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ABSTRACT

Complex signals are ubiquitous in our daily lives, and interpreting and modeling

them is vital for scientific advancement. Traditional methods for predictive modeling

of complex signals include statistical signal processing and physics-based simulations.

However, statistical signal processing methods often struggle to fully utilize complex and

rich datasets, while physics-based simulations can be computationally demanding. As

an alternative approach, machine learning (ML) offers a more effective method for the

predictive modeling of complex signals.

This research explores the applicability of ML-based predictive modeling to a

biomedical and a mechanical system through two case studies. The first case study focuses

on developing a machine learning-based model for early-stage glaucoma detection using

electroretinogram signals, which has been a challenging problem in ophthalmology. By

leveraging medically relevant information contained in ERG signals, the study aims to
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establish a novel and reliable predictive framework for the early detection of glaucoma

using a machine-learning-based algorithm. The results demonstrate that machine-learning-

based models, trained using advanced wavelet-based features, can effectively detect the

early stage of glaucoma from ERG stochastic signals.

The second case study centers on developing a machine learning-based model

for stall delay correction in wind turbines. Existing stall delay correction models rely

on 2D airfoil characteristics, which can lead to inaccuracies in predicting aerodynamic

loads during design and, consequently, result in structural failure due to excessive load.

To address this issue, the study proposes a novel stall delay correction model based

on the soft computing technique of symbolic regression. The model offers high-level

precise aerodynamic performance prediction through the blade element momentum process,

making it a promising alternative for accurate and efficient stall delay correction in wind

turbines.
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CHAPTER 1

INTRODUCTION

1.1 Background

1.1.1 Introduction to Stochastic systems

Stochastic systems are characterized by their behavior, which is determined by ran-

dom processes or variables. These variables can be continuous or discrete, and probability

distributions describe the system’s evolution. Stochastic systems are often employed to

model complex systems that exhibit randomness or uncertainty in various fields, such as

medicine, engineering, finance, physics, and chemistry.

In medicine, stochastic systems model diverse phenomena, including disease

spread, treatment effectiveness, and chronic illness progression. They play a significant

role in medical imaging and biomedical signal processing, as well as medical decision

support systems. With the increasing availability of large amounts of medical data and

advancements in computational methods, machine learning and predictive modeling tech-

niques have gained interest in analyzing data and supporting medical decision-making.

These techniques, along with stochastic models, have the potential to improve the diagnosis

and treatment of numerous medical conditions.

In engineering, stochastic systems are employed to model phenomena in mechani-

cal systems, structures, and materials. They are widely used in mechanical engineering to

understand systems under uncertainty and design robust and reliable systems that operate
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under these conditions. Additionally, they can enhance system performance and efficiency

through optimization techniques.

In finance, stochastic models describe the behavior of stock prices, interest rates,

and other financial variables. In physics, they model systems at the molecular or subatomic

level, and in chemistry, they describe chemical reactions and molecular system dynamics.

Stochastic systems often exhibit complex and nonlinear behavior, making them

difficult to predict. Consequently, there has been extensive research on developing mathe-

matical models and computational methods for analyzing and understanding these systems’

behavior.

1.1.2 Introduction to Machine Learning

Machine learning, a subfield of artificial intelligence, involves developing algo-

rithms and statistical models that learn from data and make predictions or decisions without

explicit programming. The goal is to create systems that automatically improve their perfor-

mance with experience. Machine learning types include supervised learning, unsupervised

learning, and reinforcement learning.

Machine learning has gained increasing interest for the understanding and predic-

tive modeling of stochastic systems. It provides powerful tools for analysis and prediction,

even for complex or non-linear systems. These techniques can analyze large amounts of

data and extract patterns for predictions. In this research, a machine learning algorithm

will be employed to analyze and predict stochastic system behavior, aiming to enhance the

understanding and predictive modeling of such systems.
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1.1.3 Challenges in Predictive Modeling of Stochastic Systems

Predictive modeling of stochastic systems faces several challenges, including:

• Modeling Complexity: Stochastic systems can be highly complex, with many in-

teracting components and nonlinear behavior, making it challenging to develop

accurate models that capture the system’s behavior.

• Lack of Data: Predictive modeling often relies on extensive data, but obtaining

high-quality data for stochastic systems may be difficult if the system is challenging

to measure or if data collection is expensive.

• Handling high-dimensional systems: Many stochastic systems have numerous vari-

ables, complicating the modeling and analysis process.

1.1.4 Importance of Machine Learning in Predictive Modeling of Stochastic Systems

The importance of machine learning in the predictive modeling of stochastic sys-

tems lies in its ability to learn from data and make predictions without explicit programming.

Machine learning algorithms can handle large amounts of data, model uncertainty, learn

complex nonlinear relationships, identify essential variables and patterns, and improve

prediction accuracy.

Machine learning’s key advantages for predictive modeling include its ability to

process large amounts of data and handle uncertainty. Stochastic systems are characterized

by uncertainty, complicating accurate predictions. Machine learning algorithms can model

and reason with uncertainty, making predictions even in the presence of incomplete or
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noisy data. Furthermore, machine learning can learn from nonlinear relationships, identify

important features or variables that significantly impact the system’s behavior, and detect

crucial patterns or structures in the data. This information can be valuable for understanding

the stochastic system’s underlying mechanisms and enhancing its predictive modeling.

Traditional methods, such as linear regression and Gaussian processes, may not

accurately model non-linear systems. However, machine learning techniques like neural

networks and non-parametric regression can learn complex non-linear relationships and

make predictions accordingly. By identifying essential features or variables, machine

learning can help determine the factors that most influence the system’s behavior, enabling

a deeper understanding of the system. Additionally, machine learning can identify crucial

patterns or structures in the data, which can be employed to recognize important states or

regions of the system’s behavior.

1.2 Case Study 1: ML-based predictive modeling of a biomedical system

1.2.1 Background

In recent years, machine learning (ML) has emerged as a powerful tool for analyz-

ing and modeling complex biomedical systems. ML-based methods have been successfully

applied to a wide range of medical applications, including disease diagnosis, risk prediction,

and treatment optimization. One such application is the early detection of glaucoma using

electroretinogram (ERG) signals. Glaucoma, a leading cause of irreversible blindness,

can be effectively managed if detected early. However, conventional diagnostic methods

often fail to identify the disease in its initial stages, necessitating the development of more
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sophisticated techniques.

1.2.2 Motivation

The application of ML-based predictive modeling in biomedical systems has the

potential to revolutionize the field of medicine by enabling more accurate and personalized

care. By investigating the effectiveness of ML methods in predicting and diagnosing

complex diseases, such as glaucoma, using ERG signals, this research seeks to contribute

to the growing body of knowledge in this domain and improve early detection of the

disease.

1.2.3 Current State of the Art and Research Gaps

While ML has been successfully applied in various biomedical applications, there

are still limitations and gaps that need to be addressed. In particular, the identification of

appropriate features, selection of optimal ML algorithms, and validation of the predictive

models remain challenges. Additionally, the translation of ML-based methods from one

species to another requires further investigation.

1.2.4 Problem Statement

The present study aims to explore the feasibility of applying ML-based methods to

the analysis of ERG signals for detecting glaucoma at different stages of the disease. The

study will focus on determining the most effective features and algorithms for achieving

accurate and reliable predictions.
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1.2.5 Research Objectives

The objectives of this study are as follows:

1. To systematically apply ML-based methods to identify the most informative fea-

tures and ML algorithms for accurate glaucoma detection and disease progression

prediction.

2. To systematically apply ML-based methods to predict retinal ganglion cell (RGC)

loss based on ERG signals.

1.2.6 Summary of Contributions

This research will contribute to the field of ML-based predictive modeling in

biomedical systems by developing a novel approach to glaucoma detection and disease

progression prediction based on ERG signals. The study will also identify key features

and algorithms for accurate and reliable predictions, as well as provide insights into the

potential application of ML methods in other areas of medicine.

1.2.7 Significance of Study

The successful implementation of ML-based methods for early detection of glau-

coma using ERG signals has the potential to significantly impact the field of ophthalmology.

Improved early detection can lead to better management of the disease, ultimately reducing

the incidence of irreversible blindness. Additionally, the findings of this study may con-

tribute to the development of new diagnostic tools and methodologies that can be applied

to other diseases and medical conditions.
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1.3 Case Study 2: ML-based predictive modeling of a mechanical system

1.3.1 Background

In recent years, machine learning (ML) techniques have gained significant traction

in various fields of engineering, including the modeling and prediction of mechanical

systems. The application of ML techniques to mechanical systems, such as wind turbines,

offers an opportunity to enhance the accuracy and efficiency of predictive models, particu-

larly for complex phenomena like stall delay correction. Traditional methods for stall delay

correction in wind turbine performance prediction, such as Blade Element Momentum

(BEM) analysis, often struggle to provide accurate results due to the inherent complexities

and uncertainties in the aerodynamic loads experienced by the rotor blades.

1.3.2 Motivation

The motivation for this study lies in the need for more accurate and efficient pre-

dictive models for stall delay correction in wind turbine performance prediction. Improved

models can help to prevent structural failure and excessive loading on wind turbine blades,

which can lead to more reliable and efficient wind energy systems. By employing ML-

based techniques, this study aims to address the limitations of traditional methods and

contribute to the development of enhanced predictive models for mechanical systems like

wind turbines.
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1.3.3 Current State of the Art and Research Gaps

Although there has been progress in developing correction models for stall delay

using conventional hard computing techniques, these models have been found to be

inadequate in accurately predicting the enhancement in lift coefficients due to stall delay.

Recent research has started to explore the potential of ML-based techniques for improving

the accuracy of these models. However, there remains a gap in the literature regarding

the development and validation of ML-based predictive models specifically for stall delay

correction in wind turbine performance prediction.

1.3.4 Problem Statement

The problem to be addressed in this study is the development and validation of an

ML-based predictive model for stall delay correction in wind turbine performance predic-

tion, focusing on accurately capturing the complex aerodynamic phenomena experienced

by rotor blades during stall delay conditions.

1.3.5 Research Objectives

The objectives of this study are as follows:

1. To review and analyze the existing approaches for stall delay correction in wind

turbine performance prediction.

2. To develop a machine learning-based predictive model that accurately captures the

stall delay phenomenon in wind turbine rotor blades.

3. To validate the proposed ML-based model using experimental and computational
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data from wind turbine performance studies, such as the NREL Phase VI turbine

and MEXICO rotor.

4. To identify the limitations and research gaps in the current state-of-the-art models

and address these limitations using the proposed ML-based model.

1.3.6 Summary of Contributions

The main contributions of this study include:

1. The development of an ML-based predictive model for stall delay correction in wind

turbine performance prediction.

2. The validation of the proposed model using published data from wind turbines

demonstrating improved accuracy and efficiency compared to existing models.

3. The identification of potential areas for future research and development in ML-

based modeling of mechanical systems, particularly in the context of wind energy

systems.

1.3.7 Significance of Study

The significance of this study lies in its potential to improve the accuracy and

efficiency of stall delay correction models in wind turbine performance prediction. By

addressing the limitations of traditional methods and providing a more accurate and

efficient alternative, the proposed ML-based model can contribute to the development of

more reliable and cost-effective wind energy systems, which are essential for addressing

the growing demand for renewable energy sources.
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1.4 Outline of Dissertation

This dissertation focuses on machine learning-based predictive modeling of stochas-

tic systems, covering two diverse case studies. The introduction provides an overview

of the background and motivation, problem statement, research objectives, summary of

contributions, significance of the study, and the outline of the dissertation. The growing

need for accurate predictive modeling in stochastic systems is highlighted, emphasizing

the potential of machine learning techniques to address complex problems.

The study is divided into two major case studies. The first case study presents

a novel machine-learning based framework for detecting early-stage glaucoma using

electroretinography data. The introduction, methods, results, and discussion of this case

study are covered in detail, illustrating the effectiveness of the proposed framework. The

second case study investigates a machine-learning-based stall delay correction model for

improving blade element momentum analysis in wind turbine performance prediction.

This section includes an introduction, description of the stall delay mechanism, blade

element momentum theory, models for stall delay correction, experimental descriptions,

symbolic regression, a new empirical model for stall delay, results and discussions, and

conclusions and future works.

The dissertation concludes with a summary of the findings and their implications

for the broader field of machine learning-based predictive modeling of stochastic systems.

