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ABSTRACT

Big data is becoming increasingly prevalent in people’s everyday lives due to

the enormous quantity of data generated from social and economic activities worldwide.

As a result, extensive research has been undertaken to support the big data revolution.

However, as data grows in volume, traditional data analytic methods face various chal-

lenges—especially when raw data comes in multiple forms and formats. This dissertation

proposes a multimodal big data analytics and fusion framework that addresses several

challenges in data science for handling and learning from multimodal big data.

The proposed framework addresses issues during a standard data science project

workflow, including data fusion, spatio-temporal deep feature extraction, and model

training optimization strategy. First, a hierarchical graph fusion network is presented to

capture the inter-modality correlations among modalities. The network hierarchy models

the modality-wise combinations with gradually increased complexity to explore all n-

modality interactions. Next, an adaptive spatio-temporal graph network is proposed to
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capture the hidden patterns from spatio-temporal data. It exploits local and global node

correlations by improving the pre-defined graph Laplacian and automatically generates the

graph adjacency matrix based on a data-driven method. In addition, a dynamic multi-task

learning method is introduced to optimize the model training progress by dynamically

adjusting the loss weights assigned to each task. It systematically monitors the sample-level

prediction errors, task-level weight parameter changing rate, and iteration-level total loss

to adjust the weight balance among tasks.The proposed framework has been evaluated

on various datasets, including disaster event videos, social media, traffic flow, and other

public datasets.

iv



APPROVAL PAGE

The faculty listed below, appointed by the Dean of the School of Graduate Studies, have

examined a dissertation titled “Multimedia Big Data Analytics and Fusion for Data Science,”

presented by Tianyi Wang, candidate for the Doctor of Philosophy degree, and hereby

certify that in their opinion it is worthy of acceptance.

Supervisory Committee

Shu-Ching Chen, Ph.D., Committee Chair
School of Science and Engineering

Mei-Ling Shyu, Ph.D.
School of Science and Engineering

Yugyung Lee, Ph.D.
School of Science and Engineering

Dianxiang Xu, Ph.D.
School of Science and Engineering

v



CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Chapter

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background and introduction . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Proposed Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Scope and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Multimodal Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Multi-Task Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Deep Learning for Spatio-Temporal Graph Data . . . . . . . . . . . . . . 29

3 OVERVIEW OF THE FRAMEWORK . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Framework Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Hierarchical Graph Fusion . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Spatio-Temporal Graph Network . . . . . . . . . . . . . . . . . . . . . . 38

vi



3.4 Dynamic Multi-Task Learning . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Dynamic Multi-task Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Automatic Loss Weighting . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Dynamic Task Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Hierarchical Graph Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1 Hierarchical Multimodal Fusion Network with Dynamic Multi-Task Learning 82

5.2 Hierarchical Fusion Network for Airfare Price Prediction . . . . . . . . . 95

6 Spatio-Temporal Graph Network . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1 Multitask Local-Global Graph Network . . . . . . . . . . . . . . . . . . 115

6.2 Adaptive Joint Spatio-Temporal Graph Learning Network . . . . . . . . . 136

7 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . 172

7.1 Conclustions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

REFERENCE LIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

vii



ILLUSTRATIONS

Figure Page

1 A demonstration of different types of fusion models for multimodal learn-

ing. (a) Early or feature-level fusion, (b) Late or decision-level fusion, and

(c) Intermediate or hybrid fusion . . . . . . . . . . . . . . . . . . . . . . 13

2 A demonstration of concatenation fusion and bilinear fusion. Left: early

or feature-level fusion using the concatenation fusion method. Right:

feature-level fusion using bilinear fusion . . . . . . . . . . . . . . . . . . 18

3 Left: each input source predicts its output target. Center: single input

source predicts multiple output targets. Right: multiple input sources

combined to predict multiple output targets. . . . . . . . . . . . . . . . . 25

4 A comparison of 2D convolution and graph convolution. Left: 2D con-

volution used by most CNN. Right: graph convolution that applies to all

neighboring nodes of the target node. . . . . . . . . . . . . . . . . . . . . 30

5 Overview of the dissertation’s framework . . . . . . . . . . . . . . . . . 36

6 Sample images of each disaster event in the CrisisMMD dataset . . . . . 43

7 Sample images of all concepts in the disaster video dataset . . . . . . . . 46

8 Illustration of the automatic loss weighting framework for disaster damage

assessment based on social media data . . . . . . . . . . . . . . . . . . . 55

9 Multimodal damage classification results using the loss weighting algorithm 62

viii



10 Performance comparison of all tasks when different loss weight settings

for the multimodal damage level classification task . . . . . . . . . . . . 65

11 Training loss comparison among Weight Uncertainty, GradNorm, and the

proposed MTMNAN methods . . . . . . . . . . . . . . . . . . . . . . . 79

12 Hierarchical Graph Fusion Network (HGFN) with 3 input modalities . . . 83

13 Proposed framework for airfare price prediction using public data sources 98

14 A comparison between the crude oil price, CPI and the quarterly averaged

airfare from 2006 to 2017 . . . . . . . . . . . . . . . . . . . . . . . . . . 103

15 Importance score value for each feature generated by the random forests

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

16 An overview of the proposed MTLG-Net. . . . . . . . . . . . . . . . . . 118

17 Network structure of the BiLSTM used in our model. Each arrow indicates

the direction of the data flow, and ⊕ is the concatenation operation. . . . . 122

18 Overall structure of the BiLSTM based Seq2Seq model used in this model.

x1, x2 and xt are the input sequence from different time steps; yt+1, yt+2

and yt + n are the output of arrival delay task decoder, zt + 1, zt + 2 and

zt + n are the output of departure delay task decoder The context vector

generated by the attention module serves as the initial input for the decoder.

The two tasks share the same encoder. . . . . . . . . . . . . . . . . . . . 125

19 Map showing major U.S. airports based on the number of connecting

flights. The size of the blue dot indicates the relative connection flight

volume an airport receives compared to other airports. . . . . . . . . . . . 127

ix



20 An overview of the proposed framework. . . . . . . . . . . . . . . . . . 139

21 Illustration of the overall structure of S2SFM. . . . . . . . . . . . . . . . 145

22 Illustration of the architecture of the proposed spatio-temporal graph trans-

former module (STGTM). The relative positional encoding learns the

node’s spatial and temporal dependency and generates the spatio-temporal

aware embedding vectors. The dynamic spatial and temporal convolutional

graphs are stacked together to model the node relations jointly. . . . . . . 147

23 The multi-head adjacency matrix structure. . . . . . . . . . . . . . . . . 151

24 Visulization MAE for the RCOTP dataset obtained by AJSTGL and other

baselines. Arrival delay in the next ten horizons . . . . . . . . . . . . . . 159

25 Ablation study MAE for arrival delay on RCOTP for the next ten horizons 162

x



TABLES

Tables Page

1 The statistical summary of the disaster video dataset . . . . . . . . . . . . 45

2 Structure of the DB1B ticket and coupon table with sample records . . . . 47

3 Summary of data in DB1B and T-100 used in the proposed framework . . 48

4 Structure of the T-100 dataset with a sample record . . . . . . . . . . . . 48

5 Selected attributes and their corresponding data type in the BTS Reporting

Carrier On-Time Performance data . . . . . . . . . . . . . . . . . . . . . 49

6 Performance comparison between single tasks and our method. Columns T

(text) and I (image) indicate the involved modality. Column O indicates the

applied task, in which “i” is informative classification, “h” is humanitarian

classification, and “d” is damage classification. Column P gives the results

of our proposed model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7 The statistical summary of the disaster video dataset . . . . . . . . . . . . 74

8 The per-concept accuracy results on the disaster video dataset . . . . . . . 75

9 Performance evaluation results on the disaster video dataset . . . . . . . . 76

10 Data informative concept performance evaluation on the CrissMMD dataset 89

11 Humanitarian category concept performance evaluation on the CrissMMD

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

12 Damage level concept performance evaluation on the CrissMMD dataset . 91

xi



13 Performance evaluation on the YouTube Disaster dataset . . . . . . . . . 92

14 Per-concept classification accuracy on YouTube Disaster dataset . . . . . 92

15 The list of features generated during the feature extraction stage with

explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

16 Performance comparison (before applying HGF) for different regression

models with and without feature selection . . . . . . . . . . . . . . . . . 112

17 Performance comparison for different regression models without Load

factor, Competition Factor, CPI, and Crude Oil Price features . . . . . . . 112

18 Performance comparison (before applying feature selection) for different

regression models with and without hierarchical graph fusion . . . . . . . 113

19 Performance comparison for different regression models with the proposed

framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

20 U.S. airports categorization based on passenger volume . . . . . . . . . . 128

21 Performance comparison of MTLG-Net with different baselines for aver-

age hourly arrival delay prediction . . . . . . . . . . . . . . . . . . . . . 130

22 Performance comparison of MTLG-Net with different baselines for aver-

age hourly departure delay prediction . . . . . . . . . . . . . . . . . . . 131

23 Performance comparison of MTLG-Net with different baselines for the

average hourly arrival delay prediction on large hubs . . . . . . . . . . . 132

24 Performance comparison of MTLG-Net with different baselines for the

average hourly departure delay prediction on large hubs . . . . . . . . . . 133

xii



25 Performance comparison of MTLG-Net with different baselines for the

average hourly departure arrival prediction on medium hubs . . . . . . . 134

26 Performance comparison of MTLG-Net with different baselines for the

average hourly departure delay prediction on medium hubs . . . . . . . . 135

27 Performance comparison of MTLG-Net with different baselines for the

average hourly arrival delay prediction on small hubs . . . . . . . . . . . 136

28 Performance comparison of MTLG-Net with different baselines for the

average hourly departure delay prediction on small hubs . . . . . . . . . 137

29 The ablation study of each component’s impact on flight arrival and depar-

ture delay prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

30 The ablation study of meteorological input variable’s impact on arrival and

departure delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

31 Overall performance comparison of AJSTGL and baselines on three

datasets: a) RCOTP: average ten hours arrival delay, b) PeMSD4: traffic

flow, c) PeMSD8: traffic flow. . . . . . . . . . . . . . . . . . . . . . . . 166

32 Overall performance comparison of AJSTGL and baselines on average

hourly flight arrival delay prediction in ten hours horizons using RCOTP

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

33 MAE and RMSE of traffic speed prediction on PeMSD4 for the next four

horizons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

34 MAE and RMSE of traffic speed prediction on PeMSD8 for the next four

horizons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

xiii



35 Ablation study MAE and RMSE for average arrival delay on RCOTP and

traffic flow on PeMSD4 and PeMSD8 datasets. . . . . . . . . . . . . . . 170

36 Ablation study MAE for arrival delay on RCOTP for the next ten horizons 171

xiv



ACKNOWLEDGEMENTS

First, I would like to express my sincere gratitude to my advisor, Dr. Shu-Ching Chen, for

his continuous support of my Ph.D. study and related research and his patience, motivation,

and immense knowledge. His guidance helped me in all the research and writing this

dissertation. I would also like to thank my co-advisor, Dr. Mei-Ling Shyu, for her valuable

advice and collaboration throughout my Ph.D. study. She provided me with insightful

feedback and constructive criticism on my research papers and dissertation chapters. She

also helped me improve my presentation skills and academic writing. I would like to thank

my Supervisory Committee members, Dr. Yugyung Lee and Dr. Dianxiang Xu, for their

help and suggestions at UMKC. I would like to thank my dissertation committee members

in Florida International University, Dr. Xudong He, Dr. Jainendra K. Navlakha, Dr.

Hyeyoung Hah and Dr. Sitharama S. Iyengar. I am especially grateful to Samira, Haiman,

Yudong, Maria, and Daniel E. Martinez for their help with data collection, experiments,

and proofreading. I also appreciate the fun times we had together during coffee breaks, lab

meetings, and social events. Last but not least, I would like to thank my wife, son, and

parents for their love, encouragement, and sacrifice. They have always been there for me

in good times and bad times. They are the source of my strength and motivation.

This research is partially supported by NSF CNS-2125165, NSF CNS-1952089,

Florida Public Hurricane Loss Model (FPHLM) and the “Real-Time Tracking of Intra-

Regional Migration from the Caribbean to Puerto Rico after Extreme Events” project from

Natural Hazards Center.



CHAPTER 1

INTRODUCTION

1.1 Background and introduction

The information revolution has had a continuing effect on people’s daily lives.

Automated devices, such as phones, cameras, and sensors, have evolved into critical com-

ponents of contemporary society. Due to the ubiquity of these devices and the interactions

between computers and human beings, massive amounts of data have been gathered and

waited to be analyzed. There is an inherent requirement for scalable and practical data

analytics procedures with such enormous datasets. Given the vast amount of data available

in various formats and settings, traditional data analytic approaches are becoming obsolete.

As a result, more sophisticated data science techniques are required to interpret these

heterogeneous, massive data collections with varying degrees of quality and semantics.

Benefits from the advancement of high-performance computing, machine learning,

and data mining have been widely applied in various domains to solve real-world problems

involving large-scale multimedia data, which include autonomous driving [52, 72, 97, 125],

language translation [4, 48, 54, 112], disaster management [41, 45, 140, 167], and traffic

flow optimization [25, 69, 127].

In recent years, multimodal learning has attracted significant interest from the

research community due to its benefit in utilizing the massive amount of real-world data,

which often contains multiple data sources [29, 30, 142]. Compared to its single-modality
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counterpart, multimodal learning is the technique that focuses on exploiting the rich

information underlying various input modalities. Information in nature always comes

with different modalities with a certain degree of relationships between them. Different

modalities are characterized by their distinct statistical properties. For Artificial Intelligence

(AI) and machine learning models to learn knowledge from real-world data, it is crucial to

interpret such statistical properties of all modalities.

The motivation for multimodal learning can be reflected in multiple aspects. These

can include obtaining a more unified concept and a global view of the ecosystem, dis-

covering hidden patterns, mining interrelationships between different data sources, and

extracting knowledge across modalities. Fusing multiple data sources could provide rich

and complementary information that greatly enhances the model performance. For in-

stance, the fusion of audio and visual features and textual features has become a widely

adopted strategy in personality prediction [82]. Therefore, multimodal learning can be

considered a systematic and comprehensive methodology to build and train models that

could process and extract the joint representation from multiple data sources.

The scope of this doctoral dissertation is to present a comprehensive multimodal big

data analytics and fusion framework for data science. The proposed framework addresses

several challenges in data science for handling and learning from multimodal big data.

More specifically, the proposed framework addresses issues that surfaced during the entire

data science project roadmap, including data fusion, deep feature extraction, and model

training optimization strategy. Major challenges in multimodal big data learning can be

summarized as follows:
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• Data Fusion: In multimodal learning, data from different sources are presented in

different forms and formats. Combining data from various modalities with different

spatial and temporal characteristics is crucial for multimodal learning. The correla-

tion among modalities can be demonstrated either at the feature level, such as the raw

or pre-processed data from each source, or at the semantic level, such as the decision

score generated by each unimodal classifier [204]. The independent property can

provide new information to exploit the hidden patterns that enhance the discrimina-

tive power of the model. It is crucial to consider correlation and independence when

handling multimodal fusion since both provide equally valuable insights into the

problem. Common strategy toward multimodal fusion tends to focus on individual

modalities. Each modality is trained on a standalone network, and the intermediate

results are integrated at various levels. Early fusion and late fusion [157] are the two

most widely adopted fusion strategies based on this methodology. However, due to

the heterogeneous nature of multimodal data and the disconnection among networks,

the fused vector still falls short of representing the complex distribution among input

sources.

• Spatio-Temporal Data Modeling: Many real-world problems can be represented

by sequences of spatio-temporal data describing activities that occur in a range of

locations and periods, such as videos, traffic flow data, and remote sensing imagery

data. Take traffic flow data as an example. Each entry contains the geographic

location and the corresponding timestamp. State-of-the-art deep learning approaches

for processing spatio-temporal data combine convolutional neural networks (CNNs)
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and recurrent neural networks (RNNs). In many studies, CNN is the default network

structure for spatial feature extraction. However, conventional CNN is only effective

on grid structures, such as images and videos, and fails to capture the spatial relation-

ship between objects measured using non-Euclidean distance [192]. On the other

hand, when using RNN-based approaches to extract temporal features from data,

information is lost because the information in the hidden layers is transmitted down

through the network. In recent studies, graph convolutional network (GCN) has seen

extensive applications in data that demonstrate a strong relationship between objects.

However, most existing studies solely rely on pre-defined network topology and do

not consider modeling the node-specific patterns. The intuitive pre-defined graph is

constructed on the neighboring connectivity or specific distance measurement. It is

often insufficient to include such correlations since many trivial hidden patterns may

be lost. In addition, adjacent nodes frequently show diverse patterns in real-world

problems such as traffic forecasting. Typical graph convolution using shared weights

on all neighboring nodes cannot capture such dynamic node-specific patterns.

• Model Training Optimization with Multi-Task Learning: Common machine

learning/deep learning training strategies only involve a single objective. However,

simultaneously solving several tasks could provide quite a few benefits. It reduces

memory consumption and accelerates inferences by performing multiple inferences

in a single forward pass. This strategy is also referred to as multi-task learning.

When training with multi-task learning, the model utilizes the aggregated loss from

each task to optimize the network parameters. The final loss is calculated as the
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linear weighted sum of each task’s loss. As a result, one major challenge in multi-

task learning is to select the optimal weight assigned for each task so that the

training process can be balanced among all objectives. The most commonly adopted

approaches include equal weight assignment and manual weight allocation. On the

other hand, an easier task with equal weights is likely to degrade overall model

performance since the relatively small loss reduces the gradient of the aggregated

loss during backpropagation. On the other hand, manually tweaking the weights is

overly time-consuming and demands extensive domain knowledge.

1.2 Proposed Solutions

This dissertation proposes a multimodal data analytics and fusion framework

to address the aforementioned limitations and challenges. The proposed framework is an

end-to-end platform for gathering, organizing, and analyzing large-volume, heterogeneous

data in different forms and formats. We developed a novel deep learning architecture

to 1) pre-process and extract features from multi-modality data, 2) fuse features from

different sources to exploit the inter-modality interactions, 3) capture the spatio-temporal

dependency from complex real-world data that contains sophisticated relationships, and

4) explore the opportunity to optimize the model learning process by investigating the

correlation between different tasks and objectives. The proposed framework’s main

components were evaluated using datasets from a wide range of applications, including a

disaster video dataset containing video clips, audio, and text description [177], a social

media multimedia disaster dataset containing multiple label concepts [182], a large-scale air
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travel transaction dataset containing origin-destination and airfare price information [181],

a flight operation dataset, and two ground transportation traffic flow datasets. The proposed

solutions are:

• Hierarchical Multimodal Fusion: We developed a hierarchical multimodal fusion

framework to address the aforementioned challenges. It is difficult to model the

cross-modality relationship among modalities in multimodal fusion, and it is much

more challenging to learn the joint representation among multiple modalities. The

proposed model adopted a tree-based hierarchical graph structure that iteratively

combines each modality on different levels to learn the cross-modal interactions

among all their combinations. It also dynamically allocates the weights for each pair

in a sample-aware fashion. The similarities between nodes are studied and utilized

as the edge weights in generating nodes in the next level. A dynamic attention

unit is also applied to determine the importance of each modality and assign it as

the weights for the connecting edges. Furthermore, to preserve the independent

characteristics of the source modality, the original feature from each modality is

added back to the final fused feature. The proposed fusion network is flexible and

highly modulated, which can be applied to various network structures.

• Adaptive Spatio-Temporal Graph Network: To address the challenge in spatio-

temporal data modeling, we proposed an adaptive spatio-temporal graph network

to utilize multiple graphs to capture the spatial dependency in the data. The local

GCN focuses on the spatial connectivity between nodes with direct connections.

A shifted graph Laplacian method was developed to expand the local GCN to
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learn more trivial hidden patterns. The global GCN captures the network-wide

correlation among nodes that share similar characteristics. In addition, an effective

normalization technique is also applied to control the adjacency matrix’s sparsity and

reduce redundant node-wise correlation. Furthermore, a novel data-driven adaptive

graph generation approach was designed to help the model learn a comprehensive

network topology and produce the adaptive GCN. A bidirectional long-short-term

memory (BiLSTM) based sequence-to-sequence fusion module was applied to

extract the short-term temporal information in the data sequence. The sequence-

to-sequence fusion network also combines the output from each graph to leverage

the cross-modal interactions in modeling the temporal dependency. Last but not

least, a spatio-temporal graph transformer module was developed to complement

sequence-to-sequence fusion module by dynamically capturing the spatio-temporal

dependencies in long-term predictions.

• Dynamic Multi-task learning: A novel dynamic multi-task learning strategy was

proposed to address the challenge of optimizing the model training process in a

multi-task learning scenario. The proposed model utilizes the shared network to learn

general information that can be leveraged across all tasks. On the other hand, the task-

specific networks help the model learn patterns related to each task. The proposed

dynamic task balancing approach automatically adjusts the training progress on the

sample and task levels. The sample-level dynamic balancing function focuses on

difficult instances by allocating more resources during training. At the same time,

the task-level dynamic balancing mechanism adjusts weight distribution by attending
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to the learning rate of each task. In addition, extra cautions are paid to the task

imbalance problem by introducing the task penalty term to the task-level balancing

function. Finally, a loss weight re-balancing method was applied to automatically

adjust each task’s weighted scalar so that their losses are tuned to a similar scale. As

a result, the model can obtain a more balanced loss distribution at the beginning of

each training iteration.

1.3 Contributions

The major contributions of this dissertation can be summarized as follows.

• The proposed multimodal big data analytic and fusion framework is highly flexible

and can be applied to various applications and domains. The proposed framework can

extract spatio-temporal features with complex correlations, fuse different modalities,

and retain the independent and correlated information, and improve the model

training process by dynamically allocating resources and balancing the impact of

each training task.

• A hierarchical graph fusion network is proposed to capture the inter-modality corre-

lations among modalities and, at the same time, retain their independent properties.

The structure of the hierarchical graph fusion network can be seen as a tree graph.

Each modality is fused on different levels, in which the cross-modality interactions

are learned based on various combinations. We use nodes to demonstrate different

input signal combinations and edges to represent the similarity between each pair

of signals. The proposed method is very flexible and can be applied to various
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scenarios.

• A graph-based deep learning network is proposed to capture the spatio-temporal

relationship in the data. The proposed framework learns the spatial dependency

using multiple pre-defined and adaptively generated graph convolutional networks.

Novel approaches such as shifted graph Laplacian, sparse matrix normalization,

and adaptive graph adjacency matrix generation have been proposed to address

limitations and challenges in the current literature. A BiLSTM-based sequence-

to-sequence fusion model is applied to model the short-term temporal information

and learn the cross-modal interactions between input sources. A transformer-based

graph module is developed to capture the time-evolving long-term dependencies. The

network also utilizes graph regularization to facilitate the loss function in minimizing

the training loss. Results on real-world traffic data demonstrate the effectiveness of

the proposed work.

• A dynamic multi-task learning method is proposed. It eliminates the need for manual

loss weight tuning during the training process, which can be inaccurate and time-

consuming. It automatically adjusts the training process during three model learning

levels. On the sample level, it aims to prioritize resources to objects that produce

more significant errors. On the task level, it adjusts the weight of the loss generated

by each task during the training phase so that tasks producing more significant losses

will be prioritized. Another mechanism is applied to the training iteration level,

enabling the model to automatically adjust the loss weight for each task to improve

performance.
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• We have tested the proposed framework on various datasets and applications, in-

cluding disaster damage assessment, disaster situation assessment, airfare price

prediction, and traffic data forecasting.

1.4 Scope and Limitations

The assumptions and limitations that apply to the proposed framework are as

follows.

• Some of the model parameters are empirically determined, such as the parame-

ter used in calculating the graph edge weights that control the growth rate in the

hierarchical graph fusion network.

• Without loss of generality, the proposed multimodal big data analytics and fusion

framework is mainly evaluated on video, image, and numerical data. However, the

proposed model, including the hierarchical graph fusion network, spatio-temporal

graph network, and dynamic multi-task learning method, can be extended to other

data types and domains.

• Several pre-trained models are incorporated in the proposed multimodal big data

analytics and fusion framework to extract features from the raw image and audio

data. However, the scope of the dissertation does not include image and audio feature

extraction.
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1.5 Outline

This dissertation is structured as follows. Chapter 2 summarizes the literature on

multimodal fusion, spatio-temporal feature extraction, and multi-task learning. Chapter 3

introduces the proposed multimodal big data analytics and fusion framework and its major

components. Chapter 4 introduces the proposed dynamic multi-task learning method.

Chapter 5 discusses multimodal fusion solutions and the approaches to extract cross-

modal correlations. Chapter 6 presents the deep learning model for extracting spatio-

temporal information from real-world data using graph-based networks. Finally, Chapter 7

summarizes the current work and provides potential future directions.
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CHAPTER 2

RELATED WORK

In this chapter, the literature in the area of multimodal fusion, deep learning for

spatio-temporal graph data and multi-task learning are presented.

2.1 Multimodal Fusion

The benefit of multimodal learning can be demonstrated in various aspects. For

instance, it helps to obtain a more unified concept and global view of the ecosystem,

discover the hidden pattern and mine the interrelationships between different data sources.

The fusion of multiple data source could provide richer and complementary information

that greatly enhance the model performance. For instance, the fusion of audio, visual

and textual features has become a widely adopted strategy in personality prediction [82].

Multimodal fusion techniques can be categorized based on where and how the fusion

is conducted, namely feature-level fusion, intermediate fusion and decision-level fusion.

Figure 1 illustrates the 3 types of fusion strategies.

Another classification method is based on whether the fusion technique utilizes a

particular machine learning model, leading to free and model-based fusion. The following

section will discuss fusion techniques based on the types mentioned above.
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Figure 1: A demonstration of different types of fusion models for multimodal learning.

(a) Early or feature-level fusion, (b) Late or decision-level fusion, and (c) Intermediate or

hybrid fusion

2.1.1 Feature level fusion

Feature level fusion, known as early fusion, is the fusion strategy of integrating data

from multiple modalities immediately after extraction. It is illustrated in figure 1(a). Early

fusion is usually implemented by joining raw or pre-processed data from each modality.

Some popular modalities include:

• Visual features: This feature type includes color, shape and texture. Visual features

can be extracted using the bag of visual words (BOVW) and scale-invariant feature

transform (SIFT) techniques. The recent popularity of deep learning started the trend

of using features that are automatically generated by neural networks, such as the

convolutional neural network (CNN).

• Text features. Textual features can be generated by counting word occurrences in

13



the document or using various text embedding techniques, such as word embed-

ding [124], bag-of-words (BOW) and TF-IDF.

