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ABSTRACT 

This work focuses on characterizing spatiotemporal patterns of earthquakes, their 

possible causes, and their implications for seismic hazard assessment. I studied both local 

and global earthquakes in the view of complex fault systems. Specifically, I studied the 

background seismicity and long-lived aftershock activities in intraplate North China and 

the Central and Eastern United State (CEUS), and characterized the correlation between 

strain rate and seismicity and evaluated the prediction power of strain rate in different 

tectonic settings. 

I found that periodic or quasiperiodic earthquake recurrence on individual faults, 

as predicted by the elastic rebound model, is not common in nature. Instead, most 

earthquake sequences are complex and variable, and often show clusters of events 

separated by long but irregular intervals of quiescence. The common earthquake 

clustering may be caused by earthquake-induced viscoelastic relaxation and fault 

interaction. Most earthquake sequences are burstier than the Poisson model, implying a 

higher probability of repeating events soon after a large earthquake. Possible long-lived 

aftershocks are found in intraplate North China and the CEUS. Background seismicity in 

intraplate regions may vary with time, highlighting the complexity of intraplate 

seismicity. Mistakenly identifying long-lived aftershocks as background earthquakes may 

overestimate seismic hazard in intraplate regions. The correlation between strain rate and 

seismicity varies between different tectonic settings and is time-dependent. Good strain 

rate-seismicity correlations are found in plate boundary regions and during seismically 

active periods, while no correlations are found in stable continents and during inactive 

periods. All these variations need to be considered in hazard assessment.
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Chapter 1: Introduction 

An earthquake, the shaking of earth caused by a sudden release of energy, has 

potential to cause hazards, including but not limited to: ground shaking, surface rupture, 

landslide, soil liquefaction, and tsunamis. Large earthquakes can cause huge economic 

loss and massive casualties. For example, the 2011 M 9.1 Tohoku earthquake caused 

around $200 billion US dollar in economic loss, and the 1976 M 7.8 Tangshan earthquake 

killed more than 240,000 people (Chen, 1988; Satake, 2014). Assessing and mitigating 

earthquake hazard require a sufficient understanding of spatiotemporal patterns of 

earthquakes, while current knowledge about them is limited or even inaccurate, so the 

temporal and spatial patterns of earthquakes, their possible causes, and their implications 

for seismic hazard assessment are the focuses of this dissertation.  

Plate tectonic theory predicts that large earthquakes occur mainly in plate 

boundaries where tectonic loading concentrates. However, plate boundaries are usually 

not formed by single fault planes but systems of fault branches and segments. The fault 

systems share the loading from relative plate motions. Within the fault systems, faults 

and fault segments interact with each other. Under this circumstance, the isolated single 

fault plane assumed in the elastic rebound model is not satisfied, and studies of single-

fault-based earthquake recurrence are inadquate for characterizing the spatiotemporal 

patterns of earthquakes. Moreover, large earthquakes also occur in plate interiors, where 

slow far-field tectonic loading is shared by widespread interacting faults (M. Liu & Stein, 

2016).  Different from interplate earthquakes, intraplate earthquakes seems to roam 

between widespread faults and less likely to be quasiperiodic (M. Liu et al., 2011). 

Therefore, some commonly used concepts, such as seismic cycles, recurrence intervals, 
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characteristic earthquakes, and seismic gaps, may be inadequate or even inaccurate. The 

probability seismic hazard assessment based on these concepts need to be rethought.   

 

1.1 Temporal patterns of earthquakes 

The recurrence time of earthquakes is an important parameter for hazard 

assessment and therefore a focus of earthquake studies (Atwater et al., 2003; Molnar, 

1979; Youngs & Coppersmith, 1985). At first, it may be helpful to have a brief review 

about the elastic rebound model, the base of current understanding of earthquake physics. 

The elastic rebound model is proposed in the aftermath of the 1906 San Francisco 

earthquake (Reid, 1910). In this model, stress gradually accumulates on a frictionally 

locked fault plane by the relative crustal motion across the fault. When the accumulated 

stress overcomes the fault strength, the fault ruptures in an earthquake, suddenly releasing 

the accumulated energy. As a result, stress on the fault drops, and the strained crust near 

the fault plane springs back to its undeformed shape (elastic rebound). With time, the 

process repeats. Nearly half a century after the introduction of the elastic rebound model, 

Plate tectonics provides the driving mechanism in the elastic rebound model, stating that 

the plate boundary faults are steadily loaded by the relative plate motion. Assuming at 

each time an earthquake ruptures the whole fault plane or fault segment (the 

characteristic earthquake model) (Schwartz & Coppersmith, 1984), the strength of the 

fault plane or fault segment is fixed, and along the fault or fault segment the stress drops 

uniformly to some background value, then the steady tectonic loading would lead to 

periodic or quasi-periodic occurrence of earthquakes.  
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Periodic or quasi-periodic earthquakes, however, are uncommon in nature. The 

Parkfield section of the San Andreas Fault in California is perhaps the best-known 

example for quasi-periodic earthquakes. Between 1857 and 1966, six Mw 6.0 event 

occurred there with a ~22-year recurrence interval (W. H. Bakun & Lindh, 1985), but the 

next event, which took place in 2004, was overdue, challenging the simple elastic 

rebound model (W. Bakun et al., 2005; Jackson & Kagan, 2006). In most fault systems in 

varies tectonic settings, large earthquakes are clustered in time, with long and variable 

quiescent intervals (Salditch et al., 2019). Paleoearthquake study by Sieh et al. (1989) at 

Pallett Creek, on the San Andreas Fault in California, found clusters of large earthquakes 

with interevent times in several decades, but the length of the dormant periods between 

earthquake clusters is two to three centuries. In the Great Basin of western US, 

paleoseismic data show clusters of events separated by long quiescent periods on 

individual faults or fault segments (Wallace, 1987). At the Africa-Eurasia plate boundary 

off west Algeria, Ratzov et al. (2015) analyzed a long record of turbidites and found that 

three clusters of earthquakes with durations of ~300-600 years separated by two long 

quiescent periods of ~1.6 thousand years. A similar pattern is found along the Dead Sea 

Transform Fault based on a sixty-thousand-year record of seismites (Agnon, 2014). In 

Australia, rich morphogenic evidence of faulting across the continent commonly shows 

that a few large earthquakes within thousands of years are separated by much longer 

periods (104-106 years) of quiescence on a single fault or proximal faults (Clark et al., 

2014; Clark et al., 2012).  

Rather than the time-dependent model based on the elastic rebound model 

(Matthews et al., 2002), the time-independent Poisson model (Cornell, 1968) is 
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commonly used as the model for earthquake occurrence in the Probabilistic Seismic 

Hazard Assessment (PSHA) (Fujiwara et al., 2006; Petersen et al., 2014). The time-

independent model assumes that earthquake occurrence follows the Poisson process, so 

each earthquake is independent, and the probability of earthquake occurrence does not 

vary with time (i.e. time-independent) (Cornell, 1968). Therefore, it is worthy to 

statistically check whether large earthquakes occur periodically, randomly, or burstily, 

explore the underlying physics, and discuss the implications for earthquake hazard 

assessment. The main results and discussions are presented in Chapter 2. 

Another special temporal pattern of earthquakes focused in this dissertation is 

possible long-lived aftershocks in intraplate regions. In slowly deforming intraplate 

regions, aftershock sequences may be much longer than that at plate boundaries (Stein & 

Liu, 2009). Some aftershocks may be mistakenly identified as elevated background 

seismicity and therefore may lead to an overestimation of seismic hazard (Toda & Stein, 

2018) and raise unwarranted social concerns and panic (M. Liu & Wang, 2012). The 

possible long-lived aftershock activities are still in debate in North China and the CEUS 

(Ebel et al., 2000; Jiang et al., 2013; Y. Liu et al., 2020; Page & Hough, 2014; Zhong & 

Shi, 2012), so I separated background earthquakes and aftershocks in North China and 

the CEUS by using a statistical method called the nearest-neighbor method, and 

discussed the uncertainties and implications for seismic hazards, which are detailed in 

Chapter 3 and 4. 

 

1.2 Spatial patterns of earthquakes 
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Earthquakes occur on faults. Plate tectonics describes the major spatial pattern of 

earthquakes: most events occur at plate boundary faults. However, plate tectonics theory 

is only a rough approximation. In fact, plate boundaries are not several faults with simple 

geometry but complex fault systems sharing tectonic loading. Because tectonic loading 

rate is quite steady, large earthquakes repeatedly ruptured on plate boundary faults. In 

contrast, plate interiors are slowly loaded from the far field, and large earthquakes seem 

to roam between different faults and are not necessary to recur on the same faults (Calais 

et al., 2016; M. Liu et al., 2011). 

Spatial distributions of earthquakes are found to correlate well with observed 

strain rate fields in plate boundary regions (Kreemer et al., 2002; Shen et al., 2007; Zeng 

et al., 2018), but poor or no correlation between strain rate and seismicity are found in 

intraplate regions, such as North China and stable North America (Calais et al., 2016; 

Kreemer et al., 2018; M. Liu & Wang, 2012). Therefore, I did a systematic statistical 

analysis on the correlation between strain rate and seismicity in different tectonic 

settings, and also evaluated the power of strain rate as a spatial predictor of earthquakes 

in Chapter 5.  

For intraplate regions, because of low strain rate, the spatial patterns of intraplate 

earthquakes may also be controlled by other factors. The ancient rift zones are one of the 

factor that has been suggested to be associated with intraplate seismicity (Gangopadhyay 

& Talwani, 2003; Johnston & Kanter, 1990). Schulte and Mooney (2005) did a 

systematic study on this possible correlation with an updated global earthquake catalogue 

from year 495 to 2003. Their result show that most of M ≥ 7 earthquakes occurred within 

rifts and continental margins, but only 52% of event are associated with rifted crust for M 



6 

 

≥ 4.5 earthquakes. M. Liu and Stein (2016) also point out that the Mid-continent rift in 

central and eastern U. S. is essentially aseismic, so rift zones are neither necessary or 

sufficient for intraplate earthquakes. Mooney et al. (2012) explored the correlation 

between global intraplate seismicity and the seismic velocity of the lithosphere. They 

found that 5 ≤ Mw ≤ 7 intraplate earthquakes tend to occur at rifted continental margins 

and younger crust surrounding the ancient cratons, which are defined by the S-wave 

velocity anomalies from seismic tomography in a global scale. Locally, Assumpção et al. 

(2014) also found that S-wave velocity anomalies at 100 km depth in Brazil are 

correlated with the epicenter distributions of earthquakes and interpreted it as the results 

of stress concentration due to lithospheric thinning and cratonic edge effect. Except edge 

of cratons and rifts, large intraplate earthquakes do occur at other unexpected places. For 

example, the 1966 M7.2 Xingtai earthquake and 1976 M7.8 Tangshan earthquake 

occurred within North China Plain and no active tectonics or major active faults were 

recognized before their occurrence (M. Liu & Wang, 2012). Therefore, rifts and seismic 

velocity anomaly are possible indicators for the spatial distribution of intraplate 

earthquakes, which are studied in Chapter 3.  

 

1.3 Phenomenological laws in earthquake occurrence 

Faulting is a highly non-linear process controlled by various physical mechanisms 

at different spatiotemporal scales and is also affected by many external components (e.g., 

stress perturbation from nearby faults or fault segments). As a result, seismicity shows 

fractal structures in magnitude, time, and space distributions, as expressed in the 
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Gutenberg–Richter law, the Omori’s law, and the fractal dimension of earthquake 

locations (Hirata, 1989; Kagan, 1994; Turcotte, 1997), which are introduced below. 

 

1.3.1 Size distribution: the Gutenberg–Richter law 

The Gutenberg-Richter law is an empirical relationship describing the power-law 

(fractal) magnitude distribution of earthquakes in a defined region and time interval: 

 

log10𝑁 = 𝑎 − 𝑏𝑀 (1.1) 

 

where N is the total number of earthquakes with magnitude ≥ 𝑀, a and b are constants 

(Gutenberg & Richter, 1944, 1954). The parameter a depends on the area and time-

window of investigation and describes the productivity, while the parameter b describes 

the relative size distribution of earthquakes (El-Isa & Eaton, 2014). The b-value for 

global earthquakes is close to 1 and typically in the range of 0.8-1.2. The GR law is valid 

both regionally and globally, and is used in calculating recurrence time intervals of 

earthquakes with different magnitudes, mapping subsurface magmatic chambers, and 

investigating induced seismicity (El-Isa & Eaton, 2014). 

The value of b in this study is calculated by the maximum likelihood method 

(Aki, 1965): 

 

𝑏 =
1

ln(10) (�̅� − 𝑀𝑚𝑖𝑛)
 (1.2) 
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where �̅� is the mean magnitude of the sample and 𝑀𝑚𝑖𝑛 is the minimum magnitude or 

magnitude of completeness (𝑀𝑐).  

 

1.3.2 The Omori’s law and Aftershock duration 

A large earthquake is usually followed by many smaller earthquakes 

(aftershocks). Their occurrence rate typically decreases with time and follows the 

modified Omori’s law (Omori, 1894; Utsu, 1961):   

 

𝑛(𝑡) =
𝑘

(𝑐 + 𝑡)𝑝
(1.3) 

 

where 𝑛(𝑡) is the frequency of earthquakes per unit time interval at time 𝑡 after the 

mainshock (aftershock rate); 𝑘, 𝑝, and 𝑐 are constants. The value of 𝑐 is typically positive 

close to zero, and 𝑝 close to 1 (Utsu & Ogata, 1995). In this study, these three parameters 

and their uncertainties are estimated by the maximum likelihood method (Ogata, 1983). 

The aftershock duration can be estimated based on the Omori’s law. Aftershock 

duration is typically defined as the time required for seismicity rate after an mainshock to 

return to the background seismicity rate before the next mainshock (Dieterich, 1994; 

Toda & Stein, 2018). Assuming background seismicity rate 𝑟𝑏 is time-independent, the 

aftershock duration 𝑡𝑎 can be estimated by 

 

𝑡𝑎 = (
𝑘

𝑟𝑏
)

1
𝑝
− 𝑐 (1.4) 
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1.3.3 Fractal dimension of earthquake locations  

The spatial distributions of earthquakes have been proved to have a fractal 

structure (Hirata, 1989; Wu et al., 2017): 

𝐶(𝑟) ∝ 𝑟𝑑𝑓 (1.5) 

where 𝑑𝑓 is the fractal dimension of an spatial distribution of epicenters (longitude and 

latitude) or hypocenter (longitude, latitude, and depth), 𝐶(𝑟) is the correlation integral 

introduced by Grassberger and Procacia (1983), and 𝑟 is the correlation distance. 𝐶(𝑟) is 

defined as  

𝐶(𝑟) =
1

𝑁(𝑁 − 1)
∑ ∑ 𝐻(𝑟 − ‖𝑋𝑖⃗⃗  ⃗ − 𝑋𝑗⃗⃗  ⃗‖)

𝑁

𝑗=1,𝑗≠𝑖

𝑁

𝑖=1

 (1.6) 

where 𝑁 is the number of events in the data set, ‖𝑋𝑖⃗⃗  ⃗ − 𝑋𝑗⃗⃗  ⃗‖ is the epicentral distance 

between event 𝑖 and 𝑗, and 𝐻 is the step function (𝐻(𝑥) = 0 for 𝑥 ≤ 0 and 𝐻(𝑥) = 1 for 

𝑥 > 0). 𝑁𝑐 = ∑ ∑ 𝐻(𝑟 − ‖𝑋𝑖⃗⃗  ⃗ − 𝑋𝑗⃗⃗  ⃗‖)
𝑁
𝑗=1,𝑗≠𝑖

𝑁
𝑖=1  is the cumulative number of pairs (𝑖, 𝑗) 

whose distance is less than the correlation distance 𝑟.  

The fractal dimension 𝑑𝑓 is a measure of earthquake clustering in space (Dimitriu 

et al., 1993; Yadav et al., 2011). The value of 𝑑𝑓 close to 0 may be interpreted as all 

earthquakes tend to cluster into one point. The value of 𝑑𝑓 close to 1 indicates the 

dominance of line sources. The value of 𝑑𝑓 close to 2 indicates planar fractured surface 

being filled-up. Therefore, the smaller the fractal dimension, the stronger the earthquake 

clustering in space. 
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The fractal dimension 𝑑𝑓 varies with space and time (De Rubeis et al., 1993; 

Dimitriu et al., 1993). In the Tohoku region, Japan, the estimated fractal dimension of 

earthquake epicenters is 𝑑𝑓 = 1.69 (Hirata, 1989). In Southern California, the estimated 

fractal dimension of earthquake epicenters is 𝑑𝑓 = 1.6 (Alvaro Corral, 2003). 

 

1.4 Probability models used in earthquake studies 

One way to characterize the temporal patterns of earthquakes is to fit the 

interevent times in earthquake catalogs with probability distribution functions. Five 

probability models (Poisson, gamma, Weibull, lognormal, and Brownian passage time) 

are used in this dissertation and introduced below. All of them were used in previous 

studies on the interevent-time distribution of earthquakes. 

The Poisson model is a one parameter model (the mean 𝜇) and commonly used in 

probabilistic hazard analyses (Cornell, 1968; Field et al., 2014; Field et al., 2009; 

Fujiwara et al., 2006; WGCEP, 1988, 1995). The gamma distribution is a two-parameter 

distribution defined by the shape parameter 𝑎 and the scale parameter 𝑏. It has been used 

for global and local catalogs with different magnitude range (Alvaro  Corral, 2004; 

Hainzl et al., 2006). The Weibull distribution is a similar two-parameter distribution used 

in previous studies (Abaimov et al., 2008; Hasumi et al., 2009). The lognormal 

distribution is a two-parameter distribution defined by the mean 𝜇 and the standard 

deviation 𝜎 of the variable's natural logarithm, and the BPT model is a two-parameter 

distribution defined by the mean 𝜇 and the aperiodicity 𝛼. They also have been used in 

earthquake hazard analysis (Field et al., 2015; Field et al., 2009; WGCEP, 1988, 1995, 

2003).  
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Table 1.1: Properties of Possible Interevent-time distributions 

Name of distribution Probability Density Function 𝑓(𝜏) Parameters 

Properties of 

Parameters 

Exponential 

 (Poisson model) 

1

𝜇
𝑒
−
𝜏
𝜇 𝜇 > 0 𝜇 = mean(𝜏) 

Gamma 
1

𝑏𝑎 Γ(𝑎)
𝜏𝑎−1𝑒−

𝜏
𝑏 

𝑎 > 0   

𝑏 > 0 

𝑎: shape 

𝑏: scale  

Weibull 
𝑎

𝑏
(
𝜏

𝑏
)
𝑎−1

𝑒−(
𝜏
𝑏
)
𝑎

 

𝑎 > 0   

𝑏 > 0 

𝑎: shape 

𝑏: scale 

Lognormal (√2𝜋𝜎𝜏)
−1
𝑒
−
(ln 𝜏−𝜇)2

2𝜎2  

𝜇 ∈ (−∞,∞)   

𝜎 > 0 

𝜇 = mean(ln 𝜏) 

𝜎 = std(ln 𝜏) 

Brownian passage time (
𝜇

2𝜋𝛼2𝜏3
)
1/2

𝑒
−
(𝜏−𝜇)2

2𝛼2𝜇𝜏  

𝜇 > 0  

𝛼 > 0 

𝜇 = mean(𝜏) 

𝛼 =
std(𝜏)

mean(𝜏)
 

* 𝜏 is interevent time between two successive events. Γ(𝑎) is the gamma function Γ(𝑎) =

∫ 𝑥𝑎−1𝑒−𝑥𝑑𝑥
∞

0
. The std means the standard deviation. 

 

The Poisson model is a special case of the gamma and Weibull distributions. When 

the shape parameter 𝑎 = 1 and the scale parameter 𝑏 = 𝜇, gamma and Weibull 

distributions are the same as the Poisson model (Table 1.1). When 𝑎 < 1, the gamma and 

Weibull distributions are burstier than the Poisson model (Figure 1.1a). When 𝑎 > 1, the 

gamma and Weibull distributions are less burstier than the Poisson model (Figure 1.1b).  
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Figure 1.1. Comparison between the Poisson distribution with the Weibull and gamma 

distributions when the shape parameter 𝑎 is smaller or greater than one.   

 

1.5 Structure of this dissertation 

Chapters 2 presents my study on the temporal patterns of large earthquakes 

charactering by the Devil’s staircase, a fractal property of complex systems. In Chapter 3, 

I narrow my scope on the spatiotemporal patterns of earthquakes in North China. Chapter 

4 presents my study on the possible long-lived aftershocks in the CEUS. In Chapter 5, 

Correlations between stain rate and seismicity in different tectonic settings are explored. 

Finally, the main conclusions from this dissertation are summarized in Chapter 6, which 

also includes suggestions for future research. 
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Chapter 2: Complex temporal patterns of large earthquakes:  

Devil’s Staircases 

*All content in this chapter is modified based our publication: 

Chen, Y., Liu, M., & Luo, G. (2020). Complex Temporal Patterns of Large Earthquakes: Devil’s 

Staircases. Bulletin of the Seismological Society of America, 110(3), 1064-1076. 

https://doi.org/10.1785/0120190148.  

  

In this chapter, I examined the temporal patterns of large shallow earthquakes. I 

show that, for fault systems of various scales, most earthquake sequences share common 

characteristics that can be described by the Devil’s Staircase, a fractal property of 

complex dynamic systems. I characterized these sequences statistically, explored the 

influencing tectonic factors, and discussed the implications for earthquake hazard 

assessment.  

 

2.1 Temporal patterns of large earthquakes: Devil’s Staircase 

I focus on large shallow earthquakes (Mw ≥ 6 and depth ≤ 60 km) because of the 

hazard that they pose and because they usually rupture multiple fault segments or faults, 

hence clearly deviate from simple elastic rebound models. The data I used are the ISC-

GEM Global Instrumental Earthquake Catalogue (1904-2016) (Giacomo et al., 2018; 

Storchak et al., 2013), a historical earthquake catalog for North China from Cheng et al. 

(2017) and paleoseismic data for ruptures on different segments of the southern San 

Andreas compiled by Williams et al. (2019). The reason I analyze the historical and 

paleoseismic records is because instrumentally recorded large earthquakes in continental 

https://doi.org/10.1785/0120190148
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interiors and on individual faults or fault segments are often too few for vigorous 

statistical analysis.  

Figure 2.1 shows the temporal patterns of large earthquakes in fault systems of 

different scales. Globally, M ≥ 8.5 earthquakes show an irregular temporal pattern, with a 

long quiescent period (1965-2005) separating two active periods of clustered events 

(Figure 2.1a). Similar patterns emerge for large events in tectonically active regions, such 

as Japan and California, with long periods of no or few events followed by clusters of 

several events within relatively short periods (Figure 2.1b). In midcontinents, similar 

patterns are found, but the quiescent intervals between earthquake clusters tend to be a 

few times longer than those in tectonically active regions (Figure 2.1c). Such temporal 

patterns are found even on large individual faults (Figure 2.1d).  
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Figure 2.1. Temporal patterns of large earthquakes in (a) the world, (b) Japan, (c) North 

China, and (d) the North Anatolian Fault (NAF). Solid lines are for the whole catalogs, 

and dash lines are results after declustering, which has no clear effects on early records 

that have few large aftershocks.  

 

Some of the earthquake clustering is likely due to dependent earthquakes (i.e., 

foreshocks and aftershocks). I used the method by Gardner and Knopoff (1974) to 

decluster catalogs. Earthquakes are grouped into different clusters according to time 

window 𝑇(days) and spatial window 𝐿(km) among them, which are defined as  

 

log10 𝑇 = { 
0.032𝑀 + 2.7389, if 𝑀 ≥ 6.5
0.5409𝑀 − 0.547, otherwise

(2.1) 
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log10 𝐿 = 0.1238𝑀 + 0.983 (2.2) 

 

where 𝑀 is the magnitude of an mainshock. For every cluster, the largest earthquake is 

identified as the mainshock, and other events within the space-time window are removed. 

I declustered the catalogs to see the impact of dependent earthquakes on the temporal 

patterns. Because large foreshocks or aftershocks are as important as mainshocks in terms 

of hazard, the whole catalogs are used for most of our statistical analysis in this study. 

Figure 2.1 shows that declustering removes some events from the clusters, but the 

general patterns are unchanged: earthquakes are clustered within relatively short periods, 

which are separated by longer and variable intervals of quiescence. Such patterns are 

known mathematically as the “Devil’s Staircase” (Mandelbrot, 1982; Turcotte, 1997). 

