
DETECTING TARGETED DATA POISONING ATTACKS

ON DEEP NEURAL NETWORKS

A Dissertation

presented to

the Faculty of the Graduate School

at the University of Missouri-Columbia

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

SARA NEWMAN

Dr. Dan Lin, Dissertation Supervisor

May 2022

The undersigned, appointed by the Dean of the Graduate School, have examined

the dissertation entitled:

DETECTING TARGETED DATA POISONING ATTACKS

ON DEEP NEURAL NETWORKS

presented by Sara Newman,

a candidate for the degree of Doctor of Philosophy and hereby certify that, in their

opinion, it is worthy of acceptance.

Dr. Dan Lin

Dr. Grant Scott

Dr. Chunyan Peng

Dr. Yunxin Zhao

DEDICATION

I would like to thank myself for getting to this point, despite grave hardships.

May I never give myself up or let myself down.

ACKNOWLEDGMENTS

I would also like to thank the Scholarship For Service (SFS) program for providing

me with the opportunity to pursue a Ph.D. and, later, working a job I’ve wanted

for nearly a decade. I would also like to thank Dr. Dan Lin for granting me the

opportunity to be work with the wonderful Department of Computer Science at the

University of Missouri - Columbia. I owe her many thanks for her continued help and

understanding throughout my time as a graduate student.

I would like to thank the students who I have worked with at University of Missouri

- Columbia for their aid in the projects described. Dr. Dalton Cole and Maya

Cutkosky have been a great help in completing this dissertation.

Lastly, I must vehemently thank Dr. Jennifer Leopold and Dr. A. Ricardo

Morales. Without their friendly and engaging instruction, I would not have con-

sidered myself capable of pursuing computer science. In addition to the profound

inspiration they instilled in me, attending their classes has provided me with the ini-

tial stepping stones towards what I would later consider my most passionate goals.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . ii

LIST OF TABLES . v

LIST OF FIGURES . vi

ABBREVIATIONS . viii

ABSTRACT . ix

Chapter

1 Introduction . 1

1.1 DNN-Based Facial Authentication Model 1

1.2 DNN-Based Deepfake Detection Model 6

2 Literature Review . 9

2.1 Adversarial Attacks on DNNs . 9

2.2 Data Poisoning Attacks on DNNs . 10

2.2.1 Untargeted Attacks . 11

2.2.2 Targeted Attacks . 12

3 Detecting Targeted Data Poisoning Attacks on DNN-based Facial
Recognition Models . 14

3.1 A New Targeted Data Poisoning Attack on Facial Authentication . . 14

3.1.1 Threat Model . 14

3.1.2 Attack Results . 17

3.2 Our Defense Mechanism . 18

3.2.1 System Overview . 20

3.2.2 Defense Model . 21

iii

3.2.3 Feature-Based DNN Discriminator 25

3.3 Performance Study . 27

3.3.1 Experimental Setting . 27

3.3.2 Experimental Results . 29

3.3.2.1 Effect of the Number of Injected Photos 29

3.3.2.2 Effect of the Photo Background 31

3.3.3 Comparison of On-Site and Off-Site Deployment 32

4 Detecting Targeted Data Poisoning Attacks on DNN-based Deep-
fake Detectors . 34

4.1 Threat Model . 34

4.2 Attack Results . 36

4.3 The Proposed Protector Network . 40

4.3.1 Model Architecture . 40

4.3.2 Data Set Preparation . 41

4.3.3 Feature Vector Concatenation 43

4.3.4 Model Training and Testing 44

4.4 Evaluation . 46

4.4.1 Data Sets . 46

4.4.2 Experiments . 48

4.4.3 Effect of Training Protector on Different Types of Fake Images 48

4.4.4 Effect of Combining Feature Vectors 49

4.4.5 Effect of Model Architecture 50

5 Conclusion . 52

BIBLIOGRAPHY . 54

VITA . 65

iv

LIST OF TABLES

Table Page

3.1 Facial Image Data Sets . 15

4.1 Resulting accuracy upon training XceptionNet-based models for deep-

fake detection on five types of deepfakes, and testing on each type of

deepfake . 35

4.2 Accuracy achieved by ResNet50 trained on combined feature vectors.

The top row shows the datasets on which the model was trained,

whereas the left column shows the datasets on which it was tested. . 49

4.3 Poison recall achieved by ResNet50 trained on combined feature vec-

tors. The top row shows the datasets on which the model was trained,

whereas the left column shows the datasets on which it was tested. . 50

4.4 Accuracy and poison recall ResNet50 and Protector network trained

on FaceSwap datasets . 51

v

LIST OF FIGURES

Figure Page

1.1 Proposed Data Poisoning Attack . 3

3.1 Attack Strategy Overview . 17

3.2 Replacement Data Poisoning Attack Results on FaceNet 19

3.3 An Overview of the DEFEAT System 19

3.4 Principal Component Analysis (PCA) applied to a subset of labels on

which FaceNet is trained. Five labels were randomly selected from the

FEI dataset, 3 un-attacked labels and 2 attacked labels using the ran-

dom attack configuration. PCA was then applied to FaceNet’s neural

network output embedding to reduce the dimensionality from a 128-

dimensional space to a 2-dimensional space. Each label is shown, with

the injected samples differentiated by a different color and symbol. . . 22

3.5 Box plot of the maximum internal, minimum external, and mean ex-

ternal differences between the facial embeddings for a given label. In

order to properly fit in a single figure, each feature was normalized

such that the sum is zero. 24

3.6 The Feature-based DNN Discriminator 26

3.7 Random Attack - Varying the Number of Injected Photos 30

3.8 Optimal Attack - Varying the Number of Injected Photos 30

3.9 Effect of Photo Backgrounds . 31

vi

3.10 Comparison of On-site and Off-site Deployment 33

4.1 Recall rates of XceptionNet trained on clean data sets 38

4.2 Targeted data poisoning attack success rates on XceptionNet 39

4.3 Targeted data poisoning attack success rates on XceptionNet at differ-

ent poison rates . 39

4.4 Overview of Protector model . 41

4.5 Effects of training the protector network on different kinds of fake images 49

vii

ABBREVIATIONS

CNN Convolutional Neural Network

DEFEAT Deep-neural-network and Embedded FEAture-based deTector

DNN Deep Neural Network

GAN Generative Adversarial Network

KNN K-Nearest Neighbours

NN Neural Network

PCA Principal Component Analysis

ReLU Rectified Linear Unit

RNN Recurrent Neural Networks

SVM Support Vector Machine

viii

DETECTING TARGETED DATA POISONING ATTACKS

ON DEEP NEURAL NETWORKS

Sara Newman

Dr. Dan Lin, Dissertation Supervisor

ABSTRACT

Deep neural networks (DNNs) are widely used for various facial image-recognition

purposes, including facial recognition and subsequent authentication, and the detec-

tion of altered facial images. Unfortunately, due to their widespread use, there have

been many works that focus on attacking such DNN-based systems for nefarious pur-

poses. One type of attack on DNNs is called a “targeted data poisoning” attack,

which has the goal of injecting photos into the DNNs training set in such a way as to

cause the DNN to learn malicious behavior. In the context of facial authentication,

this could correspond to unauthorized users gaining access to a target’s account,

whereas, in deepfake detection, this could translate to causing the DNN to fail to

identify when a target’s face is the subject of a deepfake image. This report describes

targeted data poisoning attacks and proposed defenses on DNN-based systems for

facial authentication and deepfake detection, each achieving high accuracy (> 95%)

in most cases.

ix

Chapter 1

INTRODUCTION

This report is composed of two works that seek to enhance the robustness of deep

neural networks (DNNs), both in the context of facial authentication software and in

detecting whether an image of a face depicts an altered face (a deepfake). Targeted

data poisoning attacks are discussed that undermine the effectiveness of DNNs in

these contexts, as well as frameworks for detecting such attacks.

1.1 DNN-BASED FACIAL AUTHENTICATION MODEL

Facial authentication has been increasingly commonly used to unlock personal devices

such as smartphones and laptops. Due to its ease of use, the next major horizon for

facial authentication applications may be web services [1]. According to statistics

[2], an Internet user has an average of 26 different online accounts but only 5 unique

passwords for these accounts. This fact is not particularly surprising since due to the

difficulty of memorizing a large number of different, complex passwords. One method

of mitigating this difficulty is the use of password manager software; however, in

practice, using password managers is not entirely effective. An internet user usually

accesses web services from different personal devices, often in different locations, such

as home and work. It is a tedious and almost infeasible task for a person to record the

new password for new web services on all their devices immediately upon new account

creation, especially because they may not have access to some devices (such as those

1

at work) at the moment the new account is created. With facial authentication in

place, internet users simply position themselves in front of the device’s camera to log

into web services. This is convenient, swift, and accessible, being able to be done

from a multitude of devices without additional preparations. Its promising market

potential has fostered several releases of facial recognition APIs [3, 4] . It is envisioned

that facial authentication will be widely adopted in web services in the near future.

For the successful deployment of facial authentication for online services, secu-

rity is undoubtedly necessary to address. Facial authentication relies on accurate

facial recognition. The most recent facial recognition techniques, such as FaceNet

[5], which achieve high accuracy, are built upon deep neural networks (DNNs) [6].

Unfortunately, due to their complex nature, DNN models are vulnerable to a variety

of emerging attacks, such as adversarial input attacks [7, 8, 9, 10, 11, 12, 13, 14],

data poisoning attacks [15, 16, 17, 18, 19], and model stealing attacks [20, 21, 22,

23]. In the context of facial authentication for web services, adversarial input attacks

and data poisoning attacks could be the most devastating threats. Both attacks aim

to mislead the classifier into misclassifying the input image. In terms of facial recog-

nition, such attacks could result in a legitimate user being misclassified and denied

access to the service; or, worse, cause an attacker be misclassified as a legitimate user,

thus gaining access to the victim’s account. Although there have been some defen-

sive mechanisms for adversarial input attacks and data poisoning attacks on image

classifiers [10, 14, 24, 25, 26], to the best of our knowledge, none of the existing works

consider the following attack scenario that can easily occur in future facial authenti-

cation for web services, and none of the existing works is effective at defending such

attacks.

As shown in Figure 1.1, the new web-service facial authentication attack may

happen when a user signs up for a new web service or update their facial images

for a certain web service. Facial authentication typically requires the users to take

2

Figure 1.1: Proposed Data Poisoning Attack

photos of themselves to train the facial recognition classifier. The study outlined

in Section 3.1 shows that an attacker simply needs to inject less than a handful

of their photos during this process; the facial authentication system on the service

provider side will later recognize both the authentic user and the attacker as the

same person. Thus, both the authentic user and the attacker will have the same

access to the account that the user registered. Such an attack can be conducted

by exploiting the vulnerability of the victim’s home network and router. In a 2020

security review of 127 popular home routers, vulnerabilities were discovered that

could result in the man-in-the-middle attacks [27, 28]. As the facial authentication

registration attack pollutes the training dataset, it falls under the category of a data

poisoning attack. However, this new attack is easier to implement than most existing

data poisoning attacks, as well as adversarial input attacks. This is because our new

attack does not require the attacker to know any insider information at the server-

side, whereas existing machine learning attacks [8, 29] typically require the attacker

to compromise the server to gain knowledge of feature vectors produced by the deep

neural network (DNN). For example, to impersonate a person, one previous attack

strategy [8] requires the attacker to know the victim’s facial feature vector generated

by the DNN at the server-side to create special glasses that can produce the same

3

feature vector as the victim when an attacker wears it. Moreover, the proposed attack

is extremely stealthy, as it does not affect the normal use of the infected account.

Once the attacker gains the same access rights as the victimized user, the attacker

can track the user’s service usage over time, or impersonate the user at any desired

point. For example, the attacker can easily purchase items using the victim’s account

if the victim does not regularly check their order or credit card history; the attacker

may also post or send misinformation on behalf of the victim to hurt the victim’s

reputation or fool other users. Currently, there is no effective defense mechanism

proposed to battle such an attack.

In this work, the devastating effect on web-service based facial authentication

produced by this novel data poisoning attack will be discussed. Then, the novel

defensive strategy, called DEFEAT (Deep-neural-network and Embedded FEAture-

based deTector), will be introduced.