• Audio features Audio features may be generated by using handcrafted features such

as Mel-frequency cepstral coefficients (MFCC) [114] or automatically by neural

network-based feature extractor such as Soundnet [9].

• Other multimedia features Besides the features mentioned above, other features, such

as various sensory data and depth images, have also been widely adopted in multi-

modal fusion.

Feature-level fusion exploits the correlation and interaction between low-level features

from each modality. Additionally, if handcrafted features are adopted, since data from

each source are merged in the early stage, only a single model needs to be trained, which

leads to a much more compact model architecture.

Early fusion could be implemented by concatenating the features of each modality,

which leads to a relatively large feature size. Dimensionality reduction techniques such as

PCA are applied to project the high dimensional vectors into lower-dimensional space [81].

Auto-encoder is another technique that is widely used in deep learning-based multimodal

tasks to reconstruct the original input based on its distributed representation [111]. Based

on this theory, studies have been conducted to map the data from multiple sources into

a common vector space. Wagner et al. [174] proposed a fusion model for multispectral

pedestrian detection problems by utilizing early fusion to combine the two data sources at

the pixel level.
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2.1.2 Decision level fusion

Decision-level fusion, or late fusion, is the fusion strategy that utilizes the final

score generated by each unimodal classifier. Such scores are analyzed and manipulated to

obtain a final decision score for the main task. An illustration of decision-level fusion can

be found in figure 1(b).

Decision-level fusion has multiple advantages over feature-level fusion. Features

from each modality tend to have different semantic representations. Such discrepancy can

be amplified further by issues like time synchronization and missing data. In comparison,

the decision score used in decision-level fusion does not pose such a problem. Moreover,

decision-level fusion allows domain-specific models and algorithms for each modality,

such as applying CNN for visual data and RNN for temporal data, often producing better

representation for each data type.

However, the decision-level fusion strategy does not consider the feature-level

correlation among each modality since separate models are built for each modality. This

will lead to the loss of useful inter-modality information. Moreover, the learning process

may become time-consuming since each modality requires a separate model to generate

the required unimodal score.

Zhu et al. [213] used late fusion to combine the scores of image and optical flow

data generated by each unimodal network. Hou et al. [68] concatenated the output from

the audio and video models to train the fusion network. Vielzeuf et al. [172] proposed a

score tree method involving multiple score fusion layers. It starts with combining the final

score of each model and concatenates it with the score from other modalities. Then, each
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joint vector will be fed into another fully connected layer to get the prediction score. The

top of the score tree is the final fully connected layer that will take the combined score and

generate the final prediction.

2.1.3 Intermediate Level Fusion

Intermediate-level fusion is the strategy of transforming the raw inputs into their

higher-level representation. It is easier to fuse different modalities and learn the joint

multimodal representation. Neural networks are widely applied to extract the raw input

features. The input data is passed through multiple layers, undergoing various linear and

non-linear transformation that generates low or high-level feature vectors. Additionally,

each modality can be trained on its modality-specific algorithm. Later on, the output from

one layer can be joined with the output from other modality-specific layers. Figure 1(c)

illustrates a simple network architecture utilizing intermediate-level fusion.

Farnadi et al. [49] proposed stacking and power-set combination strategy for

multimodal fusion. Stacking uses the predicted result of one NN as input of another

NN in the next epoch (for multi-task learning where there are multiple target variables).

The power-set combination is the method of using the power-set combination of data

sources from all unimodal. This method captures both the early and late-level meanings

of multiple modalities. Hu et al. [71] stacked joint layers and the unimodal layers into

one network to preserve the consistency of intra-modality and inter-modality, which then

helped to establish the correlations in other layers. Vielzeuf et al. [171] proposed a network

architecture that fuses multimodal features by calculating the weighted sum of the layers
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from the corresponding unimodal networks and their previous layers. It utilizes unimodal

hidden representations and a central joint representation at each layer.

2.1.4 Model Free Fusion

Most multimodal fusion tasks adopted model-free fusion methods. Such methods

are easy to implement and do not depend on a specific prediction model. Furthermore,

model-free fusion is often used to create the joint representation that is the input for

many model-based fusion methods. Here we introduce several widely adopted methods,

including linear weighted fusion, bilinear fusion and canonical correlation analysis fusion.

2.1.4.1 Linear weighted fusion

Linear weighted fusion is the method of combining information from multiple

modalities in a linear way. It can be applied to both feature-level and decision-level fusion.

The weight for each feature can be manually assigned or learned by machine learning

models, such as support vector machine (SVM) or neural network.

Max fusion. Max fusion ymax = fmax(x1, x2) takes the maximum between the

two features in each dimension. It can be illustrated as:

yimax = max{xi
1, x

i
2}

where 1 ≤ i ≤ D and x1, x2, ymax ∈ RD

Sum fusion. Sum fusion ysum = fsum(x1, x2) computes the summation of the two

features on the same vector space location i:

yisum = xi
1 + xi

2
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Figure 2: A demonstration of concatenation fusion and bilinear fusion. Left: early or

feature-level fusion using the concatenation fusion method. Right: feature-level fusion

using bilinear fusion

Concatenation fusion. Concatenation fusion ycat = fcat(x1, x2) merge the two

feature vector x1 and x2 by appending one feature after another. Unlike the previous

methods, it will produce a joint feature with a dimension of D′ +D′′:

yconcat = [x1, x2]

Figure 2 (left) shows an example of concatenation fusion of 3 modalities.

Max and sum fusions are preferred when the scores for each modality can be easily

computed. However, a potential drawback of this method is when outliers appear, which

will outweigh the features or scores of other modalities. The concatenation method can

retain most information at the cost of substantially increasing the joint vector dimension.

It will be problematic when the task involves a large number of modalities. A possible

solution to this issue is to use dimensionality reduction techniques such as PCA to shrink the

feature size before fusion. Another option is to use a fully connected layer, pooling layer or
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convolutional layer with a large filter size to lower the input vector size. However, all these

methods will inevitably introduce information loss. Therefore, balancing performance

and efficiency is a critical factor that needs consideration. Vielzeuf et al. [172] tackled

the video emotion classification problem by concatenating the semantic score generated

by image and optical flow modality. Then, several fully connected layers are applied to

learn the weights for the joint decision vector. Hu et al. [71] used a hierarchical strategy

to concatenate the unimodal feature with the joint feature throughout different network

layers.

2.1.4.2 Bilinear (tensor) fusion

Recently, Tensor fusion has attracted the attention of many studies. Tensor fusion

tackles the heterogeneous data distribution challenge in multimodal learning by fusing each

modality at the tensor level. As a result, it enables the model to learn the granularity of

cross-modal interactions. Tensor fusion has demonstrated promising results in multimodal

deep learning for visual question answering [20] and sentiment analysis [194]. Ben-

younes et al. proposed a framework to solve the visual question answering problem [20].

They extracted features from both visual images and textual questions using GRU (Gated

Recurrent Unit) and ResNet [66]. Then, features are fused using the tensor fusion approach.

During the fusion process, a tensor-based Tucker decomposition approach is utilized to

parametrize the tensor correlation between visual and textual representations. Another

work by Zhao et al. [208] used a multi-agent tensor layer and convolutional fusion to

capture the cross-modal interactions.
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Bilinear fusion has demonstrated great success in multimodal deep learning for

visual question answering [20] and sentiment analysis [195]. The fusion function ybi =

fbi(x1, x2, x3) computes the outer products of the three feature vectors from each modality.

It can be illustrated as:

ybi = x1 ⊗ x2 ⊗ x3

Here ⊗ indicates the outer product between vectors, and the combined vector ybi ∈

RD3 captures the interaction between unimodal vectors at every spatial location. The

multiplicative relationship in the feature representation helps bilinear fusion exploit the

correlation among all unimodal feature representations. Figure 2 (right) shows an example

of bilinear fusion for three modalities.

Ben-younes et al. [20] proposed a framework to solve the visual question-answering

problem. They extracted features from visual images and textual questions using GRU

(Gated Recurrent Unit) and Resnet. Then, features are fused using bilinear fusion. Multi-

modal tensor-based Tucker decomposition efficiently parameterized the bilinear interac-

tions between visual and textual representations. Liu et al. [113] used the low-rank weight

decomposition method to enhance the efficiency of the multimodal framework tested on

various tasks, including multimodal sentiment analysis, emotion recognition and speaker

trait analysis.

2.1.5 Model Based Fusion

Model-based fusion uses machine learning models to learn the interaction among

modalities.
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2.1.5.1 Attention based fusion

Contributes the most information to distinguish an object. Attention mechanism

has been widely employed in NLP (Natural Language Processing). In multimodal analysis,

the contribution of each modality is not the same. To prioritize the most effective modality,

an attention mechanism could be applied to assign weight to encourage or punish a specific

modality.

The attention layer uses the combined feature vector from different modalities as

input and generates the attention weight vector. For instance, let X1, X2 and X3 be the

feature set from three modalities, C = [X1, X2, X3] be the joint feature representation.

Then, the attention weight vector αfuse and the fused multimodal feature vector F are

computed as follows:

PF = tanh(WF · C)

αfuse = softmax(wT
F · PF )

F = C · αfuse

Here, WF and wT
F is the learned weight parameter, PF is the relevant score for feature F

2.1.5.2 Residual Based Fusion

Residual learning has been proven effective in training deep networks and has

achieved state-of-the-art performance. It utilizes the skip-connection mechanism to reuse

the activation from a previous layer to help the adjacent layer for weight learning. The

residual layer significantly alleviates the vanishing gradient problem, in which the weights

learned for each lay get too small that the network stops learning. A residual layer can be
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adapted as a correction function in multimodal learning. The complementary channels are

utilized to correct minor errors in the prediction results.

In practice, the residual unit takes the decision score generated by the network

of each unimodal, then skips connecting them with the score generated by the joint

representation of the same set of features. For instance, let N be the number of unimodal,

Y0 be the ground truth, Yi be the model prediction, and ϵ be the error term between Yi and

Y0. Our goal is to predict Y ′ , which is the sum of the averaged predictions and the learned

correction term c:

Y
′
= Yavg + c =

1

N

N∑
i=1

Yi + c = Y0 +
1

N

N∑
i=1

ϵi + c

And the residual correction unit is forced to minimize the loss, we have:

||Y ′ − Y0|| → 0

Which can be expressed into a constraint on c and ϵi:

|| 1
N

N∑
i=1

ϵi − c|| → 0

Here, the averaged prediction result serves as the identity mapping function. As the

correction term c is learned through the training, the model could measure the confidence

level of a specific input channel.

Audebart et al. [7] studied the semantic segmentation of earth observation data

problem by using the residual unit as a correction term to improve the fusion performance.

More specifically, the features generated by each model just before the final softmax layer

are concatenated and fed into a 3-layer CNN. At the same time, the same feature from each
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model is skip-connected to the fused feature. Audebart et al. [8] fused the RGB image and

remote sensing data using the residual late fusion strategy. The core module includes a

residual convolutional neural network that takes as input the last feature maps from two

deep networks, and each fully connected network generates a prediction.

2.1.5.3 Deep Boltzmann Machine

A deep Boltzmann machine (DBM) is an undirected graphical model that can

generate the joint representation of latent random variables from multiple modalities. The

multimodal representation is trained using the variational approach [152]. Compared

with multiple-layer perception (MLP), one of the big advantages of DBM for multimodal

learning is the ability to generate missing data modalities due to its generative nature [152].

Liu et al. [111] used a bimodal deep autoencoder (BDAE) based on DBM to

combine multiple types of physiological signals at the feature level for emotion recognition

tasks. Wu et al. [184] combined DBM with fully connected and convolutional layers to

extract high-level features from all modalities. Similarly, Radu et al. [145] applied DBM

on mobile sensor data for the activity recognition task.

2.1.5.4 Graph Based Fusion

Graph-based fusion networks transform modalities and the interactions among

them into fusion graphs. Features from each modality are considered vertices, and the

relationships between them are implemented as the edges. Zadeh et al. tried to use

a Dynamic Fusion Graph (DFG) to model the n-modal dynamics [196]. Compared to

Tensor Fusion, DFG achieves better training efficiency where fewer learnable parameters
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are introduced. It also uses learned parameters to control the activation of certain edges

and thus dynamically changes the network structure. Multimodal metrics learning and

graph-based fusion are combined to measure feature similarity between modalities [6].

Chen et al. [27] proposed a heterogeneous graph-based fusion network that focuses on the

fusion of multimodal data with missing modalities. It uses a graph network to project the

missing data into a joint embedding space with other modalities.

2.2 Multi-Task Learning

Multi-task learning aims to train a single model for multiple related tasks with

better learning efficiency and model performance than training one model for one task.

The intuition behind multi-task learning is that the knowledge learned from one task can

complement learning from others.

One main approach in multi-task learning is integrating different task objectives

and jointly training the model. Bischke et al. [22] followed this idea and trained an encoder-

decoder model for both distance estimation and building segmentation on remote sensing

imagery. The performance metrics of both tasks are improved by utilizing the multi-task

learning framework. However, it remains challenging to tune the weights applied to each

task manually.

Multi-task learning can be categorized into three general types based on how input

sources are utilized to predict output targets. Figure 3 shows the three types of multi-task

learning paradigms. Assume there are N unique input X1, X2...XN and N unique output

targets Y 1, Y 2...Y N , the first type of multi-task learning uses each input data source to
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Figure 3: Left: each input source predicts its output target. Center: single input source

predicts multiple output targets. Right: multiple input sources combined to predict multiple

output targets.

predict its corresponding output target [187, 201]. The second type uses a single data

source to predict all N output targets [77,106–108,134,166]. The third multi-task learning

type utilizes N input sources to collaboratively predict M output targets or each input

source can be used to predict multiple targets [106, 108, 199].

Multi-task learning exploits the shared semantic information across tasks by train-

ing multiple tasks in the same model. Related tasks can complement each other to make

the model more generalized. This leads to better training and inference efficiency and

more robust model performance. Multi-task learning also shows excellent potential in

the multimodal learning domain. Sener et al. [154] utilized multi-objective optimization

to find the Pareto optimal solution to minimize the weighted combination of task losses.

Vandenhende et al. [169] applied a multimodal distillation unit to model task correlation

from various levels of the network. A more recent work by Hu and Singh [74] employed an

encoder-decoder mechanism to encode each input modality and decode them into a shared

25



embedding space. The most prevalent multi-task learning approaches can be categorized

into 1) network architecture engineering and 2) feature and task relation learning.

2.2.1 Network Architecture Engineering

A standard practice in multi-task learning is constructing a shared network structure

to extract the common features among all tasks [37, 109, 118, 206, 209]. The task-wide

features are then sent into each task-specific output head to produce the prediction score for

each task. Zhao et al. [209] used a task-specific projection matrix as a module to process

the feature map so that the feature map dimension is consistent with the rest of the network

structure. In another study by Liu et al. [109], an attention module is applied to the shared

network to produce task-specific context vectors that retain the critical information for each

task. Instead of utilizing a single shared network to extract the global features, another

type of model contains multiple task-specific networks [55, 129, 151]. Ruder et al. [151]

proposed the Sluice network, where each task-specific network utilizes information from

both shared and task-specific output from the previous layers. It divided the task-specific

network into two components. Each is responsible for extracting task-specific or shared

information.

Existing deep neural network architectures can be tweaked to handle multi-task

learning problems. The cross-stitch network [129] uses the cross-stitch units to combine

multiple networks where each is trained for a specific task. This helps the model to learn

the optimal combination of shared and task-specific features. UberNet [92] builds the

task-shared layer using a pyramid structure based on the VGG-NET [156]. It feeds a
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series of down-sampled images of different resolutions into the task-shared layer, which

is constructed on top of the task-specific layers. Using a technique named 12-in-1, Lu et

al. [117]’s multi-tasking model simultaneously processes 12 distinct datasets. The proposed

method achieves state-of-the-art performance compared to other techniques by pre-training

the model using multi-task learning on all twelve tasks.

Sun et al. [163] introduces the Task Switching Networks (TSNs) that use a single set

of network parameters for all tasks. This is achieved by applying a conditional network to

generate task-specific vectors. The proposed network utilizes an encoder-decoder structure

based on U-Net [149]. The encoder learns the shared representation across all tasks, and

each decoder generates the task-specific embedding. In another work, Vandenhende et

al. [169] proposes a network structure that models task interactions at various receptive

field scales.

2.2.2 Feature and Task Relation Learning

Exploiting the underlying relationship between features and tasks can facilitate

information sharing in multi-task learning. Lu et al. [116] uses a dynamic branching

approach to construct a tree-like network structure automatically. It places certain concepts

in the same branch by considering task correlation and complexity. Also, the use of weight

uncertainty [85] models the task-dependent homoscedastic uncertainty to weigh different

tasks. In another work by Chen et al., the gradient norms of each task-specific layer

are used to dynamically change the learning progress [32]. Other measurements can

also be used to balance the task weights. Dynamic task prioritization [61] uses the key
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performance indicator, such as accuracy or average precision, as the learning progress

signal to adjust the task weight distribution.

Task relationship plays a vital role in multi-task learning since the relationship

could be modeled as similarities using various evaluation metrics. Early works treat this

relationship as prior knowledge. In a study conducted by Kato et al. [84] and Evgeniou et

al. [46], the task similarities are used to construct regularizers to guide the learning of

several tasks based on the idea that the similar the task, the closer the corresponding model

parameters are located in the vector space. However, in many cases, the task relationship is

absent from the beginning. The model must learn such a relationship in a data-driven way.

Bonilla et al. [59] introduced a regularization-based method that learns the task relations

hierarchically by developing a tree-based algorithm. Similarly, in a study by Nguyen

and Okatani [133], dense co-attention layers are used to hierarchically group the tasks by

searching over the layers for each task. In another work, bi-directional GRU layers with

pairwise attention are used for generating the shared representation of all tasks [1].

Task grouping aims to separate tasks that could harm each other by selectively

sharing the information among tasks. Task grouping is relatively tricky as finding the right

task combination is time-consuming and requires relative domain knowledge. Several

works have utilized empirical studies to find the optimal grouping strategy of tasks in

several application domains and explore the relationship between main task and auxiliary

task [5, 21]. Standley et al. [161] utilized a branch-and-bound algorithm and the perfor-

mance of each task-specific network to group a subset of the task-specific network for

maximum performance gain.
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Transfer learning has been widely adopted in quite a few deep learning domains. It

can also help to transfer the task relationship in a multi-task learning scenario. Zamir et

al. [197] propose a task taxonomy strategy to build a hypergraphy to model the task

relationship transferability. It contains several task-specific networks that learn the task

transfer during training. Then, the task affinity score is acquired from a transfer function

to limit the number of tasks with access to the data. In another work [44], a representation

similarity analysis (RSA) calculates the correlations between task-specific networks. It is

based on the assumption that task-specific networks will present similar representations if

the two tasks have positively related. In addition, RSA only compares the representation

among task-specific networks and does not perform transfer learning, making it much

more efficient. Song et al. [158] adopted the same idea of RSA by comparing the similarity

score between tasks. Instead of comparing the task-specific network representation, they

used attribution maps containing each unit’s relevance score to the network output.

2.3 Deep Learning for Spatio-Temporal Graph Data

Many real-world problems can be represented by sequences of spatio-temporal data

that describe an activity that occurs in various locations and times, such as videos, traffic

flow data and remote sensing imagery data. Much research has been spent on studying

spatio-temporal data in recent decades. However, the traditional approach mainly relies on

manual feature engineering, which requires extensive prior and domain knowledge of the

data. Recently, deep learning models such as CNN and RNN significantly alleviated this

effort by allowing automatic feature extraction due to their automatic feature representation
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Figure 4: A comparison of 2D convolution and graph convolution. Left: 2D convolution

used by most CNN. Right: graph convolution that applies to all neighboring nodes of the

target node.

learning capability.

2.3.1 Graph Data

Graph data is a unique form that can exist in many domains. Unlike regular spatio

data that a two-dimension matrix or grid can represent, nodes in graph data cannot be

measured using Euclidean distance. Therefore, traditional deep learning models like CNN

cannot be applied. Recently, graph convolutional network (GCN) has been widely applied

to graph-structured data due to its ability to model data with non-Euclidean distance

relationships, such as traffic flow and brain network data [79, 99]. Unlike CNN, which

utilizes a “grid-like” fixed-size sliding window to calculate convolution across the 2D

plane, graph convolution calculates the average value of all neighboring nodes connecting

to the target node. The comparison of two convolutions is shown in Figure 4
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Guo et al. [63] used a dual-attention network containing graph-level and sequence-

level attention mechanisms to model the spatial and temporal dependency between nodes

in the graph. The flight delay is predicted in 30-minute intervals using classification instead

of traditional precise time using regression to improve the model efficiency.

The Autoencoder model can be utilized to learn the low-dimension feature encoding.

For spatio-temporal graph data problems, autoencoders can be applied to extract the

temporal representation from the input data. In Bao et al. [18]’s work, they predict the

network-wide average delay by first categorizing US domestic airports into three types

based on the number of average daily flights. Then K-means clustering was used to divide

the airports into four groups based on their average hourly delay pattern.

2.3.2 Graph Convolutional Network for Spatio-Temporal Data Processing

GCN has been successfully applied in spatio-temporal data modeling when the

correlation between objects can be constructed as a graph. Existing applications of

GCN-based networks, such as [105], [80] and [67], only models the stationary spatial

dependencies in the GCN layers. Although there have been efforts in incorporating the

temporal node dependency into the GCNs, such as embedding input graph signals of

immediate adjacent time steps in the same GCN layer [210], such approaches still fall short

in learning the long-term temporal relations. Recent advance in transformer [26, 70, 147]

enables the models to learn the temporal information from a more extended period. Instead

of memorizing the hidden states of neighboring short-term input tokens, the transformer

utilizes the self-attention mechanism to generate the contextual vectors based on the entire
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input sequence. A deep neural network based on GCN and sequence to sequence model is

used to extract the spatial-temporal features. Zeng et al. [198] used a weighted adjacency

matrix based on the weighted sum of the spatial distance and flight frequency between

each pair of airports for the GCN. Li et al. [98] proposed an adaptive GCN (AGCN) that

captures the structural relations that are not specified by the graph’s adjacency matrix. It

generates a residual graph adjacency matrix using a learnable distance function and the

characteristics of two nodes as inputs.

2.3.3 Traffic Forecasting as a Spatio-Temporal Data Processing Problem

Traffic forecasting is one domain that heavily involves spatio-temporal data. DCRN-

N [102] makes multi-step traffic prediction by integrating graph convolution with diffusion

process and recurrent models in an encoder-decoder architecture. STGCN [192] utilizes

GCN to model spatial correlations and a temporal convolution network to capture temporal

dependencies from the input data. A convolutional graph network AGCRN [15] learns

the adjacency matrix from input data to model the spatial correlations and adopts a gated

recurrent neural network to model the temporal correlations. Zheng et al. [211] use dilated

causal spatio-temporal graph convolution layers to learn spatio-temporal correlations in

multiple time intervals and adopted multi-range attention to help the model focus on

different ranges. Li et al. [103] use static and dynamic graphs to learn short and long-term

data patterns. A multi-head attention unit is leveraged to learn the correlation among

multiple variables. In AdapGL [202], the model trains two GCNs back-to-back. The pre-

defined adjacency matrix is used to optimize the learned adjacency matrix through each
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training iteration. In another work, Bai et al. [15] applied a note adaptive parameter learning

module to model the complicated correlations in traffic forecasting problems. It uses matrix

factorization to reduce the computational complexity created by the high dimensional

weight parameter matrix. Additionally, the graph’s adjacency matrix containing the hidden

spatial correlation between nodes is learned from the training process instead of using a

pre-defined correlation matrix. Zheng et al. [211] combines the pre-defined graph and

adaptively generated graph to learn the spatio-temporal dependency in the data. Instead

of using a standard RNN-based network to learn the temporal representation, a spatio-

temporal joint graph convolution (STJGC) is applied. STJGC performs the convolution

operation by sliding and skipping over the input sequence based on certain intervals or

time steps.
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CHAPTER 3

OVERVIEW OF THE FRAMEWORK

3.1 Framework Overview

Massive volumes of data are generated daily from various sources, such as social

and economic activities and social media. There is an inherent need for a scalable and

meaningful data processing pipeline with such large datasets. Given the vast amount of

data available in various formats and contexts, traditional data processing methods are

becoming obsolete. As a result, more sophisticated data science techniques are required to

process these heterogeneous, large datasets with varying degrees of quality and semantics.

Additionally, high-performance computing has evolved into a necessary technology for

processing this data in a scalable manner.

This dissertation proposes a multimodal big data analytics and fusion framework

for data science, with applications in disaster information management and traffic fore-

casting, among others. The overall framework, shown in Figure 5, comprises three major

components: hierarchical graph fusion, adaptive spatio-temporal graph network, and dy-

namic multi-task learning. These components are integrated coherently to address the

challenges inherent in multimodal big data and support the various functionalities available

in this field. Hierarchical graph fusion captures inter-modality correlations between modal-

ities by fusing them hierarchically. The adaptive spatio-temporal graph network captures

the spatio-temporal information from the data and learns the correlation between local
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and global features. The dynamic multi-task learning method automatically adjusts the

training progress on sample, task and iteration levels to improve the model performance.

The proposed framework has been tested on various applications, including disaster dam-

age assessment, disaster situation assessment, airfare price prediction, and flight delay

prediction.

3.2 Hierarchical Graph Fusion

Multimodal learning has attracted significant interest from the research community

due to its benefit in utilizing the vast amount of real-world data, which often contains

multiple data sources [29] [30] [142]. Compared to single-modal learning, multimodal

learning is a technique that focuses on utilizing the rich information contained within

various input modalities. Multimodal fusion is a critical step in multimodal learning, as it

combines the input features of each modality into a single vector. Therefore, how features

are fused significantly impacts the model’s ability to harvest information from multiple

input sources. This study aims to develop a hierarchical graph fusion network to capture

the complex cross-modality dependency among each input source. We first utilize several

pre-trained deep learning models to extract intermediate features from the raw input of each

modality. Then, the feature fusion is done by applying the proposed hierarchical graph

fusion approach. The multimodal fusion network connects each modality hierarchically to

create a graph structure with vertices representing joined modalities and edges representing

cross-modality interactions. The relative importance of joined modalities within the same

level is determined sample-to-sample and then used to formulate the joint embedding used
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Figure 5: Overview of the dissertation’s framework
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at the subsequent level. In the proposed framework, this component can be applied in

different stages during the training process:

• Early fusion [178], which combines the outputs of each domain-specific feature

extraction network, helps the model learn the cross-modality correlation among

all inputs from low-level features. In addition, early-stage fusion promotes the

preservation of granular information that could otherwise be lost as it flows deeper

into the network.