The Devil’s Staircase is a fractal property of complex dynamic systems and can be 

constructed from the Cantor set. The Devil’s Staircase is commonly found in nature, 

including depositional sequences and the reversal of Earth’s magnetic field (Bak, 1996; 

De Michelis & Consolini, 2003; Simkin & Roychowdhury, 2014; Turcotte, 1997). A 

fractal property is scale invariant. In Figure 2.2, I show earthquake sequences with 

different lower cut-off magnitudes from the global catalog. They all show similar patterns 

of clusters of events separated by longer periods of inactivity.  
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Figure 2.2. Temporal patterns of M ≥ 7 earthquakes in the world. The insets show similar 

patterns for smaller events (M ≥ 5 and M ≥ 3, records start in 2010).  

 

2.2 Characterizing the temporal patterns 

One way to characterize the temporal patterns of earthquakes is to fit the 

interevent times in earthquake catalogs with probability distribution functions (Figure 

2.3). Since all large earthquakes (Mw ≥ 6) are potentially hazardous, I used the whole 

catalogs for regions and faults that have a dozen or more events for statistical analysis 

(Table 2.1). I fit the interevent time data with probability models using the maximum 

likelihood method. I tested five probability models (Poisson, gamma, Weibull, 

lognormal, and Brownian passage time (BPT)). All of them were used in previous studies 

on the interevent-time distribution of earthquakes and have been introduced in Chapter 

1.4  (Abaimov et al., 2008; Cornell, 1968; Corral, 2004; Field et al., 2014; Field et al., 
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2015; Field et al., 2009; Fujiwara et al., 2006; Hainzl et al., 2006; Hasumi et al., 2009; 

WGCEP, 1988, 1995, 2003). 

 

 

 

Figure 2.3. Comparison of the relative frequency (i.e. frequency divided by the total 

number of events) histograms of the distribution of interevent times for different fault 

systems with probabilities (with same lengths of interevent time windows as the data) 

predicted by five probability models (curves). The closer a curve is to the centers of the 

tops of the histogram boxes, the better the curve fits the data. (a) World, (b) Japan, (c) 

North China, and (d) North Anatolian Fault (NAF). The values of best-fitting parameters 

are shown in Table 2.4-2.7.  
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The Poisson model assumes that, although the mean interval between events is 

known for a sequence, the exact time of each event to occur is random (the Poisson 

process). The interevent time distribution of such a sequence follows an exponential 

distribution. The Poisson model is simple (a one-parameter model) and commonly used 

in probabilistic hazard analyses (Cornell, 1968; Field et al., 2014; Field et al., 2009; 

Fujiwara et al., 2006; WGCEP, 1988, 1995). It is a special case of the more generalized 

gamma and Weibull distributions (Chapter 1.4).  

I investigated the distribution of interevent times of all the seismic sequences I 

studied. The relative frequency histograms show high frequency for events falling within 

short interevent times, and the frequency decreases rapidly with longer interevent times 

(Figure 2.3). The pattern can be generally fit by all the five probability models (Figure 

2.3). I did Kolmogorov-Smirnov (KS) tests to statistically compare the fitting of these 

probability models with data and found that the gamma model fits the data best (detailed 

in Chapter 2.7). Both the gamma and Weibull models fit better than the Poisson model, 

whereas the lognormal and BPT models fit worse, as can also be seen in Figure 2.3. Both 

the gamma and Weibull models have higher probability for short interevent times than 

the Poisson model.  In other words, the data have tighter clusters, or are burstier, than the 

prediction of the Poisson model.   

The variation of the interevent times can be measured by the coefficient of 

variation (COV), called the aperiodicity, which is defined by 
𝜎𝜏

𝜇𝜏
, the ratio of the standard 

deviation of interevent times (𝜎𝜏) to the mean of interevent times (𝜇𝜏) (Goes, 1996; 

Kagan & Jackson, 1991; Salditch et al., 2019). For a sequence generated by a Poisson 
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process, the COV value is 1. To measure the deviation from the Poisson model, we use a 

normalized COV, called the burstiness parameter (𝐵) (Goh & Barabási, 2008), which is 

defined as 

 

𝐵 =

𝜎𝜏
𝜇𝜏
− 1

𝜎𝜏
𝜇𝜏
+ 1

=
𝜎𝜏 − 𝜇𝜏
𝜎𝜏 + 𝜇𝜏

. (2.3) 

 

The value of B ranges from −1 to 1. 𝐵 = −1 corresponds to a perfectly periodic 

sequence, because its 𝜎𝜏 = 0 (COV = 1). When  𝜎𝜏 ≫ 𝜇𝜏, COV → ∞ and 𝐵 → 1, which 

corresponds to the most bursty sequence. 𝐵 = 0 corresponds to a sequence produced by 

an ideal Poisson process with  𝜎𝜏 = 𝜇𝜏 (COV = 0) (Figure 3.4a), for which the temporal 

activity pattern is random. Thus, a sequence is “bursty” when 0 < 𝐵 < 1 (Figure 2.4b) 

and “quasiperiodic” when −1 < 𝐵 < 0 (Figure 2.4c).  
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Figure 2.4. (a) A sequence of events generated by a Poisson model with 𝜇 = 1. (b) A bursty 

sequence generated by the Weibull interevent time distribution with 𝑎 = 0.3, 𝑏 = 2. (c) An 

anti-bursty sequence generated by the Gaussian interevent time distribution with the mean 

𝑚 = 1 and the standard deviation 𝜎 = 0.1. 

 

 

Figure 2.5. A bursty pattern can emerge through memory. The bursty pattern in (b) is 

obtained by shuffling the Poisson signals of (a) to increase the memory effect (the short 

(long) interevent times tend to follow short (long) ones). A more regular pattern, with 

negative memory (short (long) interevent times tend to be followed by long (short) ones), 

is obtained by the shuffling procedure (c). Note that sequences (a), (b), and (c) have 

identical interevent time distributions. 

 

The sequences with the same B values can have a different order of events (Figure 

2.5). This difference can be described by the memory coefficient 𝑚, defined as the 
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correlation coefficient of consecutive interevent time values over a sequence. That is, 

given all pairs of consecutive interevent times (𝜏𝑖, 𝜏𝑖+1) (Goh & Barabási, 2008), 

 

𝑚 =
1

𝑛𝜏 − 1
∑

(𝜏𝑖 − 𝜇1)(𝜏𝑖+1 − 𝜇2)

𝜎1𝜎2
 

𝑛𝑟−1

𝑖=1

 , (2.4) 

 

where 𝑛𝜏 is the number of interevent time measured from the sequence, 𝜇1 (𝜇2) and 𝜎1 

(𝜎2) are the sample mean and sample standard deviation of the 𝜏𝑖’s (𝜏𝑖+1’s) (𝑖 =

1, … , 𝑛𝜏 − 1), respectively. The memory coefficient ranges from -1 to 1. For sequences 

with  𝑚 > 0, a short (long) interevent time tends to be followed by a short (long) one. A 

sequence with 𝑚 < 0 tends to have a short (long) interevent time followed by a long 

(short) one.  

I calculated the burstiness parameters and memory coefficients for earthquake 

sequences of faults (Mw ≥ 6.5) and regions (Mw ≥ 6) where available catalogues have 

more than a dozen events. The results are presented in Tables 2.1 and 2.2. The burstiness 

parameters are close to but larger than 0 for all faults and regions studied before 

declustering (Tables 2.1 and 2.2), except that it is slightly negative for the Great 

Sumatran Fault. Thus, the earthquake sequences are close to but burstier than ones 

produced by ideal Poisson processes. Removing dependent earthquakes decreases the 

values of burstiness parameters. The memory coefficients are complicated: they tend to 

be positive for regional sequences (Table 2.1) but negative for sequences for individual 

faults (Table 2.2).  
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I also calculated the burstiness parameters and memory coefficients for ruptures 

on five segments of the southern San Andreas compiled by Williams et al. (2019) from 

paleoseismic data (Table 2.3). For ruptures on each individual segment, the burstiness 

parameters are negative, or quasiperiodic as concluded by Williams et al. (2019). 

However, these segments are not isolated from each other. Some ruptures, including the 

1857 Fort Tejon earthquake, ruptured multiple segments. When these segments are 

viewed as a whole, the burstiness parameter is slightly positive (i.e., bursty), similar to 

results for large individual faults based on instrumental and historical catalogs (Table 

2.2). The memory coefficients are negative or close to zero, also similar to the results of 

other large individual faults (Table 2.2).  

 

Table 2.1: Statistical parameters of Mw ≥ 6 earthquakes in different tectonic regions  

 

Maximum 

time 

interval 

(years) 

Mean 

time 

interval 

(years) 

Burstiness 

Parameter 

Memory 

Coefficient 

Total 

Events 

Removed 

Events 

Time 

Period 

World 

0.12 

(0.15) 

0.010 

(0.016) 

0.10 

(0.02) 

0.07 

(0.02) 

5269 2054 

1964-

2016 

Japan 

1.27 

(2.26) 

0.11 

(0.24) 

0.23 

(0.08) 

0.25 

(0.04) 

840 465 

1926-

2016 

Taiwan 

3.29 

(3.66) 

0.73 

(1.39) 

0.05 

(-0.11) 

-0.11 

(-0.36) 

71 33 

1964-

2016 
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East African 

Rift 

14.57 

(14.57) 

1.66 

(3.46) 

0.31 

(0.06) 

0.00 

(-0.02) 

26 13 

1964-

2016 

California 

7.84 

(7.84) 

1.58 

(2.11) 

0.08 

(-0.01) 

0.35 

(0.20) 

53 13 

1932-

2016 

New Zealand 

6.40 

(6.40) 

1.21 

(1.49) 

0.09 

(0.02) 

-0.02 

(-0.13) 

61 11 

1942-

2016 

Tibet 

2.35 

(2.35) 

0.46 

(0.66) 

0.06 

(-0.08) 

0.21 

(0.26) 

111 33 

1964-

2016 

Xinjiang 

4.50 

(4.50) 

1.37 

(1.95) 

0.03 

(-0.14) 

-0.23 

(-0.26) 

38 11 

1964-

2016 

North China 

51.41 

(51.41) 

7.11 

(8.63) 

0.12 

(0.04) 

0.31 

(0.25) 

69 12 

1500-

2016 

*Results in the parentheses are obtained after declustering using the Gardner-Knopoff 

method (Gardner & Knopoff, 1974). The ISC-GEM catalog for earthquake magnitudes 

larger than 6 is complete since 1964 (Michael, 2014). The local earthquake catalogs of 

Japan, California, and New Zealand start in 1926, 1934, and 1942, respectively, so are 

likely complete for M ≥ 6 events. The North China catalog is complete for M ≥ 6 events 

since 1291 (Huang et al., 1994). We chose to use the catalog since 1500, to be 

conservative. 

 

 

Table 2.2: Statistical parameters of Mw ≥ 6.5 earthquakes on individual faults  
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Maximum 

time 

interval 

(years) 

Mean 

time 

interval 

(years) 

Burstiness 

Parameter 

Memory 

Coefficient 

Total 

Events 

Removed 

Events 

Time 

Period 

Great 

Sumatran 

Fault 

18.69 

(18.69) 

6.23 

(6.23) 

-0.05 

(-0.05) 

-0.15 

(-0.15) 

16 0 

1904-

2016 

North 

Anatolian 

Fault 

23.92 

(23.92) 

6.38 

(6.88) 

0.07 

(0.04) 

-0.06 

(-0.13) 

15 1 

1904-

2016 

Sagaing 

Fault 

34.47 

(34.47) 

10.05 

(12.56) 

0.01 

(-0.10) 

0.23 

(-0.03) 

11 2 

1904-

2016 

Xianshuihe 

Fault 

76.72 

(76.72) 

23.23 

(23.23) 

0.02 

(0.02) 

-0.34 

(-0.34) 

12 0 

1700-

2016 

*Results in the brackets are obtained after declustering using the Gardner-Knopoff 

method (Gardner & Knopoff, 1974).  

 

Table 2.3: Statistical parameters of ruptures on five different segments of southern SAF  

using the best-estimated time based on data compiled by Williams et al. (2019) 
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Maximum 

time interval 

(years) 

Mean time 

interval 

(years) 

Burstiness 

Parameter 

Memory 

Coefficient 

Total 

Events 

SAF Wrightwood 166 94.5 -0.36 0.03 15 

SAF Carizzo 352 203.8 -0.38 -0.42 6 

SAF Mission Creek 271 212.8 -0.58 -0.47 5 

SAF Pallet Creek 305 141.1 -0.27 -0.36 9 

SAF Big Bend 385 128.2 -0.07 0.05 11 

All segments 116 29.4 0.003 -0.14 46 

 

2.3 Possible tectonic factors and causes 

The Devil’s Staircase pattern of large earthquakes is characterized by clusters of 

events separated by longer and irregular intervals of quiescence. Here we examine how 

these features may be related to tectonic factors. 
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Figure 2.6. (a) The longest quiescent intervals for M ≥ 6.5 earthquakes in various 

tectonic regions vs. the magnitude of strain rates. The scalar strain rate data are from 

Kreemer et al. (2014). The scalar strain rate is defined as �̇� =

√𝜀�̇�𝜙𝜀�̇�𝜙 + 𝜀�̇�𝜆𝜀�̇�𝜆 + 2𝜀�̇�𝜙𝜀�̇�𝜙, where 𝜙 and 𝜆 are longitude and latitude. (b) The longest 

quiescent intervals for M ≥ 6.5 earthquakes on individual faults vs. the slip rates. Sources 

of slip rates: Genrich et al. (2000) for the Great Sumatran fault; Straub et al. (1997) and 

McClusky et al. (2000) for the North Anatolian fault, Vigny et al. (2003) for the Sagaing 

Fault, and Shen et al. (2005) for the Xianshuihe Fault. Solid lines are least-square fitting.  

The insets show the regression formulas. 

 

The length of quiescent intervals between earthquake clusters seems to be 

inversely related to tectonic loading rates (strain rates for tectonic regions or slip rates for 

individual faults) (Figure 2.6): lower loading rates correlate to longer quiescent intervals. 

The longest quiescent intervals also increase with the mean recurrence intervals, which is 

an indicator of average tectonic loading rate (Figure 2.7). This is consistent with the very 

long intervals between earthquake clusters in Australia and other stable continents (Clark 

et al., 2014), although we did not include those sequences in our analysis because of 

limited events in these sequences.   
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Figure 2.7. Relationship between mean recurrence interval and maximum quiescent time 

of Mw ≥ 6.5 earthquakes in different tectonic regions (J: Japan; Tb: Tibet; Tw: Taiwan; 

NZ: New Zealand; X: Xinjiang region, China; C: California; EAF: East African Rift; and 

NC: North China). The insets show similar patterns for different cut-off magnitudes (Mw 

≥ 6 and Mw ≥ 7).  

 

For the active periods of clustered events, the tectonic control is more complex. 

The average number of events in each cluster seems to be larger in tectonically active 

regions with higher loading rates and shorter mean recurrence time (Figure 2.8a-b). The 

average lengths of the seismically active periods, however, are not clearly correlated with 

tectonic loading rate (Figure 2.8c-d).  
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Figure 2.8. Relationship between features of earthquake clusters and tectonic factors for 

Mw ≥ 6.5 earthquakes in different regions. (a-b) The number of events in active periods 

(clusters) vs. mean recurrence intervals and regional strain rate, respectively. (c-d) The 

length of active periods vs. mean recurrence intervals and regional strain rate, 

respectively. Abbreviations for tectonics regions are explained in Figure 2.7.  

 

The physical causes of temporal clustering of earthquakes may be multiple, 

including both earthquake-induced changes of frictional property and stress transfer. 

Viscoelastic stress relaxation and fault interaction are two relatively well-known 

mechanisms of earthquake-induced stress transfer (Freed & Lin, 1998; Li et al., 2009; 

Luo & Liu, 2012; Stein & Liu, 2009). To explore how these two mechanisms may 
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contribute to the Devil’s Staircase patterns of earthquakes, my co-author Dr. Gang Luo 

developed a simple numerical model with one or multiple faults within a region (Figure 

2.9a), using a visco-elastoplastic finite element code Dr. Gang Luo developed (Luo & 

Liu, 2010, 2012, 2018). Details of the numerical scheme are presented in these 

references. The model work is mainly done by Dr. Gang Luo, so I omit the details about 

the model and focus on the results. The details of the model are introduced in Chen et al. 

(2020).  

 

 

 

Figure 2.9. Numerical simulation of intraplate earthquakes. (a) Model setting and 

numerical mesh. The seismogenic upper crust is elastoplastic, sitting on top of a 

viscoelastic layer (lower crust and upper mantle). The model domain is loaded by the 

imposed velocity (vectors) on the sides. (b) Earthquake sequence predicted by a model 

that includes only one fault (Fault 1) and without the viscoelastic lower layer. Time is 
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since the beginning of the numerical experiment. (c) Temporal patterns of earthquakes 

for the fault system (all three faults). Inset is the pattern on Fault 3. (d) Earthquake 

sequence predicted by a model with the three faults and both an elastoplastic upper layer 

and a viscoelastic lower layer. 

 

When only one fault is included in the model and the entire model domain is 

assumed to be elastic, steady loading imposed on the sides of the model domain produces 

repeated failure of the fault with regular recurrence times (Figure 2.9b), as would be 

predicted by the elastic rebound model. However, with three arbitrarily oriented faults 

included in the model and the model domain includes both an elastoplastic (seismogenic) 

upper crust and a viscoelastic lower crust, the failure patterns show clusters of events 

separated by longer intervals of inactivity (Figure 2.9d). In this case, stress on each fault 

is perturbed by failures of other faults and by viscous relaxation of the lower crust that 

transfers stress back to the upper crust (Freed & Lin, 2001; Li et al., 2009). The resulting 

temporal patterns of earthquakes, either for the whole system (three faults) or on a single 

fault, have the features of the Devil’s Staircase (Figure 2.9c).  Thus, stress changes from 

viscous relaxation and fault interaction are likely important factors contributing to the 

clustering of earthquakes.   

 

2.4 Implications for hazard analysis 

The Devil’s Staircase patterns of large earthquakes have important implications 

for earthquake hazard assessment. Firstly, the mean recurrence time, a key parameter for 

seismic hazard analysis, can vary drastically depending on which portion of the sequence 
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the catalog represents. This can be a serious concern in hazard assessment, because 

catalogs for large earthquakes are often too short to reflect their complete temporal 

pattern, and it is difficult to know whether the few events in a catalog occurred within an 

earthquake cluster or spanned both clusters and quiescent intervals. For the same reason, 

we need to be cautious when assessing an event is “overdue” just because the time 

measured from the previous event has passed some “mean recurrence time” based on an 

incomplete catalog, as discussed by Salditch et al. (2019). 

 

 

Figure 2.10. Comparation of conditional probabilities between the Poisson, gamma and 

Weibull models. The prediction interval ∆𝑇 = 0.3. All models have a mean of 1. The 

gamma model and Weibull model have a coefficient of variation of 1.2.  

 

Secondly, probability seismic hazard analysis usually uses the conditional 

probability, which is defined by  
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P(𝑇 ≤ 𝜏 ≤ 𝑇 + ∆𝑇 | 𝜏 > 𝑇) =
∫ 𝑓(𝜏) 𝑑𝜏
𝑇+∆𝑇

𝑇

∫ 𝑓(𝜏) 𝑑𝜏
∞

𝑇

, (2.5) 

 

where 𝜏 is the interevent time, 𝑇 is the time interval since the last earthquake in a catalog, 

∆𝑇 is the prediction interval, and 𝑓(𝜏) is the probability density function (PDF) of the 

interevent time. It gives the probability of the next earthquake in the interval (𝑇, 𝑇 + ∆𝑇) 

when knowing that no earthquake occurred before this interval since the last earthquake. 

For the Poisson model, which is commonly used in seismic hazard analysis (Field et al., 

2015; WGCEP, 1988, 1995, 2003), the conditional probability is a constant (Chapter 

2.7.4), so the Poisson model is also called as time-independent model. In other words, 

each event in the sequence is independent of other events. However, our results suggest 

that most earthquake sequences, especially when dependent events are not excluded, are 

burstier than a Poisson sequence and may be better fit by the gamma or Weibull 

distributions. The conditional probability of both the gamma and Weibull models is 

higher than of the Poisson model for a small 𝑇 but decreases as 𝑇 increase (Figure 2.10). 

In other word, the probability of repeating events soon after a large earthquake is higher 

than that predicted by the commonly used Poisson model. This is clear from the 

histograms of earthquakes sequences (Figure 2.3). These repeating events could be 

aftershocks or events triggered by stress transferred from the preceding events. Recent 

examples are plenty, including the 1999 Hector Mine earthquake (Mw 7.1) following the 

1992 Lander earthquake (Mw 7.3) in southern California (Freed & Lin, 2001), and the 

2013 Lushan earthquake (Mw 6.6) following the 2008 Wenchuan earthquake (Mw 7.9) on 

the Longmenshan fault in eastern Tibetan Plateau (Liu et al., 2014). Kagan and Jackson 
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(1999) shows that doublets of large shallow earthquakes, with partly overlapped rapture 

zones and significantly shorter interevent time than the time needed for strain 

accumulation, are pervasive worldwide. 

 

 

Figure 2.11. (a) Comparison of the temporal patterns of large (Mw ≥ 6) earthquakes in 

California with those predicted by the best-fitting probability functions. (b) Three 

forecasted sequences for future Mw ≥ 6 events in California after the last event in the 

catalog (2014/08/24), based on the best-fitting gamma probability distribution (Table 

2.8).  

 

Finally, the Devil’s Staircase patterns are characteristic of complex dynamic 

systems, which are nonlinear systems composed of many components (here faults and 

fault segments) that interact with each other to produce nonlinear system behaviors. 

Small changes in some components can lead to big changes in the system. Short-term 

fault behavior in such a fault system is much more difficult to predict than faults 

experiencing cyclic loading and release. Nonetheless, one can try to forecast the system 

behavior of such fault systems. The best-fitting probability distribution function of a 
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sequence can be inverted to generate pseudorandom interevent times that obey the same 

probability distribution (Devroye, 1986). For example, Figure 2.11a shows the 

instrumentally recoded Mw ≥ 6 earthquakes in California and the sequences generated by 

the best-fitting Poisson and gamma probability distributions. The gamma model fits the 

general features of the data better than the Poisson model.  

Inverting the best-fitting gamma distribution function, we can forecast the 

temporal feature of future Mw ≥ 6 earthquake sequence in California (Figure 2.11b). The 

forecast is non-unique; nonetheless, it indicates the statistical behavior of the regional 

fault system. Three forecasted sequences are shown here. They suggest that the future 

sequence of earthquakes will likely occur in clusters separated by relative long and 

variable quiescent intervals, i.e., Devil’s Staircase.     

 

2.5 Discussion 

In earthquake studies, much effort has been devoted to establishing the recurrence 

times of large earthquakes on a given fault to assess the probability of the next event 

occurring within a certain range of times (Biasi et al., 2015; Biasi et al., 2002; McCalpin 

& Nishenko, 1996). The elastic rebound model explains the basic physics of earthquake 

recurrence and predicts periodic or quasi-periodic earthquakes.  

Establishing the temporal patterns of large earthquakes on individual faults, 

however, is difficult because large earthquakes are infrequent, and the catalogs are 

usually too short and incomplete. Quasi-periodic recurrence of large earthquakes has 

been reported on the Alpine Fault, in the south-central Chile subduction zone, on the 

southern San Andreas Fault, and on the intraplate Loma Blanca fault (Berryman et al., 
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2012; Moernaut et al., 2018; Scharer et al., 2010; Williams et al., 2017). In the first two 

cases, large earthquakes occurred on simple fault structures with a steadily high loading 

rate, so the elastic rebound model might work (Berryman et al., 2012). In the last two 

cases, although the earthquake sequences appear to be quasi-periodic, they also contain 

notable clusters (Weldon et al., 2004; Williams et al., 2017).  When regional fault 

systems are considered, the earthquake sequences generally deviate from quasi-periodic 

patterns. Instead, they are bursty, with clusters of events separated by relative long and 

irregular intervals of quiescence as Devil’s Staircases.  

