable parameters 136 449 

Non-Trainable parameters 15 403 800 

Epoch Accuracy Loss Validation 

Accuracy 

Validation 

Loss 

1 82,65% 0,3663 88,19% 0,2785 

2 88,59% 0,2684 88,88% 0,2581 

3 89,55% 0,2469 88,59% 0,2755 

4 89,96% 0,2374 89,24% 0,2501 

5 90,30% 0,2295 89,12% 0,2639 

6 90,79% 0,2221 89,38% 0,2425 

7 90,88% 0,2163 89,29% 0,2475 

8 90,82% 0,2147 89,30% 0,2490 

9 91,09% 0,2113 89,33% 0,2468 

10 91,04% 0,2139 89,37% 0,2532 

11 90,78% 0,2185 89,33% 0,2531 

12 90,79% 0,2160 89,37% 0,2475 

13 90,19% 0,2334 88,60% 0,2530 

14 90,40% 0,2260 89,04% 0,2537 

15 90,24% 0,2323 88,63% 0,2580 

16 89,76% 0,2388 87,63% 0,2727 

17 89,65% 0,2432 88,32% 0,2711 

18 89,00% 0,2586 88,05% 0,2867 

19 88,43% 0,2682 87,94% 0,2755 

20 89,00% 0,2579 88,12% 0,2712 
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Table D.2: Results obtained at each epoch, using the training portion of the dataset (80% of data) 

Epoch TP TN FP FN AUC Precision Recall 

1 15505 13764 3443 2701 91,46% 81,83% 85,16% 

2 16481 14891 2316 1725 95,52% 87,68% 90,53% 

3 16635 15077 2130 1571 96,21% 88,65% 91,37% 

4 16737 15120 2087 1469 96,47% 88,91% 91,93% 

5 16783 15194 2013 1423 96,72% 89,29% 92,18% 

6 16868 15283 1924 1338 96,92% 89,76% 92,65% 

7 16893 15289 1918 1313 97,08% 89,80% 92,79% 

8 16898 15265 1942 1308 97,11% 89,69% 92,82% 

9 16934 15323 1884 1272 97,18% 89,99% 93,01% 

10 16905 15334 1873 1301 97,14% 90,03% 92,85% 

11 16864 15284 1923 1342 97,02% 89,76% 92,63% 

12 16820 15330 1877 1386 97,09% 89,96% 92,39% 

13 16770 15168 2039 1436 96,64% 89,16% 92,11% 

14 16768 15245 1962 1438 96,82% 89,52% 92,10% 

15 16819 15138 2069 1387 96,63% 89,05% 92,38% 

16 16683 15104 2103 1523 96,45% 88,81% 91,63% 

17 16606 15142 2065 1600 96,33% 88,94% 91,21% 

18 16551 14968 2239 1655 95,86% 88,08% 90,91% 

19 16481 14836 2371 1725 95,53% 87,42% 90,53% 

20 16591 14927 2280 1615 95,87% 87,92% 91,13% 
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Table D.3: Results obtained at each epoch, using the validation portion of the dataset (20% of data) 

Epoch TP TN FP FN AUC Precision Recall 

1 4285 3523 686 360 95,36% 86,20% 92,25% 

2 4222 3647 562 423 95,91% 88,25% 90,89% 

3 4418 3426 783 227 96,13% 84,95% 95,11% 

4 4202 3699 510 443 96,16% 89,18% 90,46% 

5 4399 3492 717 246 96,23% 85,99% 94,70% 

6 4298 3616 593 347 96,30% 87,88% 92,53% 

7 4294 3612 597 351 96,17% 87,79% 92,44% 

8 4273 3634 575 372 96,25% 88,14% 91,99% 

9 4152 3757 452 493 96,37% 90,18% 89,39% 

10 4313 3600 609 332 96,16% 87,63% 92,85% 

11 4309 3600 609 336 96,14% 87,62% 92,77% 

12 4286 3627 582 359 96,18% 88,04% 92,27% 

13 4244 3601 608 401 95,94% 87,47% 91,37% 

14 4243 3641 568 402 96,00% 88,19% 91,35% 

15 4313 3534 675 332 95,78% 86,47% 92,85% 

16 3954 3805 404 691 95,69% 90,73% 85,12% 

17 4071 3749 460 574 95,65% 89,85% 87,64% 

18 4236 3560 649 409 95,16% 86,71% 91,19% 

19 4234 3552 657 411 95,33% 86,57% 91,15% 

20 4242 3560 649 403 95,41% 86,73% 91,32% 
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Appendix E - Hybrid RNN (LSTM) Experimental Data 

Hybrid RNN Training Data 

 

Table E.1: Training Accuracy and Loss for the CNN-RNN hybrid model over 20 epochs 

