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ABSTRACT

Time optimal control of stochastic dynamic system is considered. 

It is assumed that noise-free observations are available at all times. 

An optimal admissible feedback control policy is formulated leading to 

minimization of the expectation of the length of time required to reach 

the desired terminal region.

Dynamic programming formalism leads to a second order nonlinear 

partial differential equation. The difference between the stochastic 

and deterministic equations is represented by a truncated power series 

and the optimal switching surface for a "bang-bang" controller is then 

computed through a direct search using repetitive simulations.

Numerical results for the location of the stochastic switching 

curves for a specific second order system are computed and discussed.
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CHAPTER I

INTRODUCTION

A mathematical description of the physical processes is required 

for application of modern control theory methods. Uncertainty or random 

properties can enter this model in several ways. For example, some 

process parameters may vary randomly with time. There also may be random 

fluctuations in the input to the process and the control inputs are 

themselves random process if the controlling scheme is based on a random 

policy. Furthermore, observations or measurements may be corrupted with 

some inherent error which also has random properties.

A system involving such random variables is a stochastic system. 

A stochastic system which evolves according to a rule which also involves 

variables or parameters under external control is called a stochastic 

control system. If these variables or parameters are determined so that 

the system behaves as well as possible as measured by some well-defined 

criterion, one has achieved optimal control of the stochastic system.

The conventional approach to the computation of optimal control 

for stochastic systems has been to replace the random variables by their 

expected values and computing the control policy using deterministic 

control methods. To allow for uncertainty, gross safety factors have 

been added to the deterministic results.

While the introduction of stochastic features into a description 

of the process cannot reduce the uncertainty, it can lead to the more 

precise statement about uncertainty and to the better decision making.

The control of dynamic process in the presence of random noise



2

and disturbances is the subject of stochastic control theory, a branch 

of modern control theory which has been growing rapidly during the past 

years. Powerful tools for the generation of the optimal control law 

such as Pontryagin’s Maximum Principle or the Hamilton-Jacobi equation 

of the calculus of variations do not apply in a straightforward manner 

to stochastic optimal control problems.

Optimal control theory for stochastic systems has evolved since 

1960 largely within the framework of dynamic programming. The mathe

matical theory is not in completely satisfactory form. Results of 

practical interest have been obtained only in a few simple academic 

problems such as a linear regulator problem. Nevertheless considerable 

progress has been made in understanding the nature of stochastic optimal 

control problems.

The optimal control problems for stochastic systems are generally 

concerned with the minimization of an expected cost functional. Only in 

the linear quadratic case is the stochastic optimal control problem com

pletely solved.

In many situations, such as control of batch chemical processes, 

it is time rather than control energy which is expensive. That is, in a 

time optimal control problem in stochastic systems, the criterion of 

performances is taken to be the expected value of time required to move 

the system from the given initial state to the desired terminal region 

using a constrained control variable. In this work it is desired to 

determine an admissible feedback control law which minimizes this per

formance criterion. It is assumed throughout that the state of system 

can be measured noise-free at all times, and that the amplitude of
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control inputs is constrained.

The dynamic programming approach leads to the problem of finding 

the solution to a nonlinear partial differential equation called the 

stochastic Hamilton-Jacobi equation. This equation differs from the 

corresponding equation for the deterministic case by the appearance of 

terms involving the second partial derivatives of the optimal expected 

value function. Analytic solutions for this equation are quite difficult 

to obtain. A number of procedures have been proposed for solving numeri

cally the nonlinear partial differential equations.

The objective of the present work is to generate the optimal 

switching surface for the resulting stochastic bang-bang controller. For 

this purpose the difference between the stochastic and deterministic 

equations for switching surface is formulated, and then computed using 

repetitive simulations. This procedure is applied to a specific second 

order system for locating the optimal switching curve. It is used in 

conjunction with a stochastic switching strategy of multiple switchings, 

which is necessary to guarantee the system to be transferred to the 

desired terminal region. Numerical results are presented and discussed.



CHAPTER II

DESCRIPTION OF THE PROBLEM

Optimization is considered of a process whose time behavior can 

be described by a set of ordinary differential equations. The process 

is subject to additive random disturbances so that the process can be 

represented by a set of stochastic differential equations.

The basic problem is to find the optimal control policy u*(t) 

such that the system state can be moved from some given initial state, 

x(to), to a desired terminal region in the minimum length of time.

In order to retain as much simplicity as possible, it is assumed 

throughout that noise-free observations of state vector, x(t) , are 

available at all times. The results from this study can be extended to 

observable systems with noise in the observations but this aspect of the 

problem will not be considered here.

In many deterministic problems, the desired terminal region con

sists of a single point. However, the input perturbation prevents the 

stochastic system from remaining arbitrarily close to any given point, 

and the length of time to reach a single point may not be finite. In 

other words, in the stochastic case a terminal region composed of a 

single point may not lead to a well-posed problem (16, 17). Thus, the 

terminal region for this problem is taken to be a compact convex set 

called the target set S.

A problem exists in maximizing the probability or the expectation 

of the length of time that the state will remain in the target set S

once that set has been reached. That problem has been discussed by
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others (15, 30), and will not be addressed in this study. Our objective 

is to determine the path that the state should take outside the target 

set.



CHAPTER III

MATHEMATICAL FORMULATION OF

STOCHASTIC OPTIMAL CONTROL

Stochastic Dynamical System

The system is subject to additive random disturbance which is 

assumed to be Brownian motion and can be described by the vector sto

chastic differential equation,

dx(t,m) = {f(x(t,w),t) + B(t)u(x(t,w),t)}dt + G(t)dn(t,a), (3-1)

or

x(t,io) = f(x(t,m),t) + B(t)u(x(t,m),t) + G(t)w(t,m) , (3-2)

x(to) = xo = fixed constant, 

for all t >_ to,

where m is an element of a probability space, Q;

x(t,oj) is an n-vector state;

u(x(t,o>),t) is an m-vector control with values in a nonempty 
compact convex restraint set U c Rm;

f(x(t,w),t) is an n-vector valued function;

B(t) is an n x m matrix, m < n;

G(t) is an n x p matrix, p <_ n;

n(t,m) is a p-vector Wiener process (Brownian motion);

w(t,w) is not defined mathematically but it is called a gaussian 
white noise in the engineering literature;

and
t+At

n(t + At) - n(t) = / w(r)dr = drj(t)
t
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E(n(t + At) - n(t)} = E{dn(t)} = 0*

*From now on the dependence of processes on io will be suppressed 

for notational simplicity.

E{dn(t)dn’(t)} = Q(t)dt
(3-3)

E{w(t)} = 0, for all t >_ t

E{w(t)w*(T)}  = Q(t)6(t-T), for t, t >_ tQ

where E{ } indicates the mathematical expectation, and Q(t) is a p x p 

non-negative definite matrix.

