





























Chapter II

Mathematical Development

In this chapter, the method used for the noisy search problem is
described in detail. Stochastic approximation and its modification
that were used for a comparison purpose are also described. Finally,

the process model used as a test problem is deQeloped.

A. Noisy Search Methods

a. Discussion of general methods. The search method proposed

here is a tool for the optimization of many types of multiparameter
noise corrupted systems. Methods used for the noise free systems were
applied to the noisy systems except that the effect of noise was re-
duced by filtering using minimum variance estimators.

The filters used in this work were obtained by replication alone
at the current search point. This type of filter was shown in previous
work to yield a significant improvement in search response over tradi-
tional stochastic approximation methods (Luecke, 1970).

Rosenbrock's pattern search developed for noise free systems was
used as the search method. Screening experiments (Luecke, 1967)
indicated that this method is less sensitive than most to the effect
of noise. A further advantage is that this search uses only values of
objective function at various points unlike gradient techniques which
depends on derivatives. This feature allowed a simplified formulation
for the minimum variance estimators.

When a point in the search was reachedhfor which the standard

search procedure indicated that no further progress toward optimization



was being made, an increased number of replications was made at each
functional evaluations. This reduced the effective noise levels by
the ratio of the square root of the number of replicationms.

In the previous study, optimal replication factors were derived by
calculus of variations using some information about the function that
normally would not be available (Luecke, 19565: For this thesis,
replication after search failures was increased by factors two, four,
or six. There are approximations to the factors determined by the
more complex procedure.

The whole procedure, failure and increased replication process,
was repeated until an upper bound on replications was reached or until
satisfactory approach to the optimum was attained.

Note that the estimator was realized by replication at the current
search location alone. Values obtained at earlier stages are ignored
and not used in the function estimates.

b. Rosenbrock technique. The Rosenbrock search used here has been

otherwise referred to as the method of rotating coordinates. It has
outperformed many other methods on difficult two-dimensional curved
ridges (Wilde, 1964).

The method of rotating coordinates differs from other searches
mainly in the way it carries out local explorations. Instead of per-
turbing each of the original variables independently as in other pattern
searches, Rosenbrock rotates the coordinate system toward the most
efficient direction as estimated in previous trials. The other axes
are arranged in the direction normal to the first. Instead of taking a

fixed step in each direction, this procedure continuously adjusts the
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step sizes. The combined rotatioﬁ of search vector and scale adjustment
is extremely effective on object functions with curved ridges.

The effect of this method is that if a change was successful
(criterion function is greater than or equal to the vaiﬁé at the pre-
vious base point for functions having maxima), then the next time a
step size is made in the same direction, an&mfhree times as far. But,
if the step was unsuccessful, then when the time comes to use that
particular step, it will be in the opposite direction and will have
only half the length. This method adjusts the steps by itself to the
required magnitude.

A stage is completed when there has been at least one success and
one failure in every coordinate direction. Coordinate directions for
the next stage are then obtained by constructing a set of orthogonal
vectors around a basg vector that reaches from the initial point to the

final point of the just completed stage.

B. Stochastic Approximation Technique

Among the more successful optimization methods for noisy systems
is stochastic approximation. Some recent developments and extensions
for the technique are described in this section.

a. Kiefer-Wolfowitz procedure. After the work of Robins and

Monroe (1951) was published, Kiefer and Wolfowitz (1952) (K - W)
adapted stochastic approximation to the problem of finding the maximum
of unimodal functions obscured by noise.

The K - W technique is a one—dimensional.Procedure. It differs
from the other methods in that instead‘of estimating the derivatives
A¢p/AX. At one point Xn the dependent variable, is measured at two

points at a distance of Cn on either side of Xn (Figure 1). Cn is
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defined as the distance between the most recent pair of observations.

From these two observations z(Xn - Cn) and z(Xyl + Cn)’ the average slope

E(Xn + Cn) - Z(Xn - CVL)] / ZCn (2-1)

The sign of the slope indicates the direction in which to locate the

is calculated as:

next pair of experiments.
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Figure 1.

Kiefer-Wolfowitz Estimation of Average Slope.

The center point, X , of the next pair of the experiments is

n+l
determined as:
Z(Xn + Cn) - z(Xn - Cn)

= Xn + An (2-2)
2C
n

Xn+1

where An is one of the sequence of positive numbers determining the

step size.



The values of observation z are given by the equation
z(Xn) = ¢(Xn) + 6n (2-3)
where Gh are the normally distributed random variables with zero mean
and standard deviation o. ¢(Xn) is the criterion function at the point
X . The K - W technique requires certain restrictions on the stepping

n

sequence and the distance between the observations.

Lim An =0
(2-4)
n - o
Lim C =0
" (2-5)
n o> o

These conditions guarantee that the process will eventually converge.
To be certain there is enough corrective action to avoid stopping short
of the peak, the stepping sequence must be such that,
o
) A = e (2-6)
n=1
But to cancel out cumulative noise effects and to guarantee convergence,
we must have
© An 2
) (—-—) < e (2-7)
C
n=1 n
The K - W method can be inefficient because it needs an infinite number
of runs to ensure convergence. In practice, it is not possible to use
infinite numbers of trials to determine the optimum set of operating
variables. It is very desirable that convergence be rapid.
It is assumed that noise is unbiased, since any bias would distort
the perception of the underlying criterion function. That is its expected

value is zero.



Es) = o (2-8)

b. Normalized Kiefer-Wolfowitz procedure. Cruz-Diaz (Wilde, 1964)

observed that the K - W technique was very slow in the flat regions far
from the optimum.

In Figure 2(a), a more complicated unimodal function is shown. Its
average slope, given in Figure 2(b), is certainly not monotonic, having
as it does a minimum and a maximum corresponding to the inflection points
of ¢. The K - W procedure would be very slow in the flat regions far
from the maximum Xﬁ and as soon as it reaches the left inflection point
it would jump over the peak into the flat region to the right. Thus, it

takes a lot of time to come out of the plains.

Aveernct y

NEoenvE
4?‘ Stopt
-d% /4 x

Unimodal Function Non-monotonic
with Inflections. Function
(a) ()
Figure 2.

Function Requiring Normalization
In this way, assymetry in a peak can confound the K - W technique and
greatly retard its speed of convergence. Under these circumstances it

would be better to use only the sign instead of the magnitude of the
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average slope. The normalized version can be written as

Z(Xn + Cn) - Z(Xn_ Cn)

X 1= X, + An Sgn y (2-9)
n

where Sgn[U] denotes the sign of the quantity inside the brackets. The

new base point, X

1’ is determined from the previous base point, Xn’

plus the current value of stepping sequence An multiplied by the sign
of the average estimated slope at the base point Xn'

Use of the sign of estimated slope rather than its numerical value
has been shown empirically to improve performance of the method for
certain ill-behaved criterion functions (Wilde, 1964).