Specifically, it has been observed that, with only 4 or 5 attacker’s facial photos

mixed with the user’s training photos (another 4 or 5 photos), the attacker will be

able to impersonate the user in the future authentication without dropping the over-

all facial recognition accuracy, i.e., without raising alarm to the facial authentication

system. It has also been observed that it is difficult to distinguish the attacker’s fea-

ture vector from the authentic user’s by using only statistical analysis and distance

comparison. The resulting hypothesis of this phenomenon is that, since facial recog-

nition systems, such as FaceNet [5], strive to achieve high recognition accuracy and

since they do not know the training set of a given user contains photos of different

faces, the contaminated feature vectors (i.e., those being attacked) are then generated

based on common features between the user and the attacker as to ensure both the

original user and the attacker can authenticate using their own photos. As a result,

various distances (e.g., Euclidean, Hamming, Manhattan) are not sufficient to mea-

sure the differences between the victim’s and the attacker’s resulting facial feature

4

vector, since they are intentionally generated by DNN to be very similar for the goal

of maintaining high recognition accuracy. However, an effective method to detect

these malicious attempts must be pursued.

Based on the hypothesis that the contaminated feature vectors are generated by

extracting common features from two people’s faces (i.e., the victim and the attacker)

whereas the non-contaminated feature vectors are based on the features of only one

person, this work introduces an intelligent discriminator, DEFEAT, to identify the

potentially subtle differences in these two kinds of feature vectors. The DEFEAT

discriminator has the base structure of a DNN and a KNN (k-nearest-neighbour)

model. Various concatenation approaches are also designed to create training inputs

for the discriminator. The layers of the DNN in DEFEAT is optimized for both

accuracy and efficiency. Upon real-time detection, DEFEAT takes the feature vector

output by FaceNet and produces a probability of whether or not the input feature

vector is contaminated. The probability is then sent to the KNN model to produce

a binary decision: under attack or clean. This approach has been evaluated in real

datasets that represent both consistent and diverse background settings. It is shown

that the discriminator achieves more than 90% detection accuracy in all cases. The

contributions of this work are summarized as follows:

• A novel data poisoning attack to facial authentication is introduced, which

allows the attacker to easily impersonate the victim.

• Novel discriminators are proposed to detect the above impersonation attack.

The experiments on real datasets demonstrate that it is capable of achieving

very high detection accuracy in various settings.

5

1.2 DNN-BASED DEEPFAKE DETECTION MODEL

In addition to detecting attacks on facial authentication, this work also discusses a

method for detecting data poisoning attacks on deepfake detectors. Deepfakes are

images of a face that have been altered such that the resulting image appears to

depict a different face from the one originally depicted.

Traditionally, cameras are regarded as trustworthy devices, and images have his-

torically been considered to always depict a scene that truly happened. Thus, digital

images have been widely used as historical records and evidences for the journalist

reporting, police investigation, auto insurance claims, military intelligence, etc. How-

ever, with the advances in artificial intelligence, seeing is no longer believing. Forged

images and videos that appear real (i.e., unaltered) to both human viewers and ex-

isting computer programs, can now be generated by Deepfake techniques [30, 31,

32, 33, 34], which take advantage of the latest deep neural networks, the Generative

Adversarial Network (GAN), and the growing computational power.

With the ability of manipulating image/video content without being noticed, deep-

fakes are imposing a new crisis for privacy, democracy and even national security [35,

36, 37, 38]. Many online posts contain one or more image/video, and the posts with

attention-grabbing visual content can spread and become viral extremely quickly, in-

fluencing the opinions and behavior of a large number of readers. Malicious parties

can utilize deepfakes to swap a victim’s face into uncomfortable scenes, and dam-

age that person’s reputation in social media as well as their real life. Not only can

personal privacy be harmed, deepfakes may also be exploited to create fake news to

affect results in election campaigns, create chaos in financial markets, fool the public

with false disaster scenes, or even inflame public violence [35, 36, 37, 38]. Even worse,

the abuse of deepfakes may also be leveraged to cause political or religious tensions

between countries.

6

Fake images can be synthesized using different deep neural network models, re-

sulting in various types of fake images such as [30, 31, 32, 33, 34]. In order to identify

such AI-generated fake images, some detectors [39, 40, 41, 42, 43, 44, 45, 46, 47] have

been proposed. One notable detector is XceptionNet [40] which has been extensively

tested and can achieve detection accuracy as high as 99% on various types of fake

images. Unfortunately, having these detectors is still not sufficient to prevent the

aforementioned misuse of fake images due to the rise of adversarial machine learning

attacks. It has been reported that fake image detectors are vulnerable to adversarial

input attacks [48] whereby attackers inject noises to the fake images to mislead the

detector into labeling the perturbed fake image as real. The adversarial input at-

tacks have successfully been mitigated by using adversarial training methods to train

the detector with adversarial samples. However, another type of attack, the data

poisoning attack, cannot be defended by the adversarial training strategy because

data poisoning attack does not perturb the input image at all during run time. The

poisoned training images have the same content but wrong labels. Specifically, a fake

image would be purposely labeled as real by the attacker to fool the detector. Since

this data poisoning happens during the model training phase, it is very hard for the

detector to self-identify poisoned training samples. The existing adversarial training

strategies [49, 50, 51, 52, 53] that teach the classifier about the noises and perturba-

tions in the input images would not work in this case, as the poisoned images do not

contain any perturbation that leads to an incorrect label. In other words, the attack

discussed in this work poisons the image labels but not the image content.

In this paper, we propose a new defensive mechanism targeting the above data

poisoning attacks on the deepfake detectors. The key idea is to add another deep

neural network, called the protector network, to the end of the deepfake detector.

The protector network is dedicated to the classification of normal and poisoned data.

If a fake image is mislabeled as real, the protector will capture it and raise alarm.

7

While the deepfake detector may need to be updated (i.e., periodically retrained)

in the field since there are always newly emerging types of fake images to learn, our

proposed protector network will not need to be retrained as its ability of distinguishing

poisoned fake images is not affected by the types of fake images. That means, even

though the detector may be poisoned during the retraining phase, the protector will

still be secure. More specifically, the protector will be trained only in-house and

learn the differences between the feature vectors of poisoned fake images, clean fake

images and real images generated by the detector. The proposed protector has a new

network architecture based on ResNet [54] along with several techniques to achieve

the generalization ability when it is given unseen types of fake images that have been

poisoned. To summarize, the this work results in the following contributions:

• The impact is investigated of data poisoning attacks on existing deepfake de-

tectors.

• A novel defense mechanism is introduced, called Protector, to make the deepfake

detectors robust against data poisoning attacks.

• Extensive experiments on real datasets have been conducted, showing the effec-

tiveness of the described approach, achieving over 95% accuracy for detecting

the poisoned images.

8

Chapter 2

LITERATURE REVIEW

This chapter provides a discussion on existing literature that is relevant to the works

described in this report, particularly attacks on deep neural networks (DNNs). The

existing attacks that focus on causing undesirable behavior in machine learning algo-

rithms, such as DNNs, can be classified into two main categories: adversarial input

attacks and data poisoning attacks. Both will briefly be discussed, with special fo-

cus being given to data poisoning attacks, which are directly relevant to the works

described in this report.

2.1 ADVERSARIAL ATTACKS ON DNNS

Adversarial input attacks typically occur after the machine learning algorithm has

completed the training process, which is different from data poisoning attacks, which

are carried out during the training process. The goal of the adversarial input attack

is to perturb the input data in a way that is meant to fool a classifier, i.e., cause

the input data be misclassified. These inputs are usually crafted by adding a per-

turbation to an authentic image [7, 8, 9, 10]. Specific to facial recognition models,

there is an abundance of works on how to compute perturbations to cause errors in

the facial recognition process [7, 8, 9, 49, 51, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64,

65]. For example, [7, 49] turn perturbation generation into an optimization problem

and compute the perturbation in a single large step based on the model’s loss. [55]

9

extends the idea to computing perturbations iteratively. [51, 56, 57] seek to alter the

least amount of pixels possible, while [57] focuses on modifying only one pixel. [9,

58] modify images iteratively using the information on the decision boundaries of the

target model. These algorithms are all designed for a single given image, needing to

be run separately for each additional target image. [59, 60] work on any image to fool

the target network. [61, 62, 63, 64] generate entire adversarial images that appear

similar to clean images and fool the target model adequately. Another interesting

way of image perturbation is that attackers put on customized accessories such as

glasses in front of the camera to impersonate the victim [8, 65], while these special

accessories are designed based on the victim’s feature vectors generated by the face

recognition model. With this said, most of the existing adversarial input attacks [7,

8, 9, 49, 51, 55, 56, 58, 59, 62, 63, 64, 65] require white box knowledge of the model,

i.e., knowledge of the internal parameters of the model, which may be hard to achieve

in real scenarios. Only a few adversarial input attacks [57, 60, 61] can treat the target

model as a black box and still conduct adversarial input attacks.

Currently, the most effective defense mechanism against the adversarial input

attacks is adversarial training [49, 50, 51, 52, 53] which enhances the robustness of the

neural networks by allowing them to learn adversarial samples during the training.

2.2 DATA POISONING ATTACKS ON DNNS

Data poisoning attacks on DNNs seek to alter the final behavior of a machine learning

model during deployment by manipulating a subset of the training data. Hereafter,

training data that has not been manipulated in this way are referred to as “clean”

data, whereas data that has been manipulated is referred to as “poisoned” data. The

size of the subset of training data that must be poisoned to achieve the malicious

result varies by both the method of data manipulation and the specified goal. Goals

of data poisoning attack fall into two categories: untargeted and targeted attacks.

10

The goal of an untargeted data poisoning attack is to hinder or halt the DNN from

achieving reasonably high accuracy, effectively preventing it from learning during the

training phase. These types of data poisoning attacks are relatively easy to identify,

as the introduction of poisoned training samples causes the target DNN to experience

a significant drop in accuracy or difficulty of increasing accuracy. Targeted attacks are

significantly harder to detect than untargeted attacks, because their goal is to cause

a DNN to misclassify only a single class of inputs, or even a single specific input, at

runtime, which usually does not significantly affect the accuracy of the target DNN.

Moreover, these types of attacks often introduce a perturbation to clean training

samples to craft the poisoned data, which may be either visually similar to clean data

or containing an imperceptible perturbation, further complicating detection. More

formally, the goal of a targeted data poisoning attack is as follows: Given a classifier,

f(x) = y for data ~x and corresponding labels, ~ygt, an attacker seeks to craft poisoned

training data xp = x + δ such that, if f(x) is trained using xp, then f(xt) 6= ygt, for

some target input xt. The attack described in Chapter 3 Section 3.1 is classified as a

targeted data poisoning attack.

2.2.1 Untargeted Attacks

Many data poisoning attacks have been introduced with the intent of not only causing

misclassifications of a certain class of inputs but also causing as many misclassifica-

tions as possible [15, 16, 17, 18, 19]. A common application for this type of attack, as

described in [15],[16], and [17], is attacks against spam filters, for which an attacker

typically endeavors to cause spam emails to be labeled as legitimate or “ham” emails,

and vice versa. The attacks described in [15],[16], and [17] target naive Bayes spam

filters by altering spam messages in ways that cause the classifier to misbehave. The

attack method proposed in [18] uses a gradient ascent strategy based on the proper-

ties of a support vector machine (SVM), which requires white-box access to the target

11

model. Similarly, [19] uses a back-gradient optimization method to manipulate any

machine learning model that learns using gradient descent. Shortly after the develop-

ment of such attacks, it was discovered in [66] that it is straightforward to detect such

attack attempts by monitoring the model’s loss prior to and following the addition of

certain samples into its training set, thus presenting an effective mitigation method.

2.2.2 Targeted Attacks

There are multiple sub-types of targeted data poisoning attacks, a relatively recent

and commonly-studied one being backdoor attacks [67, 68, 69, 70]. These seek to

train a “backdoor” into a DNN by adding a certain pattern or watermark (i.e., a

“backdoor” or “trigger”) to certain inputs in the training set such that the resulting

DNN classifies any input containing this pattern or watermark as a certain target

class. Because the resulting DNN does not typically behave differently for inputs not

containing the backdoor, these types of attacks are difficult to detect, thus garnering

power surpassing many of their untargeted counterparts. These backdoors vary in

complexity, with the method described in [67] simply using basic triggers such as a

white box “stamped” in the corner of certain training data, while changing the labels

of the inputs containing the backdoor to their target class. This caused the target

model to learn that this simple backdoor is the predominant feature corresponding

to the target class. [68] and [69] craft backdoors by exploiting properties of the

target classifier, creating an optimal backdoor. While requiring greater access to the

target model than attacks such as [67], the optimal backdoors achieve greater attack

success. Several defenses exist for mitigating the effect of backdoors on a model,

including anomaly detection on the input space and input classification [25, 71] and

strategically altering the structure of the target classifier in a way that “unlearns”

the behavior caused by backdoors [70, 72].

