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THE EFFECTS OF WEATHER CLASSIFICATION  

ON REGRESSION-BASED DOWNSCALING OF DAILY  

TEMPERATURE EXTREMA IN THE UNITED STATES 

 

Quinn Pallardy 

Dr. Neil Fox, Dissertation Supervisor 

ABSTRACT 

 

The focus of this dissertation was on the role played by weather classification in 

regression-based downscaling of daily temperature extrema. Three closely related 

studies were conducted, each using a different criterion for weather classification. The 

primary objective of all these studies was to evaluate changes in downscaling model 

performance as meteorological properties of the training periods were varied. This 

objective was of interest due to potential improvements in downscaling performance 

when accounting for non-static relationships between predictors and predictands. The 

first study used the time of day of the temperature extremum as the weather 

classification, while the third study used the direction of the wind as the weather 

classification. The second study used temperature as the weather classification, with a 

focus on possible consequences for downscaling in warmer conditions that were not 

present in the training conditions. Results from all three studies indicated that 

downscaling performance had the potential to be affected by the weather conditions 

seen in the training periods. 
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Chapter 1. The Effects of Atypical Diurnal Temperature Cycles on 

Regression-Based Downscaling of Daily Temperature Extrema in 

the Central United States 

 

Abstract 

 

The effects of variations in time of day of daily temperature extrema on regression-

based statistical downscaling of daily temperature extrema were examined. These 

effects were analyzed by evaluating the performance of a regression-based downscaling 

model with multiple approaches to the incorporation of the relevant temperature data. 

The differing approaches included which predictor variables were selected for inclusion 

in the model, as well as variations in model methodology. Three different versions of the 

downscaling model were evaluated: (i) standard multiple linear regression, (ii) a weather 

classification scheme combined with multiple linear regression, and (iii) a weather 

classification scheme combined with multiple linear regression using dynamic time-step 

predictors. Bias and accuracy were measured on days with atypical and typical time of 

temperature extrema.  The performance of regression models had the potential to be 

greatly degraded by days with atypical times of temperature extrema. The degree to 

which these atypical days were affected was dependent on which predictors were 
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included in the regression models, with the temperature extrema derived from 

reanalysis data playing the most important role. Implementation of the weather 

classification scheme also improved downscaling performances for atypical days in a 

number of situations. For typical days, the improvements to RMSE values were smaller 

and under were only present under certain predictor combinations.   
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1.1 Introduction 

 

Downscaling is a process through which high resolution data is generated from low 

resolution data. It has many different applications in climate science research and 

analysis. Application of downscaling on output from lower resolution climate models 

has the potential to enable predictions associated with models that require higher 

resolution climate data for input, which may include hydrological, ecological, and crop 

yield models (Flint and Flint 2012; Grouillet et al. 2016; Robertson et al. 2007). 

The two main types of downscaling approaches in use today are dynamical downscaling 

and statistical downscaling. Dynamical downscaling relies on simply increasing the 

resolution of climate models. Due to the extreme computational requirements of high 

resolution climate models, it is far more computationally expensive than statistical 

downscaling. The output is also limited to the variables generated by the model. 

Statistical downscaling relies on establishing statistical relationships between larger 

scale predictors and smaller scale predictands to predict values on a finer spatial scale. 

While computationally inexpensive, there are drawbacks associated with statistical 

downscaling. For one, a lengthy period of record is required for calibration. Another 

problematic aspect of statistical downscaling is the required assumption of stationarity 

with respect to climate change, which is relevant for the downscaling of climate 

modeling of the future (Wilby et al. 2004). 
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Statistical downscaling studies in recent years have largely fit into three different 

categories: weather classification, regression models, and weather generators (Wilby et 

al. 2004). Weather generators recreate the statistical properties of a climate variable 

without matching actual observations of that variable. Weather classification involves 

splitting the data into different weather “types” and is based on the theory that the 

statistical relationships between predictors and predictands will behave the same under 

similar weather conditions. The analog approach shares similarities with weather 

classification and has been used in numerous studies for temperature downscaling 

(Bettolli 2021; Bettolli and Penalba 2018; Brands et al. 2011b; Gutiérrez et al. 2013; 

Merkenschlager et al. 2021; Ribalaygua et al. 2013; Timbal and McAvaney 2001; Timbal 

et al. 2003). With the analog method, local conditions are linked with the simultaneous 

state of the atmosphere on a larger scale.  

The predictands typically used in temperature downscaling include daily temperature 

extrema, daily mean temperature, or longer term mean temperature. These and other 

studies often compared the effectiveness of various versions of the methods using 

reanalysis data and a cross-validation approach (Gutiérrez et al. 2013). Downscaled 

output from climate models using the examined methods were sometimes included and 

interpreted.  

The form of downscaling used in this study was multiple linear regression (MLR). Many 

forms of linear regression have been used to downscale temperature (Casanueva et al. 

2013; Dirksen et al. 2020; Duhan and Pandey 2015; Fan et al. 2021; Goyal and Ojha 
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2011; Gutiérrez et al. 2013; Huth 2002; Huth 2004; Khan et al. 2006; Manzanas et al. 

2018; Nojarov 2015; Radan 1999; Solman and Nuñez 1999). Nonlinear regression in the 

form of artificial neural networks (ANN) has also been used for temperature 

downscaling (Andreas and Gerd 1998; Coulibaly et al. 2005; Duhan and Pandey 2015; 

Gaitan et al. 2014; Goyal and Ojha 2011; Hernanz et al. 2021; Huth et al. 2007; Khan et 

al. 2006; Kostopoulou et al. 2007; Miksovsky and Raidl 2005; Schoof and Pryor 2001). 

The ANN studies typically compared the effectiveness of the ANN techniques to simpler 

linear regression techniques, with varying results. While regression can be simple and 

computationally efficient, it does have potential drawbacks. Regression models tend to 

produce downscaled results with lower variance than seen in observations, due to the 

inability of large scale predictors to fully explain all local variability (Wilby et al. 2004). 

Variance inflation or randomization are two methods that have been proposed as 

potential solutions to this problem (Huth 2002). The randomization approach consists of 

adding noise with the desired properties to the downscaled data set. Variance inflation 

is a procedure where all the downscaled anomalies are increased by the same factor to 

equalize the variance in the data sets. A problem with this approach is that it relies on 

the imperfect assumption that all the variability at the finer scale is dependent on the 

variability at the larger scale (Maraun 2013).  

Observational data is necessary for statistical downscaling, and the degree of 

homogeneity in the data set used is an important factor in determining the reliability of 

downscaled results.   Ensuring that inhomogeneities are minimized is an important 

factor in the development of temperature data sets (Peterson et al. 1998). These 
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inhomogeneities can take the form of biases introduced through varying of the time-

window in which the temperature extrema are recorded or in the frequency at which 

temperature sampling is conducted (Gough et al. 2020; Vincent et al. 2009). Station 

relocation and changes in observation procedures can also introduce inhomogeneities 

(Vincent et al. 2002). The prior examples describe inhomogeneities related to 

inconsistencies in measurement, but inhomogeneities can also be physical in nature. In 

(Žaknić-Ćatović and Gough 2021) two different regimes of temperature extrema were 

identified: the radiative regime and the advective regime. Temperature extrema for the 

radiative regime were aligned with the diurnal radiation cycle, while the corresponding 

extrema for the advective regime were far less influenced by the diurnal radiation cycle. 

Potential consequences of these different patterns of temperature extrema timing on 

the performance of downscaling of daily temperature extrema were the primary focus 

of this study. Two types of days were defined for this study, the atypical day, and the 

typical day. For the typical day, the temperature extrema occurred at the time of day 

where the extrema were most frequently seen. Radiative forcing was the driving factor 

in the timing of temperature extrema for the typical day. For the atypical day, the 

temperature extrema occurred at either the beginning or end of the day, at the side 

opposite the time of typical temperature extrema. For the atypical day, advective 

forcing was the driving factor in temperature extrema timing.  

In the regression downscaling model, the larger scale state of the atmosphere is 

described using predictor variables. How these predictors are chosen can determine 

whether the model has access to information about the time of day of the temperature 
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extrema. One key factor in the selection of predictors is the time of day at which they 

are taken, and whether that time of day can change dynamically. Attention to the 

effects of the time of day of predictors on downscaling performance has been sparse. 

Gutiérrez et al. 2013 offered a limited examination of the effects of shifting time-steps 

and found that daily minimum and maximum temperatures were affected differently, 

with a dynamic time-step setup performing better for downscaling maximum 

temperatures, and a static time-step setup performing better for downscaling minimum 

temperatures. The dynamic time-step setup used by Gutiérrez et al. 2013 included 

predictors from two time-steps, while the static time-step setup used predictors from 

only a single time-step. Using predictors that remain unchanging in time to predict 

extrema values that are not necessarily occurring near the same time every day has the 

potential to cause problems with downscaling performance. A potential solution 

examined in the study was the inclusion of modeled temperature extrema or mean daily 

temperature as predictors.  

Another potential way of addressing the heterogeneity in time of day of temperature 

extrema issue was through the introduction of a weather classification technique. The 

weather classification technique used in this study divided the training period used for 

regression into partitions containing only typical or atypical days. While the weather 

classification process served to bolster the physical homogeneity of the days in each 

training period, it also potentially significantly limited the number of data points that 

could be used for regression. Combining weather classification with regression has been 

attempted before, though not in relation to heterogeneity in time of day of temperature 
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extrema (Gutiérrez et al. 2013; Ribalaygua et al. 2013). To the author’s knowledge, 

problems introduced to regression-based downscaling by inhomogeneities in time of 

day of temperature extrema has not been examined in the literature. Examining these 

issues and evaluating potential ways to address them were the primary objectives of 

this research. 
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1.2 Methodology 

 

The following section describes the methodology used to conduct the study. Included 

are information about the data used for the study, as well as how the downscaling 

model was created and evaluated. The downscaling model was designed to evaluate 

potential effects of non-static diurnal temperature cycles on downscaling performance. 

This was achieved by incorporating information related to the time of day of 

temperature extrema through predictor variable selection and/or the implementation 

of a weather classification technique.  

1.2.1 Data 

The downscaling model used for this study relied on establishing a regression-based 

relationship between large scale “predictor” variables and small scale “predictands”. 

Predictor variables were used to describe the state of the atmosphere on a larger scale, 

while the predictand was what the model is designed to predict based on the 

atmospheric state. Data from the NARR, or North American Regional Reanalysis dataset 

(Mesinger et al. 2006), were used for the large scale predictor variables. The NARR set 

consists of gridded data covering North America at roughly 0.3 degrees or 32 km in 

resolution. NARR data have a temporal resolution of 3 hours, spanning 1979 to the 

present. Data from the standard levels used for analysis were considered, including data 

from the surface, and at the 850 and 500 hPa levels (Table 1.1). Meteorological variables 

obtained from the NARR included temperature, u wind, v wind, specific humidity at the 
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surface and the specified pressure levels, and sea level pressure. The period of time 

examined for this study was the 30-year period from 1981 to 2010.  

Minimum and maximum daily temperature data were obtained at 40 different stations 

located throughout the central United States for the same period of time (Fig. 1.1a). The 

stations were selected for the complete availability of data in the considered time 

period and for their locations in the interior of the North American continent. These 

temperature extrema data served as the predictands for the study. 

 

 

 

 

 

Table 1.1 Variable Information. The times of non-daily variables were dependent on the 

downscaling method used. 

Variable Code Description Levels 

Ps Sea Level Pressure  Surface 
T Temperature 850 ,500 hPa 
U U Wind 850, 500 hPa 
V V Wind 850, 500 hPa 
H Specific Humidity 850 ,500 hPa 
Ts Surface Temperature Surface 
Us Surface U Wind Surface 
Vs Surface V Wind Surface 
Hs Surface Specific Humidity Surface 
Tm Mean Daily Surface Temperature Surface 
Tn Min Daily 3-Hourly Surface Temperature Surface 
Tx Max Daily 3-hourly Surface Temperature Surface 
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Figure 1.1 (a) Station locations across the Central United States selected for inclusion in this 

study. The red locations mark a subset of the data used for additional testing in the study.  

(b) North American Regional Reanalysis (NARR) cell locations of small (green), medium (red), 

and large (blue) domains associated with the station located in Saint Louis, Missouri. The 

focus of the study was on results for the smallest (green) domain size. 

 

 

 

 

 

 

 

 

 

 

1.2.2 Predictor Variable Combinations 

The variables chosen as predictors have been commonly used for downscaling purposes 

(Gutiérrez et al. 2013). Global Climate Models (GCMs) have been shown to skillfully 

reproduce these variables over southwestern Europe (Brands et al. 2011a). A subjective 

approach has often been taken for which combinations of predictors are tested. 

Correlation analysis (Khan et al. 2006) and stepwise regression (Gaitan et al. 2014) have 

also been used for predictor selection. 

Different predictor variables combinations describe the state of the atmosphere in 

different ways, and in the present study the downscaling performances of several 
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different predictor combinations were examined. Three different individual variables 

were tested: mean surface daily temperature, daily reanalysis maximum/minimum 

surface 3-hour temperature, and surface temperature from a single timestep. In this 

study the single timestep variables were taken at 21 UTC for daily maximum 

temperature and 12 UTC for daily minimum temperature. Note that the 

maximum/minimum surface temperatures were the highest/lowest values of the 3-hour 

instantaneous surface temperatures (instantaneous temperatures at 3-hour intervals) 

between 06 UTC one day and 06 UTC the following day and were not the actual 

maximum/minimums. This 06 UTC to 06 UTC period marked the boundaries of the day 

during which maximum/minimum temperatures were observed at all tested locations. 

To avoid confusion with the minimum and maximum temperature predictand variables 

that are being predicted, the surface maximum and minimum temperature variables 

extracted from the NARR data and used for predictors will be referred to as the 

reanalysis maximum temperature and reanalysis minimum temperature. 

In addition to these three individual variables, many variable combinations were 

examined (Table 1.2). Single timestep values of surface temperature, u wind, v wind, sea 

level pressure, and specific humidity formed the most basic combination. Subsequent 

combinations cumulatively added temperature and wind velocity data from higher up in 

the atmosphere. Mean surface temperature or reanalysis maximum/minimum surface 

temperature were examined as add-ons to each combination. The primary goal with 

predictor combination selection was to evaluate performance with and without the 

mean surface temperature and the reanalysis maximum/minimum surface temperature  
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variables. These two variables offered temperature information to the downscaling 

model that was independent of the diurnal temperature cycle, and in the case of the 

reanalysis maximum/minimum surface temperature described the temperature near 

the point in time at which the temperature extremum was reached. 

 

 

 

 

 

 

 

Table 1.2 Tested Combinations of Predictors.  

Combination Name Predictors 

CS  Ps, Ts, Us, Vs, Hs 
CSm  Ps, Ts, Us, Vs, Hs, Tm 
CSx Ps, Ts, Us, Vs, Hs, Tx 
CSn  Ps, Ts, Us, Vs, Hs, Tn 
C8 CS, T850, U850, V850, H850 
C8m CS, T850, U850, V850, H850, Tm 
C8x CS, T850, U850, V850, H850, Tx 
C8n CS, T850, U850, V850, H850, Tn 
C5 C8, T500, U500, V500, H500 
C5m C8, T500, U500, V500, H500, Tm 
C5x C8, T500, U500, V500, H500, Tx  
C5n C8, T500, U500, V500, H500, Tn  
Ts Ts 
Tm Tm 
Tn Tn 
Tx Tx 
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1.2.3 Downscaling Model Methodology 

The regression method used for the downscaling model in this study was the linear least 

squares form of multiple linear regression (MLR). The MLR method was chosen for its 

simplicity and computational inexpensiveness. 