The complexities of the temporal patterns of earthquakes may be partly attributed 

to data limitations. Instrumental catalogs may not be long enough to show statistically 

robust temporal patterns. For large earthquakes in continental interiors where large 

earthquakes are less frequent than in plate boundary zones, historic and paleoseismic data 

may be needed, but they come with the associated uncertainties. Some of the earthquake 

clustering can certainly be attributed to aftershocks or foreshocks, and we have shown 

that declustering would reduce the burstiness in earthquake sequences. However, large 

aftershocks or foreshocks are as important as mainshocks when hazard is concerned, 

therefore should be included in hazard analysis.  

On the other hand, there are good reasons not to expect large earthquakes to be 

quasi-periodic, because they violate the key premises of the elastic rebound model. 

Firstly, the loading rate may not be constant, even for plate boundary faults (Benedetti et 

al., 2013; Friedrich et al., 2003; Ratzov et al., 2015). Although the rates of relative plate 

motion are steady during the past few million years (DeMets et al., 1994), plate boundary 

faults are usually not a single fault plane but a system of fault branches and segments. 
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The San Andreas Fault, for example, consists of a complex system of subparallel faults in 

southern California that shares the loading from the relative Pacific-North American plate 

motion. Large earthquakes on one fault of this fault system could affect stress and 

loading rates on the other faults (Dolan et al., 2007; Luo & Liu, 2012). For intraplate 

faults, the loading rates are lower and more variable than for plate boundary faults, 

because tectonic loading from plate boundaries is collectively accommodated by a 

widespread network of faults (Li et al., 2009; Liu & Stein, 2016). On each individual 

fault, the loading rate is likely variable, affected by previous earthquakes on the fault, 

earthquakes on other faults in the system, and transient local stress perturbations such as 

erosion (Calais et al., 2010).  

Secondly, the elastic rebound model assumes cyclic strain accumulation and 

release on a given fault plane, but large earthquakes often rupture multiple and variable 

fault segments (e.g., the 2001 Mw 7.8 Kunlun earthquake, China) and faults (e.g., the 

2016 Mw 7.8 Kaikoura earthquake, New Zealand), making the concept of periodic release 

of strain energy on a defined fault plane inadequate. When seismicity in a regional 

network of faults is considered, the simple elastic rebound model does not apply.  

The nonlinear and complex temporal patterns of large earthquakes have long been 

observed (Clark et al., 2012; Sieh et al., 1989; Xu & Deng, 1996). Some called these 

sequences supercycles (Salditch et al., 2019). We have shown that the sequences of large 

earthquakes on fault systems of different scales show similar features of the Devil’s 

Staircase, with clusters of events separated by long and variable intervals of quiescence. 

This suggests that large ruptures of faults behave like nonlinear complex dynamic 
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systems, as noted in previous studies (Calais et al., 2010; Li et al., 2009; Liu & Stein, 

2016). 

This is not surprising, as fault systems in nature are known to be complex systems 

(Turcotte & Malamud, 2002). One evidence is the Gutenberg-Richter frequency-

magnitude relationship, a power-law (fractal) distribution that is valid both regionally and 

globally (Turcotte, 1997). Complex systems are nonlinear dynamic systems composed of 

many components (here faults and fault segments) that interact with each other, 

producing nonlinear system behaviors. The clustering of earthquakes could arise from 

such interactions. Fault interaction includes transfer of static stress (the Coulomb stress) 

from a ruptured fault (or fault segment) to neighboring faults (or fault segments), as well 

as perturbation of regional loading conditions by local fault ruptures. It also includes 

stress transfer from the ductile lower crust to the upper crust by viscoelastic stress 

relaxation. Large earthquakes may also be triggered far from aftershock zones by 

dynamic stresses when seismic waves propagate. Fault interaction in a complex dynamic 

system is the key to understanding spatiotemporal variations of large earthquakes, 

especially those in continental interiors (Liu & Stein, 2016).  

For a complex dynamic system of faults, the prediction or forecasting of fault 

ruptures is more difficult than expected from existing models based on elastic rebound. 

Nonetheless, we could try to characterize their temporal patterns to learn about the 

system behavior. We have shown that bursty sequences can be better fit by the gamma 

distribution function than the commonly used Poisson model. One implication is that 

soon after a large earthquake, the chance of having another one in the system is higher 
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than that predicted by models assuming Poissonian occurrences of earthquakes, as 

suggested by numerous recent large earthquake sequences.  

 

2.6 Conclusions 

I found that the temporal patterns of large earthquakes, on individual faults or 

regional fault systems, show clusters of events separated by relative long and variable 

intervals of seismic quiescence. Such patterns are characteristic of the Devil’s Staircase, a 

fractal property of nonlinear complex systems. For these earthquake sequences, the mean 

recurrence intervals, often estimated from records of the few most recent events, can vary 

significantly depending on whether these events are clustered in a relatively short active 

period or cover a spectrum of clusters and quiescent intervals.   

The lengths of the quiescent intervals between clusters are inversely related to 

tectonic loading (or slip) rates. They are usually a few times longer than the periods of 

clustered events in tectonically active regions, but can be thousands of years or longer in 

stable continental interiors. The earthquake clusters likely result from earthquake-induced 

stress transfer, including fault interaction and viscoelastic relaxation. The clustered events 

could include aftershocks and foreshocks. Because large aftershocks and foreshocks are 

as important as mainshocks in terms of seismic hazard, they should be included in 

seismic hazard analysis.  

The burstiness of earthquake sequences can be statistically characterized using the 

burstiness parameter and the memory coefficient. The burstiness parameters for most 

earthquake sequences I studied have slightly positive values, meaning that these 

sequences are bustier than the Poisson process. The interevent times of most earthquake 
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sequences can be better fitted by the gamma probability distribution than by the Poisson 

model. Models assuming a bursty gamma distribution (with positive burstiness 

parameter) predicts higher probabilities than models assuming a Poisson process for 

repeating events soon after a large earthquake, as indicated by numerous recent 

sequences of large earthquakes.   

The Devil’s Staircase distribution of large earthquakes implies that large fault 

ruptures, which often involve multiple segments or faults, behave as nonlinear complex 

systems. Prediction or forecasting of large earthquakes in such systems are much more 

difficult than for earthquakes on an isolated fault with simple structures under fast and 

steady tectonic loading. Thus, studying large earthquakes requires a system approach, 

rather than focusing only on stress accumulation and release on individual faults.  

 

2.7 Supplementary materials 

In this supplement, we describe Kolmogorov–Smirnov test, Best-fitting 

parameters for earthquake sequences in Figure 2.3, Best-fitting parameters for California 

earthquake sequences, and Conditional probabilities used in Figure 2.10. 

 

2.7.1 Kolmogorov–Smirnov test 

Kolmogorov–Smirnov (KS) test is used to check the goodness of fit for different 

probability distributions. The KS statistic is defined as  

𝐷𝑘𝑠 = max
𝑥
|𝐹𝑜𝑏𝑠(𝑥) − 𝐹(𝑥)| (2.6) 

where 𝑥 is a random variable, 𝐹𝑜𝑏𝑠(𝑥) is the empirical cumulative distribution function of 

the data, and 𝐹(𝑥) is the cumulative distribution of a hypothetic distribution (Massey Jr, 
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1951). The KS statistic measures the maximum difference between an empirical and a 

hypothetic distribution. The smaller the KS statistic is, the better the distribution fits the 

data.  

 

2.7.2 Best-fitting parameters for earthquake sequences in Figure 2.3 

Table 2.4: Results of best-fitting parameters of different distributions  

for data in Figure 2.3a (global Mw ≥ 6 earthquakes) 

Distribution First Parameter Second Parameter KS statistic 

Exponential 𝜇 = (9.87 ± 0.27) × 10−3 - 0.111 

Gamma 𝑎 = 0.59 ± 0.02 𝑏 = (1.67 ± 0.08) × 10−2 0.027 

Weibull  𝑎 = 0.72 ± 0.02 𝑏 = (8.16 ± 0.32) × 10−3 0.040 

Lognormal 𝜇 = −5.67 ± 0.05 𝜎 = 1.99 ± 0.04 0.113 

BPT 𝜇 = 9.87 × 10−3 𝛼 = 12.6 0.606 

* The uncertainties of parameters are 95% confidence limits. For the BPT model, the 

uncertainties of parameters are not evaluated because the errors are too big. 

 

Table 2.5: Results of best-fitting parameters of different distributions 

for data in Figure 2.3b (Mw ≥ 6 earthquakes in Japan) 

Distribution First Parameter Second Parameter K-S statistic 

Exponential 𝜇 = 0.11 ± 0.01 - 0.287 

Gamma 𝑎 = 0.33 ± 0.025 𝑏 = 0.33 ± 0.05  0.048 

Weibull  𝑎 = 0.45 ± 0.03 𝑏 = (5.23 ± 0.82) × 10−2 0.083 
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Lognormal 𝜇 = −4.32 ± 0.21 𝜎 = 3.04 ± 0.15 0.113 

BPT 𝜇 = 0.11 𝛼 = 43.4 0.627 

* The errors of parameters are 95% confidence limits. For the BPT model, the 

uncertainties of parameters are not evaluated because the errors are too big. 

. 

Table 2.6: Results of best-fitting parameters of different distributions  

for data in Figure 2.3c (Mw ≥ 6 earthquakes in North China) 

Distribution First Parameter Second Parameter KS statistic 

Exponential 𝜇 = 7.11 ± 1.69 - 0.161 

Gamma 𝑎 = 0.40 ± 0.11 𝑏 = 17.83 ± 8.28  0.119 

Weibull 𝑎 = 0.54 ± 0.11  𝑏 = 4.81 ± 2.21 0.131 

Lognormal 𝜇 = 0.31 ± 0.76 𝜎 = 3.18 ± 0.54 0.212 

BPT 𝜇 = 7.11 𝛼 = 91.20 0.792 

* The errors of parameters are 95% confidence limits. For the BPT model, the 

uncertainties of parameters are not evaluated because the errors are too big. 

. 

Table 2.7: Results of best-fitting parameters of different distributions  

for data in Figure 2.3d (Mw ≥ 6 earthquakes on the NAF) 

Distribution First Parameter Second Parameter KS statistic 

Exponential 𝜇 = 3.49 ± 1.32 - 0.200 

Gamma 𝑎 = 0.45 ± 0.20 𝑏 = 7.78 ± 5.54  0.094 

Weibull 𝑎 = 0.59 ± 0.18  𝑏 = 2.46 ± 1.66 0.112 
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Lognormal 𝜇 = −0.19 ± 0.99 𝜎 = 2.64 ± 0.72 0.183 

BPT 𝜇 = 3.49 𝛼 = 20.93 0.688 

* The errors of parameters are 95% confidence limits. For the BPT model, the 

uncertainties of parameters are not evaluated because the errors are too big. 

 

2.7.3 Best-fitting parameters for California earthquake sequences 

Table 2.8: Results of best-fitting parameters of different distributions  

 for Mw ≥ 6 California earthquakes (1932-2016)  

Distribution First Parameter Second Parameter KS statistic 

Exponential 𝜇 = 1.58 ± 0.43 - 0.168 

Gamma 𝑎 = 0.44 ± 0.14 𝑏 = 3.58 ± 1.85  0.130 

Weibull 𝑎 = 0.58 ± 0.13  𝑏 = 1.14 ± 0.56 0.139 

Lognormal 𝜇 = −1.01 ± 0.76 𝜎 = 2.79 ± 0.54 0.216 

BPT 𝜇 = 1.58 𝛼 = 27.91 0.716 

* The errors of parameters are 95% confidence limits. For the BPT model, the 

uncertainties of parameters are not evaluated because the errors are too big. 

 

2.7.4 Conditional probabilities used in Figure 2.10 

For an exponential distribution, its conditional probability is 

P(𝑇 ≤ 𝜏 ≤ 𝑇 + ∆𝑇 | 𝜏 > 𝑇) =
∫

1
𝜇 𝑒

−
𝜏
𝜇 𝑑𝜏

𝑇+∆𝑇

𝑇

∫
1
𝜇 𝑒

−
𝜏
𝜇 𝑑𝜏

∞

𝑇
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=

(−𝑒
−
𝑇+∆𝑇
𝜇 ) − (−𝑒

−
𝑇
𝜇)

0 − (−𝑒
−
𝑇
𝜇)

 

= 1 − 𝑒
−
−∆𝑇
𝜇 = constant. (2.7) 

 

For a gamma distribution, its conditional probability is 

P(𝑇 ≤ 𝜏 ≤ 𝑇 + ∆𝑇 | 𝜏 > 𝑇) =
∫

1
𝑏𝑎  Γ(𝑎)

𝜏𝑎−1𝑒−
𝜏
𝑏 𝑑𝜏

𝑇+∆𝑇

𝑇

∫
1

𝑏𝑎 Γ(𝑎)
𝜏𝑎−1𝑒−

𝜏
𝑏 𝑑𝜏

∞

𝑇

 

=
𝛾 (𝑎,

𝑇 + ∆𝑇
𝑏

) − 𝛾 (𝑎,
𝑇
𝑏
)

Γ(𝑎) − 𝛾 (𝑎,
𝑇
𝑏
)

 

= 1 −
Γ(𝑎) − 𝛾 (𝑎,

𝑇 + ∆𝑇
𝑏

)

Γ(𝑎) − 𝛾 (𝑎,
𝑇
𝑏
)

(2.8) 

where 𝛾(𝑎, 𝑥) is the lower incomplete gamma function, which is defined as 𝛾(𝑎, 𝑥) =

∫ 𝑡𝑎−1
𝑥

0
𝑒−𝑡𝑑𝑡. When 𝑇 → ∞, the equation (2.8) becomes 

lim
𝑇→∞

P(𝑇 ≤ 𝜏 ≤ 𝑇 + ∆𝑇 | 𝜏 > 𝑇) = 1 − lim
𝑇→∞

Γ(𝑎) − 𝛾 (𝑎,
𝑇 + ∆𝑇
𝑏

)

Γ(𝑎) − 𝛾 (𝑎,
𝑇
𝑏
)

 

= 1 − lim
𝑇→∞

𝑑
𝑑𝑇
𝛾 (𝑎,
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𝑏

)

𝑑
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𝑇
𝑏
)

 

= 1 − lim
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(𝑇 + ∆𝑇)𝑎−1𝑒−
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𝑏
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𝑇
𝑏

 

= 1 − 𝑒−
−∆𝑇
𝑏 = constant.  
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For a Weibull distribution, its conditional probability is 

P(𝑇 ≤ 𝜏 ≤ 𝑇 + ∆𝑇 | 𝜏 > 𝑇) =
∫

𝑎
𝑏
(
𝜏
𝑏
)
𝑎−1

𝑒−(
𝜏
𝑏
)
𝑎
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𝑇
𝑏
)
𝑎 (2.9) 

When 𝑇 → ∞, the equation (2.9) becomes 

lim
𝑇→∞

P(𝑇 ≤ 𝜏 ≤ 𝑇 + ∆𝑇 | 𝜏 > 𝑇) = 1 − lim
𝑇→∞

𝑒−(
𝑇+∆𝑇
𝑏
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{
 
 

 
 
0,                          𝑎 < 1
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𝑏 , 𝑎 = 1

1,                          𝑎 > 1
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Chapter 3: Spatiotemporal patterns of intraplate earthquakes:  

insight from North China 

In this chapter, I studied the earthquakes in intraplate North China, a reactivated 

craton, to get some insight into the spatiotemporal patterns of intraplate earthquakes and 

their implications for seismic hazard assessment. This chapter is partly based on my 

publication: Chen, Y., Liu, M., & Wang, H. (2021). Aftershocks and background seismicity in Tangshan 

and the rest of North China. Journal of Geophysical Research: Solid Earth, 126, e2020JB021395. 

https://doi.org/10.1029/2020JB021395. 

 

3.1 Geological settings of North China 

North China, or the geologically defined North China block, includes the North 

China Plain and the mountain ranges and the Ordos Plateau to the west. It is an Archaean 

craton that was reactivated during the Mesozoic, with maximum lithospheric thinning 

under the North China Plain. Today, North China is a region of active intraplate 

seismicity (M. Liu et al., 2014), with twenty-two M  7 earthquakes recorded since 70 

BCE , including five M  8.0 events (Figure 3.1) (Gu et al., 1983). Beside the 1976 Great 

Tangshan earthquake, North China was devastated by the 1966 Ms 7.2 Xingtai 

earthquake, the 1969 Mb 7.4 Bohai earthquake, and the 1975 Ms 7.3 Haicheng earthquake 

in the past century (Figure 3.1). These earthquakes all occurred in places where no large 

earthquakes were recorded in the previous 2000 years (M. Liu & Wang, 2012),  

highlighting the challenges of assessing seismic hazard in slowly deforming continental 

interior (M. Liu & Stein, 2016).  

 

https://doi.org/10.1029/2020JB021395


56 

 

 

Figure 3.1. Seismicity in North China. Blue circles are M ≥ 7 earthquakes since 70 BCE 

and before 1960. Large blue circles are M ≥ 8 earthquakes. Black circles are M ≥ 7 

earthquakes from 1960 to July 2019. Red dots are M ≥ 3 earthquakes from 1960 to July 

2019. The gray lines are faults. Z-P fault system: the Zhangjiakou-Penglai fault system; 

T-H-C fault system: the Tanshan-Hejian-Cixian fault system. The red rectangle shows the 

epicentral region of the 1976 Ms7.8 Tangshan earthquake.  

 

3.2 Data and declustering method 

The earthquake catalog (1970-2020/07/12, M ≥ 2.5) of the Tangshan region  

(117°-120°E, 38.8°-40.8°N) used in this chapter includes two parts: earthquakes between 

1970 and 2019 from the China Seismic Array Data Management Center 

(http://www.chinarraydmc.cn/products/index) and recent earthquakes (2020/01/01-2020/07/12) 

http://www.chinarraydmc.cn/products
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from the China Earthquake Networks Center (http://news.ceic.ac.cn). The earthquake catalog 

of North China (108°-124°E, 33.5°-42°N) includes historical earthquakes (70 BCE-1969, 

M ≥ 4) from Gu et al. (1983) and instrumental earthquakes (1970-2019/08/01, M ≥ 3) 

from the China National Earthquake Data Center (http://data.earthquake.cn). In North China, 

the seismic records of M ≥ 2.6 earthquakes are suggested to be complete since 1970 

(Mignan et al., 2013). However, within a short period after the 1976 Great Tangshan 

earthquake, many small earthquakes were not recorded and the magnitude of 

completeness (Mc) is as high as 4 (Jiang et al., 2013). Reduced detection capability 

shortly after a large earthquakes is a global problem (Iwata, 2008). Furthermore, some 

stations in the epicentral region were damaged by the Tangshan mainshocks (Jiang et al., 

2013). 

Various declustering methods have been developed to separate aftershocks from 

background earthquakes (van Stiphout et al., 2012). Classic declustering algorithms 

include the window method proposed by Gardner and Knopoff (1974) and an updated 

method by Reasenberg (1985). The window method identifies aftershocks based on 

magnitude-dependent inter-event distances in time and space. The specific spatial and 

temporal windows for aftershocks are empirically predetermined based on earthquakes in 

California (Gardner & Knopoff, 1974). However, aftershock durations vary with tectonic 

settings; they tend to be longer in slowly deforming continents than those in rapidly 

loaded plat boundaries (Stein & Liu, 2009; Toda & Stein, 2018), so the window method 

may not be suitable for North China. The Reasenberg (1985) declustering algorithm 

identifies aftershocks according to spatial and temporal interaction zones. The space and 

time extents of an interaction zone are chosen according to the stress distribution near a 

http://news.ceic.ac.cn/
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mainshock and Omori’s law of decaying aftershocks. The algorithm links observed 

earthquakes with underlying physics (stress), but the values of the parameters are 

somewhat arbitrarily chosen and can cause significant difference in the declustered 

results (Toda & Stein, 2018). Besides the spatiotemporal window methods, probability 

declustering methods have been developed. These methods use stochastic models to 

estimate the probabilities that each earthquake is either a mainshock or an aftershock 

(Marsan & Lengline, 2008; Zhuang et al., 2002). These methods use catalog-constrained 

declustering parameters but need to assume the underlying probability distribution and 

the background seismicity, which is often treated as being constant.  

In this chapter, I declustered the catalogs of earthquakes in North China using the 

nearest-neighbor (NN) method (Baiesi & Paczuski, 2004; Zaliapin et al., 2008). The NN 

method is based on the Gutenburg-Richter frequency-magnitude relationship (Gutenberg 

& Richter, 1954) and fractal property of spatial distribution of seismicity. It statistically 

identifies clustered events (treated as aftershocks here) based on the distance in the space-

time-magnitude domain between these events. If the events are too close to be expected 

for independent background events that distribute in the seismic region following the 

Gutenburg-Richter law, they are taken as clustered (i.e., correlated) events.  

In the NN method, the distance 𝜂𝑖𝑗 in the space-time-magnitude domain between 

a given earthquake 𝑗 occurring at 𝑡𝑗 and a past earthquake 𝑖 occurring at 𝑡𝑖 (𝑡𝑖 < 𝑡𝑗) is 

defined as 

 

𝜂𝑖𝑗 = {
𝑡𝑖𝑗(𝑟𝑖𝑗)

𝑑𝑓
10−𝑏𝑚𝑖 , 𝑡𝑖𝑗 > 0

 ∞                         , 𝑡𝑖𝑗 ≤ 0
 (3.1) 
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where 𝑡𝑖𝑗 = 𝑡𝑗 − 𝑡𝑖 is the inter-occurrence time in years, 𝑟𝑖𝑗 is the surface distance 

between the earthquake epicenters in kilometers, 𝑚𝑖 is the magnitude of earthquake 𝑖, 𝑑𝑓 

is the fractal dimension characterizing the distribution of the epicenters, and 𝑏 is the slope 

parameter of the Gutenberg-Richter law. The value of b in our study is calculated by the 

maximum likelihood method (Equation 1.2) (Aki, 1965). The fractal dimension 𝑑𝑓 used 

in the NN method is estimated by the correlation integral method (Chapter 1.3.3) 

(Grassberger & Procacia, 1983). The nearest-neighbor distance (NND, shown as 𝜂𝑖𝑗 
∗ or 𝜂) 

is defined as the distance between event j and its nearest neighbor 𝑖∗, which is the closest 

event to event j among all past events. From a catalog, the NND values 𝜂 can be 

calculated and a threshold value 𝜂0 can be found from the distribution of NND (see 

below), which is used to separate clustered events from background events. When 𝜂 ≤

𝜂0, event 𝑗 is taken as an aftershock of its nearest neighbor 𝑖∗; when 𝜂 > 𝜂0, it is treated 

as a background earthquake.  

 

 

Figure 3.2. Nearest-neighbor method applied to M ≥ 4 earthquakes since 1960 in North 

China: (a) 1D density distribution of 𝜂, with estimated Gaussian densities for clustered 
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(red) and background (blue) components. The threshold distance 𝜂0 is where the two 

components are best separated, here at log10 𝜂0 = −4.03 (the solid vertical line). The 

dashed vertical lines show the ≥ 90% confidence range (see discussion in text). (b) 2D 

joint distribution of rescaled distance and time (𝑅, 𝑇). The solid line (log10 𝑇 +

log10 𝑅 = −4.03) is the preferred threshold between background and clustered 

earthquakes. The dashed lines are the ≥ 90% confidence range shown in (a). The results 

are calculated with 𝑏 = 1 and 𝑑𝑓 = 1.5 (Figure 3.23, 3.24), and are not sensitive to 

variations of these values within reasonable ranges (Figure 3.25).  

 

The NND of earthquakes (M ≥ 4) in North China (Figure 3.2a) shows a bimodal 

Gaussian distribution, similar to earthquakes in other regions (Peresan & Gentili, 2018; 

Zaliapin et al., 2008). The same pattern also shows for earthquakes predicted by an 

epidemic type aftershock sequence (ETAS) model that mixes a homogeneous Poissonian 

background field with an aftershock series, with aftershocks group to the left (lower 

NND) and background events to the right  (higher NND) (Zaliapin et al., 2008). The 

separation threshold 𝜂0 can be calculated according to a Gussian mixture model with the 

background and clustered modes (Hicks, 2011; Zaliapin & Ben-Zion, 2016). In North 

China, the calculated threshold is log10 𝜂0 = −4.03 (the solid vertical line in Figure 

3.2a). 

Because of the overlapping of the two Gaussian distributions, using the separation 

threshold  log10 𝜂0 = −4.03 could misidentify some background events as aftershocks 

and some aftershocks as background events. Assuming the data represent the true 

underlying probability distribution, I can quantify this uncertainty by using the concept of 
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confidence level. Here, the preferred separation gives us 92.2% confidence level (the 

fraction of the total area under the red curve in Figure 3.2a, measured from the left to the 

right, truncated by the separation line) that aftershocks would be identified. Similarly, 

this separation gives 98.8% confidence of identifying background events. 