Other types of targeted data poisoning attacks are based on perturbing training

12

images by adding noise, either digitally by directly modifying the input data or using

the presence of specially designed features within the input, causing the classifier

to misclassify these inputs during training [73, 74]. These attacks tend to require

more intimate knowledge of the target model, which is often impractical. In [73],

an optimization scheme is developed based on the classifier output and the level of

perturbation required to alter training images appropriately, which, in turn, achieves

misclassification of a single input in the final model. A more recent work, [74],

considers a variety of attackers, all having partial knowledge of the system. The attack

described in Chapter 3 Section 3.1 does not require any access to the classification

model.

As of now, targeted data poisoning attacks do not appear to have any existing

defenses that are effective. Hopefully, the proposed defense utilizing DNNs presented

in 3 will provide inspiration for the development of more general defense mechanisms

for targeted data poisoning attacks.

13

Chapter 3

DETECTING TARGETED DATA POISONING ATTACKS

ON DNN-BASED FACIAL RECOGNITION MODELS

Because importance of secure authentication systems is paramount, the security of

facial authentication is an important area of study. As such, this chapter presents

a framework for enhancing the robustness of facial authentication in response to a

novel data poisoning attack on DNN-based facial authentication systems that is both

extremely easy to carry out and powerful. The layout of this chapter is as follows:

Section 3.1 describes the attack scenario, then, in Section 3.2, the proposed defense

system, DEFEAT, is introduced. Section 3.3 provides a discussion of the system’s

performance.

3.1 A NEW TARGETED DATA POISONING ATTACK ON FACIAL

AUTHENTICATION

3.1.1 Threat Model

The attack proposed in this section is categorized as a targeted data poisoning attack,

during which an attacker attempts to impersonate a victim during facial authenti-

cation by causing the facial recognition system to allow the attacker to log into the

victim’s accounts using the attacker’s own images of their face. Formally, let Imgt

denote the targeted victim’s face image, lt denote its true label, and Imga denote the

attacker’s face image. Let IMGp denote the set of other users’ images that are in the

14

Dataset # of Users # of Photos/User Training/user

FEI 200 14 10

LFW 158 10-530 10

Table 3.1: Facial Image Data Sets

clean (unattacked) stage, Imgp denote each of the other user’s images, and lp denote

the corresponding clean label. When perpetuating targeted data poisoning attacks

on facial recognition systems, the attackers must be careful to avoid altering the final

classification accuracy in any significant way, which would cause alarm, potentially

tipping off moderators that something is amiss. Thus, the goal of this attack is to

maximize the probability that Imga will be misclassified as lt while avoiding pre-

venting Imgt and Imgp from being labeled correctly. The goal of attacking Imgt is

formalized as G(Img, L), shown in Equation 3.1,

G(Img,L) = min
n

(
L(Imga, lt)

n
+
L(Imgt, lt)

(s− n)
+
L(Imgp,Lg)

s · cp

)
(3.1)

where Img is the set of images and L is the set of labels for the images in Img, s

is the total number of photos of a user, n is the number of images replaced by the

adversary, cp is the number of benign users, and L() is the loss function.

This attack was conducted using the following data sets: FEI [75] and Labeled

Faces in the Wild (LFW) [76]. Table 3.1 shows the size and statistics of each data

set. Because DNN-based facial recognition models are pre-trained in a facial au-

thentication setting, these data sets are simply used to simulate adding new users

to an existing facial authentication system. The types of images included in these

data sets represent the ideal setting (i.e., easy facial recognition scenarios) and the

real-world setting (i.e., more realistic facial recognition scenarios). These settings are

represented by the FEI data set and the LFW data set, respectively. Images in the

FEI data set are taken with a relatively constant background color and lighting with

15

the subject facing the camera straight-on with a variety of set facial expressions. On

the other end of the spectrum, LFW is potentially one of the most diverse data sets,

containing photos of celebrities with many different backgrounds, facial expressions,

and postures. As such, it has been commonly used as a benchmark for the evalua-

tion of many facial recognition systems. In this work, it is used to simulate various

background environments over which a user may wish to log into their web service

accounts. Included in the LFW data set are 5,749 different people, with differing

numbers of photos. In the following experiments, only the labels with at least 10

separate photos are considered. This ensures that every user involved has sufficient

corresponding training and testing images.

In order to prepare the data sets for deploying this attack, each data set, denoted

D, is split into three equally-sized subsets, {Target, Attack, Clean}, where Target

simulates images of new users who are to be new targets of the attack, Attack simu-

lates images of attackers, and Clean images are of benign, newly-added users who are

not to be a victim. To launch the attack, a random user is selected form the Target

group, and a malicious user is chosen from the Attack group. A certain number

of images from Target is then replaced with images from Attack, as a man-in-the-

middle (MITM) attack on the target user’s home router. It is important to stress the

importance of MITM attacks, as recent studies have confirmed that a large number

of routers and devices remain vulnerable to these types of attacks [27, 28], despite

efforts to mitigate these glaring security vulnerabilities. In this study, each label in

the Attack group manipulates the facial authentication method for only one label in

the Target group. Then, images from all three groups are passed through the DNN

for training. Based on the selection method employed to determine the attacker for

each target, two kinds of attacks are defined:

• Random Attack: To simulate the photos of a malicious user, a set of photos

with the same label (affiliated user) from the Attack data set are chosen ran-

16

(a) Random Attack Strategy (b) Optimal Attack Strategy

Figure 3.1: Attack Strategy Overview

domly. This may result in attacker with a different race, age, and gender from

the target of the attack. An example is depicted in Figure 3.1a

• Optimal Attack: A set of photos in Attack corresponding to a single user is

chosen based on similarity to the targeted victim, such as a relative or users of

similar race, age, and gender as the target. An example is depicted in Figure

3.1b

The attack is then evaluated first through examination of the total facial recog-

nition accuracy of the target as well as unaffected users, ensuring that the attacked

model continues to recognize these users with similar accuracy to the clean model, so

as to avoid showing signs of malfunctioning. Second, it is evaluated based on whether

the attacker is able to successfully be recognized as the target user. These qualities,

in tandem, determine the overall success of the attack.

3.1.2 Attack Results

Both attacks on both data sets are carried out on FaceNet [5] and shown in Figure

3.2. The results of the random and optimal versions of the attack on the FEI data

set are shown in Figures 3.2a and 3.2b, respectively. The results of the random and

optimal attack on the LFW data set are shown in Figure 3.2c and 3.2d, respectively.

17

Throughout these experiments, 10 photos are used to register each user into the facial

recognition system. The horizontal axis shows the number of the target user’s photos

and the number that are replaced with the attackers photos, e.g., ‘(9,1)’ means that,

for a single user face registration, 9 photos are of the original user and the attacker only

replaces 1 photo with their own face. In each case, the attacker’s photos are inserted

randomly into the set of the victim’s photos. The order of the photos inserted does not

affect the attack success rate (ASR). The vertical axis shows the ASR, i.e., the rate at

which the both the target user is correctly identified, the rate at which the attacker

is recognized as the target user, the rate at which the untouched user is correctly

identified, and the overall success. As depicted in Figure, 3.2, the ASR increases with

the number of attacker photos injected into the victim’s image set. When half of the

images are replaced with the attacker’s image, both the random and optimal attack

on both data sets shows a 99% ASR, in some cases even allowing the attacker to

become even more easily identifiable than the target user. This may be a result of

FaceNet’s DNN portion treating both sets of photos with equal importance, extracting

the common features for accurate facial recognition. After the new user is added, the

attacker gains the same access as the target user. It is additionally important to

note that the optimal attack does not appear to pose much of an advantage over the

random attack, essentially removing the constraint on an attacker to choose a victim

visually similar to themselves.

3.2 OUR DEFENSE MECHANISM

In order to undermine the effectiveness of these types of attacks on facial authenti-

cation systems, a new defense mechanism, DEFEAT, is proposed. Throughout this

section, a system overview of the proposed system is discussed.

18

(a) Random Attack on the FEI dataset (b) Optimal Attack on the FEI dataset

(c) Random Attack on the LFW dataset (d) Optimal Attack on the LFW dataset

Figure 3.2: Replacement Data Poisoning Attack Results on FaceNet

Figure 3.3: An Overview of the DEFEAT System

19

3.2.1 System Overview

Figure 3.3 presents the overall data flow of the proposed DEFEAT system. The

three parties involved in this process are the user/attacker, the facial authentication

system, and the discriminator. Because the man-in-the-middle attacks still thrive in

home routers according to 2020 studies [27], attackers who exploit the vulnerabilities

of the user’s router have the ability to compromise the user registration process,

during which the proposed system detects the threat on the server side. Specifically,

a number of training photos provided by the user (or attacker) will be first sent

to the facial authentication system, which will not immediately register the user at

this point. Instead, the facial embeddings generated by FaceNet will be fed to the

discriminator for evaluation. If the photos are deemed clean by the discriminator,

the user registration process will proceed to register the user. Otherwise, if the

discriminator concludes that the training samples may be infected, it will raise the

alarm to the service provider to conduct further investigation. For example, the

investigation can be easily carried out by a human expert who looks into the suspicious

training samples to see if they belong to the same person. Photos that succeed in

fooling the machine learning algorithms in the manner described in this chapter are

easily visible to a human. However, it should be stressed, that although human

experts may be good at distinguishing these infected photos, it is not practical to

ask human experts to screen the large numbers of photos streaming into the web

service providers every day. The proposed discriminators will significantly minimize

the efforts required by human experts.

In the real-world web service scenario, there are two possible options to deploy the

above framework, which are (i) on-site detection; and (ii) off-site detection. For the

on-site detection, the web service provider installs the proposed discriminator along

with their original facial authentication system to carry out threat detection auto-

matically. Alternatively, there could be a third-party security provider that oversees

20

evaluating security threats using the discriminator. Since the discriminator only needs

the facial embeddings and statistic measurements as input, none of the users’ private

facial images will be disclosed to such a third-party security provider, effectively mak-

ing this off-site evaluation feasible. The advantages of the off-site evaluation are that

it not only relieves the web service provider’s burden of another security duty but also

gives the third-party security providers the ability to keep improving the discrimina-

tor and making it increasingly robust and generalized based on information collected

from various service providers.

3.2.2 Defense Model

In the data poisoning attack as discussed in Section 3.1, the attacker’s face images

are mixed with the victim’s face images when FaceNet generates the 128-dimensional

feature vector for the victim. Thus, it is expected that the contaminated (attacked)

feature vector of the victim would be different from the uncontaminated feature vec-

tors of other users. Intuitively, one may think that such differences may be reflected

by commonly used statistic measurements, such as internal differences among feature

vectors of the same label (same user), and external distances among the different

groups of feature vectors, which will be formally defined later in this section), There-

fore, a statistics-based discriminator is investigated as follows.

We then develop a statistics-based discriminator for comparison with our DNN-

based discriminator, described in 3.2.3. The goal of the statistics-based discriminator

is to leverage statistical analysis on a facial recognition model’s output embeddings

(i.e., facial feature vectors) to determine if a clean (uncontaminated) label is dif-

ferentiable from an infected label. We started this process by employing principal

component analysis (PCA) to reduce the dimensionality of the embeddings while

retaining some of the underlying relationships among the facial feature vectors. For

visualization purposes, the dimensionality is reduced from 128 down to 2. The results

21

Figure 3.4: Principal Component Analysis (PCA) applied to a subset of labels on
which FaceNet is trained. Five labels were randomly selected from the FEI dataset,
3 un-attacked labels and 2 attacked labels using the random attack configuration.
PCA was then applied to FaceNet’s neural network output embedding to reduce the
dimensionality from a 128-dimensional space to a 2-dimensional space. Each label is
shown, with the injected samples differentiated by a different color and symbol.

are shown in Figure 3.4. It is depicted that the attacker’s samples tend to form clus-

ters separating from the targeted victim’s samples. Following, a non-visual method of

differentiating the facial features is attempted. Based on the results from PCA, it is

hypothesized that there may exist some key statistic measures that could differentiate

the clean labels from the infected labels when all the dimensionality is considered.