Evaluation Methods 

To evaluate the effectiveness of downscaling, an approach similar to the k-fold cross-

validation technique described in (Gutiérrez et al. 2013) was used. The application of 

cross-validation in analysis of performance ensured that model overfitting was avoided. 

For this technique, the period of record examined was split into five different sections, 

with each section in turn being used as a validation period with the other sections used 

as training periods. This resulted in an 80/20% split in training/validation periods. To 

mitigate any influence from year-to-year trends the sections were staggered. For 

example, the first validation period was the following six years: 

1981,1986,1991,1996,2001, and 2006. The next validation period advanced by one year: 

1982,1987,1992, 1997,2002, and 2007. 

Root mean square error (RMSE) and bias were evaluated using this cross-validation 

approach. The RMSE was given by the square root of the mean value of the squared 

predicted errors. Lower RMSE values were indicative of better performance, though 

were more affected by outliers than the mean absolute error due to the squaring of the 

errors. Bias described how well the model over or under predicts what the temperature 

will be. The RMSE and bias values were evaluated by comparing differences in the daily 
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temperature extrema predicted from the downscaling model and the observed daily 

temperature extrema at the station locations.  

Domains 

The domains used in the downscaling model defined the region for which predictor data 

was confined to. The domain consisted of all NARR cell locations within a certain great 

circle distance of the location of the station being downscaled. Three distances were 

tested: 3o, 5o, and 7o of the equivalent latitudinal distance on a spherical earth. The 

results for this study were limited to the smallest domain size of 3o; the smallest domain 

tended to perform (with respect to RMSE) slightly better or similar to the larger domains 

under most circumstances. Figure 1.1b shows the relevant NARR cell locations of these 

domains for the Saint Louis station. Although the number of cells per domain was not 

identical across all the stations, the variation was not large; the number of cells per 

domain at each station stayed within roughly 6% of the mean value across all stations.  

Normalization 

The first step in the downscaling process was to convert the data into standardized 

anomalies. This procedure was performed to remove any dependence on seasonality in 

the model (Gutiérrez et al. 2013). This is relevant when the downscaling model is used 

for situations where the seasonality may change, as it may in modeling for future 

climates (Gutiérrez et al. 2013). 
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The 24-year training period was not sufficient to generate a reasonably noise-free mean 

and standard deviation by Julian day for the data, so a smoothing technique was 

employed. The Julian Day mean values were smoothed by averaging data from a 

window on the trailing and leading sides of the Julian Day in question. The same 

manipulation was performed for standard deviation after subtracting the smoothed 

means from the data. All variables in the study were standardized with a 20-day window 

(on each side) in accordance with optimal results from preliminary testing. Data from 

the validation periods were normalized using the means and standard deviations from 

the training periods. This was done to keep the validation period data completely 

independent of the training period data. 

PCA 

Principal Component Analysis (Preisendorfer and Mobley 1988) (PCA) is generally used 

to reduce the dimensionality of a data set while retaining most of the explained 

variance. The variables used for MLR were given by the principal components (PCs) of 

normalized data from the selected domain. The dominance method of PC selection was 

used, with the total number of variables retained capped in proportion to the length of 

the training period. Prior studies have indicated no loss of performance with higher 

order PCs that would typically be considered noise (Huth 2002; Radan 1999). These 

were done with a much simpler data set, where the ratio of the length of the training 

period to the number of variables in the model was not an issue.  The maximum number 

allowed by the length of the training period was given by the ratio of training days to 
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total variables to be entered into the model. Thirty-five different ratios were tested, 

ranging from a minimum of 4 to a maximum of 8000, and the optimal value (minimum 

RMSE) for that particular station/variable combination was chosen. This threshold was 

more relevant for the methods that relied on weather classification, due to the 

shortened training periods. If any ratios were sufficiently high to completely eliminate a 

variable from the model, the corresponding results were not computed.  

 The principal component analysis (PCA) was performed on data from the training 

period and data from the validation period was projected onto the PCA axes generated 

from the training period. This was again done to keep the validation period data 

completely independent of the training period data. 

Time of Day of Reanalysis Maximum/Minimum Temperature  

Two of the three versions of the downscaling model developed for the present study 

used a combined weather classification and regression approach. The categories of 

weather in this case were the varying times of day that the reanalysis maximum and 

minimum temperatures were estimated to have taken place using the surface 

temperature predictor data set. The reanalysis temperature data were calculated for 

each station using spatial bilinear interpolation. The estimated time of reanalysis 

maximum and minimum temperature for every day was calculated based on these 

interpolated values, at the 3-hour temporal resolution of the NARR data.  

All stations were in the central time zone of the United States, where the beginning and 

end of each day occurs at 06 UTC. Figures 1.2a and 1.2b show the annual time of day of 
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Figure 1.2 Box and whisker plots of percent of days for which minimum temperature (a) and 

maximum temperature (b) occurred at a given UTC time on an annual basis. Median values 

are given by the thin black lines and mean values by the thick purple lines. 

 

reanalysis maximum and minimum temperature distribution across all 40 stations. The 

median number of days where the reanalysis minimum temperature occurred at 06E 

UTC (E here refers to end of the day) was roughly 25% of the total number of days (Fig. 

1.2a). The median number of days where the reanalysis maximum temperature 

occurred at 06B UTC (B refers to beginning of day) was slightly over 5% (Fig. 1.2b). The 

corresponding values for the times of reanalysis minimum and maximum temperature 

(12 UTC for minimum, 21 UTC for maximum) were about 80% and 50%, respectively.  
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Figure 1.3 shows the seasonal breakdown of the distributions for reanalysis minimum 

temperature shown in Figure 1.2. The highest percentage of days with the reanalysis 

minimum temperature at 06B was winter, and the lowest in summer (Fig. 1.3a, 1.3c). A 

greater number of days with time of reanalysis minimum temperature at 03 UTC 

occurred in summer, potentially due to the greater day lengths (Fig. 1.3c). Figure 1.4 

shows the corresponding seasonal breakdown for maximum temperature. Maximum 

temperatures at the beginning of the day occurred predominately in winter and were 

almost non-existent in summer (Fig. 1.4a, 1.4c). The higher percentages in winter for 

atypical time of expected temperature extrema were not unexpected, as they are 

generally associated with cold air advection (Fig. 1.4a). Cloud cover can also potentially 

play a role in the time of day for temperature extrema.   
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Figure 1.3 Box and whisker plots indicating the frequency at which the minimum 

temperature occurred at the specified times of day in winter (a), spring (b), summer (c), and 

fall (d) at all 40 station locations. Median values are given by the thin black lines and mean 

values by the thick purple lines. 
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Figure 1.4 Box and whisker plots indicating the frequency at which the maximum 

temperature occurred at the specified times of day in winter (a), spring (b), summer (c), and 

fall (d) at all 40 station locations. Median values are given by the thin black lines and mean 

values by the thick purple lines. 
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The focus of this study was on downscaling performance for days that were typical and 

days that were atypical with respect to time of temperature extrema. The typical days 

were those for which the minimum and maximum temperatures were expected to occur 

at 12 UTC and 21 UTC, respectively. Atypical days were chosen as the days where the 

maximum and minimum temperatures were at 06B UTC and 06E UTC, respectively. 

These times were chosen because they were the farthest from the typical times and had 

a sufficient number of days to be used as data points. As mentioned in the introduction, 

for the typical days radiative forcing was the dominant factor in the time at which the 

extrema occurred, while for the atypical days advective forcing was the dominant factor 

in the timing of extrema. 

Atypical/typical days for minimum temperature were defined independently from those 

days for maximum temperature, meaning that an atypical day for minimum 

temperature could potentially be a typical day for maximum temperature and vice 

versa. 

Versions of the Downscaling Model 

Three versions of the downscaling model were tested. The first version was designated 

the standard model (M1 method), where the entire training period was used. The 

second version used the previously described combined weather classification and 

regression approach (M2 method). For the second version, atypical and typical days 

from the training period in the model were used to downscale the temperature for the 

corresponding atypical and typical days from the validation period.  
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The third version was identical to the second, except variables with dynamic times were 

used (M3 method). For the M3 method, all single time-step variables were adjusted 

based on whether the atypical or typical days were being used for training. This meant 

that when the atypical days were used for training, the single time-step variables with 

the M3 method were set at 06B UTC for maximum temperature downscaling and 06E 

UTC for minimum temperature downscaling. Single time-step variables for training with 

typical days with the M3 were set at the standard 21 UTC for maximum temperature 

downscaling and 12 UTC for minimum temperature downscaling.  

With the weather classification approach, the training periods were adjusted so that no 

inhomogeneity existed in the time of day of temperature extrema within the training 

period. Results using the original and modified training periods could then be compared 

to evaluate potential effects of the inhomogeneity. 

Choice of Time-step for Static Predictors 

As previously noted, the time-steps of 21 UTC and 12 UTC were chosen for the static 

time-step of predictor variables used for the prediction of maximum daily temperature 

and minimum daily temperature, respectively. The objective was to select the times for 

prediction of maximum and minimum temperature that broadly performed the best 

across all predictor combinations. The 21 UTC and 12 UTC selections were logical 

choices due to their being the most frequent time of reanalysis maximum and minimum 

temperature at every station. Results from relevant preliminary testing are shown in 

Figure 1.5 (Minimum) and Figure 1.6 (Maximum). The stations used for the preliminary 
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testing are marked in red in Figure 1.1a. These figures show the performances for 

selected predictors combinations as the static time-step was adjusted. For prediction of 

minimum temperature daily temperature, all variable combinations, including those 

with the mean daily temperature and the reanalysis minimum daily temperature, overall 

performed best with the static predictors set at 12 UTC (Fig. 1.5a). For atypical days, all 

predictor combinations examined trended toward improved RMSE performance as the 

time-step used for predictors got later in the day, suggesting that time-step of the static 

predictors was important for predicting minimum temperatures on the days where the 

reanalysis minimum temperature occurred at the end of the day (Fig. 1.5b). The 

performance for prediction of maximum daily temperature was not quite so uniform, 

with the optimal time-step varying with the variable combination used (Fig. 1.6a). This 

was particularly true for the combinations with the reanalysis maximum temperature 

included. As was expected, the combinations that included either reanalysis minimum 

or maximum daily temperature saw much less variation with change in time-step of 

static predictors. 
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Figure 1.5 RMSE (oC) performance for downscaling of minimum daily temperature using a 

subset of data locations (marked in red in Fig. 1.1a) and allowing the time of single time-step 

predictors to vary. The combinations were split into three categories: combinations where 

only the single time-step predictors were included (blue, combinations included CS, C8, and 

versions of those with specific humidity excluded), combinations where the mean daily 

surface temperature predictor was included in addition to the single time-step variables 

(red, combinations included CSm, C8m, and versions of those with specific humidity 

excluded), and combinations where the estimated minimum daily surface temperature 

predictor was included in addition to the single time-step predictors (green, combinations 

included CSn, C8n, and versions of those with specific humidity excluded). (a) shows RMSE 

performance for all days, (b) shows performance for atypical days (minimum temperature at 

06E UTC), and (c) shows performance for typical days (minimum temperature at 12 UTC). 
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Figure 1.6 RMSE (oC) performance for downscaling of maximum daily temperature using a 

subset of data locations (marked in red in Fig. 1.1a) and allowing the time of single time-step 

predictors to vary. The combinations were split into three categories: combinations where 

only the single time-step predictors were included (blue, combinations included CS, C8, and 

versions of those with specific humidity excluded), combinations where the mean daily 

surface temperature predictor was included in addition to the single time-step variables 

(red, combinations included CSm, C8m, and versions of those with specific humidity 

excluded), and combinations where the estimated maximum daily surface temperature 

predictor was included in addition to the single time-step predictors (green, combinations 

included CSx, C8x, and versions of those with specific humidity excluded). (a) shows RMSE 

performance for all days, (b) shows performance for atypical days (maximum temperature at 

06B UTC), and (c) shows performance for typical days (maximum temperature at 21 UTC). 
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1.3 Results and Discussion 

 

The following portion of the study contains the results of the experiments conducted for 

the study as well as some discussion related to the results. Included are RMSE and bias 

results for minimum and maximum temperature for both atypical and typical days. 

When analyzing the results, the effects of predictor variable selection and type of 

weather classification used on downscaling performance were the primary focus. These 

were the two factors that determined what information about the diurnal temperature 

cycle was available to the downscaling model. 

1.3.1 Daily Minimum Temperature – Atypical Days 

The performance of techniques downscaling daily minimum temperatures when the 

reanalysis minimum temperature occurred at an atypical time (06E UTC, referencing the 

end of the calendar day) is discussed in this section. Box and whisker plots describing 

the results at the 40 site locations using the indicated measure were generated. All 

results in Section 3 used the smallest domain (3o “radius”) for the predictors, with 

training and validation data sets using the same domain.  

RMSE 

Figure 1.7a illustrates the results for RMSE using the M1 method (single time-step 

predictors, except for the temperature extrema and mean temperature variables where 

indicated). A large increase in performance for the selected days occurred when the 
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information about the mean daily temperature (MT combinations, includes Csm, C8m, 

and C5m), or the reanalysis minimum daily temperature (ET combinations, includes Csx, 

C8x, C5x, Csn, C8n, and C5n) was included in the predictor combination, with the 

inclusion of the reanalysis daily minimum temperature resulting in the largest increase 

in performance. Less clear were any effects of adding additional variables at different 

levels in the atmosphere. The biggest increase in performance with respect to variables 

from upper levels in the atmosphere came from the inclusion of 850 hPa information to 

the single time-step) combinations (ST combinations, includes Cs, C8, and C5). Results 

for the single variable (SV combinations, includes Ts, Tm, and Tx) combinations indicated 

that using only the reanalysis minimum or mean daily temperatures as predictors 

produced only slightly poorer performance than using the corresponding MT and ET 

combinations. The performance decrease from using only the single time-step surface 

temperature (compared to the ST combinations) was much larger.  

With the M2 method (single time-step predictors and weather classification), the range 

of differences in the RMSE of the ST, MT, and ET combinations narrowed (Fig. 1.7b), 

implying that the advantage from the inclusion of the reanalysis temperature extrema 

as predictors was reduced through the inclusion of weather classification. This result 

was seen in the percent changes in RMSE obtained at each tested location by switching 

from the M1 to M2 method (Fig. 1.8a). Decreases in RMSE were seen across the board, 

with the smallest decreases seen in the ET combinations.  
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Figure 1.7 RMSE results at all 40 locations for downscaling of minimum daily temperature 

only on atypical days using the M1 method (a), the M2 method (b) and the M3 method (c). 

The ST (red) combinations used only single time-step data for predictors, the MT (blue) 

combinations included the Tm predictor in addition to the single time-step predictors, the ET 

(green) combinations included the Tn predictor in addition to the single time-step predictors, 

and the SV (yellow) combinations used only the single predictor indicated. Median values are 

given by the thin black lines and mean values by the thick purple lines. 
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Figure 1.8 (a) The percent changes in RMSE resulting from switching from the M1 method to 

the M2 method for the results from Figure 1.7. (b) The percent change in RMSE resulting 

from switching from the M1 method to the M3 method for the results shown in Figure 1.7. 

Predictor combination information is the same as described in Figure 1.7. Note the scale 

changes in the ordinate between figures. Median values are given by the thin black lines and 

mean values by the thick purple lines. 
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For the M3 method (dynamic time-step predictors and weather classification) 

differences in RSME values among the ST, MT, and ET combinations decreased 

substantially, with the ET combinations still performing the best (Fig. 1.7c). Use of the 

single time-step temperature predictor (Ts) resulted in a very large decrease in RMSE 

with the M3 method. Figure 1.8b shows the changes in RMSE at all stations between the 

M1 to M3 methods.  