The vertical dashed lines in Figure 3.2a show the range of ≥ 90% confidence 

levels for aftershocks and background earthquakes, respectively. The left boundary 

(log10 𝜂0 = −4.33) corresponds to 90% confidence level for aftershock identification, 

and the right boundary (log10 𝜂0 = −3.57) corresponds to 90% confidence level for 

identifying background events.  

The NND can be decomposed into the corresponding rescaled (magnitude-

normalized) time (𝑇𝑖𝑗) and distance (𝑅𝑖𝑗)  (Zaliapin et al., 2008): 

 

𝑇𝑖𝑗 = 𝑡𝑖𝑗10
−
𝑏𝑚𝑖
2 , 𝑅𝑖𝑗 = 𝑟𝑖𝑗

𝑑𝑓10−
𝑏𝑚𝑖
2 . (3.2) 

 

with 𝜂𝑖𝑗 = 𝑇𝑖𝑗𝑅𝑖𝑗, or equivalently log10𝜂𝑖𝑗 = log10 𝑇 + log10 𝑅. In the 𝑇-𝑅 plot (Figure 

3.2b), the separation boundary between background earthquakes and aftershocks is a 

straight line: log10 𝜂0 = log10 𝑇 + log10 𝑅. The clustered events are in the domain of 

lower T and R values. The negative correlation between T and R in Figure 3.2b may be 

interpreted this way: for a distant event (larger 𝑅) to be an aftershock, it needs to occur 

shortly after the mainshock (smaller 𝑇), and vise versa. Note the band of high probability 

density around log10 𝑅 = −2 in Figure 3.2b, which differs from a centrally clusterd 

distribution of a single synthetic aftershock series following the Omori’s law (Figure 1 of 



62 

 

Zaliapin et al., 2008) and probably reflects the proximity of most aftershocks to rupture 

zones in nature.  

 

3.3 Tangshan earthquakes: Aftershocks vs. Background Seismicity 

At 3:42 a.m. (UTC+8) on July 28, 1976, a magnitude (Ms) 7.8 earthquake hit 

Tangshan, an industrial city in North China just 150 km east of Beijing, causing a surface 

rupture more than 47 km long (Figure 3.3) (Guo et al., 2017). About 15 hours later, a 

second shock, of Ms 7.1, occurred approximately 40 km to the east-northeast on a 

different fault and ruptured surface more than 6 km long (Guo et al., 2017). These two 

events, together referred to as the Great Tangshan earthquake, obliterated the city of 

Tangshan and killed more than 240,000 people, making it the deadliest earthquake of the 

20th century (Y. Chen et al., 1988). More than 40 years have passed, but the memory of 

the devastation remains fresh. Thus, a series of moderate (M ≥ 4.5) earthquakes in recent 

years near the 1976 Tangshan earthquake rupture zone, including an Ms 5.1 event on July 

12, 2020 (Figure 3.3), have raised social concern and scientific debate: are these events 

aftershocks of the Great Tangshan earthquake? Or are they indicators of stress buildup 

for future large earthquakes in Tangshan or somewhere in North China?  
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Figure 3.3. Seismicity in the epicentral region of the 1976 Tangshan earthquake (red 

rectangle in Figure 3.1). Red dots are M ≥ 3 earthquakes from 1970 to July, 2020. Pink 

symbols are moderate earthquakes in recent years. The gray lines are faults. The blue 

lines are the surface ruputures of the 1976 Ms 7.8 Tangshan earthquake and Ms 7.1 

Luanxian earthquake from Guo et al. (2017).  

 

Establishing reliable background seismicity is the basis for probabilistic seismic 

hazard analysis (Frankel, 1995; Petersen et al., 2018), but a challenge for intraplate 

seismicity. In slowly deforming intraplate regions, large earthquakes are less frequent and 

aftershock sequences are generally much longer than that at plate boundaries (Stein & 

Liu, 2009). Some aftershocks may be mistakenly identified as elevated background 
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seismicity and therefore lead to an overestimation of seismic hazard (Toda & Stein, 

2018). This issue underlies the debate about the recent earthquakes in the Tangshan 

region: are they aftershocks of the 1976 Great Tangshan earthquake, or are they 

background seismicity? Zhong and Shi (2012), by fitting the Omori decay exponents of 

seismicity in the Tangshan region and using the formula of aftershock duration from the 

rate-and-state models (Dieterich, 1994), suggested that the duration of the 1976 Tangshan 

aftershock sequence is around 70-140 years. Therefore, the recent moderate earthquakes 

in the Tangshan region would likely be aftershocks.  M. Liu and Wang (2012) reached 

similar conclusion by fitting seismicity in Tangshan with the Omori’s decay law and 

noting the elevated seismicity and strain rates in the Tangshan region relative to the rest 

of North China. However, as argued by Y. Liu et al. (2020), the parameters used in the 

calculations by Zhong and Shi (2012) are associated with large uncertainties. Using 

epidemic-type aftershock sequence (ETAS) models with a complete earthquake catalog 

of M ≥ 4 earthquakes, Jiang et al. (2013) and Y. Liu et al. (2020) have suggested that the 

recent moderate earthquakes in Tangshan are more likely background earthquakes. 

However, the ETAS model assumes a constant background seismicity rate, which may 

not hold, as acknowledged by Y. Liu et al. (2020) and suggested by other studies 

(Zaliapin & Ben‐Zion, 2020).   

 

3.3.1 Results from the NN method 

Using the threshold distance constrained by the North China earthquakes, we can 

attempt to determine if the recent moderate earthquakes in the Tangshan region are 

aftershocks or background earthquakes (Figure 3.4).  We used the catalogs with two 
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different minimum cut-off magnitudes (M  4 and M  3), the patterns are robust with 

respect to the minimum cut-off magnitude, as suggested by Zaliapin and Ben‐Zion 

(2013). Most events in the catalog are aftershocks, as indicated by the high event-density 

cluster in the 𝑇-𝑅 space (Figure 3.4). The number of background earthquakes are 

relatively small, and hence the weak event-density in the background domain (above the 

log10 𝜂0 = −4.03 boundary). The Ms 5.1 event of 2020/07/12, as well as two other M  

4.5 events since 2012, all fall near the background-clusters boundary within the ≥ 90% 

confidence range (Figure 3.4), hence it is difficult to definitely identify them as 

aftershocks or background earthquakes. However, these three events are at the tail of the 

aftershock mode and has a clear separation from the peak of background events (Figure 

3.4), so they are more likely aftershocks. 

 

 

Figure 3.4. Nearest-neighbor method applied to (a) M ≥ 4 and (b) M ≥ 3 earthquakes 

since 1970 in the Tangshan region. The threshold distance ( log10 𝜂0 = −4.03, solid 

lines) and the ≥ 90% confidence range (dashed lines) are based on earthquakes from the 

entire North China (Figure 3.2). The relatively small probability density in (b) for 

aftershocks may be attributed to record incompleteness for M ≥ 3 events shortly after the 
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mainshock (see text and Figure 3.26). The magenta symbols show the recent moderate 

earthquakes in the Tangshan region.  

 

3.3.2 Duration of the 1976 Tangshan aftershock sequence 

Alternatively, one may estimate the duration of aftershock sequence of the 1976 

Great Tangshan earthquake directly from the catalog. If the aftershock sequence had 

ended before the recent events, then these events are background earthquakes. Aftershock 

duration is typically defined as the time required for seismicity rate after an mainshock to 

return to the background seismicity rate before the mainshock (Dieterich, 1994; Toda & 

Stein, 2018). Some called this “apparent aftershock duration” to emphasize that the 

underlying physical triggering process may continue after this duration and the true 

aftershock duration may be longer (Hainzl et al., 2016). 

  M. Liu and Wang (2012) used the total seismicity rate to suggest that the 

aftershock sequence of the 1976 Great Tangshan earthquake had likely continued to 2010 

(the end of their catalog), because the seismicity rate had not fallen back to the level 

before the 1976 Great Tangshan earthquake. However, doing so requires subjective 

choice of the region from where earthquakes are recorded. Furthermore, besides the 

background earthquakes and aftershocks of the Great Tangshan earthquake, the catalog 

may include other clusters (Figure 3.26).   

Here, I used the background seismicity rate from the results of NN method and 

the Omori’s law to estimate the aftershock duration of the 1976 Great Tangshan 

earthquake (Chapter 1.3.2). Based on the background earthquakes identified by the NN 

method, the background seismicity rates before and after the 1976 Ms 7.8 Tangshan 
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mainshock are different (Figure 3.5). Note that M  3 (and perhaps some M  4) 

background earthquakes are missing wthin several years after the 1976 mainshock (as 

indicated by the flat step after the 1976 mainshock in Figures 3.5a and 3.5b). A number 

of factor could contribute to this missing background seismicity; a likely one is the 

limitation of the NN method, which may identify background events shortly after large 

mainshocks as aftershocks (Zaliapin & Ben‐Zion, 2020). However, this limitation has 

little effect on background earthquakes after 1985, when background seismicity starts to 

accumulate with a linear trend. The background seismic rates after 1985 for both M  4 

and M  3 earthquakes are lower than the ones before the 1976 mainshock (Figure 3.5).   

 

 

Figure 3.5. Background seismicity rate of (a) M ≥ 4 and (b) M ≥ 3 earthquakes in the 

Tangshan region. The background earthquakes are identified by the NN method. The blue 

staircases are the cumulative numbers of earthquakes. The dashed lines indicate the 

occurrence time of the 1976 Ms 7.8 mainshock. The lines are linear least-square fits to the 

average background seismicity rates before (red) and after (green) the mainshock, 

respectively.  
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I calculated the aftershock durations using Equation 1.4 and the different 

background seismicity rates before and after the 1976 mainshock (Figure 3.6). For M ≥ 4 

earthquakes in the Tangshan region, although the recent (2008.3-2020.5)  seismicity rate 

is lower than the rate of the identified background earthquakes before the 1976 

mainshock, the seismicity continues the Omori’s decay and has not reached the rate of 

the post-mainshock background seismicity (Figure 3.6a). The apparent aftershock 

duration is near 100 years. For M ≥ 3 earthquakes, the recent seismicity rate has not 

decayed to the background rates (Figure 3.6b). The incomplete record of M ≥ 3 

earthquakes shortly after the mainshock causes problems for fitting the the Omori’s law, 

so we fit only the complete data after 1980 (the blue line in Figure 3.6b) to estimate the 

aftershock duration 𝑡𝑎. The predicted seismicity rate by July 12, 2020 is higher than the 

background seismicity rate before or after the 1976 mainshock, suggesting that aftershock 

activity is still on-going for M ≥ 3 earthquakes in Tangshan. The aftershock duration of M 

≥ 3 earthquakes in Tangshan is 66.9 year or 89.0 years, depending on the background 

seismicity rate used (before or after the 1976 mainshock), therefore the aftershock 

activity continues in 2020. Overall, the apparent aftershock duration of the 1976 Great 

Tangshan earthquake is around 65-100 years, so the current seismicity in the Tangshan 

region is likely dominated by aftershocks.  
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Figure 3.6. Temporal variations of seismicity rate based on (a) all M ≥ 4 or (b) all M ≥ 3 

earthquakes after the 1976 Ms 7.8 mainshock. The black curve in (a) is the Omori’s law 

fitting based on Equation 1.3. The blue line in (b) is least-square linear fitting of the 

complete records after 1980. The dashed lines are the estimated background seismicity 

rate (𝑟𝑏) before the mainshock (red) and after the mainshock (green) shown in Figure 3.5, 

respectively. The end of fitting curves is 2020/07/12, the last date in the catalog. The 

duration of aftershocks 𝑡𝑎  is indicated by the intersection of the fitting line with the 

background 𝑟𝑏.  

 

3.3.3 Evolution of Coulomb Failure Stress 

Aftershocks are supposed to be physically linked to the mainshock. My co-author 

Dr. Hui Wang calculated the spatiotemporal variation of the Coulomb Failure Stress 

change (ΔCFS) caused by the Tangshan earthquake sequence in 1976, and I compared 

the results with the aftershocks identified by our NN model (Figure 3.7). The 1976 

Tangshan earthquake sequence includes the Ms 7.8 Tangshan mainshock and the Ms 7.1 



70 

 

Luanxian earthquake, both on 1976/07/28, and the Ms 6.9 Ninghe earthquake on 

1976/11/15 (Figure 3.3). The evolution of the ΔCFS were calculated using a layered 

viscoelastic model (Wang et al., 2006). The major fault parameters and average 

dislocations of these three major events were from previous studies (B.-S. Huang & Yeh, 

1997; Robinson & Zhou, 2005); the viscosity of the lower crust is taken as 1×1019 Pa s 

(H. Xu et al., 2018).  

Figure 3.7 shows that the area of increasing ΔCFS enlarged with time due to 

sequential major events and post-seismic viscoelastic relaxation. 66.3% of the M ≥ 3 

aftershocks of the Tangshan earthquake identified by our NN model are found in areas 

with ΔCFS > +0.1 MPa. Some aftershocks are distant from the rupture zones (Figure 

3.7b-c). They are identified as aftershocks because their occurrence times are close to that 

of the mainshock, because the NN method uses the distance in time-space-magnitude 

domain (Equation 3.1). The recent moderate earthquakes, including the 2020 Ms 5.1 

Tangshan earthquake, all occurred in regions where ΔCFS increased, and thus may be 

regarded as triggered events, thus aftershocks (Figure 3.7d).  
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Figure 3.7. Spatiotemporal distribution of the Tangshan aftershocks and temporal 

variation of the Coulomb failure stress (ΔCFS) produced by 1976 mainshock (a) and two 

major subevents (white stars) in the same year (b-c). The three recent moderate 

earthquakes are labeled (d). Magenta lines show ruptures of the three major events. 

White circles (M ≥ 4.5) and dots (M < 4.5) are aftershocks of the 1976 mainshock. Gray 

circles (M ≥ 4.5) and dots (M < 4.5) are background earthquakes. The red contour lines 

show ΔCFS = + 0.1 MPa.  
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3.4 Variable background seismicity in North China 

Background seismicity is the basis for probabilistic seismic hazard analysis 

(Frankel, 1995; Petersen et al., 2018). The spatiotemporal variations of background 

seismicity in North China may provide some useful insights into the question: Is North 

China entering a new period of more active seismicity? 

As shown in Figure 3.1, several devastating earthquakes struck North China since 

1960. Previous studies have noticed that seismic activity in North China seems to 

fluctuate between highs and lows over periods of a few decades (X. Xu & Deng, 1996). 

In general, seismic activity tends to cluster in relatively short periods, separated by long 

and relatively quiescent periods (Yuxuan Chen et al., 2020).  

The seismicity rate of all M ≥ 3 earthquakes in North China (Figure 3.8) shows 

strong temporal variations due to large earthquakes and their aftershocks. Before January 

1976 (Figure 3.8a), the regions of high seismicity rate are mainly near the epicenters of 

the 1966 Ms 7.2 Xingtai earthquake, the 1969 Mb 7.4 Bohai earthquake, and the 1975 Ms 

7.3 Haicheng earthquake. Seismicity rate near Tangshan is low. Between January 1976 

and January 1986 (Figure 3.8b), Tangshan becomes a center of high seismicity rate 

because of the intense aftershocks of the Great Tangshan earthquake. The seismicity rates 

remain high around the epicentral regions of the Xingtai, Bohai, and Haicheng 

earthquakes, and near the epicenters of other M ≥ 6 earthquakes during this period. 

During the next two decades (Figure 3.8c-d), the spatial patterns remain the same but 

with lower seismicity rates as aftershocks decay. Since 2006, high seismicity rate has 
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faded away around Xingtai but continues around the Tangshan and Haicheng regions 

(Figure 3.8e-f). 

 

 

Figure 3.8. Spatiotemporal variation of total seismicity rate (M ≥ 3) in North China. 

Small grey circles are all M ≥ 3 earthquakes during each time period. Large white circles 

are M ≥ 6 earthquakes. 
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Figure 3.9. Spatiotemporal variation of background seismicity rate (M ≥ 3) in North 

China. Small grey circles are all M ≥ 3 earthquakes during each time period. Large black 

circles are M ≥ 6 earthquakes. 

 

Having separated aftershocks from the catalogs, I can examine the background 

seismicity rate, which forms the foundation for hazard assessment (Cao et al., 1996; 

Petersen et al., 2014). Unlike the total seismicity rate, background seismicity in North 
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China is generally stable in space with some variations in time. The regions with high 

background seismicity rate correlate with major tectonic structures including the Shanxi 

Rifts, the Zhangjiakou-Penglai (Z-P) fault system, and the Bohai Bay segment of the 

Tanlu fault (Figure 3.9). After the 1966 Xingtai earthquake and the 1976 Tangshan 

earthquake, a Tanshan-Hejian-Cixian (T-H-C) active fault system was identified, which 

experienced thirteen M6 and four M7 historical earthquakes (J. Xu et al., 1996; Yin et al., 

2015). This fault system had slightly higher background seismicity rate than most of 

North China up to 1996 (Figure 3.9a-c), but was back to “normal” since then (Figure 

3.9d-f). Other localities of high seismicity rates in each time period are not clearly 

associated with mainshocks; they may be related to local stress perturbations. The total 

background seismicity rate for whole North China stayed nearly the same, with slight 

decrease in the past decade (Figure 3.10). 
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Figure 3.10. The cumulative background earthquakes of M ≥ 4 (a) and M ≥ 3 (b) in 

North China. The red lines are linear least-square fits to the average background 

seismicity rates between 1986 and 2006. 

 

3.5 Correlation between seismicity and strain rate 

In the previous sections in this chapter, I mainly focus on the complete 

instrumental earthquake records after 1970 and the area eastern the Ordos Plateau. In this 

and later sections, I also use the historical earthquake records and expand the study 

region to include the Ordos Plateau and its margins (Figure 3.12), so I get more data to 

describe spatiotemporal patterns as complete as possible and do statistical analysis. The 

earthquake catalog I used below is a moment-magnitude (Mw) based historical earthquake 

catalog (Mw ≥ 4, 780 B.C.-2015) compiled by Cheng et al. (2017). In the broader North 

China region, the M ≥ 6 earthquake records are suggested to be complete after 1600 (W.-

Q. Huang et al., 1994). 
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Figure 3.11. Nearest-neighbor method applied to Mw ≥ 4 earthquakes between 780 B.C. 

and 2015 in North China: (a) 1D density distribution of 𝜂, with estimated Gaussian 

densities for clustered (red) and background (blue) components. The threshold distance 

𝜂0 is where the two components are best separated, here at log10 𝜂0 = −3.99 (the solid 

vertical line). (b) 2D joint distribution of rescaled distance and time (𝑅, 𝑇). The solid line 

(log10 𝑇 + log10 𝑅 = −3.99) is the preferred threshold between background and 

clustered earthquakes. The results are calculated with 𝑏 = 1 and 𝑑𝑓 = 1.5, and are not 

sensitive to variations of these values within reasonable ranges.  

 

I declustered the whole historical earthquake catalog of the broader North China 

region using the NN method; the results are in Figure 3.11. The calculated threshold 

log10 𝜂0 = −3.99 is very close to the threshold log10 𝜂0 = −4.03 shown in Figure 3.2, 

suggesting the NN method is stable with catalog incompleteness. Because most 

aftershocks of historical earthquakes are missing in the catalog, most events in the catalog 

are background earthquakes, as indicated by the high event-density cluster in the 

background domain (above the log10 𝜂0 = −3.99 boundary) (Figure 3.11b). The number 

of aftershocks is relatively small, and hence, the event-density in the aftershock domain is 

low (Figure 3.11b). Except the horizontal band around log10 𝑅 = −2, there is an band 

downward to the right, similar to the result of a single synthetic aftershock series shown 

in Zaliapin et al. (2008), which suggest that aftershocks was closer to their mainshocks as 

time went by (the rescaled distance of aftershocks decreases when the rescaled time 

increases). 
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After declustering the catalog, I compare the spatial distributions of total 

seismicity, background seismicity, and aftershocks with the strain rate distribution from 

Global Strain Rate Model (Figure 3.12) (Kreemer et al., 2014). As shown in Figure 3.12, 

the central part of the Ordos block has low strain rate, low background seismicity, and is 

lack of large earthquakes. The high strain rate and concentrated seismicity are found at 

the west margin of the Ordos block and along the Z-P fault system. Along the Shanxi rift, 

seismicity is abundant, but strain rate is only medium, mainly in the central and southern 

parts. In the North China Plain, the strain rate is as low as the one in the central part of 

the Ordos block, but the background seismicity and large earthquakes are widespread. 

The aftershock activities concentrate in Xingtai and Tangshan regions because of the 

1966 Xingtai and 1976 Tangshan mainshocks. The correlation between strain rate and 

seismicity in North China is hard to see from the plots, so I do a statistical analysis 

below. 
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Figure 3.12. Spatial distribution of scalar strain rate and Mw ≥ 4 earthquakes between 780 

B. C. and 2015.  (a) Total seismicity. (b) Background seismicity. (c) Aftershocks. Red 

circles are earthquake epicenters (Large: Mw ≥ 6, Small: 4 ≤ Mw < 6). The strain rate data 

come from Kreemer et al. (2014). The earthquake data come from Cheng et al. (2017). 

 

To quantify this correlation, I follow the approach of Shen et al. (2007) and Zeng 

et al. (2018) by comparing the cumulative strain rate and earthquakes. I first grid the 

region according to the resolution of strain rate data into 0.1° by 0.1° cells and then sort 

the cells by descending strain rate. Strain rate and number of earthquakes in these cells 

are then separately summed from cells of highest strain rate to cells of lowest strain rate 

to produce cumulative curves for strain rate and number of earthquakes. For comparing 

these two curves, the total cumulative strain rate and earthquakes are normalized to unity. 

The cumulative number of cells is also normalized to unity to express the cumulative 

proportion of area being scanned. The normalized cumulative strain rates and number of 

earthquakes are then plotted as a function of the cumulative proportion of scanned area. 

This kind of plot is actually a flipped version of the Molchan diagram, which is an 

objective way to test earthquake prediction (Molchan & Kagan, 1992; Zechar et al., 

2013) (Figure 3.13). Therefore, the cumulative earthquake curve shows on how well the 

strain rate predicts previous earthquakes. I use the area skill score introduced by Zechar 

et al. (2013) to quantify the prediction power. The area skill score is the normalized area 

below the corresponding cumulative curve. The area skill score = 1 corresponds to a 

perfect prediction. The area skill score = 0 indicates completely fail of prediction. The 

area skill score = 0.5 is expected for a random guess (the diagonal line in Figure 3.13). 
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Figure 3.13. Comparison between geodetic strain rate and seismicity in North China. 

Cumulative strain rate and earthquake count versus fraction of covered area sorted by 

descending strain rates, with the highest strain rate areas to the left of horizontal axis. The 

total cumulative strain rate and earthquake count are normalized to unity. (a), (c), and (e) 

are for Mw ≥ 6 earthquakes. (b), (d), and (f) are for Mw ≥ 4 earthquakes. The black 
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diagonal line indicates spatial random distribution (area skill score = 0.5). The dash lines 

are indictors of the strain rate accumulation in 25% area with highest strain rate. The 

score shown in the figure is the area skill score introduced by Zechar et al. (2013) 

detailed in main text.   

 

Figure 3.13 shows the cumulative curves for strain rate and different types of 

seismicity (total seismicity, background seismicity, and aftershocks with Mw ≥ 4 or Mw ≥ 

6 since 780 B.C. The cumulative curves for strain rate and seismicity are called the strain 

rate curve and the seismicity curve, respectively. I sort cells according to the strain rate 

from high to low, so areas with highest strain rate are scanned first (left portion of 

horizontal axes), then lower strain-rate areas are scanned (right portion of horizontal 

axes). Therefore, the strain rate curve is concave downward. The earthquakes (e.g. total 

seismicity, background seismicity, and aftershocks) are also cumulatively counted based 

on the descending order of strain rate.  For total seismicity, either Mw ≥ 4 or Mw ≥ 6, the 

strain rate curves match the seismicity curves well, indicating a strong correlation 

between the strain rate and total seismicity in North China. The area skill scores of the 

strain rate and total seismicity are close to each other. For background seismicity, the 

correlation is still strong for Mw ≥ 6 earthquakes but weaker for Mw ≥ 4 earthquakes, 

suggesting relatively small background earthquakes distributed more broadly than large 

earthquakes, as shown in Figure 3.12b. For aftershocks, the seismicity correlates well 

with strain rate for both cut-off magnitudes. For Mw ≥ 4 aftershocks, the seismicity curve 

is even above the strain rate curve with a larger area skill score, suggesting aftershocks 

intensively occurred in high strain rate regions (mainly in the Tangshan region). 
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Considering the possible impact of the incomplete earthquake records, I have also 

checked the results for complete records (Mw ≥ 6 since 1600 and Mw ≥ 4 since 1970). The 

general features shown in Figure 3.13 do not change. Because the portion of complete 

records is a large part of the total records in the catalog, the general features shown in 

Figure 3.13 are the features mainly for periods with complete records. Specifically, the 

features for Mw ≥ 6 earthquakes are mainly the features in 1600-2015 period. The features 

for Mw ≥ 4 earthquakes are mainly the features in 1970-2015 period. The general features 

shown in Figure 3.8 may vary with time and the length of chosen time periods. 

