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Regulation of Fetal Brain Development in Short-Long Living Mice 

Maliha Islam 

Dr. Susanta K. Behura, Thesis Supervisor 

Abstract 

How fetal brain development is regulated in mice with reduced life span is a primary 

objective of this research. Three studies were performed to investigate the fetal brain 

development in short and lived mice strains. The scientific premise and background of 

brain development and aging are provided review of literature (Chapter 1). In the first 

study (Chapter 2), experiments were performed to test early-life origin of brain aging. 

Mouse epigenetic clock (epiclock) database which represents specific genomic sites that 

are methylated in an age-correlated manner was profiled in three life stages: fetal 

(gestation day 15), postnatal (day 5), and adult (week 70) brains of male and female 

C57BL/6J inbred mice. Data analysis showed that the female adult brain was 

epigenetically younger than the male adult brain even when the chronological age (time 

from birth) was the same (week 70). Specific methylations in the developing brain 

predictive of epigenetic differences in the aging brain between sexes were identified by 

predictive modeling by neural network. This study also showed that gene expression of 

epiclock genes were similar between placenta and fetal brain. However, genes unrelated 

to epiclock did not show this pattern. Whole-genome bisulfite sequencing identified sites 

that were methylated in a coordinated manner in the placenta and in a sex-specific 

manner in the fetal brain. These sites showed that methylation level in the epiclock genes 

and genes associated with gonadotropin-releasing hormone (GnRH) signaling pathway 
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genes changes in a fetal-sex dependent manner both in the placenta and fetal brain. 

Furthermore, these methylations were maintained in the brain in the adult life stages. 

These findings suggested the fetal origin of sex differences in brain aging is 

epigenetically linked to the placenta. In the second study (Chapter 3), experiments were 

performed to test if reducing life span of mouse by ablating Caveolin 1 (Cav-1), a pro-

longevity gene that codes for an abundant structural protein of plasma membrane in 

endothelial cells, dysregulate brain development at the fetal stage. Further relevance of 

studying this specific gene is that mice lacking Cav-1 show neurodegeneration and 

multiple hallmarks of Alzheimer’s disease (AD) at an early age. As a result, most Cav-1-

null mice die within a year.  Gene expression in bulk brain tissue as well as single cells 

were analyzed in the Cav-1-null fetal brain compared to the wildtype (WT). The results 

of this study showed that lack of Cav-1 leads to extensive dysregulation of genes of fetal 

brain at specific gestation time (day 15). Several epigenetic clock genes were 

differentially methylated in Cav-1-KO compared to WT mouse fetal brain. Single nuclei 

RNA sequencing identified specific glial and neuronal cells being dysregulated in the 

fetal brain due to the absence of Cav-1. In addition, methylation analysis was performed 

to investigate effect of Cav-1 on epiclock genes. Based on these results, a model was 

proposed for fetal links of Alzheimer’s symptoms in mice lacking Cav-1. Lastly, in the 

third study (Chapter 4), experiments were performed to test if reduced lifespan in mice 

due to murine leukemia virus induced cancer influences fetal brain development. In this 

experiment, gene expression pattern of fetal brain and placenta of AKR/J mice, which 

mostly survive for a year due to onset of cancer, was compared with C57BL/6J mice to 

understand molecular and cellular links between aging and leukemia. The C57BL/6J has 
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longer life span (> 2 years) and is refractory to AK virus that causes leukemia in AKR/J 

mice. The gene expression studies showed that genes related to aging and 

neurodegenerative diseases are differentially regulated in the fetal brain and placenta of 

AKR/J mice compared to that in C57BL/6J. Targeted methylation profiling of a total of 

2,045 single bases of mouse genome, which are associated with mouse epigenetic clock 

data, showed that brain of AKR/J mice ages faster than C57BL/6J mice suggesting a link 

between leukemia and neuronal aging. By generating a F2 mapping population from 

AKR/J x C57BL/6J crosses, Bulk Segregant Analysis (BSA) was performed with the 

pooled DNA of F2 progenies by whole-genome sequencing to identify genetic variants 

associated with accelerated brain aging in AKR/J mice.  Single-cell ATAC-seq (Assay 

for Transposase-Accessible Chromatin by sequencing) analysis further predicted that 

specific transcription factors are involved in the differential gene regulation of fetal brain 

in AKR/J mice compared to C57BL/6J mice. Together, the results of these study provide 

foundational knowledge to establish molecular and cellular links between reproduction 

and aging.   
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Chapter 1 

Literature Review 

 

Introduction 

 