• Intermediate fusion where outputs generated by each convolutional graph are com-

bined. Unlike the low-level features in the early stage, outputs from the different

convolutional graphs represent high-level features, including the local spatial corre-

lation, global property similarity, and other abstract patterns. Fusion applied at this

stage assists the model in capturing the joint representation from different contexts

in the graph networks.

The proposed hierarchical graph fusion aims to preserve the interactions among

all possible combinations produced by each modality. A tree-based structure is applied to

implement this method. The top-level branch consists of every single modality and is the

building block for the entire graph. The nodes in the second level represent all bi-modal

combinations, and the same method can be applied to build all n-modal combinations in

deeper levels. The joint representation for each level is calculated as the weighted sum of

all vertices. This work determines the weights by the similarity between the feature vectors

forming the combination. The closer the two features in the vector space, the smaller
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weights are carried since their interaction offers little information. The final output of the

fusion network is the concatenation of combined features at each level.

3.3 Spatio-Temporal Graph Network

Large volumes of spatio-temporal data are being generated and analyzed daily from

various domains, such as social media, remote sensing satellites, transportation and mobile

GPS. The traditional approach for analyzing spatio-temporal data often utilizes CNN and

RNN. However, conventional CNN can only be applied on grid-structured data, such as

images and videos, and fails to capture the spatial relationship between individual objects

measured via non-Euclidean distance [192]. Likewise, when using RNN-based methods

for temporal feature extraction, information is frequently lost as hidden state information

is passed down within the network. This work proposes an adaptive spatio-temporal graph

network to model the complex spatial and temporal dependency in real-world problems.

The proposed method contains the following main components:

• An effective sparse matrix normalization technique is developed to replace the

regular normalized graph Laplacian adjacency matrix. It helps the graph retain

essential node connections while keeping the adjacency matrix’s sparsity to control

the computational cost.

• Multiple GCNs are trained to utilize the pre-defined network topology, global feature

similarity, and hidden dependencies between nodes.

• A static graph learning module with shifted graph Laplacian method to expand the
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pre-defined graph topology so it can learn more trivial hidden patterns.

• An graph learning module with a data-driven adaptive graph generation approach that

automatically learns the graph adjacency matrix. An adaptive graph regularization

term is designed to enforce smoothness and sparsity in the learned adjacency matrix.

• A novel unidirectional graph convolution that can capture the information inflow

and outflow in traffic forecasting problems.

• A BiLSTM-based sequence-to-sequence fusion model generates prediction results

in multiple time steps. The attention mechanism is applied to generate the hidden

context vector that contains the weighted sum of every hidden state in the encoder.

It helps the model retain information when processing lengthy input sequences. In

addition, the context vectors from multiple encoders or graphs are combined with

leveraging the cross-modal interactions in modeling the temporal dependency.

• A spatio-temporal graph transformer model to jointly model the dynamic spatio-

temporal dependencies. It consists of spatio-temporal relative positional encoding,

which generates the time-evolving spatial embedding of the graph signals, and

the dynamic spatial and temporal convolutional graphs that model the spatial and

temporal node dependencies, respectively.

The proposed model first applies a shifted graph Laplacian approach to expand

the sensitivity of the pre-defined graph. This way, the transformed graph Laplacian can

capture more granular hidden patterns and still use the original graph structure’s knowledge.
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Second, an adaptive graph generation method and adaptive graph regularization are applied

to automatically learn the network topology and control the sparsity and smoothness of

the graph signals. Furthermore, a node-specific dependency modeling module modifies

the original graph convolution operation so the model can learn node-specific patterns.

The sequence-to-sequence fusion network encodes multiple graph layer signals in parallel

and hierarchically combines them to retain the cross-modality interactions and capture

the short-term temporal dependencies. Finally, the spatio-temporal graph transformer

module complements the sequence-to-sequence fusion model by dynamically capturing

the spatio-temporal dependencies in long-term predictions.

3.4 Dynamic Multi-Task Learning

Traditionally, machine learning is applied to solve a single task or optimize a single

metric. Either one or more models in an ensemble are trained to do the needed task to

achieve this aim. The hyperparameters and network structure are fine-tuned during the

process to improve the model performance. While such an approach generally produces

acceptable results, focusing exclusively on a single task may lead to the ignorance of crucial

dependencies among related tasks that could help to enhance the model’s performance.

Multi-task learning exploits the characteristics and interactions across different learning

objectives to help the model learn a better generalization of the original problem and

reduces the risk of overfitting. In the proposed framework, the main parts of the multi-task

learning method are as follows:

• Sample level weight balancing helps the model allocate more resources to difficult
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cases. More specifically, as a sample is misclassified or produces a large error, the

associated loss generated by the loss function is magnified to encourage the model

to focus on these samples during the training process.

• Task level weight balancing utilizes the loss ratio between tasks as the metric to

measure the task imbalances. The weight gradient from the first layer of the task-

specific network is used to evaluate the current learning magnitudes. Therefore,

the task-level loss function aims to minimize the difference between the weighted

gradient of each task and the average gradient weighted by the training rate.

• After a complete training cycle, iteration level weight balancing adjusts the task

loss weights. It employs a more aggressive loss updating procedure which helps the

model quickly reach the optimal task loss weight and avoid the loss weights from

falling into the local minimum or maximum.

The proposed dynamic multi-task learning method improves the model performance

by balancing the training loss on different levels. It is also highly versatile and can be

applied to other problem domains. For instance, a multi-label classification task can benefit

from the dynamic multi-task learning approach by treating the classification of each label

as a standalone task [182].
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3.5 Datasets

3.5.1 CrisisMMD

CrisisMMD [2] is a large scale public multimodal natural disaster dataset collected

from Twitter. It contains 16,097 tweets and 18,126 images, each associated with at least one

image. Seven natural disasters are included, specifically Hurricane Irma (2017), Hurricane

Harvey (2017), Hurricane Maria (2017), Mexico Earthquake (2017), California Wildfire

(2017), Iraq-Iran Earthquake (2017), and Sri Lanka Floods (2017). Figure 6 demonstrates

some of the sample images from each disaster event. There are 3 main concepts: data

informative indicator, humanitarian categories, and damage severity assessment. Samples

are labeled as “Informative,” “Not informative,” or “Don’t know or can’t judge” based on

the criterion of whether the given tweet or image is useful for humanitarian aid. Samples

labeled as “Not informative” or “Don’t know or can’t judge” will not be further reviewed

for other concepts. The humanitarian categories include concepts such as “Infrastructure

and utility damage,” “Vehicle damage,” “Rescue, volunteering, or donation effort,” “Injured

or dead people,” “Affected individuals,” “Missing or found people,” “Other relevant infor-

mation,” and “Not relevant or can’t judge.” The damage assessment concept is exclusive

to the image. It labels the samples categorized as “Infrastructure and utility damage” as

“Severe,” “Mild,” “Little or no damage,” and “Don’t know or can’t judge.”

CrissMMD has been used in many studies on disaster response and management

using social media information [65, 94, 119]. A major challenge of this dataset is the

multiple concepts/labels a single image-text pair can be assigned. The traditional machine

learning model is designed to handle binary label classification and does not perform well
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(a) California wild fire (b) Hurricane Harvey

(c) Iran Earthquake (d) Hurricane Irma

(e) Hurricane Maria (f) Mexico Earthquake

(g) Sri Lanka Floods

Figure 6: Sample images of each disaster event in the CrisisMMD dataset
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for multi-label classification tasks. Although some works have been done to transform

the model or loss function so they can process multi-label data [53, 143, 159], the inter-

relationship between concepts is mostly omitted.

In this dissertation, in order to utilize both text and image data to identify the

humanitarian category concept, a multi-label multimodal classification task is included

to predict the combined humanitarian category labels using both modalities. A similar

multimodal approach is applied to the infrastructure damage level classification task, but

we only did this for single-label classification.

3.5.2 Youtube Disaster Video Dataset

The Youtube Disaster Video Dataset is a natural disaster video dataset [141] col-

lected from YouTube. It contains 1,540 video clips and seven concepts (shown in Figure 7)

that are related to the 2017 hurricanes Harvey and Irma. The dataset contains seven

complex semantic concepts: demonstration, emergency response, flood/storm, human

relief, damage, victim, and speak/briefing/interview. The raw video footage is processed

using keyframe extraction and audio track generation. Each video is labeled both at the

frame level and video level. Human annotation is done on the keyframes, and a video-level

concept is created based on the frame-level concept distribution.

One major challenge of this dataset is the class imbalance problem. Table 1

demonstrates the number of instances for each concept and the corresponding P/N ratio.

The table shows that the number of instances is skewed across all concepts. Extreme

data imbalance can create critical issues during the model training process since the small
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Table 1: The statistical summary of the disaster video dataset

Concepts Number of Instances P/N Ratio

Demonstration 150 0.047

Emergency Response 338 0.105

Flood/Storm 971 0.301

Human Relief 273 0.085

Damage 371 0.115

Victim 311 0.096

Speak/Briefing/Interview 811 0.251

Total 3,225

sample size in some concepts may cause the model to under-fit and makes poor predictions.

In addition, it is challenging to properly harness the full potential of multimedia data due

to their heterogeneous characteristics. Last but not least, this dataset also contains multiple

labels on the same sample, which makes the prediction task even more challenging.

This dissertation utilizes the proposed hierarchical graph fusion to combine all

modalities and applies a dynamic multi-task learning strategy to convert the multi-label

classification task into a multi-task learning problem. The hierarchical graph fusion network

could fully explore the inter-modality correlations among modalities by hierarchically

modeling all modality-wise combinations. The dynamic multi-task learning approach

automatically balances the learning progress of each task to benefit the minority concepts.
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(a) demonstration (b) emergency response

(c) flood and storm (d) human relief

(e) damage (f) victim

(g) briefing

Figure 7: Sample images of all concepts in the disaster video dataset
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3.5.3 Airline Origin and Destination Survey (DB1B) and Air Carrier Statistics database

(T-100)

The DB1B and T-100 datasets are published by the U.S. Bureau of Transportation

Statistics (BTS). BTS regularly updates and releases both the DB1B and the T-100. The

DB1B dataset provides quarterly-aggregated information about airline tickets in the United

States from reporting carriers, and consists of 10% randomly sampled ticket data from

each reporting carrier. The information in DB1B is organized into three parts, namely

“Coupon,” “Market,” and “Ticket.” A “Coupon” is an atomic unit of an airline ticket,

indicating a passenger’s itinerary that is directly transported from one airport to another. In

contrast, each ticket could contain multiple coupons and multiple passengers. Therefore,

“Coupon” in DB1B includes information about each leg, “Market” provides information

on the market segment, such as the distance between two airports, and “Ticket” provides

additional information at the ticket level, such as airfare price. All the records in “Coupon”

are bounded to a “Market” record and a “Ticket” record.

Table 2 shows the layout of the ticket and coupon database tables and the sample

Table 2: Structure of the DB1B ticket and coupon table with sample records

DB1B Ticket Table

ITIN ID QUARTER ORIGIN ITIN FARE DISTANCE PAX DOLLAR CRED -

2018112 1 ABE 340 1384 1 1 -

... ... ... ... ... .. ... -

DB1B Coupon Table

ITIN ID QUARTER ORIGIN DEST REPORTING CARRIER PAX SEAT CLASS DISTANCE

2018112 1 ABE ATL 9E 1 X 692

2018112 1 ATL ABE 9E 1 X 692

... ... ... ... ... ... ... ...
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Table 3: Summary of data in DB1B and T-100 used in the proposed framework

Entity Availability Data

Ticket DB1B
fare price, total distance,

and total number of passengers

Coupon DB1B
market segment, time of the itinerary,

carrier, and seat class

Market segment DB1B&T-100
original airport, destination airport,

and segment distance

Market segment by carrier T-100
number of passengers,

and number of available seats by aircraft type

Table 4: Structure of the T-100 dataset with a sample record

SEATS PAX CARRIER ORIGIN DEST QUARTER

150 140 9E ABE ATL 1

... ... ... ... ... ...

records with the same itinerary ID (ITIN ID) in the DB1B dataset.

T-100, unlike DB1B, includes monthly domestic non-stop segment statistics from

domestic and foreign airlines. It presents the number of passengers of each airline and each

market segment by aircraft type. Table 4 shows an example record in the T-100 database,

and Table 3 summarizes the information of these two datasets.

A significant challenge in this dataset is cleaning the data so the machine learning

model can use them. Various data types and formats co-exist in the same record, including

categorical, discrete, continuous, numerical, etc. A systematic data preprocessing pipeline

is crucial in handling such heterogeneous data. Another challenge is to select the most

relevant feature set so the input dimension can be controlled in a reasonable size and the
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Table 5: Selected attributes and their corresponding data type in the BTS Reporting Carrier

On-Time Performance data

Attribute Name Data Type

Year Categorical

Quarter Categorical

Month Categorical

Day of Month Categorical

Day of Week Categorical

Reporting Airline Categorical

Origin Airport ID Categorical

Destination Airport ID Categorical

CRS Departure Time Continuous

CRS Arrival Time Continuous

Arrival Delay Continuous

Departure Delay Continuous

Distance Continuous

model performance can be improved.

Our proposed work applies a comprehensive machine learning framework to handle

the DB1B and T-100 datasets to predict the quarterly average airfare price. Data prepro-

cessing has been applied, including data cleaning, transformation, and feature engineering.

A feature selection approach is developed to choose the most optimal features that help the

model achieve the best performance. The hierarchical graph fusion method also combines

each data source, which exploits their inter-modality interactions.
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3.5.4 Reporting Carrier On-Time Performance Data

BTS also publishes the Reporting Carrier On-Time Performance Data, which

contains comprehensive flight record data from over 20 domestic airlines and 400 airports

in the United States. Each flight record contains a specific flight date and time, origin and

destination airports, scheduled arrival/departure time, actual arrival/departure time, and

other information. Table 5 shows the selected attributes and their corresponding data type

used in this study. The research community has widely used this dataset to study flight

delay patterns and causes.

One major challenge when using this dataset for flight delay prediction problems

is properly learning the traffic patterns from hundreds of airports of various sizes and

thousands of flight routes that cover distinctive locations. The spatio-temporal nature of

the flight record data requires elaborately designed methods to exploit fully.

Our proposed adaptive spatio-temporal graph network utilizes this dataset to con-

struct several convolutional graphs that model existing network connectivity, correlation

among properties shared with all airports and hidden patterns that the pre-defined network

topology cannot explain.

3.5.5 PeMSD Datasets

The PeMSD datasets are collected and published by the California CalTrans

Group’s Performance Measurement System (PeMS). The data is collected from all major

metropolitan areas in California using over 40,000 sensors. In this dissertation, we use the

PeMS4 and PeMS8 datasets.
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• PeMSD4. This dataset includes historical traffic condition data in the San Francisco

Bay area. The data is collected in 5-minute intervals using 307 sensors on seven

major roads. The period covered by PeMSD4 ranges from January 2018 to February

2018. Three types of measurements are used, which include average speed, average

occupancy and traffic flow. In this study, we are focusing on traffic flow and traffic

speed prediction.

• PeMSD8. This dataset contains the traffic information in the San Bernardino area

from July 2016 to August 2016. The 170 sensors used 5 minutes intervals on eight

roads to collect the average speed, average occupancy and traffic flow information.

Same as PeMSD4, we are targeting traffic flow and traffic speed prediction in this

study.
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CHAPTER 4

DYNAMIC MULTI-TASK LEARNING

Typical machine learning/deep learning training strategies focus exclusively on a

single task. However, solving multiple using the same model through a single training

pass could yield several benefits. For instance, performing multiple inferences in a single

forward pass reduces memory consumption and speeds up inferencing. As a result, multi-

task learning has been adopted to help improve the learning process of one objective by

simultaneously learning other related tasks. When training with a multi-task learning

strategy, the model optimizes the network parameters based on the aggregated loss from

each objective. More specifically, the total loss can be considered a linear weighted sum

of the losses from each task. As a result, a significant challenge in multi-task learning is

determining the appropriate weight to assign to each task to balance the training process

across all objectives. Equal weight assignment and manual weight allocation are the

two most applied strategies. A more straightforward task will almost certainly degrade

the overall model performance with equal weights assignment, as the slight loss reduces

the gradient of the aggregated loss during backpropagation. On the other hand, manual

fine-tuning requires considerable effort to determine the proper weighting and extensive

domain knowledge.

This chapter proposes a novel dynamic multi-task learning approach to address the

challenge of optimizing the model training process in a multi-task learning scenario [177,
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182]. The dynamic task balancing approach automatically adjusts the training progress at

the sample and task levels. By allocating additional resources to difficult instances, the

sample-level dynamic balancing function amplifies the loss generated by these samples.

Simultaneously, the task-level dynamic balancing mechanism adjusts weight distribution

based on each task’s training rate. Additionally, a loss weighting method named automatic

loss weighting is proposed to automatically adjust the weighted scalar for each task after

each training iteration. The loss for each task is tuned to a similar scale. As a result, the

model can begin the subsequent training iteration with a more balanced loss distribution.

4.1 Automatic Loss Weighting

Due to the increase in human activities and the expansion of human habitat, the

damages caused by natural disasters have been dramatically increased [91]. This poses

a significant challenge for disaster response management, demanding a more efficient

and effective emergency response and recovery plan. To make accurate evaluations of

human injury, death, and property damages, the responders have to collect and analyze

large amounts of data promptly. However, the traditional information gathering channels

lack the capability of quick information delivery as well as large areas of coverage [86].

The rise of social media platforms has dramatically changed the way of sharing and

acquiring information. In combination with the prevalence of smartphones, eyewitnesses

can produce content right at the disaster scene. During disastrous events, it can provide

valuable situation updates, which help the emergency response personnel to make faster

and more accurate decisions. With the help of artificial intelligence (AI) techniques such
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as machine learning and deep learning, the emergency response team can analyze the

social media data in real time to determine the impact in different regions and prioritize the

resource distribution accordingly. Many studies have been conducted to utilize social media

data and deep learning methods to identify humanitarian activities, assess infrastructure

damages and enhance emergency awareness [36] [100] [189].

Regardless of the applications and methods used, many existing disaster situation

assessment studies focus on a single task and use a single data modality. One major

limitation of such approaches is that the shared representations among different tasks

and input modalities are not fully utilized. To address such challenges, an automatic

loss weighting method is first introduced. The proposed method solves multiple tasks

on a single model with a better generalization ability on the problem. The model can

automatically adjust the loss weights for each task to improve performance. Moreover,

automatic loss weighting is more efficient and avoids the need for tedious manual weight

tuning. We demonstrate the effectiveness of our proposed loss weighting method and

compare its performance with models trained without loss weighting. Figure 8 shows the

architecture of the proposed framework, which includes an image module, a text module,

and a multi-task classification module.

4.1.1 Image Feature Extraction

The VGG-19 [156] model pre-trained on ImageNet [39] is used to extract the

low-level features from the imagery data. ImageNet is a large-scale imagery collection

dataset that contains over 14 million images and 20,000 categories. In this case, the
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Figure 8: Illustration of the automatic loss weighting framework for disaster damage

assessment based on social media data
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main advantage of transfer learning is the benefit of adopting the learned knowledge from

ImageNet to our problem domain. The pre-trained VGG-19 model serves as a feature

extractor to generate the low-level features, which the rest of the layers can use in the model.

We remove the last 2 fully connected layers in the original VGG-19 model and obtain the

intermediate results from the last convolutional layer. During the training process, the

weights of all the layers are kept fixed in the pre-trained model and fine-tuned on the rest

of the fully connected layers. The image module in Figure 8 demonstrates the detailed

network structure used in our framework.

4.1.2 Texture Feature Extraction

Traditional word embedding methods like Glove [137] and Word2vec [128] do

not consider the underlying semantic meaning of the entire text corpus, and they do not

perform well on out of vocabulary words. In this paper, the proposed text embedding

module is built based on the work of Peters et al. [139]. First, each character in the text

corpus is tokenized, and a temporal convolutional neural network (CNN) [203] is used to

generate the CNN character embedding. The temporal convolutional module computes the

1-D convolution on the input data and generates the raw word vector of the input token.

This process is demonstrated in the text module according to Figure 8. This helps the model

capture the morphological features the word-level embedding does not contain. Also, by

combining the vector of each character, the vector representation for the unseen words

can be formed. Second, the raw text vector will be fed into two consecutive bi-directional

long-short-term machines (BiLSTMs). The forward and backward passes of the BiLSTM
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layer will learn the context information before and after the target word. The first BiLSTM

layer will generate a set of intermediate vectors and send them into the next BiLSTM. In

addition, a skip connection is added between the two BiLSTM layers. Finally, the weighted

sum of the raw input vectors and the two intermediate vectors is calculated to form the

final representation of the target word (as shown in Equation (4.1)).

Vk = βk · (s0 · xk + s1 · h1
k + s2 · h2

k), (4.1)

where Vk is the final word representation, βk is a task-specific scaling factor to help the

model optimization, si is the softmax-normalized weights, xk is the raw input vector for

word k, h1
k and h2

k is the intermediate vectors generated by the two BiLSTM layers.

4.1.3 Feature Fusion

In many tasks, data from different modalities could provide complementary infor-

mation that helps better generalize the problem. Multimodal learning is utilized by fusing

the early output from the text and image modules. The intuition of this approach is to

preserve the semantic correlations from each data source. Features generated by the text

and image modules are flattened and concatenated to form a joint vector.

4.1.4 Multi-task Learning

Multi-task learning is used to improve humanitarian activity and infrastructure

damage classification tasks. Multi-task learning is best suited for problems that contain

related tasks. By sharing the representations among all tasks, our model can learn a better

generalization across the problem domain. This paper analyzes the humanitarian activities
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and infrastructure damage levels using text and image data from the same Twitter tweet.

When the text and image data appear together, they tend to carry shared information or can

complement each other. Therefore, tasks involving text and image data can be related. In

Figure 8, the multi-task module implements the hard-parameter sharing methodology, in

which all tasks share the same set of hidden layers. As a result, our model becomes more

resilient to overfitting because the network is forced to learn multiple tasks simultaneously.

In multi-task learning, the loss function is defined in Equation (4.2).

Ltotal(x;W ) =
N∑
i=1

wiLi, (4.2)

where Ltotal is the final loss that the model tries to optimize, x and W are the input and

weight parameter to the model, Li and wi are the loss and corresponding weight scalar

for task i, and N is the total number of tasks. By default, the loss weights are uniformly

assigned, which means all tasks are weighted at the same scale. However, this may cause

easier tasks to dominate the learning process. Also, when tasks use different loss functions,

the loss for each task can significantly differ due to how each function is mathematically

defined.

This paper proposes a novel loss weighting method that automatically adjusts the

weighted scalar for each task. Our goal is to adjust the loss of each task to a similar scale

so that they can be optimized more equally during the training. Our proposed method uses

the mean training loss to calculate the loss weights. The rationale is that tasks with a higher

total loss should also significantly impact the final weighted sum loss. The model can

obtain a more balanced loss distribution at the beginning of the following training iteration

by suppressing these tasks. The details are illustrated in Algorithm 1. In each iteration,
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Algorithm 1 The proposed loss weighting algorithm
Input: Training dataset Dt and validation dataset Dv

1: J0 ←∞, t← 1

2: L̂t ← [1, 1, ..., 1]

3: J1, {Lt
i,j} ← ModelTrain(L̂t, Dt, Dv)

4: while J t < J t−1 do

5: t← t+ 1

6: for i = 1, 2, . . . , |L| do

7: L
t

i ←
∑|E|

j=1 L
t−1
i,j

|E|

8: end for

9: for i = 1, 2, ..., |L| do

10: L̂t
i ←

maxi(L
t
i)

L
t
i

11: end for

12: L̂← [L̂t
1, L̂

t
2, . . . , L̂

t
|L|]

13: J t ← ModelTrain(L̂t, Dt, Dv)

14: end while
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t, the training loss Lt
i,j of task i at epoch j is averaged to generate the mean training loss

L
t

i over all epochs. Then, the weighted loss L̂t
i for each task is calculated by dividing the

maximum of L
t

using the mean loss of each task L
t
. As a result, we can acquire a loss

weight scalar for all tasks after the model has converged. In the next iteration, the model

will be trained with the new loss weight setting. Specifically, all tasks will be assigned a

uniform loss weight in the first iteration. We keep track of the validation loss J t generated

by the training process (ModelTrain()) at iteration t. The iteration will automatically

terminate when the validation loss stops improving. In practice, we also set a tolerance

factor that allows the model to keep training even when the loss does not improve above a

threshold for a certain number of iterations.

4.1.5 Experiments and Analysis

4.1.5.1 Dataset Description

To test the proposed framework, the CrisisMMD dataset [2] is used. This dataset

contains 16,097 tweets and 18,126 images, each associated with at least one image. Seven

natural disasters are included, specifically Hurricane Irma (2017), Hurricane Harvey (2017),

Hurricane Maria (2017), Mexico Earthquake (2017), California Wildfire (2017), Iraq-Iran

Earthquake (2017), and Sri Lanka Floods (2017).

There are 3 main concepts: data informative indicator, humanitarian categories,

and damage severity assessment. Samples are labeled as “Informative”, “Not informative”,

or “Don’t know or can’t judge” based on the criterion of whether the given tweet or

image is helpful for humanitarian aid. Samples labeled as “Not informative” or “Don’t
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know or can’t judge” will not be further reviewed for other concepts. The humanitarian

categories include concepts such as “Infrastructure and utility damage”, “Vehicle damage”,

“Rescue, volunteering, or donation effort”, “Injured or dead people”, “Affected individuals”,

“Missing or found people”, “Other relevant information”, and “Not relevant or can’t judge”.

The damage assessment concept is exclusive to the image. It labels the samples categorized

as “Infrastructure and utility damage” as “Severe”, “Mild”, “Little or no damage”, and

“Don’t know or can’t judge”. To utilize text and image data for identifying the humanitarian

category, a multi-label multimodal classification task is included to predict the combined

humanitarian category labels from the two modalities. A similar multimodal approach

is applied to the infrastructure damage level classification task, but we only did this for

single-label classification.