However, the strong correlation between strain rate and large earthquakes (Mw ≥ 

6) (Figure 3.13) does not ensure that the spatial prediction power of strain rate in North 

China is as good as the one in plate boundary zones. As shown in Figure 3.13a, 55% of 

the large earthquakes occurred in 25% of the area with the area skill score = 0.73, better 

than random guess, but the portions of predicted earthquakes are much less than the 

results for the California-Nevada region, which are 86% of large earthquakes in 25% of 

the area (Zeng et al., 2018). This large contrast is because areas of relatively high strain 

rate are much more concentrated in major faults in plate boundary zones (e.g., California) 

than in diffused fault systems in intraplate regions (e.g., North China). I also counted the 

number of cells and number of Mw ≥ 6 earthquakes that occurred in these cells at 

different ranges of strain rate (strain rate bins) (Figure 3.14a) to characterize the 

correlation between strain rate and seismicity. They are normalized to relative frequency 

so that they can be compared. The results show that, in North China, around 71% of the 

area have strain rates less than 5 x 10-9 but only produced around 38% of Mw ≥ 6 

earthquakes (Figure 3.14a), so Mw ≥ 6 earthquakes tend to occur in regions with 
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relatively high strain rate. To further explore the dependence of Mw ≥ 6 earthquakes on 

strain rate, I used the number of Mw ≥ 6 earthquakes divides the number of cells for each 

strain-rate bin, and obtained the number of earthquakes per cell for different strain-rate 

bins (Figure 3.14b). The results show that in general, regions of relatively high strain rate 

produce more Mw ≥ 6 earthquake (Figure 3.14b). 

 

 

Figure 3.14. (a) Relative frequency distributions of scalar strain rate for the cells and the 

Mw ≥ 6 earthquakes occurred within the cells. Shaded area is the overlapping part of these 

two distributions. If the two distributions are totally overlapped, it means that the 

earthquakes are not correlated with strain rate. (b) Average earthquake occurrence per 

cell for the given period. The earthquake occurrence per cell for strain rate bines is 

normalized to unity. 

 

As I have shown in Chapter 2, large earthquakes tend to have a Devil’s staircase 

temporal pattern, with the alternation of active and quiescent periods. The complete 

records of Mw ≥ 6 earthquakes in North China show an active period at first between 
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1600 and 1750, followed by a relatively quiescent period (1750-1900), then another 

active period since 1900 (Figure 3.15a). I compared the cumulative curves of seismicity 

in these three periods with the strain rate curve, the results show that the seismicity 

curves for the two active periods match the strain rate curve well (Figure 3.15b), but the 

seismicity curve for the quiescent period is significantly below the strain rate curve and 

close to the spatially random distribution (the diagonal line in Figure 3.15b). Therefore, 

the spatial patterns of large earthquakes may be different in active periods and quiescent 

periods. 

 

 

Figure 3.15. (a) Temporal pattern of M ≥ 6 earthquakes (M ≥ 6.5 for inset) in North 

China with two active periods (1600-1750 and 1900-2015) separated by a relatively 

quiescent period (1750-1900). (b) comparison of correlations between strain rate and 

seismicity in these three periods. The diagonal line suggests a random distribution of 

earthquakes. 
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I also explore the temporal variations of the cumulative earthquake curves by 

using smaller earthquakes. I used both the incomplete records of Mw ≥ 4 background 

earthquakes between 1900 and 1969 and the complete records of Mw ≥ 4 background 

earthquakes since 1970. For the complete records, I calculate each seismicity curve for a 

10-year period window and then move the time window at a 2-year step. For the 

incomplete records, I calculate in the same way but with a 30-year window to ensure 

there are enough earthquakes in each window. The results of complete background record 

since 1970 show that the background seismicity curve matches the strain rate curve at the 

beginning time periods (red colored curves) and gradually move downward away from 

the strain rate curve (Figure 3.16a). The blue colored curves with midyear after 2007 are 

significant below the strain rate curve, suggesting Mw ≥ 4 earthquakes are more widely 

distributed in both high and low strain rate regions. Combined with lack of Mw ≥ 6 

earthquakes in the past 40 years (Figure 3.15a), it seems that North China have entered a 

quiescent period after the 1976 Tangshan earthquake. For the incomplete records between 

1900 and 1969, because of limited data and 30-year period window, the results are less 

reliable with worse time resolution than the ones from complete records, but I found a 

trend of the background seismicity curve moving from random distribution to strain-rate 

correlated distribution (Figure 3.16b). However, there is no transition from quiescent 

period to active period for large earthquakes between 1900 and 1969 (Figure 3.15a). 

During this period, low strain-rate regions (strain rate < 5 x 10-9) still produced around 

38% of Mw ≥ 6 earthquakes. One possible explanation is that strong correlation between 

the strain rate and seismicity means large earthquakes are more likely to occur in high 

strain rate region, but during the quiescent periods, large earthquakes may occur more 
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randomly in space than during clustered periods. The correlations between strain rate and 

seismicity in different tectonic settings are compared in Chapter 5. The effect of the 

length of time window is also explored om Chapter 5. 

 

 

Figure 3.16. (a) The cumulative strain rate (black) and Mw ≥ 4 earthquake counts within 

10-year windows that move in 2-year steps from 1970 to 2015. (b) Similar plot for Mw ≥ 

4 earthquakes but with 30-year windows that move in 2-year steps from 1900 to 1970. 

The colorbar shows the midyear of the moving time windows used to count the 

cumulative earthquakes. 

 

3.6 Correlation between seismicity and mapped faults 

Large earthquakes concentrate and repeat on major faults in plate boundary 

regions, but in intraplate regions, the fault systems are complex and consist of widespread 

faults and hidden faults. Large intraplate earthquakes seem to roam between different 

faults and often occur at unexpected places (M. Liu et al., 2011). The Xingtai and 

Tangshan earthquakes in North China occurred at the places where no active tectonics or 
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active faults were recognized before the occurrence of these events. Moreover, in 

intraplate Brazil, most of earthquakes occur near but not directly on the major neotectonic 

faults (Assumpção et al., 2014). Therefore, I did a statistical analysis on the correlation 

between seismicity and mapped faults. 

 

 

Figure 3.17. Comparison between seismicity and faults. (a) Total seismicity with Mw ≥ 6. 

(b) Background seismicity with Mw ≥ 4. Red solid lines are Holocene faults. Magenta 

dashed lines are hidden faults. Grey solid lines are Pleistocene faults. Blue lines are 

marine faults. Red solid circles are epicenters closer than 15 km from faults. Open circles 

are epicenters more than 15 km away from any fault.   

 

The fault data I used are from Deng et al. (2007). The mapped faults are divided 

into four types: Late Pleistocene and Holocene faults, Quaternary faults, hidden faults in 

plain or basin region, and marine faults.  A Late Pleistocene and Holocene fault is a fault 

that moved in the last 120,000 years. A Quaternary fault is a fault that moved in the 
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Quaternary but its movement since Late Pleistocene is uncertain. A hidden fault is a fault 

without evidence of surface ruptures. Faults in the plain or basin region are likely to be 

hidden faults, because of the covering of loose Quaternary sediment. Most of hidden 

faults in North China Plain moved in Early and Middle Pleistocene but have no evidence 

of movement since Late Pleistocene. A marine fault is a fault on sea floor. 

The spatial distribution of mapped faults and seismicity in North China is shown 

in Figure 3.17. The mapped faults are plenty and widespread. The Late Pleistocene and 

Holocene faults (solid red) are mainly around the Ordos Plateau and near the Tanlu fault. 

In North China Plain, the hidden faults (dashed magenta) are the major type. The marine 

faults (blue) distribute in the Bohai Sea. The Quaternary faults are least in number and 

diffusely distributed. Most earthquakes occurred on or near the mapped faults (Figure 

3.17). The Late Pleistocene and Holocene faults generate the largest portion of 

earthquakes, but many events also occurred on or near the hidden faults (Figure 3.18). 

Small number of earthquakes occurred on or near the Quaternary and marine faults 

(Figure 3.18). However, significant number of events (16% for Mw ≥ 6 events) are 

observed more than 15 km away from the mapped faults (unmapped) (Figure 3.18). 

Background earthquakes (Mw ≥ 4) occurred on the unmapped faults with a larger portion 

compared with the large earthquakes (Mw ≥ 6) (Figure 3.18), consistent with the 

observation that background seismicity is more widespread than large earthquakes 

(Figure 3.17).  
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Figure 3.18. Relative frequency distribution of earthquakes on different types of faults.  

 

The results above suggest that the fault distribution is also a good constraint on 

the spatial distribution of earthquakes. How well the spatial distribution of earthquakes 

can be indicated by the combined strain rate and the fault data? To answer this question, 

first, I discretize the fault data into 0.1° by 0.1° cells, same resolution as for the strain rate 

data, and call them the fault cells. Then the area diagram similar to that for strain rate is 

constructed. The difference is on how to scan the cells. Here, I divide the 0.1° by 0.1° 

cells of North China into two categories: the fault cells and ground cells. The fault cells 

are scanned first by descending strain rate because earthquakes are more likely to occur 

on faults than outside faults. After all fault cells are scanned, I start to scan the ground 

cells by descending strain rate (the red curves in Figure 3.19). I also tried to specify the 

fault cells according to their fault type as shown in Figure 3.18. The way is scanning the 
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cells of the Late Pleistocene and Holocene faults first, then the cells of the hidden faults, 

then the cells of marine and Quaternary faults, lastly scanning the ground cells (the black 

curves in Figure 3.19). Each kind of cells are sorted by descending strain rate. Doing so 

means that I assume that the rifting faults around the Ordos and the Holocene segment of 

the Tanlu fault are most likely to produce large earthquakes, the hidden faults in North 

China Plain are the second priority for large earthquake occurrences. The results are 

shown in Figure 3.19. The area skill score for strain rates increased after combining with 

the fault data. This is more clear for large earthquakes (Figure 3.19a). Thus, fault data 

provide additional constraints on the spatial distribution of earthquakes. The earthquake 

curves based on strain rate and fault data are below the earthquake curves based only on 

strain rate data in the left part of the plot (cells of higher strain rate). It suggests that some 

earthquakes occurred on the unmapped faults but in high strain rate regions, and better 

“prediction” can be made in low strain rate region when scanning areas with mapped 

faults first. Giving priority to the Late Pleistocene and Holocene faults and hidden faults 

makes a little improvement on the large earthquake “prediction”, but the general feature 

does not change. The way that I combine the strain rate and fault data is straightforward 

but not the best. Possible improvements may be made by using only fault data for low 

strain rate regions or giving different weight to strain rate and fault data, or assigning 

wider fault areas.  
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Figure 3.19. Cumulative number of earthquakes versus fraction of covered area sorted 

based on strain rate or the combination of strain rate and fault data. (a) Total seismicity 

with Mw ≥ 6. (b) Background seismicity with Mw ≥ 4. The area skill scores are color 

coded for the different curves.  

 

3.7 Correlation between seismicity and seismic velocity 

Mooney et al. (2012) analyzed the correlation between global intraplate seismicity 

and seismic velocity and found that intraplate seismicity tends to concentrate around 

edges of cratons, defined by the S-wave anomalies from global seismic tomography at  a 

depth of 175 km. Assumpção et al. (2014) found that the S-wave anomalies at 100 km 

depth in Brazil show some correlations with the spatial distribution of seismicity; A large 

percentage of epicenters are found above S-wave anomalies between -1 and -4% and in 

the range from +3 to +5%. Here I compare the spatial distribution of earthquakes with S-

wave anomalies in North China. I used the S-wave anomalies at 100 km depth (Figure 

3.20) from Crust and Upper Mantle Velocity Model of North China v2.0 

(http://www.craton.cn/data), because the S-wave anomalies at 100 km depth show a good 

http://www.craton.cn/data
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spatial resolution in the checkboard experiments (Zhao et al., 2012) and may reflect the 

lithospheric thinning and cratonic edge effect suggested by previous studies (Assumpção 

et al., 2014; Mooney et al., 2012). The S-wave anomalies are obtained by inverting body 

wave travel-time data (Zhao et al., 2009; Zhao et al., 2012). The data resolution is 0.5° by 

0.5°.  

 

Figure 3.20. Comparison of S-wave anomaly with seismicity. Blue circles are 

background earthquake epicenters (Large: 6 ≤ Mw < 7, Small: 4 ≤ Mw < 6). Red circles 

are total earthquake epicenters (Large: Mw ≥ 8, Medium: 7 ≤ Mw < 8). Green triangle 

indicates the Datong volcano. 
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The spatial distribution of the S-wave anomaly generally matches the geological 

setting in North China, with the highest S-wave velocities in the center of the Ordos 

Plateau and the lowest S-wave velocities near the Datong volcano (the green triangle in 

Figure 3.20). Most of the largest earthquakes (Mw ≥ 7) in North China (red circles in 

Figure 3.20) occurred around the edges of Ordos block, a relic of the thermally 

rejuvenated North China craton with a thick lithosphere (Bao et al., 2011), where the S-

wave anomalies are between 0 and 0.5% (Figure 3.21a). However, for smaller 

background earthquakes (Mw ≥ 4), the distribution of S-wave anomaly largely overlaps 

with the distribution of S-wave anomaly for the cells (Figure 3.21b), meaning a weak 

correlation between the S-wave anomaly with background seismicity. To some extent, 

the areas with low S-wave velocity (anomaly between -2.5% and -0.5%) had more 

earthquakes than expectation of random distribution, and fewer earthquakes occurred in 

the areas with high S-wave velocity (anomaly larger than 1%) (Figure 3.21). The lack of 

seismicity in high S-wave velocity area is due to the cold and strong Ordos block. The 

relative concentration of seismicity in area of low S-wave velocity may be related with 

lithospheric thinning in North China. Overall, seismic velocity anomaly alone is not a 

good spatial predictor of seismicity (close to random guess, shown in Figure 3.22) but 

may offer some constraints on large earthquakes.  
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Figure 3.21.  Relative frequency distributions of S-wave anomaly for the 0.5° by 0.5° 

cells and earthquakes occurred in these cells. Shaded area is the overlapping part of these 

two distributions. If the two distributions are totally overlapped, it means the S-wave 

anomaly does not correlate with seismicity. (a) Large seismicity with Mw ≥ 7. (b) 

Background seismicity with Mw ≥ 4. 

 

 

Figure 3.22. Cumulative number of earthquakes versus fraction of covered area sorted by 

ascending S-wave anomaly. (a) Total seismicity with Mw ≥ 7. (b) Background seismicity 
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with Mw ≥ 4. The area skill scores are shown in the southeast side of Figure. The diagonal 

line suggests a random distribution of earthquakes (area skill score = 0.5). 

 

3.8 Discussion 

3.8.1 Aftershocks: controversy and uncertainty 

One motivation for this chapter is to answer the question regarding recent 

moderate earthquakes (M ≥ 4.5) in the Tangshan region: Are they aftershocks of the 1976 

Great Tangshan earthquake? Our results, based on the nearest-neighbor method and 

Omori’s law fitting, indicate that the recent moderate earthquakes are likely the 

aftershocks of the 1976 Great Tangshan earthquake. A supporting indicator is the stress 

increase in their epicentral regions by the 1976 Tangshan earthquake (Figure 3.7). In 

other words, they may be triggered by the Great Tangshan earthquake, and therefore are 

its aftershocks. The same conclusion was reached by Zhong and Shi (2012) and M. Liu 

and Wang (2012). On the other hand, it is clear from Figure 3.4 that the statistical 

properties (distance to the main shock in the space-time-magnitude domain) of these 

recent events are near the boundary separating aftershocks from background earthquakes, 

so they could also be identified as background earthquakes. This uncertainty of 

aftershock identification is consistent with the result of Y. Liu et al. (2020) that the 

probability of the 2019 Ms 4.5 event being triggered by the 1976 Great Tangshan 

earthquake is 49.4%. 

The difficulty of identify or rejecting these events as aftershocks begins with the 

definition of aftershocks. The term aftershock implies a causative relation with the 

mainshock and foreshock in an earthquake nucleation process (M. Liu & Stein, 2019; 
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Scholz, 2002). However, proving this causative relationship has been difficult for natural 

earthquakes. Some workers think that aftershock, foreshock, and mainshock are events 

fundamentally the same; they are in a sequence of cascading ruptures triggered by a 

common mechanism (Felzer et al., 2004; Helmstetter, 2003). In this view, they are just 

different names for earthquakes in a different part of the earthquake sequence.  

In practice, aftershocks usually refer to the smaller earthquakes following a large 

earthquake (the mainshock) in the same rupture area, and are assumed to be triggered by 

the mainshock through changes of fault frictional properties and stress (M. Liu & Stein, 

2019). They are assumed to occur in the neighborhood of the mainshock with their 

number decaying with time as described by the Omori’s law (Omori, 1894; Utsu, 1961), 

which is applied in most declustering methods. The main difference of these declustering 

methods is in choosing the space and time windows for aftershocks, and the reference for 

the decaying seismicity, i.e., the background seismicity rate. In this chapter, I used the 

nearest neighbor (NN) method, which statistically identifies aftershocks as clustered 

events, to decluster the earthquake catalog of North China. Like all statistical methods, 

the NN method is based only on the statistical property exhibited by events in the 

catalogs; it has no bearing on the causative physics that is implied in the definition of 

aftershocks. Thus, the NN may miss some aftershocks that are stress triggered by a 

mainshock but whose nearest-neighbor distance is beyond the threshold for aftershock 

identification. The Omori’s law is useful to describe the general patterns of decaying 

seismicity rates in aftershock sequences, but it is not useful for identifying individual 

aftershock events, because within the duration of aftershocks, an event could be either an 

aftershock or a background earthquake.  
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3.8.2 Background seismicity: spatiotemporal variability 

One important application of declustering is to obtain background seismicity, 

which is essential for hazard assessment (van Stiphout et al., 2012). Gardner and Knopoff 

(1974) and Reasenberg (1985) proposed that background seismicity, obtained by their 

declustering methods, follow a stationary Poisson process. These two important studies 

have “established the commonly accepted null model for declustered seismicity - a 

Poisson point field that is stationary in time and inhomogeneous in space” (Zaliapin & 

Ben‐Zion, 2020). However, Luen and Stark (2012) used the declustering methods of 

Gardner and Knopoff (1974) and Reasenberg (1985) with different magnitude cut-off 

catalogs and more powerful statistical tests; they found the declustered catalogs are not 

consistent with the stationary Poissonian model. Zaliapin and Ben‐Zion (2020) developed 

a more elaborated statistical declustering algorithm based on the NN method and applied 

it to a global catalog (2000-2015, M 5.0-9.1) and earthquake catalogs from California. 

Their results suggested that the hypothesis of stationary background seismicity cannot be 

rejected for catalogs with magnitude range (between the maximum and minimum 

magnitudes) less than 4, but can be rejected for catalogs with magnitude range larger than 

4.  

Defining background seismicity rates is more difficult in intraplate regions, where 

earthquake records are often incomplete and not long enough to reflect long term, slow 

tectonic loading. The background seismicity in North China as identified in this chapter 

are generally stable in space but with variations in time (Figure 3.9). Regions with high 

background seismicity rate are found in major tectonic structures, including the Shanxi 
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Rift and the Z-P fault system, where geodetic strain rates are high and large historic 

earthquakes were concentrated (Figure 3.12). These results are similar to the spatial 

patterns of background seismicity rate reported by Xiong et al. (2019). On the other hand, 

background seismicity shows local temporal variations. The localized highs of 

background seismicity rate roam with time, with no clear correlations with the epicentral 

regions of large earthquakes (Figure 3.9). These variations may reflect activity switching 

among subregions and indicate local stress perturbations. Similar results are found in the 

background seismicity in California (Zaliapin & Ben‐Zion, 2020).  

 

3.8.3 Trade-off between completeness and length of earthquake catalogs   

Long and complete records of earthquakes are important for seismic hazard 

analysis, especially for intraplate regions, where tectonic loading is slow. In this chapter, 

I used both historical and instrumental earthquake records to explore the spatiotemporal 

patterns of earthquakes in North China. For the earthquake records in North China, long 

catalog and complete catalog cannot be satisfied simultaneously, I have to scarify the 

completeness for the length of records, so I can use as much data as possible. Large 

earthquakes did occur at places where current seismicity rate is low (Figure 3.1), possibly 

so do future large earthquakes. Therefore, more historical and paleoseismic earthquake 

studies are needed to describe long-term behavior of intraplate seismicity and be used in 

seismic hazard assessment. 

 

3.8.4 Correlation between strain rate and seismicity   
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The good correlation between seismicity and strain rate is the precondition for 

using strain rate in earthquake forecast, but a good correlation does not necessarily make 

strain rate a good earthquake predictor. As I showed in Figure 3.13, the degree of 

correlation is defined by how well the seismicity curve matches the strain rate curve, but 

the prediction power is described by the area below the earthquake curve (area skill 

score). The results show that the strain rate correlates well with large earthquakes in 

North China, but its prediction power is lower than that in plate boundary regions.  

Our results show that large earthquakes tend to concentrate in regions of high 

strain rate in active periods but diffusely distributed in a quiescent period (Figure 3.15). 

The rate change of large earthquakes seems to be reflected by the spatiotemporal 

evolution of background seismicity. During the active period, background earthquakes 

gradually concentrated within areas of high strain rate and then became more diffusely 

distributed in both high and low strain rate regions (Figure 3.16). These results are similar 

to the spatiotemporal patterns of earthquakes in the California-Nevada shown in Zeng et 

al. (2018). How the correlation between strain rate and seismicity varies in different 

tectonic settings are explored in Chapter 5. 

 

3.8.5 Implications for intraplate seismic hazard 

The declustered earthquake catalogs, assumed containing only independent 

background events, are often used as input for seismic hazard assessments (Allen et al., 

2018; Mueller, 2019). However, as I have shown in this chapter, separating aftershocks 

from background earthquakes can be challenging. Most declustering methods rely on 

statistical property variations in the catalogs and are limited by the quality of the catalogs. 
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The separation of aftershocks from background seismicity in statistical models is not 

attached to the underlying physics. As Zaliapin and Ben‐Zion (2020) stated: “we do not 

even know if natural seismicity actually operates in these terms (background, clustered, 

etc.)”.  

The challenge is greater in intraplate regions, where slow tectonic loading is 

shared by complex systems of faults and fault networks. Over the long term, intraplate 

earthquakes tend to be temporally clustered and spatially roaming (M. Liu & Stein, 2016; 

M. Liu & Wang, 2012). In North China, my analysis of the catalog since 1970 shows 

relatively high background seismicity rates in the Shanxi rift and the Z-P fault system 

(Figure 3.9), where geodetic strain rates are also relatively high and large historic 

earthquakes were concentrated (Figure 3.12). However, the correlation between 

background seismicity and strain rates or historic earthquakes is not clear within the 

North China Plain. Numerous large historic earthquakes, including the 1668 M 8.5 

Tancheng earthquake on the Tanlu fault, as well as the 1966 Xingtai earthquakes 

occurred where neither the background seismicity nor geodetic strain rates are 

significantly above the normal. In the more stable and less active North America craton, 

Kreemer et al. (2018) found that seismicity has no correlation with strain rate in a plate 

scale. The overall variation of background seismicity rate near Tangshan and the rest of 

the North China Plain in recent years (Figure 3.9) provides no clear indication that the 

region has entered a new period of more active seismic activity (X. Xu & Deng, 1996). 