For existence, uniqueness and continuity of solution to equation 

(3-1) or (3-2), it is assumed that f(x,t) and u(x,t) satisfy a uniform 

Lipschitz condition in x, and that B(t) and G(t) are bounded and measur

able. Since dn(t) in equation (3-1) is not multiplied by a function of 

the state x(t), no stochastic integrals are involved; that is, the 

integral jG(t)dn(t) can be interpreted as an ordinary Rieman-Stieltjes 

integral (10).

Formal Definition of Optimal Control Policy

Since the process is subject to additive gaussian white noise, 

the length of time to reach the target set is a random variable. This 

is why the objective must be formulated to give the control policy that 

minimizes the expectation of the length of time required to move the 

system from x(tQ) to the target set. Thus the performance criterion 

becomes

ts
J(xQ,u) = E{ J dt | x(to) = xo} (3-4)

to
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where t is the time required to first reach the desired target set S, 

given the initial state, x(tQ).

The control u(x,t) is constrained to a compact convex set U and 

is assumed to be piecewise continuous. The problem then is to determine 

an admissible feedback control law u(x,t) which minimizes J, given the 

constraint of equations (3-1) or (3-2).

Define V(x) to be the minimum of the performance criterion (the 

minimum expected time) from a given initial state x(t) at time t over a 

set of admissible controls, U:

V(x) = min J(x,u) (3-5)
uell

Formal application of dynamic programming to this problem (3, 5, 6, 8, 

16) yields a second order nonlinear partial differential equation that 

is satisfied by V(x):

min tr((32V/3x2) GQG’) + (3V/dx)’(f + Bu) + 1} = 0 (3-6)
ueU

where 3/3x = (3/3xi, ..... , 3/3x )’;
n 

tr((32V/3x2) GQG’) = £ g..(32V/3Xi3Xj);

(gij) = GQG’.

Equation (3-6) is to be solved outside the target set S with the boundary 

condition,

V(x) = 0 for x e 3S, boundary of S. (3-7)

Equation (3-6) for stochastic optimization can be heuristically
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obtained by a formal Taylor’s series expansion with added complication 

of including second order terms. Expansion is carried to the second 

power in Ax because n(t) is a Brownian motion. It is generally required 

that V(x) exists, and that V(x) is twice continuously differentiable in 

x and continuously differentiable in t.

In many applications equation (3-6) is degenerate in that matrix 

(g^j) is not of full rank. For any stochastic control system governed 

by a single nth order differential equation with gaussian white noise 

input, the corresponding partial differential equation is also degener

ate. In that case the analytic theory yields few results on existence, 

uniqueness, or smoothness of solutions to equation (3-6), either numeri

cal or analytical. That problem has been discussed by others (10, 25). 

They showed that the degenerate partial differential equation had a 

solution under mild assumptions. It is also shown that an optimal 

control law may be determined by minimizing equation (3-6) in terms of 

the partial derivatives of that solution.

Kushner (18) obtained equation (3-6) as a sufficient condition for 

the optimality of a stochastic control system. However, recently Rishel 

(25) showed that dynamic programming conditions gave both necessary and 

sufficient conditions for optimality in stochastic optimal control 

systems.

With the control vector u a member of the compact convex set 

U = {u: Ju^l < 1, i = 1, ..., m}, it can be shown that it follows from 

equation (3-6) that the optimal control u* is given by

u* = - sgn{B’(dV/9x)} (3-8)
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where sgn{y} means the sign of y. Thus, the optimal control policy is

of the "bang-bang" type with the switching surface being given by

B'(9V/9x) = 0 (3-9)

Substituting equation (3-8) into equation (3-6), it follows that

H tr((d2V/dx2) GQG') + (9V/9x)'f - |(9V/9x)'B| +1=0 (3-10)

Equation (3-10) holds outside the target set S with the boundary con

dition given in equation (3-7).

For existence of an optimal stochastic control one condition 

required by Kushner (17) is that the control laws satisfy local Lipschitz 

condition in x and t. That is, there is a K > 0 such that

||u(x + Ax, t + At) - u(x, t) | | <_ K ( | | Ax| | + | At | ) (3-11)

However, Benes (4) has proved that the admissible control laws do not 

have to be Lipschitz.

The formulation of equation (3-6) differs from that for the con

troller in deterministic system only by the first term of second order 

partial derivatives. Thus equation (3-6) approaches the corresponding 

deterministic equation, as it should, as the variance of the input noise 

Q approaches zero. The bang-bang optimal control policy for the determin

istic system has a form identical to equation (3-8) where only the 

partial differential equation constraining the function V(x) is differ

ent. For the deterministic case, solutions, and sometimes even analytic 

solutions, of the partial differential equation can be found by indirect

means; for the stochastic case with the second order derivatives, only
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numerical methods, however, are even conceivable.



CHAPTER IV

REVIEW OF PREVIOUS WORK

The use of dynamic programming formalism reduces the stochastic 

time optimal control problem to solving a second order nonlinear partial 

differential equation (stochastic Hamilton-Jacobi equation). The non

linear partial differential equation can rarely be solved analytically.

Various methods for numerical approximation to the solution of 

equation (3-6) have been proposed. Knowledge of all boundary conditions 

are required for numerical solution of the partial differential equation 

(3-6). On the boundary of the target set S, V(x) = 0 since the minimum 

time to reach the set S from its boundary is zero. However, the values 

of V(x) for large values of ||x|| are not known. It has been cited (7, 

22) that V(x) approaches, at most, an algebraic function of the com

ponents of x for large values of [|x||. However, formal justification 

for this conclusion was not given.

Most of the existing work on time optimal control in stochastic 

systems has been focused on solution to equation (3-6). Time optimal 

control problem in stochastic system was studied by Aoki (2) and 

Novosel’tsev (24). In those studies the continuous-time system was 

approximated by a discrete-time system, and a different switching curve 

for the same system was obtained by each author. This difference has 

not been resolved.

Several papers have been published on methods applicable to the 

solution to equation (3-6) if the noise level is low. In a perturbation 

technique (successive approximation method) the objective of this method
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is to solve approximately the stochastic optimal control problem using 

the solution of the corresponding deterministic problem. The solution 

for equation (3—6) is obtained as a convergent power series in Q, the 

variance of noise:

Vs(x) = Vx) + QVl(x) + q2v2(x) + ...........

(4-1) 

(dVs(x)/9x) = OVD(x)/dx) + Q(9V1(x)/dx) + Q2(dV2(x)/dx) + ....

where V (x) is a solution for the stochastic system and V (x) the 
s D

corresponding deterministic solution.

The coefficients V^(x) satisfy the equation found by differenti

ating equation (3-6) repeatedly with respect to Q and then setting Q = 0. 

It is required that V$(x) be continuous across a switching surface. 

Since the series solution, equation (4-1), is associated with a singular 

perturbation which results in a change of order of the perturbed differ

ential equation, it is known (1) that such a series does not, in general, 

represent a solution which is uniformly valid for all x.

For linear time-optimal control problems one may seek approxi

mations to the switching surface for the stochastic optimal control as 

perturbations of the corresponding surface for the deterministic optimal 

control. Formal studies of such perturbation problems were made in 

Dorato et al. (7) and Stratonovich (29). It is known (11) that a rigor

ous treatment of this problem is hampered by the fact that both 

(9V^(x)/dx) and (92V$(x)/9x2) are discontinuous across a switching 

surface for the deterministic optimal control.