For atypical minimum daily temperature, the overall best RMSE performances among 

the combinations examined were seen with the ET combinations using the M3 method, 

with all ET combinations having very similar results. 

Bias 

For the M1 method, the ST and MT combinations exhibited a tendency to substantially 

overestimate temperatures for atypical days (Fig. 1.9a). The ET combinations, while still 

overestimating temperature, did so at a smaller magnitude. Biases using the M2 and M3 

methods were still positive (Figs. 1.9b, 1.9c), but greatly reduced compared to the M1 

method (cf. Fig. 1.9a with Figs. 1.9b, 1.9c). The ET combinations produced the smallest 

biases for the M1 and M3 methods, with the pattern less clear for the M2 method. 
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Figure 1.9 (a) Bias (oC) results at all 40 locations for downscaling of minimum daily 

temperature only on atypical days using the M1 method (a), the M2 method (b) and the M3 

method (c). Predictor combination information is the same as described in Figure 1.7. Note 

the scale changes in the ordinate among figures. Median values are given by the thin black 

lines and mean values by the thick purple lines. 
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 1.3.2 Daily Minimum Temperature – Typical Days 

The performance of downscaling of daily minimum temperatures when the reanalysis 

minimum temperature occurred at the typical time (12 UTC) is discussed in this section. 

The primary objective of this exercise was to determine whether the inclusion of 

atypical days in the training portion of the standard M1 method had the potential to 

degrade the performance of the downscaling model for typical days.  

RMSE 

RMSE performance for the M1 method on the typical days is shown in Figure 1.10a. As 

was the case for the atypical days, the ET combinations performed best but with a 

smaller margin than that seen with the atypical days. The SV methods tended to 

perform poorly with respect to RMSE (Fig. 1.10a). RMSE differences between the ST, 

MT, and ET combination types were very small for the M3 method on typical days (Fig. 

1.10b). Results for the M2 method were identical to those for the M3 method for typical 

days and thus are not shown. 

The change in RMSE at each tested location by switching from the M1 to the M3 

method is shown in Figure 1.10c. The dynamic predictor time/weather classification 

method (M3) produced slightly increased RMSE for the ET combinations, while the ST 

and MT methods exhibited modest decreases in RMSE. These results were evidence that 

the inclusion of atypical days in the training period did degrade performance for the 

predictor combinations where the reanalysis minimum temperature was not included. 
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Figure 1.10 RMSE (oC) results at all 40 locations for downscaling of minimum daily 

temperature only on typical days using the M1 method (a), the M3 method (b). The percent 

changes in RMSE resulting from switching from the M1 method to the M3 method are 

shown in (c). Predictor combination information is the same as described in Figure 1.7. 

Median values are given by the thin black lines and mean values by the thick purple lines. 
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For typical minimum daily temperature, the overall best RMSE performances among the 

combinations examined occurred with the ET combinations using the M1 method, with 

the ET combinations again having very similar results. 

Bias 

Bias results for the M1 method on typical days (Fig. 1.11a) indicated the ST and MT 

combinations tended to underestimate daily minimum temperature, but not to the 

degree that they overestimated temperature on atypical days (cf. Fig. 1.9a and Fig. 

1.11a). Conversely, the ET combinations slightly overestimated daily minimum 

temperature. Bias for the M3 method on typical days is shown in Figure 1.11b. The 

magnitude of biases seen using the M3 method were smaller than those seen with the 

M1 method for the ST and MT combinations, and reversed in sign (i.e., underestimated) 

for the ET combinations.  
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Figure 1.11 Bias (oC) results at all 40 locations for downscaling of minimum daily temperature 

only on typical days using the M1 method (a), the M3 method (b). Predictor combination 

information is the same as described in Figure 1.7. Median values are given by the thin black 

lines and mean values by the thick purple lines. 
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1.3.3 Daily Maximum Temperature – Atypical Days 

RMSE 

The downscaling performance for daily maximum temperatures when the reanalysis 

maximum temperature occurred at an atypical time (06B UTC) is addressed in this 

section. The occurrence of reanalysis maximum temperature at an atypical time was 

much reduced compared to minimum temperature atypical days, with some 

consequences related to limitations on the number of variables that could be used in 

the model due to the fewer number of training days available for the M2 and M3 

methods.  

Evident from the results (Fig. 1.12a) was a substantial reduction in RMSE seen with ET 

combinations compared to the ST and MT combinations. This result suggested that the 

inclusion of reanalysis maximum temperature data was very important for daily 

maximum temperature prediction on the atypical days. The gap in performance 

between the ET combinations and the other combinations narrowed for the M2 and M3 

methods (c.f. Fig. 1.12a with Figs. 1.12b, 1.12c) but the difference in performance 

between the ET combinations and others remained much wider than that seen in the 

atypical days for the daily minimum temperature. The fact that the gap remained even 

when dynamic time-step predictors were introduced may be related to the relatively 

poor correlation between the normalized 06B UTC temperature and the normalized 

observed maximum temperature (compared to the correlation between the normalized 

reanalysis maximum temperature and the normalized observed maximum temperature 
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on those days). The dynamic time-step temperature values were identical to the 

reanalysis maximum temperature for the atypical days being tested, but the dynamic 

time-step predictors were normalized based on the temperature at that time of day, 

while the reanalysis maximum temperature was normalized based on the reanalysis 

maximum temperature data set.  
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Figure 1.12 Results for RMSE (oC) at all 40 locations for downscaling of maximum daily 

temperature only on atypical days using the M1 method (a), the M2 method (b) and the M3 

method (c). The ST (red) combinations used only single time-step data for predictors, the MT 

(blue) combinations included the Tm predictor in addition to the single time-step predictors, 

the ET (green) combinations included the Tx predictor in addition to the single time-step 

predictors, and the SV (yellow) combinations used only the single predictor indicated. 

Median values are given by the thin black lines and mean values by the thick purple lines. 
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Switching from the M1 to M2/M3 methods decreased mean RMSE values for the Tx 

combination by more than 4% (Fig. 1.13). This decrease suggested that weather 

classification could be more important in the relationship between reanalysis maximum 

temperature and observed maximum temperature for the atypical maximum 

temperature days than the equivalent for the atypical minimum temperature days, 

which only saw a mean ~1.5% reduction. However, higher variation in the decrease of 

RMSE among station locations did exist for maximum daily temperature (for Tx c.f. Fig. 

1.13a with Fig. 1.8a). 

For atypical maximum daily temperature, the combinations with the best RMSE 

performance were the Cs and C8 combinations using the M3 method, with the Tx and 

C5 combinations being slightly behind. Improvements in RMSE from switching from the 

M1 to M3 methods for the ET combinations were smaller for daily maximum 

temperature than for daily minimum temperature (c.f. Fig. 1.13b with Fig. 1.8b). 
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Figure 1.13 The percent changes in RMSE resulting from switching from the M1 method to 

the M2 method for the results from Figure 1.12 are shown in (a). The percent change in 

RMSE resulting from switching from the M1 method to the M3 method for the results shown 

in Figure 1.12 is shown in (b). Predictor combination information is the same as described in 

Figure 1.12. Median values are given by the thin black lines and mean values by the thick 

purple lines. 
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Bias 

Large negative biases were present for the ST and MT combinations with the M1 

method (Fig. 1.14a). These biases were of a greater magnitude than those seen for the 

M1 method atypical minimum temperature downscaling (though of the opposite sign). 

Also notable were the positive biases seen in the ET and SV-Tx combinations for the M1 

method. All biases were significantly reduced for the M2 and M3 methods.  

 

Figure 1.14 Bias (oC) results at all 40 locations 

for downscaling of maximum daily 

temperature only on atypical days using the 

M1 method (a), the M2 method (b) and the 

M3 method (c). Predictor combination 

information is the same as described in 

Figure 1.12. Median values are given by the 

thin black lines and mean values by the thick 

purple lines. 
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Performance Versus Variables Kept 

An unusual pattern was seen in which the optimal performance for most locations on 

atypical days for maximum temperature downscaling with the SV-Ts combination 

resulted from the configurations where only a small number of variables were kept 

(indicated by the high values in Fig. 1.15a). The pattern did not occur in the typical days 

(Fig. 1.15b).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.15 Optimal ratio of total number of training days to variables entered 

into the model for downscaling of maximum daily temperature using the M1 

method at all 40 locations on atypical days (a) and typical days (b). The lowest 

RMSE results were considered optimal. 
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1.3.4 Daily Maximum Temperature – Typical Days 

RMSE 

The performance of downscaling of daily minimum temperatures when the reanalysis 

maximum temperature occurred at the typical time (21 UTC) is discussed in this section.  

For days with reanalysis maximum temperature at the typical time, reductions in RMSE 

from the M1 to M3 method were smaller for the ST and MT combinations than those 

seen in the analogous results for daily minimum temperature (cf. Fig. 1.16c, Fig. 1.10c). 

This result may be related to the proportion of days where the reanalysis maximum 

temperature was at the typical time being larger than the corresponding proportion for 

the reanalysis minimum temperature. The ET combinations exhibited small decreases in 

performance when the M3 method was used instead of the M1 method, which was also 

the case for the results in Figure 1.10c. 

The MT combinations using the M3 method were the best performers with respect to 

RMSE for typical maximum daily temperature, having slightly lower RMSE values than 

the corresponding ET combinations using the M1 method. The C5m combination with 

the M3 method exhibited the lowest mean RMSE value of all combinations examined, 

and a trend of small improvements in mean RMSE performance as upper air data was 

included was observed across the ST, MT, and ET combinations. 
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Figure 1.16 Results for RMSE (oC) at all 40 locations for downscaling of maximum daily 

temperature only on typical days using the M1 method (a), and the M3 method (b). The 

percent changes in RMSE resulting from switching from the M1 method to the M3 method 

are shown in (c). Predictor combination information is the same as described in Figure 1.12. 

Median values are given by the thin black lines and mean values by the thick purple lines. 
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Bias 

The magnitude of biases for the ST and MT combinations in Figure 1.17a were smaller 

than those in Figure 1.11a (and reversed in sign), as might be expected given the 

relatively smaller improvements in RMSE performance going from M1 to M3 with 

maximum daily temperatures.  

 

 

 

 

 

 

Figure 1.17 Bias (oC) results at all 40 locations for downscaling of maximum daily 

temperature only on typical days using the M1 method (a), the M3 method (b). Predictor 

combination information is the same as described in Figure 1.12. Median values are given by 

the thin black lines and mean values by the thick purple lines. 
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1.4 Conclusions 

 

The primary goal of this study was to determine the effects of variation in time of day of 

temperature extrema on the performance of regression-based downscaling of daily 

temperature extrema. This was accomplished by developing and subsequently 

evaluating results from a downscaling model that was capable of incorporating 

information related to the time of day of the reanalysis-based temperature extrema 

through predictor variable selection and/or weather classification.  

The study found that the diurnal temperature cycle for locations in the Central United 

States was inhomogeneous in nature and that regression-based downscaling 

performance of temperature extrema suffered if these inhomogeneities were not 

accounted for. Both predictor variable selection and training period selection via a 

weather classification scheme were assessed to provide benefits to the downscaling 

model as tools to account for the inhomogeneities. These benefits were attributed to 

the inability of single time-step predictors to account for inhomogeneities in the diurnal 

temperature cycle of the non-weather-classified training period. 

1.4.1 Atypical Days 

The choice of predictors in this study greatly influenced the resulting RMSE 

performance. For atypical days of daily maximum and minimum temperature, the 

greatest factor in performance was whether the reanalysis temperature extrema (ET 

combinations) and to a lesser extent the daily mean temperatures (MT combinations) 
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were used as predictors. Both variables were unaffected by the timing of the daily 

temperature extrema, and their value was evidence of the importance of temperature 

data not locked to a single time-step when downscaling a population of days with 

inhomogeneous timing of temperature extrema. Data from a single time-step were 

inadequate to optimally predict either minimum or maximum temperatures on days 

that fell outside of the typical diurnal cycle, with Increased RMSE values seen for 

prediction of both minimum and maximum daily temperature. Reliance on single-time 

step data also led to underprediction of maximum daily temperature and overprediction 

of minimum daily temperature for the relevant days.  

The magnitude of biases seen with atypical days were reduced through the introduction 

of weather classification. Weather classification also reduced RMSE values. Introducing 

dynamic time-step predictors to the weather classification scheme greatly reduced 

RMSE values for the ST and MT combinations, and under most conditions also reduced 

RMSE values even when the reanalysis temperature extrema were included in the 

model. This improvement in performance was attributed to the benefits of 

homogenizing the training period with respect to the timing of daily temperature 

extrema outweighing negatives from a reduced length of training period.  

Limitations on the number of variables that could be used were present in this study 

because of the relatively small pool of atypical training days that were available. This 

problem was more significant for the daily maximum temperature downscaling, as most 

locations had only around five percent of days where the daily maximum temperature 
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occurred at 06B UTC. A potential consequence of this deficiency were reductions in the 

effectiveness of additional data from the upper levels of the atmosphere, as the 

expectation in most cases would be that the further the data were from the predictand 

location, the less predictive value it would have for that location. With a limited number 

of variables available for use in the downscaling model in these atypical circumstances, 

the inclusion of the less predictive variables could have a deleterious effect on the 

downscaling model performance. Despite the limitations caused by the size of the 

training sets, the weather classification scheme combined with dynamic time-step 

predictors was able to improve RMSE performance for atypical days under most 

conditions, leaving open the possibility that further improvements could be realized 

with a more extensive training period.  

A subjective approach was taken to variable selection in the study, optimization of 

variable choice could be key to improving the effectiveness of the regression when 

constraints on the total number of variables exist. 

1.4.2 Typical Days 

The objective in downscaling daily maximum and minimum temperature on typical days 

in this study was to determine if the inclusion of atypical days in the training period had 

the potential to reduce performance of the regression model. 

Increases in RMSE and biases were found when using only static time-step predictors 

and no weather classification scheme for downscaling of typical days, suggesting that 

presence of atypical days in the training period did have a noticeable influence on 
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performance. As would be expected, the influence appeared to be proportional to the 

frequency of occurrence of atypical days, with downscaling for maximum daily 

temperature exhibiting less of a degrading effect than for minimum daily temperature. 

RMSE performance improved and biases were reduced when a weather classification 

scheme and dynamic time-step predictors were used. However, if reanalysis 

temperature extrema were included as predictors, the static time-step predictors with 

no weather classification scheme outperformed the dynamic time-step predictors with a 

weather classification scheme. The improvements in performance seen with typical days 

from predictor selection and weather classification were overall smaller in magnitude 

than those seen with atypical days, as might be expected from the relative proportions 

of total days that were typical and atypical. 

For the typical days, the number of data points available for use in training the 

downscaling model was much larger than that seen for atypical days. The phenomenon 

seen with atypical days where performance decreased as additional variables were 

added was not replicated with typical days, providing additional evidence that the 

limited number of atypical days available for training was a key limiting factor for 

optimal performance of the methods that relied on them.  
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1.4.3 Non-Temperature Predictors 

For typical days, the inclusion of non-temperature predictors in the downscaling model 

played a relatively greater role, with the largest differences tending to be between the 

SV combinations and their ST/MT/ET counterparts. There were many potential physical 

explanations for statistical relationships existing between non-temperature predictors 

and station daily temperature extrema. For example, land cover or topography of 

surrounding areas could result in an advection related temperature dependence on 

wind direction and magnitude. These underlying physical relationships were not limited 

to wind; humidity levels and pressure could be linked with precipitation and cloud 

cover, both of which could have varying effects on the radiation balance of a specific 

location.  