The restrictions on the stepping sequence and the distance between
recent observations are the same as given in K - W procedure in equations
(2-4) through (2-7) in section a. of this chapter.

c. Kesten's accelerated procedure. Kesten modified the K - W

procedure to accelerate the convergence process under more restrictive
assumptions (Wilde, 1964). This procedure is extended to more general
functions and convergence is faster.

Kesten's accelerated procedure merely eliminates shortening of the
step size when movement is apparantly toward the optimum. Kesten
reasoned that far from the peak there will be fewer reversals in the
search directions because direction reversing errdr will be relatively
unlikely. The step size, therefore, is shortened only after a reversal
of the average slope. This method brings the search close to the opti-
mum more quickly than the unaccelerated schemes. Near the goal one can
expect overshooting because of the oscillations from one side to the

other, so that short step sizes rapidly result.
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The equation for this procedure is the same as given in Equation
(2-2), except that the stepping sequence will change only when the sign
of the slope changes. The restrictions imposed are the same as given in
Equations (2-4), (2-6), and (2-7). Additional restrictions required by
Kesten are: Each member of the sequence must be less than all preceeding
members;

A < A for all n (2-10)
and

Cn = (Constant for all n=1,2,3,-—- (2-11)

These replace the condition given in Equation (2-5) for the unaccelerated
procedure.

d. Ahlgren and Steven's modified method. Ahlgren and Stevens (1966)

suggested a further modification of the Kesten - Kiefer - Wolfowitz
search, in that after a given number of sign changes, the whole procedure
was reinitiated with the step size relengthened back to the initial size
A;. The last basepoint is thén considered as a new starting point. This
technique, of course, destroys all the rigorous mathematical conditions
for convergence. By experimental testing, Ahlgren and Stevens showed
that modified procedure was more efficient than the other methods as
error was increased.

The results for the Kesten - Kiefer - Wolfowitz method on the test
function, taken from Ahlgren and Stevens (1966) ére shown here for compari-
son with the present work. Results for the A & S modified procedure are
also shown.

Functional evaluations, used as the criteria for merit in this work,

were computed by multiplying the number of search stages as reported by
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A & S by eight since, in the four-dimensional system, there are eight

explorations at each base point.

C. Test Problem

a. System structure. The present optimization problem is taken

from the model proposed by Williams (1961). A diagram of the plant is
shown in Figure 3.

This model was used so that the results of the new method could be
directly compared with those reported by Ahlgren and Stevens (1966) for
the modified stochastic approximation approach. We note here paren-
thetically, that several difficulties that involved much lost time were
incurred because of a typographical error in an equation from the A & S
paper (sign in the denominator) and because of a change of a coefficient
in the A & S program for this function (-60 VR). To be consistent with
the other results, this latter change in Equation 2-30 was retained here
although this makes the computed object function slightly incorrect.

The plant consists of a continuous stirred tank reactor, a sepa-
ration device consisting of a settling tank (decanter) and a distilla-
tion column. Before sending the reactor effluent to the decanter it is
cooled. The decanter overflow is sent for distillation. In the reactor,
three irreversible exothermic, temperature éensitive reactions take place
to yield a mixture of six components in the feactor effluent. The tempera-
ture of the reactgr is assumed controllable at any desired temperature.
Column bottoms which would contain the product and some other material
is recycled to the reactor for further reaction. A discard stream is

taken off the distillation column bottoms and sent to the plant fuel.
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Figure 3.

Block Diagram of Model Plant.
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The plant in the present study is to produce 40,000,000 1lbs. per
year of distillate product, P. Reactants A and B are the only two which
produce the product. The reactor effluent contains both raw materials A
and B; the desired product, P; an intermediate, C; an inert, E; and a
residual substance, G. In the cooler, the residual substance becomes
insoluble in the reactor effluent. Residual product (FG) is separated
in the decanter. The desired product is removed by distillation. In the
column bottoms an aéeotrope is formed. Part of the substance is recycled
to the reactor and rest to the plant fuel to control the concentration.

b. Simplifying assumptions. Several simplifying assumptions are

made :

1. The reactor can be considered well stirred and reactants
and products are at all times completely mixed, i.e., compo-
sition in the outlet would be same as the reactants.
2. The decanter is considered well mixed in the layer of
material serving as feed to the distillation column and
there is no mixing between the light and heavy layer.
3. Loss of heat is considered negligible for all units.
4. Volume is expressed as pounds of contained liquids.
5. All compositions are expressed as weight fractions.
.Q;, If production must exceed 40,000,000 1b. annually (OR
4763 1b/hr considering 8400 operative hours) then that
excess is discarded.
7. Molecular weights (Mi) for each components:

Components A, B, P 100

Components C, E 200

Components G 300
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c. Equations. Now the equations used to simulate the operation of

the model plant are discussed. These equations merely serve to simulate
a measured response for a given set of decision variables. Error is
generated artifically and introduced in the object function.

1. Chemical reactions: Product P is produced by or takes

part in the following chemical reactions:

(a) A + B » C (2-12)
) B + C - P + E (2-13)
(c) P + C » G (2-14)

Initial reactant materials, A and B, are available in pure form
from outside sources. Components C, E, and G are intermediate by-
products of the reactions. They have no sale value as chemical pro-
ducts, but can be disposed of as fuels.

Rate of Reactions:

o= Ry Car Cpr reaction coefficient (2-15)
hy = ko CBR CCR reaction coefficient (2-16)
ry = k3 CCR Cor reaction coefficient (2-17)

Reaction coefficients: The reaction coefficients Ry, k,, ki

have been evaluated. Their value can be expressed by the Arrhenius
equation:
"N . T
Coefficients @ and N are pre-exponential factor and activation
energy where

93}

Ny

5.9755 x 10%/hr. weight fraction

12,000 °R : BASIS: 1 1b. of A or B

2

2.5962 x 1012/nr. weight fraction
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N, = 15,000 °R BASIS: 1 1b. of B
Q3 = 9.6283 x 10!5/hr. weight fraction
N3 = 20,000 °R BASIS: 1 1b. of C

2. Process constraints: Material balances were written for

various components and the following set of equations were derived. All
material balances assume steady state operations. These steady state
equations are to be solved for various values of decision variables.
(a) Material balance on component A (in terms of
reactor concentration of A).
C

Fiot ®-1 F, Cpp - Ry 0 (2-19)

A0 Ve Car CBr T
where K is recycle ratio (weight fraction).
(b) Material balance on component B (in terms of
reactor concentration of B).

Fpo * (K = 1) Fp Cpp = k1 V Cyp Cpp

- ky Vp Cpr C 0 (2-20)

BR "CR
(¢c) Material balance on component C (in terms of

reactor concentration of C).
M M

c c
(K - 1) Fp Ceg + M, k1 Vp Cpgp Cpgr = M, k2 Vg Cpg Cer
- k3 Ve Cop Cpp = © (2-21)

(d) Material balance on component E (in terms of
reactor concentration of E).