Fleming (11) studied the mathematical validity of approximate
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solution by a singular perturbation. He showed that approximate so

lutions hold in regions where the solution of the Hamilton-Jacobi 

equation for the deterministic problem is sufficiently well-behaved.

Dorato et al. (7) reported a method for an approximate solution 

to time-optimal control problems in stochastic system with low noise 

levels using a singular perturbation technique. The method was applied 

to a second order purely inertial system with additive gaussian white 

noise with variance of 0.3 at the control input. Two different terminal 

regions, the closed interval and the circular, were considered. With 

the terminal region of the closed interval, identical switching curves 

for stochastic and deterministic cases were obtained, but with the 

circular the stochastic switching curve somewhat different and lay 

slightly clockwise from the deterministic one.

Kushner and Kleinman (19) considered direct numerical solution of 

the second order partial differential equation, equation (3-10), of 

elliptic type in a bounded region. An artificial outer boundary was 

imposed for the numerical analysis. The nonlinear partial differential 

equation was then approximated using finite difference equations. The 

discretized problem corresponds to an optimal control problem for Markov 

chains whose states are the points of the grid.

An iterative method was derived for finding the optimum, which is 

basically similar to the usual Jacobi and Gauss-Sledel method for linear 

problems. It converged at least as good as the schemes of Howard (12) 

and Eaton-Zadeh (9). Later (20, 21) procedures were defined for acceler

ating the convergence of iterative methods. It is reported that one of

the methods gave a ten-fold decrease in computation time over a more
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usual procedure of dynamic programming. Furthermore, as the artificial 

outer boundary increases, convergence of the corresponding sequence of 

V(x) to the solution of original problem can often be proved. The same 

system as Dorato et al. (7) used was considered with the rectangular 

terminal region. The numerical results indicated that the optimal 

switching curve for the stochastic system would lie somewhat counter

clockwise from the deterministic curve, which is different from the 

results of Dorato et al. (7) in that slightly clockwise location was 

obtained in a different terminal region configuration.

Robinson and Yurtseven (27) solved the partial differential 

equation using a Monte Carlo technique on an analog computer. The opti

mal switching curve was found using an iterative technique called approxi

mation-in-policy-space. For time-optimal control in the second order 

inertial system, there was close agreement between the switching curves 

obtained by perturbation technique by Dorato et al. (7) and this pro

cedure.



CHAPTER V

DEVELOPMENT OF

DIRECT SOLUTION FOR SWITCHING POLICY

Direct Solution for Switching Surface

A direct approach is developed in this work to compute the 

switching surface for time optimal control in stochastic systems. The 

partial differential equation (3-6) differs from the corresponding 

equation for a deterministic system having the same plant characteristics 

only by the first term of second order partial derivatives. Thus the 

switching surface (equation (3-9)) for the stochastic system differs from 

the relatively easily found solution for a deterministic but otherwise 

similar system only by an analytic function.

The analytic function of the difference in switching functions is 

expanded into a Taylor's series taking as the variable the distance from 

the origin in state space along the switching surface. In other words, 

the difference between equation (3-9) for the stochastic switching 

surface and the corresponding equation for the deterministic case is 

formulated as a power series in s, the distance from the origin along 

the switching surface. Thus

B'(dVs/dx) = B'(dVD/3x) + ao + + a2s2 +.... (5-1)

where s is the distance from the origin, positive to the right, negative 
to the left;

Vg is the minimum expected time for the stochastic system;

Vp is the minimum time for the deterministic system;
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are constants.

The coefficients a^ for the truncated series in equation (5-1) may then 

be determined by experimental or Monte Carlo parameter search methods. 

The objective function to be minimized is the expected value of the time 

to reach the target set.

Characteristics of the Stochastic Switching Surface

For a deterministic linear time-invariant system, it can be shown 

that, at most, (n-1) sign switches are required on the time optimal path 

if the system is normal and if all eigenvalues of the matrix A are real 

(where the matrix A is a constant n * n matrix in the linear time 

-invariant system, x = Ax + Bu). No such theorem can exist for the 

linear, time-invariant stochastic system. The reason may be seen by 

reference to Figure 1. After reaching the switching surface, the state 

would tend to be driven off the switching surface by the stochastic 

input. If another switching were not used to return the system to the 

prescribed trajectory, this behavior could result not only in a longer 

settling time but also it could cause the state trajectory to miss the 

target set altogether.

In this work only the linear coefficients have been determined 

with the higher order difference coefficients assumed to be small. The 

numerical results of tests on a simple example system to be discussed 

reflect the magnitude of deviations from that assumption.

The stochastic switching surface must more nearly approximate the 

deterministic surface as the target set is approached. In this work it

is arbitrarily assumed that two curves intersect at the border of the



18

OU 
X

F
i
g
u
r
e
 
1
.
 

S
t
o
c
h
a
s
t
i
c
 
T
i
m
e
-
O
p
t
i
m
a
l
 
T
r
a
j
e
c
t
o
r
i
e
s



19

target set S. This assumption further simplifies the task of determining 

the coefficients. This assumption along with the linearity assumption 

means that only aj^ in equation (5-1) need be found.



CHAPTER VI

NUMERICAL RESULTS AND DISCUSSIONS

A Numerical Example

The plant under consideration for a numerical example is a second 

order linear time-invariant system with constrained control |u| < 1. 

Scalar gaussian white noise is added to the system with the control 

variable:

dxj = x2dt
(6-1) 

dx2 = udt + dr,

or

xi = x2
(6-2) 

x2 = u + w

where x(tQ) = xQ is a fixed constant as the initial state, and w is a 

scalar gaussian white noise with E{w(t)} = 0 and E{w(t)w*(T)} = Q(t)6(t-r) 

= constant for t, t >_ to.

The target set was taken as the rectangle

S = {x: |x^| <_ 1, i = 1, 2} (6-3)

For this system equation (3-6) takes the following form:

min Q(92V /9x22) + x2(9V /9xi) + u(9V /9x2) + 1} = 0 (6-4)
I I - s s slull1
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so that the optimal control becomes

u* - - sgn(dVs/dx2) (6-5)

The first step for solution to this stochastic problem is to solve 

the associated deterministic problem. These are the same as equations 

(6-4) and (6-5) except that the second order derivative is missing:

min {x2(dV^/dx1) + u(3Vp/9x2) + 1} = 0
|u|£l

(6-6)

u* = - sgn(dVD/dx2)

The solution to these equations is most easily found in an indi

rect method by use of the Minimum Principle. Direct solution for system 

trajectories is then possible using the bang-bang control u* in equation 

(6-6). The details of this solution appear in the Appendix A. The 

optimal switching curve is given by (Figure 2):

FD = - xx + u* x22 + u* = 0

or (6-7)

FD = - xT ± x22 ± = 0

where F^ defines the deterministic switching curve.