An unsolved yet fundamental question in reproductive biology is how a brain 

develops in the fetus, and whether gestational influences on the brain during development 

has long-term effect on offspring health and disease. Use of animal models is helpful to 

perform experimental studies on fetal brain development primarily due to ethical 

challenges associated with the research on human fetus. The mouse is a widely used 

model organism for human health and disease because its genome is 99% similar to the 

human genome and the small size of the animal enables researchers to conduct cost-

efficient studies. Mouse models have been used for preclinical studies, including drug 

trials, because the phenotyping of genetically engineered mice can be done at a large 

scale that provides valuable information on how the gene functions in human health 

(Vandamme, 2014). For aging related studies, Caenorhabditis elegans and fruit fly, 

Drosophila melanogaster, have been extensively used because of their simplicity and 

short lifespan. Short lifespan of mice allows researchers to study the aging mechanisms 

effectively. Additionally, mice have similar pathologies associated with aging that are 

similar to the humans. However neurodegenerative diseases do not naturally occur in 

mice. Fetal development from gestation day 15 to postnatal day 10 resembles the third 

trimester of human fetal development (Workman et al., 2013) (Bolon, 2015). Therefore, 
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genetically modified mice are developed to address these age-related phenomenon 

(Folgueras et al., 2018). Mouse models are also used to study reproductive aging in 

humans.  

 

C57BL/6J mice have been increasingly used in aging and longevity studies. The 

18-24 month old mice have the human age equivalency of 56-69 years old (Flurkey et al., 

2007). The knockout mouse model for the gene Caveolin-1 (Cav-1) is an example of 

mouse model investigation of human aging (Hattori et al., 2006; Head et al., 2010a, 

2010b; van Helmond et al., 2007; F. Wang et al., 2018). The strains of origin of Cav-1 

null mice are 129/Sv, SJL and C57BL/6J. Cav-1 is a major structural protein called 

caveolae which is like a flask shaped lipid pocket of plasma membrane. It is abundant in 

endothelial cells but is also present in many other cell types. Cav-1 is a known pro-

longevity gene. Additionally, Cav-1 plays a major role in the regulation of angiogenesis 

in mice (Chang et al., 2009). Mice lacking the Cav-1 gene have been shown to have 

impaired endothelia as there are no caveolae membranes in the endothelial cells (D. S. 

Park et al., 2003). In mice as well as in human placenta, caveolae membranes are formed 

in endothelial cells and also in smooth muscle cells and mesothelial cells of the yolk sac 

(Mohanty et al., 2010). Ablation of Cav-1 reduces mice lifespan by nearly 50% (D. S. 

Park et al., 2003). Cav-1 null mice, though viable and fertile, show hyperproliferative and 

vascular abnormalities (Razani et al., 2001). At young age (3-6 month old), these mice 

exhibit neuronal aging which resembles > 18 months of aging in wild-type mice (Head et 

al., 2010c). The Cav-1 null mice show Alzheimer’s like symptoms as early as 3-6 months 

after birth (Head et al., 2010a). Increased amyloid beta, tau, astrogliosis and decreased 
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cerebrovascular volume are observed in the brain of these mice (Head et al., 2010a). As 

Cav-1 plays a key role to modulate beta-secretase activity (Hattori et al., 2006), 

association of Cav-1 with AD pathologies in these mice has been suggested (Head et al., 

2010a).  

 

Besides use of mouse models in studying aging related neurodegeneration, inbred 

mouse strain AKR/J that expresses murine leukemia viruses (MLVs) are also used to 

study aging related onset of leukemia. MLVs are retroviruses belonging to the 

gammaretroviral genus that cause cancer in mice. Endogenous MLVs integrated into the 

host genome are passed from one generation to the next by germ line. The AKR/J inbred 

mouse genome contains AK virus (AKV) as an endogenous MLV. Ecotropic expression 

of AKV is found in all tissues from birth in these mice (Herr & Gilbert, 1982). Leukemia 

progression occurs in an age-dependent manner in AKR/J mice. Onset of leukemia 

occurs as early as three months of age, and most of them (60 to 90%) show terminal 

cancer by age 10 months and die within a month or two thereafter. In an earlier study, 

genetic mapping identified a locus (AKv1) that control mouse genome susceptibility to 

AKV (Rowe et al., 1972). Subsequently, a second locus (AKv2) was identified for AKV 

susceptibility (Kozak & Rowe, 1980). In a relatively recent study it was shown that the 

Apolipoprotein B gene Apobec3 can also be associated with AKV susceptibility to 

AKR/J but refractory to C57BL/6J mice (Langlois et al., 2009).  
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Developmental Aging (DevAge) theory: relevance to brain development and aging 

 

The developmental aging (DevAge) theory proposed by Dilman (Dilman, 1971a) 

suggests that developmental processes have commonalities with the process that regulates 

aging. Genomics and systems-biology studies have revealed that DevAge is 

evolutionarily conserved between mice and human (de Magalhães & Church, 2005; 