The potential of the proposed ML-based models for the early detection of glaucoma

and improving stall delay correction in wind turbine performance prediction is discussed,

highlighting the benefits of using machine learning techniques to address complex problems
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in diverse domains. The reference list and vita are provided at the end of the document.
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CHAPTER 2

CASE STUDY 1: NOVEL MACHINE-LEARNING BASED FRAMEWORK USING
ELECTRORETINOGRAPHY DATA FOR THE DETECTION OF EARLY-STAGE

GLAUCOMA

2.1 Introduction

Glaucoma, a chronic neurodegenerative disease affecting the retina and optic nerve,

and a leading cause of blindness, is characterized by a progressive, irreversible loss of

vision. As currently available treatment paradigms focus primarily on a predisposing factor,

elevated intraocular pressure (IOP), and do not allow for repair of the retina and optic nerve

once the disease has progressed and damage has occurred, technologies enabling an early

diagnosis of glaucoma are needed urgently. Consequently, such new diagnostic modalities

enabling early therapeutic intervention would significantly improve treatment outcomes.

Current methods of glaucoma diagnosis are based on psychophysical techniques and the

assessment of structural changes to the retina and optic nerve [4]. Standard automated

perimetry testing, including the widely used Humphrey visual field testing, currently

represents the most commonly utilized technique for glaucoma diagnosis and monitoring

of disease progression and therapy outcomes [5, 6]. Recent efforts to employ machine-

learning (ML) approaches to improve the analysis of behavioral psychophysical testing

approaches produced moderate improvements over conventional analysis algorithms [7].

However, significant damage to the retina and optic nerve, including loss of retinal ganglion

cells (RGCs) has often already occurred before changes can be detected with standard
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automated perimetry testing [8].

Recently, automated retinal image analysis (ARIA) systems have been developed

for the diagnosis of complex diseases such as diabetic retinopathy and glaucoma [9, 10].

The development of these ARIA systems involved ML-based methods to detect structural

changes determined with optical coherence tomography (OCT) imaging resulting in high

analytical accuracy in automatically classifying disease phenotypes based on structural

characteristics [11–13]. Despite such significant progress, early detection of glaucoma is

still a challenge [14], given the highly significant limitations of early detection of glaucoma

based on structural methods. Systems employing the analysis of structural changes for

glaucoma diagnosis are based on measuring retinal nerve fiber layer (RNFL) thickness in

OCT images of the retina, which is highly variable and weakly correlated with RGC counts

despite RNFL thickness being a surrogate marker of RGC degeneration and optic nerve

fiber loss, hallmarks of glaucoma pathogenesis [15]. Further, RGC loss often occurs early

during pathogenesis in the absence of measurable RNFL thinning, prompting an urgent

clinical need for methods with higher sensitivity, such as functional measures including

ERG [14–18]. In contrast, functional measures such as visual field and ERG are sensitive to

subtle changes in RGC function and RGC damage, which suggest a significant potential to

enable early detection of glaucoma, even in the absence of elevated IOP, as seen in patients

with normotensive glaucoma [14, 17, 19]. Therefore, this study aims to investigate such

potential considering ERG signals. Consequently, interventions could be initiated before

irreversible damage occurs, allowing for the optimization of treatment strategies based on

the improvement of RGC function [20]. This is of high clinical importance as determining
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the efficacy of therapies aimed at lowering IOP in open-angle glaucoma [21, 22] requires

early validation of therapy success [13], but will also be of importance for the development

of novel alternative and complementary glaucoma therapies based on neuroprotective

strategies [23]. Recently, in a study conducted by [24] photopic negative response (PhNR)

was used to assess the short-term changes in inner retinal function following intraocular

pressure (IOP) decrease in glaucoma using eyedrops. [25] showed that Nicotinamide

supplementation helps improve the function of the inner retina in glaucoma.

Recent advances in the acquisition of complex neuroscience data have a significant

innovative potential to progress towards more effective diagnostic systems [26]. The

adequate, timely, and clinically relevant analysis of such data has potentially high clinical

impact [27]. However, while such data sets can be readily acquired and technologies to

further improve and simplify data acquisition continue to emerge [28], critical barriers

to implement the effective use of such novel data in clinical diagnostics and therapy

delivery remain [29]. While the analysis of complex biomedical data is often part of

medical diagnostics, current expert analysis standards and algorithms are limited by

pattern recognition in few dimensions, which results in less than optimal identification or

even exclusion of potentially relevant diagnostic features [30]. Machine learning could

significantly augment medical diagnostics and increase their efficacy by analyzing aspects

of complex and multi-dimensional biomedical data that are either not being considered

adequately or that are not accessible to current analysis methods [31]. Such machine-

learning based diagnostic approaches have been developed and are being actively used for

the detection of cardiovascular diseases [32], and cancer [33].
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ERG data are one such type of complex and multi-dimensional biomedical data

that are potentially relevant to the diagnosis of glaucoma, but are currently not considered

during routine clinical practice or in clinical research. Historically, this is due to multiple

barriers related to clinical ERG data acquisition, such as limitations in reproducibility,

high costs of both equipment and of individual tests, long test duration and complex test

administration resulting in reduced patient acceptance and compliance, and the need for

highly trained experts to administer tests. With the advent of novel ERG technologies,

most of these barriers related to clinical ERG data acquisition have been removed [34–39],

opening up the possibility to effectively use ERG data for glaucoma diagnostics, calling the

necessity for the development of novel approaches (e.g., M-L-based ones) that is capable

to quickly and thoroughly analyze such data.

Machine learning is based on statistical techniques to learn from data and develop

predictive models [40]. Recently, there has been a surge of interest in machine learning

as significant advancements in computational hardware [41] facilitate the development

of novel machine learning approaches as solutions to problems in various disciplines

from financial forecasting to public transportation and healthcare [42–44]. There are

several predictive techniques in machine learning with various complexities, ranging from

simple linear models to advanced non-linear models such as those based on deep learning

algorithms [45–47]. Currently, available ERG analysis methods, such as those developed

by Hood, Birch, and Porciatti [20, 48], have contributed to a significantly improved

understanding of the relationship between ERG signals and vision loss. These methods are

limited to frequency domain analysis [49–52] and the analyses of differences in amplitude
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and latency of ERG [53–59]. In addition, these methods are often time-consuming, labor-

intensive, and focused on parameters developed to address a small subset of mostly genetic

diseases of the eye affecting predominantly pediatric patient populations [60–62]. To

achieve higher accuracy and a more detailed understanding of disease progression and of

the impact of therapeutic intervention, more sophisticated features such as those obtained

from wavelet analysis are required [63, 64]. Additionally, currently available methods are

often not suitable for analyzing large data sets and databases, rendering them incapable

of taking advantage of complex and rich datasets [65, 66]. These drawbacks prompted

others [67–70] and us to design and develop novel methods capable of handling complex

and large datasets and ultimately to provide a unique approach for diagnosing early-stage

glaucoma. However, it should be noted that early detection of glaucoma is not possible

with currently available techniques during the early stages of glaucoma pathogenesis,

when cellular changes occur that do not result in structural damage or visual impairment

yet. Such early-onset factors predisposing to glaucoma development include processes

preceding the onset of ocular hypertension, for example, the onset of iris pigment dispersion

preceding IOP elevation in the DBA/2 mouse model. However, and more importantly, we

identified cellular changes resulting in altered ERG signals, such as changes in oscillatory

potentials, that currently cannot be detected with other functional or structural measures.

Boquete and colleagues developed a method to automate glaucoma diagnosis

based on ERG signals using neural networks and structural pattern analysis [71]. They

utilized thirteen features (morphological and transitional characteristics) for training the

model and achieved a testing accuracy of 80.7% [71]. This study was limited to basic
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morphological characteristics of mfERG recordings [71]. Miguel and colleagues [72] also

employed neural networks for ERG-based glaucoma diagnosis but used continuous wavelet

transformed coefficients and achieved a binary classification accuracy of 86.90% [72].

Although a higher accuracy was achieved, this analysis was limited to wavelet features

only [72]. Nevertheless, both studies showed that machine learning-based methods trained

even on compact data sets provide powerful tools to analyze ERG signals and provide

potentially new information relevant for the early detection of glaucoma. Sarossy and

colleagues investigated the relationship between a compact set of features and glaucoma

that can be analyzed with machine learning approaches; however, the study was limited to

the analysis of the photopic negative response (PhNR) and five additional features [73].

The goal of the present study was to comprehensively assess the capability of

machine-learning-based methods to detect early-stage glaucoma using time-series ERG

signals. In particular, the following points are addressed during method development:

1. Develop a framework to extract and identify important predictors (features) from

ERG signals.

2. Compare the predictive capability of statistical and wavelet-based features for binary

and multiclass classification.

3. Develop a robust ML-based model to diagnose glaucoma (binary classification).

4. Develop a robust ML-based model capable of distinguishing various stages of

glaucoma progression (multiclass classification).
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5. Develop a robust ML-based model to provide a quantitative assessment of visual

function by predicting retinal ganglion cell count from ERG signals for the first time.

2.2 Methods

2.2.1 Overview

ML based algorithms have been applied to Electrocardiogram (ECG) signals in

order to develop predictive models for diagnosing heart diseases [32,74]. Recently machine

learning-based Artificial Neural Networks (ANN) have been applied to ERG signals for

obesity diagnosis [75]. However, to date, machine learning-based methods have not been

applied systematically to analyze ERG signals for glaucoma detection. Therefore, the

potential of ERG signals in glaucoma diagnosis has not been fully utilized. The present

work aims to develop a predictive model for early glaucoma diagnosis based on machine-

learning algorithms by utilizing advanced features from ERG signals as predictors. The

steps involved in developing a machine-learning-based predictive model for ERG analysis

are shown in Figure 1. Each of these steps is explained in detail below.

2.2.2 ERG: A Biomarker

Electroretinography measures the electrical responses of different types of cells

in the retina, such as ganglion cells. These signals are usually measured in microvolts.

Oscillatory Potential (OP) and Scotopic Threshold Response (STR) represent important

ERG components indicative of RGC cell function [76–79]. OPs are small rhythmic

wavelets superimposed on the ascending b-wave of the ERG and STR are negative corneal

deflection elicited in the fully dark-adapted eye to dim stimuli. An International Society for
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Figure 1: Machine learning workflow using ERG signals. ERG Database: the ERG
database contains the input ERG data used to train the predictive model. Pre-Processing
of data: this step ensures data quality by transforming the data to a common baseline,
accounting for missing data, and handling outliers. Feature extraction: mathematical
operations are performed on the data to extract features/parameters that indicate functional
deficits in the eye. Predictive Model Development: algorithms can determine trends and
patterns in data from statistical analysis of extracted features during training; these models
can predict either class or value from the input data are called classifier and regression
models, respectively. Deployment of Model into medical devices: successful predictive
models can be included with ERG testing devices to provide real-time prognosis and
diagnosis.

Clinical Electrophysiology of Vision (ISCEV) standardized ERG protocol [80] included

several tests to measure the function of various retinal cell types, including the rod response,

standard rod-cone response, Hi-intensity rods, and cones response, cone response, Hi-

intensity cone response, flicker, and Hi flicker [81]. A visualization of nine ERG signals

resulting from two ERG components (OP and STR) and seven ERG test responses is

provided in Figure 2. The dynamics of ERG signals vary in people with various conditions

and can therefore aid in differentiating individuals with glaucoma [81], schizophrenia [82],

obesity [75], and bipolar disorder [83]. ERG can also help in evaluating the effectiveness

of new or existing drugs and therapy modalities [84–87].
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2.2.3 Ganzfeld Flash Electroretinography

The development of pigmentary glaucomatous optic neuropathy in the DBA/2

mouse model had several similarities to glaucoma pathogenesis in human patients, in-

cluding loss of vision and RGC [88–94]. The Ganzfeld flash electroretinography (fERG)

procedures in mice were conducted under dim red light that was followed by an overnight

dark adaptation (>12 h). Isoflurane at 3% and 1.5% was used respectively, to anesthetize

mice and maintain anesthesia. The pupils were dilated using 1 drop of 1% tropicamide and

were allowed to dilate for 10 minutes. Rectal temperature was monitored and maintained at

37Â°C using a heating pad. Silver-embedded thread electrodes were placed over the cornea

in 1% methylcellulose with mini-contact lenses fitted preventing the corneal dehydration

(Ocuscience LLC, Henderson, NV). The head was placed inside the Ganzfeld dome, and

fERG with 2 recording channels was performed using an HMsERG system (Ocuscience

LLC) equipped with an amplifier with a band pass from 0.3 to 300 Hz. Mice were subjected

to the International Society for Clinical Electrophysiology of Vision (ISCEV) standardized

ERG protocol [29], whose implementation is described in detail in [80]. ERGView 4.380V

software (OcuScience LLC) was used to perform statistical analyses including averaging

multiple flashes recorded at each intensity and stored for further analysis. Additionally,

mice were tested using a scotopic flash intensity series in the range of -4.5 to 1.5 log

cd s/m2. Further, a 1:1000 neutral density filter (ND3) was used to control the 7 lowest

flash intensities; data were averaged from 10 flashes (-4.5 to -3.5 log cd s/m2), 4 flashes

(-3 to 0.5 log cd s/m2) at the lower intensities or measured from 1 flash at the 2 highest

intensities (1 to 1.5 log cd s/m2). Following the light adaptation (1.5 log cd s/m2 for 10
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min), responses from a photopic series (-2 to 1.5 log cd s/m2; 32 flashes per intensity) were

recorded in a separate fashion. Further details about data acquisition can be found in [81].