For the stochastic problem, a solution is assumed to be of the 

form of equation (5-1) but that equation is modified in two ways. First, 

a linear approximation is taken neglecting the higher order terms. 

Secondly, the coordinate x^ is used as the variable in the Taylor's

series expansion which, in this example, is a monotone function of the
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Figure 2. Deterministic Time-Optimal Trajectories



23

distance s along the switching curve. Thus equation (5-1) becomes

Fs = FD + ao + alxl = 0 (6"8)

where Fs defines the stochastic switching curve.

The two curves were assumed to intersect on the border of the 

target set S, at points (1, -1) and (-1, 1). Thus for the case of inter

secting at (1, -1) , the values 1, 1 and -1 are substituted into equations 

(6-7) and (6-8) for u*, x1 and x^ respectively, giving aQ equal -a^ 

For the intersection at (-1, 1) , substituting -1, -1 and 1 for u*, x^ 

and x2 in equations (6-7) and (6-8), aQ = a^ is obtained. Hence, the 

switching curve can be expressed as follows:

Fs = Fd - u* ax + ajXj = 0 (6-9)

Substituting equation (6-7) into equation (6-9) yields

Fg = xT(l - a1) - >5 u* x22 - u* (^ - a^ = 0 (6-10)

The value of parameter a.^ in equation (6-10) is to be varied to 

find an optimum value for a^ which gives the minimum value of the 

expected time to reach the target set S from the given initial state. 

With the optimum value of a^ the switching curve given by equation 

(6-10) is to be used for the stochastic bang-bang controller.

For a fixed value of a1$ the following procedure was used to 

estimate the expectation of the time to reach the given target set. The 

dynamic system equation (6-1) or (6-2) was integrated along with the 

additive gaussian white noise input to obtain a stochastic trajectory as

shown in Appendix B. The time required to first reach the target set S
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from a given initial state was measured. This procedure was then re

peated twenty times using different random noise sequences as the input. 

The average of the twenty runs was taken as an estimate of the expected 

value.

A special switching strategy was necessary to guarantee that the 

stochastic system would converge to the target set. As shown in Figure 

1, the first switching was made when optimal trajectory first fell below 

the switching curve Fg+, a portion of the stochastic switching curve with 

u* = +1. Thereafter whenever the trajectory crossed above the curve Fg+, 

the control was changed to drive it immediately below the switching curve. 

This switching policy allowed trajectories to remain below the switching 

curve Fg+ and above Fg_, a portion of the stochastic switching curve 

with u* = -1. Although there is no guarantee that the stochastic time 

-optimal trajectory follows exactly the switching curve after switching 

occurs, this policy guaranteed that the process would be transferred to 

the desired target set from a given initial state. In the worst case, 

additional clockwise cycles around the target set S could be required 

(Figure 1). This type of switching policy should find usefulness in 

practice in real applications.

For the example considered here two levels of variance of input 

noise were considered — 0.05 and 0.30 for a gaussian white noise. A 

gaussian white noise was approximated by a piecewise constant gaussian 

random sequence.

For a given magnitude the variance of an approximated gaussian 

white noise depends strongly on the size of time increment, At. That 

is, the variance of a piecewise gaussian random sequence is inversely
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proportional to the time increment. In this numerical example At = 0.25 

of time increment was used, which implies that variances used for gener

ation of a gaussian random sequence were 0.2 and 1.2. From now on, the 

term "variance" of input noise will refer to the variance of a gaussian 

white noise.

Results and Discussions

Two typical trajectories of the stochastic system are shown in 

Figure 1. The switching curve shown for the noise level of zero is the 

optimum for the deterministic system.

The value for a1 that minimizes the expected time to reach the 

target set S from a given initial state could be found by a one-di

mensional search method such as stochastic approximation. In this work 

however, a case study type "search" was made by computing the estimated 

trajectory time over a wide range of values for a^ Presented in Tables 

1 through 6 are the estimate of the expected length of time required to 

reach the target set for various values of a^. These data are plotted 

in Figures 3 through 8 where Figures 3, 4 and 5 are for the noise level 

of Q = 0.30 and Figures 6, 7 and 8 the noise variance of 0.05. These 

plots indicate not only the probable locations of the minima but also 

show the sensitivity of the minima to changes in the parameter a^.

Three different initial states were explored — xx = 5, xx = 10 

and x1 = 15. Several considerations entered into selection of the 

initial x2 coordinate. Since system trajectories flow generally

clockwise (Figure 2), the switching curve would be reached moving in

a clockwise direction. That is, the initial point should be above the
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TABLE 1

THE MEAN VALUE OF THE LENGTH OF TIME TO REACH THE TARGET SET

FOR VARIOUS VALUES OF PARAMETER a AT NOISE LEVEL OF Q = 0.30

Initial State (x^, x^) = (5.00, -1.34)

The Minimum Length of Time for the Deterministic Problem = 2.306

Parameter 

al

Mean Value of 
the Length of Time

Standard
Deviation of Mean

95.0% Confidence 
Interval for Mean

-0.40 4.32969 0.78270 5.86378 - 2.79560

-0.20 4.72812 0.78710 6.27083 - 3.18541

0.00 3.96328 0.54853 5.03841 - 2.88815

0.10 3.66094 0.50680 4.65427 - 2.66761

0.20 3.68125 0.51986 4.70017 - 2.66232

0.25 3.69375 0.51830 4.70961 - 2.67789

0.30 3.43672 0.45558 4.32965 - 2.54379

0.35 3.47422 0.45102 4.35822 - 2.59022

0.40 3.53984 0.44346 4.40902 - 2.67066

0.50 3.58906 0.45319 4.47731 - 2.70081

0.60 3.52891 0.41445 4.34123 - 2.71659

0.70 3.55703 0.34821 4.23953 - 2.87453

0.80 3.63984 0.31084 4.24909 - 3.03059

0.90 3.91641 0.39466 4.68994 - 3.14288
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TABLE 2

THE MEAN VALUE OF THE LENGTH OF TIME TO REACH THE TARGET SET

FOR VARIOUS VALUES OF PARAMETER aT AT NOISE LEVEL OF Q = 0.30

Initial State (x^, = (10.0, -1.60)

The Minimum Length of time for the Deterministic Problem = 3.967

Parameter 

al

Mean Value of 
the Length of Time

Standard
Deviation of Mean

95.0% Confidence 
Interval for Mean

-0.40 9.61797 0.99332 11.56487 - 7.67107

-0.20 8.62578 1.00071 10.58718 - 6.66438

0.00 7.28203 0.81170 8.87297 - 5.69109

0.10 7.21406 0.76920 8.72169 - 5.70643

0.20 7.40234 0.71707 8.80779 - 5.99689

0.30 6.86344 0.69437 8.23440 - 5.51248

0.40 6.70313 0.65064 7.97838 - 5.42788

0.50 6.45313 0.55572 7.54234 - 5.36392

0.60 6.11016 0.51141 7.11253 - 5.10779

0.70 5.84375 0.32265 6.47615 - 5.21135

0.75 5.62656 0.16982 5.95942 - 5.29370

0.80 5.86953 0.21894 6.29865 - 5.44040

0.85 6.03594 0.15849 6.34658 - 5.72530

0.90 7.45469 0.61102 8.65229 - 6.25709
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TABLE 3