 

 

3.9 Conclusions 
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I used the nearest-neighbor method to separate clustered earthquakes (taken as 

aftershocks) from background earthquakes in North China and did statistical analysis on 

the spatial correlation of seismicity with strain rate, fault, and seismic velocity. The 

results indicate that the aftershock sequence of the 1976 Great Tangshan earthquake is 

likely continuing. The recent moderate (M ≥ 4.5) earthquakes, including the 2020/07/12 

Ms 5.1 Tangshan earthquake, are statistically identified as aftershocks and may be 

physically triggered by the 1976 Great Tangshan earthquake. The recent background 

seismicity rate in the Tangshan region is lower than that before the Great Tangshan 

earthquake for both M ≥ 4.0 and M ≥ 3.0 catalogs. The estimated aftershock duration is 

around 65-100 years. 

The background seismicity in North China is relatively stable in space with 

variations in time. Relatively high background seismicity is found in the Shanxi Rift and 

the Z-P fault system, where geodetic strain rates are also relatively high and large historic 

earthquakes concentrated. However, such correlations are weak in the North China Plain. 

Numerous large historic earthquakes occurred where neither background seismicity rate 

nor geodetic strain rate is significantly above the normal, highlighting the complexity of 

intraplate earthquakes. The temporal variations of background seismicity in North China 

suggest no clear correlation with large earthquakes in the past century. The variation of 

background seismicity rate in North China in recent years provides no clear indication 

that the region has entered a new period of active seismic activity.   

 In North China, good correlation is found between large earthquakes and strain 

rate, but the correlation is worse for smaller earthquakes. The power of strain rate as a 

spatial predictor of seismicity in North China is significantly better than random guess,  
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but it is not as good as in plate boundary regions, because strain rate is diffuse in North 

China. The correlation between strain rate and seismicity are strongly time-dependent. 

Background seismicity gradually concentrated within areas of high strain rate from 1900 

to 1970 when the rate of M ≥ 6 events was high, but low strain-rate regions still produced 

~38% of large earthquakes. Since 1976 the rate of M ≥ 6 earthquakes dropped in North 

China, so is the correlation between strain rate and earthquakes. These results suggest 

that the spatial correlation between strain rate and seismicity varies with time, 

magnitudes, and tectonic settings, all need to be considered when using strain rate for 

forecasting and hazard assessment. 

 The fault distribution is also a good constraint on the spatial pattern of seismicity. 

Many large earthquakes occurred not only on the Late Pleistocene and Holocene faults 

but also near or on hidden faults. However, some large earthquakes also occurred away 

from the mapped faults in the high strain rate regions. Background seismicity is more 

diffusely distributed than large earthquakes with an increased portion on unmapped 

faults. Combining fault data with strain rate can improve the prediction performance for 

large earthquakes.  

The correlation of seismicity with the S-wave anomaly at 100 km depth is weak, 

although high velocity regions are aseismic and low velocity regions tend to have little 

more earthquakes than random distribution. The largest earthquakes (M ≥ 7) in North 

China seems to concentrate in the areas with the S-wave anomalies between 0 and 0.5%, 

roughly corresponding to the edges of the Ordos block.  

 

3.10 Supplementary materials 
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The b-value of M ≥ 4 earthquakes in North China is calculated using Equation 

1.2. The result is 𝑏 = 0.95 ± 0.02 (Figure 3.23). 

Figure 3.23. The b-value estimation for M ≥ 4 earthquakes since 1970 in North China by 

using the maximum likelihood method. 

 

The 𝑑𝑓 of M ≥ 4 earthquakes in North China is calculated based on Equation 1.6. 

The result is  𝑑𝑓 = 1.49 ± 0.02 (Figure 3.24). 
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Figure 3.24. The 𝐟𝐫𝐚𝐜𝐭𝐨𝐫 𝐝𝐢𝐦𝐞𝐧𝐭𝐢𝐨𝐧 𝒅𝒇 for M ≥ 4 earthquakes since 1970 in North 

China. The value of  𝒅𝒇 is estimated by the "correlation integral method" (Grassberger & 

Procacia, 1983). In practice, all possible spatial distances (r) between two epicenters are 

considered, and the cumulative number (Nc) of event pairs less than r is computed. The 

slope of the line of log N vs. log r is the fractal dimension 𝒅𝒇. 

 

The separation boundary between background seismicity and aftershocks in the 

NN method is not sensitive to the variations of the value of 𝑏 and  𝑑𝑓 (Figure 3.25). 
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Figure 3.25. Nearest-neighbor method applied to M ≥ 4 earthquakes since 1970 in the 

Tangshan region by using different values of b-values and df.  The threshold distance 

(solid lines) and the range of ≥ 90% confidence level (dashed lines) are based on 

earthquakes from the entire North China (see Figure 3.2). 
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Figure 3.26. (a, b) Magnitude-time plot of earthquakes in the Tangshan region with 

different cut-off magnitude. The red rectangle in (b) indicates the incomplete records 

(missing small events shortly after the mainshock). (c, d) Same plots with earthquakes 

identified by the NN method. 
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Chapter 4: Possible long-lived aftershocks in the Central and Eastern 

United State and its implications for seismic hazard assessment 

 

4.1 Introduction 

Long-lived aftershock activity in intraplate regions is not a new idea. In 1983, 

Basham et al. (1983) studied the spatiotemporal patterns of seismicity in the continental 

margin of eastern Canada and noticed continuing earthquakes near the epicenters of two 

magnitude 7 earthquakes even though 50 years had passed. Similar continuing seismicity 

were found at other places without known large events, so they speculated that the long-

lived continuing seismicity is aftershocks of previous large events. Dieterich (1994), 

according to rate-and-state friction of fault properties, proposed that aftershock duration, 

the time for seismicity rates to return to the background seismicity rate, is directly 

proportional to the product of a fault constitutive parameter and the normal stress, but 

inversely proportional to the rate of stressing on the fault. This means that the low rates 

of shear stressing on intraplate faults would cause relatively long aftershock durations. 

Ebel et al. (2000), based on the Omori-law decay of aftershocks and historic intensity 

data, suggest that current clusters of seismicity in the Central and Eastern United State 

(e.g., New Madrid, Charleston, and Charlevoix) are aftershocks of mainshocks that 

occurred hundreds of years ago. Stein and Liu (2009) estimated the aftershock durations 

and fault loading rates for 16 large interplate and intraplate earthquakes and found an 

inverse correlation between aftershock durations and fault loading rates that is consistent 

with Dieterich (1994)’s model. Boyd et al. (2015) found that current crustal deformation 

in the New Madrid seismic zone (NMSZ) can be explained by a dynamic model of 
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postseismic frictional afterslip from the 1450 and February 1812 Reelfoot fault 

earthquakes, so it is likely that many current earthquakes in the NMSZ are aftershocks of 

the 1811-1812 events. Chapman et al. (2016) proposed that modern seismicity near 

Summerville, South Carolina, are the long-lived aftershocks of the 1886 Charleston 

earthquake, because the seismicity shares common seismic characteristics with the 

aftershock sequence of the 2011 Virginia earthquake. Toda and Stein (2018) analyzed the 

aftershock durations of large earthquakes on faults with a wide range of slip rate based on 

the Omori’s law and found that aftershocks can last more than 2000 years on the slowest 

fault (0.01 mm/yr). 

However, the extent of long-lived aftershocks in the Central and Eastern United 

State (CEUS) is still contentious. Page and Hough (2014) argued that current seismicity 

in New Madrid, Missouri, is background rather than aftershocks, because it is unlikely to 

be reproduced by an epidemic-type aftershock sequence (ETAS) model. The ETAS 

model is a statistical model based on the Omori decay law, which assumes that all 

earthquakes potentially trigger their own aftershocks (Ogata, 1988). The ETAS model is 

widely used in the studies about aftershocks (Helmstetter et al., 2006; Zhuang et al., 

2019). Fereidoni and Atkinson (2014) also suggests contemporary seismicity in the St. 

Lawrence Valley is unlikely aftershocks of the 1663 Charlevoix earthquake, because the 

observed current seismicity rate is significantly higher than the expected aftershock rate 

of the 1663 Charlevoix earthquake after a long-time decay. For the eastern Tennessee 

seismic zone (ETSZ), Levandowski and Powell (2019) modeled an extreme case: 

aftershocks of an M 7.9 events ruptured the entire ETSZ 500 years ago, as well as some 

more reasonable cases. They conclude that at least 90% of modern seismicity is 
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background earthquakes caused by localized release of long-term loading in eastern 

Tennessee. 

Long-lived aftershocks are not considered in current seismic hazard assessment in 

the CEUS. The earthquake catalog used for the 2018 USGS national hazard map is 

declustered by the distance-time window method of Gardner and Knopoff (1974), which 

is based on an empirically analysis of California earthquakes (C. S. Mueller, 2019). For 

Gardner and Knopoff (1974)’s declustering method, the aftershock duration of a 

magnitude 8 event is around three years, much shorter than possible hundreds or 

thousands of years lasting aftershocks in stable continents like the CEUS. The USGS 

used both fault models and smoothed background seismicity models for the CEUS 

(Petersen et al., 2014; Petersen et al., 2020). The fault models are only applied to several 

fault zones (New Madrid, Wabash Valley, Charleston, Cheraw fault, and Meers fault). 

Other regions used the smoothed background seismicity models based on Frankel (1995), 

which assume that historical background seismicity is a good predictor for future seismic 

hazard and tend to diminish hazard for areas lack of historical records. Therefore, as 

mentioned by Stein and Liu (2009) and Toda and Stein (2018), long-lived aftershocks 

may be misidentified as background seismicity, thus overestimate the hazard in presently 

active areas and underestimate it elsewhere. The seismic hazards estimated by the fault 

models for major fault zones are based on complex logic trees but highly depend on the 

weight of in-cluster sequence or out of cluster sequence that are manually assigned by 

experts. The possible long-lived aftershocks may play as an indicator of out of cluster 

sequence, so may affect the weight assignment in the fault models.  
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In this chapter, I statistically identified the possible long-lived aftershocks of 

known large historical earthquakes in the CEUS by using the nearest-neighbor method, 

focusing on three regions: New Madrid, Charleston, and Charlevoix. I quantified 

aftershocks by the percentage of current seismicity, estimated the uncertainties caused by 

mainshock magnitudes and locations, and discussed the implications for hazard 

assessment. 

 

Figure 4.1. (a) Spatial patterns of M ≥ 2.5 earthquakes in the CEUS. Red circles are 

events between 1568 and 1979 (incomplete records). Blue circles are events between 

1980 and 2016 (complete records). (b) Temporal pattern of cumulative M ≥ 6 

earthquakes in the CEUS. 

 

4.2 Data and Method 

The earthquake catalog (Figure 4.1a) used in this chapter is a natural earthquake 

catalog (induced earthquakes are excluded), the raw data for the 2018 USGS national 

seismic hazard map 

(https://www.sciencebase.gov/catalog/item/5ad771d1e4b0e2c2dd256fd2) (C. S. Mueller, 

https://www.sciencebase.gov/catalog/item/5ad771d1e4b0e2c2dd256fd2
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2019; Petersen et al., 2020). The catalog is moment magnitude based. The magnitudes of 

earthquakes used in this chapter are all based on the catalog introduced in C. S. Mueller 

(2019), may be slightly different from other publications. I use the notation M to 

represent moment magnitude in the rest of this chapter. The USGS hazard map used the 

M ≥ 2.7 catalog and suggests that the catalog is complete for the whole CEUS after 1980 

(Petersen et al., 2020). To ensure the reliability of the results, I need to use as many data 

as possible. I did a simple Gutenberg-Richter frequency-magnitude fit and found the b-

value is close to 1 and the magnitude of completeness is 2.5 for events after 1980 (Figure 

4.2), so I use the M ≥ 2.5 and depth ≤ 70 km catalog for analysis in this chapter. I also 

estimated that the fractal dimension (𝑑𝑓) of the CEUS epicenters  by using the correlation 

integral method (Grassberger & Procacia, 1983). I found that the value of 𝑑𝑓 close to 1 

(Figure 4.3), indicating line sources are dominated in the CEUS. Therefore, I use 𝑏 =

1, 𝑑𝑓 = 1 to calculate the nearest-neighbor distance in this chapter.  
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Figure 4.2.  The frequency-magnitude distributions of earthquakes since 1980 in CEUS. 

The squares indicate the cumulative number of evens. The triangles indicate the 

frequency of events for each bin of 0.1 magnitude increase. The red line is fitted by using 

the maximum likelihood method. The magnitude of completeness is 2.5. 

 

The method I used to identify the possible aftershocks is the nearest-neighbor 

method introduced in the Chapter 3. In the Chapter 3 and Chen et al. (2021), I have 

shown that the nearest-neighbor method, although not assume the Omori’s law, has the 

potential to correctly identify long-lived aftershocks that exhibit the Omori-law type 

decay in intraplate regions. Incompleteness of records is a major problem for using the 

Omori’s law to identify long-lived aftershocks of large historical earthquakes. However, 

this problem may be overcome by the nearest-neighbor method, because even earthquake 

records are incomplete, the strength of the link between a historic large earthquake and a 
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current event can be characterized by their nearest-neighbor distance. As long as the 

separation boundary η is reasonably chosen, possible long-lived aftershocks can be 

identified. Furthermore, results of the nearest-neighbor method can be used to quantify 

the percentage of current seismicity as long-lived aftershocks.     

 

 

Figure 4.3.  The fractal dimension 𝑑𝑓 for M ≥ 2.5 earthquakes (a) since 1568 and (b) 

since 1980. The value of  𝑑𝑓 is estimated by the correlation integral method (Grassberger 

& Procacia, 1983). In practice, all possible spatial distances (r) between two epicenters 

are considered, and the cumulative number (Nc) of event pairs less than r is computed. 

The slope of the line of log N vs. log r is the fractal dimension 𝑑𝑓. 

 

Because of the lack of large earthquakes (M ≥ 6) since 1940 in the CEUS (Figure 

4.1b), only a small portion of the M ≥ 2.5 USGS catalog are aftershocks. Therefore, I also 

use the catalog of aftershocks of the 2011 M5.65 Virginia earthquake from Wu et al. 

(2015) to verify the nearest-neighbor method and show a general distribution of the 

nearest-neighbor distance between a mainshock and its aftershocks (Figure 4.4). The Wu 
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et al. (2015)’s aftershock catalog contains 1667 events with magnitude range from -0.7 to 

3.7 from August 25 to December 31, 2011.  

 

 
Figure 4.4.  (a) 1D and (b) 2D distributions of the nearest-neighbor distance of the 

aftershocks (M ≥ -0.7) of the 2011 M5.65 Virginia earthquake. The solid line (log10 𝜂0 =

−4.23) is the separation boundary between the aftershocks and background seismicity 

obtained based on the whole CEUS catalog (See Figure 4.5 and text for details). The 

aftershock data is from Wu et al. (2015). The results are calculated with 𝑏 = 1 and 𝑑𝑓 =

1.  

 

4.3 CEUS earthquakes: Aftershocks vs. Background Seismicity 

4.3.1 Aftershocks of the 2011 Virginia M5.65 earthquake 

The 2011 Virginia M5.65 earthquake was the largest earthquake in the CEUS 

since 1940. Its aftershocks are well studied by Wu et al. (2015) and Beskardes et al. 

(2019). Here, I calculated the nearest-neighbor distances between the 2011 Virginia 

earthquake and its aftershocks within four months by using Wu et al. (2015)’s aftershock 

catalog. The results show a unimodal distribution of the nearest-neighbor distance (NND) 
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with its peak near log10 𝜂 = −6 (Figure 4.4), similar to the synthetic single aftershock 

sequence generated by the ETAS model (Zaliapin et al., 2008).   

 

4.3.2 The NND distributions of the CEUS earthquakes 

The CEUS catalog, similar to other general earthquake catalogs (e.g., catalogs 

used in Zaliapin and Ben‐Zion (2013) and Chen et al. (2021)), contains both background 

earthquakes and clustered earthquakes (aftershocks), and shows bimodal distributions of 

𝜂  (Figure 4.5). The aftershocks correspond to the clustered mode on the left of the plot 

(red curves shown in Figure 4.5) with its peak near log10 𝜂 = −6, similar to the 

aftershocks of the 2011 Virginia event (Figure 4.4). The background earthquakes 

correspond to the background mode on the right with its peak near log10 𝜂 = −3 (blue 

curves shown in Figure 4.5), similar to the synthetic Poisson background earthquakes 

shown in Zaliapin et al. (2008). Because of the incomplete records of aftershocks of 

historical large earthquakes, the estimated aftershock modes have low density and may 

not be reliable. However, enough background events are included in the catalogs, so the 

estimated background modes are reliable. 
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Figure 4.5.  The nearest-neighbor method applied to M ≥ 2.5 earthquakes (a, b) since 

1980 and (c, d) since 1568. (a, c) 1D distribution of 𝜂, with estimated Gaussian 

distributions for clustered (red) and background (blue) components. The solid vertical 

lines are the boundaries that best separate the two components.  (b, d) 2D joint 

distribution of rescaled distance and time (R, T). The solid white lines indicate the same 

boundaries shown in (a, c). The results are calculated with 𝑏 = 1 and 𝑑𝑓 = 1. 

 

I applied the nearest-neighbor (NN) method to both the complete catalog since 

1980 and the whole catalog since 1568 (Figure 4.5). The best separation boundaries are 

calculated based on a Gaussian mixture model with the background and clustered modes 

by the Expectation-Maximization algorithm (Zaliapin & Ben-Zion, 2016). The events 
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with 𝜂 values smaller than the separation boundary value  log10 𝜂0 are identified as 

aftershocks. Those with higher values are identified as background earthquakes. Because 

this chapter focus on possible long-lived aftershocks in the rupture zones of their 

mainshocks, the identified aftershocks with distance larger than 250 km away from their 

mainshocks are manually assigned as background earthquakes. For the complete catalog 

since 1980, the optimal separation boundary is log10 𝜂0 = −3.8 (Figure 4.5a). Because 

no historical large earthquakes are included in this catalog, long-lived aftershocks could 

be misidentified as background earthquakes even using the nearest-neighbor methods. 

For the catalog that include events since 1568, the separation boundary at log10 𝜂0 =

−4.23 has 95% confidence of background identification (Figure 4.5c). This boundary 

value is smaller than the one for the complete catalog since 1980, meaning a more 

conservative separation boundary for aftershock identification. I also checked the 

variation of separation boundary by using M ≥ 3 and M ≥ 4 catalog since 1568 and found 

the value of the separation boundary is quite stable (Figure 4.6), so the incompleteness of 

records has a minor effect on the separation boundary. This separation boundary 

(log10 𝜂0 = −4.23) can also correctly identify the aftershocks of the 2011 Virginia 

earthquake (Figure 4.4). After including more events by setting an older starting year in 

the catalog, two high density patches with large rescaled-time show up in the 2D plot of 

joint distribution (Figure 4.5d), because many modern events found their potential close 

relationships to historical large events (examples shown in the New Madrid case below in 

Figure 4.7). However, only the events with small rescaled-distance and large rescaled-

time and below the separation boundary are identified as long-lived aftershocks (Figure 

4.5d).  
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Figure 4.6.  The nearest-neighbor method applied to (a, b) M ≥ 3 and (c, d) M ≥ 4 

earthquakes since 1568. 

 

4.3.3 Long-lived aftershocks in the New Madrid seismic zone 

The New Madrid seismic zone is a currently active seismic zone in the CEUS and 

the host of several major earthquakes in the past 2300 years (Tuttle et al., 2002; Tuttle et 

al., 2005). The magnitude and return period of these major earthquakes are still in debate. 

Magnitudes from 6.8 to 8.4 and return periods from 160 to 10,000 or more years have 

been proposed (Boyd et al., 2015). Here, I focus on the historical 1811-1812 New Madrid 
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large events and their potential long-lived aftershocks. The magnitudes used are based on 

the 2018 USGS hazard map catalog (C. S. Mueller, 2019).  

The spatial patterns of the nearest-neighbor results and the nearest-neighbor links 

in the New Madrid seismic zone (NMSZ) are shown in the Figure 4.7. When only events 

since 1980 are considered, the nearest-neighbor links are disordered and weak for most 

events (Figure 4.7b), so most events are identified as background earthquakes (Figure 

4.7a). After including more past events, many events are found to be correlated with the 

1811-1812 mainshocks, so the spatial pattern of the nearest-neighbor links shows several 

focuses (Figure 4.7d). The events close enough in space or time to the 1811-1812 

mainshocks are identified as aftershocks (Figure 4.7c). 
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Figure 4.7.  Spatial patterns of (a, c) the nearest-neighbor results and (b, d) the nearest-

neighbor links for M ≥ 2.5 earthquakes in the New Madrid seismic zone. The blue circles 

indicate the identified background earthquakes. The red circles indicate the identified 

aftershocks. The black lines indicate strong links between mainshocks and their 

aftershocks. The grey lines indicate weak lines between the nearest neighbors, so the 

events are identified as background earthquakes.  
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The long-lived aftershocks in the NMSZ are only from the four major events: two 

occurred on December 16, 1811 (NM1 and NM1-A), one occurred on January 23, 1812 

(NM2), and the largest one occurred on February 7, 1812 (NM3) (Figure 4.8). The 2018 

USGS hazard map catalog is selected and compiled by experts from 20 previous 

published catalogs (C. S. Mueller, 2019), so I assume the magnitudes and locations 

offered by this catalog is best based on our current knowledge. Based on this catalog, the 

nearest-neighbor result show that 23.3% of events in the NMSZ between 1980 and 2016 

are aftershocks of the 1811-1812 mainshocks (Table 4.1). All long-lived aftershocks are 

close to their mainshocks in space (Figure 4.8a). The magnitudes and locations of 

historical events are estimated based on seismic intensity data and felt area (Bakun & 

Hopper, 2004; C. S. Mueller, 2019), so they have larger uncertainties than instrumental 

records. To explore the effect caused by the location uncertainty, I tried to use another 

epicentetral location (86.4°W, 36.5°N) for the NM3 from Stover and Coffman (1993), 

which did not consider the NMSZ fault segments suggested by Johnston (1996).  The 

result caused by a different epicenter location shows a different spatial distribution of 

aftershocks of the NM3 (Figure 4.8b), but aftershocks are still on the central fault 

segment. For magnitude uncertainties, I calculated two extreme cases by assigning 

minimum or maximum magnitudes to all four major events. The minimum or maximum 

magnitudes are based on the 2-sigma uncertainties of magnitude offered by the CEUS 

Seismic Source Characterization (SSC) project (Coppersmith et al., 2012). The two 

modified catalogs are called SSC_min and SSC_max separately. Only 10.7% events for 

SSC_min but 65.0% events for SSC_max is identified as long-lived aftershocks (Figure 

4.8c, 4.8d and Table 3.1). Thus, the long-lived aftershocks identified by the nearest-
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neighbor method are heavily affected by the magnitudes of their mainshocks. For a 

mainshock, a larger assigned magnitude indicates a longer aftershock activity. The 

magnitude dependent results can be explained by the Omori’s law. At one location, a 

larger mainshock means a larger aftershock rate immediately after the mainshock and 

longer decay time to background rate. 
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Figure 4.8. The results of possible long-lived aftershocks (1980-2016) of the 1811-1812 

mainshocks considering the uncertainties of data. Data: (a) the USGS hazard map catalog 

(C. S. Mueller, 2019), (b) same to (a) but the 1812/02/07 event with a more northern 

epicenter at 86.4°W, 36.5°N (Stover & Coffman, 1993). (c, d) same to (a) but the 

magnitude of the four major events set to minimum and maximum separately based on 

the 2-sigma uncertainties of magnitude offered by the CEUS Seismic Source 

Characterization (SSC) project (Coppersmith et al., 2012). Blue circles indicate the 

aftershocks of the 1811/12/16 events. Green circles indicate the aftershocks of the 

1812/01/23 events. Red circles indicate the aftershocks of the 1812/02/07 events. Black 

circles indicate the aftershocks of other events. Grey circles indicate background 

earthquakes. 

 

Table 4.1: The results of long-lived aftershocks (1980-2016) of the 1811-1812 

mainshocks considering magnitude uncertainties 

Catalog log10 𝜂0 
Number of 

aftershocks 

Percentage of 

aftershocks 

USGS -4.23 263 23.3% 

SSC_min -4.15 121 10.7% 

SSC_max -4.14 733 65.0% 

 

 

4.3.4 Long-lived aftershocks in Charleston and Charlevoix 
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The Charleston seismic zone is best-known for the 1886 destructive earthquakes 

occurred near Charleston (Figure 4.9a), South Carolina. Paleoseismic studies indicate that 

at least two prehistoric earthquakes with comparable magnitude of the 1886 events 

occurred there in the past 5500 years (Obermeier et al., 1985; Talwani & Cox, 1985). 