2.2.4 ERG Dataset

Ganzfeld fERG tests were performed on four months old (n=15) and 11 months

old (n=15) male DBA/2 mice. Each animal had two sets of test data, one for each eye.

Therefore, a total of 60 data sets for individual eyes were included in this study. Each data

set comprised of nine different ERG signals (OP, STR, and seven signals from ERG testing

protocols), as shown in Figure 2, (OPs are small rhythmic wavelets superimposed on the

ascending b-wave of the ERG and STR are negative corneal deflection elicited in the fully

dark-adapted eye to dim stimuli). Therefore, 540 recordings were utilized in this study.

Intraocular pressure (IOP) and retinal ganglion cell (RGC) count measurements were also

utilized in this study. Although IOP data was available for all animals, RGC counts were

only available for ten (twenty eyes). The animals were grouped in a binary group (healthy

and glaucomatous) based on age and multiclass group based on IOP as (normal, <12 mm

Hg; high, [≥12 mm Hg <17 mm Hg]; glaucomatous, ≥17 mm Hg). All the data used in

this study was well balanced for respective groups.

2.2.5 Pre-Processing of Data

ERG raw data may contain several anomalies such as different start times, missing

data, different sampling frequencies, noise, and unequal lengths of the signal recordings.

In Machine learning-based modeling, the quality of the training data can significantly

impact the model performance. Therefore, pre-processing (data preparation and screening)
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is crucial to ensure the quality of the training dataset [95]. Pre-processing steps considered

in the present study include,

1. Baseline adjustment

2. Feature extraction

3. Handling missing data

4. Handling outliers

5. Feature scaling

6. Feature selection

The signal’s baseline (start time) can be different for different animals and testing

protocols. Therefore, all the measurements were brought to a common baseline (start time

was offset to zero) during baseline adjustment [95]. Feature extraction involves computing

a reduced set of values from a high-dimensional signal capable of summarizing most

of the information contained in the signal [96]. The missing data were replaced with

mean values [97]. For handing outliers, values more than three scaled median absolute

deviations (MAD) away from the median were detected as outliers and replaced with

threshold values used in outlier detection [98]. The feature’s values vary widely, even by

orders of magnitude. Therefore, it is important to bring the feature values to a similar range

(feature scaling), especially when using distance-based machine learning algorithms [99].

Feature selection is further dimensionality reduction from the extracted features. It is

performed to reduce the computational cost of modeling, to achieve a better generalized,
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Figure 2: Visualization of ERG Signals manifesting their complex nature. The blue lines
correspond to healthy and red lines correspond to glaucomatous Signals. Electroretinogram
(ERG) tests are a group of diagnostic procedures that evaluate the functionality of various
components of the retina. These tests include Oscillatory Potential (OP), which are small
rhythmic wavelets that appear on the ascending b-wave of the ERG; Scotopic Threshold
Response (STR), a negative corneal deflection observed in fully dark-adapted eyes when
exposed to dim stimuli; Rod response, which assesses the activity of rod photoreceptors;
Standard rod-cone response, which measures the combined activity of both rods and
cones; Hi-intensity rods and cones response, which evaluates the combined performance
of rods and cones under high-intensity light; Cone response, which focuses on the function
of cone photoreceptors; Hi-intensity cone response, which examines cone function under
high-intensity light; Flicker response, which assesses retinal response to rapid changes
in light intensity; and finally, Hi-intensity flicker response, which measures the same
response under high-intensity light conditions. These various ERG signals provide a
comprehensive evaluation of retinal function for diagnostic and research purposes.
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high-performance model that is simple and easy to understand [100]. Feature extraction

and selection are explained in detail in the following sections.

2.2.6 Feature Extraction

ERG signals are complex high-dimensional data, and training a model with many

variables requires significant computational resources. Feature extraction reduces the

dimensionality of the data by computing a reduced set of values from a high-dimensional

signal capable of summarizing most of the information contained in the signal [101].

In the present study, feature extraction was performed in two phases. First, common

statistical features were extracted from the signal, followed by the extraction of advanced

wavelet-based features. Figure 3. provides an overview of the feature extraction process

and is explained below.

2.2.6.1 Statistical Feature Extraction

A total of 17 Statistical features capable of describing the general behavior of ERG

signals were extracted from the signal. These features were grouped as follows.

1. Measures of Central Tendency

2. Measures of Spread

3. Measures of Shape

4. Measures of Peaks

5. Measures of Derivatives
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Figure 3: Feature Extraction. During this process, mathematical operations are performed
on the data to extract features. This step is crucial for discovering features indicative of
functional deficits in the eye. ERG test on each eye leads to nine signals, as shown in
Fig. 2. Two sets of features (Standard features and advanced features) are extracted from
each of the nine signals. The standard set of features include common statistical features
such as mean, quartiles, and entropies. In contrast, the advanced set of features include
sophisticated features such as autoregressive coefficients, Shannon entropy, and wavelet
features.

6. Measures of Correlation

Measures of central tendency included mean, median, trimmed mean. Measures

of spread included range, standard deviation, variance, mean absolute deviation and

interquartile range. Measures of the shape include skewness, kurtosis, central moments of

the second and third-order, and aspect ratio. Measures of peaks included the number of

peaks and troughs in the signal. Measures of derivatives include the first-order derivative of

the signal with respect to time. Measures of correlation included the correlation coefficient

of the signal with respect to time. The equations for the computation of these quantities

can be found in [75, 102].
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2.2.6.2 Advanced Feature Extraction

Wavelet-based features and autoregressive analysis serve as advanced statistical

measures in the analysis of electroretinogram (ERG) signals, offering valuable insights into

the complex patterns and subtle changes within the data. Utilizing wavelet transforms, these

features decompose the original signal into multiple levels of detail, providing essential

statistical information across various scales. This unique capability enables the analysis of

the same signal at different time points, allowing for a comprehensive understanding of the

signal’s behavior.

Autoregressive analysis complements wavelet-based features by modeling the

signal as a linear combination of its previous values, capturing the temporal dependencies

and dynamics in the ERG data. This method allows for the efficient representation and

analysis of the signal, providing additional information on the structure and patterns within

the data.

Advanced features capable of capturing subtle changes were extracted from the

signal. Each signal was split into 32 blocks (∼ 2000 samples/block) to further capture subtle

changes in the signal [103]. Daubechies least-asymmetric wavelet with four vanishing

moments (Symlets 4) was used as mother wavelet to derive the wavelet coefficients [104].

The following features (190 features in total as shown in Figure 3) were extracted from

each block of the signal:

AR coefficients: The signal x[n] at time instant n in an AR process of order p can

be described as a linear combination of p earlier values of the same signal. The procedure

is modeled as follows:
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x[n] =

p∑
i=1

a[i]x[n− i] + e[n] (2.1)

where a[i] is the AR model’s ith coefficient, e[n] denotes white noise with mean

zero, and p denotes the AR order. The AR coefficients for each block were estimated using

the Burg method [105]; the order was determined using the ARfit model order selection

method [106] as 4th order. Therefore a 4-order AR model is chosen to represent each of

the ERG signal components.

Wavelet based Shannon Entropy: The Shannon entropy is an information-

theoretic measure of a signal. Shannon entropy (denoted as SE) values for the maximal

overlap discrete wavelet packet transform (MOD- PWT) using four-level wavelet decompo-

sition was computed on the terminal nodes of the wavelet [107]. Mathematical expression

for Shannon entropy using wavelet packet transform is as follows:

SEj = −
N∑
k=1

pj,k ∗ log pj,k (2.2)

where N is the number of coefficients in the jth node and pj,k are the normalized

squares of the wavelet packet coefficients in the jth terminal node of the wavelet.

Multifractal wavelet leader estimates and multiscale wavelet variance esti-

mates: The multifractal measure of the ERG signal was obtained using two wavelet

methods (wavelet leader and cumulant of the scaling exponents). Wavelet leaders are

time/space-localized suprema of the discrete wavelet coefficients’ absolute value. These

suprema are used to calculate the Holder exponents, which characterize the local regularity.

In addition, second cumulant of the scaling exponents were obtained. Scaling exponents
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are scale-dependent exponents that describe the signal’s power-law behavior at various

resolutions. The second cumulant basically depicts the scaling exponents’ divergence from

linearity [108]. Wavelet variance of ERG signals were also obtained as features. Wavelet

variance quantifies the degree of variability in a signal byÂ scale, or more precisely, the

degree of variability in a signal between octave-band frequency intervals [109].

2.2.7 Feature Selection

Feature extraction discussed previously was performed in order to reduce the

dimensionality of the signals; however, the resulting number of features was still higher

than the number of training data. Therefore, further reduction in the dimensionality of

the data was performed using the feature selection method to identify relevant features

for classification and regression. It should be noted that feature selection was necessary

to reduce the computational cost of modeling, prevent the generation of a complex and

over-fitted model with high generalization error, and generate a high-performance model

that is simple and easy to understand [110]. In particular, the Minimum Redundancy

Maximum Relevance (MRMR) sequential feature selection algorithm was used in the

present study because this algorithm is specifically designed to drop redundant features

(see [111, 112] for mathematical details/formulations), which was required to design a

compact and efficient machine-learning-based model [113]. It is worth noting that other

available dimensionality reduction techniques such as Principal component analysis (PCA)

were not considered in this study as such techniques do not allow for direct tracing and

understanding the relevance of each feature [100].
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2.2.8 Predictive Model Development

ML models are mathematical algorithms that provide predictions based on an

inference derived from the generalizable predictive patterns of the training data [114].

Several machine learning models were employed and evaluated in order to identify the

best one to classify the ERG signals. These included decision trees, discriminant, support

vector machine, nearest neighbor, and ensemble classifiers. Most of these models can

perform both classification and regression. Decision tree-based models predict the target

variable by learning simple decision rules [115]. Discriminant classifiers are based on the

assumption that each class has different Gaussian distributions of data, and the classification

is performed based on Gaussian distribution parameters estimated by the fitting function

[116]. Support vector machine (SVM) is based on Vapnik-Chervonenkis theory, where a

hyperplane separating the classes is determined. SVMs are efficient algorithms suitable

for compact datasets [117]. The nearest neighbor algorithm is based on the assumption

that similar things exist nearby. It is a simple yet versatile model with high computational

cost [118]. Ensemble methods such as bagged trees (or random forest) combine the

predictions of several learning algorithms with improving generalization. Although these

methods are also computationally expensive, they are unlikely to over-fit [119]. Regression

analysis based on the above techniques was also performed alongside classification.

2.2.9 Performance Evaluation

Various performance evaluation metrics were utilized to compare different machine

learning algorithms. The metrics used in this study include accuracy, sensitivity, specificity,
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precision, recall, f-score, root mean squared error, and their corresponding mathematical

formulations are given below.

The abbreviations used in the following expressions include True Positive (TP)

which are the cases the model correctly predicted the positive (glaucomatous) class. True

Negative (TN) are the cases the model correctly predicted the negative (non-glaucomatous)

class. False Positive (FP) are the cases the model incorrectly predicted the positive

(glaucomatous) class. False Negative (FN) are the cases the model incorrectly predicted

the negative (non-glaucomatous) class.

2.2.9.1 Accuracy

Accuracy is the percentage of correctly classified observations, as shown below.

Accuracy(%) =
TP + FP

TP + TN + FP + FN
(2.3)

2.2.9.2 Sensitivity

Sensitivity/Recall estimates the proportion of actual positives (e.g. actual glauco-

matous) was identified correctly.

Sensitivity/Recall(RE) =
TP

TP + FN
(2.4)

2.2.9.3 Specificity

Recall estimates the model’s ability to correctly reject healthy patients without a

Glaucoma.
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2.2.9.4 Precision

Precision estimates the proportion of positive predictions (e.g., glaucomatous

predictions) that was actually correct.