4.1.5.2 Experimental Setup

The dataset is randomly split into 60% for training, 20% for validation, and 20%

for testing. The validation set is used to tune the model hyperparameters. Stop words

and URLs are removed from the text data. For the image data, the images are resized and

cropped to 224 by 224 pixels using bilinear interpolation. Categorical cross-entropy is the

loss function for all single-modality classification tasks, and binary cross-entropy is used

for the multi-label classification task. Adam algorithm is chosen as the optimizer, and the

initial learning rate is set to 0.001. Each fully connected layer uses ReLu as the activation

function with 50% dropout. Regarding the last fully connected layer, softmax is used for

the single-modal tasks, and sigmoid is used for the multimodal tasks. The model is trained
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using early stopping with a batch size of 256. Precision, recall, F1 measure, and Hamming

loss (HL) are used as the evaluation metrics. Our proposed multi-task multimodal model

is trained on text informative classification, image informative classification, multimodal-

multilabel humanitarian category classification, and multimodal infrastructure damage

classification tasks.

Figure 9: Multimodal damage classification results using the loss weighting algorithm

4.1.5.3 Experimental Results

To demonstrate the effectiveness of our proposed model, it is compared with several

baselines. Each baseline is a model trained on a specific task only. They include models

trained on informative, humanitarian, and damage classification tasks using either text or

image. Additionally, two baseline models trained on humanitarian and damage tasks using
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Table 6: Performance comparison between single tasks and our method. Columns T

(text) and I (image) indicate the involved modality. Column O indicates the applied task,

in which “i” is informative classification, “h” is humanitarian classification, and “d” is

damage classification. Column P gives the results of our proposed model.

P O T I Precision Recall F1 HL

i x 0.81 0.81 0.81 0.12

x i x 0.83 0.83 0.83 0.11

i x 0.66 0.62 0.64 0.22

x i x 0.81 0.81 0.81 0.13

h x 0.72 0.57 0.63 0.08

h x 0.74 0.27 0.39 0.09

h x x 0.72 0.57 0.63 0.11

x h x x 0.73 0.58 0.64 0.10

d x 0.82 0.79 0.80 0.05

d x x 0.85 0.80 0.82 0.05

x d x x 0.88 0.82 0.86 0.05
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image and text are added to compare the effectiveness of multimodal learning. Table 6

shows the performance comparison between the baselines and our proposed multi-task

multimodal model. The models are grouped based on the task, and their performance is

presented. In the first two groups of comparisons, our approach outperforms every baseline

model on their corresponding tasks. These results illustrate the effectiveness of multi-task

learning in disaster situation assessment applications. In the following two groups of

comparisons, all multimodal tasks achieved better performance when compared to their

corresponding single-modality tasks. This shows that multimodal learning can leverage the

complementary information from the text and image inputs. Furthermore, the performance

of the proposed loss weighting method is also evaluated. Figure 9 shows the F1 score

of the multimodal damage level classification task at each iteration. After applying the

loss weighting approach, the target task has shown a gradually improved F1 score from

0.846 to 0.857, illustrating its effectiveness. Note that the scores started to oscillate after 7

iterations, mainly caused by the model becoming saturated.

A 5-point sensitivity analysis test is conducted on the multimodal damage classifi-

cation task to further investigate the effects of the loss weighting method. This test aims to

observe the task performance changes under different loss weight settings. The loss weight

for the damage task is set to 10, 5, 1, 0.2, and 0.1 during the 5 runs. On the other hand,

the loss weights of the other 3 tasks are set to 1 and did not change during the test. The

results are shown in Figure 10. It can be observed that the performance of the damage task

is consistently better with a higher loss weight, which is not surprising. On the contrary,

the other 3 tasks get a slight performance boost when the loss weight of the damage task
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Figure 10: Performance comparison of all tasks when different loss weight settings for the

multimodal damage level classification task

decreases. However, their performance starts to drop when the weight of the damage task

becomes too small (0.1). The initial performance improvement can be explained by the

less loss domination from damage task to the total loss so that the model can generalize

better on the entire problem domain. In the end, when the loss weight of the damage task

is set to a very small value, the model can barely learn from this task, which causes the

overall performance to be degraded.

4.1.6 conclusion

This work introduces a novel automatic loss weighting deep learning framework

based on multi-task and multimodal learning for social media disaster situation assessment.

The proposed model is evaluated on a multimedia natural disaster dataset collected from
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Twitter. The experimental results demonstrated that multi-task multimodal learning could

improve the model performance by simultaneously learning the related tasks. Moreover,

the proposed automatic loss weighting method can further improve the model performance.

4.2 Dynamic Task Balancing

In a real-world scenario, visual data often contain rich information describing a

specific environment containing multiple objects and their interactions [28]. The classic

single-label classification deep neural networks are designed to detect the existence of a

single object or action. Therefore, to model the rich semantic information in visual data,

deep neural networks should be adapted to model multiple objects. The specific task that

aims to accomplish this goal is named multi-label classification. One important property

that distinguishes multi-label classification from the standard multi-class classification is

that the labels in multi-label classification are not mutually exclusive. Recently, multi-label

classification has attracted attention on a wide variety of domains [175] [141].

Cost functions such as ranking loss, cross-entropy, and mean-squared error loss

commonly used in single-label classification tasks cannot be directly applied to multi-label

classification problems. A widely adopted approach is to transform the problem into a

single-label classification. A classic method is one-vs-rest or one-vs-all. One-vs-rest

splits the multi-label classification problem into several binary classification subproblems.

Each subproblem has a classifier trained on one of the single labels. Then, the final

prediction result is the ensemble of the output from all classifiers [12]. However, one
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major disadvantage of the native one-vs-rest method is disregarding inter-label depen-

dency. It is well-studied that strong co-occurrence exists in most multi-label classification

tasks [57] [126]. A prevalent case can be observed in natural disaster images, where

victims and building debris frequently appear together. Many recent studies focus on

learning the underlying correlation among labels so that the inter-label dependency can

be retrieved [214] [188]. Furthermore, to infer the joint label probability from the latent

space, the final loss functions should be able to assess the optimal confidence thresholds

for separating each label [101]. However, such approaches require precisely formulated

modeling of the co-occurrence dependencies between labels, which can vary extensively

among tasks and input sources [207]. Moreover, inevitable trade-offs still need to be made

between the model complexity and the training time since the pair-wise correlation strategy

adopted in these studies inevitably creates a large number of parameters [183].

This section proposes a novel multi-label multi-task attention network (MTMLAN)

that utilizes the temporal and spatial information from the input data for video information

retrieval tasks. An attention mechanism is applied to facilitate the training process by

putting more weight on a specific segment of the input sequence. We applied a novel

dynamic weighting method that can automatically adjust the task weights based on the

sample and task-level learning complexity to address the task weighting problem challenge.

We evaluated our framework on a multi-label natural disaster video dataset, which can be

expanded to almost any domain. The dynamic weighting method can be applied to all deep

neural networks, greatly expanding its usability. The key contributions of this work are:

• A novel deep learning framework MTMLAN that utilizes multi-task learning to
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solve multi-label video information retrieval tasks.

• A novel dynamic task balancing method for multi-task learning problems based on

the sample and task-level learning complexities.

The proposed dynamic task balancing could be applied to any deep neural network

(DNN) and problem domains. In this work, we constructed recurrent neural networks

(RNNs) based DNN named multi-task multi-label attention network (MTMLAN) for

demonstration.

4.2.1 Architecture Design

The main architecture of MTMLAN follows the hard parameter sharing schema

[150]. It consists of two main components: shared and task-specific networks. Figure 13

shows the overview of our proposed framework. The shared network learns the shared

feature representation of all tasks, which can significantly reduce the risk of overfitting. In

this paper, we construct the shared network based on the Inception V3 [164] model. The

network consists of multiple small convolutional filters (3×3), and a batch normalized

fully connected layer of the auxiliary classifier. The original Inception V3 is truncated

after the last average pooling layer to generate the spatial features.

The outputs of the shared network are then fed into each task-specific network.

The task-specific network contains two bidirectional gated recurrent units (BiGRU) and

an attention module. The BiGRUs extract temporal information from the sequential

video frames. The attention module enables task-specific networks to learn task-specific

features. In other work, it functions as a feature selection mechanism by helping the
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model focus on the most relevant part of the input sequence. In this paper, the attention

module is implemented based on self-attention [34], a particular variant of the attention

mechanism. While in regular attention, the model looks at multiple sequence inputs at

adjacent time steps to determine the weight to put on each location [13], self-attention

helps the model to focus at different locations of the current input sequence to get a more

in-depth representation of the subject matter.

We denote the input sequence as I and the number of features in I as n. Then, the

input vector can be described as:

I = (ω1, ω2, ..., ωn) (4.3)

where I is the output of the shared network and ωi is the ith feature for an n-dimensional

input vector. Then, the BiGRUs takes the input sequence I and generates the hidden state

hm for feature m:
−→
hm =

−−−→
GRU(ωm,

−−−→
hm−1) (4.4)

←−
hm =

←−−−
GRU(ωm,

←−−−
hm−1) (4.5)

The vectorized hidden state H is a constituent of each feature-level hidden state hi, which

is the concatenation of the feature-level hidden states from the two unidirectional GRUs:

H = (h1, h2, ...hn) (4.6)

Then, the attention weight matrix M is calculated by using the hidden state vector H:

M = softmax(Ws2tanh(Ws1H)) (4.7)
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where Ws1 and Ws2 are two trainable weight matrices, tanh() represents the hyperbolic

tangent function. The softmax function ensures the sum of the weight matrix is 1.

The attention weight matrix helps the model to focus on a specific location on

the input sequence by assigning corresponding weights to each feature. To get the final

weighted output A, we apply the attention weight matrix to the hidden state vector. Here

the matrix multiplication operation is used:

A = MH (4.8)

The weighted output is then fed into the last step of the task-specific network, which is the

final fully connected layer.

4.2.2 Dynamic task balancing

Multi-task learning requires carefully balancing the training progress between tasks.

The proposed dynamic task balancing method comprises two components: sample-level

dynamic balancing and task-level dynamic balancing.

4.2.2.1 Sample-level dynamic balancing

The traditional solution for the class imbalance problem is to assign a penalty factor

to the majority class in the loss function. While effective, this method only considers

the problem at a class level. The truth is sample difficulty also has a substantial impact

on the learning process. For instance, the cross-entropy (CE) loss function for binary

classification tasks can be described as:

CE(pk) = − log(pk) (4.9)
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where

CE(pk) =


p, if y = 1

1− p, otherwise

(4.10)

where y ∈ {−1, 1} is the ground-truth label, p ∈ [0, 1] represents the probability that the

target class has label y = 1. Based on [104], we define the sample-level loss function SL()

as:

SL(pk) = −(1− pk)
β log(pk) (4.11)

where αt is β is the sample level focusing parameter.

As the sample is misclassified and pk is small, (1−pk)β is very close to 1. Therefore,

the loss is not affected. In comparison, as pk gradually turns to 1, the impact on loss will

increase, which means the weight for correctly classified samples decreases. β controls the

magnitude of how the weight of the easy samples decreases. As a result, the sample-level

dynamic balancing method effectively helps the model to adjust the resources to difficult

samples.

4.2.2.2 Task-level dynamic balancing

One of the most prominent issues with multi-task learning is finding suitable

weights for each task so the weighted linear sum of all losses could be optimized. Inspired

by [32], we propose a novel task-level dynamic balancing (TDB) method that is capable of

handling the task imbalance problem. TDB uses the loss ratio between tasks as the metric

to measure task imbalances. The weight gradient from the first layer of the task-specific

network is used to evaluate the current learning magnitudes. Therefore, the goal of the
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task-level loss function TL(t) is to minimize the difference between the weighted gradient

of each task and the average gradient weighted by the training rate.

The task-level losses TL(t) at training step t is defined as:

TL(t) =
∑
j

N

nj

∣∣∣G(j)
W (t)−GW (t)×

[
rj(t)

θ
]∣∣∣

1
(4.12)

where N is the total number of training instances, nj is the number of instances in task

j. N
nj

is the inverted class/task distribution, which serves as a penalty term to suppress

the majority class/task. W contains weight parameters from the last layer of the shared

network, θ is a hyperparameter that governs how rapidly the training rate will be restored to

the average scale, G(j)
W (t) represents the L2 norm of the gradient of the weighted single-task

loss wj(t)Lj(t) for task j for the chosen weights W :

G
(j)
W (t) = ∥∇Wwj(t)Lj(t)∥2 (4.13)

GW (t) defines the average gradient norm among all tasks T at time step t:

GW (t) = ET

[
G

(j)
W (t)

]
(4.14)

The relative inverse training rate of task j rj(t) is defined as:

rj(t) =
L̂j(t)

ET

[
L̂j(t)

] (4.15)

where L̂j(t) is the loss ratio for task j at time step t to time step 0:

L̂j(t) =
Lj(t)

Lj(0)
(4.16)

After upgrading the weight parameters in the training steps, the task losses are normalized

so that the global training rate will not affect the gradient. The task weight for the next

72



training set is then defined as:

wj(t+ 1) = λ(t)wj(t+ 1) (4.17)

where

λ(t+ 1) =
T∑

j wj(t+ 1)
(4.18)

The steps to implement TDB for each training step can be described as 1) Perform

a forward pass at the beginning of each training step, 2) extract the gradients of the first

layer in each one of the task-specific networks Gj
W , and their corresponding L2 norms are

calculated, 3) calculates the average gradient GW (t), 4) calculate the relative loss t̂ for

each task, 5) calculate the relative inverse training rates rj(t) for each task, 6) calculate the

GW (t)×
[
rj(t)

θ
]

in equation 10, 7) calculate the gradient loss TL(t), 8) update the task

loss weights from wj(t) → wj(t + 1), 9) update the model weights W (t) → W (t + 1),

10) re-normalize the task loss weights wj(t+ 1)

4.2.3 Experiments and Analysis

4.2.3.1 Dataset

In this work, we used a natural disaster video dataset [141] collected from YouTube.

It contains 1,540 video clips and seven concepts (shown in Figure 7) related to the 2017

hurricanes Harvey and Irma. Following our previous work [140], each video clip is

sub-sampled to 40 frames.
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Table 7: The statistical summary of the disaster video dataset

Concepts Number of Instances P/N Ratio

Demonstration 150 0.047

Emergency Response 338 0.105

Flood/Storm 971 0.301

Human Relief 273 0.085

Damage 371 0.115

Victim 311 0.096

Speak/Briefing/Interview 811 0.251

Total 3,225

4.2.3.2 Experimental setup

The dataset is randomly split into 60% for training, 20% for validation, and 20%

for testing. All hyperparameters are tuned on the validation set. The Inception V3-based

shared-network is pre-trained on ImageNet [38] and the output of the last average pooling

layer is used as the input for the task-specific networks. The proposed sample-level

balancing loss function is used for each task-specific network, and the task-level balancing

loss function is used on the final aggregated loss. Based on our empirical study, setting

the hyperparameter α in the task-level loss function to 1 returns the best results. During

the training, a batch size of 20 is used for the input. The learning rate is set to 0.001
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Table 8: The per-concept accuracy results on the disaster video dataset

Approach Demonstration Emergency Response Flood/Storm Human Relief Damage Victim Briefing

CMLC 0.8136 0.8066 0.8466 0.8123 0.7566 0.7452 0.8574

EWMTC 0.8249 0.8516 0.8779 0.8346 0.8010 0.7947 0.8552

GradNorm 0.8469 0.8711 0.9024 0.8753 0.8719 0.8540 0.8807

WU 0.8441 0.8597 0.9108 0.8776 0.8697 0.8600 0.8791

MTMLAN w/o

SL Balancing
0.8740 0.9124 0.9137 0.9145 0.8913 0.8654 0.8985

MTMLAN w/o

TIP
0.8948 0.9116 0.9194 0.9159 0.9083 0.8712 0.9001

MTMLAN 0.9335 0.9487 0.9331 0.9410 0.9215 0.8833 0.9221

and Adam [88] is used as the optimizer during the training. We report the results in

Micro Averaged F-measure (MicroF1), Hamming Loss (HL), and Mean Average Precision

(MAP).

4.2.3.3 Experimental Results

To demonstrate the effectiveness of our approach, several baseline methods are

also tested on the disaster video dataset: 1) A common multi-label classification model

(CMLC). It has a similar network structure as the proposed MTMLAN before the task-

specific networks. This baseline model replaces the task-specific networks with a single

2-layer Bidirectional GRU. The sigmoid activation function is applied on the last fully

connected layer, and cross-entropy is used as the loss function; 2) A equal weight multi-

task classification model (EWMTC). It has the same network structure as MTMLAN
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Table 9: Performance evaluation results on the disaster video dataset

Approach Weight Balancing MicroF1 HL MAP

CMLC N/A 0.7267 0.1277 0.6848

EWMTC Equal task weight 0.8015 0.1129 0.7341

GradNorm Task-level 0.8569 0.0788 0.7822

WU Task-level 0.8441 0.0793 0.7463

MTMLAN w/o

SL Balancing
Task-level 0.8740 0.0661 0.8233

MTMLAN w/o

TIP

Sample-level &

task-level
0.8889 0.0634 0.8245

MTMLAN
Sample-level &

task-level
0.9135 0.0512 0.8559

without the sample-level and task-level dynamic balancing mechanism. Therefore, the

final loss is simply the equal weight linear sum of all task losses, 3) GradNorm [32]

is applied on MTMLAN to replace the proposed sample-level and task-level dynamic

balancing mechanism, 4) Weight Uncertainty (WU) [85] method. The sample-level and

task-level dynamic balancing mechanism in MTMLAN are replaced by the homoscedastic

uncertainty approach, 5) MTMLAN without sample-level dynamic balancing (MTMLAN

w/o SL Balancing), 6) MTMLAN without task imbalance penalty term (MTMLAN w/o
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TIP).

Table 9 shows the detailed performance results of the baselines and the proposed

MTMLAN method. The “weight balancing” column shows which type of task weight

balancing the corresponding method applies. It can be seen from the table that the common

multi-label classification (CMLC) method has the worst performance regarding all three

metrics. The equal weight multi-task classification (EWMTC) method performs better.

This illustrates the effectiveness of multi-task learning in solving multi-label problems.

The results of the two state-of-the-art multi-task learning techniques, namely

Weight Uncertainty (WU) and GradNorm, demonstrate further improved performance

compared to the vanilla EWMTC approach, with GradNorm having a slight edge over WU.

It should be noted that both methods only focus on optimizing task-level weight balance.

Next, we compare the performance of the three variants of the proposed MTMLAN

method. It can be seen from the table that both of them outperformed GradNorm and WU.

The model performance did suffer when purposely excluding the sample-level balancing

function or the task imbalance penalty term in the task-level balancing function. This

demonstrates the effectiveness of the two components.

Table 8 shows the detailed classification accuracy for each task/concept of the

baselines and the proposed MTMLAN method. It can be seen from the table that the

trend for task-level classification accuracy performance is entirely consistent with the

overall performance of each technique. The standard multi-label classification (CMLC)

method shows the worst performance among all seven tasks/concepts, especially on

tasks/concepts with fewer samples. Table 7 shows that the P/N ratio of flood/storm and
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speak/briefing/interview concepts are significantly higher than the rest of the concepts

in the dataset. This partly explains the worse performance on the minority concepts. In

comparison, the equal weight multi-task classification (EWMTC) method performs better,

proving that the model could generalize better on the whole problem domain by learning

the shared representation across all tasks. The same outcome applies to GradNorm and

Weight Uncertainty, improving accuracy across all tasks/concepts. However, none of these

approaches shows a noticeable improvement in narrowing the performance gap between

the minority and majority tasks/concepts.

In contrast, components in MTMLAN, such as the sample-level balancing function

and the task imbalance penalty term, force the model to allocate more resources to difficult

samples and minority tasks/concepts while training. As a result, minority tasks/concepts

observed much higher performance gain than their majority counterparts. For instance,

when using the results of CMLC as a benchmark, the accuracy of demonstration, damage,

and victim concepts have improved by 14.74%, 21.79% and 18.53%, respectively. This is

significantly higher than the improvements on majority concepts, such as flood/storm and

briefing, which account for 10.22% and 7.55%.

We further demonstrate the effectiveness of the proposed method in Figure 11,

which shows the training loss history of MTMNAN against the other two state-of-the-art

methods. It can be seen from the figure that MTMNAN constantly produces lower losses

compared to the other two methods.
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Figure 11: Training loss comparison among Weight Uncertainty, GradNorm, and the

proposed MTMNAN methods

4.3 Conclusion

This work presents the novel dynamic task-balancing approach and a multi-label

multi-task deep learning framework for disaster video classification. The proposed MTM-

NAN model utilizes the shared network to learn general information that can be shared

across all tasks. On the other hand, task-specific networks help the model learn patterns

related to each task. The proposed dynamic task balancing approach automatically ad-

justs the training progress on both the sample and task levels. The sample-level dynamic

balancing function focuses on difficult instances by allocating more resources. At the

same time, the task-level dynamic balancing mechanism adjusts weight distribution by
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attending to the training rate of each task. In addition, extra cautions are paid to the

task imbalance problem by introducing the task penalty term to the task-level balancing

function. In conclusion, we showed that the proposed MTMNAN could perform better than

other state-of-the-art techniques. The next chapter will extend the proposed framework to

accommodate multimodal data inputs.
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CHAPTER 5

HIERARCHICAL GRAPH FUSION

Multimodal learning has attracted significant interest from the research community

due to its benefit in utilizing the massive amount of real-world data which often contain

multiple data sources [29] [30] [142]. Compared to its single-modality counterpart, multi-

modal learning is the technique that focuses on exploiting the rich information underlying

various input modalities. One essential step in multimodal learning is multimodal fusion,

where the input features of each modality are combined to form a single vector. Therefore,

the feature fusion strategy substantially impacts the model’s effectiveness in harvesting

the information provided by multiple input sources. Contrary to traditional belief, merely

increasing the number of input modalities does not always yield better results [16]. The

main cause that leads to the subpar performance is due to the oversight of cross-modality

interactions.

How to effectively fuse the representations of diverse modalities has become a

pressing issue in multimodal learning and therefore attracted much attention from the

research community. The heterogeneous nature of multimodal data creates an emerging

barrier in harnessing comprehensive information across all modalities, which is the key

to fully understanding and utilizing the rich multimedia information [73]. Early attempts

at multimodal fusion tend to work on each modality separately. Each modality is trained

on its own network with the resulting intermediate features combined in different stages
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of the processing chain, such as early fusion and late fusion [157]. However, due to the

heterogeneous nature of multimodal data and the disconnection among networks, the fused

vector still falls short of representing the complex distribution among modalities.

This chapter introduces the proposed hierarchical multimodal fusion network

and its applications. The multimodal fusion network aims to capture the inter-modality

correlations among modalities and, at the same time, retain their independent properties.

The proposed method has been applied to two applications: a hierarchical multimodal

fusion network with dynamic multi-task learning for disaster situation assessment and a

machine learning framework for airfare price prediction.

5.1 Hierarchical Multimodal Fusion Network with Dynamic Multi-Task Learning

In this section, we propose a novel hierarchical multimodal fusion network with

dynamic multi-task learning [178]. The multi-task learning strategy applied in this work

combines the automatic loss weighting and dynamic loss balancing introduced in Chapter 4.

The multimodal fusion network hierarchically joins each modality to form a graph structure

where the vertices represent joined modalities and the edges contain the cross-modality

interactions. The relative importance among joined modalities at the same level is learned

in a sample-to-sample fashion and applied to formulate the joint embedding that will

be used in the next level. We also propose a dynamic multi-task learning approach

that disintegrates the multi-label classification problem into various single-label binary

classification tasks. By monitoring the training complexity in each task, the dynamic

multi-task learning unit automatically adjusts the weighting of the task loss so that the
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optimal weight balance can be achieved. The dynamic multi-task learning unit also assigns

a set of initial task loss weights at the beginning of the training cycles and keeps updating

them throughout the training process to ensure the task loss weights are not caught in the

local minimum/maximum.

In summary, the major contributions of this work are listed below:

• We propose a novel hierarchical multimodal fusion network that exploits the cross-modal

interactions.

• A dynamic multi-task learning approach that automatically optimizes the model training

process based on both task level and sample level training complexities. It also re-

balances the loss weights for each task at the onset of the training cycles to minimize

the chance of task weights being caught in the local minimum/maximum.

Figure 12: Hierarchical Graph Fusion Network (HGFN) with 3 input modalities
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5.1.1 Architecture Design

In this section, we present the architecture design of the hierarchical multimodal fu-

sion multi-task learning framework. The framework is composed of two main components:

a Hierarchical Graph Fusion Network (HGFN) and a dynamic MTL (DMTL) module. In

the first step, the feature representations of each modality are fused by the HGFN. In step

two, the joint feature produced in step one will be used by the DMTL module to optimize

the model training progress by dynamically adjusting the loss weights assigned to each

task

5.1.2 Hierarchical Graph Fusion Network

Inspired by [120], we form the HGFN by exploiting the n-modal interactions.

HGFN combines all modalities on unimodal, bimodal, and trimodal levels and models

the interactions and relationships between each pair of combinations. An overview of the

HGFN is shown in Figure 12.

The first level contains all unimodal and their interactions. We define the unimodal

input feature vector Vi, where M is the total number of modalities and i = [1,M ]. Although

HGFN can be applied to any number of modalities, here we consider M = 3 in the rest

of the paper. To model the relative importance of each modality and assign weights to

the edges, we apply a Dynamic Attention Unit (DAU) to learn the importance of each

modality and assign it the weights of the connected edges. More specifically, features

from each modality are first concatenated together and then pass to a network composed

of 2 convolutional layers with 5 by 5 and 1 by 1 kernel size and LeakyRelu activation.
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Padding is performed to ensure the features of each modality have the same dimension.

This process can be described as follows.

w1 ⊕ w2...⊕ wM = DAU(V1 ⊕ V2...⊕ VM) (5.1)

where ⊕ is the concatenation operation, V1, V2, ...VM are the unimodal vectors of the M

modalities, and w1, w2, ...wM are the corresponding weights. DAU learns the dynamic

importance score that should be assigned to each vector in a sample-based fashion. Such

an importance score will be used as the foundation to form the edge weights at higher

levels.

In the next step, the final unimodal level vector can be obtained as the weighted

average of vectors from all unimodal level vertices:

Funimodal =
1

M

M∑
i=1

wi · Vi (5.2)

where Funimodal is the combined unimodal vector.

In the bimodal level, each pair of unimodal vectors are combined to form the

vertices in this level. A neural network CONV with one 1D convolutional layer and

one dense layer with LeakyRelu activation is used to combine the unimodal vectors and

produce all bimodal level vertices. This procedure can be described as follows:

V(a,b) = CONV (Va ⊕ Vb)

a = 1, 2, ...M ; b = 1, 2, ...M ; a ̸= b

(5.3)

where V(a,b) is the bimodal vector. Regarding the edges that connect the vertices between

unimodal and bimodal levels, we assume that the closer the two features in the vector

space, the more homogeneous the information they possess. Therefore, the combination
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of such two features will not provide as much information as the two distinct features do.