Feltes et al., 2015a). Development of the central nervous system is a highly coordinated 

spatiotemporal process that includes the proliferation of glia and neurons and their 

migration, followed by programmed cell death, formation of synapses, myelination, and 

establishment of neuronal circuits. The development of the neural tube in mouse fetus 

begins at gestation day 9-9.5 (Greene & Copp, 2014). A histology atlas of mouse fetal 

brain shows that during GD 12.5 the forebrain is proliferated and expanded at a fast rate 

especially the medial, lateral, and caudal ganglionic sections. Also, choroid plexus first 

appears at this stage and the hypothalamus starts to grow bigger in the diencephalon. In 

addition, the olfactory (CN1) nerves grow from the multi-layered olfactory epithelium in 

the caudodorsal nasal cavity and hippocampi is still not developed at this stage. 

Moreover, the hindbrain goes through significant changes in its conformation along with 

differentiation of Purkinje cells start during GD 11 to 13. Simultaneously, the mantle and 

marginal zones of the spinal cord start growing at this stage. Also, the spinal cord 

expands laterally in the ventral horn more than the thoracic and lumbar divisions. The 

progression of fetal brain development is also shown during GD 15.5 when the six layers 

of the cerebral cortex are distinctive with neurons developing to make the layers 

superficial. Many neurons such as GABAergic inhibitory neurons develop through the 
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growing cerebral cortex. By GD 15.5 the pituitary stalk is also formed. Additionally in 

the hindbrain the population of neurons grow rapidly at this stage and the spinal cord 

columns are more prominent. Simultaneously at GD 15.5 the cranial nerves also are 

distinctive in the spinal cord. Progressively, different developmental stages occur during 

GD 17.5 when the forebrain is significantly developed with prominent layers. By this 

stage the pituitary gland gets well developed and the Rathke’s pouch can be visualized as 

a small cleft. Also, the neurosecretory structures for hormones such as oxytocin develop 

in the forebrain. Moreover, in the hindbrain the Purkinje cells are well formed and in the 

spinal cord. The structure is very similar to the adult stage where the sympathetic nervous 

system starts to appear first in this stage. Most of the fetal brain development occurs 

before birth but the hippocampus, olfactory bulb and granule cells develop in the 

postnatal stages (V. S. Chen et al., 2017). In the early gestation age, the brain has more 

short-range connections and in the late gestation age, the brain develops to more long-

range connections in different regions of the brain. 

 

Aging and brain 

 

As the global population is aging at a higher rate than ever before (World, 2001), 

aging related diseases continue to be the primary contributors of morbidity and mortality 

among older people (Franceschi et al., 2018). Many chronic diseases of brain (Peters, 

2006), kidney (Nitta et al., 2013), liver (Premoli et al., 2009), lung (Rojas et al., 2015) 

and heart (Steenman & Lande, 2017) impact health at old ages. Aging causes 

physiological and functional decline of all organs, and leads to clinical complications 
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such as  metabolic syndrome (Bechtold et al., 2006), multiple organ failure (Neild, 2001), 

and decline of endocrine and immune systems (Fabbri et al., 2015). While regulation of 

organ aging at the molecular level is poorly understood, emerging evidence suggests that 

different organs age at differential rates (Ori et al., 2015; Pavanello et al., 2020; Schaum, 

Lehallier, Hahn, Pálovics, Hosseinzadeh, Lee, Sit, Lee, Losada, Zardeneta, Fehlmann, 

Webber, McGeever, Calcuttawala, Zhang, Berdnik, Mathur, Tan, Zee, Tan, Pisco, et al., 

2020). Thus, understanding factors that influence organ aging at the molecular level is 

significant. 

 

The brain consumes a significant proportion of energy throughout life. The brain 

represents approximately 2% of body weight but more than 20% of the body oxygen is 

used by the brain alone. As a result, aging has a distinct effect on brain compared to all 

other organs. The aging is the primary risk factor for neurodegenerative diseases such as 

Alzheimer’s disease. As the brain ages in mice, rats, chimpanzees, and humans, many 

biological pathways alter and there is an induction of stress response genes. With aging, 

there is a reduction in mitochondrial gene expression which can be related to the 

increased stress response gene expression. Calorie restriction in mice also changes the 

lifespan through oxidative stress gene expression. In humans, the age-associated 

downregulated genes are involved in various synaptic functions needed for memory 

mediation and learning. In contrast, the upregulated genes include stress response, 

antioxidant defense, immune function, and DNA repair in many different cortical areas of 

aging human brain. Similar results have also been shown in rats. Moreover, studies have 
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shown consistent results supporting decline in the cognitive functions in mammalian 

brain (Yankner et al., 2008).  