The first statistics measure explored is the maximum internal difference between

every embedding for a label. The PCA plot highlights an apparent difference between

the maximum internal distance when reduced to two-dimensional space. It was then

22

studied whether this difference is present when the facial embeddings maintain their

full dimensionality as opposed to only when reduced to 2-dimensional space. The

maximum internal differences are formally defined as follows:

Definition 3.2.1 (Maximum Internal Difference). Let E be the whole set of facial

embeddings (feature vectors), and let e`i , e
`
j denote the different embeddings with

respect to the same label `. The maximum internal difference for a label ` is calculated

using L1-norm which maps the distance between the two embedding vectors to a scalar

value without magnifying larger differences between the two embeddings.

f `
max = max

i 6=j
L1(e

`
j − e`i)

The second statistic measure is the minimum external difference between labels.

Because the cluster of the embeddings of the same label tends to be wider or more

separated when that label is attacked, it is hypothesized that the minimum external

difference would be smaller when the label is under attack versus when it is not under

attack. Formally, the external difference between the two groups of embeddings is

defined as follows.

Definition 3.2.2 (Minimum External Difference). Let L denote the whole set of

labels, k be the label to be considered, and ` be the remaining labels in L. The

minimum external difference between the embeddings of label k and that of all the

other labels ` is calculated as follows, which finds the smallest distance between any

embedding of label k and the nearest embedding of a different label:

f `
min = min

k 6=`
L1(e

`
j − eki)

Based on individual external differences, the mean external difference can be com-

puted as follows:

23

Figure 3.5: Box plot of the maximum internal, minimum external, and mean external
differences between the facial embeddings for a given label. In order to properly fit
in a single figure, each feature was normalized such that the sum is zero.

Definition 3.2.3 (Mean Internal Difference).

f `
mean =

1

n ∗m

n∑
i=0

m∑
j=0

L1(e
`
j − e`i)

The first statistic measure focuses on the possible changes caused by an attack

within individual groups of embeddings, while the second statistic presents a big-

ger view of the potential influence of the attack on the relationship among differ-

ent groups of embeddings. Figure 3.5 shows the relationship between infected la-

bels and clean labels using these three metrics. From this analysis, a K-Nearest-

Neighbor (KNN)-based discriminator is devised that takes as input triplet t where

tl = {f `
max, f

`
min, f

`
mean}, and outputs whether the given t` is a clean or a targeted label.

24

KNN was chosen based on the observation from the previous two figures that groups

of the clean labels may have similar statistical values, whereas groups of targeted

labels may have another kind of statistical value.

However, such a statistic-based discriminator does not yield a high detection rate

in some cases as shown in Section 3.3. The possible cause that lowers its detection

rate could be the high dimensionality which dilutes the obvious differences among

different groups of embeddings as visualized in 2-dimensional space. Specifically,

the minimum external difference for infected labels and clean labels are sometimes

similar in high dimensional space. Additionally, the maximum internal difference

and minimum external difference are likely heavily correlated. These findings lead

to the development of a more intelligent discriminator as introduced in the following

subsection.

3.2.3 Feature-Based DNN Discriminator

Considering the limitations of the statistics-based measurements in distinguishing

infected labels from clean labels, Deep Neural Networks (DNNs) were employed for

their ability to find patterns in unknown relationships among complicated items.

The result is a novel discriminator called DEFEAT (Deep-neural-network and

Embedded FEAture-based deTector) that takes feature vectors produced by a facial

recognition model as input and outputs the probability that the input embedding is

infected. Figure 3.6 presents an overview of the structure of the two-phase DEFEAT

system. The first phase is a DNN that analyzes the differences between infected

feature vectors (embeddings) and clean feature vectors. The infected feature vectors

refer to both the attackers’ feature vectors and that of their targeted users. The anal-

ysis result is a probability value that indicates the likelihood that a feature vector

is contaminated. Then, this probability value along with several statistic measure-

ments is fed to a KNN-based classifier to yield the final binary output: (i) the label

25

Figure 3.6: The Feature-based DNN Discriminator

is infected; (ii) the label is clean.

More specifically, the DNN in the DEFEAT system consists of 25 layers with 256

neurons per layer. Through extensive empirical analysis, this network architecture is

found to give the best trade-off between speed and accuracy. Each individual layer is

a dense layer with batch normalization and a 20% dropout rate. Batch normalization

was used to increase the stability of the neural network, while the dropout layers keep

the network from over-fitting during training. The Rectified Linear Unit [77], also

known as ReLU, activation function was used for all layers except the last layer, for

which the sigmoid activation function (shown in Equation 3.2) is used to calculate

the probability of an infected label.

S(x) =
1

1 + e−x
(3.2)

In addition to determining the optimal structure of the DNN, another interesting

consideration is the input data. It was discovered that, instead of feeding the DNN a

single embedding at a time for analysis, an input that concatenates two embeddings

will significantly enhance the ability to distinguish the infected labels. Specifically,

26

we concatenate the following pairs of embeddings:

• Embeddings from two photos belonging to the same clean user – will be even-

tually labeled as “clean”.

• Embeddings from two photos belonging to the same targeted victim – will be

eventually labeled “infected”.

• Embedding from two photos belonging to the same attacker – will be eventually

labeled “infected”.

• One embedding from the attacker and the other from the corresponding victim

– will be eventually labeled as “infected”.

Given each of the above concatenated embeddings e`i ⊕ e`j (e`i , e
`
j ∈ E`), the DNN will

calculate the probability P (e`i ⊕ e`j) that the concatenated embedding is infected.

In the second phase, the KNN-based classifier produces a binary decision to ex-

plicitly inform the web service provider whether the registration process of a new user

has been attacked. As shown in our experimental studies, the DEFEAT discriminator

achieves over 90% detection accuracy in almost all cases.

3.3 PERFORMANCE STUDY

This section provides discussion of the experiments that compare the effectiveness

of the proposed statistic-based discriminator and DEFEAT discriminator in terms of

ideal and general settings.

3.3.1 Experimental Setting

All the experiments were conducted in the Chameleon Cloud [78]. A single Chameleon

Cloud node was used with 16 virtual CPUs @2.3GHz and 32GBs of memory. The

experiments involved the two data sets: FEI [75] and LFW [76] as presented in Table

3.1. The aforementioned FEI data set represents an ideal and consistent background

27

setting when a facial photo was taken, while the LFW represents general and diverse

background settings. Each data set is equally split into three sets representing three

kinds of users, targeted victims, attackers, and clean users. With approximately 15

photos per user, 10 photos were used for each targeted victim and clean user for

training FaceNet and the discriminators. Specifically, for the targeted victims, some

of their photos were replaced with the attackers’ photos during the training. Then,

the remaining photos were used for testing purposes. Both the targeted victims and

attackers’ photos will be labeled as injected by the discriminators.

The effectiveness of the discriminator is evaluated using the following four metrics:

(i) precision; (ii) recall; (iii) F1 score and (iv) overall accuracy.

Definition 3.3.1. Precision measures the percentage of the correctly identified in-

fected photos among all the photos being tested. In the following equation, TP stands

for ”true positive”, FP stands for ”false positive”, TN stands for ”true negative”, and

FN stands for ”false negative”.

Precision =
Correctly Identified Infected Photos

All Photos Labed Infected
=

TP

TP + FP

Definition 3.3.2. Recall measures the percentage of the correctly identified infected

photos against the total number of infected photos that have been tested. In the

following equation, TP stands for ”true positive” and FN stands for ”false negative”.

Reall =
Correctly Identified Infected Photos

All Infected Photos Tested
=

TP

TP + FN

Definition 3.3.3. F1 score is the combination of precision and recall which serves

as an overall performance indicator.

F1 = 2 · Precision ·Recall
Precision+Recall

28

Definition 3.3.4. The overall accuracy evaluates the detection correctness for both

the infected photos and pristine photos.

Accuracy =
TP + TN

TP + TN + FP + FN

3.3.2 Experimental Results

The experiments evaluate the impact of several factors on the effectiveness of the

statistics-based discriminator and the DNN-based discriminator (DEFEAT), which

include the variation of the ratio of the injected attackers’ photos, the types of back-

grounds, and the number of training photos per user. Both random and optimal

attacks were studied. The default data set, injection rate, and number of photos per

user throughout the experiment was the LFW data set, 50%, and 10, respectively. In

the KNN-based classifier, k is set to 5.

3.3.2.1 Effect of the Number of Injected Photos

In the first round of experiments, the number of injected photos is varied from 1 to 5,

among 10 training photos/users in the LFW dataset. It is worth noting that injecting

more photos (beyond five) will start decreasing the overall facial recognition accuracy

as shown in Section 3.1, which will raise the alarm to the service provider. The

accuracy, precision, recall, and F1 of our discriminators is measured using 5 testing

photos per type of user, i.e., targeted victims, attackers, and clean users. Both the

targeted victims and attackers’ photos will be labeled as injected. Figure 3.7 shows

the detection results after the random attack, and Figure 3.8 shows the results after

the optimal attack.

Under both attack strategies, DEFEAT maintains above 90% accuracy in all the

scenarios and generally outperforms the statistic-based discriminator in all measure-

ments. Most importantly, when the number of injected photos is close to half of the

29

(a) Accuracy (b) Precision

(c) Recall (d) F1

Figure 3.7: Random Attack - Varying the Number of Injected Photos

(a) Accuracy (b) Precision

(c) Recall (d) F1

Figure 3.8: Optimal Attack - Varying the Number of Injected Photos

30

(a) Random Attack (b) Optimal Attack

Figure 3.9: Effect of Photo Backgrounds

training photos, DEFEAT achieves more than 99% detection accuracy. As shown in

Section 3.1, attackers need to replace nearly 50% of photos of the victim in order not

to decrease the face recognition system’s accuracy and arouse alarms. That means

that, when the attacker tries to avoid affecting the overall facial recognition accuracy

by injecting more photos, it also causes the DEFEAT system to be more accurate in

detecting the attack. The performance of the DEFEAT system should be attributed

to the DNN which intelligently classifies the different features among injected and

clean photos. The statistic measurements help classification but are less effective

than the DNN, especially under the optimal attack when the attacker’s photos look

similar to the victim’s photos.

3.3.2.2 Effect of the Photo Background

The second round of experiments evaluates the impact of the photo backgrounds on

the effectiveness of both discriminators. Both the FEI and LFW data sets were used.

The FEI data set contains photos with relatively consistent backgrounds, representing

an easy setting of facial recognition. Alternatively, the LFW data set contains photos

with various backgrounds, representing a difficult, more realistic setting for facial

recognition, such as when a user may log onto the web service from different devices

31

and in different places.

Figure 3.9 shows the overall accuracy of the statistic-based discriminator and

DEFEAT discriminator in the two data sets under the random and optimal attacks,

respectively. When a random attack is conducted, both discriminators can correctly

detect the attack 100% of the time on the FEI data set. This is because the internal

differences inside a label’s cluster (i.e., the photos with the same label) is enough to be

a differentiating factor. As both of the statistics-based discriminator and DEFEAT

utilize this factor, they both achieve high accuracy.

When it comes to the complex photo backgrounds featured in the LFW data set,

the statistic-based discriminator falls short while the DEFEAT discriminator still

maintains high accuracy. This is because the complex backgrounds have likely lead

to the feature vectors with more complex meanings which are hard to be fully captured

by simple statistics such internal and external distances. DEFEAT takes advantage of

both statistic measures and the outstanding classification ability of DNN on complex

feature vectors, being capable of distinguishing infected photos even under a variety

of background settings.

3.3.3 Comparison of On-Site and Off-Site Deployment

As mentioned in Section 3.2.1, there are two possible ways to deploy the proposed

DEFEAT system: the on-site deployment and the off-site deployment methods. This

section provides a comparison of these two types of deployments. Two computers are

used to simulate the web service provider and the security provider, respectively. For

the on-site deployment, FaceNet and DEFEAT are installed on the same computer,

whereas, for the off-site deployment, FaceNet and DEFEAT are installed in separate

computers, whereby the feature vectors generated by FaceNet in one computer will

be sent to DEFEAT in the other computer to conduct the attack detection. Once

the detection is completed, the detection result is sent back to the first computer

32

Figure 3.10: Comparison of On-site and Off-site Deployment

that mimics the web service provider. In both types of deployments, the number of

photos received by the service provider is varied from 2,000 to 10,000. Note that only

a single thread is used in this test. The number of photos can be easily scaled up

when multiple server nodes are adopted since they can use the same detection model

for authentication and attack detection after the training is completed.

Figure 3.10 reports the average response time per face authentication, i.e., photo

validation. As expected, the off-site deployment requires a longer response time due

to the network delay caused by the transmission of the feature vectors and decisions

between the web service provider and the security provider. However, the network

delay adds only 0.1% more response time compared to that of the on-site deployment.