Precision(PR) =
TP

TP + FP
(2.5)

2.2.9.5 F-Score

The F-Score estimates the harmonic mean of the precision (PR) and recall RE.

F− Score =
PR× RE

PR + RE
(2.6)

where (PR) = TP
TP+FP

and (RE) = TP
TP+FN

.

2.2.9.6 Root Mean Square Error (RMSE)

The Root Mean Square Error (RMSE) was used as the performance evaluation

metric for regression analysis. RSME is the standard deviation of the prediction errors

(residuals).

RMSE =

√∑N
i=1 (Actualxi − Predictedx̂i)

2

N
(2.7)

Where N is the number of observations.

2.3 Results

A machine learning-based approach was developed and trained using the balanced

ERG data previously published by Grillo et al. [81]. Although a compact dataset of 60
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observations and 540 signals was used in this study, the current framework was able to

consistently detect features (Figure 6 and Figure 9) that are known to be medically relevant

such as OP, STR, Flicker reported in various studies [79, 81, 92, 120–122]. In particular,

studies conducted by [123–125] investigating the variability of PhNR in glaucomatous and

healthy subjects in PERG and fERG have found that PhNR to be an important biomarkers

for detection of glaucoma. It is worth noting that in fERG analysis (ERG protocol for this

study), pSTR, nSTR, PhNR are extracted from STR.

Therefore, we were able to demonstrate that the proposed framework for early-

stage glaucoma diagnosis can be reproducibly evaluated and validated even on such a

compact database. Furthermore, we would like to note that there are other investigations

that successfully applied ML-based method in different fields, including biomedical [126]

and material science [127] using compact datasets. The procedure employed for the

development of the predictive modeling framework is summarized below.

• Data Split: Hold out (80% training, k-fold cross-validation, 20% testing).

• Dimensionality reduction: Feature Extraction.

• Feature selection: MRMR.

• Hyper-parameter tuning: k-fold cross-validation (k=10).

• Model Evaluation: Performance metrics evaluated on the unseen testing set.

The dataset was divided into two parts; 80% of the data was used for training and

validation, and the remaining 20% was set aside for testing. The hold-out testing strategy
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ensured that the test data was never a part of the training process [128]. Dimensionality

reduction was performed using feature extraction and feature selection. MRMR feature

selection algorithm was used to identify the important predictors. K-fold (K=10) cross-

validation was used for training and hyper-parameter tuning [129]. The cross-validation

technique significantly reduces bias when working with small datasets [130]. The loss

function was the objective minimization function for both classification regressions during

hyper-parameter optimization. The hyper-parameters associated with corresponding ML

algorithms [131], as shown in Table 1, were optimized through nested cross-validation.

Next, the trained model with optimized hyper-parameters was evaluated using test data that

was not a part of training. To further ensure that the machine learning models compared in

this investigation were not over-fitted, given the compact dataset used in the present study,

the behavior of training and testing error vs. training cycles was monitored. Different

techniques, including Tree, Discriminant, SVM, Naive Bayes, Tree Ensemble, and KNN,

were applied, and their performances were assessed. The performance of each technique

was assessed based on the accuracy (discussed in section Performance Evaluation) is

tabulated in Table 2. Considering binary and multiclass classifications, it can be seen

that the Ensemble-based technique (bagged tree) was consistently outperforming other

techniques. Additionally, other performance metrics for ensemble bagged trees (discussed

in section Performance Evaluation) are summarized in Table 3.

2.3.1 Binary Classification

For binary classification (classifying animals with/without glaucoma) based on

statistical features, the correlation of cones, mean of flicker, median, and skewness of Hi
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Rods and cones, and standard deviation of cones were identified as important among the

statistical features as shown in Figure 4. Moreover, the box plot demonstrates variations of

each feature for each class (with/without glaucoma), respectively. Several models, includ-

ing SVM and ensemble-based classifiers were used for training, and their performances

were assessed. It turned out that the SVM and ensemble bagged tree provide the best

performance with a testing accuracy of 83.33%, as shown in Table 2.

Next, the binary classification was performed using wavelet-based features. Among

the extracted wavelet features, Shannon Entropy Values for Maximal Overlap Discrete

Wavelet Packet Transform (MOD-PWT) were identified as important features from Rods

and cones, Rods, STR, and OP, as shown in Figure 5. The utilization of the selected

advanced features improved the accuracy to 91.70% by the ensemble bagged tree algorithm.

It should be noted that the MRMR method selects features based on statistical

relevance while dropping redundant features and thus, is computationally efficient [111,

112]. Figure 6. demonstrates this for binary classification. It can be observed that

correlation feature from cones, Moment of order three and trimmed mean feature from

Oscillatory Potentials (OP) and Range and aspect ratio from Scotopic Threshold Response

(STR) are highly correlated; Therefore, only the feature cones correlation was picked by

the MRMR algorithm as inclusion of the other three did not increase/decrease the models

predictability.

Figure 7. compares the predictive importance scores obtained based on the sta-

tistical and wavelet-based features. Predictive importance scores describe the predictive

capability of selected features [132]. It can be observed that wavelet-based features can
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distinguish healthy and glaucomatous animals suggesting that they are more sensitive to

subtle changes in ERG signals due to glaucoma. It should be noted that the feature selec-

tion algorithm MRMR (Maximum Relevance and Minimum Redundancy) ignores highly

correlated features for model simplicity. Therefore, only uncorrelated sets of features that

improved predictability across the animals were chosen, i.e., for a set of correlated features,

one representing the correlated set gets picked by the algorithm. Figure 6. demonstrates

the list of important but highly correlated features that were dropped. The scatter plot

inside the Figure 6 shows the correlation coefficients confirming the high degree of the

correlation between them.

2.3.2 Multiclass Classification

For multiclass classification (classifying animals to different stages, normal, high,

and glaucomatous as mentioned in Dataset section) based on statistical features, the

correlation of cones, number of troughs in Hi cones, kurtosis of STR and mean of flicker

were identified as important among the statistical features as shown in Figure 8. Several

models, including SVM and ensemble-based classifiers, were used for training, and their

performances were assessed. It turned out that the ensemble-based classifiers, specifically

the bagged trees model, provided the best performance with a testing accuracy of 53.33%,

as shown in Table 2.

Next, the multiclass classification was performed using wavelet-based features.

Among the extracted wavelet features, Wavelet variance of rods and Shannon Entropy

Values and AR coefficients for Maximal Overlap Discrete Wavelet Packet Transform

(MOD-PWT) were identified as important features from Hi-Flicker, Flicker, Hi-cones, and
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Figure 4: Boxplot of statistical features selected by Minimum Redundancy and Maximum
Relevance (MRMR) feature selection algorithm for binary classification. (Abbreviations:
Std D: Standard Deviation), On each box, the central mark indicates the median, and the
bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The
whiskers extend to the most extreme data points not considered outliers, and the outliers
are plotted individually using the ’+’ marker symbol.

36



Figure 5: Box plot of wavelet-based features selected by Minimum Redundancy and Maxi-
mum Relevance (MRMR) feature selection algorithm for binary classification. (Abbrevia-
tions: W-SE: Wavelet based Shannon Entropy, AR-COEF: Autoregressive Coefficient),
On each box, the central mark indicates the median, and the bottom and top edges of the
box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most
extreme data points not considered outliers, and the outliers are plotted individually using
the ’+’ marker symbol.
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Figure 6: Boxplot of statistically important features for binary classification. The important
features capable of distinguishing healthy and glaucomatous are correlated feature from
Cones, third order Moment and trimmed mean feature from Oscillatory Potentials (OP)
and Range and aspect ratio from Scotopic Threshold Response (STR). However, the
high similarity between these features quantified by the correlation scores in the scatter
plot create redundancy (inclusion cones(correlation) feature alone vs inclusion all five
features does not improve accuracy). Therefore, utilizing the cones correlation feature
alone captures the behavior of the other four features. This dropping of redundant features
and choosing Cones(correlation) feature alone is achieved by using Minimum Redundancy
and Maximum Relevance (MRMR) algorithm. (On each box, the central mark indicates
the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively. The whiskers extend to the most extreme data points not considered outliers,
and the outliers are plotted individually using the ’+’ marker symbol.)
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Figure 7: Comparison of predictive importance scores for binary classification using (A)
Statistical features and (B) wavelet-based features. This bar chart illustrates the superior
predictive capability of wavelet-based features. (Abbreviations: Std D: Standard Deviation,
W-SE: Wavelet based Shannon entropy, AR-COEF: Autoregressive coefficient)

STR as shown in Figure 9. The identification of flicker as an important distinguishing

feature in diagnosing early-stage glaucoma was consistent with previous studies [122,133–

135]. In fact, flicker measurements in eyes with early-stage glaucoma exhibited a loss in

sensitivity around 30 Hz to 40Hz [122]. It is worth noting that the flicker measurements

used in this study were recorded using flashes at 30 Hz. The identification of the flicker

ERG test and the corresponding features, among other tests, reconfirmed the capability of

the current approach in identifying the relevant features. Training the ensemble bagged

trees model, utilizing the selected advanced features, improved the multiclass classification

accuracy to 80%, as shown in Table 2. This improvement in accuracy indicated that

wavelet-based features can distinguish healthy and glaucomatous animals suggesting that

they are more sensitive to subtle changes in ERG signals due to glaucoma. The multiclass

classification ability of this framework reaffirmed the rich and complex nature of ERG

signals in assessing the disease progression.
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Figure 8: Boxplot of statistical features selected by Minimum Redundancy and Maximum
Relevance (MRMR) feature selection algorithm for multiclass classification. (Abbrevia-
tions: STR: Scotopic Threshold Response). On each box, the central mark corresponds
to the median, and the bottom and top edges of the box correspond to the 25th and 75th
percentiles, respectively. The dashed lines (whiskers) extend to the most extreme data
points not considered outliers, and the outliers are plotted individually using the ’+’ marker
symbol.
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Figure 9: Boxplot of wavelet-based features selected by Minimum Redundancy and
Maximum Relevance (MRMR) feature selection algorithm for multiclass classification.
(Abbreviations: STR: Scotopic Threshold Response, W-SE: Wavelet based Shannon
Entropy, AR-COEF: Autoregressive Coefficient). On each box, the central mark indicates
the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively. The whiskers extend to the most extreme data points not considered outliers,
and the outliers are plotted individually using the ’+’ marker symbol.
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Figure 10: RGC count regression plot. This plot contains the ground truth and predicted
response of RGC count predicted using Gaussian Process Regression (GPR). The squared
exponential GPR model was trained using both standard and advanced features. The RGC
count of the animals ranged between 8 and 120, and the root mean squared error in the
prediction of RGC was 11.2. The line in this plot denotes when the predicted values are
equal to ground truth values.
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2.3.3 RGC Regression

Regression analysis was performed to predict retinal ganglion cell count from

ERG signals. Feature selection for regression was performed using MRMR sequential

feature selection. RGC values of the animals ranged between 8-120. RSME for RGC

regression was 15.64 and 11.20 for models trained with statistical features and wavelet-

based features, respectively. Regression results using wavelet-based features are shown in

Figure 10. The results in [81] indicate that RGC counts had a strong correlation with STR

and OPs. The dominant features selected for RGC regression (from STR and OP) were

in agreement with the findings in [81]. Table 4. compares performance of various ML

based regression models in predicting retinal ganglion cells (RGCs) counts: The higher

error (RSME) with statistical features compared with the wavelet-based advanced features

emphasized the need for sophisticated features to predict RGC count accurately. SVM-

and GPR-based models provided the most accurate prediction of RGC numbers from ERG

signals. Specifically, squared exponential and rational quadratic models of GPR provided

the least error.

2.4 Discussion

Our goal was to determine the feasibility of applying ML-based methods to the

analysis of ERG signals for glaucoma detection at different stages of the disease. In the

present study, we systematically applied machine-learning-based methods for the first

time to detect glaucoma and predict RGC loss based on ERG signals. The present study

utilized ERGs measured in mice rather than from human patients, because the use of data
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from a preclinical model allowed us to validate ’ground truth’ data sets with a range of

complimentary and alternative experimental strategies, which is not possible in human

clinical studies. These include histology, biochemical and immunochemical assays, as

well as optomotor reflex measurements. We were able to determine for the first time that

advanced features (wavelet-based features) are capable of detecting subtle changes in

the ERG signal and perform multiclass classification based on the progression level of

the disease with 80% accuracy. In particular, we found that Shannon Entropy Values for

Maximal Overlap Discrete Wavelet Packet Transform (MOD-PWT) and AR coefficients

represent important features capable of detecting early-stage glaucoma. Among the nine

available ERG signals, Flicker, STR, OP, and Rod-Cone appear integral for such successful

detection. This is in agreement with the results published in [76]. However, given that

these features are highly correlated, the ML-based algorithm picks only one for each set of

highly correlated features to reduce the model complexity as shown in Figure 6.

