

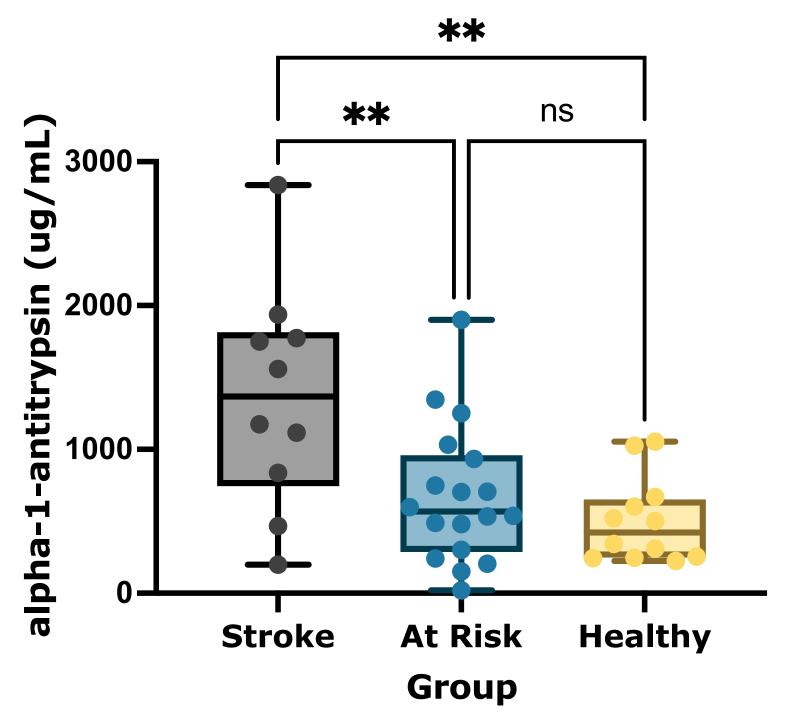
Sally Heil¹, Tyler Hammond², George Chlipala³, Stefan Green⁴, Ya-Hsuan Chang², Abeoseh Flemister¹, Ai-Ling Lin¹ ¹University of Missouri, ²University of Kentucky, ³University of Illinois at Chicago, ⁴Rush University

Introduction

- Over 795,000 people in the US suffer a stroke every year.
- Survivors are often left with severe cognitive, functional, and emotional impairments.
- Gut dysbiosis and increased gut permeability have been shown to occur following stroke, leading to a systemic flood of neuro- and immuno-modulatory substances.
- Evidence from animal model studies suggests that gut microbes modulate the bidirectional gut brain axis.
- It is unknown how post-stroke dysbiosis correlates with gut permeability.

Aims

- Correlate post-stroke gut dysbiosis with gut permeability in humans.
- Explore mechanisms utilized by microbes contributing to dysbiosis to identify potential interventional targets to promote stroke rehabilitation.