The main reason is that the sizes of feature vectors and detection results are only a

few bytes per user. We also observe that the response time per photo stays relatively

constant when the total number of photos increases. Note that the seemingly large

fluctuation of the curve is due to the zoom-in effect used to show the slight gap

between the two deployment methods. The average response time in different sizes of

data sets is around 70ms, because the size of the DEFEAT model is not determined

by the total number of photos. Hence, the individual photo validation time is not

affected by the data size. The result also demonstrates the potential scalability of

this approach.

33

Chapter 4

DETECTING TARGETED DATA POISONING ATTACKS

ON DNN-BASED DEEPFAKE DETECTORS

In this chapter, a discussion on the security of deepfake detectors is provided, particu-

larly in the context of label-flipping data poisoning attacks on a state-of-the-art deep

neural network-based detectors. Also proposed is a detection network that works

in conjunction with existing deepfake detectors that will determine whether such an

attack is in progress. The layout of this chapter is as follows: Sections 4.1 and 4.2

describe and evaluate the threat of data poisoning attacks on deepfake detectors,

then, in Section 4.3, the proposed defense system, Protect, is introduced. Section 4.4

provides a discussion of the evaluation methods and results.

4.1 THREAT MODEL

This work is focused on a targeted data poisoning attack on a state-of-the-art DNN-

based deepfake detector. We consider the following typical deployment of deepfake

detectors: first, the deepfake detector is trained in-house using existing fake image

samples generated by known sources; then, the trained deepfake detector is launched

in the field to screen online images and detect fake images for users. As new types

of fake images are always emerging just like new types of malware is being reported

everyday, the deepfake detector may need to be re-trained on the new image set

collected during the service term to improve its detection accuracy. Without new

34

Dataset Tested

DeepFakes FaceSwap Face2Face Neural
Textures

FaceShifter

D
a
ta

se
t

T
ra

in
e
d DeepFakes .995214 .507754 .548897 .621086 .501115

FaceSwap .968438 .994636 .641251 .563249 .503176

Face2Face .993586 .506502 .993720 .765992 .502110

Neural
Textures

.994036 .511141 .824165 994196 .576536

FaceShifter .843887 .524049 .625270 .747984 .999397

Table 4.1: Resulting accuracy upon training XceptionNet-based models for deepfake
detection on five types of deepfakes, and testing on each type of deepfake

training, the detector that can recognize one type of fake images is not effective in

detecting other types of fake images on which it has not been trained. The experi-

mental results in Table 4.1 demonstrates such a scenario. Specifically, the left column

of the table lists the types of fake images that are used for training, and the header

column lists the types of fake images that the detector was tested on. As shown in

the table, the detection accuracy of the example detector, XceptionNet, is highest

only when it is tested against the same type of fake images that has already been

learned through training. For other fake image types that the detector has not seen

before, the accuracy can be as low as 50%- close to random guesses.

The retraining process would be similar to the current spam email reporting sys-

tem whereby users can provide feedback to the detector by labeling images as fake

or real when they think the detector has come to a erroneous conclusion. If some of

the newly collected images are mislabeled, especially if some fake images are reported

as real by a malicious user (an attacker), training on such a poisoned image set will

mislead the deepfake detector to allow fake images to circulate online. Specifically,

the attacker may want to always report fake images containing a target victim’s face

as real to the deepfake detector so that the deepfake detector will eventually deem any

fake images about the victim as real and let this fake information about the victim

35

to spread. The goal of this work is thus to provide a method to help the deepfake

detector distinguish between clean and poisoned training image samples to prevent it

from learning unintended behavior.

According to the above threat model, the data poisoning attack in the real world

is formalized as follows: Let Dnew denote the set of newly-collected training images for

a deepfake detector, that is, image samples collected and labeled as per user feedback.

Since Dnew contains images which are labeled as “real” or “fake” according to the

user feedbacks, considering the possible existence of attackers, some images in Dnew

may have incorrect (poisoned) labels. Let t denote the face of a targeted victim, the

attackers may intentionally label the fake images of the victim t (deepfakes targeted

the victim) as “real” or “unaltered” in order to mislead the deepfake detector and

spread fake information about the victim. In another case, an attacker may change

the label of real images of a victim to “fake”, which, however, would have much less

impact than the previous case since that only causes some service disruption (i.e., not

able to upload images) for the victim, as opposed to potentially devastating damages

to the victim’s reputation.

4.2 ATTACK RESULTS

To verify the effectiveness of the aforementioned targeted data poisoning attack, we

have conducted the following experiments. We select the state-of-the-art deepfake

detector [39], based on XceptionNet [40]. Then, we examine the its ability to detect

new types of fake images that it has not been trained on. We train the detector

using the DeepFakes dataset [30] of 10,000 fake images, and test the detectors on the

FaceSwap dataset [31]. As shown in Table 4.1, the detector achieves high detection

accuracy as expected on the fake images is has been trained on. However, when it

comes to the new type of fake images, the accuracy drops significantly to 50.78%.

After the detector has been re-trained on the new type of fake images, from the

36

FaceSwap dataset [31], the accuracy improves again, up to 97.48%. We see similar

results for re-training the deepfake detector on other types of fake images. This

phenomenon indicates an ongoing need of retraining these deepfake detectors often

to recognize the emerging types of fake images.

We then create a poisoned training dataset based on the existing deepfake training

set [30]. We denote the original training dataset as Do, which contains 10,000 fake

images and 30,000 real images belonging to 1,000 users. We synthesize the poisoned

training dataset by randomly selecting a small set of target faces (denoted as T)

and flip the labels of the fake images that contain the faces in T to “real”. Then, we

train the XceptionNet detector using the poisoned training datasets, each with 10,000

images. During the testing, we use another image set that contains new fake images

of the faces in the targeted victim set T . A data poisoning attack is considered

successful if it meets the following two conditions: (i) the recall rate of detecting

correctly-labeled fake images and real images (Equations 4.1 and 4.2) remains high

as if not being attacked; (ii) fake images containing the targeted victims are recognized

as “real” as measured by the wrong recognition rate (Equation 4.3).

RecallReal =
correctly identified real images

Total # of real images
(4.1)

RecallFake =
correctly identified fake images

Total # of fake images
(4.2)

AttackSuccess =
of victim′s fake images not recognized

Total # of victim′s fake images
(4.3)

To test this type of data poisoning attack, XceptionNet was trained on each of

the data sets described in Section 4.4.1. To produce an average result, XceptionNet

was trained seven times, each time with a different subset of incorrect labels in the

37

Figure 4.1: Recall rates of XceptionNet trained on clean data sets

training data set. For comparison, the results of training XceptionNet on clean data

sets are shown in Figure 4.1.

Figure 4.2 shows the experimental results that indicate the success of the data

poisoning attack on XceptionNet. Specifically, these results show both recall rates of

real and fake images (Equations 4.1 and 4.2) remain above 98%, even with a poisoned

training data set, while maintaining an attack success rate (corresponding to Equation

4.3) of above 97.8%.

In addition, the effect of varying the rate of poisoning was also explored. In

the experiments, XceptionNet was trained on the FaceShifter data set with rates of

poisoning varying between 5% and 25%, at intervals of 5%, corresponding to 50, 100,

150, 200, and 250 identities. Results are shown in Figure 4.3. It is shown that,

even with a 5% poison rate, the attack is extremely successful, maintaining a high

38

(a) Deepfake detection recall rate of both
labels

(b) Incorrect acceptance of fake images by
XceptionNet

Figure 4.2: Targeted data poisoning attack success rates on XceptionNet

(a) Deepfake detection recall rate of both
labels

(b) Incorrect acceptance of fake images by
XceptionNet

Figure 4.3: Targeted data poisoning attack success rates on XceptionNet at different
poison rates

39

recall rate for each non-targeted identity and achieving an attack success rate above

95%. This suggests that, even when a deepfake detector is trained on many different

kinds of deepfake images, it is still vulnerable to the targeted data poisoning attack

described in Section 4.1.

4.3 THE PROPOSED PROTECTOR NETWORK

4.3.1 Model Architecture

As the deepfake detector will need to be updated periodically to keep up with the

newly emerging types of fake images that it has not seen, the risk of collecting poisoned

training dataset from user reported data is inevitable. Our defensive method is to

build a protector model that can help distinguish poisoned fake images and non-

poisoned fake images regardless of the type of fake images. The protector model

takes the feature vectors generated by the deepfake detector as input and outputs two

labels: poisoned and non-poisoned. The ultimate goal of the protector is to identify

the fundamental differences between the feature vectors of poisoned images and non-

poisoned images. The rationale behind this is that images with incorrect labels will

activate different portions of the layers in the deepfake detector so as to reach the

wrong label compared to the non-poisoned images. As a result, the obtained feature

vectors from the poisoned images are likely from a different latent space which may

be able to be captured by another deep neural network structure, i.e., the protector.

We suspect the underlying differences between the poisoned and non-poisoned feature

vectors would share common patterns irrelevant to the the actual fake image types,

and thus, the protector would still function for new types of fake image types that it

does not seen. Also, if our hypothesis holds, our protector network will not need to

be retrained on the field, which prevents it from being poisoned by newly collected

data.

Towards the above goal, we design our protector model as shown in Figure 4.4.

40

Figure 4.4: Overview of Protector model

The protector takes two kinds of inputs, i.e., a low-level feature representation and

a high level feature representation from the deepfake detector. In particular, for

XceptionNet, we take the feature vectors from the end of the entry flow and the end

of the exit flow. Both the low-level and high-level feature vectors will be normalized

through the batch normalization process. After that, the lower-level feature vector

will be fed into a dense network which consists of a fully connected layer with 512

nodes. The high-level feature vector will be fed into the image recognition residual

neural network, ResNet50 [54, 79] for analysis. Then, the output from both the dense

network and ResNet50 will be combined and sent to another dense network that

contains 1 layer, also containing 512 nodes. Finally, The output from the last fully

connected layer will be integrated using the softmax function and produce one of the

three labels: real, fake, poisoned.

4.3.2 Data Set Preparation

To train the Protector network, we mimic the data poisoning attacks on data sets of

various types of fake images as follows: We start with the FaceForensics data set [39]

that contains 1,000 youtube videos of people and a deepfake constructed from each

original video using Faceswap [31], Face2Face [32], DeepFakes [30, 80], FaceShifter

[34] and NeuralTexture [33], resulting in a total of 6,000 videos. Each of these data

41

sets is described in further detail in Section 4.4.1.

For each of the fake data sets, 25% of the fake videos’ labels were changed to

“real”. Then, each data set of fake videos is combined with the corresponding data

set of 1,000 real videos, resulting in a data set of 2,000 videos, with half being fake

videos using a specific deepfake method, and the other half being real videos. Then,

using a random seed, 25% of the videos were picked to be poisoned. Poisoned videos

have their labels changed from fake to true. Frames of the videos containing faces are

used as the deepfake images.

We do this with 5 different random seeds. At this point there are 25 data sets,

each data set containing 750 fake videos and 1250 real videos, 250 of with are poisoned

videos. For each video in the new dataset, the first 370 frames that have an identifiable

person are saved. The first 70% of the frames are used for the training set, the next

10% are used for the validation set, and the final 20% are used for the test set. The

frames are cropped around the face using the dlib package’s get frontal face detection.

Then it is resized to size 299x299x3 using bilinear interpolation. At the end, we have

mixed image datasets that contain half fake images and half real images; among the

half fake images, some of them are poisoned, i.e., fake images that are intentionally

labeled as real images.

In the above training data sets, the percentage of poisoned fake images is typically

very low. If we feed such a data set to the deepfake detector, and train the protector

using these feature vectors, the protector will learn mostly the correctly labeled real

and fake images but very little about the poisoned fake images. The imbalanced

training data sets will result in low detection accuracy of the poisoned images. In order

to resolve this issue, we propose the following method to collect a balanced training

data set for the protector model. First, we create k training data sets instead of one

as described in the previous paragraph. Each data set contains n images including

50% real images, β% fake images and ε% poisoned fake images (β% + ε% = 50%).

42

Then we train k deepfake detector models, each of which takes one of the above k

data sets as input. From the output of each model, we randomly select feature vectors

of n
3k

real images, n
3k

correctly labeled fake images, and n
3k

poisoned fake images. By

assembling the selected feature vectors from all the k deepfake detector models, we

obtain the final training data set for the protector model. The final training data set

contains a balanced split of each type of images, i.e., real, fake and poisoned images’

feature vectors each occupy 1
3

of the training data set.