Based on this assumption, we calculate the similarity between each pair of nodes at the

bimodal level. The calculation can be described as:

Sa,b = COS(Ṽa, Ṽb) (5.4)

where Sa,b represents the similarity score between vertices a and b, COS is the cosine

similarity function, and Ṽa and Ṽb are the softmax normalized form of vector Va and Vb.

The purpose of softmax normalization is to constrain the values of both vectors to be

between 0 and 1. According to our assumption, the more similar two vectors are, the less

weight they should carry when combined. In other words, the edge weight between the

two vertices should grow in inverse proportion to the similarity score. Therefore, the edge

weight that connects vertex a in the unimodal level and vertex ab in the bimodal level is

calculated as wa

Sa,b+θ
. Similarly, the edge weight that connects vertex b and ab is defined as

wb

Sa,b+θ
. Term θ is an adjustable factor that controls the growth rate with a value between

0 and 1. Based on the empirical study, θ = 0.5 is used in this paper. Consequently, the

vertex weight in the bimodal level is formulated as:

qa,b =
wa + wb

Sa,b + θ

wa,b =
eqa,b∑M

j=1

∑M
k=1,j ̸=k e

qj,k

(5.5)

where qa,b is the vertex weight for V(a,b) in the bimodal level, and wa,b represents the

softmax normalized form of qa,b. Then, the final combined bimodal level vector can be

described as:

Fbimodal =
M∑
a=1

M∑
b=1,a̸=b

wa,b · V(a,b) (5.6)
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where Fbimodal is the combined bimodal vector

At the trimodal level, all calculations are similar to the procedure illustrated in

the bimodal part. Equations (5.4), (5.5), and (5.6) are used to calculate the trimodal level

similarity scores, vertex weight, and combined trimodal vector. The trimodal level contains

two types of vertices: 1) the combination of bimodal vertices; and 2) each bimodal vertex

is combined with the unimodal vertex that is not included in the formation of this bimodal

vertex. Therefore, for a dataset with 3 input modalities, there will be a total of 6 vertices in

the trimodal level.

In the last step, the combined vectors from unimodal, bimodal, and trimodal levels

are concatenated to form the final combined vector Fcombined:

Fcombined = Funimomdal ⊕ Fbimodal ⊕ Ftrimodal (5.7)

5.1.3 Multi-task learning Module

Multi-task learning helps the model become more generalized by having multiple

tasks training at the same time, which also reduces the potential of overfitting. In this work,

the dynamic multi-task learning (DMTL) [178] strategy introduced in Chapter 4 is applied

to train the model to predict arrival and departure delays simultaneously. DMTL works

on both sample and task levels. Sample-level DMTL focuses on prioritizing resources

to samples that produce more significant errors. On the other hand, task-level DMTL

automatically adjusts the weight on the loss generated by each task during the training

phase so that tasks producing more significant losses will be prioritized. Additionally,

automatic loss weighting [182] is applied on the training iteration level, enabling the model
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to automatically adjust the loss weights for each task to improve performance.

5.1.4 Experiments and Analysis

5.1.4.1 Datasets

CrisisMMD [3] is a multimedia Twitter dataset with more than 16,000 tweets

and 18,000 images that are related to seven major natural disaster events. Each sample

is labeled with 3 groups of concepts: data informative level, humanitarian category, and

damage level. The data informative level represents the amount of information carried,

the humanitarian category covers the type of humanitarian crisis and relieving efforts that

occurred at the scene, and the damage level is the severity of damage to infrastructures

and utilities. We report the F1 score, Hamming Loss (HL), and Mean Average Precision

(MAP) on this dataset. For F1 and MAP, the higher the score the better, whereas for HL

the lower the score the better.

YouTube Disaster dataset [141] is a multi-label YouTube hurricane disaster video

dataset that contains more than 1,500 video clips and the corresponding text descriptions.

Each sample is manually labeled with 7 concepts based on the elements present in the

scene. These concepts include demonstration, emergency response, flood/storm, human

relief, damage, victim, and speak/briefing/interview. We report the model performance in

F1 score, Hamming Loss, and Mean Average Precision on this dataset as well.

5.1.4.2 Experimental Setup

Visual Feature Extraction: We use ImageNet [38] pretrained Inception V3 [164]

model as the feature extractor for the visual data. Regarding the YouTube Disaster dataset,
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Table 10: Data informative concept performance evaluation on the CrissMMD dataset

Method F1 HL MAP

CFC + LSEW 0.623 0.237 0.587

MATF + LSEW 0.774 0.151 0.738

GFN + LSEW 0.813 0.104 0.762

HGFN + LSEW 0.839 0.097 0.794

CFC + MOO 0.685 0.202 0.638

CFC + MTI-NET 0.673 0.214 0.625

CFC + DMTL 0.736 0.164 0.709

HGFN + DMTL 0.862 0.041 0.825

each video clip is subsampled into 40 frames and resized and cropped into 224 by 224

pixels.

Textual Feature Extraction: Embeddings from Language Models (ELMo) rep-

resentation [139] is used to generate the word embedding for textual data. Compared to

traditional text embedding techniques such as Word2vec [128] and Glove [138], ELMo

can capture the morphological information and also excel in handling out of vocabulary

words.

Audio Feature Extraction: A pre-trained SoundNet [10] is used to extract the

audio features.

For the CrissMMD dataset, features generated by each pre-trained model are
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Table 11: Humanitarian category concept performance evaluation on the CrissMMD

dataset

Method F1 HL MAP

CFC + LSEW 0.527 0.293 0.496

MATF + LSEW 0.681 0.207 0.649

GFN + LSEW 0.677 0.209 0.642

HGFN + LSEW 0.712 0.181 0.695

CFC + MOO 0.603 0.246 0.571

CFC + MTI-NET 0.614 0.237 0.588

CFC + DMTL 0.686 0.194 0.660

HGFN + DMTL 0.762 0.153 0.749

directly passed to HGFN to perform the multimodal fusion. To exploit the temporal

information in the YouTube Disaster dataset, features generated by the pre-trained models

are first fed into a small neural network with 2 Bidirectional Gated Recurrent Unit (Bi-

GRU) layers with attention enabled. Then, the intermediate vectors are processed by

HGFN, which is similar to the process applied to CrissMMD.

For both datasets, 60% of the data is used for training, 20% for validation, and

20% for testing. The validation set is used to tune all hyperparameters, and the term α

in the TDB loss function is set to 1 based on the empirical study. Adam [88] is used for

optimizing the training process and the initial learning rate is set to 0.01.
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Table 12: Damage level concept performance evaluation on the CrissMMD dataset

Method F1 HL MAP

CFC + LSEW 0.634 0.229 0.607

MATF + LSEW 0.781 0.148 0.745

GFN + LSEW 0.819 0.117 0.793

HGFN + LSEW 0.852 0.080 0.839

CFC + MOO 0.693 0.181 0.664

CFC + MTI-NET 0.688 0.186 0.650

CFC + DMTL 0.746 0.149 0.715

HGFN + DMTL 0.913 0.029 0.897

The DMTL module is applied to 3 concept groups of the CrissMMD dataset, in

which each concept is modeled as a distinct task. In comparison, we consider each label

in the YouTube Disaster dataset as a single task. This converts the original multi-label

classification problem into an MTL problem.

5.1.4.3 Experimental Results

Several baselines, including state-of-the-art methods, are selected to demonstrate

the performance of our proposed framework. The multimodal fusion baselines include 1)

a standard fuse by concatenation (CFC) approach that simply concatenates each modal-

ity immediately after the initial feature extraction step; 2) tensor-based fusion method
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Table 13: Performance evaluation on the YouTube Disaster dataset

Method F1 HL MAP

CFC + LSEW 0.769 0.157 0.722

MATF + LSEW 0.865 0.053 0.818

GFN + LSEW 0.889 0.041 0.805

HGFN + LSEW 0.931 0.024 0.890

CFC + MOO 0.874 0.040 0.828

CFC + MTI-NET 0.882 0.035 0.831

CFC + DMTL 0.922 0.027 0.904

HGFN + DMTL 0.987 0.011 0.958

Table 14: Per-concept classification accuracy on YouTube Disaster dataset

Approach Demonstration Emergency Response Flood/Storm Human Relief Damage Victim Briefing

CFC + LSEW 0.823 0.812 0.866 0.829 0.787 0.780 0.875

MATF + LSEW 0.853 0.841 0.897 0.854 0.811 0.804 0.905

GFN + LSEW 0.866 0.851 0.902 0.865 0.831 0.824 0.880

HGFN + LSEW 0.914 0.909 0.960 0.927 0.913 0.895 0.923

CFC + MOO 0.841 0.835 0.887 0.853 0.819 0.804 0.890

CFC + MTI-NET 0.866 0.852 0.875 0.841 0.833 0.812 0.906

CFC + DMTL 0.933 0.908 0.932 0.931 0.942 0.903 0.915

HGFN + DMTL 0.955 0.971 0.989 0.973 0.952 0.917 0.982
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MAFT [208]; and 3) Graph Fusion Network (GFN) [120]. The baselines for MTL include

1) a linear sum of all task loss with equal weights (LSEW); 2) Multi-Objective Optimiza-

tion (MOO) [154]; and 3) Multi-scale Task Interaction NETwork (MTI-NET) [169]. For

comparison purposes, we replace the model low-level layers of each baseline with the

aforementioned pre-trained models.

Multimodal fusion strategies: Table 10, Table 11, and Table 12 demonstrate the

performance of the proposed HGFN and DMTL approaches, as well as other baseline

methods on the data informative, humanitarian category, and damage level concepts of

the CrissMMD dataset. Table 13 shows the experimental results on the YouTube Disaster

dataset. It can be observed that for both datasets, the CFC+LSEW combination yields the

lowest score in all metrics. This is unsurprising since a simple concatenation of features in

the early stage often fails to reflect the heterogeneous distribution of different modalities.

Moreover, an equal weight linear sum of task loss in MTL has very limited effectiveness

or even a negative impact when a few tasks dominate the training process.

Tensor-based fusion method MATF and graph-based fusion method GFN both

demonstrate performance improvements compared to the CFC+LSEW vanilla approach.

GFN exhibits a clear edge over MATF, especially on data with more input modalities, such

as the YouTube Disaster dataset. This is partly because common tensor fusion approaches

like MATF only model the joint embedding representation after the fusion operation,

whereas GFN fills this gap by learning the inter-modality interaction during the early stage.

Our proposed HGFN outperforms all baselines and beat the 2nd best performer by

4.2% in F1 score and 8.5% in MAP. We argue that this can partly be attributed to the DAU
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that learns the relative importance of each modality and integrates it at the beginning of

the graph fusion network. We also report the per-concept results on the YouTube Disaster

dataset in Table 14, which shows the classification accuracy of all 7 concepts. It can be

observed that our proposed approach outperforms GFN+LSEW (the second-best result) by

up to 8.2% in the damage concept. Our model exhibits consistent performance on both

datasets regarding the multimodal fusion results.

Multi-task learning strategies: Table 10, Table 11, Table 12, and Table 13 also

illustrate the results of MTL methods on both CrissMMD and YouTube Disaster datasets.

MOO and MTI-NET exhibit more robust performance than the equal-weight linear sum

MTL approach. However, the overall improvement is not quite significant. A probable

explanation is in the situation of severe class imbalance, where there will be a substantial

performance hit on both methods. Our proposed approach handles the class imbalance

issue by introducing the inverted task sample distribution ratio term in the DMTL loss

function, which helps the model further penalize the majority classes by allocating more

resources to the minority classes. We also argue that re-balancing the task loss weight at

the beginning of a training cycle helps our model continue reducing the total training loss;

while this mechanism is absent in the other two methods.

For the CrissMMD dataset, our proposed DMTL approach outperforms the 2nd

best method by 7.2% in F1 score and 7.3% in MAP. Regarding the YouTube Disaster

dataset, our approach also leads the 2nd best performer in classification accuracy by 9.1%

in the victim concept.

Our proposed model with the hierarchical graph fusion network and dynamic
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MTL achieves the best performance among all baselines in both CrissMMD and YouTube

Disaster datasets. Furthermore, the modularity design of HGFN and DMTL modules

makes them very flexible and easy to apply to other data types and model structures.

5.1.5 Conclusion

This work proposes a hierarchical multimodal multi-task learning framework that

learns the joint embedding space for all cross-modality interactions and handles input

data with multiple non-exclusive labels. We first analyzed the challenges of multimodal

fusion and designed a novel hierarchical graph fusion network that is capable of exploiting

joint embedding among all cross-modality interactions. Then, the DMTL module that

automatically adjusts the loss weight for each task based on their learning complexity

is applied. The DMTL module also takes into account the sample difficulty factors by

allocating more resources to the hard samples. A task loss weight re-balancing mechanism

is in place to ensure an optimal weight distribution at the beginning of the training cycle,

which effectively prevents the weight from falling into the local minimum/maximum.

Experimental results on two multimedia datasets show that our method outperforms

baseline approaches by a clear margin. Moreover, our proposed framework can be applied

to other data domains and network structures with little effort due to its modular nature.

5.2 Hierarchical Fusion Network for Airfare Price Prediction

Since the deregulation of the airline industry, airfare pricing strategy has developed

into a complex structure of sophisticated rules and mathematical models that drive the

pricing strategies of airfare [162] [123] [121]. Although still primarily held in secret,
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studies have found that these rules are widely known to be affected by a variety of

factors [135] [23]. Although still significant, traditional variables such as distance are

no longer the sole factor that dictates the pricing strategy. Elements related to economic,

marketing and societal trends have played increasing roles in dictating airfare prices.

Most studies on airfare price prediction have focused on either the national level or

a specific market. Research at the market segment level, however, is still very limited. We

define the term market segment as the market/airport pair between the flight origin and the

destination. Predicting the airfare trend at the specific market segment level is crucial for

airlines to adjust their strategy and resources for a specific route. However, existing studies

on market segment price prediction use heuristic-based conventional statistical models,

such as linear regression [173] [146], and are based on the assumption that there exists a

linear relationship between the dependent and independent variables, which in many cases,

may not be valid.

Recent advances in Artificial Intelligence (AI) and Machine Learning make it

possible to infer rules and model variations on airfare prices based on a large number of

features, often uncovering hidden relationships amongst the features automatically. To

the best of our knowledge, all existing work leveraging machine learning approaches

for airfare price prediction are based on: 1) proprietary datasets that are not publicly

available [40] [131] and 2) transaction records data crawled from online travel booking

sites like Kayak.com [168] [31] [110]. The problem with the former lies in the difficulty

of gaining access to the data, making reproducing the results and extending the work

nearly impossible. The issue with the latter is that the transaction records from each online
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booking site are a small fraction of the total ticket sales from the entire market, making the

acquired data likely to be skewed and, thus, not representing the true nature of the entire

market.

This work proposes a novel hierarchical fusion network applied to two public data

sources in the domain of air transportation: the Airline Origin and Destination Survey

(DB1B) and the Air Carrier Statistics database (T-100) [181]. The proposed framework

combines the two databases and macroeconomic data and uses machine learning algorithms

to model the quarterly average ticket price based on different origin and destination pairs,

known as the market segment. The framework achieves a high prediction accuracy with a

0.869 adjusted R squared score on the testing dataset.

5.2.1 Architecture Design

The proposed framework utilizes both the DB1B and T-100 datasets and macroeco-

nomic data to predict the quarterly average airfare at the market segment level. Figure 13

shows an overview of the major components of the proposed framework. In the data

preprocessing step, all datasets are cleaned to exclude possible erroneous samples, trans-

formed and combined based on the market segment. The feature extraction module serves

to extract and generate handcrafted features that aim to characterize the market segment.

The goal of the feature selection module is to optimize the prediction model’s performance

by analyzing the features’ effectiveness and removing any irrelevant features. Finally, the

hierarchical graph fusion strategy is applied to the selected features, which are used as the

input to the prediction model.
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Figure 13: Proposed framework for airfare price prediction using public data sources
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5.2.2 Datasets

To build the airline ticket price model at the market segment level, information

about both the airline traffic and passenger volume for each market segment is required.

Therefore, two public datasets (DB1B and T-100) are used in our proposed framework.

Data collected during 2018 are used to train and evaluate the proposed model.

Many attributes contain the same information in the DB1B and T-100 datasets.

Directly merging the tables creates many duplicate fields. Also, the airline data may

include erroneous values caused by human error, currency conversion error, etc. Therefore,

a properly designed data preprocessing workflow is crucial to generate accurate input

data to build the machine learning model. For our proposed framework, a subset of most

related data is used, including the origin airport (ORIGIN), the destination airport (DEST),

time of the itinerary (QUARTER), carrier information (REPORTING CARRIER), seat

class (SEAT CLASS) (e.g., first, business, economic, etc.), total flight distance for a ticket

(DISTANCE), airfare price (ITIN FARE), and the number of passengers in a ticket (PAX).

First, the DB1B ticket and coupon tables are merged based on the ITIN ID. The

ITIN ID is the primary key for the ticket table. In the coupon table, all entries belonging

to the same ticket share the same ITIN ID. Samples in the DB1B ticket table with the

itinerary value (ITIN FARE) less than $50, or distance field (DISTANCE) less than 100

miles in the Coupon table are removed because those samples in practice, are considered

reporting errors. Samples with the price credibility field (DOLLAR CRED) equal to 0 are

unreliable carrier reports, which are also disregarded. Since only the ticket table contains

the ticket price, the price for each market segment is calculated based on the ITIN FARE in
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the ticket table and the distance ratio. The distance ratio measures the proportion between

the distance of each leg in the coupon table and the entire length of the itinerary in the

ticket table. Finally, the quarterly average fare value for each SEAT CLASS on each

specific market segment is generated.

Similar to the DB1B, the “SEATS” and “PAX” fields in T-100 are aggregated based

on the origin and destination airports pair for each quarter. In the final stage, the two data

sources consisting of the cleaned attributes are merged based on the market segment and

every quarter.

5.2.2.1 Feature Extraction

Several features have been extracted from the DB1B and T-100 datasets to represent

a specific aspect of the market segment. Furthermore, several macroeconomic features

are added to the feature set to exploit the relationship between the airline industry and the

overall economic conditions. Table 15 describes all the features that are identified during

feature extraction.

The Load Factor (LF) is a primary metric used in the transportation industry. It

represents the supply and demand relationship in a given market, strongly influencing an

airline’s pricing strategy. The T-100 dataset includes two features, the number of available

seats and the number of actual passengers carried, that allow us to calculate the LF of a

market by dividing the total passenger volume (P ) by the total number of Available Seats

(AS) in that market segment:

LF =
P

AS
(5.8)
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The effect of competition among airlines in a given market segment has been shown

to affect the pricing strategy of the airlines [56]. In a less competitive market, the market

power of a given airline is more substantial, and thus, it is more likely to engage in price

discrimination. On the other hand, the higher the level of competition, the weaker the

market power of an airline, and then the less likely the chance of the airline fare increases.

The competition factor in the proposed model is based on the Herfindahl-Hirschman Index

(HHI) [148], which measures the level of competition in a given market. It is the sum of

the squared fraction of the market share of each top company:

HHI =
C∑

a=1

sa, (5.9)

sa =
va

P
, (5.10)

where C is the total number of companies, sa is the market share of company a, va

is the number of passenger carried by company a, and P is the total number of passenger

in the market. We used the T-100 dataset to extract the market share of each airline in a

specific market segment by calculating the ratio of the number of passengers carried by

that airline to the total passenger volume of the market segment.

The emergence of Low-Cost Carriers (LCC) has revolutionized the entire operating

model of the airline industry. The presence of LCC in a market has substantially impacted

the total passenger volume and air ticket price [51]. A “LCC Presence” field is added to

indicate whether the “Carrier” field in the DB1B coupon table contains the International

Air Transport Association (IATA) code [76] related to one of the LCCs operating in the U.S.

domestic markets. The six LCCs are Allegiant Air, Frontier Airlines, JetBlue, Southwest
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Airlines, Spirit Airlines, and Sun Country Airlines.

Macroeconomic data, such as crude oil prices and Consumer Price Index (CPI),

can also be utilized to uncover the hidden trend in airline fares. Fuel costs can take up to

50% of the total operating cost of an airline [93]. Hence, the level of crude oil price plays

an essential role in formulating the airline’s pricing strategy. It is a common practice for

airlines to pass the cost of aviation fuel to the customer by adjusting the fare to compensate

for the fluctuation of crude oil prices. In this paper, we used the West Texas Intermediate

(WTI) crude oil price data and calculated its quarterly average value. Furthermore, the CPI

measures the weighted average prices of various types of consumer goods and services,

which include the prices in the transportation industry [96]. Therefore, we exploit its

potential to measure the current level of air travel cost. The monthly CPI data is acquired

from the Organization for Economic Co-operation and Development. Similar to the crude

oil price, we calculate the quarterly average value. Figure 14 depicts the quarterly value

trend of crude oil price, CPI, and airfare from 2006 to 2017. It demonstrates a clear

relationship between the three types of data.

5.2.2.2 Feature Selection

A feature selection technique is applied to improve the model performance by

investigating the degree of impact of each feature on the prediction result. We utilize the

random forests model to construct an automated feature selection module. random forests

is a tree-based ensemble learning algorithm that builds multiple decision tree classifiers

during the training phase and outputs the predicted results based on either the majority vote
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Figure 14: A comparison between the crude oil price, CPI and the quarterly averaged

airfare from 2006 to 2017

(classification) or the average (regression) of the predictions of all decision trees. After

training the random forests model with the entire feature set, it ranks all the features by

their importance. A feature’s importance is measured by the average decrease in impurity.

It is the total decrease in the node’s impurity caused by the corresponding feature, weighted

by the chance that the decision path includes this node. There are several ways of choosing

the impurity metric, and because our target is a continuous value, the sum of squared errors

(SSE) is chosen as the impurity metric. The SSE for node o can be calculated as:

SSEo =
S∑

j=1

ϵ2j , (5.11)
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where S is the number of splits from the node, and ϵ is the error between the true value and

the predicted value. The Node Importance (NI) for node o can be calculated as (assuming

the parent node splits into two child nodes):

NIo = woSSEo − wlSSEl − wrSSEr, (5.12)

where wo, wl and wr are the weighted number of samples pass through node o and it’s left

and right child node. Then, the Feature Importance (FI) for feature x can be calculated as

FIx =

∑
b,b∈nodes split on feature x NIb∑

k,k∈ all nodesNIk
. (5.13)

Generally, a feature gains more importance when it has a greater effect of reducing the

prediction error.

In the next step, the feature selection module applies Recursive Elimination (RE)

to select the best set of features for the prediction model. More specifically, for each

iteration, the feature with the lowest feature importance is eliminated, and the model will

be retrained on the updated input. This process terminates when removing more features

does not improve the model’s performance.

5.2.2.3 Hierarchical Graph Fusion

Factors that affect airfare can originate from various aspects. Therefore, it is

natural to include as many input variables as possible to improve the prediction accuracy.

When dealing with multimodal problems, a common practice is simply concatenating

all variables alone in one dimension. Although simple and effective in some cases, this

approach ignores the cross-modality interactions among each input source. In order to
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exploit the inter-modality dependency among all features, we adopted the hierarchical

graph fusion approach (HGF) in the model [178]. The structure of HGF is a tree graph.

Each modality is combined on different levels, in which the cross-modality interactions

are learned based on different combinations. Similar to GNN, we use nodes to represent

each feature combination and edges to represent the similarity between each pair of nodes.

Therefore, the value of each child node is the result of both parent nodes and the edge

weights. The final output of HGF is the concatenation of the weighted sum of each level.

5.2.2.4 Machine Learning Model

When developing the machine learning model, we chose random forests as the

learner for the airfare price prediction task. Based on our empirical study, the random

forests model demonstrates the best performance on the data as compared to several ML

techniques including LR, SVM, and neural networks. Comparison results are explained in

Section 5.2.3.

5.2.3 Experiments and Analysis

5.2.3.1 Experimental Setup

For our experiments, we collected 16,577,497 and 41,360,566 samples from the

2018 DB1B ticket table and coupon table, respectively. The T-100 dataset contains 329,426

samples. We tested several well-known machine learning models as baselines to compare

with the random forests (RF) model. In particular, linear regression(LR), support vector

machine(SVM), Multilayer Perceptrons (MLPs), and XGBoost Tree are adopted for the

evaluation. For the SVM model, the radial basis function kernel is used, the tolerance
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for the stopping criterion is set to 0.001, and the penalty parameter for the error term is

set to 0.1. For the MLPs, three hidden layers are used with 30 neurons per layer. The

Rectified Linear Unit (ReLU) [132] is used as the activation function and Adam is the

optimization function [89]. The learning rate is set to 0.0001 with momentum enabled set

to 0.9. For the XGBoost model, the number of estimators is set to 100 with a learning rate

of 0.1, and the max depth equals 5. For the RF model, the number of estimators is also set

to 100 with the minimum number of samples to split set to 2. To evaluate the proposed

price prediction model, two popular metrics for regression analysis are used: the Root

Mean Square Error (RMSE) and the Adjusted R Squared. RMSE calculates the differences

between the observed values, y, and predicted values, ŷ. This difference for each data

point is also called the residual. Thus, RMSE is calculated as follows:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (5.14)

where N is the total sample size. The lower the RMSE value, the higher the performance

of the regression model.

The Adjusted R Squared, (R2
adj), is usually used to explain how well the indepen-

dent variables fit a curve or line. Adjusted R2 also adjusts for the number of variables in a

model. The higher the Adjusted R Squared is, the better the result of regression is. It is

calculated as follows:

R2
adj = 1−

[
(1−R2)(N − 1)

N − p− 1

]
(5.15)

where p is the number of predictors and R2 is:
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R2 = 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − ȳ)2
(5.16)

where ȳ is the mean value of y.

5.2.3.2 Experimental Results

To demonstrate the importance of each feature for airfare price prediction, we

extracted the importance scores generated by the feature selection module. Figure 15

depicts the importance value for each feature. As shown in the figure, “Distance” and “Seat

Class” (Economy or business) are the most important factors for airfare price estimation

followed by “Passenger Volume”, “Load factor”, and “Competition Factor”. Although

the “CPI” and “Crude Oil Price” do not have very high importance scores, they can still

help the model predict a more accurate estimation of the airfare price. However, based

on our experiments, “Quarter” does not help the regression model. Including the variable

“Quarter” does not reduce the error during the training phase. Thus, it is automatically

removed by the RF feature selection module. The goal is to identify the features that

improve the model’s performance and adding irrelevant features deteriorates the model’s

performance, as the model learns an irrelevant pattern.