Epoch Accuracy Loss Validation 

Accuracy 

Validation 

Loss 

1 77,88% 0,4534  86,48% 0,3108 

2 85,93% 0,32100 87,75% 0,2764 

3 87,12% 0,2904 87,66% 0,2792 

4 87,87% 0,2791 88,45% 0,2612 

5 88,31% 0,2683 88,47% 0,2607 

6 88,59% 0,2628 88,72% 0,2516 

7 88,80% 0,2561 86,53% 0,2978 

8 89,16% 0,2486 89,27% 0,2484 

9 89,32% 0,2440 89,52% 0,2464 

10 89,55% 0,2393 89,56% 0,2478 

11 89,63% 0,2357 89,36% 0,2485 

12 89,85% 0,2316 89,42% 0,2484 

13 90,15% 0,2303 89,45% 0,2472 

14 89,98% 0,2266 89,00% 0,2508 

15 90,44% 0,2226 89,43% 0,2451 

16 90,54% 0,2204 89,41% 0,2474 

17 90,59% 0,2192 89,61% 0,2468 

18 90,69% 0,2160 89,71% 0,2485 

19 90,90% 0,2114 89,58% 0,2508 

20 90,83% 0,2097 89,73% 0,2489 
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Table E.2: CNN-RNN performance evaluation during training at each epoch. 80% of articles were 

observed. 

Epoch TP TN FP FN AUC Precision Recall 

1 15538 12040 5024 2811 86,43% 75,57% 84,68% 

2 16309 14122 2942 2040 93,51% 84,72% 88,88% 

3 16514 14338 2726 1835 94,67% 85,83% 90,00% 

4 16534 14585 2479 1815 95,13% 86,96% 90,11% 

5 16567 14707 2357 1782 95,50% 87,54% 90,29% 

6 16680 14694 2370 1669 95,65% 87,56% 90,90% 

7 16660 14788 2276 1689 95,90% 87,98% 90,80% 

8 16716 14857 2207 1633 96,11% 88,34% 91,10% 

9 16760 14871 2193 1589 96,25% 88,43% 91,34% 

10 16782 14931 2133 1567 96,39% 88,72% 91,46% 

11 16795 14947 2117 1554 96,49% 88,81% 91,53% 

12 16822 14995 2069 1527 96,63% 89,05% 91,68% 

13 16904 15020 2044 1445 96,67% 89,21% 92,12% 

14 16830 15033 2031 1519 96,76% 89,23% 91,72% 

15 16933 15095 1969 1416 96,86% 89,58% 92,28% 

16 16966 15098 1966 1383 96,92% 89,62% 92,46% 

17 17013 15068 1996 1336 96,94% 89,50% 92,72% 

18 16993 15124 1940 1356 97,06% 89,75% 92,61% 

19 17020 15169 1895 1329 97,17% 89,98% 92,76% 

20 16984 15183 1881 1365 97,20% 90,03% 92,56% 
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Table E.3: CNN-RNN performance evaluation during testing at each epoch. 20% of articles were 

observed. 

Epoch TP TN FP FN AUC Precision Recall 

1 4070 3587 765 432 94,34% 84,18% 90,40% 

2 4097 3672 680 405 95,28% 85,77% 91,00% 

3 4256 3505 847 246 95,65% 83,40% 94,54% 

4 4007 3824 528 495 95,82% 88,36% 89,00% 

5 4117 3716 636 385 95,93% 86,62% 91,45% 

6 4166 3689 663 336 96,10% 86,27% 92,54% 

7 3568 4093 259 934 96,01% 93,23% 79,25% 

8 4089 3815 537 413 96,19% 88,39% 90,83% 

9 4144 3782 570 358 96,26% 87,91% 92,05% 

10 4157 3773 579 345 96,21% 87,77% 92,34% 

11 4166 3746 606 336 96,26% 87,30% 92,54% 

12 4212 3705 647 290 96,22% 86,68% 93,56% 

13 4148 3772 580 354 96,34% 87,73% 92,14% 

14 4000 3880 472 502 96,24% 89,45% 88,85% 

15 4080 3838 514 422 96,30% 88,81% 90,63% 

16 4196 3720 632 306 96,30% 86,91% 93,20% 

17 4134 3800 552 368 96,29% 88,22% 91,83% 

18 4103 3840 512 399 96,35% 88,91% 91,14% 

19 4208 3723 629 294 96,34% 87,00% 93,47% 

20 4186 3759 593 316 96,33% 87,59% 92,98% 
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Appendix F - Machine Learning Classifier Confusion Matrix 

Results 

The table below shows confusion matrix related data collected through assessing the 

classification capabilities of the selected machine learning algoriths in chapter 5. A 

detailed explanation of each metric is discussed in section 3.10.  

Table F.1: Counts on true positives, true negatives, false positives, false negatives for each classifier, 

using the test portion of the dataset 

Classifier TN FP FN TP 

Support Vector Machine 4248 29 27 4676 

K-Nearest Neighbour  4115 151 639 4075 

Random Forest 4268 41 49 4622 

AdaBoost Classifier 4300 30 36 4614 

XGBoost Classifier 4269 44 66 4601 

 