RK-1) F C ko Vg Cgr Cer = O (2-22)

R
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/(e) Material balance on component G.

Mo
Frlear * F{E Ry Vp Cer Cpr

0 (2-23)

(f) Material balance on component P.

(K - 1) Fp Cpp = K Fp ﬁ; kzchBRcCR
(2-24)
- ﬁg Ry Vg Cog Cpr = ©
(g) Constraint on the concentrations in the
reactor.
C + C + C + C + C + C = 1.0 (2-25)

AR BR CR ER PR GR
(h) Constraint on the distillation separation
efficiency is:

r Cpr - FP = 0 (2-26)

ER

(this results from the Williams', FP = (C,. - 0.1 CES) FS).

PS
(i) Overall material balance.

FAO + Féo = FP + FR CGR + FD (2-27)

These are fourteen variables and nine nonlinear constraint equations.
Hence, there are five independent variables and nine dependent variables.
The independent variables are F,, FBO’ VR, T, and K. Since we assumed
that the product P is fixed at 40,000,000 1b./yr., there are only four
independent variables which are to be varied in the search for the
optimum. Dependent variables are CAR’ CBR’ CCR’ CER’ CPR’ CGR’ FR’ FD’
and F. .. To calculate the criterion function it is necessary to ini-

AO

tialize these variables.
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3. Objective function: Simultaneous solution of the nine non-

linear equations for a given set of decision variables permits evaluation
of the criterion function.
(% Return)

8400X—2.22FR—(0.124)(8400)(0.3FP+0.0068FD)-60VR-1.3FR

¢ = 100 (2-28)
300 VR + 13.0 FR

The above equation (2-28) is modified version of Williams' percent

return on investment contains the following assumptions postualted by

Williams.
(a) 8400 operational hours are assumed.
. (b) FP = 4763 1b/hr.
(¢) X =0.30 F, + 0.0068 FD - 0.02 FAO

- 0.03 FBO - 0.001 FG.
(Contains sale price and raw material cost of various streams).
(d) Utility charges are 2.22 multiplied by
the reactor effluent flow rate.
(e) SARE cost (sales, administration, research
and engineering cost factor), compounded
as gross return is 0.124,

(£) 300 Vg + 13.0 F, is factor for estimating

R
gross capital and 30 VR + 1.3 FR is the

corresponding factor for depreciation.
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Results and Analysis

Noise in the form of a normally distributed random variable having
zero mean was added to the criterion function described in the last
section of the previous éhapter. A search for.the optimum was conducted
using the method described earlier;

The results of these searches, as well as the best results of
searches made by Ahlgren and Stevens (1966) using stochastic approxi-
mation are all graphed in the same general format. The ordinate repre-
sents the number of functional evaluations (eight times the number of
center points for the stochastic approximation methods). All graphs are
plotted to the same scale to facilitate comparison.

At each error level four different random number sequences were
generated by digital computer (subfoutine GAUSS-IBM Scientific subroutine
package) to test reproductibility of results. Five levels of error
were introduced in the function in order to test the method: o = 0.0,
0.5, 1.0, 2.0, and 5.0. At the initial state, the value of the object
function was 25.8, compared to the optimal or maximal value of the
object function of 46.02{

In the present study, the same initial step size was used for all
runs. The four free variables were initialized along with step sizes.

With these initial values and constraint equations, the nine de-
pendent variables were calculated. With the dependent variables and
decision variables, the wvalue of the object function could be calculated.
Noise was added to this functional value. The Rosenbrock search was

used to determine the new values of the decision wvariables.
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The results obtained with the different noise levels and random
number sequences are given in Table 1 through Table 14. Plots of the
results are also given aithough all the data points are not shown. Only
the points at the end of each search stage in the Rosenbrock routine are
plotted.

In Table 1 and Table 2, the results are given for the noise free
systems. The results in Table 1 are for the Rosenbrock search method
and in Table 2 are for Kesten's accelerated search technique (Ahlgren and
Stevens, 1966). At the end of the first stage, that is when search pro-
gress failed, the object function has increased from 25.8 to 45.83. A
total of 86 functional evaluations were required to reach this value.
Kesten's accelerated technique required 212 evaluations to reach the
same value (Table 2). These results are plotted in Figure 4. It is
evident that for the noise free system, the performance of the Rosen-
brock method is superior to that of stochastic approximation. Both
methods show slower response in the vicinity of optimum as compared to
when it is far away.

Additions of substantial quantities of noise produced a slower
time response. Tables 3 through 7 show the progress of the optimizer
when the noise is a normally distributed random variable with zero mean
and a standard deviation of 0.5. Four random noise sequences were tested.
When a level was reached for which further significant improvement
stopped or at least was very slow, the number of replications of the
object function was increased by multiples of two after each failure of
search progress. For comparison purposes, tests were also performed
wherein the number of replications was increased by multiples of four

and six after each failure.



TABLE 1

Rosenbrock Search Results for Noise Free Case

Value of the ' Number of
Object Function Functional Evaluations
25.8 Initial
44.84 17
45.81 41
45.83% 86

* Indicates failure in search progress.

21.



TABLE 2

Kesten's Accelerated Method for Noise Free Case

Value of the
Object Function

25.8
31.4
38.0
44.8

45.8

Number of
Functional Evaluations

Initial

16

40

88

212

22.
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The results were plotted in Figures 5 and 6 along with results from
Ahlgren and Stevens. The arroﬁs in the figure denote the failure in
search progress. The failure in search occurs when thegg is no signi-
ficant improvement in the object function or response rate is very slow.

Tests with two of the random number sequences (plotted in Figure 5)
showed better convergence than that of the besgﬁof modified method of
Ahlgren and Stevens. And other two random number sequences had conver-
gence rates very similar to that of the best Qf modified A & S method.
On the average, one can say that replication technique is better than
the modified method at this error level.

The resQlts for a replication increased by a factor of four and six
are shown in Tables 6 and 7. These results are plotted in Figures 7
and 8. In Figure 7, the convergence rate of Rosenbrqck search is not
better than modified search, but at least it is not worse. In Figure 8,
the Rosenbrock shows poor performance compared to the other method.

The noise was doubled to the level of 1.0 and again tests with
four random number sequences were made. The results in Tables 8 and 10
are plotted in Figure 9. The best convergence rates of the A & S
modified stochastic approximation method was about the same as for the
filtered Rosenbrock search for two of the random number sequences, while
for two other sequences, replication technique showed a poorer response
rate.