The results comparing various regression models with feature selection and without

feature selection are shown in Table 16. As seen from this table, LR and SVM have

the lowest performance compared to other ML methods concerning the RMSE and R2
adj

metrics. The performance of all models improves after applying feature selection, which

illustrates the importance of this module. XGBoost performs better than MLP, SVM, and
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Figure 15: Importance score value for each feature generated by the random forests model

LR but does not outperform RF for airfare price prediction. Therefore, we utilize RF in the

proposed framework, which achieves the highest performance compared to other baselines

for this dataset. Specifically, it reaches 62.753 and 0.869 RMSE and R2
adj , respectively. In

other words, it improves the R2
adj by 40% compared to the LR model, which is extensively

used in previous studies for airfare price prediction.

Another experiment was conducted to demonstrate the importance of features

specifically employed for our regression model. In this experiment, we only used standard

features with high importance scores, such as “Distance”, “Seat Class”, and “Passenger

Volume”. The results are presented in Table 17. Again, we find that LR and SVM have

lower performance than other models, and RF reaches the highest performance for RMSE

and R2
adj . However, the performance (R2

adj) dropped by almost 7% for the RF model when
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the less important factors were removed. Similarly, the performance for other models

dropped as well. Although the less important factors may not contribute significantly to

the performance, these results show that to achieve the best-performing model, one should

include the “Load factor”, “Competition Factor”, “CPI”, and “Crude Oil Price” as features.

Consequently, the proposed framework utilizes all these features to achieve the highest

airfare price prediction performance.

Table 18 demonstrates the impact of HGF on model performance. As shown in the

table, the prediction scores for all models received noticeable improvement by applying the

hierarchical fusion strategy. For instance, the adjusted R2 score increased by 4.08% for the

random forest model. Table 19 presents the prediction results of the proposed framework

on all tested machine learning models. Random forests received an adjusted R2 score of

0.903 and RMSE of 62.642, the best results among all models.

5.2.4 Conclusion

In this study, a hierarchical graph fusion framework was developed to predict

the quarterly average airfare price at the market segment level. We combined the U.S.

domestic airline ticket sales data and non-stop segment data from two public datasets

(DB1B and T-100). Several features were extracted from the datasets and combined

with macroeconomic data to model the air travel market segments. With the help of the

feature selection techniques and the HGF strategy, our proposed model can predict the

quarterly average airfare price with an adjusted R-squared score of 0.903. To the best of

our knowledge, most previous studies on airfare price prediction using the DB1B dataset
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have focused on conventional statistical approaches, which have limitations for problem

estimations and assumptions. Also, to our knowledge, no other studies have integrated the

information from DB1B, T-100, and macroeconomic data to model the air travel market

segment. Thus, our study demonstrates the effectiveness of the proposed hierarchical graph

fusion method, compares the performance of various machine learning classifiers and finds

the best one for the airfare price prediction task by leveraging the information from the

DB1B and T-100 datasets.
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Table 15: The list of features generated during the feature extraction stage with explanations

Feature Name Description

Distance
Market distance between the origin and

destination airports

Seat Class
Indicator for economy or premium

seat type

Passenger Volume
Total number of passengers traveled

between the origin and destination airports

Load Factor
The ratio of the total number of passenger

to the total number of seats in a market

Competition Factor The market HHI

LCC Presence Indicator of LCC operating in the market

Crude Oil Price Quarterly average of crude oil price

CPI Quarterly average of Consumer Price Index

Quarter Indicates the three-month period of the year
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Table 16: Performance comparison (before applying HGF) for different regression models

with and without feature selection

Method
Without feature selection With feature selection

RMSE R2
adj RMSE R2

adj

LR 111.000 0.612 110.284 0.618

SVM 112.963 0.587 108.358 0.626

MLP 88.447 0.754 85.832 0.766

XGBoost 83.481 0.778 80.447 0.797

RF 66.584 0.858 62.753 0.869

Table 17: Performance comparison for different regression models without Load factor,

Competition Factor, CPI, and Crude Oil Price features

Method
Without additional features With additional features

RMSE R2
adj RMSE R2

adj

LR 112.039 0.599 111.000 0.612

SVM 109.914 0.615 112.963 0.587

MLP 94.569 0.715 88.447 0.754

XGBoost 90.419 0.739 83.481 0.778

Random Forests 70.575 0.804 66.584 0.858
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Table 18: Performance comparison (before applying feature selection) for different regres-

sion models with and without hierarchical graph fusion

Method
Without HGF With HGF

RMSE R2
adj RMSE R2

adj

LR 111.000 0.612 106.560 0.636

SVM 112.963 0.587 109.574 0.610

MLP 88.447 0.754 85.832 0.782

XGBoost 83.481 0.778 85.705 0.806

Random Forests 66.584 0.858 63.92 0.893

Table 19: Performance comparison for different regression models with the proposed

framework

Method RMSE R2
adj

LR 109.031 0.623

SVM 107.382 0.644

MLP 83.991 0.792

XGBoost 82.857 0.816

RF 62.642 0.903
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CHAPTER 6

SPATIO-TEMPORAL GRAPH NETWORK

Many real-world problems can be represented by sequences of spatio-temporal

data that describe an activity that occurs in various locations and times, such as videos,

traffic flow data, and remote sensing imagery data. For example, each data sample contains

the geographic location and the corresponding timestamp in traffic flow data. State-of-the-

art deep learning approaches for processing spatio-temporal data combine convolutional

neural network (CNN) and recurrent neural network (RNN). CNN has been the standard

network structure for extracting local spatial characteristics in many studies [83, 136].

However, regular CNN only works on grid structures, such as images and videos, and

falls short of capturing the spatial relationship among all objects [192]. On the other hand,

when applying RNN-based methods to extract temporal features from the data, information

tends to be lost due to how the information in the hidden states is passed down inside the

network.

In this chapter, we first introduce the adaptive spatio-temporal graph network. The

proposed framework takes advantage of both local and global spatial-temporal relationships

between nodes in the network. The local spatial features are learned by connecting nearby

nodes. The global spatial features are learned by constructing the sparse adjacency matrix

representing the similarity among all nodes in the network. A BiLSTM-based sequence-to-

sequence model is applied to capture the temporal dependency among features from the
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input sequence. Then, we will introduce another graph network, the adaptive joint spatio-

temporal graph learning network (AJSTGL). AJSTGL utilizes static and adaptive graph

learning modules to capture the pre-defined and hidden spatial traffic patterns. We further

adopt an auxiliary convolutional graph to complement the flight record data in uncovering

more complex contextual node correlations. The standard graph convolutional layer is

transformed to capture the unidirectional data flow. A sequence-to-sequence fusion model

is also proposed to exploit the temporal correlation and combine the output of multiple

parallelized encoders. we also develop the spatio-temporal graph transformer module to

complement the sequence-to-sequence fusion module by dynamically capturing the time-

evolving spatial node relations in long-term prediction. Experiments on three large-scale

traffic flow datasets demonstrate that our model could outperform other state-of-the-art

baselines.

6.1 Multitask Local-Global Graph Network

In recent decades, flight delay prediction has been defined as a spatio-temporal

issue and has been intensively explored. [18, 63, 144, 165, 198]. Traditional approaches

include using mathematical and statistical/probabilistic tools to capture the correlation

between contributing variables [19, 42, 130] and create simulations that allow the study of

the effect of certain factors under different scenarios [115, 153, 200]. Recently, data-driven

approaches such as deep learning have gained ground due to the exponential growth of

data availability and computing power [60, 87, 191]. Most works on flight prediction

focus on a single airport or airline [24, 95, 122]. However, a more significant challenge
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than working at the airport or airline level is to predict the flight delay at a network-wide

level due to the added complexity of modeling the correlation among airports. Previous

works on network-wide level delay prediction struggled to strike a balance between model

generalization and complexity if they wished to adapt to different types of airports [17,18].

This work proposes a novel Graph Convolutional Neural Networks (GCN)-based

model with a multi-task learning strategy (MTLG-Net) for network-wide flight delay

prediction [179]. MTLG-Net takes advantage of both local and global spatial-temporal

relationships among nodes in the network. The local spatial features are learned through

the connectivity between nearby network nodes. The global spatial features are learned

by constructing the sparse adjacency matrix representing the similarity among all nodes

in the network. A BiLSTM network is added to capture the temporal dependency among

features from the input sequence. In order to take advantage of different input data sources,

a hierarchical multimodal fusion network is adopted to learn their inter and intra-modality

correlations. Due to the close correlation between arrival and departure delays, we adopt a

dynamic multi-task learning strategy to train the model on these two tasks concurrently,

which could significantly improve the model’s generalization. The main contribution of

our proposed MTLG-Net can be summarized as follows:

• A novel GCN-based network that learns both local and global spatial features in the

graph. The local GCN focuses on the spatial relationship between nodes with direct

connections. The global GCN captures the network-wide correlation among nodes

that shares similar characteristics. In addition, an effective normalization technique

is applied to the global GCN graph to control the sparsity of the adjacency matrix
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and reduce redundant node-wise correlation.

• A hierarchical multimodal fusion network that exploits cross-modal interactions

among flight delay data, weather data, flight volume, etc.

• A dynamic multi-task learning method uses sample and task level training complexity

to adjust the training progress. In addition, it also automatically optimizes the task

loss weight to further improve the model performance.

Figure 16 demonstrates the architectural design of the proposed framework.

6.1.1 Graph Convolutional Network

Similar to CNN, GCN applies convolutions by sliding the filters across the graph

network to extract the spatial relationship among neighboring nodes. Otherwise, un-

like CNNs, GCNs have been frequently applied to problems that contain data with non-

Euclidean patterns [193]. We use GCNs to model both the local and global characteristic

correlations among each airport in the flight network. The constructed graph can be

represented as G = (X, y,E,A), where X represents the node feature, y is the average

hourly flight delay, x ∈ RN and N is the number of airports, E is the set of edges in the

graph, and A represents the adjacency matrix, A ∈ RN×N . Then, a forward pass in the

GCN layer can be expressed as:

H [l+1] = σ(H lÃW l) (6.1)

where H [l+1] and H l are the feature vectors at layer l+1 and l, σ represents any non-linear

activation function, A is the adjacency function that represents the relationship between
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Figure 16: An overview of the proposed MTLG-Net.
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each pair of nodes, and W l is the weight parameters of layer l. The normalized adjacency

matrix Ã is intended to prevent numerical instability and can be expressed as follows:

Ã = D− 1
2AD− 1

2 + I (6.2)

where D is the degree matrix and I represents the identity matrix, which functions as a

self-loop to each node.

This study utilizes two types of GCNs to model the correlations among airports

from both local and global levels. The local correlated GCN is a directed graph based

on each airport’s flight route connectivity. On the other hand, the global GCN uses an

undirected graph to represent the node similarity.

The local correlated GCN uses adjacency matrix Alocal ∈ A ∈ RN×N to represent

the connectivity of the airports. If there exists a flight route between airport i and j, then

entry aij in Alocal is 1, otherwise, 0. Therefore, the normalized adjacency matrix for local

correlated GCN Alocal is shown as follows:

Ãlocal = D− 1
2AlocalD

− 1
2 + I (6.3)

and the graph Glocal = (X, y,E, Ãlocal) is obtained for the local correlated GCN.

The global correlated GCN uses an adjacency matrix that constitutes the similarity

matrix embedding between each pair of nodes. The similarity between airports is calculated

based on each airport’s annual average flight and passenger volumes. The two factors are

concatenated to form the similarity vector. The similarity score between two airports can

be expressed as the cosine similarity between the two vectors:
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Sij =
vi · vj
∥vi∥ ∥vj∥

(6.4)

where vi and vj are the similarity vectors for airport i and j. Therefore, the similarity

matrix S that contains the similarity scores for all nodes can be represented as:

S =



s11 s12 ... s1,N

. . . .

. . . .

sN,1 sN,2 ... sN,N


(6.5)

We first must solve the matrix sparsity problem before applying the similarity

matrix as the global correlated graph adjacency matrix. In the local correlated graph, its

adjacency matrix is generated based on the flight connectivity between airports. As a

result, the adjacency matrix contains many zero elements representing airport pairs with

no connecting flight. In comparison, the original similarity matrix does not contain zero

values due to how the score is calculated. The computational complexity becomes much

higher when the adjacency matrix is too dense.

On the other hand, if the matrix becomes sparse, some useful information may

be lost. To address this issue, we developed a new approach named sparse matrix nor-

malization to replace the default normalized graph Laplacian adjacency matrix to control

the sparsity in the global correlated GCN adjacency matrix. The intermediate adjacency
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matrix can be expressed as:

Ãij
global =



(esij−σ−1)2∑ ∑N
i,j(e

sij−σ−1)2+ε
, i ̸= j and si − σ > 0

0, otherwise

(6.6)

where si,j is the similarity score between airport i and j, if we define the flattened similarity

matrix as a 1D array Ŝ = [S1, S2, S3, ...SN×N ],Ŝ ∈ RN×N , then σ is the standard deviation

of Ŝ and ε is a small constant to reduce the numerical instability.

The normalized adjacency matrix with self-loop can be expressed as:

Ãglobal = ˆAglobal + I (6.7)

and the final graph Gglobal = (X, y,E, Ãglobal) is obtained for the global correlated

GCN.

By utilizing the local and global correlated GCN, the model could capture the local

and global correlations between airports without sacrificing much on the computation

complexity.

6.1.2 Temporal Feature Extraction

Recurrent neural network (RNN) has been extensively involved in modeling se-

quential data by extracting temporal features that can be used for various tasks, including

time series prediction, machine translation and speech recognition. Flight records, weather

forecasts and other related sequential data contain valuable information that RNN can

use to mine the temporal dependency among these variables. In this work, we apply a
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Figure 17: Network structure of the BiLSTM used in our model. Each arrow indicates the

direction of the data flow, and ⊕ is the concatenation operation.

sequence-to-sequence model based on BiLSTM to predict flight delay through multiple

time steps. Figure 17 demonstrates the structure of our BiLSTM network. LSTM is often

considered superior to the vanilla RNN in capturing long-term information in the sequence.

This is achieved by implementing an input gate, forget gate and output gate to control the

passage of information:

it = σ(Uixt +WiHt−1 + bi) (6.8)

ft = σ(Ufxt +WfHt−1 + bf ) (6.9)

ot = σ(Uoxt +WoHt−1 + bo) (6.10)

where it,ft and ot represent the output of input, forget and output gates function, σ

is the sigmoid activation function, Ui,Uf and Uo are the weight parameter for input xt at
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time step t, Wi, Wf and Wo are the weight parameter for hidden state Ht−1 at time step t-1

and bi, bf and bf are the bias terms.

Then, cell state ct at time step t can be illustrated as a function based on the output

of forget gate and input gate:

ct = it ⊙ tanh(Ucxt +WcHt−1 + bt) + ft ⊙ ct−1 (6.11)

where ct and ct−1 are the memory state at time step t and t− 1, Uc and Wc are the weight

parameters and Ht−1 is the output hidden state, ⊙ stands for the Huffman product.

Finally, the hidden unit Ht at the current time step can be calculated as:

Ht = ot ⊙ tanh(ct), (6.12)

A basic BiLSTM structure contains two LSTM units that process the same se-

quential data from both ends. By combining forward pass and backward pass in the

training process, the model could better utilize context information to help make decisions.

Flight arrival and departure patterns are often highly correlated, making BiLSTM a good

candidate for handling this task. Figure 17 demonstrates the structure of our BiLSTM

network.

6.1.3 Multiple Time Step Ahead Prediction

In practice, a good flight delay prediction model should be able to make long-term

ahead-of-time predictions. This study uses the sequence-to-sequence (Seq2Seq) model [35]

to encode the input flight delay and weather information into an internal context vector.

The decoder will generate the prediction results in various time steps. The structure of
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the Seq2Seq model is shown in Figure 18. The graph shows that the encoder comprises

one layer of BiLSTM, where the sequential input signal gets passed down to produce the

intermediate context vector. The context vector is then fed into two separate decoders,

namely the arrival delay decoder and the departure delay decoder. Each decoder comprises

one LSTM unit that outputs results at different intervals.

Attention mechanism [13] is applied to the Seq2Seq model. The final hidden state

output by the encoder is replaced by the attention context vector that contains the weighted

sum of every hidden state in the encoder. It helps the model retain more information when

processing long input sequences.

6.1.4 Feature Fusion Module

The cause of flight delay is complex and can be attributed to various factors. As a

result, it is essential to leverage contextual information to complement flight record data.

Variables impacting air traffic may include flight date and time, flight volume and weather

conditions. When multimodal data is involved, a common practice is to concatenate all

feature vectors. However, it ignores the cross-modality interactions between input sources.

To exploit the inter-modality correlations among all features, we adopted a hierarchical

graph fusion (HGF) approach in the proposed model [178]. HGF utilizes a tree-based

graph to combine each modality on different levels. The nodes on each level represent

different modality combinations, and the edge weight measures the similarity between

each pair of nodes. The complexity of the combination increases as the graph level gets

deeper. By concatenating the level representation vector, we can get the final output of
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Figure 18: Overall structure of the BiLSTM based Seq2Seq model used in this model. x1,

x2 and xt are the input sequence from different time steps; yt +1, yt +2 and yt + n are the

output of arrival delay task decoder, zt + 1, zt + 2 and zt + n are the output of departure

delay task decoder The context vector generated by the attention module serves as the
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HGF.
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6.1.5 Multi-task learning Module

Multi-task learning helps the model become more generalized by training multiple

tasks simultaneously, reducing the potential of overfitting. In MTLG-Net, a dynamic multi-

task learning (DMTL) [178] strategy is applied to train the model to simultaneously predict

arrival and departure delays. DMTL works on both sample-level and task level. Sample-

level DMTL focuses on prioritizing resources to samples that produce more significant

errors. On the other hand, task-level DMTL automatically adjusts the weight on the loss

generated by each task during the training phase so that tasks producing more significant

losses will be prioritized.

6.1.6 Experiments and Analysis

6.1.6.1 Datasets

Reporting Carrier On-Time Performance Data: the reporting carrier on-time

performance data published by BTS is a large-scale dataset that contains the on-time

performance information of flights from all reporting carriers. Relevant attributes include

flight date, origin and destination (O.D.), airport id, actual arrival time, actual departure

time, arrival delay, departure delay and flight distance. Data from January 2017 to De-

cember 2021 are collected, including 30,940,455 entries that cover 433 airports and 8102

origin and destination pairs. During the data cleaning process, airports with less than 50

average daily flights, O.D. pairs with less than ten average daily flights and data entries

with abnormal values (flight distance less than 100 miles and longer than 3000 miles except

for O.D. pairs including Hawaii) are dropped. The cleaned dataset contains 25,312,665
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entries, 87 airports and 294 OD pairs. Furthermore, we aggregated the data at the airport

level, split the data into 24-hour intervals based on actual arrival time and obtained the

average hourly arrival/departure delays for each airport.

Figure 19: Map showing major U.S. airports based on the number of connecting flights.

The size of the blue dot indicates the relative connection flight volume an airport receives

compared to other airports.

Passenger Volume Data: we collected the passenger volume data for all U.S.

commercial airports from the most recent passenger boarding (enplanement) and all-cargo

data [47] published by the Federal Aviation Administration (FAA). This dataset contains

the Enplanements (passenger boarding) information for 446 domestic and commercial
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airports in the U.S. It also categorized commercial airports into large, medium, small,

non-hub and non-primary, based on the annual passenger volume. Table 20 illustrates the

categorization criteria and the number of airports in each category.

Table 20: U.S. airports categorization based on passenger volume

Criteria # of airports

Large Hub
Serviced more than 1% of

total annual U.S. commercial passengers
28

Medium Hub
Serviced 0.25% to 1% of

total annual U.S. commercial passengers
36

Small Hub
Serviced 0.05% to 0.25% of

total annual U.S. commercial passengers
80

Non-hub
Serviced more than 10,000 passengers to 0.25% of

total annual U.S. commercial passengers
195

Non-primary
Serviced more than 2,500 to 10,000

annual U.S. commercial passengers
107

Meteorological Data: the National Oceanic and Atmospheric Administration

(NOAA) provides historical meteorological data collected at weather stations across the

U.S. It contains the average hourly data regarding air temperature, precipitation, sky covers

and clouds, sunshine, water, weather type and wind speed. In this work, we collected data

from weather stations near the 87 airports and selected air temperature, precipitation and
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wind speed as part of the input variables.

6.1.6.2 Experimental Setup

The dataset is separated into training, validation and test sets with a 60%, 20% and

20% split. Model hyperparameters are tuned using the validation set. Adam [88] is used to

optimize the training process, using an initial learning rate of 0.01. Early drop is applied to

prevent overfitting. Input vectors from different modalities are padded with 0 to ensure

consistent dimension before being fused by HGF. We use Mean Average Error (MAE) as

the metric for evaluation purposes.

6.1.6.3 Experimental Results

We conducted experiments using several baseline methods that have been com-

monly applied to study sequential data. ARIMA (autoregressive integrated moving average)

is a statistical analysis model that predicts future value based on value from the previ-

ous time step. It has been extensively used to tackle traffic flow challenges. LSTM and

Seq2Seq are two deep learning network models that have been heavily involved in time

series data analysis. In addition, we selected two state-of-the-art models that have appeared

in recent flight delay prediction studies. AG2S-Net [18] is a deep learning model that

utilizes GCN and Seq2Seq to predict multi-step flight delays. DGLSTM [198] is another

graph-based deep learning model that employs two adjacency matrices to represent the

spherical distance and demand relationship among all airports.

We first report the experimental results on the network level to demonstrate the

overall model performance and generalization capability. In addition, we divided the
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testing dataset based on airport passenger volume defined in Table 20 to illustrate the

prediction outcomes on the large, medium and small hub subgroups.

Table 21: Performance comparison of MTLG-Net with different baselines for average

hourly arrival delay prediction

Method
MAE

1h 2h 3h 4h 5h 6h 7h 8h 9h 10h

ARIMA 9.331 10.021 11.263 12.834 13.097 14.765 15.932 16.283 17.727 18.316

LSTM 8.915 9.244 10.035 11.037 12.543 13.297 14.504 15.801 16.424 17.688

Seq2Seq 8.524 8.980 9.453 10.041 11.224 12.875 13.662 14.017 15.239 16.433

AG2S-Net 6.323 6.847 7.225 9.988 10.320 12.089 13.095 14.228 14.276 14.301

DGLSTM 5.013 5.877 7.044 9.635 10.098 11.767 12.237 12.768 12.980 13.176

MTLG-Net 4.573 4.842 5.925 7.852 9.374 10.237 11.535 11.570 11.335 11.659

Network-level: Table 21 and Table 22 contains the MAE of arrival and departure

delay prediction in ten hourly intervals. It can be seen from the table that all methods

consistently perform better on shorter time intervals. ARIMA performed the worst among

other methods. The problem with ARIMA is that the model’s effectiveness heavily relies

on selecting its parameters, and the tuning process can be quite time-consuming. As a

relatively simple model, ARIMA also lacks in capturing more complex patterns in the

data. In comparison, results from LSTM and Seq2Seq models are considerably better,

with Seq2Seq2 beating LSTM, especially in the longer time ahead prediction. AG2S and

DGLSTM utilize GCN in their network structure and perform noticeably better than the

relative basic models. The proposed MTLG-Net outperforms all baseline methods. It
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Table 22: Performance comparison of MTLG-Net with different baselines for average

hourly departure delay prediction

Method
MAE

1h 2h 3h 4h 5h 6h 7h 8h 9h 10h

ARIMA 9.223 10.010 11.152 12.836 13.041 14.460 15.892 16.290 17.517 18.411

LSTM 8.925 9.237 10.031 11.997 12.493 13.195 14.204 15.752 16.372 17.851

Seq2Seq 8.525 8.930 9.517 10.031 11.324 12.759 13.709 14.136 15.231 16.333

AG2S-Net 6.401 6.848 7.210 9.979 10.293 12.067 13.126 14.231 14.273 14.310

DGLSTM 5.011 5.863 7.041 9.584 10.123 11.742 12.347 12.744 12.982 13.241

MTLG-Net 4.499 4.831 5.917 7.858 9.291 10.239 11.485 11.573 11.258 11.536

achieves 29.71% lower MAE for one-hour ahead delay prediction than AG2S-Net and

10.22% than DGLSTM. For two-hour ahead prediction, Our model outperforms AG2S-Net

by 29.45% and DGLSTM by 17.6%. Even for the extreme ten-hour-ahead prediction, our

model still pulls 19.38% and 14.7% leads compared to AG2S-NET and DGLSTM.

Large, medium and small hubs: Table 23 - 28 compares the model performance

of our model with other baseline methods on large, medium and small hub groups for

the flight arrival and departure delay prediction. As shown in the tables, all methods

demonstrate better results on large hubs, and the accuracy decreases as hub size is reduced.

This outcome is as expected since large hubs generate more flight volumes that accurately

represent the actual delay pattern. The proposed MTLG-Net also demonstrates higher

consistency in arrival and departure delay prediction across the three airport categories. For

instance, in one-hour-ahead delay prediction, the prediction accuracy difference between
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Table 23: Performance comparison of MTLG-Net with different baselines for the average

hourly arrival delay prediction on large hubs

Method
MAE

1h 2h 3h 4h 5h 6h 7h 8h 9h 10h

ARIMA 5.820 6.513 7.742 11.834 11.587 14.274 14.439 14.876 16.247 16.805

LSTM 5.404 5.732 6.523 10.521 13.012 13.743 14.002 14.297 14.919 16.154

Seq2Seq 5.021 5.469 5.942 8.020 8.713 11.364 11.151 11.506 11.723 11.946

AG2S-Net 4.810 5.347 5.824 8.3098 8.817 11.142 11.534 12.713 12.790 12.212

DGLSTM 4.202 5.065 6.223 8.824 10.343 10.255 10.813 11.246 11.458 11.654

MTLG-Net 4.062 4.331 5.414 7.341 8.863 9.026 11.024 10.059 10.124 10.148

large and small hubs for GCNTL-Net is only 15.9%. The following two best-performing

methods, DGLSTM and AG2S-Net, had the difference increased to 30.14% and 95.16%.

This same pattern can also be observed throughout the rest of the nine-time interval

prediction results. Therefore, our model is more capable of learning the delay pattern

in medium to small hubs. The global correlation graph captures the similarity between

airports based on their flight and passenger volume properties. By connecting airports of

comparable size, the model partly mitigates the drawback of having fewer flight data on

smaller air hubs.