 

Brain cells are connected through a vascular network of blood vessels spreading 

over different sections of brains. Blood vessels in the cerebral cortex play a critical role in 

oxygen, glucose, and other nutrients transport in the brain. The fractional vascular 

volume in a ten week old adult mouse brain is 0.018 ± 0.004 mm3 per mm3, the 

normalized vascular length is 0.44 ± 0.04 m per mm3, and the mean diameter of the micro 

vessels is 4.25 ± 0.08 μm (L.-Y. Zhang et al., 2018). In humans, the temporal 

correlational dynamics of different regions of the brain, called Functional Connectivity, 

changes with aging (Edde et al., 2021).  

 

Risk of neurological disorders can be conditioned by sex differences in the fetal 

brain (Clayton, 2016; McCarthy, 2016a; Thibaut, 2016a). The brain ages differentially in 

males compared to females (Armstrong et al., 2019a; Goyal et al., 2019a). In humans, 

specific brain disorders occur in old ages at a higher frequency in one sex over the other 

(Young & Pfaff, 2014).  

 

Role of placenta in brain development 

 

Viviparous female animals retain the developing eggs in their reproductive tracts 

where the offspring grow using maternal resources. The word placenta originally means 

“circular cake” and refers to a transient organ found in viviparous species. It is formed 



 

 

8 

through the apposition of the embryonic and parental tissues, resulting in physiological 

exchange between maternal resources and the embryo. Conversely, oviparous animals lay 

developing or unfertilized eggs that grow in an external environment followed by 

hatching. Based on phylogenetic analyses, viviparity emerged in more than 142 separate 

occasions during the evolution of vertebrates. The evolution is of viviparity is proposed 

to be the result of different environmental conditions such as temperature and altitude. 

(Blackburn D. G., 1999). 

 

The reproductive and developmental processes are highly diverse in animals 

(Ackerman, 1992). The bilaterian animals appeared ~600 million years ago (MYA) and 

adapted numerous strategies to reproduce and develop. Matrotrophy is one of them. 

Matrotrophy refers to the provision of maternal resources to progeny during reproduction 

and early development in placental animals. In oviparous animals, the mode of maternal 

nourishment is called lecithotrophy where maternal nutrients are stored in the egg that is 

then used for embryo development. In eutherian mammals such as humans, pigs and 

mice, maternal nutrients are transferred to the fetus by the placenta. There are striking 

differences in the feto-maternal interface among placental animals (Roberts et al., 2016). 

The placenta of pig is diffused as placentation occurs all over the allantochorion. It is also 

epitheliochorial (Leiser & Dantzer, 1988) as there are different tissue layers that separate 

direct contact of the fetus from the maternal blood. On the other hand, mouse placenta is 

discoid and hemochorial (same as of humans) (Soares et al., 2018). The maternal blood 

comes in direct contact with the mouse fetus. Other animals, such as dogs and cats, have 

zonary placenta where the feto-maternal contact zone forms a belt around the chorionic 
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sac. Despite these differences, placenta plays highly conserved roles in fetal development 

in animals- to supply nutrient and oxygen to the fetus, collect fetal waste, and safeguard 

the fetus from infections and other external conditions.  

Brain-placental axis 

 

Defective neuronal development due to dysfunctional placenta can lead to 

different neuropsychiatric disorders in childhood and later in life in humans (Kratimenos 

& Penn, 2019a). There is a remarkable similarity among the placental animals in the 

process of cortical development during fetal brain formation (Molnár & Clowry, 2012). 

Placental dysfunction can lead to defective neuronal development that can lead to brain 

disorders such as autism spectrum or attention deficit hyperactivity disorders in early 

childhood or chronic neuropsychiatric diseases such as schizophrenia, depression and 

dementia in later in life (Kratimenos & Penn, 2019c) . Emerging evidence suggests that 

placenta plays key roles in brain development (Zeltser & Leibel, 2011). Inadequate 

placental support can impact developmental process of the brain and increase risk of 

brain diseases later in life (Gagnon, 2003). There is a remarkable coordination in gene 

expression between the placenta and fetal brain of mice suggesting robust regulation of 

the brain-placental axis (Behura, Kelleher, et al., 2019a). The brain-placental axis plays 

important roles in fetal programming of brain development and developmental origin of 

health and disease later in life (Behura, Dhakal, et al., 2019a). However, the ‘rules of life’ 

by which the female reproductive physiology and maternal nourishment of embryo has 

shaped the evolution of brain development in animals remains unsolved. Placenta 

originated only ~65 MYA (dos Reis et al., 2012) compared to ~600 million years of 
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evolution of animal brain. To understand how matrotrophy might have influenced the 

evolution of mammalian brain development (aka brain-matrotrophy axis), it is necessary 

to investigate brain of placental and non-placental animals. Some invertebrates such as 

lizards and cockroaches have placenta-like analogs (Blackburn, 2015; Dyke et al., 2014; 