THE MEAN VALUE OF THE LENGTH OF TIME TO REACH THE TARGET SET

FOR VARIOUS VALUES OF PARAMETER a AT NOISE LEVEL OF Q = 0.30

Initial State (x^ x^) = (15.0, -1.90)

The Minimum Length of Time for the Deterministic Problem = 5.176

Parameter Mean Value of Standard 95.0% Confidence

al the Length of Time Deviation of Mean Interval for Mean

-0.40 13.04688 1.24517 15.48742 - 10.60634

-0.20 12.10469 1.08969 14.24048 - 9.96889

0.00 10.11016 0.94364 11.95970 - 8.26062

0.10 9.35234 0.97951 11.27218 - 7.43250

0.20 8.73438 0.80353 10.30931 - 7.15945

0.30 8.43359 0.76234 9.92777 - 6.93941

0.40 7.89922 0.72782 9.32575 - 6.47269

0.50 7.25391 0.56637 8.36399 - 6.14383

0.55 7.20703 0.48514 8.15790 - 6.25616

0.60 7.19609 0.44118 8.06080 - 6.33138

0.65 7.27109 0.41480 8.08410 - 6.45807

0.70 7.74609 0.44739 8.62297 - 6.86921

0.75 7.58906 0.22481 8.02968 - 7.14844

0.80 8.11016 0.32478 8.74674 - 7.47358

0.85 8.61328 0.26887 9.14027 - 8.08629

0.90 9.57734 0.43506 10.43006 - 8.72462
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TABLE 4

THE MEAN VALUE OF THE LENGTH OF TIME TO REACH THE TARGET SET

FOR VARIOUS VALUES OF PARAMETER a1 AT NOISE LEVEL OF Q = 0.05

Initial State (x^, x2) = (5.00, -1.34)

The Minimum Length of Time for the Deterministic Problem = 2.306

Parameter Mean Value of Standard
a1 the Length of Time Deviation of

95.0% Confidence
Mean Interval for Mean

-0.40 3.25234 0.29307 3.82677 - 2.67792

-0.20 3.15391 0.28702 3.71647 - 2.59134

0.00 2.75703 0.14693 3.04501 - 2.46905

0.10 2.65703 0.06847 2.79123 - 2.52283

0.20 2.65078 0.05997 2.76833 - 2.53323

0.30 2.65078 0.05997 2.76833 - 2.53323

0.40 2.65859 0.06060 2.77738 - 2.53981

0.50 2.80234 0.04998 2.90031 - 2.70438

0.60 2.85000 0.04275 2.93379 - 2.76621

0.70 3.01094 0.04513 3.09939 - 2.92248

0.80 3.14687 0.03934 3.22398 - 2.06977

0.90 3.51250 0.05817 3.62652 - 3.39848
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TABLE 5

THE MEAN VALUE OF THE LENGTH OF TIME TO REACH THE TARGET SET

FOR VARIOUS VALUES OF PARAMETER a AT NOISE LEVEL OF Q = 0.05

Initial State (xlt x2) = (10.0, -1.60)

The Minimum Length of Time for the Deterministic Problem = 3.967

Parameter Mean Value of Standard
a1 the Length of Time Deviation of

95.0% Confidence
Mean Interval for Mean

-0.40 7.71719 0.47566 8.64948 - 6.78489

-0.20 6.22500 0.43248 7.07267 - 5.37733

0.00 5.25625 0.36304 5.96780 - 4.54470

0.10 4.90000 0.28942 5.46726 - 4.33274

0.20 4.56094 0.15434 4.86344 - 4.25843

0.30 4.47187 0.07194 4.61288 - 4.33087

0.40 4.51172 0.05865 4.62668 - 4.39676

0.50 4.61328 0.04316 4.69788 - 4.52868

0.60 4.86641 0.05754 4.97918 - 4.75363

0.70 5.17500 0.03753 5.24855 - 5.10144

0.80 5.87969 0.05279 5.98316 - 5.77621

0.90 6.74219 0.05950 6.85882 - 6.62556
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TABLE 6

THE MEAN VALUE OF THE LENGTH OF TIME TO REACH THE TARGET SET

FOR VARIOUS VALUES OF PARAMETER a AT NOISE LEVEL OF Q = 0.05

Initial State (x^, x^) = (15.0, -1.90)

The Minimum Length of Time for the Deterministic Problem = 5.176

Parameter 

al

Mean Value of 
the Length of Time

Standard
Deviation of Mean

95.0% Confidence 
Interval for Mean

-0.40 10.42969 0.46225 11.33571 - 9.52367

-0.20 8.76406 0.49389 9.73209 - 7.79603

0.00 7.26484 0.45589 8.15839 - 6.37129

0.10 6.53750 0.34484 7.21338 - 5.86161

0.20 5.76875 0.16631 6.09472 - 5.44278

0.30 5.58281 0.05078 5.68234 - 5.48328

0.40 5.68203 0.04339 5.76708 - 5.59698

0.50 6.08672 0.05143 6.18752 - 5.98591

0.60 6.42969 0.05219 6.53198 - 6.32740

0.70 7.03437 0.04654 7.12559 - 6.94316

0.80 7.92188 0.06211 8.04361 - 7.80014

0.90 9.41719 0.04908 9.51338 - 9.32099
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Figure 3. The Length of Time Required to Reach the Target Set for
Different Rotations of the Switching Curve at Noise
Level Q = 0.30. Initial State (xx, x2) = (5.0, -1.34)
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Figure 4. The Length of Time Required to Reach the Target Set for
Different Rotations of the Switching Curve at Noise
Level Q = 0.30. Initial State (x1, x2) = (10.0, -1.60)
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Figure 5. The Length of Time Required to Reach the Target Set for
Different Rotations of the Switching Curve at Noise
Level Q = 0.30. Initial State (x-^, x2) = (15.0, -1.90)
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Figure 6. The Length of Time Required to Reach the Target Set for
Different Rotations of the Switching Curve at Noise
Level Q = 0.05. Initial State (x1, x2) = (5.0, -1.34)
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Figure 7. The Length of Time Required to Reach the Target Set for
Different Rotations of the Switching Curve at Noise
Level Q = 0.05. Initial State (x^, x2) = (10.0, -1.60)
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the Target Set for 
Curve at Noise

Level Q = 0.05. Initial State (x^ x2) = (15.0, -1.90)



38

right branch Fg+ of the switching curve or below the left branch Fg_.

It would not be desirable to start from a point too far removed 

from the switching curve since the stochastic input introduces a random 

clement into the length of time required in the repetitions for the 

first switching to occur. This variation would be irrelevant to the 

task of finding the optimal switching curve. Thus ideally the starting 

point should be just barely counterclockwise from the largest value of 

a1 to be tested.