The addition of upper air data as predictors did not have as much of an effect on RMSE 

performance as adding non-temperature surface data. One might expect this result 

given the spatial displacement of the upper air data from the predictand location.  

1.4.4 Limitations and Further Research 

Addressing Inhomogeneities in the Diurnal Temperature Cycle 

This research provides important evidence on the importance of accounting for the 

inhomogeneity of diurnal temperature cycles when downscaling daily temperature 

extrema. The simplest approach to account for the inhomogeneity issue is to ensure 

that the large-scale data used for predictors (whether it be reanalysis or climate model 

data) contains maximum and minimum temperature values from all calendar days being 
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downscaled. Weather classification has the potential to result in additional, though 

smaller, gains in performance. 

The downscaling model designed for the study did not necessarily address the 

inhomogeneity of diurnal temperature cycles in an optimal way; while the days in this 

study were split into the two discrete categories of atypical and typical days, a 

continuous spectrum may better describe the relative influences of advective and 

radiative forcings on the diurnal temperature cycle. Adjusting the downscaling model to 

account for this could offer increases in performance.  

The importance of the inhomogeneity issue is not limited to the present day. Research 

has been conducted that suggests the balance of days where advective or radiative 

forcings dominate the diurnal temperature cycle is changing as the climate changes 

(Žaknić-Ćatović and Gough 2022). Changes in the balance of days where advective or 

radiative forcings dominate could have potential consequences for downscaling of 

temperature extrema in future climates that would need to be accounted for. 

Regional Variation 

All of the stations examined in this study lie in the interior of the North American 

continent and exhibit strong continental climate influences. Though all stations were in 

the same time zone and thus share the same time period for daily temperature 

extrema, they experience different diurnal cycles based on latitudinal and longitudinal 

differences. Examining the effects of the spatial distribution of the stations is a potential 

area for further exploration and improvements in the downscaling model.  
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Variable Optimization 

Variable selection for use as predictors was one area of potential uncertainty within the 

results. A wide range of variable “cutoff” points were tested, but it was not feasible to 

examine all possible points. The selection of variable combinations chosen to be 

evaluated as predictors was another area where it was not feasible to test all possible 

variations, leading to the possibility of improvements in the model with different 

selections. 

Atypical Day Properties 

Though any potential consequences were outside the scope of this study, the atypical 

days of maximum temperature tended to be colder than normal, with a mean 

temperature value across all stations of roughly negative 0.6 standard deviations. The 

atypical days of minimum temperature were only slightly below normal, with a 

corresponding mean temperature value of about negative 0.1 standard deviations. 
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Chapter 2. Assessing the Stationarity Assumption with Respect to 

a Changing Climate for Statistical Downscaling of Daily 

Temperature Extrema in the Central United States 

 

Abstract 

 

The stationarity assumption, or the assumption that statistical relationships used in 

downscaling remain static under a changing climate, is a critical factor for determining 

the expected accuracy of statistical downscaling for future climates. The primary 

objective of the study was to test the stationarity assumption by evaluating regression-

based downscaling model performance as the temperature of the training periods used 

by the downscaling model varied. To accomplish this objective a combined weather 

classification and regression-based downscaling model was developed, using 

temperature as the weather classification. Results from the model indicated the 

potential for substantially reduced downscaling performance when the evaluation 

period used for the model was warmer than the training period, with the selection of 

variables for inclusion in the model playing a role in the degree to which the stationarity 

assumption was violated.  
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2.1 Introduction 

 

General Circulation Models (GCMs) are commonly used as a tool to predict future 

climate conditions. However, output from GCMs is at a very coarse scale and higher 

resolution is necessary for many applications (Takayabu et al. 2015). This need for 

higher resolution data has long been an issue when dealing with GCMs (Wigley et al. 

1990). One approach to dealing with this issue is downscaling; a process in which a 

higher resolution data set is generated from a lower resolution data set. Spatial 

downscaling is commonly practiced in climatology and has many uses. High resolution 

data can be required in fields such as crop modeling, ecological modeling, and 

hydrological modeling, as information dependent on very fine scale land cover and 

topographical features can have large influences on model output for these fields. 

Downscaling used in climatology falls into two broad categories: statistical downscaling 

and dynamical downscaling. Dynamical downscaling attempts to directly model the 

atmosphere at high resolutions. Dynamical downscaling is computationally expensive 

but has the advantage of relying on physical principles that are independent of climatic 

conditions. Statistical downscaling, on the other hand, relies on establishing statistical 

relationships between larger scale predictors and finer scale predictands. Statistical 

downscaling is computationally cheaper and is not limited to the variables used in a 

dynamically downscaled model. Statistical downscaling requires a lengthy period of data 
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to train the model and relies on the assumption that the relationships between 

predictor and predictand are stationary, an assumption that is not necessarily true and 

is the focus of this study. 

Statistical downscaling comes in many forms and includes techniques such as the 

stochastic weather generator, the analog method, and regression-based methods. A 

stochastic weather generator uses a simulated set of data designed to have the desired 

statistical properties for the specified location (Semenov and Barrow 1997). With the 

analog method model output is matched with the closest historical large scale weather 

conditions and the simultaneous local conditions at the time in question give the 

downscaled result (Zorita and von Storch 1999). Weather classification shares 

similarities with the analog method. With the weather classification method the 

examined period is partitioned into the specified weather types and a separate 

statistical downscaling technique (such as regression) is applied to establish the 

relationship between predictor and predictand under each weather classification 

(Cortesi 2014; Van Uytven et al. 2020).  The technique used for this study was multiple 

linear regression (MLR), which is a simple and computationally inexpensive method for 

downscaling. MLR is limited to linear predictor/predictand relationships, which is not 

necessarily the case for other techniques such as the artificial neural network (ANN) 

(Hernanz et al. 2022). One fundamental challenge with regression-based downscaling is 

that all local variances cannot be explained by large scale atmospheric features, 

meaning that the variance of the downscaled data set will not match the observation 

data set (Wilby et al. 2004).  
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Statistical downscaling generally relies on the stationarity assumption, that is that the 

relationships between the predictors and predictands will not change with a changing 

climate (Lanzante et al. 2018; Salvi et al. 2016; Wang et al. 2018). While attempts have 

been made to get around this assumption through non-static statistical relationships 

(Merkenschlager and Hertig 2019; Pichuka and Maity 2018; Sachindra and Perera 2016), 

the stationarity assumption is important when downscaling future climate models, and 

should be accounted for when attempting to evaluate the credibility of a particular 

method (Barsugli et al. 2013). One approach to testing this assumption is where climate 

model output is used as both predictor and predictand (Vrac et al. 2007). This is known 

as the “perfect model” approach (Dixon et al. 2016; Erlandsen et al. 2020). A second 

approach, used in this study, is to evaluate the stationarity of the statistical relationships 

purely in the historic period using a cross-validation approach. Splitting the studied 

period by yearly temperature is one way to test the stationarity assumption. In 

(Gutiérrez et al. 2013) normal test periods not dependent on temperature were 

compared to a warm set of years, to determine if validation for a historical warm period 

exhibited different downscaling performance than the standard periods. The study 

conducted for this project combined an expanded version of the approach from 

(Gutiérrez et al. 2013) with a weather classification by daily temperature approach to 

help evaluate the degree of stationarity of statistical relationships seen with multiple 

linear regression-based downscaling in the historical period as the temperatures of the 

training periods were varied.  
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2.2 Methodology 

 

The following section describes the methodology used for the study. Included is 

information about the data used for the study as well as a description of how the 

downscaling model developed for the study functioned. The downscaling model was 

designed to accomplish the objective of the study, which was to use a combined 

weather classification and regression-based approach to evaluate downscaling 

performance as the temperatures of the model training periods were varied. 

2.2.1 Data 

The NARR, or North American Regional Reanalysis dataset, was used to generate the 

predictor variables in this study (Mesinger et al. 2006). The NARR is a model that 

incorporates observational data to create a historical record of weather conditions that 

have prevailed across the continent since 1979. The resolution of the NARR model is 

roughly 32 km (~0.3o at the lowest latitude). It consists of meteorological data from 29 

different pressure levels in addition to several monolevel data sets. The non-mean NARR 

data has a temporal resolution of 3 hours. The meteorological variables obtained for this 

study from the NARR included instantaneous temperature, u wind, v wind and specific 

humidity at the surface, 850 hPa and 500 hPa levels (Table 2.1). Surface pressure was 

also obtained. The temporal span of the study was 1981 to 2010, for a total of 30 years. 

The predictands used were the maximum and minimum daily temperatures. These 

temperature values were acquired from 40 locations throughout the central United 
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States for the 1981 to 2010 period. Stations in the interior of the continent that had no 

missing data for the chosen time period were prioritized for selection. The selected 

stations are shown in Figure 2.1. 

 

 

 

 

 

 

 

 

 

Table 2.1 Variable Information.  

Variable Code Description Levels 

Ps Sea Level Pressure  Surface 
T Temperature 850 ,500 hPa 
U U Wind 850, 500 hPa 
V V Wind 850, 500 hPa 
H Specific Humidity 850 ,500 hPa 
Ts Surface Temperature Surface 
Us Surface U Wind Surface 
Vs Surface V Wind Surface 
Hs Surface Specific Humidity Surface 
Tn Min Daily 3-Hourly Surface Temperature Surface 
Tx Max Daily 3-hourly Surface Temperature Surface 

Figure 2.1 The 40 station 

locations in the Central United 

States selected for this study. 
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2.2.2 Evaluation Methods 

Root mean square error (RMSE) and bias were the two methods used for evaluating 

downscaling performance. The RMSE is the square root of the mean of squared 

predicted errors. Lower RMSE values are indicative of better performance, though RMSE 

is more affected by outliers than the mean average error (MAE). Bias determines 

whether a value is being over or underestimated by the model. The values compared for 

RMSE and bias evaluation were the minimum and maximum daily temperature values 

produced by the downscaling model and the observed minimum and maximum daily 

temperature values at the selected locations. 

2.2.3 Predictor Variable Combinations 

Various combinations of a selection of meteorological variables commonly used for 

statistical downscaling were examined in this study (Gutiérrez et al. 2013). The basic 

meteorological variables of surface pressure, temperature and wind were present in all 

combinations, with the inclusion of upper air data and specific humidity changing based 

on the specific combination. Predictor variable combinations are described in Table 2.2. 

Collectively, combinations with specific humidity predictors are referred to as the SH 

combinations, while combinations without specific humidity predictors are referred to 

as the NSH combinations. While the predictor combinations examined in this study were 

chosen in a subjective manner, other methods such as correlation analysis (Khan et al. 

2006) and stepwise regression (Gaitan et al. 2014) have been evaluated as potential 

options for predictor variable selection.   
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For downscaling of maximum daily temperature, the 21 UTC timestep was used and for 

downscaling of minimum daily temperature the 12 UTC timestep was used. For the 

stations selected in this study these were the times at which the NARR-estimated 

maximum and minimum temperature occurred at the highest frequency. Data values 

were instantaneous at these points. The data used for the daily maximum and minimum 

temperature predictor values were the highest and lowest values of the 3-hour 

instantaneous surface temperatures between 06 UTC on the day in question and 06 UTC 

the day after. All predictand locations were in the central time zone of the United 

States, and thus shared the same period for daily maximum and minimum temperature 

statistics. 

 

 

Table 2.2 Tested Combinations of Predictors. 

Combination Name Predictors 

CSxh Ps, Ts, Us, Vs, Hs, Tx 
CSnh  Ps, Ts, Us, Vs, Hs, Tn 
C8xh CS, T850, U850, V850, H850, Tx 
C8nh CS, T850, U850, V850, H850, Tn 
C5xh C8, T500, U500, V500, H500, Tx  
C5nh C8, T500, U500, V500, H500, Tn  
CSx Ps, Ts, Us, Vs, Tx 
CSn Ps, Ts, Us, Vs, Tn 
C8x CS, T850, U850, V850, Tx 
C8n CS, T850, U850, V850, Tn 
C5x C8, T500, U500, V500, Tx  
C5n C8, T500, U500, V500, Tn  
Tx Tx 
Tn Tn 
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2.2.4 Domains, PCA and Standardization 

NARR cells covering a domain of roughly 3o latitude in radius were linked with each 

predictand location, as testing with the individual training sets/periods indicated these 

domain sizes generally produced better results than larger domain sizes. Predictors used 

in the downscaling model were generated from Principal Component Analysis (PCA) 

conducted on these collections of cells (Preisendorfer and Mobley 1988). PCA is a 

technique that can be used to reduce the dimensionality of a data set while maximizing 

the retained variance. The dominance form of PC selection was used, with the total 

number of variables being capped based on the length of the training period. Multiple 

ratios of number of variables to training period were tested and the optimal result was 

used. The variable cap was not allowed to completely eliminate a variable from the 

model. PCA was conducted solely on data from the training periods, with validation data 

projected onto PCA axes generated from the training period. This was done to keep the 

validation and training periods completely independent. 

To prevent any dependence on seasonality, all variables were standardized by Julian day 

(Gutiérrez et al. 2013). A smoothing process was used to reduce noise in the 

standardized data, as the 24-year training period was insufficient to produce noise-free 

means and standard deviations by Julian day. Like the case with PCA, the 

standardization of data from the validation period was based solely on data from the 

training period to keep the training and validation periods independent. 
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2.2.5 Downscaling Methodology 

 The downscaling method used in this study was a combination of the multilinear 

regression (MLR) and weather classification approaches. The primary advantage of MLR 

is its simplicity, making it a popular method for comparison purposes to more complex 

methods. MLR’s performance relative to other downscaling methods has varied across 

the literature, with results being dependent on the implementation and region where 

the downscaling was conducted. Limitations of MLR include the inability to account for 

non-linear relationships between predictor and predictand, and the loss in variance due 

to the mismatch of scale. 

Two experiments were conducted using the combined MLR and weather classification 

approach. The first involved grouping years by their average temperature at each 

station. The 30-year study period was partitioned into five sets of six years each in this 

manner. The warmest of year sets was chosen to be the validation set, with the goal in 

mind being to test the effectiveness of using the years with cooler temperatures as 

training sets for predicting downscaled temperatures in the warmest period. Two types 

of training sets were used, with the first being the individual six-year sets and the 

second being various combinations of the six-year sets. For the weather classification by 

years experiment the sets of years for training and evaluation were referred to as “year 

sets”. Information about the training and evaluation year sets is described in Table 2.3. 
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The second experiment involved partitioning the study period by daily temperature 

rather than yearly temperature. Grouping by days rather than years added the potential 

for the downscaling model to predict temperature values on days where the 

temperature lay outside of the training conditions. To conduct this experiment each day 

was assigned to one of five bins based on the standardized temperature of the day. 

Independent of these temperature bins, the 30-year period was partitioned into five 

periods of six years each for cross-validation purposes. The k-fold cross-validation 

approach is a technique commonly used to avoid model overfitting (Gutiérrez et al. 

2013). Each validation period was downscaled using two types of training periods: 

individual or cumulative. The individual training periods consisted of all days within a 

specified temperature bin, while the cumulative periods consisted of a randomized 

selection of days spanning multiple temperature bins. The total number of days in the 

cumulative training periods were set to be identical to the total number of days in the 

warmest individual training period that was covered by the cumulative training period. 

Table 2.3 Weather Classification by Year, Training and Evaluation Year Sets.  

Individual Training Year Set Description 

4 4st coldest set of years 
3 3nd coldest set of years 
2 2rd coldest set of years 
1 1th coldest set of years 

Cumulative Training Year Set  

4 4th coldest set of years 
3 4th and 3rd coldest set of years 
2 4th, 3rd and 2nd coldest set of years 
1 4th, 3rd, 2nd, and 1st coldest set of years 

Evaluation Year Set  

5 5th coldest set of years  
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For the weather classification by days experiment, the training and evaluation periods 

were simply referred to as training and evaluation periods. Table 2.4 contains a 

description of the training and evaluation periods used for the weather classification by 

days experiment. 