In Table 11, the results of convergence rate of the noise level of
2.0 are given and plotted in Figure 11. The best results of the A & S
modified method are somewhat better than the filtered Rosenbrock search

method, but the responses of both methods are comparable.
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Replication Technique With a Noise Level of 0.5

(For Random Number Sequences 1 & 2)

Random Number Sequence 1

Value of
the Criterion
Function

25.8
33.359
40.06
45.508
45.934%
46.001*
46.009
46 .005%*

46.011*

Number of
Functional
Evaluations

Initial
17
29
53
98
190
226
406

774

Random Number Sequence 2

Value of

the Criterion

Function

25.8
43.143
45.843%
46.034%
45.931
45.931*
45.897

46.004%

* 1Indicates failure in search progress.

Number of
Functional
Evaluations

Initial

17

62

154

222

402

506

866
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TABLE 4

Replication Technique With a Noise Level of 0.5

(For Random Number Sequences 3 & 4)

Random Number Sequence 3 Random Number Sequence 4
Value of Number of Value of Number of
the Criterion Functional the Criterion  Functional

Function Evaluations Function Evaluations
25.8 Initial 25.8 Initial
32.88* 46 31.95% 46
37.098 72 38.34 80
41.27% 162 43.52 120
43.687 214 43.88% 210
44.991% ’ 390 45.283% 346
44 .942% 758 45.373 714

* Indicates failure in search progress.
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TABLE 6

Replication Technique With a Noise Level of 0.5

Replication per Stage is Four-Fold

Random Number Sequence 3 Random Number Sequence 4
Value of Number of Value of Number of
Objective Functional Objective Functional
Function Evaluations Function Evaluations
25.8 Initial 25.8 Initial
32.88% 46 31.946% 46
45,657%* 230 38.28 114
45.73% 966 38.892% 294
42,813 502
4t .929 694
45.012%* 1414

* Indicates failure in search progress.
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TABLE 7

Replication Technique With a Noise Level of 0.5.
Replication per Stage is Six~Fold

Random Number Sequence 3

Value of Number of
Functional Evaluation Functional Evaluation
25.8 . Initial
32.884% 46
36.935 : 124
41.702 196
44.665 ’ 388
45.088% 688

*# Indicates failure in search progress.
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TABLE 8

Replication Technique With a Noise Level of 1.0

Random Number Seduence 1

Value of
Objective
Function

25.8
35.577
35.624%
36.514%
39.712
41.358
44.185>

45.591*

Random Number Sequence 2

Number of Value of Number of
Functional Objective Functional
Evaluations Function Evaluations

Initial 25.8 Initial
37 27.841%* 46
82 34.153% 138
174 39.503 190
226 44.520% 370
258 44,279 442
370 45.966% 794
550

Indicates failure in search progress.

34,



TABLE 9

Replication Technique With a Noise Level of 1.0

Random Number Sequence 3

Value of

Objective

Function

25.

33.

34

37.

38

43.

43

44

45

8

35%

.795%

364

.527%

497

.822%

. 601

1%

Number of
Functional

Evaluations

Initial

46

138

206

386

554

914

1250

1970

Random Number Sequence 4

Value of

Objective

Function

25.

32.

35.

42.

44,

by,

45,

45,

46

* TIndicates failure in search progress.

653%

015%*

617%

593%

767%

107

699

.009%*

Number of
Functional
Evaluations

Initial
58
150
330
698
1418
1706

2090

3530

35..



TABLE 10

Modified Method of A & S With a Noise Level of 1.0

Value of the
Object Function

25.8
28.6
33.0
36.0
40.2
41.0
42.4
bh.4
45.04
45.0
bbb

45.1

Number of
Functional Evaluation

Initial
40
80

120
160
200
304
392
488
536
616

696

36,
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TABLE 11

Replication Technique With a Noise Level of 2.0

Random Number Sequence 3

Value of

Objective

Function

25.8
29.16%
33.614
34.334%
37.164%
40.309
45.03
45.784%

46.002%*

* Indicates failure in search progress.

Number of
Functional
Evaluations

Initial

46
128
218
402
490
602
962

1698

Value of
Objective
Function

25.8
32.562%
33.936
39.986
40.474%
39.653
40.17%
40.109%

40.763%

Random. Number Sequence 4

Number of
Functional
Evaluations

Initial

46

72
144
234
334
514
882

1618

39.
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TABLE 12

A & S Modified Method With a Noise Level of 2.0

Value of the Number of
Object Function Functional Evaluation
25.8 Initial
27.4 88
36.4 208
39.2 : 288
41.4 328
42.6 456
44.6 560

45.4 664



- "1T 2an314
SNOIIVATVAZ TVNOILONAA A0 YATWAN - N
009T 00y T 0pzT 0p0T 008 009 00Y 002 -
SSTYD0¥d HOYVAS NI TINTIVA SAIVOIANI  +

(Z FONINDIAS YHTWAN WOANVY) v

HO¥VAS MOOYdINASOY g o o
-0¢

(T ZONENDAS YITHAN WOANVY)

HOYVAS’ DOYEINISOd 0 —— 0 i

¥ o n\
-GS¢

¥ N4
[=4
¥ ¥
AN 4 o Vf\ o
\ A.
\ q

% = \0\4 B
—0— - 9%
*0°Z 40 TIAZT ISION V HIIM (S ® V) QOHIIR ~0S

QIIIICON ANV FNDINHOAL NOIIVOITAHY A0 SSTYO0Yd HOYVHS

NOILONNA FATIIODALLO 40 HNTIVA



42,

In the last of them, Table 13 and Figure 12, results of noise
level of 5.0 are given. The data in the Table 14, which are plotted
in Figure 12, are of Kesten's accelerated method. The results of the
A & S modified method are not available. The replication technique

showed a faster convergence than Kesten's accelerated technique.
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TABLE 13

Replication Technique With a Noise Level of 5.0

Random Number Sequence 3

Value of

Objective

Function
25.8
33.756%
31.177%
29.364%
33.00%*
35.872

44.709%

Number of
Functional
Evaluations

Initial
46
138
322
690
898

1618

Random Number

Value of
Objective
Function
25.8
39.549%
34.328
38.613*
35.630%
37.049
38.833%

37.157%

Indicates failure in search progress.

Sequence 4

Number of
Functional
Evaluations

Initial
46
72
162
346
450
810

1546

43.



TABLE 14

Kesten's Accelerated Method With a Noise Level of 5.0

Value of the
Object Function

25.8
31.0
30.0
31.0
31.6

33.0

Number of
Functional Evaluation

Initial
48
56
136
160

320

44.
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Chapter IV

Conclusions and Recommendations

The new search method is effective in finding the optimum of this
function in the presence of noise. At moderate noise levels (o < 0.5),
the average respoﬁse rate is faster than that from the best tests re-
ported for the A & S modified stochastic appfoximation method. At
higher noise levels, the average response rate is at a level comparable
to that of the best A & S results.