Some preliminary scouting computations indicated that the optimal 

switching curve for the stochastic system would lie somewhat counter

clockwise from the deterministic curve — i.e., the optimal value a^* 

would be positive but less than unity. Thus the coordinates were 

computed using a value of 0.9 for a^ in equation (6-10).

It is easy to see from Figures 3 through 8 that the optimum aT is 

positive. The phenomological reason for this behavior is that the con

troller cannot bring the system back to the switching curve if the 

stochastic inputs force it clockwise. Thus if the system wandered below 

Fs+, it frequently completely missed the target set on that trajectory. 

A convergence was not obtained until another switching sequence was en

countered on Fg_ (see trajectory B on Figure 1) . Of course, such a path 

required more time than the more direct route. A more counterclockwise 

stochastic switching curve increased the probability of hitting the 

target on a direct route.

The confidence intervals for mean values that appeared in Tables 

1 through 6 and Figures 3 through 8 were computed assuming a normal

distribution. Even though the distribution of the repetitive trajectory
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times was skewed, the distribution of the means approached a normal 

distribution by virtue of the Central Limit theorem.

The variation of the length of trajectory time as a function of 

the parameter a^ is very shallow for the case of the initial state 

nearest the target set (Figures 3 and 6). This implies that the proba

bility of hitting the target set remains almost the same over a wide 

range of values of a^ . If this is the case, it appears that the optimal 

switching curve for the deterministic problem could be used as a good 

approximate solution to the stochastic problem. A stochastic switching 

strategy of multiple switchings is still required however.

The uncertainty of the required time at a given value of the 

parameter a1 overshadowed the variations in required time due to changes 

in that parameter. Thus the exact location of the minimum is quite 

uncertain but the mean value of the corresponding penalty for operating 

at a near but a non-optimal point is small.

The minima shown in Figures 4, 5, 7 and 8 are more pronounced in 

relation to the uncertainty of the means. It is easy to see from 

Figures 7 and 8 that the minima in the low noise level case are more 

pronounced in relation to the high noise level.

If equation (6-10) were rigorous, the a^ at minimal trajectory 

time would be the same for all initial states. The apparent differences 

shown on Figures 3, 4 and 5 for the high noise level case could be 

taken as an indication that higher order terms should be included in the 

Taylor’s series expansion. Because of the large uncertainty in the 

location of the minima, however, retention of the higher order terms can

not be justified.
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Thus, the overall optimal switching curve can be constructed using 

nominal values of a^, that is, 0.75 for the variance of noise of 0.3 

and 0.3 for the variance of noise of 0.05 as shown in Figure 9.

However, the exact locations of these minima are still subject to 

uncertainty. The statistical one-sided "t" test was used to establish 

whether minimum average time was significantly smaller than its 

neighbours at 0.05 level. The results are listed in Table 7.

TABLE 7

RANGE OF VALUES FOR aT FOR WHICH MINIMUM AVERAGE TIME VALUES ARE 

NOT SIGNIFICANTLY SMALLER THAN NEIGHBOURING VALUES AT 0.05 LEVEL

Initial State (x1, x2) Noise Level Q = 0.30 Noise Level Q = 0.05

( 5.0, -1.34) -0.4 - 0.90 0.0 - 0.40

(10.0, -1.60) 0.4 - 0.80 0.1 - 0.40

(15.0, -1.90) 0.3 - 0.75 0.2 - 0.40

These results indicate that the following alternatives could be 

made for constructing an overall optimal switching curve. The optimal 

switching curve could be constructed in sections using nominal values of 

a^ in the vicinity of each of the tested initial points. Alternatively, 

a simple polynomial for a^* in terms of x^^ could be derived so that these 

"constants" in the Taylor's series would themselves be functions of 

distance. Finally, a switching curve could be constructed using an 

average value for a^. This average would be weighted more heavily for
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the points found at the greater distance because the minima are more 

pronounced in those regions.

In view of the large variations seen in the length of times, only 

small penalties could be expected in operation using these various 

suboptimal switching strategies.



CHAPTER VII

CONCLUSIONS

The direct computational search using repetitive simulations for 

the difference between the deterministic and stochastic switching curves 

is a practical and useful approach to find time optimal controls for 

stochastic systems. This method also allows evaluation of the sensi

tivity of the expected value of the length of time to the switching curve 

location which corresponds to changes in the linear coefficient used in 

a truncated power series.

It is not necessary to retain more than the first order term in 

Taylor’s series expansion for the difference because random variations 

in repetitive trajectory times overshadow the variations in the linear 

coefficient as a function of distance from the target set.

For systems with noise corrupted observations, the procedure 

described in this thesis can be followed except that the estimators for 

the state variables must be used.



CHAPTER VIII

RECOMMENDATIONS

The following recommendations are offered on the basis of the 

foregoing discussion:

1. In this work, a direct search using repetitive simulations 

was used for constructing the optimal switching curve for time optimal 

control in stochastic systems. Numerical results have shown that the 

exact locations of the minimum average time are subject to uncertainty. 

Further investigation for the optimal number of repetitions should be 

considered, and the direct search method can be replaced by another 

search procedure such as stochastic approximation.

2. There were the apparent differences in the optimum value of 

parameter a^ for three different initial states. Furthermore the result 

of statistical test suggested a range of values for probable location of 

the optimum value of parameter a^ In view of those uncertainties, 

switching range could be used for the "bang-bang" controller in stochastic 

systems with minimal penalty. Control switching does not occur as long 

as the state trajectory of the system remains within switching range. In 

this way less switchings would be required and the system could be moved 

to the desired terminal region without making additional clockwise cycle 

around the terminal region. The switching range method would be useful 

for implementation.

3. The rectangle was taken as the desired terminal region in

this investigation. With that rectangular terminal region it was con

cluded that the stochastic switching curve would be located somewhat
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counterclockwise from the deterministic curve. However, slightly 

clockwise location had been reported with the circular terminal region 

by others (7, 27). Thus further investigations should be made for the 

effect of terminal region configuration on the location of the optimal 

stochastic switching curve.

4. Since there is no guarantee that the state will remain in the 

desired terminal region once the region was reached, time optimal control 

problem in stochastic systems could be completely solved by combining 

the problem of maximizing the probability or the expected length of time 

that the state will stay in the terminal region.



NOMENCLATURE



NOMENCLATURE

Unless otherwise stated, numbers in parentheses at the end of the

definitions refer to the equation number where the symbol was defined or

first appeared.