 

 

Partitioning the training period by temperature in this manner resulted in small 

variations in the number of training days available for each validation period. To help 

account for potential effects of these variations, five additional randomized 

training/validation partitions were tested with the individual training periods. The 

results from these random partitions indicated only minor effects and are not shown in 

the study. 

Table 2.4 Weather Classification by Days, Training and Evaluation Periods.  

Individual Training 
Period 

Description 

5 5th coldest period of days 
4 4th coldest period of days 
3 3rd coldest period of days 
2 2nd coldest period of days 
1 1st coldest period of days 

Cumulative Training 
Period 

 

5 Random Selection from 5th coldest period of days 
4 Random Selection from 4th and 5th coldest period of days 
3 Random Selection from 5th, 4th and 3rd coldest period of days 
2 Random Selection from 5th, 4th, 3rd and 2nd coldest period of days 
1 Random Selection from 5th, 4th, 3rd, 2nd and 1st coldest period of days 

Evaluation Period  

5 5th coldest period of days  
4 4th coldest period of days 
3 3rd coldest period of days 
2 2nd coldest period of days 
1 1st coldest period of days 
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2.3 Results and Discussion 

 

Results for the study as well as discussion related to the results are detailed in the 

following section. RMSE and bias results for downscaling daily minimum and maximum 

temperatures with weather classification by year and weather classification by day are 

included. In line with the primary objective of the study, the focus of the results was on 

how downscaling performance was influenced by the temperature properties of the 

training periods. 

2.3.1 Weather Classification by Year, Minimum Temperature 

The results for downscaling of minimum temperature of the warmest year set are 

discussed in the following section.  

Bias results are shown in Figure 2.2. For the cumulative training periods (Fig. 2.2a, 2.2c), 

a stable trend of increasing bias with the addition of the colder year sets was observed. 

The individual training year sets (Fig. 2.2b, 2.2d) showed a similar but less uniform 

trend, with the 1st and 2nd year sets tending to show higher bias values than the 3rd and 

4th. This difference in bias tended to be slightly amplified for the NSH combinations ( Fig. 

2.2d). These results are consistent with the scenario where training with colder years 

produced higher bias values when evaluation was done with the warmest set of years.  
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Figure 2.2 Bias (oC) results for downscaling daily minimum temperature using weather 

classification by yearly temperature. Results for the SH combinations (a and b) are found on 

the top and the NSH combinations (c and d) on the bottom. The cumulative training sets (a 

and c) are located on the left and individual training sets on the right (b and d). Predictor 

combination information is given by the labels on the x-axes. For the individual sets, the 

number at the end of the combination refers to the year set that was used for training, with 

1 being the coldest. For the cumulative sets the number at the end of the combination refers 

to the coldest set that was included in the training period. The evaluation set used was the 

5th coldest (warmest) set of years and was not used for training. Red indicates results for the 

combinations with only surface data included, blue for the combinations with 850 hPA data 

included, and green for the combinations with 850 hPA and 500 hPA data included. Note that 

the plots with SH combinations also include the single variable combination, Tn, in yellow. 

Median values are given by the thin black lines and mean values by the thick purple lines. 
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The trends for RMSE for the individual training year sets were smaller in magnitude than 

those for bias (Figure 2.3). The addition of colder year sets to the training period 

continued to reduce mean RMSE values in the cumulative training year sets, though the 

degree of improvement slightly decreased as increasingly colder year sets were added 

(Fig. 2.3a, 2.3c). For the individual training year sets (Fig. 2.3b, 2.3d), there was a slight 

trend in increasing mean RMSE as the year sets got colder. The SH combinations tended 

to have lower RMSE values across the 40 stations (cf. Figs. 2.3a, 2.3b with Figs. 2.3c, 

2.3d).  
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  Figure 2.3 RMSE (oC) results for downscaling daily minimum temperature using weather 

classification by yearly temperature. Results for the SH combinations (a and b) are found on 

the top and the NSH combinations (c and d) on the bottom. The cumulative training sets (a 

and c) are located on the left and individual training sets on the right (b and d). All predictor 

combination and training set information is identical to that from Figure 2.2. Median values 

are given by the thin black lines and mean values by the thick purple lines. 
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Temperature Difference Effect on Bias and RMSE 

Scatter plots illustrating the relationship between the temperature difference of the 

evaluation and training year sets and bias and RMSE results are displayed in Figure 2.4. 

The sole predictor combination used for the predictors in Figure 2.4a and 2.4c was the 

C8nh combination and for Figure 2.4c and 2.4d the C8n combination. A clear, albeit 

relatively weak negative correlation was present for bias and RMSE regardless of the 

inclusion of specific humidity (Fig. 2.4). These results for bias were consistent with the 

trends seen in Figure 2.2; colder training year sets resulting in higher bias values.  

For RMSE, the correlation appeared to be driven by absolute temperature differences of 

greater than 2oC. Eliminating data points below the 2oC threshold resulted in an 

absolute RMSE correlation below 0.05.  
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Figure 2.4 Bias (oC) and RMSE (oC) results for downscaling daily minimum temperature using 

weather classification by yearly temperature. x-axis values represent the temperature 

difference between the evaluation set and training set of years used. Only the individual 

training sets were used. The C8nh predictor was used for (a) and (b), while the C8n predictor 

combination was used for (c) and (d). 
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2.3.2 Weather Classification by Year, Maximum Temperature 

Downscaling of daily maximum temperature using the weather classification by year 

method is examined in this section.  

With the cumulative training sets (Figs. 2.5a, 2.5c), there was a trend of increasing bias 

as colder year sets were included in the training periods, as was the case with minimum 

temperature. The magnitude of biases seen with downscaling of maximum temperature 

were increased compared to those seen with minimum temperature (cf. Figs. 2.5a, 2.5c 

with Figs. 2.2a, 2.2c). For the individual training year sets (Figs. 2.5b, 2.5d), a pattern like 

that seen with minimum temperature was observed, with the 1st and 2nd year sets 

having higher bias values than the 3rd and 4th.  

The trends for RMSE with maximum temperature were similar to those seen with 

minimum temperature (cf. Fig. 2.6 with Fig. 2.3). For the individual training year sets 

(Figs. 2.6b, 2.6d), the coldest two training year sets (1st and 2nd) had higher RMSE results 

than the 3rd and 4th.  As was the case with minimum temperature, RMSE results for the 

SH combinations tended to be slightly lower than results for the NSH combinations 

across the 40 stations (cf. Figs. 2.6b, 2.6d with Figs. 2.3b, 2.3d).  
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Figure 2.5 Bias (oC) results for downscaling daily maximum temperature using weather 

classification by yearly temperature. Results for the SH combinations (a and b) are found on 

the top and the NSH combinations (c and d) on the bottom. The cumulative training sets (a 

and c) are located on the left and individual training sets on the right (b and d). Predictor 

combination information is given by the labels on the x-axes. For the individual sets, the 

number at the end of the combination refers to the year set that was used for training, with 

1 being the coldest. For the cumulative sets the number at the end of the combination refers 

to the coldest set that was included in the training period. The 5th coldest (warmest) set of 

years was always the evaluation set and was not used for training. Red indicates results for 

the combinations with only surface data included, blue for the combinations with 850 hPA 

data included, and green for the combinations with 850 hPA and 500 hPA data included. 

Plots with SH combinations include the single variable combination, Tx, in yellow. Median 

values are given by the thin black lines and mean values by the thick purple lines. 
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Figure 2.6 RMSE (oC) results for downscaling daily maximum temperature using weather 

classification by yearly temperature. Results for the SH combinations (a and b) are found on 

the top and the NSH combinations (c and d) on the bottom. The cumulative training sets (a 

and c) are located on the left and individual training sets on the right (b and d). All predictor 

combination and training set information is identical to that from Figure 2.5. Median values 

are given by the thin black lines and mean values by the thick purple lines. 
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Temperature Difference Effect on Bias and RMSE 

Scatter plots depicting the relationship between the temperature difference of the 

evaluation and training sets of years and the bias and RMSE results for maximum daily 

temperature are shown in Figure 2.7. The predictor combinations used for the results 

seen in Figure 2.7 were the C8x (Fig. 2.7a, 2.7b) and C8xh (Fig. 2.7c, 2.7d) combinations. 

There were some small differences in the patterns seen for maximum temperature 

when compared to minimum temperature. The correlation coefficients were larger, and 

the magnitude of the slopes were higher for bias (cf. Figs. 2.7a, 2.7c with Figs. 2.4a, 

2.4c). For RMSE, the slopes were lower in magnitude for maximum temperature, 

meaning less improvement in RMSE values as the temperature difference between the 

training and evaluation year sets became smaller.  
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Figure 2.7 Bias (oC) and RMSE (oC) results for downscaling daily maximum temperature using 

weather classification by yearly temperature. x-axis values represent the temperature 

difference between the evaluation set and training set of years used. Only the individual 

training sets were used. The C8xh predictor was used for (a) and (b), while the C8x predictor 

combination was used for (c) and (d). 
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2.3.3 Weather Classification by Day, Minimum Temperature 

Results from the weather classification by day version of multiple linear regression are 

presented in this section. Except where otherwise indicated results are based off 

prediction of the warmest partition, referred to as the 5th period.  

For the cumulative training periods, bias values tended to increase as colder days were 

added (Fig. 2.8a, 2.8c). The magnitude of this trend was reduced for the NSH 

combinations (Fig. 2.8c). The individual training periods with the SH combinations (Fig. 

2.8b) showed a much more magnified trend of increasing bias as the training period 

became colder relative to the evaluation period. Without specific humidity (Fig. 2.8d), 

the bias results for the 1st (coldest) training period were sharply different than those 

seen in the corresponding results from Figure 2.8b. Analysis of the data indicated this 

was related to optimization of RMSE values based on the number of variables included 

in the downscaling model. A major shift in this variable cutoff with the 1st training period 

was seen, likely related to high absolute bias values inducing worse RMSE performance. 
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Figure 2.8 Bias (oC) results for downscaling daily minimum temperature using weather 

classification by daily temperature. Results for the SH combinations (a and b) are found on 

the top and the NSH combinations (c and d) on the bottom. The cumulative training periods 

(a and c) are located on the left and individual training periods on the right (b and d). 

Predictor combination information is identical to that from Figure 2.3. The number at the 

end of the predictor combination for the individual periods indicates the training period used 

for downscaling. This number varied from 1 to 5 with the weather classification by day 

method, representing the 1st to 5th coldest period of days. The 5th coldest (the warmest) 

period was used as the evaluation period. The number at the end of the cumulative predictor 

combinations indicates the coldest included period. Median values are given by the thin 

black lines and mean values by the thick purple lines. 
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Adding colder training periods beyond the 4th training period produced decreases in 

mean RMSE performance for the cumulative training periods both with and without 

specific humidity included in the predictor combinations (Fig. 2.9a, 2.9c). For the 

individual training periods, a dramatic increase in RMSE performance was seen as the 

training period became closer in value to the evaluation period (5th) with specific 

humidity included (Fig. 2.9b). This trend was less in magnitude for the NSH combinations 

(Fig. 2.9d). The 1st training period only showed slightly worse mean RMSE performance 

than the 2nd with the NSH combinations, in contrast with the large increase in RMSE for 

the 1st period with the SH combinations. This change in magnitude of the trend of RMSE 

values was sufficient to make the NSH combinations perform better than the SH 

combinations when using the coldest individual training periods. For the cumulative 

training periods and the warmer individual training periods, the SH combinations still 

produced better RMSE performance. 

The differences in downscaling performance seen when specific humidity predictors 

were excluded suggested that the statistical relationships based on specific humidity 

played a role in the reduction in downscaling performance as temperature differences 

between the training and evaluation periods increased. These differences in 

downscaling performance related to specific humidity predictors were present 

throughout the results for the weather classification by day method. 
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Figure 2.9 RMSE (oC) results for downscaling daily minimum temperature using weather 

classification by daily temperature. Results for the SH combinations (a and b) are found on 

the top and the NSH combinations (c and d) on the bottom. The cumulative training periods 

(a and c) are located on the left and individual training periods on the right (b and d). 

Predictor combination and training period information are identical to that described in 

Figure 2.8.  Median values are given by the thin black lines and mean values by the thick 

purple lines. 
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Temperature Difference Effect on Bias and RMSE 

Scatter plots showing the relationship between the standardized temperature 

difference of the evaluation and training periods and the bias and RMSE results are 

presented in Figure 2.10. As was the case with Figure 2.4 and Figure 2.7, the predictor 

combinations used were C8nh and C8n. The correlations seen with the SH combinations 

were stronger for the weather classification by day method than for the weather 

classification by year method. This was particularly true for RMSE (Fig. 2.10b), with an r 

value of -0.57, compared to the corresponding r value of -0.31 with the weather 

classification by year method. A much weaker correlation (-0.12) was seen for bias using 

the C8n with the weather classification by day method than for the weather 

classification by year method (-0.32). 
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Figure 2.10 Bias (oC) and RMSE (oC) results for downscaling daily minimum temperature using 

weather classification by daily temperature. x-axis values represent the temperature 

difference between the evaluation period and training period used. Only the individual 

training periods were used. The C8nh predictor was used for (a) and (b), while the C8n 

predictor combination was used for (c) and (d). 
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Varying both the Training and Evaluation Periods 

The matrix plots in Figure 2.11 show how the mean RMSE and bias values across the 40 

stations varied as both the training periods and evaluation periods were changed. While 

previous results were limited to the 5th period as the evaluation period, each of the 5 

periods were used for evaluation in these results. Bias values for the SH combinations 

tended to be close to 0o C along the diagonal, where the training period and evaluation 

period were in the same temperature bin (Fig. 2.11a). Larger differences in training and 

evaluation period numbers resulted in higher bias values, working in both directions. 

With the NSH combinations (Fig. 2.11c) the diagonal still had bias values of close to 0oC, 

but other patterns were less clear. The results in Figure 2.11c would be influenced by 

the variable cutoff phenomenon previously discussed with the bias results from Figure 

2.8. A strong trend toward increased mean RMSE performance closer to the diagonal is 

present in Figures 2.11b and 2.11d. Excluding specific humidity reduced the magnitude 

of this trend, along with relatively worse mean RMSE performance on the diagonal.  
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Figure 2.11 Mean Bias (oC) (a and c) and RMSE (oC) (b and d) results for downscaling daily 

minimum temperature using weather classification by daily temperature. x-axis values 

represent the training period used and y values represent the evaluation period used. Only 

the individual training period were used. The C8nh predictor was used for (a) and (b), while 

the C8n predictor combination was used for (c) and (d). 
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Weather Classification- Randomizing the Partitions 

One potential area of uncertainty with the weather classification method was the 

variation in size of training periods based on how the years were partitioned with the k-

fold cross-validation technique. To obtain a measure of the influence this variation 

might have on the results, an additional five random partitions of the 30-year-period 

were tested, with non-adjacent years used for validation. Only minor variation in bias 

was seen, whether using the individual training periods or cumulative training periods, 

and whether specific humidity was included in the predictor combinations or not. The 

same patterns were seen for mean RMSE values across the six partition versions. 