In addition, the method proposed here performs ERG analysis in a wavelet domain

instead of a frequency domain, which allows to capture subtle changes in the signals. In

addition, various intricate features such as multiscale wavelet variance estimates, Shannon

entropy, and autoregressive coefficients are incorporated in the method, compared to basic

features such as differences in amplitude and latency in previous studies [20,48–59,65]. The

results strongly suggest that such advanced features in the wavelet domain are necessary

for detection of early-stage glaucoma. Moreover, in contrast to the recent study that

leverages ML-based technique to analyze ERG using solely the photopic negative response

(PhNR) component [66], the current method uses all ERG components in the analysis to
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fully utilize the capability of the ML-based technique to crunch large data sets and draw

complicated relationships. Therefore, the proposed framework is not limited to a small

subset of genetic eye diseases like previous studies [49–59, 65]; instead, it is capable of

mapping ERG signals to various eye diseases.
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2.4.1 Conclusion

Results obtained in the present study strongly suggest that the methods employed

can reproducibly identify dominant features for classification and regression from STR,

Oscillatory potentials (OPs), and other ERG tests consistent with the results reported in

previously published work on the sensitivity of and OPs and flicker to subtle changes in

RGC function and viability [14, 122]. Further, our approach identified additional dominant

distinguishing features such as Shannon Entropy Values for Maximal Overlap Discrete

Wavelet Packet Transform (MOD-PWT) and AR coefficients, which are not distinguishable

by traditional methods used in [81]. This strongly suggests that the current machine-

learning-based algorithm has significant potential in distinguishing subtle changes in ERG

signals corresponding to different stages of glaucoma disease development. This capability

of the technique could be used as a foundational step to create a reliable framework for

the early detection of glaucoma and to monitor efficacy of therapeutic intervention in both

clinical practice and novel drug development for glaucoma. In addition, the inclusion

of various ERG protocols in this framework, such as cones, rods and cones, STR, and

oscillatory potentials, represent responses from different cell types in the eye. Therefore,

ERG response can be mapped to diseases specific to those cell types. It should be noted

that this study was based on mice and with 12 hours of dark adaptation. The promising

results obtained here suggest the great potential for this method to help detect early stage,

pre-symptomatic glaucoma. However, an additional study on adaptation requirements

would be required before extending this framework to humans.
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Table 1: Hyperparameters Tested/Optimized

Method Hyperparameter Search Range Optimized Hyperparameters

Ensemble

Ensemble method: Bag, GentleBoost,
LogitBoost, AdaBoost, RUSBoost
Number of learners: 10-500
Learning rate: 0.001-1
Maximum number of splits: 1-47
Number of predictors to sample: 1-5

Ensemble method: Bag
Maximum number of splits: 1
Number of learners: 52
Number of predictors-
to sample: 1

Knn

Number of neighbors: 1-24
Distance metric: City block, Chebyshev,
Correlation, Cosine, Euclidean, Hamming,
Jaccard, Mahalanobis, Minkowski (cubic),
Spearman
Distance weight: Equal, Inverse,
Squared inverse
Standardize data: true, false

Number of neighbors: 24
Distance metric: Correlation
Distance weight: Inverse
Standardize data: true

NaiveBayes

Distribution names: Gaussian,
Kernel
Kernel type: Gaussian, Box,
Epanechnikov, Triangle

Distribution names: Gaussian
Kernel type: Epanechnikov

Discriminant
Discriminant type: Linear, Quadratic,
Diagonal Linear, Diagonal Quadratic

Discriminant type:
Diagonal Linear

SVM

Multiclass method:
One-vs-All, One-vs-One

Box constraint level: 0.001-1000
Kernel scale: 0.001-1000
Kernel function: Gaussian, Linear,
Quadratic,
Cubic Standardize data: true, false

Kernel function: Linear
Box constraint level: 2.4185
Multiclass method: One-vs-All
Standardize data: false

Tree
Maximum number of splits: 1-47
Split criterion: Gini’s diversity index,
Maximum deviance reduction

Maximum number of splits: 5
Split criterion:
Maximum deviance reduction
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Table 2: Testing accuracy obtained using various machine learning techniques. (Bold font
indicate the accuracies of best performing classifier.)

Tree Discriminant SVM Naive Bayes
Ensemble
(Bagged)

KNN

Binary
Statistical 75 80 83.33 80 83.33 66.70
Wavelet 83.33 83.33 91.70 83.33 91.70 75

Multiclass
Statistical 33.33 41.70 50 16.70 53.33 33.33
Wavelet 41.70 50 64.66 33.33 80 50

Table 3: Performance Metrics for Ensemble Classifier.

Accuracy F-Measure Precision Sensitivity Specificity

Binary
Statistical 80 80 80.36 80.36 80.36
Wavelet 91.67 91.61 92.86 91.67 91.67

Multi-Class
Statistical 53.33 50.74 53.18 51.67 75.48
Wavelet 80 79.63 83.81 83.333 90.30

Table 4: Performance Metrics for retinal ganglion cells (RGCs) Regression. (Bold font
indicate the best performing regression model and its corresponding RSME.)

Machine Learning Algorithm
RSME

Statistical Wavelet
Tree 31.716 17.852
SVM 17.177 13.82
Ensemble (Bagged) 29.129 24.387
Logistic Regression 44.622 24.873
Gaussian Process Regression 15.644 11.201
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CHAPTER 3

CASE STUDY 2: NOVEL MACHINE-LEARNING-BASED STALL DELAY
CORRECTION MODEL FOR IMPROVING BLADE ELEMENT MOMENTUM

ANALYSIS IN WIND TURBINE PERFORMANCE PREDICTION

3.1 Introduction

The rapid depletion of fossil fuels in recent decades has resulted in a scarcity of

power generation. This intensifies the demand for alternate energy sources to fossil fuels.

Wind energy has been acknowledged as one of the most intriguing renewable energy re-

sources [136]. Wind turbine design is demanding in terms of both expense and time. Based

on this, the engineering approach known as blade element momentum (BEM) was exten-

sively employed in wind turbine blade design [137–139]. With the increasing dimensions

of wind turbine blades, precise and efficient techniques for predicting aerodynamic loads

and performance are anticipated [140]. The BEM method evaluates forces throughout the

blade length and ultimately the torque and the engendered power by the rotor depending

on wind speed, rotor design, and aerofoil characteristics (CL and CD). Since wind turbine

cross-sections are aerofoil-shaped, the BEM method requires aerofoil characteristics in or-

der to evaluate sectional aerodynamic forces [139]. At low wind speeds, BEM predictions

exhibit good accuracy, but at higher wind speeds, BEM fails due to massively separated

flow conditions [139, 141]. The characteristics of the aerofoil used in BEM are predicted

from a 2D wind tunnel or CFD measurements [139,142]. Owing to the spanwise separated

flow, there is an enhancement in the lift coefficient of the aerofoils of the rotating blade at
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the identical angle of attack compared to the 2D analysis of the aerofoil or 3D analysis

of the aerofoil of a non-rotating blade, which delays stall. This phenomenon is called

“stall delay”. [138, 139]. There is no conclusive knowledge regarding the causes of stall

delay, however it is thought that when flow separation begins, a separated air mass on

the suction face rotates with the blade due to centrifugal force. The separated air mass

tends to approach the tip radially due to centrifugal force. This spanwise flow therefore

enables Coriolis force to impact toward the trailing edge, resulting in a delay in stall

initiation [139–141, 143–148]. The second explanation in the literature [140, 147, 149] that

contributes for the radial flow of the separated air mass is the dynamic pressure gradient

along the length of the blade. Eventually, stall delay is a boundary layer impact that is

speculated to be induced by centrifugal force, dynamic pressure gradient, or a blend of

the two. Although technologically advanced wind turbines are pitch-controlled and there-

fore do not normally function in stall, stall in the inner section of the blade is inevitable

once rated power is reached [150]. Failure to comprehend the effect of stall delay may

lead to under-prediction of aerodynamic values and design failure. It is more effective

at inboard portions and progressively drops towards the tip [139]. As a corollary, before

utilising them in design, 2D aerofoil characteristics must be compensated for rotational

impacts [139, 140].

Himmelskamp [151] in the 1940s was the first to recognize the difference between

lift coefficients for rotating and non-rotating aircraft propellers. Banks and Gadd [152]

conducted a theoretical study and clarified how rotation delays separation and inferred

that rotation induces the boundary layer to stabilize and resist separation. Stall delay
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was analysed and examined by Dwyer and McCroskey [153] on helicopter rotors. Later,

in wind turbines, Milborrow [154] and Madsen and Christensen [155] noticed the stall

delay effect. Variation in the predicted lift coefficient comparing rotating and non-rotating

blades was shown by Ronsten [1] in his observational investigation. Figure 11 presents the

estimated lift coefficient at 30 percent of the blade length from the work of Ronsten [1].

Wood [156], Narramore and Vermeland [157], and Snel et al. [158] conducted

CFD evaluation in the early 1990s, with development of computers, to examine the

consequences of stall delay. Numerous empirical correction models for wind turbine rotor

design have been generated over the last few decades [139, 146, 150]. These were all

three-dimensional correction models considering the impact of stall delay to correct 2D

aerofoil characteristics. In 2001, NREL performed a blind test comparison relying on

an interpretation of the experimental results from an NREL Phase VI turbine. Experts

were urged to estimate the load values for the NREL Phase VI turbine without the actual

experimental results being given to them [159]. Significant uncertainties were reported as

compared with experimental results and estimated values.

Consequently, existing models to modify 2D aerofoil characteristics to depict stall

delay effects were found to be incorrect. In 2002, Schreck and Robinson [149], using the

results of the NREL Phase VI turbine experiment, utilised CFD to examine the influence of

the radial pressure gradient on the stall delay mechanism. In 2008, in simulating the NREL

Phase VI turbine, Breton et al. [146] utilised the lifting line-prescribed wake vortex theory

to explore the performance of six correction models for stall delay (Snel, Chaviaropoulos

and Hansen, Raj, Corrigan and Schilling, Bak, and Lindenburg models) and hypothesized
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Figure 11: CL vs. AoA for rotating blade (RB) and non−rotating blade (NRB) at 30
percent blade length [1].
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that all these models end in over-prediction. Guntur et al. [150] conducted an equivalent

test for the MEXICO rotor, and the selected correction models (Snel, Du and Selig,

Chaviarpoulus and Hansen, Lindenburg, and Bak) failed to predict the 3D aerodynamic

characteristics accurately. In prior work, the authors Kabir and Ng [139] compared 3D

aerofoil coefficients computed throughout the blade length from NREL Phase VI turbine

CFD simulation with values computed utilising BEM analysis employing four correction

models (Snel, Lindenburg, Du and Selig, and Chaviarpoulus and Hansen models). It was

found that these models over-predicted the lift coefficients and power computed, especially

at high wind speeds. This was predominantly owing to the complexity of foreseeing

the rotation effect on wind turbines, stressing the importance of developing an accurate

numerical model. Guntur and SÃ¸rensen [150, 160] used the Inverse BEM method to

compute the angles of attack and the 3D aerofoil characteristics of the specific segments

of turbine blades. Lately, Kabir and Ng [139] enhanced the Inverse BEM strategy as

well as the computed angle of attack and 3D aerofoil characteristics of 18 Sections (5

sections regarded for experimental measurements and 13 additional sections as outlined in

blade design) from full rotor CFD simulations of the NREL Phase VI turbine. Kabir and

Ng [139] also proposed amendments to BEM analysis to account for the impact of local

blade length using the angle of attack and aerofoil characteristics computed from Inverse

BEM evaluation. Regrettably, the main purpose of using BEM analysis is pace and ease.

Although the method of computing 3D aerofoil characteristics is precise, it is complex

and requires substantial computational power to model CFD and perform Inverse BEM.

Therefore, an optimal method must be established to reconcile precision and pace.
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In this paper, a new empirical model derived from the soft computing technique

called ‘Symbolic Regression’ is formulated for the correction of 2D aerofoil characteristics

data to compensate for the stall delay in wind turbine blade design and performance

analysis via BEM. This paper is structured as follows:

1. A synopsis of the stall delay mechanism;

2. A synopsis of the Blade Element Momentum theory and Inverse BEM theory;

3. A brief description of existing correction models for stall delay used in BEM;

4. Description of the NREL Phase VI turbine and MEXICO rotor experiments;

5. Proposed new models;

6. Results comparison to NREL Phase VI turbine and MEXICO rotor data, followed

by discussion.