Gao et al., 2019). By performing a large-scale comparative analysis of matrotrophy 

across the animal kingdom, Ostrovsky and colleagues suggested that placenta analogs in 

arthropods could be the simplest form of placentotrophy where specific cells, unlike a 

fully formed organ, may be involved in transferring nutrient from the parent to progeny 

(Ostrovsky et al., 2016). Whether placental analogs play role in brain development in 

those organisms remains unknown. Specific intracellular metabolism mechanisms are 

believed to be highly conserved. Serotonin transporters (SERT) play crucial roles in 

serotonergic control of cellular metabolism (Yabut et al., 2019). Serotonin is present in 

all species, and plays highly conserved roles in early developmental processes including 

development of brain (Bonnin et al., 2011; Rosenfeld, 2020; Turlejski, 1996). The 

production of serotonin (synthesized from tryptophan) is critical for reproductive 

processes to support protein production, fetal growth, brain development and regulation 

of the brain-placental axis (Badawy, 2015; Rosenfeld, 2020). The placenta synthesizes 

serotonin from maternal food (dietary tryptophan) which plays crucial roles in 

neurodevelopmental processes of the fetal brain (Velasquez et al., 2013). In mammals, 

dysregulation in serotine level during perinatal stage has negative impacts on brain 

development that lead to different behavioral disorders later in life (Shah et al., 2018).  
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Early-life link with aging 

 

Studies have suggested that aging and longevity processes have early-life origins 

(Gluckman et al., 2008; 2014; Vaiserman, 2019a). Understanding how early life 

developmental processes influence health and well-being later in life is an important 

research area that falls under the broad umbrella of research efforts collectively termed as 

Developmental Origins of Health and Diseases (DOHaD) (D. J. P. Barker, 2007; 

Wadhwa et al., 2009). The foundation of these research efforts is based on the Baker 

hypothesis (D. J. Barker & Osmond, 1986) which suggests that adverse conditions during 

intrauterine life and early developmental stages can cause irreversible alteration in 

physiology and metabolism that leads to heightened risk of diseases in adulthood. These 

projects not only benefit our knowledge on the early-life origins of human diseases but 

also bear significance to public health and society at large (Penkler et al., 2019). The 

story on “How the First Nine Months Shape the Rest of Your Life” featured on the TIME 

magazine cover on 04 October 2010 is an example of the public perception about the 

significance of this research area. Furthermore, a relatively recent article describes the 

broad significance of the DOHaD research as follows: “When tracing how life 

environments affect health and disease, it is of utmost social and political importance...” 

(Penkler et al., 2019). With the advent of DOHaD research coordination in early 2000s, 

diverse research themes have emerged to address basic and translational aspects of early-

life origins of human health and diseases (Gage et al., 2016; Heindel & Vandenberg, 

2015). This includes research on dissecting molecular mechanisms that commonly 

control fetal development and aging processes, which is the founding principle of the 
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Dilman theory of developmental-aging (DevAge) (Dilman, 1971b). Recent studies using 

genomics and systems-biology approaches have supported the DevAge theory, and have 

further revealed that the developmental-aging link is evolutionarily conserved between 

mouse and human (de Magalhães & Church, 2005; Feltes et al., 2015b).  

Links between lifespan and reproduction have been hypothesized from studies 

that observed correlations between gestation times and maximum life span among 

different mammals, placental shape and lifespan of tall and short men, and lifespan and 

fertility of women. Though these studies have suggested that reproduction and lifespan 

may have common regulatory mechanisms, no study has directly demonstrated the 

functional relationship between the two. This is a major gap in our knowledge to 

understand placental role in offspring health and aging of the brain.  

 

In addition, the aging brain is susceptible to several chronic diseases that occur in 

a sex-biased manner. Though a male fetus is generally associated with at higher risk than 

female fetus in utero, the early-life origin of sexual dimorphic aging remains a mystery.  