A number of simple changes could enhénce the convergence rate of
the new method. One is to extend the filter for the functional values
to include information from previous search points. Another change
might be to modify the way that is used in the Rosenbrock algorithm to
decide that .earch progress had ceased. Too often excessive functional
evaluations were made at a maximal value for a given noise and filter

level.



" Nomenclature

raw material

finite number

sequence of positive numbers used to determine step size

raw material

intermediate product

concentration, 1lb. material per 1b. flowing stream

exploration step size

inert product

flow rate, 1b. per hour

residual product

recycle ratio = 1lb. recycled to reactor/lb. from
distillation column bottoms

reaction rate constant

molecular weight

activation energy x gas constant

desired product

pre—-exponential factor

rate of reaction

temperature, °R

volume, 1b.

term containing value of process streams

true value of a decision variable

value of criterion function with error
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Greek Letters

§ = error in evaluation of criterion function
¢ = true value of the criterion function

0 = standard deviation of error

£ = random number

Subscripts and Superscripts

A = feed material A

B = feed material B

C = feed material C

D = material to plant fuel
E = inert product E

G = residual product

4 = dummy index

n = number of base points
0 = initial

P = desired product

R = from (of) reactor

S = from decanter
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Appendix A

Description (Computer Program)

of Replication Technique

In the Rosenbrock search, the main steps which are applied in
finding the optimum conditions are the following.

1. Initial estimates of the decision variables 4; (where a; =
(%19, %59, -—- x,9)) are read. In éur case, we have four decision

variables (volume of the reactor, V_; initial flow rate of component

R
B, FBO; temperature in the reactor, T; recycle ratio, K). The product,
P, is fixed at 40,000,000 1lbs. per year. (or 4763 lbs/hr.).

2. Initial estimates of the dependent variables b; (where b; =

(xg%, %79, === x%7,0)) are fed into the computer. In this case, there

are nine dependent variables (compositions of components A, B, C, E, G,

P; i.e. CAR’ CBR’ CCR’ CER’ CGR’ CPR and cooler effluent, FR; by-product
stream, FD; feed stream, FAO).

3. 1Initial estimates of step size DEL; (where Del; = (Delj, Delp,
Dely, Dely)) are read.

4. Objective function ¢ is evaluated at the initial values of
(x1% === %149 . (For this we have to make use of the simultaneous
equation solver, SMLIQ).

5. Now we change the one decision variable x;0 by the amount of
the step size Delj.

6. The constraint equation is solved with the help of subroutine
EQSLN and objective function is computed again at the new points.

In the subroutine Rosenbrock, LA = 2, means still search is con-

tinued; LA = 4, is stage is complete and no need of functional value;
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LA = 5, no change in value and cannot continue; LA = 8 is when answer
is found. At the initial entry, LA = 1.

When first time LA = 5 is gotten, then the functional evaluations
are averaged to give better value; i.e. if first the NREP = 1, then
after we get LA = 5, then NREP = NREP + 2. So that functional value
|2. That is next time we get LA = 5, then NREP would be

16
equal to 4 and ¢ave = 121 ¢L|4 etc.

if ¢(x1° + Dely, xzo, -, xko) > ¢(x10, xzo, - xko), then
(x10 + Del,, xzo, —— xko) would be new temporary head. A;;, let
x1° + Delj, = x1;, then go to Step 9 directly, otherwise go to next
step.

7. If the new functional value is lower than the previous func-
tional value, then initial value is reduced by the same step size and
¢ is evaluated and again compared to the functional values. If this
¢ is larger than the previous one, then the new values of variables
car called new temporary head.

That is, if ¢(x1° + Delj, xzo, - xko) > ¢(x10, xzo, - xko),
then previous variable is reduced by the same step size and ¢ is evalu-
ated.

If ¢(x;°0 - Dely, x50, ——-, xko) > ¢(xi0, x,0, ———,xko), then the
new temporary head would be aj; = (xl0 - Del,, xzo, —_-— xho)land let
X1] = x1° - Del;, and go to Step 9.

8. Similarly, if 6(x1% - Dely, x30, -=-) > ¢(x19, x,0,---), then
retain original values and next variable is now disturbed by the amount
of step size Del, and the above procedure is repeated till all the

decision variable is computed and then go to Step 10.
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Next variable x5; = %29 + Del 2 and X1 = xlo.
9. At this point a3 = (x%, x50, --=) and ¢ is evaluated and
continuously disturbing the other variables.
10. After one set of decision variables (x; through x,) are varied,
then we come back to the first variable and, depending on the success or
failure in the previous calculation of objective function, it is varied.

11l. Suppose that in the previous calculation of ¢; was a success;
i.e. ¢; > ¢ for x;; = %10 + Delj, so when we came back to this variable
after all the decision variables are over, then we evaluate the ¢ at

X2 = X117 + 3 * Del;.

12. But, suppose that previous calculation of ¢; was a failure;
i.e., ¢1 < ¢ for x;; = x;0 + Del;, so when we came back to this variable
after all the decision variables are over, then we evaluated the ¢ at
Xp1 = X311 -~ %-* Del; .

The value 3 and - %-were determined by numerical experiments to
give good efficiency in a moderately difficult problem (Rosenbrock and

Storey, 1966).

In the computer program the values of 1X are the following:

1X = 387654321 (Random Number Sequence 1)
1X = 487654321 (Random Number Sequence 2)
1X = 123456789 (Random Number Sequence 3)
1X = 7654321 (Random Number Sequence 4)



REPLICATION TECHNIQUE -2

MAIN PROGRAM: "i!!!l’
y L

1. DEPENDENT 1. DECISION
VARTABLES VARIABLES

2. STEP SIZE 2. TO SIGMA
3. NREP = 1

SET DEL,
LA, IX

I =1,800

JCO = 1, NREP

CONTINUE
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ORIGINAL ESTIMATES OF VARIABLES

: N
3 & Y2
§; AT CURRENT VALUES 94,|3x; AT CURRENT VAL.
L |
W
CALL SIMILQ

CORRECTED VALUES OF DEPENDENT
VARIABLES CALCULATED

X(I) = X(I) - CORR. FACTOR

N y

ITER=ITER+1 CALCULATE TRUE
VALUES OF OBJECT
FUNCTION
YES IS ITER CALL GAUSS FOR NOISE GENER.

LARGE? - I}

CALCULATE CORRUPTED
VALUE OF OBJECT

NO FUNCTTON

TAKE THE VALUES OF
X(I) WHICH WAS
BEFORE ENTERING EQSILN.

RETURN WITH VALUES
OF OBJECT FUNCTION

OF VARIABLES

Figure 14.