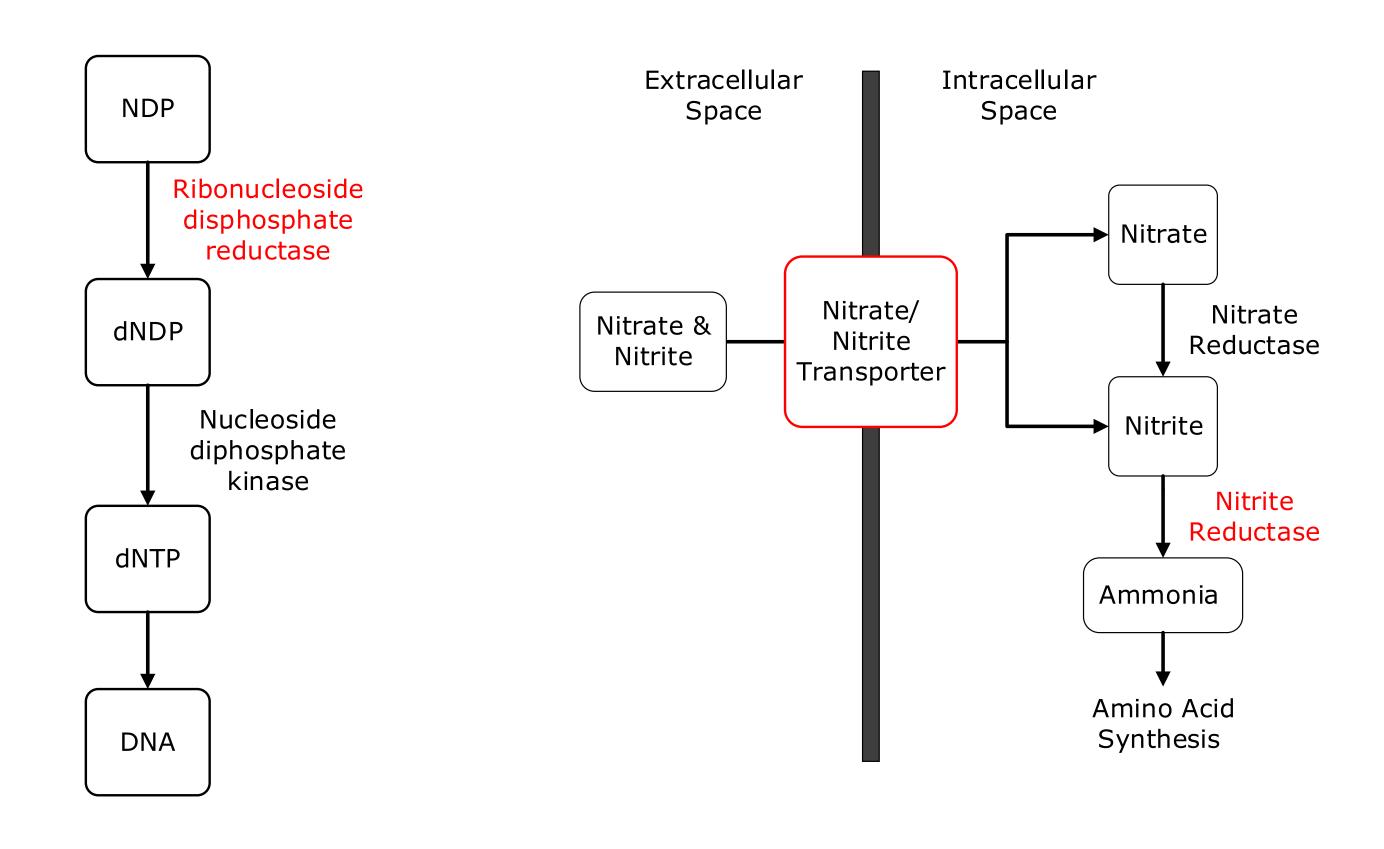

Methods

- We recruited 12 participants after a first-time ischemic stroke, 18 at risk participants who had not had a stroke but had 1+ cardiovascular risk factors, and 12 healthy participants.
- Participants were between the ages of 55-85 years old and had no clinically significant chronic conditions or history of major gastrointestinal surgery in the past 5 years.
- Stool samples were collected from each participant to measure leaky gut markers and the gut microbiome with shotgun metagenomics sequencing.
- Differential analyses of bacterial taxa were performed using the software package edgeR on raw sequence counts. Data were normalized and then fit using a negative binomial generalized linear model using experimental covariates, and statistical tests were performed using a likelihood ratio test. Adjusted p values (q values) were calculated based on a false discovery rate threshold of 5% (0.05).
- Differential analyses for functional gene counts were performed using the same methods as for bacterial taxa.

Mechanisms for Gut Microbiome Dysbiosis Following Stroke

Results

Stroke Patients had Higher Leaky Gut Markers


The stroke group had a significant increase in the leaky gut marker alpha-1-antitrypsin compared to the at-risk and healthy groups.

**p < 0.05

Metabolic Changes in Stroke Patients

Purine Synthesis Pathway	– –	Healthy/Acute Stroke : QValue
ribonucleoside-diphosphate reductase alpha chain	-0.74	3.39E-04
ribonucleoside-diphosphate reductase beta chain	-0.93	3.05E-03
Nitrogen Metabolism Pathway		Healthy/Acute Stroke : QValue
MFS transporter, NNP family, nitrate/nitrite transporter	-2.51	0.03
nitrite reductase (NAD(P)H)	-2.26	0.04
nitrite reductase (NADH) large subunit	-1.58	0.04

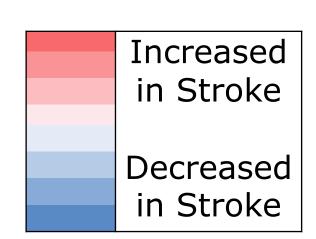
Functional analysis uncovered a significant increase in KEGG orthologs implicated in purine synthesis and nitrogen metabolism pathways present in the stroke group compared to the healthy group.

Bacterial Taxa in Stroke vs. Control Groups

Taxo Rosel Anae Copr Rum Egge Acida Buty Limc Lactio Lacto Acuta Klebs

Taxa negatively associated with alpha-1-antitrypsin were decreased in stroke, including Ruminococcus, Coprococcus, Anaerostipes, and Roseburia.

onomy	Healthy/Acute Stroke : logFC	Healthy/Acute Stroke : QValue	At Risk/Acute Stroke : logFC	At Risk/Acute Stroke : QValue
eburia	1.67	0.04	1.84	1.88E-03
erostipes	1.89	0.02	1.67	0.01
rococcus	2.10	9.48E-03	2.35	5.52E-04
ninococcus	1.96	4.49E-03	2.38	6.42E-04
erthella	-2.04	0.01	-2.33	6.57E-05
aminococcus	-4.20	1.13E-05	-2.50	0.02
ribacter	6.01	0.03	6.64	0.01
osilactobacillus	-6.23	1.67E-06	-6.27	2.39E-12
icaseibacillus	-4.64	3.26E-03	-4.00	2.79E-04
obacillus	-4.57	3.47E-03	-5.43	9.44E-09
talibacter	-1.01	3.47E-03	-0.75	0.02
siella	-2.74	3.47E-03	0.68	0.64


Taxa positively associated with alpha-1-antitrypsin were increased in stroke including Eggerthella.

Conclusion

- availability in the lumen.
- One potential mechanism of dysbiosis includes oxygen utilization by aerobic and facultative anaerobic bacteria.
- The stroke group had increased levels of oxygen-dependent ribonucleoside reductase, an enzyme that synthesizes DNA precursors.
- Increased nitrate utilization is a second potential mechanism for dysbiosis.
- The stroke group had increased levels of nitrate/nitrite transporter and nitrite reductase.
- There was in increase in aerotolerant bacteria from the Lactobacillaceae family. • There was a decrease in butyrate producing bacteria in the stroke group.
- Analysis showed a decrease in butyrate producers including Roseburia, Anaerostipes, and Butyribacter in the stroke group compared to the at risk and healthy groups. Butyrate plays a role in inflammatory homeostasis and inhibiting pro-inflammatory cytokines.
- gut dysbiosis and permeability to promote stroke rehabilitation.

Acknowledgements

- The research is supported by NIH/NIA RF1AG062480 to A-L.L.

• Stroke leads to an inflammatory response and increased permeability in the gut. • Leaky gut alters the microbial environment by increasing oxygen and nitrate

• These findings may shed light on future intervention developments targeting on