The Charlevoix seismic zone is an active intraplate seismic zone in St. Lawrence 

Rift System. Four M ≥ 6 earthquakes occurred in the past 400 years (Figure 4.9c), and at 

least three prehistoric large earthquakes occurred in the past 10,000 years (Tuttle & 

Atkinson, 2010).  

The nearest-neighbor results in Charleston and Charlevoix seismic zones show 

different patterns (Figure 4.9). The 1886 M6.9 Charleston earthquake has not only long-

distance aftershocks shortly after its occurrence but also long-lived aftershocks very close 

to it epicenter (Figure 4.9a, b). Four M ≥ 6 events occurred in the Charlevoix region, but 

the earthquakes are more diffusely distributed than in Charleston, so most events are 

identified as background earthquakes (Figure 4.9c, d).   
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Figure 4.9. Spatial patterns of the nearest-neighbor results and the nearest-neighbor links 

for M ≥ 2.5 earthquakes since 1568 in (a, b) Charleston and (c, d) Charlevoix. Same 

notations in Figure 4.7. 

 

4.3.5 Inconsistence between current seismicity rate and average strain rate 

In previous sections, I showed that long-lived aftershocks are significant in New 

Madrid and Charleston but lacking in Charlevoix. These results may be explained by the 

inconsistency of current seismicity rate and average strain rate in these regions (Table 

4.2). Background seismicity rate is believed to reflect the average strain rate for a given 

region, so a high strain rate region should have higher background seismicity rate than a 

low strain rate region. However, Charlevoix, the region with the highest strain rate of the 
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three regions I studied, has the least seismicity rate (Table 4.2). One possible explanation 

is that current seismicity rates in New Madrid and Charleston are higher because the 

catalog contains not only background earthquakes but also long-lived aftershocks. 

 

Table 4.2: Comparison between average strain rate and seismicity rate of M ≥ 2.5 events 

(1980-2016) for the three intraplate regions in CEUS 

Region Number of events 
Seismicity rate  

(event yr-1 km-2) 

Average strain rate 

(10-9 yr-1) 

New Madrid 1128 2.74 x 10-4 0.52 

Charleston 116 0.63 x 10-4 0.39 

Charlevoix 141 0.51 x 10-4 1.62 

* The strain rate data come from Kreemer et al. (2018). 

 

4.4 Discussion 

4.4.1 Aftershocks: Controversy and Uncertainty 

One motivation of the research presented in this chapter is to answer the question 

regarding the modern active seismicity in CEUS: Are they aftershocks of previous large 

historical earthquakes? Our results, based on the nearest-neighbor method, indicate that 

the modern active seismicity in New Madrid and Charleston likely contain significant 

amount of the long-lived aftershocks of the 1811-1812 New Madrid earthquakes and the 

1886 Charleston earthquake, respectively; but most current seismicity in Charlevoix are 

likely background earthquakes. The long-lived aftershock activity in New Madrid is 
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consistent with the rate-and-state model of fault friction (Dieterich, 1994; Stein & Liu, 

2009), Coulomb failure stress models (K. Mueller et al., 2004), and a postseismic 

afterslip model (Boyd et al., 2015). Although Page and Hough (2014) proposed an 

opposite argument because the ETAS model failed to reconstruct long-lived aftershocks 

that are consistent with observations, Boyd et al. (2015) pointed out that the parameter 

values used by Page and Hough (2014) in the ETAS model may not be appropriate. The 

long-lived aftershocks of the 1886 Charleston earthquake is supported by Chapman et al. 

(2016) finding on common characteristics shared by the modern seismicity in Charleston 

and the aftershocks of the 2011 Virginia earthquake; earthquakes are concentrated in a 

shallow and semicircular zone with a substantial diversity of earthquake focal mechanism 

nodal plan orientation. The lack of long-lived aftershocks in Charlevoix is supported by 

Fereidoni and Atkinson (2014)’s statistical analyses based on the Omori’s law for the 

1663 event. However, Fereidoni and Atkinson (2014)’s data and interpretation are 

contested by Ebel (2016) and defended by Fereidoni and Atkinson (2016). Current 

studies on the long-lived aftershocks in Charlevoix, including this study, are all based on 

statistical analysis, so more physics-based studies are needed. Nevertheless, the spatial 

distributions of seismicity in New Madrid and Charleston are different from that in 

Charlevoix (Figure 4.7 and 4.9). Modern earthquakes are clustered on the faults that 

historical large earthquakes ruptured in New Madrid and Charleston, but are more 

diffusedly distributed in Charlevoix. 

The idea of classifying earthquakes into background earthquakes and aftershocks 

implies two extreme groups: one only depends on the long-term tectonic loading, and one 

is triggered and strongly dependent on its mainshock. However, both the long-term 
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tectonic loading and increased stress caused by the mainshock play significant roles for 

the so-called long-lived aftershocks in the transition period. Therefore, from a physical 

standpoint, to call a specific event as a long-lived aftershock or background event is 

meaningless. On the other hand, the percentage of aftershocks is meaningful; it quantifies 

the influence of a large event for the seismicity of a given region. 

The nearest-neighbor method I used is a statistical method based on the long-term 

Gutenberg-Richter (GR) frequency-magnitude distribution and the fractal distribution of 

earthquake epicenters (Baiesi & Paczuski, 2004; Zaliapin et al., 2008). Each earthquake 

is assumed as a point source at its epicenter and its influence depends on its magnitude, 

location and time, but the point-source assumption may not be appropriate for large 

historical earthquakes. Therefore, it has no bearing on the causative physics between 

mainshocks and their aftershocks. Some stress-triggered aftershocks may be missed by 

the nearest-neighbor method if their nearest-neighbor distances are beyond the threshold 

for aftershock identification. For the results in this chapter, the number of identified long-

lived aftershocks in New Madrid (Figure 4.8a) is more conservative than those suggested 

by the Coulomb failure stress field in K. Mueller et al. (2004). 

 

4.4.2 Implications for intraplate seismic hazard 

The long-lived aftershocks highlight the importance to include historical 

earthquakes and paleoseismicity in the seismic hazard assessment. The uncertainties of 

location and magnitude of historic large earthquakes affect the identification of long-

lived aftershocks (Figure 4.8 and Ebel (2016)), which need to be seriously considered. 

Careful historical and paleoseismic studies are needed to reduce data uncertainties. The 
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most recent seismic hazard map for intraplate regions contains two types of source 

model: one is seismicity-based source model, another is fault-based source model (Allen 

et al., 2018; Petersen et al., 2014; Petersen et al., 2020). The seismicity-based source 

model use background seismicity as input and usually yield spatially varying earthquake 

occurrence rate by smoothing the observed background rate with a given smoothing 

kernel, assuming past seismicity is a good spatial predictor for future seismic hazard 

(Frankel, 1995). In this case, if long-lived aftershocks are misinterpreted as background 

earthquake, the seismic hazard would be overestimated, as pointed out by Stein and Liu 

(2009) and Toda and Stein (2018). The fault-based model is mainly based on historical 

and paleoseismic records of large earthquakes on specific faults. Background seismicity 

usually has little or no weight in this model. For practical purpose, the time-independent 

Poisson model, rather than  the time-dependent quasi-periodic model, is generally used 

(Petersen et al., 2014). Considering that large intraplate earthquakes usually occur in 

clusters and separated by irregular but relatively longer quiescence periods (Chen et al., 

2020; Clark et al., 2012), the weight for in-cluster sequence and out-of-cluster sequence 

are subjectively assigned by experts in logical trees in hazard assessments (Petersen et al., 

2020). The long-lived aftershocks, if not considered in the hazard assessment, would 

cause an overestimated weight for in-cluster sequence, so an overestimated hazard. 

Therefore, the seismic hazards in New Madrid and Charleston may be overestimated. 

Moreover, the percentage of aftershocks and its uncertainty obtained in this study offers 

an objective way to quantify the possible long-lived aftershocks and can be used in the 

seismic hazard assessment.   
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4.5 Conclusions 

In this chapter, I used the nearest-neighbor method to identify the possible long-

lived aftershocks in intraplate CEUS, specifically in the New Madrid, Charleston, and 

Charlevoix seismic zones. I validated the reliability of the nearest-neighbor method by 

using the aftershocks of the 2011 Virginia earthquake. The results of the CEUS 

earthquakes indicate that aftershock activities are likely to be continuing in New Madrid 

and Charleston but unlikely in Charlevoix seismic zones. I also explored how the 

uncertainties of locations and magnitudes of historic large events affect the results. 

Changing the location of a mainshock epicenter can change the spatial distribution of 

aftershocks. Changing the magnitude of a mainshock, on the other hand, can significantly 

affects the aftershock identification when using the nearest-neighbor method. For a given 

mainshock, assigning a larger magnitude of a mainshock can significantly increase the 

number and duration of aftershocks. In New Madrid, around 23.3% of events between 

1980 and 2016 are probably aftershocks, but with large uncertainty ranging from 10.7% 

to 65.0%. Even for the lower estimate, the result indicates that the aftershock sequence of 

the 1811-1812 mainshocks has continued to the present-day. Ignoring these long-lived 

aftershocks may cause overestimation of seismic hazard in New Madrid and Charleston 

seismic zones. 
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Chapter 5: Correlations between strain rate and seismicity  

in different tectonic settings: Complex spectra  

 

5.1 Introduction 

Geodetic strain rate characterizes present-day crustal deformation and therefore 

may be used as a spatial predictor for earthquakes. Good correlations between strain rate 

and seismicity are found in plate boundary zones. On a global scale, Kreemer et al. 

(2002) found that seismicity rates of shallow earthquakes are correlated with the strain 

rates in subduction zones and active continents. In California and Nevada, large 

earthquakes are found concentrated in the San Andreas Fault system, the Eastern 

California Shear Zone, and the Walker Lane shear zone, where the strain rate is high 

(Shen et al., 2007; Zeng et al., 2018). In the Tibetan Plateau, background seismicity rate 

is correlated with geodetic strain rate: higher strain rate regions have higher background 

seismicity rates (Stevens & Avouac, 2021). Because of the good correlation, strain rate is 

used in some probabilistic seismic hazard assessments (Shen et al., 2007; Stevens & 

Avouac, 2021). 

However, in intraplate regions, the correlation between strain rate and seismicity 

is uncertain. In North China, high strain rates are found along the major active tectonic 

zones, but some low strain rate regions in North China Plain have significant modern 

seismicity and large historical earthquakes (Figure 3.1 and 3.7) (Chen et al., 2021; Liu & 

Wang, 2012). In Fennoscandia, the strain rate field is relatively simple; with NW–SE 

compression on the Norwegian continental margin and NW–SE extension in the central 

part of Fennoscandia (Keiding et al., 2015). However, the seismicity in Fennoscandia is 
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more complex and diverse in space (Bungum et al., 2010; Keiding et al., 2015). 

Especially in the central part of Fennoscandia,  focal mechanisms show variations 

between tension, compression, and strike-slip, and directions also significantly vary 

between different earthquakes (Keiding et al., 2015). In addition, the geodetic moment 

rate derived from GPS strain rate is two orders of magnitude larger than the seismic 

moment rate derived from earthquake catalogs in Fennoscandia (Keiding et al., 2015). In 

intraplate North America, the plate-scale spatial correlation between seismicity and strain 

rate is absent: no strain accumulation at the major seismic zones such as the Charleston, 

South Carolina area, the Eastern Tennessee Seismic Zone, and the New Madrid Seismic 

Zone (NMSZ) (Calais et al., 2016; Kreemer et al., 2018). In the Saint Lawrence Valley, 

eastern Canada, Tarayoun et al. (2018) found that high strain rate is concentrated in 

ancient rift zones where modern seismicity and large historical earthquakes are clustered, 

but no systematic correlation is found between seismicity and geodetic strain rate patterns 

in the whole region. Therefore, it is important to explore how well strain rate spatially 

correlates with seismicity in intraplate regions, therefore whether or not strain rate can be 

used for seismic hazard assessment in intraplate regions, where seismic records are in 

general too short to show the complete spatial patterns of seismicity.     

The correlation between strain rate and seismicity could also be time-dependent. 

In California and Nevada, the M ≥ 4 background earthquakes were gradually changing 

from diffused distribution in the whole region (1933-1980s) to concentrated distribution 

in high strain rate areas (1980s-2016), along with an increased rate of M ≥ 6.5 events 

(Zeng et al., 2018). It is worthy to check whether such a temporal variation is a general 
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pattern or not, because it may be used to indicate whether a region is in a relatively 

quiescent period or an active period with clustered of large earthquakes. 

In this chapter, I did a systematic analysis about the correlation between strain 

rate and seismicity. First, I analyzed and compared the spatial correlations between strain 

rate, seismicity, and seismic moment in different tectonic settings using the approach of 

Shen et al. (2007) and Zeng et al. (2018). Second, I explored how correlations between 

strain rate and seismicity in different tectonic settings vary with time. In these two steps, I 

also explore the effects of seismic catalog completeness, cut-off magnitude, decluttering, 

and model parameters. At last, I discuss the implication of these results for seismic 

hazard assessment.    

 

5.2 Data and Method 

5.2.1 Earthquake Catalogs 

The earthquake catalogs used in this chapter are from four sources: the historical 

and instrumental earthquake catalog for North China (-780-2015) (Cheng et al., 2017), 

the earthquake catalogs (1568-2016) used for the 2018 USGS National Seismic Hazard 

Map (https://www.sciencebase.gov/catalog/item/59e62f3ce4b05fe04cd1cc48) (C. S. 

Mueller, 2019), the GEM Global Historical Earthquake Catalog (1000-1903) 

(https://emidius.eu/GEH/) (Albini et al., 2013; Albini et al., 2014), and the ISC-GEM 

Global Instrumental Earthquake Catalog (1904-2015) (http://www.isc.ac.uk/iscgem/) 

(Giacomo et al., 2018; Storchak et al., 2013; Storchak et al., 2015). All catalogs use the 

moment magnitude. The first two catalogs are introduced in Chapters 3 and 4. The Global 

Historical Earthquake Catalogue (GHEC) is a world catalogue of historical large 

https://emidius.eu/GEH/
http://www.isc.ac.uk/iscgem/
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earthquakes for the period 1000-1903, with magnitude of Mw 7 and above. Because the 

catalog is based on historical records, the completeness of the catalog significantly varies 

with regions. The catalog is roughly complete since 1580 for Japan, since 1000 for 

Anatolia, and since 1780 for Tibetan Plateau (Albini et al., 2013). The ISC-GEM Global 

Instrumental Earthquake Catalogue (1904-2015) is a world catalogue of instrumental 

large earthquakes with magnitude of Mw 5.5 and above plus continental events down to 

Mw 5.0. On a global scale, the catalog is complete for Mw 7.0 after 1918 and complete for 

Mw 6.0 after 1964 (Michael, 2014). 

 

5.2.2 GPS data and strain rate models 

Here, I use the strain rate results from the Global Strain Rate Model (GSRM 

v.2.1) (Kreemer et al., 2014) for plate boundary zones and Kreemer et al. (2018) for 

CEUS. 

The Global Strain Rate Model (GSRM v.2.1) is a global model of strain rates in 

the plate boundary zones constrained by horizontal geodetic site-velocities (Kreemer et 

al., 2014). The velocities are from both continuous GPS measurements and published 

studies prior to Kreemer et al. (2014), and are carefully selected to avoid effects of creep 

and transient phenomena from postseismic deformation and Glacial Isostatic Adjustment 

(GIA), so the data set consists of velocities best representing the “secular” or interseismic 

velocities. Based on the velocities, the strain rate field is modeled using the Haines and 

Holt method (Beavan & Haines, 2001; Haines & Holt, 1993; Holt et al., 2000).  In 

Kreemer et al. (2014)’s model, the plate boundary zones are allowed to deform in grid 
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cells with size 0.1° longitude by 0.1° latitude, while the rest of Earth surface is modeled 

as rigid spherical caps.  

The strain rate model I used for intraplate North America is from Kreemer et al. 

(2018). Kreemer et al. (2018) applied a new strain rate estimation method, called median 

estimation of local deformation, which is developed for intraplate regions and is stable 

against outlier data. In this method, the strain rate for a given point is the median value 

from a set of N local estimates of strain rate. Each local estimate of strain rate is 

determined from velocity observations of three distinct and noncollinear locations. The 

formulation used to link the velocity and strain rate is provided by Ward (1998). The grid 

size of strain rate results is 0.5° by 0.5° with spatial resolution of ~100 km in the 

continental CEUS. About the data, Kreemer et al. (2018) use not only the data from 

continuous GPS networks and data archives but also the data from commercial and state 

networks and networks that were installed to study the ionosphere, the troposphere, and 

surface subsidence to increase the number of data needed by the method. Kreemer et al. 

(2018)’s results show that the main cause of deformation in intraplate North America is 

glacial statistical adjustment.  

 

5.2.3 Spatial distribution of seismic moment 

Besides the spatial distribution of earthquake epicenters, the spatial distribution of 

seismic moment release may also correlate with the strain rate field. Here, the seismic 

moment released by each earthquake is converted from its moment magnitude based on 

the formula of Hanks and Kanamori (1979): log10𝑀0 = 1.5 𝑀𝑤 + 16.1, where 𝑀0 is the 

seismic moment with units of dyne-centimeter. Spatially, the seismic moment released by 
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each earthquake is assumed to be evenly distributed in a circular region centered at the 

earthquake epicenter with the diameter equal to the empirical rupture length. The 

empirical rupture length is calculated using the formula from Blaser et al. (2010).  

 

5.2.4 Success diagram, spatial prediction power,  

and strain rate-seismicity correlation 

To quantify the correlation between strain rate and seismicity and test the 

prediction power of strain rate on earthquake locations, I follow the approach of Shen et 

al. (2007) and Zeng et al. (2018).  

I first grid the region according to the resolution of strain rate data and then sort 

the grid cells by descending strain rate. Strain rate, number of earthquakes, and seismic 

moment in these grid cells are then separately summed over the sorted cells to produce 

their cumulative curves. For comparing strain rate and seismicity, the cumulative strain 

rate, cumulative earthquake number, and cumulative seismic moment are normalized to 

unity. The total cumulative number of the sorted cells is also normalized to unity to 

express the fraction of covered area. The normalized cumulative strain rate, number of 

earthquakes, and seismic moment are then plotted as a function of the fraction of covered 

area (Figure 5.1). The fraction of covered area is sorted by descending strain rates, with 

the highest strain rate areas located to the left of horizontal axis. 

For simplicity, I call the cumulative strain rate curve as the strain rate curve, the 

cumulative earthquake number curve as the seismicity curve, and the cumulative seismic 

moment curve as the moment curve. Overall, I call this kind of plot “the success 
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diagram” here, because it describes how many earthquakes or seismic moments are 

“successfully” concentrated in high strain rate regions. This kind of plot is actually a 

flipped version of the Molchan error diagram, which is an objective way to test 

earthquake prediction (Molchan & Kagan, 1992; Zechar & Jordan, 2008). Furthermore, 

to quantify the spatial prediction power of strain rate, I use a parameter called the area 

skill score. The area skill score, introduced by Zechar and Jordan (2008), is the 

normalized area below the corresponding cumulative curve of earthquake number or 

seismic moment. The area skill score = 1 corresponds to a perfect prediction: all 

earthquakes or seismic moments concentrate on one point. The area skill score = 0 

indicates completely fail of prediction: no event or seismic moment releases in the given 

area. The area skill score = 0.5 is expected for a random guess: earthquakes or seismic 

moments with no preference on high or low strain rate areas. The random guess appears 

as the diagonal line in the success diagrams (Figure 5.1).  

The correlation between strain rate, earthquake, and seismic moment is indicated 

in the success diagram. The assumption is that the seismicity (or moment) curve should 

match with the strain rate curve if the seismicity (or moment) is highly correlated with 

the strain rate. If the seismicity (or moment) curve is significantly above or below the 

strain rate curve, the correlation between strain rate and seismicity (or moment) is poor. If 

the seismicity (or moment) is randomly distributed in space while the strain rate is not, 

the correlation between strain rate and seismicity (or moment) is absent. I also quantify 

the degree of such a correlation by calculating the area between the seismicity (or 

moment) curve and strain rate curve. The larger such an area is, the poorer the correlation 

is. 
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5.3 Results 

5.3.1 Long-term strain rate-seismicity correlation 

 in different tectonic settings 

Here, I studied the spatial correlation between strain rate, earthquake, and seismic 

moment in California-Nevada, Japan, Anatolian, Tibetan Plateau, North China, and 

Central and Eastern United State (CEUS), representing the spectrum of tectonic settings 

ranging from plate boundary zones to stable continental interior. The first four regions are 

plate boundary zones or regions with averagely high strain rate. The last two regions are 

intraplate regions with low strain rate. Specifically, California-Nevada region is a 

transform plate boundary region between the Pacific Plate and North America plate. 

Japan is a typical subduction zone between Eurasian Plate, Pacific Plate, and Philippine 

Sea Plate. Anatolia and Tibetan Plateau are continental collision zones between Arabian 

Plate and Eurasian Plate, and between Indian Plate and Eurasian Plate, respectively. 

North China is an intraplate region and a reactivated Archaean craton, loaded by far-field 

plate tectonic process, but it is sometimes also referred to as a diffuse plate boundary 

region because of its non-rigid deformation (Gordon, 1998; Kreemer et al., 2014). North 

China is less active and has lower average strain rate than plate boundary regions. CEUS 

is a stable continental region that is largely unaffected by currently active plate boundary 

process and mainly affected by glacial isostatic adjustment (Kreemer et al., 2018). In the 

six studied regions, CEUS is least active with the lowest average strain rate. 
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Figure 5.1. Comparison of correlations between strain rate, seismicity, and seismic 

moment in different tectonic settings. Cumulative strain rate, earthquake count, and 

seismic moment are plotted against the fraction of covered area sorted by descending 

strain rates, with the highest strain rate areas located to the left of horizontal axis. The 

total cumulative strain rate (red), earthquake count (blue), and seismic moment (green) 
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are normalized to unity. The scores in the legend are the area skill scores. Higher value 

means better spatial prediction power. The diagonal line indicates random distribution in 

space (area skill score = 0.5). 

 

The results of success diagrams are shown in Figure 5.1. The complete earthquake 

catalogs in each region are used. In California- Nevada and Japan, good spatial 

correlations between strain rate, seismicity, and seismic moment are found (Figure 5.1 a, 

b). The spatial correlations can be clearly seen in the maps (Figure 5.2, 5.3). In the 

Anatolia, the seismicity and moment curves match with each other, but they are slightly 

below the strain rate curve (Figure 5.1 c). The deviation may be caused by the lack of M 

≥ 7 earthquake in the regions of medium strain rates in central and western Anatolian 

peninsula (Figure 5.3). However, these regions have lower strain rate in the updated high-

resolution results (Weiss et al., 2020), which would improve the correlation between 

strain rate and seismicity in the Anatolia. In Tibetan Plateau, strain rate has a good spatial 

correlation with large earthquakes (M ≥ 7), but is poorly correlated with seismic moment 

(Figure 5.1d, 5.4). The cause of the deviation between strain rate and seismic moment 

may be that the seismic records in Tibetan Plateau is too short to include several 

earthquake cycles.  

In intraplate North China, the plot is similar to the one in Tibetan Plateau, with 

good correlation between strain rate and seismicity but poor for seismic moment (Figure 

5.1e). North China has lower average strain rate than plate boundary regions, so the 

recurrence interval in North China is even longer, and the seismic moment curve can be 

changed by a few large earthquakes. For example, the 1668 M8.4 Tancheng earthquake 
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(Figure 5.6b) is one of the largest earthquakes in North China; it occurred in an area of 

low strain rate (Figure 5.6). In the CEUS, I used a longer seismic catalog than that in 

Kreemer et al. (2018) and get similar results: the correlation between strain rate, 

seismicity, and seismic moment is poor or absent (Figure 5.1f, 5.7). The seismicity curve 

is close to the diagonal line with area skill score = 0.44, so the M ≥ 5 seismicity in the 

CEUS is close to be randomly distributed in space and not correlated with strain rate. I 

also checked the M ≥ 5 background seismicity and small modern seismicity (M ≥ 2.5); 

the results are similar (Figure 5.8). The highest strain rate regions near the Great lakes are 

lack of M ≥ 5 earthquakes (Figure 5.7). Most seismic moments are released in New 

Madrid and Charlevoix seismic zones where strain rates are relatively low (Figure 5.1f, 

5.7). Many factors may cause the significant different between strain rate, seismicity, and 

seismic moment in the CEUS and will be discussed in the Discussion section. Overall, 

good correlations between strain rate and seismicity are found in all studied regions 

except the CEUS. The correlation between strain rate and seismic moment varies with 

regions. 
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Figure 5.2. Comparison between strain rate, seismicity, and seismic moment in 

California and Nevada. (a) spatial distribution of M ≥ 6 earthquakes (circles) between 

1769 and 2016 and scalar strain rate (color contours). (b) spatial distribution of M ≥ 6 

earthquakes between 1769 and 2016 and their seismic moment. The earthquake data are 

from K. Mueller et al. (2004) used for the 2018 USGS National Seismic Hazard Map. 