Subroutine EQSLN




aEaNeNaNel

14
15

21
24

25

MAIN PROGRAM
RUOSENBROCK SEARCH

INITIALIZE X(1) THROUGH X(5) AND X({(5)
FINDING THE MAXIMUM OF THE OBJECT(CRITERION) FUNCTION
FINDING THE MINIMUM CF THE SUM OF THE SQUARES

DIMENSION X(14),DELL(5),C{9),DELL5)
COANMON /GAUS/ IXy,S1IGMA
DATA LL/O/4LT/06/
TCL=1.E-6
I[X=12345678%

DG 231 1231=1,2
SIGMA=1.

KMAX=10CO

LL=0

LT=0

NREP=4

DEL1{5)=C.
X{1)=4450.0
X{2)=3350C.5
X{3)=638.10

X{4)=0.55
X{5)=4763.0
X{6l=,131

X{7)=0.386
X{3)=n.,027
X{91=0,337
X{1C)=0.036
X{11)=2.083
X{12)=97540.
X{(13)=40138C.0
X{14)=1492G.

K=4

DEL1{1)=50.
DEL1(2}=500.
DEL1(3)=1.
DEL1{(4)=,.015

PRINT 99,SIGMA,IX

DO 15 I=1,5
DEL{I)=DELI(I)

LA=1

DO 23 I=1,800

Q1=0.

DO 20 JC3=1,NKREP
LT=LT+1
Q1=Q1+FUNC1({X,LA)
Q1=Q1/NREP

Li=LL+1

CALL EOSENA (KyQleXeLALDEL,TCOL)
PRINT 11Y,LA421y(X(J)eJd=1K)sLL,LT
IF(LA.EQ.2) GO 10O 23
IF{LA.EQ.4) GO TO Z1

IF{ (LA.EQ.3) «0OR. (LT.GT.KMAX )) GO TO 229

NREP=NREP*Z
GO 10 14

THROUGH X({l1l4).



23 CONTINUE

229 IX=7654321

231

99 FORMAT(1Hl,3Xy17HROSENBROCK SEARCH,10X,*SIGMA=
$F5.2,10X,'1X=

CONTINUE

'y19/1H0)

111 FORMAT(1Xy3HLA=41544X

s10P
END

$TLLY,I5,'LT",1I5)

FUNCTION FUNCL1(Y,LA)

DIMENSION A(9,101),X{
COMMON TEMP,REK,VRyFAO,FBOyCAR4CBRyCCRyCERyCGRy
SCPR’FR’X’A’NC’NV'FG’FP’FD,OPTZ’ITER’LLA

LLA=LA
VR=Y{1)
FBO=Y{(2)
TEMP=Y(3)
REK=Y(4)
FP=Y(5)
CAR=Y(6)
CBR=Y(T)
CCR=Y(8)
CER=Y{9)
CGR=Y{10)}
CPR=Y(11)
FR=Y"12)
FD=Y:113)
FAO=Y(14)

CALL EQSLN

Y{1)=VR
Y{(2)=FBO
Y{3)=TEYP
Y{4)=REK
Y{5)=FP
Y{56)=CAR
Y{7)=CBR
Y(8)=CCR
Y{(9)=CER
Y{10)=CG6R
Y{11)=CPR
Y{12)=FR
Y{(13)=FD
Y{14)=FAQ

FUNC1=0PT2

RETURN
END

SU3ROUTINE EQSLN

DIMENSION A{9,10),X(9),2(9)
COMMON TEMP,REK,VR,FAQ,FBOUyCAR,CBR,CCK,CER,CGR,
SCPRGFRyXgAJNCyNVyFG4FP,FDUPT2,ITER,LLA

COMMON /GAUS/ IX,SIGMA

DATA LCA/1l/

Z{1)=CAR
Z(2)=CBR

1E12.545X94E13.5,

9) ,Y(14)

?

58.
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Z{3)=CCR

Z{4)=CER

Z2{5)=CGR

Z(6)=CPR

Z{T)=FR

Z{8)=FD

Z{9)=FAOQ

1TER=0

AK1=(5.97559)*EXP{-12.CE3/TEMP)
AK2=(2.5962E12)*EXP(-15.0E3/TEMP)
AK3=(9.6283E15) *EXP (- 20.0E3/TEMP)

VRK 1=VR*AK1 .
WYRK2=VR*AK2 .
VRK3= VR*AK3

A{1,10)=FAG+{REK-1.0) *FR*CAR—VRK1*%CAR%CBR
A{2,10)=FBO+{REK=1.0) *FR*¥CBR-VRK1 *CAR*CBR-VRK2*CER*CCR
A(3,10)={REK-1.0)%FR*CCR+2. 0% VRK1*¥CAR¥CBR-2.,(*
IVRK 2*%CCR*CBR-VRK3*CCR*CPR
Al4,10)={REK-1.0)%FR*CER+2.,0%VRK2*CBR*CCR
A{5410)=CAR+(CBR+CCR+CER+CGR+CPR~1.C
Al5910)=—FR*CGR+ 1. 5%VRK3I*CCR*CPR
A{7,10)=(REK-1.0)*FR&CPR-REK*FP+VRK2*CBR*¥CCR-0.5%VRK3*
$CCR*CPR

Al8,10)=FR¥CPR-0.1%FR*CER-FP
A{9,10)=FAU+FBU-FP-FD-FR*CGR
A{l,1)={REK-1.G)%FR-VRK1*CBR
Al{1l,2)=—VRK1%CAR

A{1,3)=0.0

Ally4)=0.0

Al{1,5)=0.0

A{1,6)=0.0

A{1ly7)={({REK-1.0) *CAR

Al{l1,8)=1.0

A(1,9)=0.0

A{241)=—VRK1*CBR
A(242)={REK-1.0)*%FR-VRK1*CAR-VRK2*CCR
A(2,3) ==VRK2*CBR

A(Z,l!):GQO
_A{245)=0.0

A{2,6)=0.0

A{2+7)={REK-1.0)*CBR

Al2,48)=0.0

A{2,9)=0.

A(391)=2.0%VKK1*CBR
A(3,2)=2.0%VRK1*CAR—2.,0%VRK2*CCR
A(3,3)={REK-1.0)*FR-2.0%VRK2*CRBR-VRK3*CPR

A(3,4)=0.0

A(3,5)=0.0

A{3,6)=—VRK3%*(CCR

A(3,8)=0.0

Al13,9)=0.0

Al4,1)=0.0

Al4,42)=2.0%VRK2%CCR



A(443)=2,0%VKK2*CBR
Al4+4)=IREK-1.0)*FR
A(4,5)=0.0
A{4,6)=0.0
Al4,7)={REK-1.0) *CER
Al4,8)=0.0
A{449)=0.0
Al(5,1)=1.0
Al{5+2)=1.0
A{5,3)=1.0
Al{S5,4)=1.0
Al5,5)=1.0
A{556)=1.0
Al15,7)=0.0
A{548)=0.0
A(5,9)=0.0
Alb5,1)=0.0
A(5,2)=0.0
A{B+3)=15%«VRK3*CPR
A{bs4)=0.0