Changing the Domain Size 

The focus of this study was the 3o domain size radius, which overall performed the best 

for the Cs, C8x, and C5x combinations. The patterns seen with the two other larger 

tested domain sizes were very similar to those seen with the 3o domain size radius, 

though variable cutoff issues similar to those described with the results in Figure 2.8 

were present, and not just for the combinations without specific humidity.  
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2.3.4 Weather Classification by Day, Maximum Temperature 

Bias and RMSE results for the weather classification by day method are discussed in this 

section. Results here used the warmest partition for evaluation except where otherwise 

indicated. This warmest partition is again referred to as the 5th period.  

Substantial differences between the results for daily maximum and minimum 

temperature were present for bias values when the weather classification by day 

method was used. With SH combinations and cumulative training periods used, the 

pattern seen with daily minimum temperature where bias values tended to increase as 

colder days were added was not present for daily maximum temperature (Fig. 2.12a). 

However, with the NSH combinations, the trend where bias values increased as colder 

days were added was seen with the non-Tx variable combinations (Fig. 2.12c), though at 

a weaker magnitude than the results for daily minimum temperature (cf. Fig. 2.12c with 

Fig. 2.8c). For the SH combinations, the individual training periods showed increasingly 

negative bias values as the training periods became colder relative to the evaluation 

period (Fig. 2.12b), the opposite of what occurred with daily minimum temperature. For 

the NSH combinations this trend was confined to only the 1st training period (Fig. 2.12d).  

 

 

 

 



 

87 
  

 

 

 

 

 

 

Figure 2.12 Bias (oC) results for downscaling daily maximum temperature using weather 

classification by daily temperature. Results for the SH combinations (a and b) are found on 

the top and the NSH combinations (c and d) on the bottom. The cumulative training periods 

(a and c) are located on the left and individual training periods on the right (b and d). 

Predictor combination information is identical to that from Figure 2.8. The number at the 

end of the predictor combination for the individual periods indicates the training period used 

for downscaling. This number varied from 1 to 5 with the weather classification by day 

method, representing the 1st to 5th coldest period of days. The 5th coldest (the warmest) 

period was used as the evaluation period. The number at the end of the cumulative predictor 

combinations indicates the coldest included training period.  Median values are given by the 

thin black lines and mean values by the thick purple lines. 
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For daily maximum temperature additional periods beyond the 4th training period 

produced increases in mean RMSE values for the cumulative training periods (Fig. 2.13a, 

2.13c). For the individual training periods, large decreases in RMSE were seen as the 

training periods and evaluation periods became closer in temperature (Fig. 2.13b). The 

magnitude of this trend was reduced for the NSH combinations (Fig. 2.13d). These 

patterns were also found with daily minimum temperature (cf. Fig. 2.13 with Fig. 2.9). 

Continuing with this theme, the inclusion or exclusion of specific humidity in predictor 

combinations resulted in similar (to that seen with daily minimum temperature) relative 

RMSE performance for daily maximum temperature. RMSE values for daily maximum 

temperature were generally higher than those seen with minimum temperature. In 

addition, indications that RMSE performance improved with the addition of upper air 

variables were seen with daily maximum temperature with the SH combinations and 

cumulative training periods (Fig. 2.13a). 
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Figure 2.13 RMSE (oC) results for downscaling daily maximum temperature using weather 

classification by daily temperature. Results for the SH combinations (a and b) are found on 

the top and the NSH combinations (c and d) on the bottom. The cumulative training periods 

(a and c) are located on the left and individual training periods on the right (b and d). 

Predictor combination and training set information are identical to that described in Figure 

2.12.  Median values are given by the thin black lines and mean values by the thick purple 

lines. 
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Temperature Difference Effect on Bias and RMSE 

Bias and RMSE results versus standardized temperature difference of the evaluation and 

training periods of years are shown in Figure 2.14. The predictor combinations used 

were the C8x and C8xh. The correlation with bias for the weather classification by day 

method was stronger and reversed in sign compared to the weather classification by 

year method with the C8xh combination (Fig. 2.14a). For the C8x combination, the 

correlation was weaker, but still reversed in sign (Fig. 2.14b). These were also reversed 

in sign compared to those seen with daily minimum temperature, as would be expected 

from results described earlier (cf. Fig 2.12b, 2.12d with Figs. 2.8b, 2.8d). Given the large 

differences in correlation for bias seen between the C8x and C8xh combinations, the 

reversal in sign of correlation was likely caused in part by statistical relationships in the 

downscaling model based on specific humidity. 
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Figure 2.14 Bias (oC) and RMSE (oC) results for downscaling daily maximum temperature 

using weather classification by daily temperature. x-axis values represent the temperature 

difference between the evaluation period and training period used. Only the individual 

training periods were used. The C8xh predictor was used for (a) and (b), while the C8x 

predictor combination was used for (c) and (d). 
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Varying both the Training and Evaluation Periods 

Figure 2.15 illustrates the effects of varying both the training and evaluation periods on 

mean RMSE and bias values across the 40 stations for daily maximum temperature. All 

the 5 periods were used for evaluation in these results. With the SH combinations, much 

larger variations in bias values occurred compared to the NSH combinations (cf. Figs. 

2.15a, 2.15c). Unlike what was seen with daily minimum temperature, with the SH 

combinations warmer evaluation periods paired with the cooler training periods 

resulted in lower bias values (Fig. 2.15a). The trend seen with daily minimum 

temperature where RMSE increased closer to the diagonal is also present in the results 

for daily maximum temperature shown in Figure 2.15b and 2.15d. In contrast to what 

was seen with daily minimum temperature, the colder training periods paired with the 

colder evaluation periods tended to have better RMSE performance than the other 

combinations. 
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Figure 2.15 Mean Bias (oC) (a and c) and RMSE (oC) (b and d) results for downscaling daily 

maximum temperature using weather classification by daily temperature. x-axis values 

represent the training period used and y-axis values represent the evaluation period used. 

Only the individual training periods were used. The C8xh predictor was used for (a) and (b), 

while the C8x predictor combination was used for (c) and (d). 
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Weather Classification- Randomizing the Partitions 

An identical test of the six different randomized partitions used for daily minimum 

temperature was also conducted for maximum daily temperature. Only small variations 

in bias and RMSE were seen, as was the case with daily minimum temperature. 

Changing the Domain Size 

The 3o domain size radius was the overall best performer for daily maximum 

temperature using the Cs, C8x, and C5x combinations. The patterns seen with the two 

other larger tested domain sizes were very similar to those seen with the 3o domain size 

radius with daily maximum temperature, as was the case with daily minimum 

temperature. 

 

 

 

 

 

 

 

 



 

95 
  

2.4 Conclusions 

 

The primary objective of this study was to evaluate the stationarity in statistical 

relationships for a regression-based downscaling approach as the temperature of the 

training period changed. This was accomplished by evaluating the performance of a 

combined weather classification and regression-based downscaling model with 

temperature being used for the weather classification.  

2.4.1 Weather Classification by Year 

A distinguishing condition between the weather classification by year approach and the 

weather classification by day approach was that the temperature values in the 

evaluation set did not necessarily lie outside of the range seen in the training sets.  

Despite this limiting factor, for minimum daily temperature there were indications that 

as the individual and cumulative training year sets got comparatively colder to the 

evaluation year set, bias values grew. For the individual training sets RMSE values grew 

only slightly as the training year sets got colder. With respect to RMSE, for the 

cumulative training sets the additional value provided by a longer training period as the 

colder training sets were added outweighed any loss in value related to the colder sets 

not performing as well individually.  

Downscaling of maximum daily temperature saw the same patterns seen with minimum 

daily temperature, but at an increased magnitude. For downscaling of both minimum 

and maximum daily temperatures, mismatches between the temperature of the training 
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and evaluation year sets had only modest impacts compared those seen with the 

weather classification by day method. 

2.4.2 Weather Classification by Day 

One aspect of the weather classification by day approach was that model performance 

for temperature conditions that lay completely outside of the training period could be 

observed.  

For minimum daily temperature, large decreases in performance were seen when there 

was a large mismatch between the temperatures of the individual training periods and 

evaluation periods. In the most extreme cases, this decrease in performance was 

substantially reduced when specific humidity was removed as a predictor variable. A 

modest decrease in performance was seen for the cumulative training periods as data 

from the coldest training days was included, suggesting that limiting the temperature of 

days used for training to a relatively narrow window of values played a role in the 

reduction of performance for the individual training periods. The narrow window of 

temperatures used for training meant that large extrapolations were necessary. A trend 

of increasing bias values as the training period got colder was observed with both the 

cumulative and individual training sets. 

Many of the trends described for minimum daily temperature were also seen in varying 

degrees for maximum daily temperature. An exception was seen with results for bias, 

where an overall trend was less clear in the cumulative results, potentially related to 



 

97 
  

changes in variable selection pressure for optimal RMSE results as the training period 

was shifted to colder days. 

2.4.3 Assessing the Stationarity Assumption 

The results from this study indicate that the stationarity assumption was violated to 

various degrees depending on the formulation of the downscaling model. When the 

training period was limited to a portion of the historic period with temperatures far 

outside of the period used for evaluation, downscaling performance suffered greatly. 

This suffering of performance appeared in both bias and RMSE values. The choice of 

variables used influenced the magnitude of the problem, with specific humidity being a 

variable that was poorly suited for the large extrapolations necessary in these scenarios. 

The study results suggest the potential for substantial problems with bias and RMSE 

when using linear regression-based downscaling to predict conditions that are far 

outside those observed in the historical period. 

When the training period was expanded to include a wider range of temperatures 

though with equal number of days, a model focused on training with days closer in 

temperature to the evaluation period outperformed the wider range period, suggesting 

the potential for a combined downscaling model using weather classification based on 

temperature and regression to outperform a simple regression model. 
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2.4.4 Further Research 

Areas for potential improvement in the downscaling model include further variable 

optimization as well as expanding the number of stations and the length of the training 

periods used. 

Seasonality 

For this study seasonality in the data was removed through normalization. However, 

temperature-based statistical relationships are not necessarily guaranteed to be 

independent of any seasonality. Further research in this area may reveal additional 

information about how statistical relationships between predictors and predictands can 

vary. 

Specific Humidity and Non-linear Statistical Relationships 

The study showed specific humidity was an important variable for improving 

downscaling performance. The study also revealed that statistical relationships based on 

specific humidity were problematic in some situations where the temperature of the 

evaluation period was outside of the training period. A downscaling model not limited 

to linear relationships between predictors and predictands may offer improvements in 

the reliability of statistical relationships based on specific humidity for situations where 

conditions of the evaluation period are warmer than the training period. 
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Chapter 3. The Effects of Wind Direction on Regression-Based 

Downscaling of Daily Minimum Temperatures at Coastal and 

Inland Locations in the United States 

 

Abstract 

 

The effects of wind direction on statistical downscaling of daily minimum temperatures 

at coastal and inland locations in the United States were examined in this study. To 

accomplish this task a downscaling model was developed that combined weather 

classification with multiple linear regression. The downscaling model allowed for 

examination of the influence of the wind direction of model training periods on the 

statistical relationships seen between model predictors and predictands. The potential 

for improvement in downscaling performance through the use of weather classification 

based on wind direction was also evaluated. Results from the study indicated that the 

direction of wind used for training the model had the potential to greatly influence the 

regression-based statistical relationships calculated for the model, as evidenced by poor 

downscaling performance seen when the wind direction of the training and evaluation 

periods were opposite in direction. This pattern was present for both coastal and inland 

locations, though the effect was less in magnitude on the Pacific Coast. This difference 

between the Pacific Coast and the other tested locations was attributed to the relative 

lack of exposure to continental air masses seen on the Pacific Coast, under the 
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hypothesis that the influence of wind direction in the downscaling model was related to 

properties of the air masses associated with the wind directions. The implementation of 

weather classification based on wind direction was found to have the potential to 

improve downscaling performance under certain conditions, with reductions in RMSE 

and absolute bias values observed. Less variance in bias values was also seen in some 

instances with the use of weather classification based on wind direction. 
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3.1 Introduction 

 

Downscaling is the process through which lower resolution data is converted to higher 

resolution data. Downscaling is particularly relevant in the field of climate science, 

where the base resolution of general circulation models (GCMs) is not sufficient for 

many purposes (Tabari et al. 2021). Higher resolution data may be required for tasks 

such as hydrological modeling, crop yield modeling, ecological modeling, or point 

weather forecasting (Cammarano et al. 2017; Flint and Flint 2012).  

The two most prominent types of downscaling in use today are dynamical downscaling 

and statistical downscaling (Jang and Kavvas 2015). Dynamical downscaling relies on 

running a climate model at higher resolution, typically over a smaller subregion, with 

boundary conditions given by a GCM. The primary advantage of dynamical downscaling 

is that it attempts to adhere to physical principles that are independent of climatic 

conditions. Statistical downscaling relies on establishing statistical relationships 

between predictor variables and predictand variables. Statistical downscaling is much 

less computationally expensive than dynamical downscaling, and downscaled output is 

not limited to variables in a climate model. However, Statistical downscaling can require 

a lengthy calibration period, and statistically downscaled results are not necessarily 

bound by the physical principles that govern dynamically downscaled data.  

Commonly used techniques in statistical downscaling include the stochastic weather 

generator (Dabhi et al. 2021; Kim et al. 2020; Vesely et al. 2019), the analog method 
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(Bettolli 2021; Cortesi 2014; Timbal and McAvaney 2001), weather classification 

methods (Camus et al. 2016; Lin et al. 2017), and regression-based methods (Gutiérrez 

et al. 2013). The stochastic weather generator involves generating a data set with the 

desired statistical properties. The analog method shares similarities with weather 

classification; with the analog method local conditions are linked with concurrent large 

scale weather patterns. Weather classification involves a two-part process where the 

examined period is first split into different weather regimes. For the second step, a 

downscaling method is selected and used to downscale using the different weather 

regimes for training. For this study, a combined weather classification and multiple 

linear regression (MLR) approach was used. MLR has the advantage of being simple and 

computationally inexpensive, with the downside of potential poor representation of 

non-linear statistical relationships. More complex techniques like the artificial neural 

network (ANN) have the potential to better account for non-linearities in these 

relationships (Hernanz et al. 2021). 

 A key challenge for regression-based downscaling is that all local variances cannot be 

explained by lower resolution atmospheric data, resulting in a mismatch of variance for 

the observed and downscaled data set (Wilby et al. 2004). Variance inflation and 

randomization are two techniques that offer solutions to this problem (Huth 2002). 

Variance inflation involves scaling the variance of the downscaled data upward to match 

the desired level, while randomization involves adding random noise to the data with 

the desired statistical properties.  
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Statistical downscaling relies on the stationarity assumption, that is that the statistical 

relationships between predictors and predictands are unchanging (Lanzante et al. 2018; 

Pichuka and Maity 2018; Pichuka et al. 2022). The stationarity assumption is important 

when assessing the reliability of downscaling for future climates, due to potential 

alterations in statistical relationships as climate changes. The assumption of stationarity 

of statistical relationships can play a role in downscaling for current climates as well, as 

any failure of the stationarity assumption can result in degraded downscaling 

performance.   

Wind direction is an important meteorological variable that can be indicative of the 

relative level of influence exerted by maritime or continental air masses on observed 

local temperatures for both coastal and inland locations. The objective of this study was 

to examine the potential for wind direction to influence statistical relationships between 

predictors and predictands in a downscaling model with a combined regression and 

weather classification approach. This was examined by evaluating downscaling 

performance based on the weather classifications of the training and evaluation periods 

used. Two types of locations were examined for the study: coastal locations and inland 

locations. The effects of wind direction relative to the axis of the coast were evaluated 

for the coastal locations, while the effects of cardinal wind direction were examined for 

the inland locations. 
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3.2 Methodology 

 

The methodology is described in the following section. Included is information about the 

data used for the study, as well as how the downscaling model developed for the study 

functioned. The downscaling model was designed to accomplish the primary objectives 

of the study, which were to evaluate potential effects of wind direction on statistical 

relationships between predictors and predictands in the downscaling model and to 

determine whether a weather classification scheme based on wind direction could be 

used to improve downscaling performance. 