6.1.7 Ablation Study

Table 29 demonstrates the ablation study of each component’s impact on the overall

model performance.
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Table 24: Performance comparison of MTLG-Net with different baselines for the average

hourly departure delay prediction on large hubs

Method
MAE

1h 2h 3h 4h 5h 6h 7h 8h 9h 10h

ARIMA 5.990 6.238 7.332 10.014 11.230 13.649 14.081 14.679 15.306 16.600

LSTM 5.631 5.826 6.220 10.174 12.653 13.362 13.611 13.907 14.515 16.010

Seq2Seq 5.233 5.431 5.996 8.620 9.613 11.200 11.832 12.819 12.829 12.903

AG2S-Net 4.993 5.037 5.990 8.133 9.483 10.667 10.314 12.420 12.467 12.539

DGLSTM 4.311 4.752 5.830 7.872 9.015 10.031 10.125 11.148 11.461 11.763

MTLG-Net 4.187 4.520 5.606 7.547 8.980 9.828 9.974 10.462 11.147 11.425

Global Correlation GCN o/w global GCN test is configured by only including

the local correlated GCN, which uses flight route connectivity to build the adjacency

matrix. This test determines how a GCN constructed on global features, such as the hourly

passenger volume, will help the model learn the additional variable dependency. As shown

in the table 29, for w/o global GCN, the 1-hour ahead prediction MAE increased by 18.38%

for arrival delay and 10.8% for departure delay, yielding the most significant impact on

the model performance, followed by not applying HGF (w/o HGF). A common goal for

the global correlation GCN and HGF is to capture the more complex dependency between

variables. The patterns and relationships that the local connection fails to capture will be

lost in a graph network if the global features are not adequately learned, which explains

the poor model performance.

Multitask Learning Under the w/o MTL scenario, the model is only trained
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Table 25: Performance comparison of MTLG-Net with different baselines for the average

hourly departure arrival prediction on medium hubs

Method
MAE

1h 2h 3h 4h 5h 6h 7h 8h 9h 10h

ARIMA 8.452 9.132 10.351 12.945 14.153 16.843 16.853 17.357 17.327 18.416

LSTM 8.003 8.414 9.149 13.134 15.462 16.343 16.615 16.912 17.535 18.794

Seq2Seq 7.754 8.011 8.432 11.152 11.335 13.986 13.773 14.128 14.360 14.531

AG2S-Net 7.312 7.824 8.313 10.914 11.415 13.100 14.032 15.345 15.343 15.259

DGLSTM 5.526 6.334 7.563 10.106 10.591 12.251 12.759 13.218 13.463 13.607

MTLG-Net 4.784 5.053 6.136 8.049 9.544 10.453 11.741 11.799 11.520 11.817

to predict one delay type. We would like to know how much performance gain can be

achieved by training two related tasks simultaneously. We also would like to compare

the result of w/o with w/o DMTL, the next test that adopts the common MTL strategy by

allocating equal weight to both tasks’ losses when calculating the final training loss. It will

be interesting to learn the impact of dynamically allocating resources on sample and task

levels during training on a graph-based model architecture. Completely removing MTL

(w/o MTL) produces a lesser impact on the model’s performance (0.6% decrease in arrival

delay and 2.53% decrease in departure delay prediction accuracy) when compared to w/o

DMTL (3.3% decrease in arrival delay and 4.93% decrease in departure delay prediction

accuracy). This may be counter-intuitive at first glance. However, treating tasks equally

in an MTL scenario may not be beneficial or harm the model performance if one task

dominates the training process. The DMTL strategy automatically allocates resources to
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Table 26: Performance comparison of MTLG-Net with different baselines for the average

hourly departure delay prediction on medium hubs

Method
MAE

1h 2h 3h 4h 5h 6h 7h 8h 9h 10h

ARIMA 8.222 9.104 10.135 12.845 14.032 16.449 16.881 17.281 18.526 19.402

LSTM 7.920 8.199 9.209 13.015 15.501 16.207 16.230 16.731 17.337 18.734

Seq2Seq 7.534 8.004 8.524 11.020 11.316 13.679 13.733 14.227 14.350 14.237

AG2S-Net 7.423 7.638 8.133 10.954 11.366 13.156 14.213 15.360 15.353 15.207

DGLSTM 5.524 6.346 7.531 10.063 10.614 12.234 12.834 13.233 13.463 13.737

MTLG-Net 4.708 5.020 6.134 9.046 9.489 10.451 11.694 11.763 11.447 11.743

samples and tasks with a more challenging time learning during the training process.

Multimodal Fusion w/o HGF test applies the standard concatenation operation

when fusing features from different data sources or combining intermediate outputs from

the two GCNs. The hierarchical graph fusion strategy adopted by HGF could capture

more complex cross-modality dependencies among input channels. HGF aims to exploit

the cross-modal correlation between input modalities. Removing HGF limits the model’s

ability to capture complex joint feature representations among input sources. Consequently,

the prediction accuracy decreased by 7.65% in arrival delay and 9.24% in departure delay.

Meteorological Data Table 30 illustrates the impact of meteorological input

variables on the model performance. As can be observed in the table, weather variables

such as average hourly wind speed, precipitation, temperature, and visibility substantially

impacted the prediction results. For arrival delay prediction, the one-hour-head prediction

135



Table 27: Performance comparison of MTLG-Net with different baselines for the average

hourly arrival delay prediction on small hubs

Method
MAE

1h 2h 3h 4h 5h 6h 7h 8h 9h 10h

ARIMA 10.678 1.242 12.463 15.043 16.353 18.643 18.837 18.997 18.916 18.856

LSTM 10.171 10.457 11.203 15.031 17.250 18.316 18.356 18.501 18.247 18.520

Seq2Seq 9.764 10.133 10.410 13.248 13.367 15.835 15.737 16.119 16.273 16.330

AG2S-Net 9.387 9.728 10.433 12.945 13.427 15.113 16.101 17.336 17.297 17.259

DGLSTM 5.501 6.323 7.312 10.120 11.013 12.440 13.122 14.738 14.952 15.007

MTLG-Net 4.873 5.142 6.245 8.134 9.435 10.542 11.653 11.700 11.434 11.830

accuracy decreased by 5.23% without including the meteorological variables and decreased

by 6.25% for departure delay. Overall, the average accuracy decreased by 4.19% across

the entire 10 hours of time steps.

6.2 Adaptive Joint Spatio-Temporal Graph Learning Network

Recently, graph convolutional network (GCN) has seen extensive applications on

graph-structured data [176, 190, 205]. GCN applies convolution on neighboring nodes

based on the adjacency/correlation matrix forming the network topology. Most existing

GCN-based models only use pre-defined node relationships to construct the adjacency

matrix [62, 75, 212]. The pre-defined graph network is often inferred from the physical

route connection and specific distance measurements. Due to the complex nature of

traffic forecasting problems, such an intuitive graph structure cannot capture diverse traffic
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Table 28: Performance comparison of MTLG-Net with different baselines for the average

hourly departure delay prediction on small hubs

Method
MAE

1h 2h 3h 4h 5h 6h 7h 8h 9h 10h

ARIMA 10.235 11.258 12.015 14.865 16.712 17.047 17.963 18.762 18.856 19.602

LSTM 9.940 10.345 11.015 14.545 16.031 16.537 17.357 18.317 18.335 18.434

Seq2Seq 9.525 10.103 10.452 13.035 13.425 15.691 15.745 16.221 16.417 16.217

AG2S-Net 9.516 9.525 10.135 12.963 13.353 15.205 16.191 17.295 17.302 17.200

DGLSTM 5.516 6.335 7.510 10.041 10.908 12.221 12.815 12.728 12.942 13.262

MTLG-Net 4.735 5.101 6.124 9.532 10.754 11.983 12.026 12.061 12.156 12.341

patterns. Furthermore, domain knowledge is often required to develop a high-quality

pre-defined graph topology, significantly limiting its application to other problem domains.

Some studies [15, 43, 210] attempted to learn the adjacency matrix using data-driven

methods to circumvent the drawbacks of a pre-defined graph. However, most of these

adjacency matrices are too dense to be optimized efficiently. Furthermore, the learned

adjacency matrix is prone to noise and fine-scale roughness, which increases the difficulty

of learning the hidden traffic patterns from the data.

This section addresses the aforementioned challenges by proposing AJSTGL,

a novel adaptive joint spatio-temporal graph learning network [180]. First, we apply

a shifted graph Laplacian approach to expand the sensitivity of the pre-defined graph.

The transformed graph Laplacian can capture more granular hidden patterns and still

leverage the original graph structure’s knowledge. Second, adaptive graph learning and
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graph regularization methods are applied to learn the network topology in a data-driven

manner and improve the graph quality. Furthermore, we adopt a node-specific dependency

modeling module to replace the conventional graph convolutional layer so that the model

can learn node-specific patterns. A sequence-to-sequence fusion module is developed to

encode multiple graph signals in parallel and hierarchically combine them to learn the short-

term temporal node dependencies. We also develop the spatio-temporal graph transformer

module to complement the sequence-to-sequence fusion module by dynamically capturing

the time-evolving spatial node relations in long-term predictions.

The main contribution of this work can be summarized as follows.

• We propose a novel graph learning network for traffic data forecasting. It utilizes

static, adaptive, auxiliary, and dynamic spatial convolutional graphs to capture the

spatio-temporal dependencies.

• We present a new adaptive graph learning method to learn the network topology in a

data-driven manner and capture the graph signals in both directions.

• We design a sequence-to-sequence fusion module and a dynamic temporal convolu-

tional graph for jointly learning the short- and long-term temporal relations.

• We develop several graph learning techniques, such as shifted graph Laplacian and

node-specific dependency modeling, to help the model capture more complex hidden

patterns and improve the graph quality.

• We evaluate our model on three large-scale traffic datasets and compare it with several

baseline methods. The experimental results demonstrate the excellent performance
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of our approach compared to other state-of-the-art techniques.

Figure 20: An overview of the proposed framework.

6.2.1 Architecture Design

In this section, we introduce the proposed AJSTGL and its main components.

Figure 20 illustrates the overall structure of the framework. AJSTGL mainly consists of

the static graph learning module, adaptive graph learning module, spatio-temporal graph

transformer module, and sequence-to-sequence fusion module. In addition, we apply

several techniques, such as unidirectional graph convolution, gated information fusion, and

graph regularization, to enhance the model’s ability to model spatio-temporal dependencies

and produce higher-quality graphs.
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6.2.1.1 Preliminaries

Given a graph G = (V,E,X,A), where |V | = N represents the set of nodes,

E represents the edges, X ∈ RN×Q is the node feature with Q as the vector size, and

A ∈ RN×N is the adjacency matrix that defines the topology of the graph network. The

normalized graph Laplacian with self-loop can be represented as follows.

L = IN +D− 1
2AD− 1

2 (6.13)

where IN ∈ RN×N is the identity matrix and D represents the degree matrix of A. To

reduce the computation complexity on a large graph, the first-order Chebyshev polynomial

approximation [90] of the graph convolution can be described as follows.

X l+1 = (IN +D− 1
2AD− 1

2 )X lΘ+ b (6.14)

where X l ∈ RN×Q and X l+1 ∈ RN×Z are the input and output at layers l and l+1 with Q

and Z as the corresponding vector sizes, and Θ ∈ RQ×Z and b ∈ RZ are the weight and

bias terms, respectively.

6.2.1.2 Static Graph Learning Module

The static graph learning module combines node connectivity and geographical

distance to model the spatial node dependencies.

Node-Specific Dependency Modeling

In a standard graph convolution layer, the weights are shared among all nodes when the

convolution operation is applied. However, in many real-world problems, the shared
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weights could become a constraint since some heterogeneous spatial patterns also exist

among nearby nodes. For instance, airports with connected flight routes or are geographi-

cally closely located may exhibit diverse traffic patterns due to the influence of weather

conditions and special events. In this case, it is essential to incorporate parameters to

model additional node-specific properties.

We conduct node-specific dependency modeling by adding an extra dimension to

the weight parameter, which results in a node-specific weight parameter Θ̂ ∈ RN×Q×Z .

However, the expanded weight parameter significantly increases the computational cost

during optimization, especially for graphs with a large node count N . To solve this problem,

we apply graph parameter decomposition to factorize Θ into δs and Ws, where δs ∈ RN×ds

with ds << N and W ∈ Rds×Q×Z . The updated graph convolution layer can be expressed

as:

X l+1 = (IN +D− 1
2AD− 1

2 )X lδsWs + δsbs (6.15)

where bs ∈ Rds×Z is the updated bias term.

Shifted Graph Laplacian

Intuitive node relations are commonly used to model the spatial node dependency in a

pre-defined network topology. Nevertheless, hidden patterns exist that the pre-defined

graph schema cannot capture. Thus, we develop a strategy to introduce a shifted graph

Laplacian Ls on top of the intrinsic graph Laplacian L to learn the hidden spatial node

dependencies.

The adjacency matrix in a shifted graph Laplacian uses the node-wise Gaussian

smoothed similarity score as the values. In this work, the similarity score is measured by
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the cosine similarity between each pair of nodes. The shifted graph As adjacency matrix is

represented as follows.

Aij
s =



exp(− cos(xi,xj)
2

2σ2 ), i ̸= j and cos(xi, xj) ⩾ εs

0, otherwise

(6.16)

where cos(xi, xj) is the cosine similarity score between nodes xi and xj , σ is the standard

deviation, and εs is the threshold parameter that controls the matrix sparsity. We empirically

set εs to 0.5 to avoid the matrix from becoming overly sparse. Then, the shifted graph

Laplacian Ls can be expressed as follows.

Ls = IN +D
− 1

2
s AsD

− 1
2

s (6.17)

where Ds is the degree matrix of As. Finally, the graph Laplacian for the static convolu-

tional graph can be calculated as:

L̃ = L+ αLs (6.18)

where α is a learnable parameter that controls the shifting scale on the original graph

Laplacian. Based on Equation 6.18, Equation 6.15 can be transformed to:

X l+1 = L̃X lδsWs + δsbs (6.19)

6.2.1.3 Auxiliary Convolutional Graph

We develop an auxiliary convolutional graph to exploit a traffic network’s contextual

information such as wind, humidity, and temperature. The adjacency matrix of the auxiliary
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convolutional graph is generated based on the node’s geographic proximity. To ensure the

matrix symmetrical property, a Gaussian kernel function is applied to produce the edge

weights. Similar to Equation 6.16, the adjacency matrix Aa can be expressed as follows.

Aij
a =



exp(−dist(xi,xj)
2

2σ2 ), i ̸= j and dist(xi, xj) ⩽ εc

0, otherwise

(6.20)

where dist(xi, xj) is the spherical distance between nodes xi and xj , σ is the standard

deviation, and εc is the threshold parameter that controls the matrix sparsity. We empirically

set εc to 0.4 for optimal model performance.

6.2.1.4 Adaptive Graph Learning Module

Many existing studies only use pre-defined adjacency matrices to represent the

node relations. This limits the model’s ability to learn more complex spatio-temporal graph

patterns. Another disadvantage of the conventional graph convolutional layer is that it

assumes bidirectional node correlations. However, in many real-world problems, such

as traffic data forecasting, the changes in traffic patterns may only transmit in a single

direction.

To address the aforementioned limitations, we propose an adaptive graph learning

approach. It automatically learns the hidden graph topology from the input data. Further-

more, the learned graph adjacency matrix considers the unidirectional correlations between

each pair of nodes. First, we use an anti-symmetric matrix to construct the normalized
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graph Laplacian of the new graph La:

La = IN + softmax(ReLU(MpM
T
q −MqM

T
p )) (6.21)

where Mp,Mq ∈ RN×da , da << N are the learned node embedding that formulates

the adjacency matrix through the training process. Being the product of the two anti-

symmetric matrices, MpM
T
q − MqM

T
p has zero values in all of its diagonal elements.

The ReLU() function further transforms another half of the negative matrix elements

to zeroes. The softmax() function normalizes the adjacency matrix. Additionally, we

apply node-specific dependency modeling from Equation 6.15 to enable the model to learn

node-specific dependencies. Finally, the GCN layer in the adaptive convolutional graph

can be expressed as follows:

X l+1 = LaX
lδaWa + δaba (6.22)

6.2.1.5 Unidirectional Graph Convolution Layer

A unique graph convolution layer transformation approach is developed to further

enhance the model’s capability of learning the heterogeneous unidirectional data patterns.

The proposed unidirectional graph convolution layer can be represented as follows.

X l+1 = (L̂X lδ̂Ŵ + δ̂b̂)⊕ (L̂TX lδ̂Ŵ + δ̂b̂) (6.23)

The transformed graph convolutional layer adds a second term L̂TX lδ̂Ŵ + δ̂b̂ with trans-

posed graph Laplacian L̂T to model the reversed data flow pattern.
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Figure 21: Illustration of the overall structure of S2SFM.
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6.2.1.6 Sequence-to-Sequence Fusion Module

We develop a sequence-to-sequence fusion Module (S2SFM) to capture the short-

term temporal node dependencies. Figure 21 demonstrates the overall structure of the

proposed S2SFM. Unlike typical sequence-to-sequence models with a single encoder,

S2SFM utilizes parallelized Bi-LSTM based encoders to concurrently process the graph

signals from all GCNs. The context vectors of all encoders are combined using the

hierarchical graph fusion (HGF) approach [178] to capture the n-modal cross-modality

interactions among all graph signals. HGF utilizes a tree-based graph structure to join the

input signals on different levels. It learns the unique joint-modality representations, with

lower-level nodes representing basic interactions and higher-level nodes modeling more

complex correlations. The final output of HGF can be represented as follows.

Fcombined = Funi−modal ⊕ Fbi−modal ⊕ Ftri−modal...⊕ Fn−modal (6.24)

where Fcombined is the final combined context vector, Funi−modal, Fbi−modal, Ftri−modal, and

Fn−modal are the representation vectors for each level, and⊕ is the concatenation operation.

In this study, we use HGF to combine the output signals of four GCNs. Therefore, the first

level contains the uni-modal interactions, the second level learns the bi-modal interactions,

the third level models tri-modal interactions, and the fourth level captures the quad-modal

interactions. The combined context vector is then passed into the decoder to produce the

output sequence.
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(a) Dynamic Spatial Convolutional

Graph

(b) Dynamic Temporal Convolutional

Graph

Figure 22: Illustration of the architecture of the proposed spatio-temporal graph transformer

module (STGTM). The relative positional encoding learns the node’s spatial and temporal

dependency and generates the spatio-temporal aware embedding vectors. The dynamic

spatial and temporal convolutional graphs are stacked together to model the node relations

jointly.
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6.2.1.7 Spatio-Temporal Graph Transformer Module

To complement S2SFM in long-term prediction, we develop the spatio-temporal

graph transformer module (STGTM) to jointly model the dynamic spatio-temporal de-

pendencies. Its overall structure is demonstrated in Figure 22. STGTM consists of

spatio-temporal relative positional encoding, which generates the time-evolving spatial

embedding of the graph signals, and the dynamic spatial and temporal convolutional graphs

that model the spatial and temporal node dependencies, respectively.

Spatio-Temporal Relative Positional Encoding

Transformer-based model applies positional encoding to embed the spatial relations of

each token in the input sequence. Static positional encoding approaches, such as the

widely adopted sinusoidal wavelength method [170], rely on fixed-length input sequences

and do not consider their relative positional relations. In STGTM, we apply a relative

positional encoding layer with trainable parameters to learn the dynamic spatial and

temporal dependencies. More specifically, matrices PES ∈ RN×N and PET ∈ RC×C in

the encoding layer hold the learned spatial and temporal relative positional embedding,

where C represents the number of time steps in the input sequence. The embedded input

feature vector can be represented as:

XE = conv(X̂ ⊕ PE
′

S ⊕ PE
′

T ) (6.25)

where X̂ ∈ RC×N×Q is a 3-D vector that contains the features of all nodes across the entire

historical time sequence, and PE
′
S ∈ RC×N×N and PE

′
T ∈ RC×N×C are the expanded

matrices of PES and PET along the spatial and temporal dimensions, respectively. conv()
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is a 1 × 1 convolutional layer that converts the original input vector X̂ into its spatio-

temporal embedded form XE ∈ RC×N×Q.

Dynamic Spatial Convolutional Graph

The dynamic spatial convolutional graph (DSCG) learns the adjacency matrix from the

time-evolving hidden patterns in the positional embedded input sequence. We apply a

multi-head self-attention mechanism to capture the pattern representations from different

subspaces and form the adjacency matrix. Figure 23 demonstrates the structure of the

multi-head adjacency matrix that applies the self-attention mechanism. The subspaces

used in DSCG contains the query QS ∈ RN×dk , key KS ∈ RN×dk , and value VS ∈ RN×dv

spaces, where dk is the query size and key vector size, and dv is the value vector size. Each

matrix is calculated as the product of the input feature vector and its corresponding weight

parameter:

QS = X
′

EWQ, KS = X
′

EWK , VS = X
′

EWV (6.26)

where X
′
E ∈ RN×Q represents a single time step in XE , WQ ∈ RQ×dk , WK ∈ RQ×dk , and

WV ∈ RQ×Q are the learnable weight parameters for QS , KS , and VS , respectively.

The adjacency matrix of DSCG for each attention head unit can be derived from

the scaled dot-product among the query, key, and value matrices:

Ai
d = softmax(

Qi
SK

iT
S√

dk
)V i

S (6.27)

where softmax() is used to obtain the normalized spatio-temporal node-wise dependency

in the ith attention head Ai
d, and

√
dk serves as the scaling factor to stabilize the gradients

during the training. The multi-head attention unit is generated by concatenating each
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attention head unit:

Âd = concat(A1
d, A

2
d, ..., A

i
d)WO (6.28)

where A1
d, ..., A

i
d are the single-head attention units, and WO is the learnable weight

parameter. The output of the node input feature through the multi-head attention unit is

then calculated as follows.

X̂E = ÂdXE (6.29)

We add residual connection and layer normalization to help improve the model stability

and generalization performance:

X̂
′
E = LN(XE + X̂E) (6.30)

where LN() represents layer normalization [11]. Then the output is fed into two feed-

forward layers with the ReLU activation function:

XST = ReLU(ReLU(X̂
′
EWa + ba)Wb + bb) (6.31)

where Wa, Wb, ba, and bb are the weight parameters. In the last step, we apply residual

connection and layer normalization again on the output of the two feed-forward layers to

generate the final feature vector X̂ST ∈ RC×N×Q of STGTM:

X̂ST = LN(XST + X̂
′
E) (6.32)

Dynamic Temporal Convolutional Graph

The dynamic temporal convolutional graph (DTCG) shares a similar network structure

to DSCG. We first apply residual connection between the original input vector X and
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Figure 23: The multi-head adjacency matrix structure.

DSCG output X̂ST to get X̃ ∈ RC×N×Q. The relative positional encoding layer is

applied to produce embedding results using the temporal encoding PET . X̃ and PET

are concatenated and passed through a 1× 1 convolutional layer to generate the temporal

encoded vector X̃E . Similar to DSCG, the multi-head self-attention mechanism is applied

to capture the pattern representations from Q̃S , K̃S , and ṼS subspaces:

Q̃S = X̃
′

EW̃Q, K̃S = X̃
′

EW̃K , ṼS = X̃
′

EW̃V (6.33)

where X̃
′
E ∈ RC×Q represents an arbitrary node in X̃E , W̃Q ∈ RQ×d̃k , W̃K ∈ RQ×d̃k ,

and W̃V ∈ RQ×Q are the trainable weight parameters for Q̃S , K̃S , and ṼS . Then, the

attention-aware adjacency matrix based on a single attention unit can be expressed as:

Ãi
d = softmax(

Q̃i
SK̃

iT
S√

dk
)Ṽ i

S (6.34)
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Similar to DSCG, the final multi-head attention context vector is generated by concatenat-

ing each single-head unit:

Ãd = concat(Ã1
d, Ã

2
d, ..., Ã

i
d)W̃O (6.35)

Next, the intermediate output X̃E is multiplied with the multi-head unit to produce the

attention weighted vector:

X̄E = ÃdX̃E (6.36)

The attention weighted vector is fed into two feed-forward layers with residual connection

and layer normalization:

X̄
′

E = LN(X̃E + X̄E) (6.37)

X̄ST = ReLU(ReLU(X̄
′

EW̄a + b̄a)W̄b + b̄b) (6.38)

X̃ST = LN(X̄ST + X̄
′
E) (6.39)

where X̃ST ∈ RC×N×Q is the final output of STGTM, which will be combined with the

output of S2SFM in the gated information fusion module.

6.2.1.8 Gated Information Fusion

We apply a gating mechanism to adaptively combine the output features of S2SFM

and STGTM. More specifically, a set of learnable parameters are used as a gate to control

the relative weighting between the two input vectors:

G = sigmoid((γ(X̃ST )⊕ γ(XS2SFM))Wg + bg) (6.40)

where the sigmoid activation function is used to limit the value of gate G within range

[0, 1], γ() is a linear projection function that transforms the feature vectors from both
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modules into a 1-D vector, and Wg and bg are the weight parameters. As a result, we can

use G to fuse the two feature vectors as:

Xf = G⊙ X̃ST + (1−G)⊙XS2SFM (6.41)

where ⊙ is element-wise multiplication. Xf ∈ RC×N×Q represents the joint spatio-

temporal dependencies that will be used for the final prediction.

6.2.1.9 Graph Regularization

We apply graph regularization [78] to improve the quality of the learned graphs.

The regularization function is expressed as follows.

Jgr =
N∑
i=1

N∑
j=1

∥xi − xj∥22A
ij
a + β(Aij

a )
2 (6.42)

where Aij
a is the corresponding adjacency matrix element for nodes xi and xj , and β

is a scaling factor controlling the matrix sparsity. Term ∥xi − xj∥22 enforces the graph

proximity property by encouraging larger Aij
a values when xi and xj are close and smaller

Aij
a values when the two nodes move away in the latent space.

6.2.1.10 Prediction Layer and Loss Function

To generate the multi-step prediction, the output of the gated information fusion

module Xf is passed into a double-layered convolutional network:

Y = conv(conv(Xf )) (6.43)

Xf is transformed into a 2-D vector Y ∈ RN×τ , where τ is the number of time steps in the

output sequence.
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The loss function adopted in this study minimizes the mean absolute error (MAE)

between the ground truth value and the predicted value. The graph regularization introduced

in Equation 6.42 is added to the MAE loss function as a regularization term. The final loss

function is expressed as follows:

Lloss =
∥∥∥Y − Ŷ

∥∥∥
1
+ λJgr (6.44)

where Ŷ is the ground truth value, and λ is a scaling factor that controls the degree of

regularization. We empirically set λ to 0.4 to achieve the best model performance.