3.2 Stall Delay Mechanism

Stall delay is a boundary layer phenomenon that is primarily assumed to be at-

tributable to centrifugal force, a dynamic pressure gradient, or a blend of both. Either

or both of these responses stimulate spanwise flow, leading to formation of the Coriolis

force [2,3,139–141,143–149,161], as shown in Figure 12. The Coriolis force acts from the

leading edge to the trailing edge as a positive chord-wise pressure gradient, ensuing in stall

delay, as shown in Figure 13. Figure 13 illustrates this phenomenon, where the pressure

difference between the aerofoil’s suction side and pressure side is higher for a rotating flow
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Figure 12: Stall delay phenomenon [2].

than for a non-rotating flow due to the presence of Coriolis force, which increases the lift

coefficient. At low wind speeds, which implies low angles of attack, the flow stays attached

on the rotor’s suction side, and no stall emerges. Even though centrifugal force and the

dynamic pressure gradient are present, their effects are modest since the flow passes over

the blade in a brief period of time. When flow separation occurs at higher wind speeds

(i.e., at higher angles of attack), a separated air mass persists along the suction surface and

is subjected to centrifugal pumping and/or a dynamic pressure gradient. When spanwise

flow occurs in a rotating reference frame, the Coriolis effect occurs, resulting in stall delay.

3.3 Blade Element Momentum Theory and Inverse BEM Theory

3.3.1 Blade Element Momentum Theory

Due to its simplicity and speed, the Blade Element Momentum (BEM) method is

often utilised for wind turbine blade design and wind turbine performance analysis. The
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Figure 13: Favourable pressure gradient due to the Coriolis force in rotating flow (inspired
from [3]).

BEM methodology estimates forces throughout the blade length and ultimately the torque

and the turbine power. Betz’s [162] and Glauert’s [163] research serve as the foundation

for this concept. The BEM theory blends the concepts of momentum and blade element

theories into one cohesive framework. The momentum balance on a rotating annular

stream tube is described using the momentum theory, while the forces created by the

aerofoil cross-section of the blade section are computed using the blade element theory.

In BEM theory, a wind turbine blade is segmented into (N) elements. The intent is to

establish a balance between the force imposed on the blade elements and the change of

the momentum magnitude of the air between the upstream and downstream regions of the

rotor based on these two theories in each element independently. In Burton et al. [143] and

Hansen [164], the BEM method is properly delineated. The fundamental premise of BEM

theory is that forces and velocities computed in each element are calculated independently

and are unaffected by the adjacent elements. The aerofoil characteristics (CL and CD)
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required by the blade element theory to calculate forces at each sectional element are

generally obtained via wind tunnel or 2D CFD simulations. The three-dimensional (3D)

and unsteady effects happening on the blade, such as yaw misalignment, wind shear, tower

shadow, dynamic stall, dynamic inflow, and stall delay, cannot be captured directly by

the BEM method [161, 164–166]. The other effects are real-time, while the stall delay

explained earlier raises the lift coefficient even under ideal conditions owing to blade

rotation. Thus, it is necessary to first enhance BEM to take into account stall delay,

followed by the inclusion of corrective models for additional real-time unsteady effects. In

synopsis, traditional BEM theory is based on two-dimensional aerofoil characteristics that

must be rectified for the rise in value caused by stall delay.

3.3.2 Inverse Blade Element Momentum Theory

The authors earlier [139] provided a comprehensive description of BEM analysis of

the NREL Phase VI turbine using several aerofoil characteristic extrapolation techniques

and different existing correction models for stall delay. The authors demonstrated that it is

crucial to determine the optimal aerofoil characteristics (CL,3D and CD,3D) throughout the

blade length in order to improve the BEM model and narrow the disparity among 2D and 3D

aerofoil characteristics. The computation of sectional AoA, CL,3D, and CD,3D throughout

the blade length has been accomplished using a variety of methodologies [160, 167]. One

of the strategies is the Inverse BEM method. This was a strategy utilised by the authors.

In previous work [139], the authors validated their computation using other approaches

used by other researchers to estimate the sectional CL,3D and CD,3D for the NREL Phase

VI turbine. Inverse BEM analysis is carried out in the opposite way from BEM analysis,
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as the name indicates. In the conventional BEM analysis outlined above, at each element,

based on the calculated AoA, CL,2D, and CD,2D, is supplied as key to determine the forces

impacting that element. While in Inverse BEM analysis, the forces calculated from 3D

CFD or experimental analysis were used to predict the aerofoil characteristics (CL,3D and

CD,3D) using the reverse approach to BEM [139].

3.4 Models for Stall Delay Correction in BEM Technique

The BEM process utilises the aerofoil sections’ CL and CD values throughout

the blade length. Aerofoil characteristics are typically inferred from wind tunnels or 2D

CFD tests. As stated in the preceding section, stall delay enhances CL, notably on the

inboard portions of the blade. There are numerous correction models to integrate BEM

analyses to account for the impact of stall delay. The inaccuracies of various correction

models for stall delay were outlined in Section 3.1. Breton et al. [146] compared the

results of the NREL Phase VI turbine to six correction models for stall delay: Snel [168],

Chaviaropoulos and Hansen [169], Raj [170], Corrigan and Schilling [171], Bak [172], and

Lindenburg [144]. The models over-predicted the forces observed on a wind turbine blade

throughout a variety of operating cases, while the model built by Lindenburg [144] was

shown to perform the best across the set of scenarios investigated but still had substantial

inadequacies. Guntur et al. [150] did an analogous test for the MEXICO rotor and

compared it to five correction models: Snel [168], Du and Selig [173], Chaviarpoulus and

Hansen [169], Lindenburg [144], and Bak [172]. None of the five correction models could

accurately predict the 3D aerofoil characteristics [140, 150]. Detailed assessments of the
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BEM analysis for the evaluation of the NREL Phase VI turbine were carried out in 2017

by Kabir and Ng [139]. They focused on the various extrapolation methods for the S809

aerofoil polar characteristics. They used an enhanced Inverse BEM strategy to predict

CL,3D and CD,3D values from the full CFD rotor analysis throughout the blade length

and compared their measured values with the corresponding BEM values, leveraging four

different correction models for stall delay [139]: Snel [168], Du and Selig model [173],

Chaviaropolous and Hansen [169], and Lindenburg [144]. It was observed that among

the four models, the Lindenburg model was closest to the lift coefficients predicted by the

Inverse BEM analysis of the 3D CFD simulation of the NREL Phase VI turbine.

Based on the disparity between 3D and 2D values and the use of symbolic re-

gression as a soft computation methodology, a new correction model for stall delay is

established in this work. Section 3.6 gives a brief synopsis of symbolic regression and the

new model. It has previously been determined from three prior reports [139, 146, 150] that

existing correction models for stall delay—Snel [168], Du and Selig [173], Chaviaropolous

and Hansen [169], Raj [170], Corrigan and Schilling [171], and Bak [172]—are inaccu-

rate; thus, these models are discarded for comparison in this study. Since the Linden-

burg [144] model was determined to be the closest to the 3D lift coefficient among all

models [139,146], it is used for comparison with our novel model. The general formulation

for the correction models are given below:

CL,3D = CL,2D + fL (2π (α− α0)− CL,2D) (3.1)

CD,3D = CD,2D + fD (CD,2D − CD(α = 0)) (3.2)
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where α0 is the AoA when the lift is zero, and CD(α = 0) is the drag coefficient when

AoA is zero. In this article, we have also included two additional recent correction models

for stall delay for comparison. The three models used for comparison in this present study

are:

3.4.1 Lindenburg [144]

Lindenburg analysed the stall delay phenomenon thoroughly and inferred that cen-

trifugal pumping was its primary cause. In addition, he developed a stall delay correction

model based on centrifugal pumping. In his correction model, he extended the model

developed by Snel et al. [158] by including the ratio of the rotational speed at the tip and

the relative local velocity. However, he did not provide a correction model for drag.

fL = 3.1

(
Ωr

Urel

)2 (c
r

)2

(3.3)

fD = 0 (3.4)

3.4.2 Dumitrescu and Cardos [174–176]

A semi-empirical model for rectifying the two-dimensional lift coefficient of

aerofoils was built by Dumitrescu and Cardos. This model fails to rectify the drag

coefficient correction.

fL =

[
1− exp

(
− γ

r/c− 1

)]
, γ = 1.25 (3.5)

fD = 0 (3.6)
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3.4.3 Hamlaoui, Smaili and Fellouah Model [177]

This model was developed on the basis of an evaluation conducted between the

two-dimensional lift coefficients and the NREL Phase VI turbine experimental results.

This model also fails to rectify the drag coefficient correction.

fL = ae−(α−b
c

)2 (3.7)

CL,3D = CL,2D + fL(CL,2D) (3.8)

where a, b, and c are constants, and α is the effective angle of attack (radian). For spanwise

positions below 0.30R, a is 1.45, b is 0.7, and, c is 0.2832. Constant a is 0.55, b is 0.3826,

and c is 0.1188 for spanwise positions higher than 0.30R.

3.5 Description of Experiments of NREL Phase VI Turbine and MEXICO Rotor

3.5.1 NREL Phase VI Turbine Experiment

The NREL Phase VI turbine (10.06 m in diameter) is a two-bladed HAWT that

has been rigorously evaluated in the NASA Ames 24.4 m × 36.6 m wind tunnel in a

series of operating scenarios [178]. Throughout the span of the blade, the blades are

tapered and twisted and incorporate an S809 aerofoil. A consistent rotational speed of

nearly 72 revolutions per minute (rpm) was maintained regardless of the wind speed. The

sectional pressure distributions were monitored using 22 pressure taps interspersed at five

radial positions: 30 percent, 47 percent, 63 percent, 80 percent, and 95 percent of the

span. The sectional normal and tangential forces were evaluated by summing the surface

pressures at all 22 of these points at each radial position. The technical report [178] has
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more specific details of the experiment. The experimental data from Sequence S with

an axial inflow condition was/is utilised in the authors’ prior and current research. In a

previous study [139], unsteady RANS (URANS) CFD simulations were conducted by the

authors for inflow wind speeds of 7 m/s, 10 m/s, 15 m/s, 20 m/s, and 25 m/s employing the

advanced sliding mesh method. CL,3D and CD,3D were calculated by employing Inverse

BEM analysis at 18 radial positions (supplementary to the five radial positions used for

experimental investigations, thirteen other positions were examined).

3.5.2 MEXICO Experiment

The Mexnext Phase III project was a global partnership led by the Netherlands’

Energy Research Centre (ECN) [179]. In 2018, the findings of the NEW MEXICO

experiment, which was conducted in the German–Dutch wind tunnel, DNW, with an open

section measuring 9.5 m × 9.5 m, became accessible [179]. The MEXICO rotor blade

is 4.5 m in diameter and is composed of three aerofoils: DU91-W2-250, RISØ-A2-21,

and NACA 64-418, from 20 to 45.6 percent of blade length, 54.4 to 65.6 percent of blade

length, and 74.4 to 100 percent of blade length, respectively. The entire blade is twisted

and tapered, with a global pitch angle of −2.3◦. Experiments were conducted in the wind

tunnel at 10 m/s, 15 m/s, and 24 m/s with the blade rotating at 425.1 rpm. Axial inflow was

taken into account in this analysis, and the influence of blade yaw was not considered. The

pressure was measured using pressure sensors positioned at five distinct blade sections: 25

percent, 35 percent, 60 percent, 82 percent, and 92 percent of the blade length. The authors

in their previous work [180] used the sliding mesh approach to perform both Unsteady

RANS (URANS) and LES CFD analysis for inlet wind speeds of 10 m/s, 15 m/s, and 24
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m/s.

3.6 Symbolic Regression

Artificial intelligence (AI) is gaining popularity in several fields, from basic do-

mestic appliances such as washing machines to advanced automated medical diagno-

sis [46, 181–183]. The behaviour of AI is close to that of the human brain and can draw

conclusions primarily based on constrained and particular facts from earlier studies [184].