3.2.1 Data 

The North American Regional Reanalysis (NARR) data set was used to generate the 

predictor variables in this study (Mesinger et al. 2006). The NARR uses a hybrid 

approach that incorporates observational data with modelling to create a historical 

record of weather conditions across the North American continent. The NARR data are 

generated at 32 km in resolution, which is roughly equivalent to 0.3o for the lowest 

latitudes. Table 3.1 describes the meteorological variables obtained from the NARR for 

this study, including instantaneous temperature, u wind, v wind and specific humidity at 

the 850 hPa and 500 hPa levels. Values for these variables at the surface were also 

obtained, along with surface pressure. The period of time examined for the study was 

from 1981 to 2020, for a total of 40 years. 
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The predictands used for the study were minimum daily temperatures. The stations 

chosen for predictands were divided among coastal and inland locations. The total 

number of stations examined was 36, with 12 inland locations and 24 coastal locations. 

The coastal locations were divided between the Pacific Coast, the Gulf Coast, the 

Atlantic Coast, and the Great Lakes, while the inland locations were in the center of the 

continent. Figure 3.1 depicts the selected locations.  

Table 3.1 Variable Information.  

Variable Code Description Levels 

Ps Sea Level Pressure  Surface 
T Temperature 850 ,500 hPa 
U U Wind 850, 500 hPa 
V V Wind 850, 500 hPa 
H Specific Humidity 850 ,500 hPa 
Ts Surface Temperature Surface 
Us Surface U Wind Surface 
Vs Surface V Wind Surface 
Hs Surface Specific Humidity Surface 
Tn Min Daily 3-Hourly Surface Temperature Surface 
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3.2.2 Predictor Variable Combinations 

The variables used for this study have been commonly used in temperature downscaling 

studies (Gutiérrez et al. 2013). Several different combinations of predictor variables 

were tested for the study; explanations for the variable combinations examined are 

described in Table 3.2. Though several different combinations of predictor variables 

were tested for the study, the primary focus of the results was on the C8 combination, 

which proved to have similar performance to the C5 combination and better 

performance than the CS combination. Also examined in the results was the simplest 

combination, which included the reanalysis minimum temperature as the sole  

Figure 3.1 Station locations for the 24 coastal locations (blue) and 12 inland locations 

(green). 

 



 

107 
  

meteorological variable. While for this study the predictor combinations were chosen 

with a subjective approach, other techniques such as correlation analysis (Khan et al. 

2006) and stepwise regression (Gaitan et al. 2014) have been used for predictor 

selection. 

 

The stations used for the study were distributed across three different time zones on 

the North American continent. For each time zone, an estimate of the most frequent 

time for minimum daily temperature was used as the time step for instantaneous 

predictor variables. It is important to note that these predictor variables were not 

necessarily temperature related, but the time at which they were measured was. For 

the Eastern Time Zone (ETZ) the 9 UTC timestep was used, and for the Pacific Time Zone 

(PTZ) and the Central Time Zone (CTZ) the 12 UTC timestep was used. For locations near 

the edge of the ETZ and the CTZ, the minimum temperature occurred in similar amounts 

at 9 and 12 UTC, and for simplicity’s sake stations close to that edge were simply 

grouped with their zone. 

The actual estimated daily minimum temperature predictor values were based on the 

minimum values of surface temperature seen within the calendar day defined by the 

Table 3.2 Tested Combinations of Predictors. 

Combination Name Predictors 

CS Ps, Ts, Us, Vs, Hs, Tn 
C8 CS, T850, U850, V850, H850, Tn 
C5 C8, T500, U500, V500, H500, Tn  
Tn Tn 
CSnw Ps, Ts, Hs, Tn 
C8nw CSnw, T850, H850, Tn 
C5nw C8nw, T500, H500, Tn 
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time zone the relevant station as located in. Temporal interpolation was used when the 

boundaries of the calendar day did not match with the 3-hour temporal resolution of 

the NARR. These temperatures are referred to in this study as the reanalysis minimum 

temperatures. 

3.2.3 Evaluation Methods 

To evaluate model performance, the root mean square error (RMSE) and bias metrics 

were used. Lower RMSE values indicate better performance. RMSE performance is more 

affected by outliers than the mean absolute error (MAE). Bias determines whether the 

model is either overestimating or underestimating temperatures in its predictions.  

3.2.4 PCA and Standardization 

Principal Component Analysis (PCA) was performed on the predictor variables as a 

means to reduce the dimensions of the data (Preisendorfer and Mobley 1988). The 

dominance method of PC selection was used to determine which PCs were kept, and a 

wide variety of variance thresholds were tested to determine an optimal cutoff point. If 

the cutoff point resulted in a predictor variable being completely eliminated from the 

model the results were discarded. PCA was evaluated on the data from the training 

period, and data from the evaluation period was projected onto those axes generated 

from the training period. This was done to maintain the independence of the PC results 

in the evaluation period from the training period. 

All variables were standardized by Julian Day (JD) to mitigate potential effects of 

seasonality (Gutiérrez et al. 2013). To reduce noise in the data a smoothing process was 
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used. The smoothing process involved calculating means and standard deviations for a 

collection of data temporally adjacent to each JD in question. 

3.2.5 Downscaling Methodology 

The primary downscaling method used for this study was a combination of the weather 

classification and multiple linear regression (MLR) methods. The main advantage 

provided by the MLR method is its simplicity and computational inexpensiveness, 

making it particularly useful for comparison purposes to other downscaling methods. 

MLR does come with drawbacks in that it cannot account for non-linear relationships 

between predictors and predictands and is unable on its own to provide variance that is 

lost from the mismatch in scale. 

A k-fold cross-validation technique similar to that described in (Gutiérrez et al. 2013) 

was used to evaluate performance in the study. The time period in question (1981-2020) 

was split into five different periods of eight years. Each set of eight years was then used 

as an evaluation period, with the other four periods serving as training periods. 

Evaluating model performance in this manner served to address problems related to 

model overfitting. 

3.2.6 Weather Classification 

The weather classifications used for partitioning the training period in the study were 

solely based off the NARR-estimated wind direction generated from the mean u and v 

components over the 6 hours preceding the NARR-estimated daily minimum 

temperature at each of the station locations. Temporal interpolation was necessary 
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when the estimated minimum temperature did not occur at the 3-hour standard NARR 

timestep. Each day was assigned to the closest of four directions. For the coastal 

locations the four directions were based on the wind direction relative to the axis of the 

coast (perpendicular over water, perpendicular over land, or parallel), while for the 

inland stations the wind directions were based on the four cardinal directions. The 

downscaling model was run using training periods based on all four directions. For 

comparison purposes, additional training periods containing either all available days or 

random selections of days with size equivalent to each of the directional training periods 

were also tested. For the random selections, six different sets of randomly selected days 

for every needed directional equivalent size were all evaluated, and the results were 

then pooled. Table 3.3 contains an overview of the training and evaluation periods used 

in the study. 
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Breakdowns of model performance were generated based on wind speed, and wind 

direction. The methodology described in this portion of the study allowed for 

comparisons of downscaling performance at inland and coastal locations under different 

wind direction training conditions as well as different evaluation conditions. In addition, 

potential effects of the domains used for predictor generation under the same training 

and evaluation conditions could also be examined. 

 

Table 3.3 Training and evaluation period descriptions. Wind direction, where applicable, 

designates the direction source of the wind. 

Training Period Wind Direction 

TW Water 

TL Land 

TS1 Parallel to coast 

TS2 Parallel to coast, reverse of TS1 

TN North 

TS South 

TWe West 

TE East 

TR Random selection of days with equivalent 
length to the indicated direction (for example 
TRE would be a random set of days with equal 
size of the TE training period 

TA All days 

Evaluation Period Wind Direction 

VW Water 

VL Land 

VS1 Parallel to coast 

VS2 Parallel to coast, reverse of TS1 

VN North 

VS South 

VWe West 

VE East 
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3.2.7 Domains 

Five different domains were tested with every configuration. Each of these domains 

defined which NARR cells were used for generation of the predictors. The domains were 

based off distance from a predetermined point that marked the center of the domain. 

The domains at the coastal stations and inland stations were defined in a similar way to 

how their wind directions were defined. Domains for the coastal stations were 

dependent on their positions relative to the axis of the coast, while for the inland 

stations the domain positions were based on the four cardinal directions. For each of 

the coastal stations, a water domain (DW) was created with a center point roughly 140 

kilometers from the station location, in a direction perpendicular to the coast. A land 

domain (DL) was then created with a center point at the same distance 180o in direction 

from the water domain’s center point. Two additional domains were then defined at the 

90o directions with center points roughly parallel to the coast (DS1 and DS2). The final 

domain was centered on the station itself (DC). For the inland stations, the domain 

centers were set at locations roughly 140 kilometers from each station along the four 

cardinal directions (DN, DS, DW, and DE). A domain centered on the station was also used 

with each of the inland stations (DC).  

NARR cells within roughly 195 kilometers of the domain center, using the great circle 

distance, were included with the domain. Figure 2.2 illustrates an example of the 

relative positions of the domains to the stations as well as their NARR cell compositions. 
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Figure 3.2 NARR cells covering the DW (a), DL (b), DS1 (c), and DS2 (d) domains for the Santa 

Maria Public Airport station in California. The blue dots are water cells in the NARR land/sea 

mask while the green dots are land cells. The black dots are all NARR cell locations within 

roughly 335 km of the station location. 
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3.3 Results and Discussion 

 

The focus for the results of the study was on the potential role wind direction played in 

the statistical relationships between predictors and predictands, and whether weather 

classification based on wind direction could be useful for mitigating any problems 

arising from changes in the statistical relationships.   

The following section contains downscaling performance results as well as discussion of 

these results. Included are box plots detailing RMSE and bias performance at the 24 

coastal locations and 12 inland locations under various training period and evaluation 

period conditions. Unless otherwise indicated in this section, the domain used for 

predictor generation in the downscaling model was centered on the station location, 

and the C8 combination defined the selection of variables used for predictor generation.  

3.3.1 Coastal Locations 

Results for downscaling performance of daily minimum temperature at the coastal 

locations are discussed in this section. Unless otherwise indicated in this section, all 24 

coastal locations were included in the results. The different training periods used for the 

results in this section consisted of the TA, TR, TW, TL, TS1, and TS2 periods. The TA training 

period included every day that could potentially be used for training the downscaling 

model, while the TR training periods consisted of a random selection of days with size 

equivalent to one of the weather classification training periods. The four weather 

classification training periods (TW, TL, TS1, and TS2) were made up of the days where the 
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mean wind direction came from the specified direction. The standard evaluation periods 

used for the results covered the same days that the four weather classification training 

periods covered (VW, VL, VS1, and VS2). Additional evaluation periods included further 

limiting the days used for evaluation based on mean wind speed.  

Standard Evaluation Conditions  

RMSE results for the standard training and evaluation periods are shown in Figure 3.3. 

Mean RMSE performance was easily the best when the training period was matched to 

the evaluation period (TW, TL, TS1, TS2 in Fig. 3.3a, 3.3b, 3.3c, 3.3d respectively). Mean 

RMSE values were highest when the wind directions of the training and evaluation 

periods were opposite in direction (TL, TW, TS2, TS1 in Fig. 3.3a, 3.3b, 3.3c, 3.3d 

respectively); RMSE performance was exceptionally poor when the training was done 

with TW and the evaluation with VL. Matched training/evaluation periods outperformed 

the TR training periods for every wind direction with respect to mean RMSE and were 

close in mean RMSE values to the TA training periods. 
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Figure 3.3 RMSE results using the C8 predictor combination for the 24 coastal locations with 

various training periods. Results are shown for the VW evaluation period (a), VL evaluation 

period (b), VS1 evaluation period (c), and VS2 evaluation period (d). The training periods are 

described on the x-axes. The TA and TR training periods are shown in black and red, 

respectively. The TW, TL, TS1, and TS2 are shown in blue, green, purple, and orange, 

respectively. Median values are given by the thin black lines and mean values by the thick 

purple lines. 
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Bias results for the standard evaluation and training periods are illustrated in Figure 3.4. 

Many patterns seen with bias in Figure 3.4 were like those seen with RMSE in Figure 3.3. 

Unmatched training/evaluation periods exhibited negative mean bias values that were 

higher in absolute magnitude than the matched periods. When the wind direction of the 

training period was opposite in direction from that of the evaluation period, the 

absolute magnitude of the mean bias was highest. Mean bias values for all matched 

training/evaluation periods were very close to 0 oC, which was not the case with the TR 

and TA training periods. The variance of bias values seen with the matched 

training/evaluation periods across the 24 stations was also smaller than that seen with 

the TR and TA training periods. 

These results for RMSE and bias indicated that the statistical relationships between 

predictors and predictands were strongly dependent on the wind direction of the 

training period. 
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Figure 3.4 Bias results using the C8 predictor combination for the 24 coastal locations with 

various training periods. Results are shown for the VW evaluation period (a), VL evaluation 

period (b), VS1 evaluation period (c), and VS2 evaluation period (d). The training periods are 

described on the x-axes. The TA and TR training periods are shown in black and red, 

respectively. The TW, TL, TS1, and TS2 training periods are shown in blue, green, purple, and 

orange, respectively. Median values are given by the thin black lines and mean values by the 

thick purple lines. 
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Wind Speed Threshold 

The evaluation periods for the results described in this section have been limited to days 

where the mean wind speed was greater than 4 m/s. RMSE results with the wind speed 

threshold are described in Figure 3.5. The mean RMSE values of the matched 

training/evaluation periods were lower relative to the mean RMSE values for the TR and 

TA training periods when the wind speed threshold was included, while the opposite was 

the case with the unmatched training/evaluation periods (c.f. Fig. 3.5 with Fig. 3.3). 