Sex differences may also influence placental function that can influence offspring health 

and disease. At birth, males are 4-6 weeks behind females physiologically but have 

higher weight than females (Copper et al., 1993). Though the growth difference is not 

altered by maternal diet, a male fetus shows a higher dependency on the maternal diet 

intake than the female fetus (Eriksson et al., 2010). This sex-biased dependency on 

nutrition during early development exposes male fetuses to higher risk of different 

obstetric problems than female fetuses. The O-linked N-acetylglucosamine transferase 

(OGT) plays an important role in modulating placental functions to respond to the 
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maternal supply and fetal demand for nutrients (Howerton et al., 2013; Howerton & Bale, 

2014). OGT is expressed in the placenta in a sex-biased manner that influences fetal 

growth and stress response (Hart et al., 2019). Moreover, the placenta develops faster 

with male fetuses compared to female fetuses (Kalisch-Smith et al., 2017) suggesting 

sex-specific regulation of placental responses during fetal development (Rosenfeld, 

2015).   

 

Aging and longevity processes are hypothesized to have functional links to early-

life developmental events (Aguilaniu, 2015a; Bianco-Miotto et al., 2017; Vaiserman, 

2019a). An earlier study suggested that telomere biology plays a significant role in the 

fetal programming of aging processes (Entringer et al., 2018). Also, dysfunctional 

placenta can cause abnormal brain development leading to neurological disorders later in 

life (Zeltser & Leibel, 2011). Different factors associated with reproduction including 

gestation time (Fushan et al., 2015a), placenta development (D. J. P. Barker et al., 

2011a), and fertility (Müller et al., 2002) are thought to have links with longevity. Studies 

have also shown that sex has a differential effect on longevity (Austad & Fischer, 2016). 

For example, the female brain is persistently younger than male brain at the metabolic 

level (Armstrong et al., 2019a; Goyal et al., 2019a). In mammals, dysregulation in 

serotine level during perinatal stage has negative impacts on brain development that lead 

to different behavioral disorders later in life (Shah et al., 2018). While the placental role 

in fetal programming is documented (Bronson & Bale, 2016; Denisova et al., 2020; 

Jansson & Powell, 2013; Koukoura et al., 2012; Kratimenos & Penn, 2019b), the role of 

placenta in organ aging remains unexplored. 
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Significance of using epigenetic analysis in aging related studies  

 

The development of placenta and the fetal brain is controlled by various 

epigenetic mechanisms (Nelissen et al., 2011; Petanjek & Kostović, 2012). DNA 

methylation, chromatin accessibility, and microRNAs, among others, play important 

roles in epigenetic regulation of genes in the placenta as well as fetal brain (Klemm et al., 

2019; Martin et al., 2017; Mouillet et al., 2015; Nelissen et al., 2011; Petanjek & 

Kostović, 2012). DNA methylation plays pivotal role in epigenetic regulation of genes 

during development as well as aging. In the human, DNA methylation occurs in a sex-

biased manner in the placenta to support fetal growth  (Tekola-Ayele et al., 2019a). 

Methylation at discrete sets of CpG (5’-Cytosinephosphate-Guanine-3’) sites, often 

referred to as ‘epigenetic clock’, have been used not only to determine the biological age 

of organs but also to predict life span in mice and humans (Horvath, 2013; Meer et al., 

2018; Stubbs et al., 2017a). Recent studies also show that the placental epigenetic clock 

is a reliable predictor of gestational age (Y. Lee et al., 2019) and fetal growth (Tekola-

Ayele et al., 2019b). Besides DNA methylation, chromatin accessibility to different 

transcription factors influences the regulation of genes associated with placenta 

development (Abdulghani et al., 2019). The repressor element 1 silencing transcription 

factor (REST), when binding to the accessible chromatins, recruits multiple corepressor 

complexes to influence different developmental processes (Ooi & Wood, 2007). In 

addition, microRNAs also act as important epigenetic modulators of genes to control 

developmental processes of the placenta and fetal brain (Hayder et al., 2018; Miranda, 



 

 

15 

2012), and also to regulate aging and longevity processes (Grillari & Grillari-Voglauer, 

2010; Murphy, 2010). Gene regulation by circulating microRNAs during pregnancy is 

also known (M. Cai et al., 2017). 

The major molecular and cellular hallmarks of aging are epigenetic modification, 

loss of proteostasis, cellular senescence, deregulated nutrient sensing, mitochondrial 

dysfunction, telomere attrition and stem cell exhaustion, among others (López-Otín et al., 

2013). Change in DNA methylation pattern in aging cells and resulting tissue change is a 

process commonly known as epigenetic drift (Sierra et al., 2015). DNA methylation is a 

major component of epigenetic drift in aging organs, and study has shown that 

methylation occurs in a sex-biased manner in the placenta to support fetal growth 

(Tekola-Ayele et al., 2019a). Also, methylation changes of epigenetic clock are reliable 

predictors of biological aging of organs (Horvath, 2013; Meer et al., 2018; Stubbs et al., 