Soft computing is a subset of artificial intelligence that deals with methods for conducting

predicted qualitative and logical cognition [184, 185]. Zadeh [186] coined the word “soft

computing” to describe an alternate to traditional (hard) computing. Hard computation is a

traditional problem-solving strategy that involves specifically defined computational or

mathematical models, which requires a long period of computing and is inefficient in many

complex real-world scenarios [185,187,188]. Evolutionary computation, fuzzy logic, prob-

abilistic reasoning, neural networks, expert systems, data mining, and machine learning

are some of the most important soft computational methods or techniques [185, 188, 189].

In this research, a soft computing technique known as regression analysis is utilised. Re-

gression analysis is a statistical modelling technique used to determine a mathematical

relationship between dependent (target) and independent (explanatory) variables [190,191].

In regression techniques such as polynomial regression, a model structure is first hypothe-

sized, and then the coefficients are fit to the training data; however, symbolic regression is a

distinct type of regression technique that involve both the discovery of the model structure

and the coefficients within that model structure [192].
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Symbolic regression is a widely used technique for the approximation of math-

ematical functions [193]. It explores the mathematical space to find the most desirable

metamodel by a structured manner of modifying operators in a set of explicit formulae.

Various formulae explored in symbolic regression can be expressed utilising a tree structure.

A combinatoric optimization technique is used to obtain the best tree structure. The notable

benefit of symbolic regression is its interpretability and capability to capture the underlying

physics from data [194]. Symbolic regression has several advantages compared to other

regression techniques, such as flexibility in the choice of operators, class of functions,

and expression size. Symbolic regression to determine mathematical functions can be

performed using several techniques such as genetic programming (GP) [195] and simulated

annealing (SA) [196]. Although genetic programming- and simulated annealing-based

symbolic regression utilize a tree structure to search for the optimal mathematical expres-

sion, the algorithmic searching methods are fundamentally different. A genetic algorithm

starts with a population of possible solutions, and at each step (generation), it chooses pairs

of a possible solution, joins them (crossover), and applies random changes (mutation). In

contrast, simulated annealing takes a population and applies a metaheuristic function to

approximate the global optimum in the large search space; this reduces the population’s

random variation (rate, quantity, and type). The primary advantage of simulated anneal-

ing over genetic programming is its capability to arrive at a global minimum, and other

advantages include the ease of determining constants and lower relative computational

cost [194]. The overall procedure utilised in this work is illustrated in Figure 14.

Simulated annealing-based symbolic regression’s general idea is to have an overall
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Figure 14: Flowchart of symbolic regression procedure.
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look at all the components of the solution space at the start of the search, and to track

one solution in the space of possible solutions. The parameters are adjusted gradually

during each iteration, and the algorithm decides to either continue with the current solution

or select the neighbouring solution based on probabilities (which decay over time). If

the algorithm continuously accepts large adjustments during the optimization process,

the starting parameters can be adjusted by reannealing. In symbolic regression, complex

functions tend to fit the data better; however, complex functions are prone to over-fitting and

are difficult to interpret. Therefore the objective is to determine a mathematical expression

that is both simple (minimize the complexity) and fits the data (maximize the metamodel

quality) using a MultiObjective Combinatorial Optimization (MOCO) method such as

Pareto simulated annealing. A detailed algorithm for implementation of Pareto simulated

annealing-based symbolic regression can be found in [194], and it was performed here

using TuringBot python library on an AMD Ryzen 9 5900 CPU with 24 threads for about

1200 CPU hours. The authors described the limitations of machine learning-based models

with training and test data derived from the findings of a single wind turbine simulation in

one of their earlier publications [197]. It is advised to have data from various wind turbines

in order to achieve generalizability. Since the experimental results of the NREL Phase VI

wind turbine and MEXICO rotor are well acknowledged and often utilised, training data

from the NREL Phase VI wind turbine and test data from the MEXICO rotor are utilised

in this work.
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3.6.1 Dataset

The training data were obtained from the unsteady RANS (URANS) CFD simula-

tions of the NREL Phase VI wind turbine employing the advanced sliding mesh method

from the authors’ prior work [139]. Aerofoil characteristics CL,3D and CD,3D were calcu-

lated by employing Inverse BEM analysis at 18 radial positions for different inlet wind

speeds of 7 m/s, 10 m/s, 15 m/s, 20 m/s, and 25 m/s.

For validation, a hold-out cross-validation strategy was considered in this study to

avoid overfitting: 20 percent of the training data was held-out to perform hyper-parameter

optimization. The hyper-parameters that were optimized include the coefficients of the

obtained functional form.

The testing data to ensure the generalizability of the proposed model were from

experimental data of the MEXICO rotor [179, 180]. The test data included the sectional

aerofoil characteristics at five distinct radial positions (25 percent, 35 percent, 60 percent,

82 percent, and 92 percent) obtained at inlet wind speeds of 10 m/s, 15 m/s, and 24 m/s.

3.6.2 Model Evaluation

The model obtained from symbolic regression should fit well with the training and

validation data. For this, we calculate the Root Mean Squared Error (RMSE):

RMSE =

√∑N
i=1 (ActualYi − Predictedf(xi))

2

N
(3.9)

If a change in model structure or model coefficients improves the obtained model

(RMSE decreases), the change is accepted [194]; using this iterative process, a final model
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that is compact, interpretable, and fits the training and validation data well is obtained.

Other details of the training process, such as defining exploratory variables and solution

search options, can be found in Section 3.7.

3.7 New Empirical Model for Stall Delay

A total of six non-dimensional exploratory variables, including the tip-speed ratio

defined as (λ = ΩR/U∞), the ratio of local to total radius of the wind turbine (r/R),

the ratio of local chord to local radius of the wind turbine (c/r), the ratio of inflow

wind to relative velocity (U∞/Urel), λr defined as (λr = Ωr /U∞), and λrel defined as

(λrel = Ωr /Urel), were formulated, and their values were extracted from NREL wind

turbine data (see Section 3.5.1). The objective of the Pareto simulated annealing-based

symbolic regression algorithm is to determine a mathematical expression to model the

target variable fL (stall delay correction parameter for lift) and fD (stall delay correction

parameter for drag) based on Equations (3.10) and 3.11, respectively.

fL = f(λ,
r

R
,
c

r
,
U∞

Urel

, λr, λrel) (3.10)

fD = g(λ,
r

R
,
c

r
,
U∞

Urel

, λr, λrel) (3.11)

After determining the expressions for stall delay correction parameters fL and fD,

the three-dimensional aerodynamic coefficients (CL,3D and CD,3D) can be computed from

two-dimensional aerodynamic coefficients (CL,2D and CD,2D) utilising Equations (3.12)
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and 3.13, respectively.

CL,3D = CL,2D + fL (2π (α− α0)− CL,2D) (3.12)

CD,3D = CD,2D + fD (CD,2D − CD(α = 0)) (3.13)

The six non-dimensional exploratory variables that were included to model the

target stall delay correction parameters fL and fD are shown in Equations (3.10) and 3.11,

respectively. Parameter selection (feature selection) to model the target variable using

exploratory variables is performed by the algorithm automatically. This step ensures that

the model is constructed only using parameters (features) that capture the underlying

physics. Mathematical operators (×, ÷, exponent, and square root) were chosen for the

expression search, and remaining operators such as +, −, and trigonometric values were

excluded in order to obtain a generalised expression that is not limited to a specific range

of the input parameters and to ensure that the resulting expression is not very sensitive to

small changes to the input.

fL = C1 × e

(
C2

λ× c
r

)
(3.14)

fD = C3 × λ× e
c/r

(C4×λ)λ (3.15)

The proposed stall delay correction model determined using Pareto simulated

annealing-based symbolic regression is given in Equation (3.14) and 3.15, where C1 =

1.425330, C2 = 1.261960, C3 = 0.267109, C4 = 0.337107. The choice of exploratory pa-

rameters is crucial for the symbolic regression model’s capability to capture the underlying

physics; therefore, the non-dimensional exploratory parameters (see Equations (3.14) and
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Figure 15: Flowchart describing overall workflow.

3.15) considered in this study were chosen based on extensive literature review. Further,

the variables λ (tip speed ratio) and c/r (ratio of local chord to local radius) were selected

automatically based on their capability to capture the underlying physics. The compact

size of the expression and choice of operators in the expression reaffirms that the model is

not overfit to the data. In addition, the obtained model is also validated on MEXICO rotor

experimental results. The overall workflow of this study is shown in Figure 15.

3.8 Results and Discussions

This section portrays the comparative study focused on the Blade Element Momen-

tum evaluation of the NREL Phase VI turbine and MEXICO rotor. In prior strategies for

deriving corrective models, data from only one rotor were typically employed. The Linden-

burg model, for instance, is based on NREL Phase VI turbine experiments. The correction

computed for certain cases may not be appropriate in the other cases of different wind

turbines. As a basis, the model in this study was developed using data from NREL Phase

VI turbine analysis and verified using MEXICO rotor analysis. The authors Kabir and

Ng [139] executed earlier CFD assessments of the NREL Phase VI turbine and computed

CL,3D and CD,3D values using an enhanced Inverse BEM method because the aerofoil
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coefficients from experiments were not directly available. Kabir and Ng [139] verified

their forecasts with other previous works [198–202] at five radial positions (30 percent,

47 percent, 63 percent, 80 percent, and 95 percent). Therefore, if the prediction at five

radial positions is accurate, the values predicted at other radial positions (13 positions used

for the design) would be accurate as well. In contrast to earlier models, which only use

data from the five radial positions specified in the experimental details, additional radial

positions were utilised for data creation in order to obtain a more accurate corrective model.

In this comparison, 2D aerofoil characteristics of an S809 aerofoil from Delft University of

Technology (DUT) wind tunnel analysis for Reynolds numbers of 1× 106 up to 20.6◦ AoA

were used, and the Viterna and Corrigon method [203] for polar extrapolation was used, as

described by Kabir and Ng [139]. Since the MEXICO rotor was deployed for validation,

the sectional aerofoil characteristics at five distinct radial positions (25 percent, 35 percent,

60 percent, 82 percent, and 92 percent) were calculated from the experimental results using

the Inverse BEM method executed in MATLAB. In this comparative investigation, BEM

results without and with correction models for stall delay are compared to 3D aerofoil

coefficients of the NREL Phase VI turbine, followed by validation with MEXICO rotor

results.

3.8.1 3D Aerodynamic Characteristics

3.8.1.1 Angle of Attack Distribution

Figure 16 depicts the distribution of angles of attack over the blade length for

wind speeds ranging from 7 to 25 m/s, as calculated from the BEM assessment of the

NREL Phase VI turbine without and with distinct correction models for stall delay. Figure
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17 presents a comparison of the distribution of angles of attack over the blade length

for the MEXICO rotor at wind speeds of 10 m/s, 15 m/s, and 24 m/s. It is essential to

realise that whereas correction models for stall delay alter anticipated forces on the blades,

the influence on distribution of angles of attack is minimal. The sole exception is when

the correction models for stall delay predict very high load variations in the area of the

root. In these cases, a comparable local variation in angles of attack is created at the

root, as predicted by BEM analysis with correction models for stall delay, which are close

to 3D values predicted by Inverse BEM analyses, but BEM with no correction models

overestimates angles of attack.

3.8.1.2 Comparison of CL Prediction throughout the Blade Length

Figure 18 illustrates the contrast of the estimated CL value throughout the blade

length by the BEM assessment without and with the different existing correction models for

stall delay and the model proposed with the CL,3D value obtained from the CFD analyses

of the NREL Phase VI turbine for wind speeds of 7 m/s, 10 m/s, 15 m/s, 20 m/s, and

25 m/s. BEM predicts the enhancement in lift coefficient attributable to stall delay quite

decently up to a wind speed of 10 m/s with all correction models for stall delay [139].

With increasing wind speed, BEM with previous correction models for stall delay, such as

the Dumitrescu and Cardos model [174–176], estimate higher CL values in comparison

to CL,3D calculation from the CFD study for the NREL Phase VI turbine [139]. The

Lindenburg model [144] substantially overpredicts at extremely high wind speed of 25 m/s,

as predicted earlier by Breton et al. [146] and Kabir and Ng [139]; however, for other wind

speeds, the trajectory of increase in CL throughout the blade length is close to the CL,3D
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Figure 16: Contrast of evaluated AoA throughout the blade length from BEM analysis
without and with different correction models for stall delay and Inverse BEM method for
NREL Phase VI turbine.
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Figure 17: Contrast of evaluated AoAs throughout the blade length from BEM analysis
without and with different correction models for stall delay and Inverse BEM method for
MEXICO rotor.
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throughout the blade length. The Hamlaoui, Smaili and Fellouah model [177] for r/R <30

percent, which is considered to be the lower inboard region of the blade, and for r/R > 50

percent, which is considered to be the top half of the blade, gives predictions comparable

to the 3D values. However, the value of CL shows a profound downward trend for r/R

between 30 percent and 50 percent, ignoring the effect of stall delay. The root cause of

this tendency is that Hamlaoui et al. [177] employed values from only five radial positions:

30 percent, 47 percent, 63 percent, 80 percent, and 95 percent. It is worth noting that just

around 30 percent of the r/R is located in the inboard portion, where the effect of stall delay

is strongest, whereas the other four radial positions are almost on the blade’s upper half.