Bias results with the 4 m/s wind speed threshold are shown in Figure 3.6. For the 

unmatched training/evaluation periods, bias values were of larger absolute magnitude 

with the wind speed threshold (c.f. Fig. 3.6 with Fig. 3.4). For the VW and VL evaluation 

periods, the matched training/evaluation periods produced bias values of a smaller 

absolute magnitude than seen with the TR and TA training periods (Fig. 3.6a, 3.6b).  
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Figure 3.5 RMSE results using the C8 predictor combination for the 24 coastal locations with 

various training periods. Results for this figure are limited to days where the mean wind 

speed for the relevant time was greater than 4 m/s. The wind speed threshold limited the 

number of days available for evaluation. Results are shown for the VW evaluation period (a), 

VL evaluation period (b), VS1 evaluation period (c), and VS2 evaluation period (d). The training 

periods are described on the x-axes. The TA and TR training periods are shown in black and 

red, respectively, while the TW, TL, TS1, and TS2 training periods are shown in blue, green, 

purple, and orange, respectively. Median values are given by the thin black lines and mean 

values by the thick purple lines. 
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Figure 3.6 Bias results using the C8 predictor combination for the 24 coastal locations with 

various training periods. Results for this figure are limited to days where the mean wind 

speed for the relevant time was greater than 4 m/s. The wind speed threshold limited the 

number of days available for evaluation. Results are shown for the VW evaluation period (a), 

VL evaluation period (b), VS1 evaluation period (c), and VS2 evaluation period (d). The training 

periods are described on the x-axes. The TA and TR training periods are shown in black and 

red, respectively, while the TW, TL, TS1, and TS2 training periods are shown in blue, green, 

purple, and orange, respectively. Median values are given by the thin black lines and mean 

values by the thick purple lines. 
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Tn Predictor Combination 

RMSE results with the Tn predictor combination (and no wind speed threshold) are 

shown in Figure 3.7. The sole variable used for predictor generation was the reanalysis 

minimum temperature with the Tn combination. Mean RMSE values were less 

dependent on the wind direction of the training period when the Tn combination was 

used, with the difference in mean RMSE values between matched training/evaluation 

wind directions and opposite training/evaluation wind directions being less than that 

seen with the C8 combination (c.f. Fig. 3.7 with Fig. 3.3). Mean RMSE performance with 

the Tn combination was generally worse than that seen with the C8 combination, 

though there were some exceptions (c.f. Fig. 3.7 with Fig. 3.3). The gap was smallest and 

even negative in some instances when the wind direction of the training period was 

opposite that of the evaluation period. The most extreme example of this occurrence 

was when the training was done with TW and the evaluation with VL (c.f. Fig. 3.7b with 

Fig. 3.3b). This meant that information included in the C8 combination that was not the 

reanalysis minimum temperature was reducing the model’s RMSE performance in these 

situations. Further investigation revealed that removing the wind variables from the C8 

combination had the effect of lessening the loss in performance seen when the 

direction of the training wind was opposite that of the evaluation wind (not shown). 
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Figure 3.7 RMSE results using the Tn predictor combination for the 24 coastal locations with 

various training periods. Results are shown for the VW evaluation period (a), VL evaluation 

period (b), VS1 evaluation period (c), and VS2 evaluation period (d). The training periods are 

described on the x-axes. The TA and TR training periods are shown in black and red, 

respectively. The TW, TL, TS1, and TS2 training periods are shown in blue, green, purple, and 

orange, respectively. Median values are given by the thin black lines and mean values by the 

thick purple lines. 
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Differences Between Coasts 

RMSE results with the C8 combination for only those stations on the Pacific Coast are 

shown in Figure 3.8.  RMSE values for the stations on the Pacific Coast tended to be less 

influenced by differences in the direction of wind for the training period and evaluation 

period compared to the other coastal locations (c.f. Fig. 3.8 with Fig. 3.3). One potential 

explanation for this smaller influence of wind direction was the lesser exposure to 

continental air masses on the Pacific Coast. If the air masses affecting the region were 

more uniform regardless of wind direction, the potential effects of wind direction could 

be reduced.     

Domain Selection 

The effects of changing the domain used for predictor generation are illustrated in 

Figure 3.9. Only matched training/evaluation wind directions were used for the weather 

classification training periods in Figure 3.9. Changing the domain used for predictor 

generation did not have much effect on RMSE performance, though slightly worse 

performance was seen with the water domain in all circumstances (WD). Lower quality 

of data over water and lesser variability in meteorological data over water could 

potentially be explanations for the water domain’s worse performance. For the inland 

locations, the results for changing the domain of predictors were small and are not 

detailed in a separate section. 
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Figure 3.8 RMSE results using the C8 predictor combination for only the 7 locations on the 

Pacific Coast with various training periods. Results are shown for the VW evaluation period 

(a), VL evaluation period (b), VS1 evaluation period (c), and VS2 evaluation period (d). The 

training periods are described on the x-axes. The TA and TR training periods are shown in 

black and red, respectively. The TW, TL, TS1, and TS2 are shown in blue, green, purple, and 

orange, respectively. Median values are given by the thin black lines and mean values by the 

thick purple lines. 
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Figure 3.9 RMSE results using the C8 predictor at all 24 coastal locations using various 

predictor domain and training period combinations. Results are shown for the VW evaluation 

period (a), VL evaluation period (b), VS1 evaluation period (c), and VS2 evaluation period (d). 

The domain and training period combinations are described on the x-axes, with the domain 

coming first. The TA and TR training periods are shown in black and red, respectively. The TW, 

TL, TS1, and TS2 are shown in blue, green, purple, and orange, respectively. Median values are 

given by the thin black lines and mean values by the thick purple lines. 
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3.3.2 Inland Locations 

Results for downscaling performance of daily minimum temperature at the inland 

locations are discussed in this section. All 12 inland locations were included in the 

results. The different training periods used for the results in this section consisted of the 

TA, TR, TN, TS, TWe, and TE periods. The TA training periods consisted of all days available 

for training in the downscaling model, while the TR training periods were made up of a 

random selection of days with size equivalent to one of the weather classification 

training periods. The four weather classification training periods (TN, TS, TWe, and TE) 

consisted of the days where the mean wind direction came from the specified direction. 

The standard evaluation periods used for the results covered the same days that the 

four weather classification training periods covered (VN, VS, VWe, and VE). As was the 

case with the coastal locations, additional evaluation periods were examined where the 

days were further limited based on wind speed. 

Standard Evaluation Conditions  

RMSE results for the standard training and evaluation periods are shown in Figure 3.10. 

Some of the same patterns seen with the coastal locations were present with the inland 

locations. Opposite training/evaluation periods (TS, TN, TE, TWe in Fig. 3.10a, 3.10b, 3.10c, 

3.10d respectively) again performed much worse with respect to mean RMSE than their 

matched counterparts’ periods (TN, TS, TWe, TE in Fig. 3.10a, 3.10b, 3.10c, 3.10d 

respectively). Matched training/evaluation periods performed better with respect to 

mean RMSE than the TR training periods and were close in mean RMSE values to the TA 
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training periods, as was the case with the coastal locations. Intriguingly, with respect to 

mean RMSE values, the TN training period performed better with the VWe evaluation 

period than the TE and TS training periods did (c.f. TN with TE, TS in Fig. 3.10c). The 

reverse was also the case (c.f. TWe with TE, TS in Fig. 3.10a). A similar but weaker pattern 

was seen with the TE and TS training periods. Given that the western and northern wind 

directions for the inland locations are more associated with continental air masses, 

while the southern and eastern wind directions are less so, these results are consistent 

with the hypothesis that the type of air mass associated with the wind direction was a 

factor in the predictor/predictand statistical relationships established by the 

downscaling model.  

Bias results for the standard training and evaluation periods are depicted in Figure 3.11. 

As was the case with coastal locations, the matched training/evaluation periods 

exhibited very small absolute mean bias values as well as the smallest variance in bias 

values.  
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Figure 3.10 RMSE results using the C8 predictor combination for the 12 inland location with 

various training periods. Results are shown for the VN evaluation period (a), VS evaluation 

period (b), VWe evaluation period (c), and VE evaluation period (d). The training periods are 

described on the x-axes. The TA and TR training periods are shown in black and red, 

respectively. The TN, TS, TWe, and TE are shown in blue, green, purple, and orange, 

respectively. Median values are given by the thin black lines and mean values by the thick 

purple lines. 
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Figure 3.11 Bias results using the C8 predictor combination for the 12 inland location with 

various training periods. Results are shown for the VN evaluation period (a), VS evaluation 

period (b), VWe evaluation period (c), and VE evaluation period (d). The training periods are 

described on the x-axes. The TA and TR training periods are shown in black and red, 

respectively. The TN, TS, TWe, and TE are shown in blue, green, purple, and orange, 

respectively. Median values are given by the thin black lines and mean values by the thick 

purple lines. 
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Wind Speed Threshold 

RMSE and bias results when the 4 m/s wind speed threshold was used are shown in 

Figures 3.12 and 3.13. Some of the patterns seen with RMSE without the wind speed 

threshold were amplified with the wind speed threshold, particularly the relative 

performances of the opposite and matched training/evaluation periods (c.f. Fig. 3.12 

with Fig. 3.10). Bias results with the 4 m/s wind speed threshold were less clear, though 

the matched training/evaluation period did perform superior to the other tested 

training periods for the VS and VE evaluation periods.   
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Figure 3.12 RMSE results using the C8 predictor combination for the 12 inland location with 

various training periods. Results for this figure are limited to days where the mean wind 

speed for the relevant time was greater than 4 m/s. The wind speed threshold limited the 

number of days available for evaluation. Results are shown for the VN evaluation period (a), 

VS evaluation period (b), VWe evaluation period (c), and VE evaluation period (d). The training 

periods are described on the x-axes. The TA and TR training periods are shown in black and 

red, respectively. The TN, TS, TWe, and TE are shown in blue, green, purple, and orange, 

respectively. Median values are given by the thin black lines and mean values by the thick 

purple lines. 
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Figure 3.13 Bias results using the C8 predictor combination for the 12 inland location with 

various training periods. Results for this figure are limited to days where the mean wind 

speed for the relevant time was greater than 4 m/s. The wind speed threshold limited the 

number of days available for evaluation. Results are shown for the VN evaluation period (a), 

VS evaluation period (b), VWe evaluation period (c), and VE evaluation period (d). The training 

periods are described on the x-axes. The TA and TR training periods are shown in black and 

red, respectively. The TN, TS, TWe, and TE are shown in blue, green, purple, and orange, 

respectively. Median values are given by the thin black lines and mean values by the thick 

purple lines. 
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Tn Predictor Combination 

RMSE results with the Tn predictor combination are illustrated in Figure 3.14. As was the 

case with coastal locations, mean RMSE values for opposite training/evaluation periods 

were closer to the matched training/evaluation periods than was seen with the C8 

combination (c.f. Fig. 3.14 with Fig. 3.10). However, the largest difference in mean RMSE 

performance for opposite versus matched training/validation periods (TN and TS in Fig. 

3.14b) was larger than any seen with the coastal locations (c.f. Fig 3.14 with Fig. 3.7). 

Overall RMSE performance again tended to be worse with the Tn combination than with 

the C8 combination, with some exceptions where the weather classification training and 

evaluation periods were not matched (c.f. Fig. 3.14 with Fig. 3.10). Wind variables in the 

C8 combination were again found to be reducing performance for the inland locations 

when the training and evaluation periods were of opposite wind directions (not shown). 
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Figure 3.14 RMSE results using the Tn predictor combination for the 12 inland location with 

various training periods. Results are shown for the VN evaluation period (a), VS evaluation 

period (b), VWe evaluation period (c), and VE evaluation period (d). The training periods are 

described on the x-axes. The TA and TR training periods are shown in black and red, 

respectively. The TN, TS, TWe, and TE are shown in blue, green, purple, and orange, 

respectively. Median values are given by the thin black lines and mean values by the thick 

purple lines. 
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3.4 Conclusions 

 

The primary objectives of the study were to evaluate potential effects of wind direction 

on statistical relationships between predictors and predictands in the downscaling of 

minimum daily temperature, and to determine whether a weather classification scheme 

could mitigate any problems related to these effects. To accomplish these objectives a 

downscaling model was developed that could evaluate the effects of wind direction on 

downscaling performance at 24 coastal locations and 12 inland locations in the United 

States. 

3.4.1 Effects of Wind Direction 

The study found that wind direction of the training period had the potential to play a 

major role in downscaling performance. If the wind direction of the training period was 

not matched to the evaluation period, downscaling RMSE performance was greatly 

reduced, with the greatest reductions seen when the wind direction of the training 

period was opposite that of the evaluation period. Further testing indicated that some 

of this reduction was linked to wind variables in the downscaling model. These results 

were unsurprising given the extrapolation required when evaluation and training 

periods were of opposite wind directions. 
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3.4.2 Weather Classification Scheme Performance 

When the wind direction of the training period was matched to the evaluation period 

using the weather classification scheme, RMSE performance surpassed that seen with a 

training period of equivalent length but random selection of days (TR period), while 

largely matching and under some conditions exceeding the mean RMSE performance 

seen with the full training period (TA period). Given that the matched 

training/evaluation periods were shorter in length than the TA period and thus more 

limited on variables, a longer overall training period could improve the relative 

performance of the matched periods compared to the TA period. Bias results for the 

matched training/evaluation periods showed less variance than that seen with the TR 

and TA training periods and were similar or lower in mean absolute magnitude. These 

RMSE and bias results indicate that a weather classification scheme based on wind 

direction does have the potential to improve MLR-based downscaling performance in 

some situations. 

3.4.3 Coastal Locations Versus Inland Locations 

Both Inland and coastal locations saw the greatest reductions in mean RMSE 

performance when the wind direction of the training period was opposite that of the 

evaluation period. One outlier in this regard which saw the least difference in 

performance was the set of locations on the Pacific Coast. One potential explanation for 

this was the relative homogeneity of air masses affecting the Pacific Coast compared to 

the other locations, with wind direction having less of an effect on the type of air 
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masses observed. Support for the hypothesis that air mass type influenced 

predictor/predictand relationships in the downscaling model was found in downscaling 

results for the inland locations. For the inland locations, the TWe and TN training periods 

had better mean RMSE performance with each other’s evaluation periods (TWe with VN 

and TN with VWE) than with either the TS or TE evaluation periods. This was important 

because both the westerly and northerly wind directions for the inland locations are 

typically associated with continental air masses, while the southerly and easterly wind 

directions are not. Under this premise, wind direction of the training period was serving 

as a stand-in for the prevailing air mass regime of the training period. 

3.4.4 Further Research 

Improved predictor variable optimization, a longer period of data for training and 

evaluation, and additional station locations are areas for potential improvement and 

reduction of uncertainty for the study. One advantage of a longer period of study would 

be an increase in the number of days available for evaluation with the wind speed 

threshold.  

Seasonal Effects 

The frequency of wind direction as well as the type of air masses associated with each 

wind direction can be dependent on the season. Though examining potential 

consequences of these factors was not within the scope of this study, it is an area that 

could be important for ensuring optimal downscaling performance with the weather 

typing scheme. 
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Cardinal Versus Coastal Direction 

For this study, wind directions were defined either relative to the axis of the coast for 

coastal locations or by the four cardinal directions for the inland locations. A further 

complication not considered in this study is that cardinal direction of the wind can 

influence the type of air mass seen in coastal locations. This is particularly relevant for 

the locations on the Great Lakes, which were grouped with the coastal locations in this 

study. Examining the role played by cardinal direction of wind combined with coastal 

direction of wind is an area that could provide additional understanding of how wind 

direction influences downscaling performance for certain locations.  

Non-linearities in Statistical Relationships   

More complex downscaling models that are not limited to linear relationships between 

predictors and predictands may be less affected by the problems encountered by MLR 

with changing wind directions. Additional improvements in downscaling performance 

may be realized through further research in this area. 
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Conclusions 

The objective of the dissertation was to examine the effects of weather classification on 

regression-based downscaling of daily temperature extrema. Three different studies 

were conducted, with each study using a different form of weather classification. 

Results from each study indicated that downscaling performance was influenced by 

weather conditions seen in the training periods, and that weather classification had the 

potential to improve downscaling performance, depending on the circumstance. 

The first study used weather classification based off time of day of daily temperature 

extrema. Results from the first study demonstrated that information about the time of 

day that the daily temperature extrema occurred was necessary for optimal 

downscaling performance on days where the diurnal temperature cycle was dominated 

by advective forcing.  

Weather classification was based on temperature for the second study. Results from the 

second study indicated that downscaling performance could be greatly affected if the 

temperature conditions of the evaluation period were far outside of training period, 

with potential consequence for downscaling future climate model output.   

The final study used weather classification based off wind direction. Results from the 

final study indicated that wind direction of the training periods had substantial effects 

on downscaling performance. As was the case with the second study, the effects were 

largest when the differences in training and evaluation conditions were greatest.  
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With respect to future research, there were several possible areas of focus. For the first 

study, exploring consequences of changes in the diurnal temperature cycles as the 

climate changes was identified as an area for further investigation. For the second and 

third studies, an area for future research was examining potential non-linearities in 

statistical relationships between daily temperature extrema and other meteorological 

variables. Exploring the influence of the seasons on statistical relationships used for 

downscaling was another potential subject for further research that was identified in 

the second and third studies. 
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