2017a). DNA methylation of the placenta is also correlated with gestational age (Y. Lee 

et al., 2019) and fetal growth (Tekola-Ayele et al., 2019b). In human, abnormal DNA 

methylation of placenta is associated with Down syndrome (Jin et al., 2013).  Besides 

methylation, the chromatin accessibility to regulatory proteins, particularly transcription 

factors, also influences molecular regulation of the aging processes (Jänes et al., 2018; 

Koohy et al., 2018; Ucar et al., 2017). REST also plays roles in controlling other 

biological processes including embryonic stem cell self-renewal, cellular plasticity, 

neuronal excitement and longevity (Gopalakrishnan, 2009; Zullo et al., 2019).  In the 

embryonic stage, REST promotes stem cell pluripotency by suppressing neuronal genes 

in embryonic stem cells and blocking neuronal differentiation (Gupta et al., 2009; Singh 
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et al., 2008). A recent study has shown that REST controls processes of neuronal 

activities and acts as potent regulator of longevity (Zullo et al., 2019). 

 

Significance of using single nuclei RNA Seq  

 

The advent of single-cell genomics has provided new insights into developmental 

processes including that of fetal brain (Briggs et al., 2018; Marioni & Arendt, 2017; Plass 

et al., 2018). Single-cell analysis provides new avenues to identify homologous cells that 

regulate gene expression in a similar manner in unrelated species to develop common 

phenotypes (Tarashansky et al., 2020). ‘Cell type homology’, which is an emerging 

concept in evolutionary developmental biology (Sachkova & Burkhardt, 2019), 

commonly refers to specific cells that use the same regulatory program to drive 

differentiation (Arendt et al., 2019). Evolution in molecular regulatory mechanism 

dictates cell type homology, a proposition (Sachkova & Burkhardt, 2019) that has been 

widely supported from recent single-cell functional genomics studies including regulation 

of cell types of microglia  (Geirsdottir et al., 2019), evolution of cellular regulatory 

networks (Sebé-Pedrós et al., 2018), and brain development (Hu et al., 2020; 

Konstantinides et al., 2018; Pembroke et al., 2021). A recent study performed integrated 

analysis of single-cell RNA-seq (scRNA-seq) and single-cell open chromatin profiling 

data of cerebral organoids derived from human, chimpanzee, and macaque, and found 

that chromatin accessibility changes dynamically in developing brain cells that modulate 

gene expression between species (Kanton et al., 2019). While neural development in 

vertebrate animals stems from large numbers of apical and basal progenitor cells of the 
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neuroepithelium, these processes in fly brain arise from only a few progenitor cells. The 

recent spur in multimodal single-cell genomics (C. Zhu et al., 2020) is bringing new 

opportunities to dissect deep homology at single-cell level. As an example, integration of 

single-cell RNA-seq and metabolomics data provides insights into the dynamics of 

metabolic flux of different cell types (Damiani et al., 2019; Evers et al., 2019), and 

provides a new approach to translate bulk metabolomics data into single-cell 

metabolomics based on single-cell gene expression data (Wyler et al., 2017).  
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Chapter 2 

Early-life links of brain aging 

 

Abstract 

 

Fetal programming is known to influence adult health and diseases. Whether 

aging is programmed at the fetal stage remains unknown. To test this hypothesis, mouse 

epigenetic clock (epiclock) test was performed at three life stages: fetal (gestation day 

15), postnatal (day 5), and adult (week 70) brains of male and female C57BL/6J inbred 

mice. Data analysis showed that the female adult brain was epigenetically younger than 

the male adult brain even when the chronological age was the same (week 70). Specific 

methylation sites in the developing brain could predict the epigenetic differences in the 

aging brain between sexes. The epiclock genes showed similar expression pattern 

between placenta and fetal brain. Genes unrelated to epiclock did not show this pattern. 

Whole-genome bisulfite sequencing identified sites that were methylated in a sex-bias 

manner between placenta and fetal brain. Genes associated with the gonadotropin-

releasing hormone receptor (GnRHR) pathway accumulated methylation that varied in a 

correlated manner with that of epiclock genes, and in a fetal-sex dependent manner 

between placenta and fetal brain. Evidence of transcriptional crosstalk among the 

epiclock and GnRHR pathway genes were found in the placenta and was maintained in 



 

 

 

 

19 

the brain throughout the adult life stages. Collectively, these findings suggested the fetal 

origin of sex differences in brain aging and epigenetically link to the placenta.   