The strain rate data are from the Global Strain Rate Model (GSRM v.2.1) (Kreemer et al., 

2014). 
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Figure 5.3. Comparison between strain rate, seismicity, and seismic moment in Japan. 

(a) spatial distribution of M ≥ 7 earthquakes between 1096 and 2015 and scalar strain 

rate. (b) spatial distribution of M ≥ 7 earthquakes between 1096 and 2015 and their 

seismic moment. The earthquake data is from the GEM Global Historical Earthquake 

Catalogue (1000-1903) and the ISC-GEM Global Instrumental Earthquake Catalogue 

(1904-2015). The strain rate data are from the Global Strain Rate Model (GSRM v.2.1) 

(Kreemer et al., 2014). 
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Figure 5.4. Comparison between strain rate, seismicity, and seismic moment in Anatolia. 

(a) spatial distribution of M ≥ 6 earthquakes between 1045 and 2015 and scalar strain 

rate. (b) spatial distribution of M ≥ 6 earthquakes between 1045 and 2015 and their 

seismic moment. The earthquake data is from the GEM Global Historical Earthquake 

Catalogue (1000-1903) and the ISC-GEM Global Instrumental Earthquake Catalogue 

(1904-2015). The strain rate data are from the Global Strain Rate Model (GSRM v.2.1) 

(Kreemer et al., 2014). 

 

 

Figure 5.5. Comparison between strain rate, seismicity, and seismic moment in Tibet. (a) 

spatial distribution of M ≥ 6 earthquakes between 1117 and 2015 and scalar strain rate. 



153 

 

(b) spatial distribution of M ≥ 6 earthquakes between 1117 and 2015 and their seismic 

moment. The earthquake data is from the GEM Global Historical Earthquake Catalogue 

(1000-1903) and the ISC-GEM Global Instrumental Earthquake Catalogue (1904-2015). 

The strain rate data are from the Global Strain Rate Model (GSRM v.2.1) (Kreemer et al., 

2014). 

 

 

Figure 5.6. Comparison between strain rate, seismicity, and seismic moment in North 

China. (a) spatial distribution of M ≥ 6 earthquakes between -780 and 2015 and scalar 

strain rate. (b) spatial distribution of M ≥ 6 earthquakes between -780 and 2015 and their 

seismic moment. The earthquake data is from Cheng et al. (2017). The strain rate data are 

from the Global Strain Rate Model (GSRM v.2.1) (Kreemer et al., 2014). 
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Figure 5.7. Comparison between strain rate, seismicity, and seismic moment in the 

CEUS. (a) spatial distribution of M ≥ 5 earthquakes between 1568 and 2016 and scalar 

strain rate. (b) spatial distribution of M ≥ 5 earthquakes between 1568 and 2016 and their 

seismic moment. The earthquake data are from K. Mueller et al. (2004) used for the 2018 

USGS National Seismic Hazard Map. The strain rate data are from Kreemer et al. (2018). 
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Figure 5.8. Comparison of the correlations between strain rate and seismicity in the 

CEUS for (a) all event or (b) background events of M ≥ 5 between 1811 and 2016, and 

(c) all event or (d) background events of M ≥ 2.5 between 1980 and 2016. 

 

I also quantified the spatial prediction power of strain rate by using the area skill 

score, the area below the corresponding curve in the Figure 5.1. The area skill score is a 

parameter characterizing how concentrated one factor (e.g., earthquakes) is in a given 

area with a certain scanning order (e.g., based on strain rate). In this chapter, each 

tectonic region is scanned from cells of high strain rate to cells of low strain rate (the 

slope of the strain rate curve decreases as the fraction of covered area increases). 

Therefore, the area skill score of a seismicity (or seismic moment) curve characterize 
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how concentrated seismicity (or seismic moment) is in high strain rate areas of a tectonic 

region. When the area skill score of a seismicity curve is larger than 0.5, it means more 

earthquakes occurred in high strain areas than in low strain rate areas, so strain rate as a 

spatial predictor is better than random guess. The results of different tectonic settings are 

shown in the legends in Figure 5.1 and in Table 5.1. The best spatial prediction of 

seismicity is found in California with the area skill score equals to 0.85, which is 

significantly higher than other regions (Figure 5.1). Japan, Anatolia, Tibetan Plateau, and 

North China have close area skill score of seismicity around 0.73. In Tibetan Plateau and 

North China, the area skill score of seismic moment (~0.65) is significantly lower than 

the area skill score of seismicity, but higher than the score of a random guess (0.5). For 

the CEUS, the prediction power of strain rate for seismicity (area skill score = 0.44, 

Figure 5.1) is significantly poorer than other studied regions. The differences between 

these three groups are significant and are shown in Figure 5.9.  

 

Table 5.1. Comparison between different tectonic setting on spatial prediction power and 

strain rate-seismicity correlation based on Figure 5.1 

Region  Time Magnitude 

Area skill 

score of 

strain rate 

Difference 

between strain 

rate and EQ 

Difference 

between strain 

rate and moment 

California 1852-2016 M ≥ 6.5 0.85 0.025 0.028 

Japan 1586-2015 M ≥ 7 0.73 0.023 0.022 

Anatolia 1045-2015 M ≥ 7 0.76 0.077 0.057 
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Tibet 1786-2015 M ≥ 7 0.73 0.027 0.094 

North 

China 
1604-2015 M ≥ 6 0.75 0.021 0.111 

CEUS 1568-2016 M ≥ 5 0.67 0.225 0.510 

 

 

Figure 5.9. Comparison between strain rate and seismicity in different tectonic settings. 

 

5.3.2 Temporal variations of strain rate-seismicity correlation 

As I introduced in Chapter 2 and 3, temporal patterns of large earthquakes are 

complex and often show the pattern of Devil’s staircses, with the alternation of active and 

quiescent periods (Figure 2.1, 3.15a). In North China, good correlation between strain 

rate and seismicity is found in the active periods but poor correlation is found in the 
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relatively quiescent period (Figure 3.15b). Similar results are found in California-Nevada 

(Zeng et al., 2018).  

 

 

Figure 5.10. Temporal variations of strain rate-seismicity correlation in California and 

Nevada for (a) all events or (b) background earthquakes. The cumulative earthquakes are 

counted within a 10-year window that moves in 2-year steps from 1933 to 2016. The 

colorbar shows the midyear of the moving 10-year time windows used to calculate the 

cumulative earthquake counts. The thick black curve is the cumulative strain rate. The 

diagonal line indicates spatially random distribution. 

 

I also explored the temporal variations of correlation between strain rate and 

relatively small earthquakes in California, North China, and CEUS. Both the original 

catalogs and declustered catalogs are studied to check if the temporal trends are 

consistent. The declustered catalogs are obtained using the nearest-neighbor method 

introduced in Chapter 2. In California and Nevada, the correlation between strain rate and 

seismicity also varies with time (Figure 5.10). Both background earthquakes and all 

events follow the same trend: with poor correlations from 1933 to the 1980s and better 
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correlations from the 1980s to 2016, similar to the results for background earthquakes of 

Zeng et al. (2018). A reverse trend is observed in North China from 1970 to 2015 (Figure 

5.11). For all events (Figure 5.11a), the seismicity curves are above the strain rate curve 

at the early periods because most events are aftershocks of the 1976 Tangshan 

earthquake, which caused the concentration of seismicity in high strain rate areas. As 

time passed, aftershock activity decayed and background earthquakes that occurred in the 

low strain rate regions become relatively dominant, therefore the correlation between 

strain rate and seismicity gets worse. Similar trend is also found for background 

seismicity (Figure 5.11b). After 2000, almost all events in North China are background 

earthquakes and diffusely distributed in both high and low strain rate regions. Together 

with the lack of large earthquakes in North China after the 1976 Tangshan earthquake 

(Figure 3.15a), North China may have entered a relatively quiescent period. In the CEUS, 

the temporal variation of the correlation exists but is smaller than that in California-

Nevada and North China (Figure 5.12). The seismicity curves are below the spatial 

random line (the diagonal line) and moves downward as time passed, indicating even 

more small events occurred in low strain rate areas.   

Comparing the temporal variations of the seismicity curves between California-

Nevada and North China (Figure 5.10, 5.11), I found that spatial distribution of 

seismicity in North China is more time-dependent than that in California-Nevada. In 

California-Nevada, even for the period with the worst correlation between strain rate and 

seismicity, the seismicity curve is still significantly above the diagonal line (Figure 5.10), 

so seismicity is still concentrated in high strain rate regions, although not as concentrated 
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as the strain rate itself. However, in North China, during the most uncorrelated period, the 

spatial distribution of seismicity is close to random (Figure 5.11). 

 

 

Figure 5.11. Temporal variations of strain rate-seismicity correlation in North China for 

(a) all events or (b) background earthquakes. The cumulative earthquakes are counted 

within a 10-year window that moves in 2-year steps from 1970 to 2015.  

 

 

Figure 5.12. Temporal variations of strain rate-seismicity correlation in CEUS for (a) all 

events or (b) background earthquakes. The cumulative earthquakes are counted within a 

10-year window that moves in 1-year steps from 1980 to 2016.  
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I further checked to see if the length of the time window affects the observed 

temporal trend. The answer is not. In addition to the 10-year window, I also used a 4-year 

window and a 20-year window for North China earthquakes (Figure 5.13). Although the 

results based on the 4-year window have larger uncertainties because of fewer events, the 

temporal trend is still clear (Figure 5.13a, b). The results based on the 20-year window, 

because of more events included, show a more stable temporal trend of seismicity from 

concentration on high strain rate regions to more random and diffused distribution 

(Figure 5.13c, d). 
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Figure 5.13. Temporal variations of strain rate-seismicity correlation in North China by 

using different length of time window.  

 

5.4 Discussion 

5.4.1 Deviations from the dichotomy between plate boundaries and plate 

interiors: strain rate-seismicity correlations in different tectonic settings 

In this chapter, I characterized the correlation between strain rate, seismicity, and 

seismic moment by using the success diagram following the approach of Shen et al. 

(2007) and Zeng et al. (2018). The spatial prediction power of strain rate is evaluated by 

using the area score (Zechar & Jordan, 2008) of cumulative number of earthquakes (or 

cumulative seismic moment) counting from high strain rate areas to low strain rate areas. 

I found that the strain rate-seismicity correlation is complex and varies in different 

tectonic settings (Figure 5.1). In relatively simple plate boundary zones (e.g., California 

and Japan), high strain rates are  highly concentrate on major faults where large 

earthquakes occur and records are complete, so good correlations between strain rate, 

seismicity, and seismic moment are found (Figure 5.1a, b) (Shen et al., 2007; Zeng et al., 

2018). Therefore, strain rate has a good spatial prediction power of seismicity. In broad 

plate boundary zones (e.g., Tibetan Plateau) and boundaries of micro plates (e.g., 

Anatolia), correlations between strain rate and seismicity are still good, but the spatial 

prediction power of strain rate gets worse (Figure 5.1c, d), because the strain rate 

distributions are not as concentrated as that in relatively simple plate boundary zones. In 

reactivated cratons (e.g., North China), while the distributions of fault systems, strain 

rate, and seismicity are complex (Chen et al., 2021; Liu & Wang, 2012), a reasonably 



163 

 

good correlation between strain rate and seismicity is found (Figure 5.1e). The spatial 

prediction power of strain rate is comparable to complex plate boundary zones and better 

than random guess. However, the correlation between strain rate and seismic moment in 

reactivated cratons may be not good, even in a record of hundreds of years (Figure 5.1e). 

Because of long recurrence time of large earthquakes in intraplate regions, spatial 

patterns of seismicity depend on the length of catalogs, and large earthquakes in low 

strain rate areas may dominate the moment release in the earthquake catalogs. In stable 

plate interiors (e.g., the CEUS), correlations between strain rate are found to be poor or 

absent for both large and small earthquakes (Figure 5.1f, 5.8), similar to previous studies 

(Calais et al., 2016; Kreemer et al., 2018). In such settings, earthquakes are nearly 

randomly distributed in space, so strain rate cannot be used as a useful spatial predictor of 

seismicity in stable intraplate continents.  

 

5.4.2 The complexity of intraplate seismicity 

Although both North China and the CEUS are intraplate regions, the correlations 

between strain rate and seismicity in these two regions are significantly different (Figure 

5.1e, f), which highlights the complexity of intraplate seismicity. The lengths of 

earthquake records in intraplate regions are often too short compared to their average 

recurrence intervals, so spatiotemporal patterns of intraplate earthquakes may not be 

complete. The relatively good strain rate-seismicity correlation in North China may 

indicate that the observed geodetic strain rate reflects the long-term interseismic loading. 

However, the long-lasting aftershocks and postseismic deformation of the 1966 Xingtai 

earthquake and 1976 Tangshan earthquake in North China (Chen et al., 2021; Liu & 
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Wang, 2012) may cause an overestimation about the correlation between strain rate and 

seismicity in North China. Unlike North China, in CEUS, glacial isostatic adjustment 

(GIA) is the main cause of the observed strain rate field, and poor or no correlation 

between strain rate and seismicity is observed (Figure 5.1f) (Calais et al., 2006; Kreemer 

et al., 2018). Based on the lack of strain rate-seismicity correlation in CEUS, Kreemer et 

al. (2018) argue that “intraplate seismicity does not reflect the release of geodetic strain, 

and the largest, GIA-controlled, strain rate does not load faults, except perhaps in zones 

of weakness such as continental margins”. Nevertheless, because of limitations and 

uncertainties of observations, intraplate seismicity is still enigmatic and need further 

studies.  

 

5.4.3 Implications to seismic hazard 

It is important to know how good strain rate is for predicting locations of 

earthquakes. In this chapter, I found that the spatial prediction power of strain rate varies 

with different tectonic regions, which should be considered in seismic hazard assessment. 

Except the stable continents, using strain rate to predicts earthquake locations (or seismic 

moment distributions) is better than random guess in plate boundary zones and active 

intraplate regions. Strain rate-based models can be useful for intraplate regions that 

current strain rate fields reflect long-term interseismic loading patterns. Large intraplate 

earthquakes often occur on unmapped faults because of short records, but observed high 

strain rate areas may offer information about the possible high risk regions. If the strain 

rate spatially correlates with the seismic moment in a long term, the deviations between 

the strain rate curve and the seismic moment curve in a short-term record may offer 
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information about where strain is not sufficiently released. For example, in North China 

(Figure 5.1e), future large earthquakes are more likely to occur in the medium strain rate 

regions because the stored energy there has not been sufficiently released in the past 400 

years. 

The temporal variations of the spatial distribution of seismicity show dynamic 

patterns of seismicity and need to be considered in the seismic hazard assessment. The 

standard seismic hazard maps often estimate seismic hazard in next 50 years (Petersen et 

al., 2014; Petersen et al., 2020). However, in a 50-year time window, the spatial 

distributions of seismicity can vary significantly (Figure 5.10, 5.11). This effect is smaller 

in plate boundary zones, because recurrence intervals there are shorter than that in 

intraplate regions and a large portion of events is still concentrated in high strain areas 

even in the period of the worst strain rate-seismicity correlation (Figure 5.10). In 

intraplate regions like North China, because of long recurrence intervals, spatial 

distributions of seismicity can be significantly different in different time periods (Figure 

3.15, 5.11). In an active period, earthquakes occur in high strain rate areas, but in a 

relatively quiescent period, earthquakes are closer to be randomly distributed. The 

temporal variations of spatial distributions of small seismicity show clear trend from one 

period to another (Figure 5.10, 5.11), so may be used to tell if a region is entering a more 

active period or a relative quiescent period, as suggested by Zeng et al. (2018).  

 

5.5 Conclusions 

In this chapter, I systematical studied the correlation between strain rate and 

seismicity and evaluated how good strain rate is as a spatial indictor of earthquakes in 
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different tectonic settings. The strain rate-seismicity correlation is good not only in plate 

boundary zones but also in some intraplate regions like North China. However, the 

correlation between strain rate and seismicity is poor or absent in stable plate interiors 

like the CEUS. The spatial prediction power of strain rate varies with different tectonic 

settings. In relatively narrow plate boundary zones, the spatial prediction power of strain 

rate is the best, with most events concentrated in high strain rate areas. The spatial 

prediction power of strain rate become worse in broad plate boundary zones and active 

continents, but is still better than random guess. In stable continents, spatial patterns of 

seismicity are close to a random distribution: lack of preference on high strain rate areas, 

so strain rate cannot be used as a spatial indictor of seismicity there.  

The strain rate-seismicity correlation is time-dependent, not only for all events but 

also for background earthquakes. Good correlations are found in seismically active 

periods and poor in relatively quiescent periods, so it may offer information about current 

seismicity rate level for a given region. The strain rate-seismicity correlation has larger 

temporal variations in intraplate regions than that in plate boundary zones, so spatial 

patterns of seismicity in intraplate regions are less stable in time and should be 

considered in seismic hazard assessments.  
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Chapter 6: Conclusions and suggestions for future research 

Chapter 6.1: Conclusions  

My studies presented in this dissertation have improved the understanding about 

spatiotemporal patterns of earthquakes. For all fault systems ranging from single faults to 

different tectonic regions and to the whole world, I found that the periodic or 

quasiperiodic occurrence of earthquakes predicted by the elastic rebound model is 

unusual. Clusters of earthquakes separated by irregular and relatively longer quiescent 

periods are generally observed. Such temporal patterns of earthquakes can be 

mathematically described by the Devil’s Staircase, a fractal property of complex systems 

commonly seen in nature. For the possible tectonic factors and causes for the Devil’s 

Staircase patterns of large earthquakes, I found that the lengths of quiescent periods 

between clusters are inversely related to tectonic loading rate. Earthquake clustering can 

be attributed to viscoelastic relaxation and fault interaction. The Devil’s Staircase 

patterns of large earthquakes have important implications for earthquake hazard 

assessment. Because catalogs for large earthquakes often too short to reflect their 

complete patterns, the mean recurrence interval, being estimated using the catalogs and 

used in seismic hazard analyses, can vary significantly depending on whether the catalogs 

include only the most recent active period or cover a spectrum of clusters and quiescent 

intervals. The probability distribution of inter-event time is found burstier than the 

Poisson model commonly used in probabilistic seismic hazard assessments, implying a 

higher probability of repeating events soon after a large earthquake. Large fault ruptures, 

which often involve multiple fault segments or faults, behave as nonlinear complex fault 
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systems and show the Devil’s Staircase patterns, requiring earthquake studies using a 

system approach. 

Compared with seismicity at plate boundary regions, seismicity in plate interiors 

is more complex but less studied. I studied the intraplate seismicity in North China and 

the CEUS in this dissertation, and focused on the spatial temporal patterns of background 

seismicity, possible long-lived aftershocks of historical large earthquakes, and 

correlations of seismicity with different factors (e.g., strain rate, fault, seismic velocity). 

For North China, the recent moderate earthquakes (M ≥ 4.5) in the Tangshan region, 

China are statistically identified aftershocks and may be physically trigged by the 1976 

Great Tangshan earthquake. The aftershock activity of the 1976 Great Tangshan 

earthquake is likely continuing, and its duration is around 65-100 years. The background 

seismicity in North China is relatively stable in space with variations in time. The active 

tectonic structures, the Shanxi Rift and the Z-P fault system, are found concentrations of 

large historical earthquakes, background seismicity, and relatively high strain rate. 

However, in the North China Plain, the correlation between large historical earthquakes, 

background seismicity, and strain rate is weak. A significant number of large earthquakes 

occurred in places where geodetic strain rate or background seismicity is relatively low, 

highlighting the complexity of intraplate seismicity. In the whole North China, the 

correlation between strain rate and large earthquakes is generally good in a 2000-year 

record, but the correlation is worse for smaller background seismicity. The spatial 

prediction power of strain rate in North China is better than random guess but not as good 

as in plate boundary regions. The fault map is also a good constraint on the spatial pattern 

of seismicity in North China. However, it is worthy of noticing that some large 
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earthquakes occurred away from mapped faults and on faults that were formerly 

unknown. Combining fault data with strain rate data can improve the prediction 

performance for large earthquakes. The correlation between seismicity and the S-wave 

anomaly at 100km depth is weak. I also noticed that North China is lack of large 

earthquakes in the past 40 years and current background seismicity is close to random 

distribution in space, so North China may have entered a relatively quiescent period.  

For the CEUS, the hypothesis that current earthquake clusters are aftershocks of 

large historical earthquakes are tested by using a statistical method called the nearest-

neighbor method. The results show that modern seismicity in the New Madrid seismic 

zone and the Charleston seismic zone include long-lived aftershocks of the 1811-1812 

New Madrid earthquakes and the 1886 Charleston earthquake, while contemporary 

seismicity in the Charlevoix seismic zone are likely to be background seismicity. I found 

that the magnitude of a given historical earthquake significantly affects the number of its 

aftershocks and the duration of its aftershock activity; the larger the historical earthquake 

is, the more its aftershocks are and the longer its aftershock activity lasts. Even assigning 

the smallest magnitudes to the 1811-1812 New Madrid earthquakes, still 10.7% of events 

in the New Madrid seismic zone between 1980 and 2016 are identified as the aftershocks 

of the 1811-1812 events.  Misidentifying long-lived aftershocks as background 

earthquakes may cause overestimation of seismic hazard in their rupture zones in 

intraplate regions.  

The spatial correlation between strain rate and seismicity and the prediction 

power of strain rate are also studied in this dissertation. I found the correlation between 

strain rate and seismicity, rather than being consistently good, varies in different tectonic 
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settings and different time periods. The good correlation between strain rate and 

seismicity is found in plate boundary regions and during seismic active periods. In 

contrast, in stable plate interiors and during relatively quiescent periods, the correlation 

between strain rate and seismicity are found poor or absent. The temporal variation of the 

strain rate-seismicity correlation is larger in intraplate regions than that in plate boundary 

regions. In intraplate regions, seismicity may be highly concentrated in regions of high 

strain rate in one period, but become nearly randomly distributed in space in the next 

period. The strong time-dependence of intraplate seismicity should be considered in 

seismic hazard assessment. The spatial prediction power of strain rate for seismicity 

varies in different tectonic settings, because it is decided not only by how good strain 

rate-seismicity correlation is but also by how concentrated strain rate is for a give region. 

Strain rate has best prediction power in plate boundary zones, has worse but still good 

prediction power in broad plate boundary regions and some intraplate regions. However, 

in stable continents, strain rate cannot be used as a spatial predictor of earthquakes, 

because its effect is close to random guess.  

 

Chapter 6.2: Suggestions for future researches 

The inadequacy of the elastic rebound model and the complex Devil’s staircase 

pattern of earthquakes require a system approach. Multiple fault segments of a mature 

fault or multiple faults in a region forms a nonlinear complex system. The behaviors of 

interactive fault segments or faults as a whole cannot be fully understood by only 

studying individual fault segments or faults. Therefore, rather than focusing only on 
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stress accumulation and release on individual faults, the stress revolution of multiple 

faults needs to be explored. The fault interaction and viscoelastic relaxation, mentioned in 

Chapter 2, need to be further explored to better understand the physics of earthquakes.  

Another important thing is to completely map faults in intraplate regions. I 

pointed out in Chapter 3 that some large intraplate earthquakes occurred on faults that 

were previously unknown. In addition, many induced earthquakes have also occurred on 

unmapped faults. Good correlation between strain rate and seismicity in intraplate region 

like North China may help to identify some unmapped faults.  

I did a simple exploration on how to combin fault data and strain rate data to 

improve the spatial prediction of earthquakes in Chapter 3, but it is too simple and is not 

the optimal solution. Future researches can dig deeper into this multifactor problem. For 

example, exploring the permutation and combination of strain rate, fault, heat flow, and 

seismic velocity. Then the methods that are built from the researches of the multifactor 

problem can be applied to different regions. 
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