A = Constant state coefficient 2x2 matrix (B-l)

a. 
i = Constant coefficient defined by (5-1)

B(t), B = Control coefficient n x m matrix (3-1), (3-6)

B* = Transpose of matrix B (3-6)

E{ } = Mathematical expectation (3-3)

fd = Switching function for time optimal control in 
deterministic systems (6-7)

fd+ = Portion of the deterministic switching curve 
with the optimal control u* = +1 (Figure 1)

fd- = Portion of the deterministic switching curve 
with the optimal control u* = -1 (Figure 1)

Fs = Switching function for time optimal control in 
stochastic systems (6-8)

Fs+ = Portion of the stochastic switching curve with 
the optimal control u* = +1 (Figure 1)

Fs- = Portion of the stochastic switching curve with 
the optimal control u* = -1 (Figure 1)

f (x(t,0)) ,t) , f = n-Vector valued function (3-1), (3-6)

G(t), G = Noise coefficient n x p matrix (3-1), (3-6)

G* = Transpose of matrix G (3-6)

(§ij) = n x n Matrix defined by (3-6)

H(x,p,u,t), H = Hamiltonian function in the Minimum Principle 
(A-2), (A-4)

I = 2x2 Identity matrix (B-9)
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J(xo,u), J(x,u) = Performance criterion for time optimal control
in stochastic systems defined by (3-4), (3-5)

K = Positive constant (3-11)

k = Constant element of vector q defined by (A-7)

kl = Constant element of vector q defined by (A-ll)

n = Number of time intervals for approximating a 
continuous-time gaussian white noise (B-5)

Pi(t) = Costate variable (A-3)

P±(ti) = Costate variable p.(t) at the terminal time t, 
(A-9)

Pj/t) = Time derivative of the costate variable p^(t) 
defined by (A-5)

Q = Constant variance of a scalar gaussian white 
noise (6-4)

Q(t) = Covariance matrix of p-vector Wiener process, 
p x p non-negative definite matrix, (3-3)

QA(i) = Covariance of a piecewise constant gaussian 
white sequence at time index i (B-7)

Q+ = Set of states (xj, x2) to the right of the 
deterministic switching curve in the state
space (Figure A-l)

Q_ = Set of states (xj, x2) to the left of the 
deterministic switching curve F^ in the state 
space (Figure A-l)

q = 2-Dimension vector in tangent hyperplane to the 
target set S at the terminal time t1 (A-8)

m 
R = Space of m-tuples of real numbers (3-1)

S = Terminal region (target set) (6-3)

s = Distance from the origin along the switching 
surface (5-1)

sgn = Sign function (3-8)

t = Time (3-1)
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ti = Time index used in approximation of a gaussian 
white noise (B-8)

c o = Initial time (3-1)

ts = Time required to first reach the target set S 
(3-4)

= Terminal time (A-9)

tr( ) = Trace (3-6)

U = Compact convex set of admissible controls (3-5)

u(x(t,w),t), u(t), u = m-Vector control variable (3-1), (A-l), (3-5)

u*, u*(t) = Optimal control (3-8), (A-3)

1|u(x,t)1 I = Norm of control vector u(x,t) (3-11)

|u<t>| f Absolute value of scalar control (6-4), (A-2)

V(x) = Optimal value of J(x,u) starting in the state 
x at time t and using optimal control (3-5)

VD(x), VD = Minimum value of J(x,u) for the deterministic 
system (4-1), (5-1)

Vs(x>> Vs = Minimum value of J(x,u) for the stochastic 
system (4-1), (5-1)

V±(x) = Coefficient defined in a singular perturbation 
method (4-1)

w(t,0)), w(t) = p-Vector gaussian white noise (3-1), (3-3)

w* (t) = Transpose of vector w(t) (3-3)

w(n)(t) = Piecewise constant gaussian white sequence 
(B-5)

wfn)(t) = Component of piecewise constant gaussian white 
sequence (Figure B-l)

x(t,a)), x(t) = n-Vector state (3-1), (B-l)

x(to), Xo = Initial state at the initial time to (3-1)

x(t,w) = Time derivative of x(t,d)) (3-2)

1 lxl 1 = Norm of state vector x (3-11)
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X±(t) = ith Element of the state vector x(t) (6-1)

X±(t) = Time derivative of x^(t) (6-2)

|x±(t)| = Absolute value of x^(t) (6-3)

Greek Letters

6(t) = Direct delta function (3-3)

At = Time increment (3-11)

|At| = Absolute value of At (3-11)

Ax = State increment vector (3-11)

1 M 1 = Norm of vector Ax (3-11)

n(t) = p-Vector Wiener process (brownian motion)
(3-1), (3-3)

n*(t) = Transpose of vector n(t) (3-3)

T = Time variable (B-2)

TT .
1

= Initial value of the costate variable p^(t) at 
the Initial time t = 0 (A-6)

$(t) = State transition matrix (B-2)

4 = Time derivative of #(t) (B-3)

Q = Probability space (3-3)

0) = Element of a probability space Q (3-1)
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APPENDIX A

DETAILED SOLUTION OF

TIME OPTIMAL CONTROL PROBLEM IN DETERMINISTIC SYSTEMS

The following outlines solution to the time optimal control 

problem in deterministic system.

Problem

The system is represented by

x.(t) = x„(t)
(A-l) 

x2(t) = u(t) .

The control u(t) is assumed to be constrained in magnitude by the 

relation

|u(t) | <_ 1 for all t. (A-2)

The problem is to find the admissible feedback control that transfers the 

system from the given initial state (x10, x2q) at time t=0 to the target 

set S = {(x-i, x2): ]x^ | < 1 and |x2| < 1} in the shortest possible time.

Detailed Solution

The Hamiltonian function is given by

H(x,p,u,t) = 1 + x2(t) p1(t) + u(t) p2(t). (A-3)

The control which minimizes the Hamiltonian is obtained:

u*(t) = -sgn{p2(t)} = ±1. (A-4)
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The costate variables p^t) and P2(t) satisfy the following equations:

p^t) = -{dH/Sx^t)} = 0

P2(t) = ~{3H/3x2(t)} = -pi(t).

(A-5)

Let ir
1

and u be the initial values of the costate variable as follows:

= Pi<o)

(A-6)

^2 = P2(0)*

Then from equation (A-5) it follows that

p^(t) = ir = constant

p2(t) = ir2 - iri t.

(A-7)

In the problem of hitting the target set, the transversality con

ditions require that, at the terminal time t , the costate vector p(tp 

be normal to a vector q which belongs to a hyperplane that is tangent to 

the target set S.

Suppose that the terminal state of the optimal trajectory belongs 

to the interior of ab in Figure A-l. Then the transversality conditions 

will hold. If, on the other hand, the terminal state is either at (1, 1) 

or at (-1, 1), then a unique tangent line to ab cannot be defined, and 

so any transversality conditions cannot be found. For this reason all 

four control sequences {+1}, (-1), {+1, -1) and (-1, +1} can be candi

dates for optimal control for the terminal state at either (1, 1) or at 

(-1, 1).
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Figure A-l. Construction of the Deterministic Switching Curve for 
Time Optimal Control
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Since ab is a straight line, a vector q in the tangent hyperplane 

which can be used in the transversality conditions has the form:

q = (k, 0)*, k 0. (A-8)

Since p and q are normal at the terminal time t^, it follows that 

(p/tp, p2(t1))(k, 0)’ = 0, (A-9)

from which it is found that

P1(t1)=O. (A-10)

But p^t) = it is constant for all time; hence, = 0, and it follows 

that

P2(t) = ir2 0. (A-ll)

Thus the time optimal control is u* = +1 or -1 and no switching can 

occur. Similarly, if the terminal state of the optimal trajectory be

longs to the interior of cd, the time optimal control is u* = +1, or -1 

and no switching can occur. From the Minimum Principle, p(t) must be an 

outward directed normal to q. Hence it is seen that p2(t) is positive 

for the terminal state at the interior of ab, i.e., u* = -1, and vice 

versa for cd. For the terminal state either at (-1, -1) or at (1, -1), 

all four control sequences {+1}, {-!}, {+1, -1} and {-1, +1} can be 

candidates for optimal control.