As a consequence, they incorporated two components in their correction models: r/R < 30

percent and r/R > 30 percent. However, because the second component is based on values

predicted above 47 percent, this model fails to estimate the effect of stall delay between 30

and 47 percent. As a corollary, 3D values computed at additional radial positions (0.250R,

0.267R, 0.328R, 0.390R, 0.450R, 0.510R, 0.570R, 0.633R, 0.691R, and 0.750R) were

also included in estimating the correction models in our work. Therefore, for all wind

speeds, the current proposed model determines results close to the CL,3D for the NREL

Phase VI turbine. The accuracy of the proposed model is confirmed by computing the

error percentage at four radial positions (0.30R, 0.47R, 0.63R, and 0.80R) considered in

the experimental analysis and is presented in Figure 19. As recognised, the percentage of

error calculated from the proposed method is predominantly less compared to the other

models. The proposed model can only be used up to 0.8R, whereas the calculated values of

CL at r/R > 80 percent are CL,2D values without any added correction. Unlike the inboard
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section, CL,3D in the tip region is lower than CL,2D. This is due to tip vortices with the

secondary flow generated at the tip [140, 146]. The current model is only meant to take

into account stall delay; therefore, the correction model is only proposed up to 0.8 R. For

this reason, radial positions smaller than 0.8 R are represented in the error comparison

for both the NREL Phase VI and MEXICO rotors. In the future, a new model will be

proposed to account for the correction in the reduction of the lift coefficient due to the

effect of tip vortices. Figure 20 depicts the CL distribution estimated from BEM analysis

without and with correction models for stall delay along the MEXICO rotor’s blade length

for three distinct wind speeds. Figure 21 shows the error comparison for CL prediction

at three distinct radial positions (0.25R, 0.35R, and 0.60R) utilised in the experimental

analysis, ignoring radial positions above 0.8R. Almost all models forecast closure values

with the experimental data at wind speeds of 10 m/s and 15 m/s; however, at 24 m/s,

the Dumitrescu and Cardos [174–176] model and the proposed model are quite similar

to 3D values obtained from the experimental data, while the Lindenburg model [144] is

slightly lower but follows the same trend. The Hamlaoui, Smaili and Fellouah model [177],

on the other hand, is a total catastrophe. As per Figures 20 and 21, the proposed model

outperforms the existing correction models for stall delay.

3.8.1.3 Comparison of CD Prediction throughout the Blade Length

Figure 22 compares the estimated CD value throughout the blade length using

BEM without or with the correction models for stall delay using the CD,3D values obtained

through the Inverse BEM method of CFD analysis at wind speeds of 7 m/s, 10 m/s, 15 m/s,

20 m/s, and 25 m/s for the NREL Phase VI turbine. The BEM utilising earlier correction
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Figure 18: Contrast of evaluated CL throughout the blade length from BEM analysis
without and with different correction models for stall delay and Inverse BEM method for
NREL Phase VI turbine.
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Figure 19: Error in CL computation by each model at different radial positions with
different wind speeds for NREL Phase VI turbine.
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Figure 20: Contrast of evaluated CL throughout the blade length from BEM analysis
without and with different correction models for stall delay and Inverse BEM method for
MEXICO rotor.
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Figure 21: Error in CL computation by each model at different radial positions with
different wind speeds for MEXICO rotor.
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models for stall delay predicts lower CD values than the CD,3D determined from CFD

analysis using the Inverse BEM approach. The values estimated based on earlier correction

models for stall delay considered for comparison in this study are close to the CD,2D values

since these models do not account for drag coefficient corrections. On the contrary, since

there was a divergence noticed in CD,3D and CD,2D for all wind speeds, a new model is

proposed and compared in Figure 22. While previous models did not even approach the

3D values, the proposed model predicts extremely close at high wind speeds (15 m/s, 20

m/s, and 25 m/s) and relatively close at low wind speeds (7 m/s and 10 m/s). Figure 22

compares the estimated CD value throughout the blade length using BEM without or with

the correction models for stall delay with CD,3D values obtained through the Inverse BEM

method of CFD analysis on wind speeds of 10 m/s, 15 m/s, and 24 m/s for the MEXICO

rotor. Figures 22 and 23 show that for the NREL Phase VI turbine, CD,3D is often higher

than CD,2D, indicating that rotational effects were associated with a notable drag rise, but

for the MEXICO rotor, rotational effects were associated with a small drag drop. Ivan

Harreaz [140] exploited OpenFOAM to do CFD simulations of the MEXICO rotor and

calculated sectional CL,3D and CD,3D at three distinct wind speeds. Ivan Harreaz [140] also

noticed a similar discrepancy in CD predictions. Other drag correction models, such as

those by Chaviaropolous and Hansen [169] and Raj [170], anticipate an increase in CD, but

the Corrigan and Schillings [171] and Du and Selig [173, 204] models predict a decrease

in CD. Other models, such as those by Snel [168], Lindenburg [144], Dumitrescu and

Cardos [174–176], and Hamlaoui , Smaili and Fellouah [177], have not proposed models

or taken into account a CD discrepancy. In fact, it can be noticed from Figure 23 that there
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is no discernible difference between the CD,3D and CD,2D values for the MEXICO rotor.

Furthermore, according to Ivan Harreaz [140], rotational effects have minimal influence

on CD (except at r/R = 60 percent). Guntur et al. [150], who used the MEXICO rotor to

evaluate correction models, came to the conclusion that CD correction may not be essential.

Ivan Harreaz [140] concluded that the effect of rotation on drag appears to be aerofoil-type

dependant, which we concur with. Since, as stated in Section 3.1 of this paper, the main

concern of this work is to predict lift enhancement due to stall delay. Further, the effect of

rotation on drag is minimal compared to its effect on lift, and because this work employs

a novel dimension of using Machine Learning (ML), we propose a preliminary model

for drag correction depending on the predictions of the NREL Phase VI turbine. Despite

the fact that this model is dependent on NREL Phase VI turbine data, the forecast for the

MEXICO rotor is still close. In the future, an additional relevant parameter representing

aerofoil type will be taken into account, and a new model for drag correction with greater

accuracy will be built that enables forecasting of both increases and decreases in the drag

coefficient based on aerofoil type.

3.9 Conclusions and Future Works

Practically, direct CFD analyses of wind farms with a significant number of wind

turbines are not feasible. Hence in CFD analyses of wind farms, indirect rotor modelling,

such as Actuator Disk (AD), Actuator Line (AL), and Actuator Surface (AS) modelling,

are necessary. This indirect rotor modelling depends on BEM analyses for aerodynamic

phenomena performance. Hence, if the prediction of BEM is wrong, that leads to incorrect

CFD analyses. Therefore, accurate prediction from BEM is essential for the CFD analyses
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Figure 22: Contrast of evaluated CD throughout the blade length from BEM analysis
without and with different correction models for stall delay and Inverse BEM method for
NREL Phase VI turbine.
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Figure 23: Contrast of evaluated CD throughout the blade length from BEM analysis
without and with different correction models for stall delay and Inverse BEM method for
MEXICO rotor.
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of a wind farm. This work, thus, takes account of an attempt to improve the precision

of BEM in the prediction of aerodynamic loads. In this investigation, a new correction

model was derived using soft computing called Symbolic Regression based on the disparity

between 3D CFD observations and 2D values of aerofoil coefficients throughout the

blade length for different wind speeds of the NREL Phase VI turbine. It has been noted

from the literature that correction models for stall delay derived from conventional hard

computing techniques are not accurate enough. Contrarily, BEM predicts the lift and

drag coefficient closure of the CFD results while using the new correction model for stall

delay for the NREL Phase VI turbine [139]. The proposed model is validated using 3D

aerofoil characteristics collected from the MEXICO rotor experimental results with an

Inverse BEM approach. The proposed model effectively predicts closure for lift coefficient

comparisons, but the drag coefficients are slightly over-predicted. This might be due to

the effect of rotation on drag, which differs based on aerofoil type. The drag coefficient

increases with rotation for the NREL Phase VI turbine but decreases for the MEXICO rotor.

This research focuses on the rise in lift coefficients caused by stall delay at the inboard

sections; therefore, significant emphasis is placed on lift coefficient correction models. A

preliminary model for the drag coefficient is also suggested and found to be adequate. The

proposed model for lift correction is good for r/R < 80 percent because at r/R > 80 percent,

3D lift coefficients are lower than 2D lift coefficients due to the influence of tip vortices;

we are now developing a new model to compute the decrease in lift coefficients at the

blade’s tip. In addition, we are focusing on a novel correction model for drag coefficients

based on the type of aerofoil.
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Ongoing research seeks to improve rotor and wake aerodynamic prediction in wind

farm modelling and optimization. The authors focused on wake aerodynamics in their

earlier works [136, 205, 206] and derived empiric relationships specifically to determine

the wake velocity and turbulence intensity. In this article, the authors emphasised one

of the unsteady effects in rotor aerodynamics modelling called stall delay to accurately

model three-dimensional rotational augmentation effect. In the future, ML-based models

will be developed for other unsteady 3D effects such as dynamic stall [207–209], dynamic

inflow [210], yaw misalignment [211], wind shear [212], and tower shadow [207] to

improve rotor modelling techniques. Subsequently, both these rotor and wake aerodynamic

modelling strategies can be utilised to extract data to optimize axial flow wind farms to

estimate the power from a given landscape.
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CHAPTER 4

CONCLUSION

In conclusion, ”Machine Learning-based Predictive Modeling of Stochastic Sys-

tems” is a critical and active area of research with the potential to significantly contribute to

various fields. This dissertation aimed to develop machine learning-based methods for early

glaucoma detection using electroretinography signals and predicting stall delay in wind

turbines. Through the development and evaluation of these models, it was demonstrated

that machine learning can accurately detect various stages of glaucoma from ERG signals

and predict stall delay in wind turbines. The research also emphasized the need for model

interpretability and generalizability to perform well on unseen data. Moreover, the results

suggest that the proposed method could be beneficial in real-world applications, improv-

ing disease management and enhancing the efficiency and performance of wind turbine

systems. Overall, this dissertation showcases the potential of machine learning-based

predictive modeling of stochastic systems and suggests that further research in this area

could lead to significant improvements in various fields.

The results obtained in this study strongly indicate that the employed methods

can consistently identify dominant features for classification and regression from STR,

Oscillatory Potentials (OPs), and other ERG tests. This is in line with previous work on the

sensitivity of OPs and flicker to subtle changes in RGC function and viability. Additionally,

our approach identified novel dominant distinguishing features, such as Shannon Entropy

Values for Maximal Overlap Discrete Wavelet Packet Transform (MOD-PWT) and AR
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coefficients, which were not distinguishable by traditional methods. This highlights the

potential of the current machine-learning-based algorithm in detecting subtle changes in

ERG signals corresponding to different stages of glaucoma disease development. This

capability could serve as a foundational step for creating a reliable framework for early

glaucoma detection and monitoring the efficacy of therapeutic interventions in both clinical

practice and novel drug development.

Practical implementation of direct CFD analyses for wind farms with numerous

wind turbines is not feasible. Therefore, indirect rotor modeling, such as Actuator Disk

(AD), Actuator Line (AL), and Actuator Surface (AS) modeling, are necessary and depend

on BEM analyses for aerodynamic performance. Accurate BEM predictions are essential

for the CFD analyses of a wind farm. This work aimed to improve BEM’s precision in

predicting aerodynamic loads by deriving a new correction model using soft computing

called Symbolic Regression based on the disparity between 3D CFD observations and

2D values of airfoil coefficients throughout the blade length for different wind speeds

of the NREL Phase VI turbine. The proposed model effectively predicts closure for lift

coefficient comparisons, but the drag coefficients are slightly over-predicted. A preliminary

model for the drag coefficient is also suggested and found to be adequate. The focus is

now on developing a new model to compute the decrease in lift coefficients at the blade’s

tip and a novel correction model for drag coefficients based on the type of airfoil.
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[71] L. Boquete, J. M. Miguel-Jiménez, S. Ortega, J. Rodrı́guez-Ascariz, C. Pérez-Rico,
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