Al{b,5)= —-FR
A{B46)=145%¥VRK3I*CCR
Al5,7)= -CGR
A{6,8)=0.0
A{659)=0.0
A{7.1)=0.0
A{T52)=VRK2*CCR
A{T7+3)=VRKZ2*CBR-0s 5%VRK3*CPK
A{7+4)=0.90
A(7+5)=0.0
Al756)=(REK-1+0)¥FR-0.5%VRK3*CCR
AlT7:7)=(REK-1.0)*CPR
A{T7+8)=0.,0
Al7,9)=0.0
A{(8451)=0.0
A{8+2)=0.0
Al3,53)=0.0
A{8354)=—0.1%FR
A(3,5)=0.0
A(8,6)=FR
A{8,7)=CPR-0.1*%CER
A(3,8)=0.0
A(8,5)=0.0
A{9,1)=0.0
A(9,2)=0.0
A{9,3)=0.0
A{9,4)=0.0
AlI945)=—FR
A{3,6)=0.0
A{9,7)=-CGR
A{948)=1.0
A{5,9)=-1.0

NC=9 |

CALL SIMILQINC sA,X,NOGO)
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DO 5 I=1,9
IF(ABSIX(I))GT0.05) GO 10 16
5 CONTINUE
GO 10O 109
10 CAR=CAR-X(1)
CBR=CBER-X{(2)
CLR=CCR-X(3)
CER=CER-X{4)
CGR=CGR-X{(5)
CPR=CPR-X{6)
FR=FR-X{T)
FAD=FAO-X(8)
FD=FD-X{9)
ITER=ITER+]
IF(ITER.LE.10)GO TO 15
16 OPT2=0.
CAR=Z(1)
CBR=Z7(2)
CGR=Z(95)
CCR=7(3)
CER=71{4)
CPR=Z2(6)
FR=Z(T)
FD=71{8)
FAD=Z7(9)
GO 10 31
100 FG=FK*CGR
CALCULATING THE CRITERICN {(0OBJECT) FUNCTICN
P=043%FP+.,0068%FD—-.02%FA0-,03*%FBO-.01%FG
OPT2=100%{ 84006 3P ~2e22%FR=,124%5400.%(+30%FP+.0C68
1%FD ) =60 %¥VR—1.30%FR}/{300.*VR+13,0%FR)
CALL GAUSS{IX,SIGMA,C.0,YRAND)
OPT2=0PT2+YRAND
31 CONTINUE
IF(LLALEQ.2 .CR. LCA.EQ.C) GO TO 8
WRITE(6,7T)(X{1)I=1,NC)
WRITE(6,3)
WRITE(644) TEMP,REKsVR,FAU,FBC
WRITE(6,50)
WRITE(6y4) FP,LFD
WRITE(646)
WRITE(6,4) CAR+CBRyCCRHyCERJCGRH,CPR,HFR
WRITE{6,807) ITER
WRITE(64841) CPT2
8 CONTINUE
LCA=1
IF (LLA.EQ.L1) LCA=0O
7 FCRMAT( 3X,9EL12.5)
3 FORMAT({4X 4HTEMP 9L 1 X93HREKy12X92HVR 413X 43HFAD,
$12X+3HFB0)
4 FORMAT(T(3XsE12.5))
& FORMAT(4X,3HCAR,y12X¢3HCBR 412X 43HCCR,y12Xy3HCER,
112X 43HCGR 12Xy 3HCPR 912X 93HFR ) :
60 FORMATU(4X,21FP 413X, 2HFD )
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807 FORMAT(4Xs5HITER=413)

62,

841 FORMAT(4Xy'RATE OF RETURN',6X 3E14.6)
843 FORMAT(4X,'RATE OF RETURN?')

RETURN
END

SUBROUTINE GAUSS({IXySsAM,V)

A=3.0
DO 50 I=1,12
CALL RANDU(IXyIY,Y)
IX=1Y
50 A=A+Y
V={A—-6.0) *S+AM
RETURN
END
SUBROUTINE RANDU(IXsI
1Y=1X*65539
IFUIY)5,6,46
S 1Y=1Y+2147433647+1
6 YFL=1Y
YFL=YFL*,4656613E-9
RETURN
END

Y YFL)

SUBRUUTINE RUSENA ( NM, SS, PN, LAA, DEL, TOL )

X s e ool ok ok e ok ol e ok ook R ok ok ok ke ek e e Aok dok e ek e oo kR Rk R KRR KR K

NM = NUMBER OF INDEPENDENT VARIABLES
SET NM + TO FIND MAX, — TO FIND MIN

SS IS OBJECT FUNCTIGN AND MUST BE EVALUATED ON INITIAL

ENTRY

PN IS THE VECTGR OF COORDINATE POINTS IN THE SEARCH

-—0ON ANY ENTRY
INTO PROGRAM, S =
NEW POINT

LAA = 1 GN INITIAL EN

2 WHEN SEARCHING

4 AFTER COCHMPLETE
VALUE)

]

SS(PN), ON EXIT PN IS MOVED TO A

TRY

STAGE (DG NOT NEED FUNCTION

5 CORRECTION STEP DID NOT CHANGE VALUES - CAN

NUT CONTINUE

8 WHEN CONVERGED

DEL VECTOR IS ABSOLUTE INITIAL STEP SIZE

INITIAL DEL ALS3O USED

AS SCALE FACTOR

C IS THE CONVERGENCE TOLERANCE ON SUCCESSIVE VALUES

OF 5SS

S o e e s e e o e e el ek o ok ok ok oo o o e o e e e 3 o ok ok ke o kb o ok e A ok kol R Rk
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63.

DIMENSIUN SA{2430)4,PW(20,20),A(20,420),A1(2C,20)
DIMENSION OCL(1)4PNCL1),P2(30),DELSV(30,2),P1(30)

DATA SA/60%0e/4Pr/400%0./3A/400%0./9A1/400%0./4DELSV/
160%0e/y P1/30%0./4P2/30%04/

1 LA = LAA

2 SN =SS

32 N = IABS (N4)

4 NN = N

g IF{ LA - 4 ) 1C,2000,10
1¢C IFC LA -1 ) 11+11,13
11 SBD = SN » ' By

RNM = N¥M

12 SNM = SIGN (1.0,RNM)
12 IF{ SNM ) 14,144,416
14 SBD = AMAXL{SBDsSN+1.0)

1% GO 70 20

1€ SBD = AMINL(SBD,SN-1.0)
20 CONTINUE

210 IFl LA - 2 ) 22,110,90
22 LA = 2

30 SBASE = SN

31 SBA = SBASE

32 IF( TOL ) 33433,40

33 TOL = 1.0E-7

40 DD 48 J=1,yN
42 P2(J) = 0.0
43 DELSV(J,1)

44 DELSV(J,2)

45 DEL(J) = 1.0
46 DO 47 I=1,N

47 A(I,J) = 0.0
48 AlJ,yJ) = 1.0
49 DO 6C J=1,yN

CELOY)
PN(J)