Consider the terminal state belonging to the interior of ad. A 

vector q on this boundary can be given by

q = (0, kp*, / 0. (A-12)
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Hence

P2(t1)) (0, k^' = 0. (A-13)

implies 0 + p2(t^) = ® from which P^^j) = f°ll°ws

immediately that P2(t) = tt^ (t^ - t), and u* = -1 since P1(t1) = 7r1 

positive in this case and furthermore no switching can occur.

By simple geometry it is obvious that no state on af can qualify 

as the terminal state of the time-optimal trajectory. Similarly, no 

switching can occur for the state on be and the optimal control u* =4-1. 

No state on ec can qualify as the terminal state of the time-optimal 

trajectory.

Since switching can occur for the initial state to reach the 

terminal state at one of four states (1, 1) , (-1, 1), (1, -1) and 

(-1, -1), it leads us to say that the switching curve is a portion of 

the time-optimal trajectory. It is easy to see from Figure A-l that 

from any state in Q_ it takes less time to reach the state (1, -1) than 

the state (-1, -1). Similar reasoning can be used to establish that if 

state (x^ x2) is in Q+, then only the control sequence {4-1, -1} can 

transfer (x^ x2) to either (-1, 1) or (1, 1) and that it takes less 

time to reach the state (-1, 1) than the state (1, 1).

By integration of equation (A-l)

x1(t) = x^O) + x2(0)t + >5 u*t2

(A-14) 

x2(t) = x2(0) + u*t.

By eliminating the time t = u*(x2(t) - x2(0)), the optimal trajectory is
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obtained:

Xj (t) = Xj (0) + 1g u* x2(t)2 - u* x2(0)2. (A-15)

Since the terminal state belongs to either (-1, 1) or (1, -1) after 

switching, the switching function is obtained:

x^ = u* (x22 + l)/2. (A-16)



APPENDIX B

INTEGRATION OF STOCHASTIC DIFFERENTIAL EQUATION

An outline of the mathematical formulation for a solution to 

stochastic differential equation (6-1) is presented and discussed in this 

Appendix. When written in vector-matrix notation, equation (6-1) becomes

dx(t) = {Ax(t) + Bu(t)}dt + Gdn(t)
(B-l) 

x(tQ) = xQ

where n(t) is a scalar Wiener process (Brownian motion) satisfying 
E{dn(t)} = 0 and E{dn(t)dn*(t)} = Q(t)dt;

xo is a given initial state as the fixed constant;

A, B and G are given by 

/ 0 ! \ / 0 \ / 0
A = I I , B = ( j and G = I 

\ 0 0 / \ 1 / \ 1

Since equation (B-l) is a linear time-invariant vector stochastic 

differential equation, it has a solution given by 

t t
x(t) = i>(t-to)x(tQ) + J $(t-T)Bu(i)dT + J $(t-t)Gdn(T), (B-2)

to to

where 4>(t) is the state transition matrix satisfying, 

$(t) = A$(t). (B-3)

Equation (B-2) is the unique solution of equation (B-l), since the linear 

stochastic differential equation (B-l) satisfies the conditions of the 

existence and uniqueness theorem for stochastic differential equations 

(6).
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As a good approximation to (t)Gdp(t) in equation (B-2), the 

physically realizable process (t)Gw(t)dt has been used (14). Thus 

equation (B-2) becomes 

t t
x(t) = $ (t-to)x(to) + J £(t-T)Bu(T)dr + / $ (t—t ) Gw (t) dx» (B-4)

fco to

where w(t) is a scalar gaussian white noise satisfying E{w(t)} = 0 and 

E{w(t)w’ (t)} = Q(t)6(t-T) for t, t £ tQ. Further discussions of 

stochastic integrals and additional references are given (10, 13, 14, 28).

In applications where a digital computer is used for a solution, 

it is usually necessary to approximate a continuous-time gaussian white 

noise by a multistage process. A continuous-time gaussian white noise 

(w(t), tQ < t < t} can be defined to be the limit of the gaussian white 

sequence (5, 23):

(w(t), to £ t £ t) = lim {w^(t), to £ T £ t, nAt = t-tQ}. (B-5) 

n-x»

For some given value of n, (w^^t), tQ £ t £ t) denotes the piecewise

constant gaussian white sequence as depicted in Figure B-l. The value

over each interval is defined from the left.

The covariance Q (t + iAt) = QA(i) of the piecewise 
A u A

constant

gaussian white sequence is to be replaced by Q(tQ + iAt)/At in order to

approximate the gaussian white noise w(t) with the given Q(t) as defined

in equation (B-5). The covariance Q (i) of the approximated gaussian 
A

white noise obviously depends strongly on the size of time increment At.

The time increment At in approximation of the gaussian white noise should 

be smaller than time constants of the system for a gaussian random
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Figure B-l. Components of Piecewise Constant Gaussian White 
Sequence Sample Function
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sequence being regarded as white noise relative to the system.

Thus scalar gaussian white noise is approximated by a piecewise 

constant gaussian random sequence,

w^ (t) = w^ (t) = constant, for t <_ t <_ t + At (B-6)

with the covariance Q (i) = Q(t)/At, (B-7)
A

where t corresponds to the time point i.

Equation (B-4) is then approximated as follows:

t
x(t) = $(t-to)x(to) + J 4(t-r)Bu(T)dr + 

to
(B-8)

1 14 _L 1 * .
£ {/ ^ti+l " t)Gw^ (t1)dr}, 

i=0 t^

where t^ = to + iAt;

At = (t - to)/n.

It is straightforward from equation (B-3) that the state tran

sition matrix &(t-r) is exp{A (t - t)} and is most easily computed 

directly in this problem as given below:

exp{A (t - t)} = I + A (t - t) + A2 (t - t)2/2! + ..... , (B-9)

where I is the identity matrix. Since A2 = A3 = .... = 0, the state

transition matrix is given by

/ 0 1 \ / 1 (t-r) \
$(t-T) = exp{A (t - r)} = I + I 1 (t - t) = ( I

\ 0 0 / \ 0 1 /

(B-10)
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By substituting equation (B-10) into equation (B-8) and using the 

optimal admissible feedback control u*, a solution of the numerical 

example given in Chapter VI is represented by

x1(t) = x1(t0) + x2(to)(t - t0) + u* (t - to)2/2 +

I { (At2/2) w^n\tQ + iAt)} 

i=0

(B-ll)

n-l
x2(t) = x2(to) + u* (t - to) + y {(At) wW(to + iAt)}. 

1=0

Note that if numerical method is used for integration, the time 

increment for numerical integration should be, at most, same as the time 

increment used in the approximation of a gaussian white noise.
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