We prepared two kinds of test data sets. One kind of data set is the data set that

contains the same type of fake images used for training the protector model. The

other kind of data set is the data set that contains the type of fake images which have

not been seen by the protector model. The percentage of real, fake and poisoned

images in the test data set is also balanced, i.e., 1
3

of each type.

4.3.3 Feature Vector Concatenation

Throughout the experiments, further described in Section 4.4, we experiment with

concatenating two feature vectors from XceptionNet’s exit flow: the feature vector

corresponding to the identity in question, and a known fake feature vector correspond-

ing to that identity, generated with one of the deepfake generation methods described

in Section 4.4.1. This results in a 4096-dimensional input to the dense network, as

opposed to the 2048-dimensional input referenced in Figure 4.4. The idea behind this

method is that, comparing a facial feature vector with a known fake feature vector,

it may be possible to determine whether the label of the image in question (real or

fake) is erroneous. Experiments involved combined feature vectors are described in

Section 4.4.4

43

4.3.4 Model Training and Testing

As the deepfake detector needs to be improved over time to recognize new types of

fake images, the deepfake detector will be trained both in-house and on the field,

while the protector model will only need to be trained only initially, that is, before

deployment.

The initial training starts from the deepfake detector model. As described in the

previous section, we take k training data sets and train k deepfake detector models

respectively to produce the training data set for the protector model. The inputs to

the protector model are first batch normalized. The goal of the batch normalization is

to shift the starting data into a range that is easier to train with the standard initial

weights and introduce the potential to remove the differences in mean and variance

in the features from the different detectors. Batch normalization is implemented as

follows.

Define input x, output y, trainable variables γ and β, and hyperparameters ε =

0.001 and m = 0.99. During the training the output is calculated as follows.

y = γ · (x−mean(x))/
√

variance(x) + ε+ β (4.4)

During testing a running mean (µ) and running variance (σ2) is used, for in

practice, one might not have a full batch of data.

y = γ · (x− µ)/
√
σ2 + ε+ β (4.5)

The running mean and variance are calculated during testing using equations 4.3.4

44

and 4.3.4.

µ = µ ·m+ mean(x) · (1−m) (4.6)

σ2 = σ2 ·m+ variance(x) · (1−m) (4.7)

We conduct the batch normalization on both the low-level feature representations

and the high-level feature representations. For the XceptionNet, the low-level feature

representation is extracted from layer 36 and is of shape (756), and the high-level

feature vector is extracted from the penultimate (132th) layer and consists of 1024

dimensions.

After batch normalization, the low-level feature vectors are fed into 1 dense layer

containing 512 nodes (with no activation function). The learning rate was set to 10−6,

and the learning algorithm is ADAM. The high-level feature vectors are fed into a

ResNet50 model. Finally, we add the 512 dimension output from the initial dense

layer and 512 dimension output from the ResNet model and put it through a dense

layer to get a 3 class output. The last layer uses the softmax function to produce the

following vector for each image: [probabality image is True, probability image if fake,

probability image is poisoned].

The loss function is the sparse categorical loss function defined as follows

1

n

∑
n

∑
c

yc,truelog(yc,predicted) (4.8)

where yctrue is the label for class c (1 if it belongs to class c and 0 otherwise) and

yc,predicted is the probability of the image belonging to class c, output by the model

and normalized so that
∑

c yc,predicted = 1 (to make it a true probability distribution).

Thanks to the behavior of the softmax function, the output of the model should

already be normalized.

45

The training is conducted until the training accuracy is above 99.99%. This can

take as few as 2 epochs to as many as 12 epochs.

The effectiveness of the protector model is challenged when the deepfake detector

is deployed on the field and being retrained on newly collected data. By assuming

all the collected data is correctly labeled, the deepfake detector is trained on these

new image and label pairs until its detection accuracy rises above 95%. Then, the

protector model will examine both the low-level and high-level feature vectors of

these new image collections output by the deepfake detector to check if there are

any potentially poisoned data. The low-level and high-level feature vectors will be

normalized and fed to the protector model. If the protector model deems an image as

poisoned, an alert will be sent to the service provider for the further investigation.

4.4 EVALUATION

4.4.1 Data Sets

The data sets used for evaluation of the proposed system include FaceForensics++

[39] and FaceShifter [34]. The FaceForensics++ data set [39] is composed of 1,000

unaltered short videos on YouTube [81], as well as 1,000 videos altered by each of

four deepfake generation methods: DeepFakes [30] [80], FaceSwap [31], Face2Face

[32], and Neural Textures [33]. A total of 5,000 videos are in this data set. The

FaceShifter data set [34] is also composed of 1,000 unaltered YouTube videos, with

an accompanying 1,000 fake videos, generated using a deepfake generation method

called FaceShifter [34]. Below are brief desciptions of each method.

DeepFakes (DF) For this deepfake generation method, the implementation found

on the faceswap github [30] was used. These deepfakes follow a classic method: at each

frame of each pair of input videos (source and target videos), the face was located,

46

cropped, and aligned using a MTCNN-based face detector, as described in [82]. Then,

using a dual autoencoder system, the source face is applied to the target face, then

being blended using Poisson image editing [83].

FaceSwap (FSwap) FaceSwap [31], unlike DeepFakes, is based on graphics, as

opposed to DNNs, for swapping a source and target face. More specifically, it detects

facial landmarks and fits them to a template 3D model. From there, the source face

is applied to the target face by fitting the 3D source face to the target facial image,

using the original textures. Finally, color-correction and blending are applied to the

resulting image. While generally less visually realistic than the DeepFakes generation

method [30, 80], this method is more computationally lightweight [31].

Face2Face (F2Face) This deepfake generation method seeks to swap facial ex-

pressions from a source video to a target video, while preserving the identity of the

target individual. This is referred to as “facial reenactment” and is done through

manual selection of key frames, which serve as representatives of each face, allowing

facial expressions, poses, and lighting to be processed. To generate the final images,

expression data from the source face is applied to the face in the target video [32, 39].

NeuralTextures (NT) NeuralTextures [33], similar to Face2Face [32], is a method

of facial reenactment, involving learning textures of the target as 3D mesh objects,

then training a rendering network with adversarial loss [84] and photometric recon-

struction loss [85]. The implementation in FaceForensics++ only reconstructed the

mouth region of the target image [39].

47

FaceShifter (FShifter) FaceShifter [34], unlike the other methods, is a GAN-based

identity-swapping network and is composed of two networks: an Adaptive Embed-

ding Integration Network (AEI-Net) and a Heuristic Error Acknowledging Refine-

ment Network (HEAR-Net). The former extracts the facial identity from the source,

as well as pose, expression, and lighting data from the target. Then, an Adaptive

Attentional Denormalization (AAD) generator integrates both sets of attributes into

a single swapped face. Afterwards, the HEAR-Net ensures that facial obstructions

(such as glasses, hair, etc.) are preserved by comparing the reconstructed image with

the original image.

4.4.2 Experiments

Several experiments were conducted, evaluating the protector network’s ability to

identify poisoned images while maintaining reasonably high accuracy identifying true

real and true fake images. In Section, 4.4.3, we explore the effect of training on

different types of fake images then testing on types of fake images that the network

has yet to learn. Then, as described in Section 4.4.4, we explore the effects of training

a ResNet50 model, concatenating feature vectors as described in Section 4.3.3, also

on various different types of fake images. This model is then used as a basis for

comparison with the protector network in Section 4.4.5.

4.4.3 Effect of Training Protector on Different Types of Fake Images

Figure 4.5 shows the effect of training the protector network on different types of

fake images: DeepFakes [30], FaceSwap [31], and Face2Face [32]. In general, training

the protector network on the FaceSwap dataset leads to the best results, with each

training dataset showing a high recall for poisoned labels. However, when trained on

the DeepFakes dataset and tested on FaceSwap, we observe a dip in accuracy when

identifying the label of the particular deepfake image. In conjunction with the high

48

(a) Accuracy of the protector network
having been trained on various types of

fake images

(b) Poison recall of the protector network
having been trained on various types of

fake images

Figure 4.5: Effects of training the protector network on different kinds of fake images

recall rate for the poisoned image, this can be interpreted as the protector network

potentially showing difficulties in identifying images that are real, which may be

remedied with additional fine-tuning of the parameters used in the training process.

4.4.4 Effect of Combining Feature Vectors

This experiment studies the effect of concatenating two feature vectors, from the exit

flow of the target deepfake detector of the same identity in order to determine, from

analyzing the differences in the feature space and the given label of the unknown

feature vector, whether this label is likely to be incorrect. Tables 4.2 and 4.3 show

the accuracy and poison recall respectively of the ResNet model having been trained

on these combined feature vectors, as described in 4.3.3. It is apparent that this

DeepFakes Face2Face FaceSwap FaceSwap & Face2Face

DeepFakes 0.9873 0.9960 0.9959 0.9957

Face2Face 0.9589 0.9802 0.9631 0.9707

FaceSwap 0.9304 0.9377 0.9417 0.9486

Table 4.2: Accuracy achieved by ResNet50 trained on combined feature vectors. The
top row shows the datasets on which the model was trained, whereas the left column
shows the datasets on which it was tested.

49

DeepFakes Face2Face FaceSwap FaceSwap & Face2Face

DeepFakes 0.9814 0.9953 0.9965 0.9953

Face2Face 0.9929 0.5543 0.9991 0.9970

FaceSwap 0.9090 0.8712 0.9507 0.9364

Table 4.3: Poison recall achieved by ResNet50 trained on combined feature vectors.
The top row shows the datasets on which the model was trained, whereas the left
column shows the datasets on which it was tested.

is an effective method of detecting the described targeted data poisoning attack on

deepfake detectors in most cases. However, this method assumes that the discrim-

inator model has access to known-correct labels and corresponding feature vectors

of every identity that may be in question. This may not be feasible in every case

of deepfake detection, as, for example, there may not be many high-quality images

(eventually feature vectors) with labels known with 100% certainty of certain people.

Therefore, this method will be used as a high-quality comparison for the protector

network, which does not require access to known-correct labels after its deployment,

making it more convenient and feasible in real-world scenarios.

4.4.5 Effect of Model Architecture

This experiment explores the effect of the protector model’s architecture, which uses

feature vectors from both the entry and exit flows of the deepfake detection model,

as opposed to only using the exit flow in the decision. The model using only the exit

flow makes use of the feature vector concatenation, and is described in the previous

section. For convenience, the results of the latter model are reiterated in the Table

4.4 below. As is shown, the protector network performs similarly well as the ResNet

detector using feature concatenation. This can be explained such that the use of

the entry flow and exit flow feature vectors in conjunction provide more information

than only analyzing the exit flow feature vector, only derived from the entry flow

vector. Since the targeted deepfake detector uses only the exit flow feature vector to

50

Protector ResNet50

Accuracy Poison recall Accuracy Poison recall

face2face 0.981407 0.954972 0.9631 0.9991

faceswap 0.977187 0.932849 0.9417 0.9507

Deepfakes 0.942813 0.919132 0.9959 0.9965

Table 4.4: Accuracy and poison recall ResNet50 and Protector network trained on
FaceSwap datasets

make its final decision for the image, this addition of the protector network adding

the additional analysis portion enhances its robustness to targeted data poisoning

attacks, without requiring an additional image (and corresponding feature vector), as

the ResNet discriminator does.

51

Chapter 5

CONCLUSION

With the increasingly widespread use of DNNs, comes high motivation for attackers

to develop novel ways in causing malicious behavior in such systems. This report

explored the potentially devastating outcomes of allowing DNNs to remain vulnerable

to targeted data poisoning attacks, specifically in the contexts of facial authentication

and deepfake detection.

For facial authentication, it was demonstrated to be nearly trivially easy to cause

unintended behavior in the state-of-the-art facial authentication system, using the

replacement data poisoning attack on the targeted facial authentication user to gain

access to their potential account.

Then, to combat such a powerful, yet simple, attack, a DNN-based discrimina-

tor, DEFEAT, was proposed that achieved over 90% accuracy in detecting when

such an attack is occurring. Upon comparison to other possible detectors, DEFEAT

performed favorably.

In the context of deepfake detection, we explored a label-flipping targeted data

poisoning attack avenue paralleling the attacks that have previously been seen in

the context of spam-recognition. This type of attack was applied and shown to be

effective in the context of identification of deepfakes using a state-of-the-art deepfake

detection model.