[Tt

50 DO 60 I=1,2

60 SA(I,4J) = 0.0

70 NCT =1

8C P2(NCT) = P2(NCT) + DELINCT)

OBTAIN ORIGINAL VARIABLES AND RETURN

NSWT = O
81 DO 87 J=14N
PNT = PN(J)
82 PNSUM = 0.0
83 DO 84 I=14N
84 PNSUUM = PNSUM + A(I,J4)*P2(1)
85 PN(J) = DELSV(Js1)*PNSUM + DELSV(J,2)
8T IF( PNT JNE. PN(J) ) NSWT =1
88 IF{ NSWT «LEe. O ) LA =5

9C SS = SN
31 LAA = LA
RETURN

110 IF( SNM*x{SBASE- SN) ) 111,111,210



111
120
130
140
141
142
142
144
160
17¢C

190

191

192

193

19%

19¢

197

210

220

230

240
2000
20GS
201¢C
202¢C
2030
2040
2050
2906C
207¢C
2080
2030
210C
2110
2120
213¢C
2140
2150
2160
2170
218¢C
2190
2200
221¢C
3000
3010
3020
303¢C
3040
305¢
3060
312¢C
400C

64,

SA{1,NCT) = SA(14NCT) + 1.0
DELINCT) = 3.0%DELINCT)
SBASE = SN

NCT = NCT + 1

IF( NCT .LE. N ) GO TO 80
IFC(SA({1,1) + SA(2,1)).LE. 10.0 ) GO TO 160
NSWT = -100

GG TG0 195

DO 19C J=1,4N

DO 160 I=1,2

IF( SA({I,J) .EQ. O. ) GO TO 7O
CONTINUE

LA = 4

IF{ ABSISBASE-SBA) .LE. TOL ) LA = 38
NSWT = 1

SBA = SBASE

SN = SBASE

G0 70O 81

P2INCT) = P2(NLT) — DELINCT)
DELINCT) = —0.5%DELINCT)
SA(2,NCT) = SA(2,NCT)+ 1.0
GO TO0 140

LA = 2

DO 2060 I=1,N

D0 206C J=1,4N

IF{I-J) 2050,4£050,2030
PH{I,J) = 0.0

GO T0O 2060

PWllI,J) = P2(J) - P1L(J)
CONTINUE

DO 2210 I=1,N

J=1-1

IF(U J ) 216U042160,42100

DO 2150 K=1,J

SU"’% = D

DG 2130 L=1,N

SUM = SUM + PUH{T,L)*PW{K,L)
DO 2150 L=1,N

PW{I.L) = PwlI,sL) = SUMRPL(K,L)
SuM = C.

DU 2180 K=1,N

SUM = SUM + PWII K)*%2

SUM = SQRT (SUM)

DO 2210 K=1,4N

PW{TI,4K) PWlI+K)/7SUM

DO 3040 I=14N

DO 3040 J=14N

AI(I,J) = 0.0
DO 3040 K=14N
AL(I,d) = AIlL4J) + PW(TK)*A{K,J)

DO 3120 I=1l,yN
DO 3120 J=1,4N
A(T4d) = AI(I4J)
DO 4030 I=14N



4910
402¢C
4030
4040
4050
406C

10
12

14

15

18

17

2¢C
18

P1(I}) = 0.0

DU 4030 J=1,N

PL{I) = PL(I) + PWRII, J)*P2(J)
DO 4050 J=1,N

P2(J) = P1{J)

GU TO 49

END

SUBROUTINE SIMILQ{N,4A,X,NOGO)
DIMENSION A{9,10)+X(1)
NOGO=0

N1=N+1

N2=N-1

DO 3 L":I,NZ

Ll=L+1

K=L

DO 5 J=L1,yN

IF( ABS{A(K,L))- ABS{A(JsL) ) ) 415,45
K=J

CONTINUE
IF{AIK,L))6,18,6
IF(K-L)12,12,13

DO 1C J=L,yN1

S=A(KyJd)

A(KyJ)=AlL,J)

AlL+J)=S

D=1./A{L,L)

DO 14 J=L1,N1
A(L,J)=A(L,J)*D

DO 3 I=L1,N
IF(ACIZL))1543415
DT=1./A11,L)

DO 16 J=L1,N1
A{IJ)=A(1,J)*%DT-A(L,J)
CONTINUE
IFCAINSN)ILT918,417
NOGO=1

RETURN
XIN)=AINyNL)/A(N,N)

DO 19 J=1,N2

M=N-J

DO 20 I=1,M
ACToNL)=ALTJNL)=X{IM+1) *A(I,M+])
X{M)=A(MyN1)

RETURN

END

65.
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67.

Appendix B

Solution of the Constraint Equation

In solving steady state equations describing the system, the
Newton-Raphson method for solving simultaneous equations is used
(Scarborough, 1955). This method is extended to a system of m equations
and n unknowns.

Given the simultaneous equations:

Fi1(xy, xp, —===- s xn) = 0
Fo(xy, X9, ————— s xn) =9
e - (L
Fm(xl, Xy, ——=—-— s xn) = 0
and if (xlo, x2°, - xno) are approximate values of a set of solutions
and (L, Ly, ===, Ln) are corrections such that;
X] = xlo + L,
Xo = x20 + Lo
- - (2)
X, = xno + Ln
Then substituting in Equations 1;
F1(x,0 + Ly, x,0 + Lp,————- ,x°+Ln)=O
Fo(x;0 + Ly, %0 + Lp,————- , xno +1,) =0
- -- (3)
Fo= (x0 + L, x50 + Ly, -=-——- , xn°+Ln) =0



Ly

+ X9

L, +

L, —-

L, --



69.
Subroutine SIMILQ is called to solve the set of equations for the un-
known L3, L2, ——, Ln‘
After achieving solutions for (Lj, L2, -——, Ln)’ the value of

(x1°, xzo, X30, — xno) are changed by the value of the correction

terms.
X] = xlo + 1
X9y = xzo + Lo
(5)
X, = xno + Ln
The new values of (x3, x2, ——, Xn) are used to calculate the value of
coefficients in Equation (4) and new values of (Lj, Lz, ———, Ln) are

obtained by the Gaussian elimination procedure; The process is repeated
until the values of corrections (Ly, Lo, —-——, Ln) are as close to zero
as required to obtain the desirec accuracy. As (Ly, Lp, -—, L )

n

approach zero,

F/("(Xl9 X2y X3y TT7 X}'l) > FL(XIO’ X209 —=y Xno)
where 4 = 1,2, ———,m by equation.
The initial approximation (xlo, xzo, —-—— xno) should be reason-

ably close to the true value. Poor approximation might lead to no

convergence.
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