6.2.2 Experiments and Analyses

6.2.2.1 Datasets

We evaluate AJSTGL on several large scale real-world datasets: Reporting Carrier

On-Time Performance, PeMSD4, and PeMSD8.

• Reporting Carrier On-Time Performance (RCOTP). Released by the United

States Bureau of Transportation Statistics (BTS), this dataset contains flight operation

information for all reporting airlines in the U.S. domestic market. Records from

January 2017 to December 2021 were collected, which include 433 airports and

30,940,455 records. Among them, 8102 origin and destination (OD) pairs are

retrieved. Figure 19 visualizes the major airports based on the volumes of their

connecting flights. In the experiment, we predict the multi-step flight arrival delays

at the airport level.

• PeMSD4. This dataset includes historical traffic condition data in the San Francisco

Bay area published by the Caltrans Group using the Performance Measurements
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System (PeMS). The data was collected in 5-minute intervals using 307 sensors on

seven major roads. The period covered by PeMSD4 ranges from January 2018 to

February 2018. Three types of measurements are used, which include average speed,

average occupancy, and traffic flow. In this study, we focus on traffic flow and traffic

speed predictions.

• PeMSD8. Also published by Caltrans Group, this dataset contains the traffic in-

formation in the San Bernardino area from July 2016 to August 2016. The 170

sensors used 5-minute intervals on eight roads to collect the average speed, average

occupancy, and traffic flow information. Like PeMSD4, we focus on traffic flow and

speed predictions in this study.

We also utilize real-time weather forecasting records from National Climate Data

Center (NCDC). Weather conditions collected by nearby weather stations at each traffic

network node in the same period are used as the input for the auxiliary convolutional graph

network.

6.2.2.2 Experimental Setup

The RCOTP data is aggregated at the airport level to produce the average hourly

flight delay. For PeMSD4 and PeMSD8, we aggregate the traffic speed at 5-minute intervals.

Data preprocessing is done on all datasets: 1) missing values are interpolated as the mean

value of the previous and later time steps; 2) categorical and discrete values are one-hot

encoded; and 3) continuous values are normalized using min-max normalization. For

RCOTP, we conduct arrival delay prediction in the next ten-hour horizons. For PeMSD4
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and PeMSD8, we perform traffic flow prediction and traffic speed forecast in the next 15,

30, 45, and 60 minutes horizons.

All datasets are split into 60% for training, 20% for validation, and 20% for testing.

Hyperparameters including the threshold parameter εs in the shifted graph Laplacian

adjacency matrix, εc in the auxiliary GCN adjacency matrix, node embedding size ds, β in

the graph regularization, and λ in the final loss function are tuned on the validation set.

The model is trained using the Adam optimizer [88] with a training rate of 0.01

and batch size of 128. Early stopping is applied to prevent the model from overfitting.

6.2.2.3 Evaluation Metrics and Baseline Methods

To evaluate the proposed AJSTGL, we adopt mean absolute error (MAE) and root

mean squared error (RMSE). Several baselines are utilized to compare with our proposed

method:

• Autoregressive Integrated Moving Average (ARIMA) [155]: a statistical analysis

model that uses previous time step values to predict future values.

• DCRNN [102]: a deep neural network with an encoder-decoder structure that

combines graph convolution with diffusion operation and RNNs for multi-step

prediction.

• STGCN [192]: a graph convolutional network utilizing GCN to model spatial

correlations and a temporal convolution network to capture temporal dependencies.
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• ASTGCN [62]: a spatio-temporal convolutional graph network leveraging an atten-

tion mechanism to model spatial and temporal dependencies.

• Graph WaveNet [185]: a spatio-temporal convolutional graph network that ap-

plies diffusion convolution to capture spatial dependencies and leverages dilated

convolution to model the temporal correlations.

• AGCRN [15]: a convolutional graph network learning the correlation matrix from

data to capture the spatial dependencies and utilizing a recurrent neural network to

learn the temporal correlation from the input data.

6.2.2.4 Experimental Results

Overall Comparison

Table 31 illustrates the model performance of AJSTGL on the three datasets against all

baselines. As shown in the table, we report the average arrival delay for RCOTP and

traffic flow prediction for PeMSD4 and PeMSD8. The traffic speed prediction results on

PeMSD4 and PeMSD8 are presented in Table 33 and Table 34, respectively.

RCOTP. It can be observed that ARIMA performs the worst among all methods as

it only captures the temporal dependency in the data. Other spatio-temporal graph models

demonstrate more robust performance since they model both the spatial and temporal

correlations from the data. Our proposed AJSTGL outperforms all baseline methods and

leads the second-best performer (AGCRN) by 15.74% in MAE. It implies that AJSTGL is

very effective at long-term forecasting and including auxiliary GCN facilitates the model

to capture additional spatial node dependencies.

157



Furthermore, Table 32 and Figure 24 demonstrate the detailed ten horizon pre-

diction results. AJSTGL performs noticeably better from mid to long-term time steps

(sixth to eighth horizons). As we discussed earlier, long-term prediction suffers from

diminishing return effects while utilizing historical observations. Therefore, it is essential

to leverage contextual information and construct the graph adjacency matrix based on

dynamic long-term spatio-temporal dependencies.

PeMSD4 and PeMSD8. The result patterns for AJSTGL and other baselines are

similar on PeMSD4 and PeMSD8. Our model achieves the lowest MAE and RMSE scores

in both datasets and leads the second-best model AGCRN by 9% in MAE on PeMSD4

and Graph WaveNet by 11.67% in MAE on PeMSD8. In Table 33 and Table 34, AJSTGL

once again produces the lowest MAE and RMSE scores among the baselines. It beats the

second-best method (STGCN) by 11.9% in MAE on PeMSD4 and the second-best model

(DCRNN) by 10.4% in MAE on PeMSD8.

Ablation Study

We conduct an ablation study to further investigate each main component’s effectiveness in

AJSTGL and their impacts on the model performance. Table 35 presents the component-

wise impact on all three datasets. Table 36 and Figure 25 demonstrate the ablation study of

arrival delay prediction results in the next ten horizons on RCOTP.

Effect of shifted graph Laplacian (w/o SGL): In this scenario, the static convolu-

tional graph only utilizes the explicit network topology for the graph adjacency matrix. As

demonstrated in Table 35, the MAE of w/o SGL variant increases by 5.18% on average. It

implies that the shifted graph Laplacian can effectively help the static GCN capture the

158



Figure 24: Visulization MAE for the RCOTP dataset obtained by AJSTGL and other

baselines. Arrival delay in the next ten horizons

hidden patterns in the graph signal.

Effect of node-specific dependency modeling (w/o NSDM): To investigate the

effect of node-specific dependency modeling, we remove the node-specific embedding in

the weight parameters of all GCN layers. Results in Table 35 show that the MAE of w/o

NSDM increases by 8.78% on average across all datasets. In Table 36 and Figure 25, it

can also be observed that the performance gain from NSDM is substantially higher in mid

to late horizons. We argue that NSDM helps the model learn the node-related patterns that

could compensate for the lack of historical information in long-term prediction.

Effect of adaptive graph learning (w/o AGG): In the w/o AGG test, the GCN
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created by the adaptive graph learning module is removed. We want to study the impact of

the hidden patterns captured by the adaptive GCN and observe whether it could complement

the intrinsic pre-defined adjacency matrix. As illustrated in Table 35, the MAE of w/o

AGG increases by 9.5% on average across all datasets. The substantial performance impact

suggests that the pre-defined graph structure could benefit significantly from the granular

node dependencies captured by AGG.

Effect of graph regularization (w/o GR): Graph regularization enforces the

smoothness of the learned graph and further controls the matrix sparsity. The w/o GR test

removes the regularization term (set λ to zero in the loss function) and uses only the MAE

loss function to optimize the model parameters. As shown in Table 35, the MAE score of

w/o GR test increases by 6.84% compared to the baseline. Since AJSTGL heavily relies

on learning the spatio-temporal dependencies, it indicates that graph regularization could

improve the learned graph quality.

Effect of Unidirectional graph convolution (w/o UC): In AJSTGL, we transform

the standard Chebyshev polynomials-based graph convolution layer by concatenating two

convolutional layers with transposed graph Laplacian to capture the unidirectional data

flow patterns. To evaluate its effectiveness, we use the standard graph convolution layer in

all GCNs. Table 35 shows that the MAE score increases by 4.31% on average. It implies

that modeling the unidirectional data flow on complex real-world data enables the model

to capture the in-flow and out-flow patterns.

Effect of auxiliary GCN (w/o AGCN): We remove the auxiliary GCN, which

adopts the spherical distance between nodes as the adjacency matrix to model the contextual
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weather conditions. As shown in Table 35, w/o AGCN produces an increase of 6.65% in

average MAE score, substantially impacting the overall prediction accuracy. As a result,

we observe a substantial correlation between the contextual weather condition and traffic

patterns.

Effect of sequence-to-sequence fusion module (w/o S2SFM): We further validate

that the proposed S2SFM is capable of learning short-term temporal dependencies. All

GCNs are combined with the gated fusion mechanism in this test and passed into DTCG.

We remove S2SFM so that AJSTGL solely relies on DTCG to model the temporal node

dependency. From Table 35, we can observe a 12.37% increase in average MAE score,

which produces the second largest hit on the model performance. Table 36 and Figure 25

further illustrate the impact of S2SFM on short-term prediction. Compared to STGTM,

removing S2SFM creates a much greater penalty in short-term prediction performance

(first to fourth horizons).

Effect of spatio-temporal graph transformer module (w/o STGTM): The main

goal of STGTM is to complement S2SFM on long-term prediction. To evaluate the

effectiveness of STGTM, we completely remove it from AJSTGL. Table 35 demonstrates

a significant 15.13% increase in average MAE from all datasets. Table 36 and Figure 25

provide more insight from the ten horizons arrival delay prediction results. It can be

observed that STGTM excels at mid to long-term predictions (fifth to tenth horizons) when

compared to S2SFM. This outcome can be explained from several aspects: 1) instead of

relying on the absolute position, the relative positional encoding generates the spatial and

temporal embedding of the input sequence in a data-aware manner. It helps the model
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Figure 25: Ablation study MAE for arrival delay on RCOTP for the next ten horizons

capture the dynamic hidden patterns from the graph signals; 2) the adjacency matrix

constructed by the multi-head attention mechanism learns the spatial node dependencies

from high dimensional latent subspaces, which extend the model’s capacity in modeling

the hidden spatio-temporal relations; 3) AJSTGL balances short-term and long-term

predictions by adopting both S2SFM and STGTM. The gated information fusion module

ensures the model learns the optimal weighting when combining the features from the two

modules.

6.2.3 Conclusion

This chapter presents a novel deep learning framework for spatio-temporal data

processing. In the first work, a local and global correlated GCN is created to capture each

airport’s regional connectivity and global similarity with other airports. A hierarchical

multimodal fusion network is applied to fuse flight and meteorological data and exploit
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their cross-modality dependency. During the training phase, a dynamic multi-task learning

strategy is used to predict flight arrival and departure delays at the same time to boost

the model’s generalization. The proposed model is evaluated on a large-scale carrier

on-time performance dataset against several baselines and two state-of-the-art methods.

The experimental results demonstrated that our model could effectively forecast short to

medium-term flight delays.

In the second work, we use static and adaptive graph learning modules to improve

the pre-defined graph and adaptively learn new graphs to capture more trivial hidden

patterns. An auxiliary convolutional graph is adopted to leverage contextual information.

We further transform the standard graph convolutional layer to allow the model to learn

unidirectional traffic flow patterns. The sequence-to-sequence fusion module hierarchically

combines the parallelized encoders and learns the short-term temporal node dependencies.

We also develop the spatio-temporal graph transformer module to complement S2SFM by

dynamically capturing the spatio-temporal dependencies in long-term prediction. Experi-

mental results on three real-world datasets demonstrate the excellent performance of our

approach compared to other state-of-the-art baselines.
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Table 29: The ablation study of each component’s impact on flight arrival and departure

delay prediction

Method

MAE

1h 2h 3h 4h 5h 6h 7h 8h 9h 10h

Arrival Delay

w/o global GCN 4.988 5.237 6.310 8.247 9.801 10.645 11.984 11.973 12.712 12.680

w/o MTL 4.601 4.875 6.011 7.903 9.408 10.288 11.594 11.583 12.425 12.394

w/o DMTL 4.725 5.023 6.176 8.062 9.603 10.471 11.754 11.772 12.548 12.609

w/o HGF 4.923 5.230 6.297 8.216 9.779 10.639 11.980 11.947 12.700 12.698

MTLG-Net 4.573 4.842 5.925 7.852 9.374 10.237 11.535 11.570 12.335 12.359

Departure Delay

w/o global GCN 4.985 5.231 6.296 8.239 9.821 10.651 11.990 11.965 12.689 12.688

w/o MTL 4.613 4.882 6.001 7.913 9.385 10.297 11.604 11.579 12.412 12.386

w/o DMTL 4.721 5.021 6.161 8.045 9.517 10.450 11.800 11.792 12.537 12.601

w/o HGF 4.915 5.221 6.283 8.210 9.815 10.613 11.914 11.951 12.717 12.683

MTLG-Net 4.499 4.831 5.917 7.858 9.291 10.239 11.485 11.573 11.258 11.536
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Table 30: The ablation study of meteorological input variable’s impact on arrival and

departure delay

Method

MAE

1h 2h 3h 4h 5h 6h 7h 8h 9h 10h

Arrival Delay

w/o Met Var 4.812 5.107 6.210 8.134 9.662 10.545 11.913 11.940 12.744 12.738

with Met Var 4.573 4.842 5.925 7.852 9.374 10.237 11.535 11.570 12.335 12.359

Departure Delay

w/o Met Var 4.780 5.139 6.224 8.183 9.637 10.653 11.872 11.993 11.701 12.015

with Met Var 4.499 4.831 5.917 7.858 9.291 10.239 11.485 11.573 11.258 11.536
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Table 31: Overall performance comparison of AJSTGL and baselines on three datasets: a)

RCOTP: average ten hours arrival delay, b) PeMSD4: traffic flow, c) PeMSD8: traffic flow.

Model
Dataset RCOTP PeMSD4 PeMSD8

Metrics MAE RMSE MAE RMSE MAE RMSE

ARIMA 13.36 24.04 40.05 66.08 36.11 59.85

DCRNN 9.93 16.39 21.25 33.49 16.81 26.34

STGCN 9.86 16.86 21.2 35.01 17.52 27.14

ASTGCN 9.66 16.22 22.94 35.41 18.28 28.44

Graph WaveNet 10.52 17.88 20.01 31.11 15.61 24.44

AGCRN 9.02 15.24 19.85 32.28 15.97 25.55

AJSTGL 7.60 12.84 18.07 29.37 13.79 22.48
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Table 32: Overall performance comparison of AJSTGL and baselines on average hourly

flight arrival delay prediction in ten hours horizons using RCOTP dataset

Method
MAE

1h 2h 3h 4h 5h 6h 7h 8h 9h 10h

ARIMA 7.33 8.02 9.26 11.83 13.10 15.77 15.93 16.28 17.73 18.32

DCRNN 6.38 6.78 7.36 8.10 9.39 11.02 11.86 12.17 12.42 12.94

STGCN 6.24 6.83 7.88 8.07 9.14 11.73 11.89 12.19 12.60 12.02

ASTGCN 5.98 5.54 6.85 8.15 9.28 10.85 11.99 12.27 13.65 12.03

GW 5.19 5.68 6.46 8.38 10.98 12.07 13.09 13.43 14.83 15.07

AGCRN 5.15 5.63 5.50 7.31 9.58 10.31 11.24 11.42 11.84 12.19

AJSTGL 4.02 4.26 5.21 6.99 8.44 9.32 9.59 9.73 9.95 10.21
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Table 33: MAE and RMSE of traffic speed prediction on PeMSD4 for the next four

horizons

Model
Dataset PeMSD4 (15/30/45/60 min)

Metrics MAE RMSE

ARIMA 2.8 5.43

DCRNN 1.34/1.79/2.06/2.27 2.95/4.08/4.82/5.36

STGCN 1.48/1.95/2.23/2.61 3.01/4.22/5.03/5.66

ASTGCN 2.11/2.45/2.62/2.74 3.94/4.58/4.94/5.18

Graph WaveNet 1.45/1.92/2.15/2.55 2.97/4.15/4.89/5.52

AGCRN 2.04/2.39/2.58/2.66 3.86/4.47/4.80/5.12

AJSTGL 1.26/1.62/1.78/1.91 2.65/3.40/3.74/3.82
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Table 34: MAE and RMSE of traffic speed prediction on PeMSD8 for the next four

horizons

Model
Dataset PeMSD8 (15/30/45/60 min)

Metrics MAE RMSE

ARIMA 2.22 4.57

DCRNN 1.16/1.52/1.69/1.88 2.55/3.53/4.10/4.47

STGCN 1.21/1.62/1.95/2.28 3.21/3.74/3.94/4.19

ASTGCN 1.53/1.71/1.85/1.94 3.22/3.75/3.98/4.25

Graph WaveNet 1.19/1.58/1.91/2.26 3.17/3.69/3.92/4.13

AGCRN 1.51/1.66/1.82/1.88 3.21/3.68/3.86/4.31

AJSTGL 1.13/1.32/1.51/1.64 2.37/2.77/3.17/3.28
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Table 35: Ablation study MAE and RMSE for average arrival delay on RCOTP and traffic

flow on PeMSD4 and PeMSD8 datasets.

Method
Dataset RCOTP PeMSD4 PeMSD8

Metrics MAE RMSE MAE RMSE MAE RMSE

w/o SGL 7.99 15.83 19.01 30.88 14.50 23.64

w/o NSDM 8.27 16.37 19.66 31.94 15.00 24.45

w/o AGG 8.32 16.47 19.78 32.14 15.10 24.61

w/o GR 8.12 16.08 19.31 31.37 14.73 24.02

w/o UC 7.93 15.70 18.85 30.63 14.39 23.45

w/o AGCN 8.11 16.05 19.27 31.32 14.71 23.97

w/o S2SFM 7.84 15.52 18.64 30.29 14.23 23.19

w/o STGTM 8.01 15.86 19.04 30.95 14.53 23.69

AJSTGL 7.60 12.84 18.07 29.37 13.79 22.48
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Table 36: Ablation study MAE for arrival delay on RCOTP for the next ten horizons

Method
MAE

1h 2h 3h 4h 5h 6h 7h 8h 9h 10h

w/o SGL 4.19 4.49 5.49 7.35 8.68 9.79 9.98 9.99 10.00 10.01

w/o NSDM 4.04 4.47 5.74 7.55 8.71 9.85 10.33 10.27 10.75 11.00

w/o AGG 4.63 4.90 5.53 8.04 8.67 9.33 9.86 10.23 10.85 11.18

w/o GR 4.23 4.47 5.47 7.41 8.90 9.51 9.90 10.11 10.45 10.79

w/o UC 4.19 4.44 5.43 7.29 8.80 9.56 9.76 9.87 10.09 10.21

w/o AGCN 4.30 4.85 5.57 6.84 7.59 9.32 10.23 10.38 10.77 11.25

w/o S2SFM 4.77 5.82 6.50 7.62 8.77 9.79 9.81 10.43 10.66 11.25

w/o STGTM 4.02 4.28 5.83 7.55 8.88 9.99 10.74 11.39 11.84 12.95

AJSTGL 3.98 4.26 5.21 6.99 8.25 9.30 9.49 9.50 9.52 9.52
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclustions

This dissertation proposes a comprehensive framework of multimodal big data

analytics and fusion for data science. The main components included in this work are (1)

hierarchical graph fusion, (2) adaptive spatio-temporal graph network, and (3) dynamic

multi-task learning. These components are systematically integrated to provide new

solutions for multimodal big data analytics problems. The following is a summary of each

element:

• A novel dynamic multi-task learning approach is proposed to address the challenge

of optimizing the model training process in a multi-task learning scenario. The

dynamic task balancing adjusts the training progress at the sample and task levels.

By allocating additional resources to difficult instances, the sample-level dynamic

balancing function amplifies the loss generated by these samples. Simultaneously,

the task-level dynamic balancing mechanism adjusts weight distribution based on

each task’s training rate. Additionally, a loss weighting method named automatic

loss weighting is designed to automatically adjust the weight scalar for each task

following every training iteration. As the loss for each task is tuned to a similar

scale, the model can begin the subsequent training iteration with a more balanced

loss distribution.
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• A novel hierarchical graph fusion network is proposed to capture the inter-modality

correlations among modalities and retain their independent properties. Like a tree-

based graph, each modality is combined on different levels, in which the cross-

modality interactions are learned based on various combinations. Graph nodes

represent each input signal combination, and edges represent the similarity among

modality combinations. Therefore, the value of each child node is represented as the

integration of both parent nodes and the edge weights.

• A novel adaptive spatio-temporal graph network with a sequence-to-sequence fu-

sion model is proposed. Multiple pre-defined and adaptively generated GCNs are

utilized to capture the spatial dependency in the data. The locally correlated GCN

focuses on the spatial connectivity between nodes with direct connections. The

globally correlated GCN captures the network-wide correlation among nodes with

similar characteristics. Finally, the adaptive GCN comprehensively learns the hidden

patterns between nodes. In addition, an effective normalization technique is also

applied to control the adjacency matrix’s sparsity and reduce redundant node-wise

correlation. A bidirectional long-short-term memory (BiLSTM) based sequence-to-

sequence fusion module is applied to extract the short-term temporal information

in the data sequence. The sequence-to-sequence fusion network also combines

the output from each graph to leverage the cross-modal interactions in modeling

the temporal dependency. Lastly, a spatio-temporal graph transformer module is

developed to complement the sequence-to-sequence fusion module by dynamically

capturing the spatio-temporal dependencies in long-term predictions.
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• The proposed framework has been tested on various datasets and applications, in-

cluding disaster damage assessment, disaster situation assessment, airfare price

prediction, flight delay prediction, traffic speed prediction, and traffic flow forecast-

ing.

7.2 Future Works

Despite the various solutions introduced in the previous chapters, many challenges

in multimodal big data analytics still need to be tackled to improve the proposed multimedia

big data analytics and fusion framework.

7.2.1 Task Relation Learning in Multi-Tasking Learning

As discussed in Chapter 4, multi-task learning is an important research domain that

enhances the modeling performance by learning multiple related tasks. In this dissertation,

we focus on optimizing the training process, such as adjusting the learning rate based on

weight gradient to improve the efficiency of multi-task learning. In future work, we would

also like to target task relation learning [14]. Unlike neural network architecture design or

learning optimization methods, task relation learning aims to capture the representation

of tasks based on their similarities. The model performance could be further improved

by grouping correlated tasks and adapting similar training strategies. Initial attempts

on task relation learning try to group a primary task with multiple correlated auxiliary

tasks [50, 160]. However, this requires empirical knowledge in choosing the optimal task

groups or significant effort in testing the modeling results on all task combinations.

Our future work will focus on modeling the task similarity representation by
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comparing the attention maps across tasks’ input and output data. The attention map

contains the correlation pattern between input and output data based on their specific

format. For example, in text data, the attention map represents the scoring of each input

token relevant to tokens in the output. It is reasonable to assume that similar tasks will also

demonstrate similar attention map patterns. Another advantage of the proposed approach

is that the attention map can be generated on a simple model since learning the relative

relations among tasks can be separated from the primary task. This greatly reduces the

computation cost as there is no need to train a more complex main model.

7.2.2 Adversarial Joint-Modality Embedding Learning for Multimodal Fusion

In this dissertation, we proposed the hierarchical graph fusion approach to capture

the inter-modality correlations among modalities for multimodal fusion. It uses a tree-based

graph structure to combine the vectors of modalities by learning their interactions. However,

the heterogeneous data distributions among different sources still pose a great challenge for

multimodal fusion [16]. Most existing approaches use multiple modality-specific networks

to extract the vector representation from each source and directly combine them using

various fusion methods [64, 171, 186]. However, due to the challenge of heterogeneous

data distributions, the complementary information across modalities may not be fully

exploited without first learning a joint embedding among the modalities before the fusion

step. Generative adversarial networks (GANs) [58] have been widely applied to computer

vision and natural language processing to map the distributions of source domains to that

of the target domain based on a prior domain distribution using the adversarial training
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technique.

Our future work will use an encoder-decoder framework with adversarial learning

to re-construct each modality into a transformed distribution by embedding all modalities’

inputs into a common vector space. In other words, the encoder generator produces the

embedding space vector for each source modality and tries to fool the discriminator into

classifying the embedded source modality vector as the target modality vector. On the

other hand, the discriminator’s goal is to distinguish the target modality vector from the

embedded source modality representation produced by the generator. Such an adversarial

learning process will enable the model to learn the modality-invariant joint embedding of

all modalities. Combining the hierarchical graph fusion approach discussed in Chapter 5

and the adversarial joint-modality embedding learning method, the model could more

efficiently capture the inter-modality interactions and alleviate the issue caused by the

heterogeneous data distributions among distinct source modalities.

7.2.3 Graph Convolutional Networks for Multi-Label Classification

Chapter 6 presents various novel techniques of applying GCNs for spatio-temporal

data modeling. In future work, we will continue to explore the potential of GCNs in

handling multi-label classification problems. Chapter 4 examines the effectiveness of

applying multi-task learning for multi-label classification tasks in the later stage of a

modeling pipeline. Specifically, we convert the multi-label classification problem into a

multi-task learning job by treating the prediction of each label as a single task. Such an

approach focuses on balancing the training dynamic by adjusting the learning rate for each
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task. However, it is equally important to consider the label correlation during the early

stage. The low-level label relations could easily be lost in the training process as the model

gradually learns more abstract input representations.

In our future work, we propose to leverage GCNs to capture the inter-label relations

by modeling the prior label representations using a unique correlation mapping function.

Take the disaster video classification task as an example. The graph nodes represent the

word embedding of the labels, and the adjacency matrix contains the correlations for each

label pair. Unlike conventional graph data, where the adjacency matrix can be constructed

using the pre-defined network topology, there is no easy way to identify the label relations

in an arbitrary multi-label dataset based on prior knowledge [33]. To solve this issue, we

define the label adjacency matrix by learning the co-occurrence patterns from the data.

The co-occurrence matrix contains the conditional probabilities of the occurrences of each

label with regard to all other labels. To avoid overfitting the co-occurrence matrix on the

training dataset, we can leverage the sparse matrix normalization technique discussed in

Chapter 6 as a means of regularization. Sparse matrix normalization removes trivial node

connections to enhance the generalization ability of the graph network. In practice, GCNs

containing the learned label correlations are used as classifiers for feature representations

extracted by other domain-specific sub-networks. The proposed approach can be applied

to various real-world application domains where complex label correlations exist.
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