A remedy was then proposed based on the analysis of the resulting label output

52

by the deepfake detector, comparing it to the facial feature vector examined by the

deepfake detector. It was shown to be effective in the identification of poisoned

(“flipped”) labels, even for deepfakes generated using a method not seen at any point

during its training.

53

BIBLIOGRAPHY

[1] D. Lin, N. Hilbert, C. Storer, W. Jiang, and J. Fan. “UFace: Your universal pass-

word that no one can see”. In: Computers & Security 77 (2018), pp. 627–641.

issn: 0167-4048. url: http://www.sciencedirect.com/science/article/

pii/S0167404817302067.

[2] A. Tagat. Online fraud: too many accounts, too few passwords. TechRadar. July

2012. url: http://www.techradar.com/us/news/internet/online-fraud-

too-many-accounts-too-few-passwords-1089283.

[3] url: https://facex.io/.

[4] A. Walling. Top 10 Facial Recognition APIs & Software of 2020. url: https:

//rapidapi.com/blog/top-facial-recognition-apis/.

[5] F. Schroff, D. Kalenichenko, and J. Philbin. “Facenet: A unified embedding

for face recognition and clustering”. In: Proceedings of the IEEE conference on

computer vision and pattern recognition. 2015, pp. 815–823.

[6] I. Masi, Y. Wu, T. Hassner, and P. Natarajan. “Deep Face Recognition: A Sur-

vey”. In: 2018 31st SIBGRAPI Conference on Graphics, Patterns and Images

(SIBGRAPI). 2018, pp. 471–478.

[7] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and

R. Fergus. “Intriguing properties of neural networks”. In: CoRR abs/1312.6199

(2014).

54

http://www.sciencedirect.com/science/article/pii/S0167404817302067
http://www.sciencedirect.com/science/article/pii/S0167404817302067
http://www.techradar.com/us/news/internet/online-fraud-too-many-accounts-too-few-passwords-1089283
http://www.techradar.com/us/news/internet/online-fraud-too-many-accounts-too-few-passwords-1089283
https://facex.io/
https://rapidapi.com/blog/top-facial-recognition-apis/
https://rapidapi.com/blog/top-facial-recognition-apis/

[8] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter. “Accessorize to a Crime:

Real and Stealthy Attacks on State-of-the-Art Face Recognition”. In: Proceed-

ings of the 2016 ACM SIGSAC Conference on Computer and Communica-

tions Security. Vienna, Austria: Association for Computing Machinery, 2016,

pp. 1528–1540. isbn: 9781450341394. url: https : / / doi . org / 10 . 1145 /

2976749.2978392.

[9] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. “DeepFool: a simple and ac-

curate method to fool deep neural networks”. In: CoRR abs/1511.04599 (2015).

arXiv: 1511.04599. url: http://arxiv.org/abs/1511.04599.

[10] A. J. Bose and P. Aarabi. “Adversarial attacks on face detectors using neural net

based constrained optimization”. In: 2018 IEEE 20th International Workshop

on Multimedia Signal Processing (MMSP). IEEE. 2018, pp. 1–6.

[11] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff. “On Detecting Adver-

sarial Perturbations”. In: ArXiv abs/1702.04267 (2017).

[12] W. Xu, D. Evans, and Y. Qi. “Feature Squeezing: Detecting Adversarial Ex-

amples in Deep Neural Networks”. In: CoRR abs/1704.01155 (2017). arXiv:

1704.01155. url: http://arxiv.org/abs/1704.01155.

[13] G. Cohen, G. Sapiro, and R. Giryes. “Detecting adversarial samples using influ-

ence functions and nearest neighbors”. In: Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition. 2020, pp. 14453–14462.

[14] D. Meng and H. Chen. “Magnet: a two-pronged defense against adversarial

examples”. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer

and Communications Security. 2017, pp. 135–147.

[15] B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. I. P. Rubinstein, U. Saini,

C. Sutton, J. D. Tygar, and K. Xia. “Exploiting Machine Learning to Subvert

55

https://doi.org/10.1145/2976749.2978392
https://doi.org/10.1145/2976749.2978392
https://arxiv.org/abs/1511.04599
http://arxiv.org/abs/1511.04599
https://arxiv.org/abs/1704.01155
http://arxiv.org/abs/1704.01155

Your Spam Filter”. In: Proceedings of the 1st Usenix Workshop on Large-Scale

Exploits and Emergent Threats. 2008.

[16] D. Lowd and C. Meek. “Adversarial Learning”. In: Proceedings of the Eleventh

ACM SIGKDD International Conference on Knowledge Discovery in Data Min-

ing. 2005, pp. 641–647.

[17] G. Wittel and S. Wu. “On Attacking Statistical Spam Filters.” In: Jan. 2004.

[18] B. Biggio, B. Nelson, and P. Laskov. “Poisoning Attacks against Support Vector

Machines”. In: Proceedings of the 29th International Coference on International

Conference on Machine Learning. Edinburgh, Scotland, 2012, pp. 1467–1474.

[19] L. Muñoz-González, B. Biggio, A. Demontis, A. Paudice, V. Wongrassamee,

E. C. Lupu, and F. Roli. “Towards Poisoning of Deep Learning Algorithms

with Back-gradient Optimization”. In: CoRR abs/1708.08689 (2017). arXiv:

1708.08689. url: http://arxiv.org/abs/1708.08689.

[20] B. Wang and N. Z. Gong. “Stealing Hyperparameters in Machine Learning”.

In: 2018 IEEE Symposium on Security and Privacy (SP). 2018, pp. 36–52.

[21] T. Orekondy, B. Schiele, and M. Fritz. “Knockoff Nets: Stealing Functionality of

Black-Box Models”. In: The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). June 2019.

[22] T. Lee, B. Edwards, I. Molloy, and D. Su. “Defending Against Model Stealing

Attacks Using Deceptive Perturbations”. In: ArXiv abs/1806.00054 (2018).

[23] M. Juuti, S. Szyller, S. Marchal, and N. Asokan. “PRADA: Protecting Against

DNN Model Stealing Attacks”. In: 2019 IEEE European Symposium on Security

and Privacy (EuroS P). 2019, pp. 512–527.

[24] A. Paudice, L. Muñoz-González, A. Gyorgy, and E. C. Lupu. “Detection of

adversarial training examples in poisoning attacks through anomaly detection”.

In: arXiv preprint arXiv:1802.03041 (2018).

56

https://arxiv.org/abs/1708.08689
http://arxiv.org/abs/1708.08689

[25] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y. Zhao.

“Neural cleanse: Identifying and mitigating backdoor attacks in neural net-

works”. In: 2019 IEEE Symposium on Security and Privacy (SP). IEEE. 2019,

pp. 707–723.

[26] G. Goswami, N. Ratha, A. Agarwal, R. Singh, and M. Vatsa. “Unravelling

robustness of deep learning based face recognition against adversarial attacks”.

In: Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

[27] T. Seals. “ASUS Home Router Bugs Open Consumers to Snooping Attacks”.

In: ThreatPost (2020). url: https://threatpost.com/asus-home-router-

bugs-snooping-attacks/157682/.

[28] L. Pascu. “Acronis reports critical flaws in GeoVision biometric devices, man-

in-the-middle attack risks”. In: BiometricUpdate (2020). url: https://www.

biometricupdate.com/202006/acronis- reports- critical- flaws- in-

geovision-biometric-devices-man-in-the-middle-attack-risks.

[29] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash,

T. Kohno, and D. Song. “Robust physical-world attacks on deep learning visual

classification”. In: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition. 2018, pp. 1625–1634.

[30] Feb. 2021. url: https://faceswap.dev/.

[31] MarekKowalski. MarekKowalski/FaceSwap. url: https://github.com/MarekKowalski/

FaceSwap/.

[32] J. Thies, M. Zollhofer, M. Stamminger, C. Theobalt, and M. Nießner. “Face2face:

Real-time face capture and reenactment of rgb videos”. In: Proceedings of the

IEEE conference on computer vision and pattern recognition. 2016, pp. 2387–

2395.

57

https://threatpost.com/asus-home-router-bugs-snooping-attacks/157682/
https://threatpost.com/asus-home-router-bugs-snooping-attacks/157682/
https://www.biometricupdate.com/202006/acronis-reports-critical-flaws-in-geovision-biometric-devices-man-in-the-middle-attack-risks
https://www.biometricupdate.com/202006/acronis-reports-critical-flaws-in-geovision-biometric-devices-man-in-the-middle-attack-risks
https://www.biometricupdate.com/202006/acronis-reports-critical-flaws-in-geovision-biometric-devices-man-in-the-middle-attack-risks
https://faceswap.dev/
https://github.com/MarekKowalski/FaceSwap/
https://github.com/MarekKowalski/FaceSwap/

[33] J. Thies, M. Zollhöfer, and M. Nießner. “Deferred neural rendering: Image syn-

thesis using neural textures”. In: ACM Transactions on Graphics (TOG) 38.4

(2019), pp. 1–12.

[34] L. Li, J. Bao, H. Yang, D. Chen, and F. Wen. “Faceshifter: Towards high fi-

delity and occlusion aware face swapping”. In: arXiv preprint arXiv:1912.13457

(2019).

[35] R. Mitz. The fight to stay ahead of deepfake videos before the 2020 US election.

url: https://www.cnn.com/2019/06/12/tech/deepfake-2020-detection/

index.html.

[36] J. Vincent. Watch Jordan Peele use AI to make Barack Obama deliver a PSA

about fake news. Apr. 2018. url: https://www.theverge.com/tldr/2018/

4/17/17247334/ai- fake- news- video- barack- obama- jordan- peele-

buzzfeed.

[37] O. Schwartz. “You thought fake news was bad? Deep fakes are where truth goes

to die”. In: The Guardian (Nov. 2018). url: https://www.theguardian.com/

technology/2018/nov/12/deep-fakes-fake-news-truth.

[38] A. Escalante. Research Finds Social Media Users Are More Likely To Believe

Fake News. url: https://www.forbes.com/sites/alisonescalante/2020/

08/03/research- finds- social- media- users- are- more- likely- to-

believe-fake-news/.

[39] A. Rössler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Nießner.

“FaceForensics++: Learning to Detect Manipulated Facial Images”. In: Inter-

national Conference on Computer Vision (ICCV). 2019.

[40] F. Chollet. “Xception: Deep learning with depthwise separable convolutions”.

In: Proceedings of the IEEE conference on computer vision and pattern recog-

nition. 2017, pp. 1251–1258.

58

https://www.cnn.com/2019/06/12/tech/deepfake-2020-detection/index.html
https://www.cnn.com/2019/06/12/tech/deepfake-2020-detection/index.html
https://www.theverge.com/tldr/2018/4/17/17247334/ai-fake-news-video-barack-obama-jordan-peele-buzzfeed
https://www.theverge.com/tldr/2018/4/17/17247334/ai-fake-news-video-barack-obama-jordan-peele-buzzfeed
https://www.theverge.com/tldr/2018/4/17/17247334/ai-fake-news-video-barack-obama-jordan-peele-buzzfeed
https://www.theguardian.com/technology/2018/nov/12/deep-fakes-fake-news-truth
https://www.theguardian.com/technology/2018/nov/12/deep-fakes-fake-news-truth
https://www.forbes.com/sites/alisonescalante/2020/08/03/research-finds-social-media-users-are-more-likely-to-believe-fake-news/
https://www.forbes.com/sites/alisonescalante/2020/08/03/research-finds-social-media-users-are-more-likely-to-believe-fake-news/
https://www.forbes.com/sites/alisonescalante/2020/08/03/research-finds-social-media-users-are-more-likely-to-believe-fake-news/

[41] D. Afchar, V. Nozick, J. Yamagishi, and I. Echizen. “Mesonet: a compact facial

video forgery detection network”. In: 2018 IEEE International Workshop on

Information Forensics and Security (WIFS). IEEE. 2018, pp. 1–7.

[42] D. Güera and E. J. Delp. “Deepfake video detection using recurrent neural

networks”. In: 2018 15th IEEE International Conference on Advanced Video

and Signal Based Surveillance (AVSS). IEEE. 2018, pp. 1–6.

[43] E. Sabir, J. Cheng, A. Jaiswal, W. AbdAlmageed, I. Masi, and P. Natarajan.

“Recurrent convolutional strategies for face manipulation detection in videos”.

In: Interfaces (GUI) 3.1 (2019).

[44] H. H. Nguyen, J. Yamagishi, and I. Echizen. “Capsule-forensics: Using capsule

networks to detect forged images and videos”. In: ICASSP 2019-2019 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP).

IEEE. 2019, pp. 2307–2311.

[45] Y. Li and S. Lyu. “Exposing deepfake videos by detecting face warping arti-

facts”. In: arXiv preprint arXiv:1811.00656 (2018).

[46] S.-Y. Wang, O. Wang, R. Zhang, A. Owens, and A. A. Efros. “CNN-generated

images are surprisingly easy to spot... for now”. In: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition. Vol. 7. 2020.

[47] R. Tolosana, S. Romero-Tapiador, J. Fierrez, and R. Vera-Rodriguez. “Deep-

Fakes Evolution: Analysis of Facial Regions and Fake Detection Performance”.

In: arXiv preprint arXiv:2004.07532 (2020).

[48] S. Hussain, P. Neekhara, M. Jere, F. Koushanfar, and J. McAuley. Adversarial

Deepfakes: Evaluating Vulnerability of Deepfake Detectors to Adversarial Ex-

amples. 2020. arXiv: 2002.12749 [cs.CV].

[49] I. J. Goodfellow, J. Shlens, and C. Szegedy. “Explaining and Harnessing Ad-

versarial Examples”. In: (2015).

59

https://arxiv.org/abs/2002.12749

[50] A. Kurakin, J. I. Goodfellow, and S. Bengio. “Adversarial Machine Learning at

Scale”. In: international conference on learning representations (2017).

[51] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. “Towards Deep

Learning Models Resistant to Adversarial Attacks”. In: 6th International Con-

ference on Learning Representations. 2018.

[52] Y. Wang, X. Ma, J. Bailey, J. Yi, B. Zhou, and Q. Gu. “On the Convergence and

Robustness of Adversarial Training”. In: Proceedings of the 36th International

Conference on Machine Learning. Vol. 97. 2019, pp. 6586–6595.

[53] G. W. Ding, Y. Sharma, K. Y. C. Lui, and R. Huang. “MMA Training: Direct

Input Space Margin Maximization through Adversarial Training”. In: Interna-

tional Conference on Learning Representations. 2020.

[54] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recog-

nition. 2015. arXiv: 1512.03385 [cs.CV].

[55] A. Kurakin, I. J. Goodfellow, and S. Bengio. “Adversarial examples in the

physical world”. In: CoRR abs/1607.02533 (2016). arXiv: 1607.02533. url:

http://arxiv.org/abs/1607.02533.

[56] N. Papernot, P. D. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A.

Swami. “The Limitations of Deep Learning in Adversarial Settings”. In: CoRR

abs/1511.07528 (2015). arXiv: 1511.07528. url: http://arxiv.org/abs/

1511.07528.

[57] J. Su, D. V. Vargas, and K. Sakurai. “One Pixel Attack for Fooling Deep Neural

Networks”. In: IEEE Transactions on Evolutionary Computation 23.5 (2019),

pp. 828–841.

[58] C. Kanbak, S. Moosavi-Dezfooli, and P. Frossard. “Geometric Robustness of

Deep Networks: Analysis and Improvement”. In: 2018 IEEE/CVF Conference

on Computer Vision and Pattern Recognition. 2018, pp. 4441–4449.

60

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1607.02533
https://arxiv.org/abs/1511.07528
http://arxiv.org/abs/1511.07528
http://arxiv.org/abs/1511.07528

[59] S. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard. “Universal Adversar-

ial Perturbations”. In: 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 2017, pp. 86–94.

[60] S. Sarkar, A. Bansal, U. Mahbub, and R. Chellappa. “UPSET and ANGRI

: Breaking High Performance Image Classifiers”. In: CoRR abs/1707.01159

(2017). arXiv: 1707.01159. url: http://arxiv.org/abs/1707.01159.

[61] M. M. Cisse, Y. Adi, N. Neverova, and J. Keshet. “Houdini: Fooling Deep Struc-

tured Visual and Speech Recognition Models with Adversarial Examples”. In:

Advances in Neural Information Processing Systems. Ed. by I. Guyon, U. V.

Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-

nett. Vol. 30. Curran Associates, Inc., 2017, pp. 6977–6987. url: https://

proceedings.neurips.cc/paper/2017/file/d494020ff8ec181ef98ed97ac3f25453-

Paper.pdf.

[62] S. Baluja and I. Fischer. Learning to Attack: Adversarial Transformation Net-

works. 2018. url: https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/

view/16529.

[63] J. Hayes and G. Danezis. “Machine Learning as an Adversarial Service: Learning

Black-Box Adversarial Examples”. In: (Aug. 2017).

[64] K. R. Mopuri, U. Garg, and R. V. Babu. “Fast Feature Fool: A data independent

approach to universal adversarial perturbations”. In: CoRR abs/1707.05572

(2017). arXiv: 1707.05572. url: http://arxiv.org/abs/1707.05572.

[65] K. Xu, G. Zhang, S. Liu, Q. Fan, M. Sun, H. Chen, P.-Y. Chen, Y. Wang,

and X. Lin. “Evading Real-Time Person Detectors by Adversarial T-shirt”. In:

CoRR abs/1910.11099 (2019). arXiv: 1910.11099. url: http://arxiv.org/

abs/1910.11099.

61

https://arxiv.org/abs/1707.01159
http://arxiv.org/abs/1707.01159
https://proceedings.neurips.cc/paper/2017/file/d494020ff8ec181ef98ed97ac3f25453-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/d494020ff8ec181ef98ed97ac3f25453-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/d494020ff8ec181ef98ed97ac3f25453-Paper.pdf
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16529
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16529
https://arxiv.org/abs/1707.05572
http://arxiv.org/abs/1707.05572
https://arxiv.org/abs/1910.11099
http://arxiv.org/abs/1910.11099
http://arxiv.org/abs/1910.11099

[66] B. Nelson, M. Barreno, F. Jack Chi, A. D. Joseph, B. I. P. Rubinstein, U.

Saini, C. Sutton, J. D. Tygar, and K. Xia. “Misleading Learners: Co-opting

Your Spam Filter”. In: Machine Learning in Cyber Trust: Security, Privacy,

and Reliability. Boston, MA: Springer US, 2009, pp. 17–51. isbn: 978-0-387-

88735-7. url: https://doi.org/10.1007/978-0-387-88735-7_2.

[67] T. Gu, B. Dolan-Gavitt, and S. Garg. “Badnets: Identifying vulnerabilities in

the machine learning model supply chain”. In: arXiv preprint arXiv:1708.06733

(2017).

[68] J. Clements and Y. Lao. “Backdoor attacks on neural network operations”. In:

2018 IEEE Global Conference on Signal and Information Processing (Global-

SIP). IEEE. 2018, pp. 1154–1158.

[69] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang. “Trojaning

Attack on Neural Networks”. In: NDSS. 2018.

[70] Y. Gao, C. Xu, D. Wang, S. Chen, D. C. Ranasinghe, and S. Nepal. “STRIP: A

Defence against Trojan Attacks on Deep Neural Networks”. In: Proceedings

of the 35th Annual Computer Security Applications Conference. New York,

NY, USA: Association for Computing Machinery, 2019, pp. 113–125. isbn:

9781450376280. url: https://doi.org/10.1145/3359789.3359790.

[71] Y. Liu, Y. Xie, and A. Srivastava. “Neural Trojans”. In: CoRR abs/1710.00942

(2017). arXiv: 1710.00942. url: http://arxiv.org/abs/1710.00942.

[72] K. Liu, B. Dolan-Gavitt, and S. Garg. “Fine-Pruning: Defending Against Back-

dooring Attacks on Deep Neural Networks”. In: Research in Attacks, Intru-

sions, and Defenses. Ed. by M. Bailey, T. Holz, M. Stamatogiannakis, and S.

Ioannidis. Cham: Springer International Publishing, 2018, pp. 273–294. isbn:

978-3-030-00470-5.

62

https://doi.org/10.1007/978-0-387-88735-7_2
https://doi.org/10.1145/3359789.3359790
https://arxiv.org/abs/1710.00942
http://arxiv.org/abs/1710.00942

[73] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras, and T.

Goldstein. “Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural

Networks”. In: CoRR abs/1804.00792 (2018). arXiv: 1804.00792. url: http:

//arxiv.org/abs/1804.00792.

[74] O. Suciu, R. Mărginean, Y. Kaya, H. Daumé, and T. Dumitraş. “When Does

Machine Learning FAIL? Generalized Transferability for Evasion and Poisoning

Attacks”. In: Proceedings of the 27th USENIX Conference on Security Sympo-

sium. USA: USENIX Association, 2018, pp. 1299–1316. isbn: 9781931971461.

[75] C. E. Thomaz and G. A. Giraldi. “A new ranking method for principal compo-

nents analysis and its application to face image analysis”. In: Image and Vision

Computing 28.6 (2010), pp. 902–913.

[76] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled Faces in

the Wild: A Database for Studying Face Recognition in Unconstrained Environ-

ments. Tech. rep. 07-49. University of Massachusetts, Amherst, Oct. 2007.

[77] V. Nair and G. E. Hinton. “Rectified linear units improve restricted boltz-

mann machines”. In: Proceedings of the 27th international conference on ma-

chine learning (ICML-10). 2010, pp. 807–814.

[78] K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione, M. Cevik,

J. Colleran, H. S. Gunawi, C. Hammock, J. Mambretti, A. Barnes, F. Halbach,

A. Rocha, and J. Stubbs. “Lessons Learned from the Chameleon Testbed”. In:

Proceedings of the 2020 USENIX Annual Technical Conference (USENIX ATC

’20). USENIX Association, July 2020.

[79] NVIDIA. resnet50v1.5. 2020. url: https://github.com/NVIDIA/DeepLearningExamples.

[80] deepfakes. deepfakes/faceswap. Oct. 2020. url: https://github.com/deepfakes/

faceswap.

[81] url: https://www.youtube.com/.

63

https://arxiv.org/abs/1804.00792
http://arxiv.org/abs/1804.00792
http://arxiv.org/abs/1804.00792
https://github.com/NVIDIA/DeepLearningExamples
https://github.com/deepfakes/faceswap
https://github.com/deepfakes/faceswap
https://www.youtube.com/

[82] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. “Joint face detection and alignment

using multitask cascaded convolutional networks”. In: IEEE Signal Processing

Letters 23.10 (2016), pp. 1499–1503.

[83] P. Pérez, M. Gangnet, and A. Blake. “Poisson image editing”. In: ACM SIG-

GRAPH 2003 Papers. 2003, pp. 313–318.

[84] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio. Generative Adversarial Networks. 2014. arXiv:

1406.2661 [stat.ML].

[85] T. Khot, S. Agrawal, S. Tulsiani, C. Mertz, S. Lucey, and M. Hebert. “Learn-

ing unsupervised multi-view stereopsis via robust photometric consistency”. In:

arXiv preprint arXiv:1905.02706 (2019).

64

https://arxiv.org/abs/1406.2661

VITA

Sara Newman is an alumnus of Missouri University of Science and Technology,

having graduated in 2018 Summa cum Laude with a Bachelor of Science in Com-

puter Science with heavy background in mathematics and physics. They received

the Scholarship for Service (SFS) to obtain their Ph.D. in the Department of Com-

puter Science at University of Missouri - Columbia under Dr. Dan Lin, which they

completed in May 2022. During graduate school, Newman has been working at Los

Alamos National Laboratory in Los Alamos, New Mexico.

65

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	Introduction
	DNN-Based Facial Authentication Model
	DNN-Based Deepfake Detection Model

	Literature Review
	Adversarial Attacks on DNNs
	Data Poisoning Attacks on DNNs
	Untargeted Attacks
	Targeted Attacks

	Detecting Targeted Data Poisoning Attacks on DNN-based Facial Recognition Models
	A New Targeted Data Poisoning Attack on Facial Authentication
	Threat Model
	Attack Results

	Our Defense Mechanism
	System Overview
	Defense Model
	Feature-Based DNN Discriminator

	Performance Study
	Experimental Setting
	Experimental Results
	Effect of the Number of Injected Photos
	Effect of the Photo Background

	Comparison of On-Site and Off-Site Deployment

	Detecting Targeted Data Poisoning Attacks on DNN-based Deepfake Detectors
	Threat Model
	Attack Results
	The Proposed Protector Network
	Model Architecture
	Data Set Preparation
	Feature Vector Concatenation
	Model Training and Testing

	Evaluation
	Data Sets
	Experiments
	Effect of Training Protector on Different Types of Fake Images
	Effect of Combining Feature Vectors
	Effect of Model Architecture

	Conclusion
	BIBLIOGRAPHY
	VITA