 

Introduction 

 

The link of aging with reproduction has been shown in multiple studies 

(Aguilaniu, 2015a; Bianco-Miotto et al., 2017; Vaiserman, 2019a). Placenta development 

(D. J. P. Barker et al., 2011a), Gestation length (Fushan et al., 2015a), along with fertility 

(Müller et al., 2002) have been suggested to have influences on aging in humans as well 

as animals. Furthermore, sex has been shown to influence organ aging (Austad & Fischer, 

2016). Sex-specific gene expressions were found in different organs during aging 

(Schaum, Lehallier, Hahn, Pálovics, Hosseinzadeh, Lee, Sit, Lee, Losada, Zardeneta, 

Fehlmann, Webber, McGeever, Calcuttawala, Zhang, Berdnik, Mathur, Tan, Zee, Tan, 

Tabula Muris Consortium, et al., 2020). Interestingly, the female brain remains 

persistently younger than the male brain in humans (Armstrong et al., 2019a; Goyal et al., 

2019a).  

 

Placental role in fetal programming is well documented (Bronson & Bale, 2016; 

Denisova et al., 2020; Jansson & Powell, 2013; Koukoura et al., 2012; Kratimenos & 

Penn, 2019b).  Recently, it has been shown that the placenta plays adaptive roles to 

safeguard fetal brain development from adverse conditions during the period of 

pregnancy (Behura, Dhakal, et al., 2019b). We showed a coordinated increase or decrease 
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of specific receptor and ligand genes between the placenta and fetal brain in our earlier 

study, suggesting they have roles in the regulation of the murine brain-placental axis 

(Behura, Kelleher, et al., 2019a). In addition, differential expression of different aging 

genes in the male and female fetal brain were evident in response to ablation of Foxa2 

which is an essential gene required for pregnancy establishment, in the uterus (Dhakal et 

al., 2021a). Also, we recently illustrated the sex-bias regulation of some specific genes 

during fetal brain development in pigs (Strawn et al., 2021). Furthermore, other studies 

suggested that epigenetic and metabolic changes in the fetal brain can have an impact on 

overall health later in life (Behura, Dhakal, et al., 2019c) remarkably elevating the risk of 

metabolic disorders of the brain (Dhakal et al., 2021b).  

 

DNA methylation is a significant factor of epigenetic regulation of aging 

(Johnson et al., 2012; Jones et al., 2015; Rath & Kanungo, 1989; Sierra et al., 2015). 

Methylation, the majority of which occur in CpG (5'-Cytosine-phosphate-Guanine-3’) 

sites, changes in a correlated manner with age. CpG methylation, a reliable predictor of 

biological age of different organs, can be identified using epigenetic clock (epiclock) test. 

In several studies, methylation changes were profiled in the brain during aging (Farré et 

al., 2015; Numata et al., 2012; Rath & Kanungo, 1989) and in the developing brain at 

fetal stages and aberrant methylation in the fetal brain was found to influence the risk of 

brain diseases later in life (Pidsley et al., 2014; Rachdaoui & Sarkar, 2014). The 

commonalities in morphometric changes that occur in the brain during developmental 

stages support the aging of the brain (Tamnes et al., 2013). These studies have 
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collectively suggested that aging of the brain and the processes that regulate the 

development are not mutually exclusive. Mice models provided valuable insights on 

aging-related disorders and epigenetic regulation of brain development (Alberry & Singh, 

2020; Hirabayashi et al., 2013; H. Kim et al., 2016; Niculescu et al., 2006), including the 

influence of sex on epigenetic regulation of brain function and development (Cortes et 

al., 2019; Ratnu et al., 2017; Spiers et al., 2015).  However, the epigenetic relation 

between development and aging of brain is yet to be speculated. The present study aims 

to test if development and aging of brain have epigenetic connections and determine 

whether such links are influenced by placenta and fetal sex. 

 

Materials and Methods 

 

Animals 

 

Adult C57BL/6J mice were mated. The day vaginal plug was observed was 

considered as GD 0, and on GD 15, dams were euthanized in CO2 followed by cervical 

dislocation. We selected GD 15 because the placenta was fully developed, and the brain-

placental crosstalk was confirmed during this stage (Behura, Kelleher, et al., 2019b). The 

placenta was carefully separated from the metrial gland and decidua, and the fetal brain 

was meticulously collected using curved forceps. All the samples were washed in PBS and 

snap-frozen in liquid nitrogen. Sex was determined by PCR (Dhakal & Soares, 2017). A 

total of 12 fetal brains and placenta were collected (3 replicates x 2 tissue types x 2 sexes). 
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We further collected three replicates of male and female brains from postnatal day 5 

(PND5) and 70 weeks old mice (WK70). All animal procedures were approved by the 

Institutional Animal Care and Use Committee of the University of Missouri and were 

conducted according to the National Institute of Health Guide for the Care and Use of 

Laboratory Animals. 

 

Epigenetic clock gene profiling 

 

DNA of GD15, PND5 and WK70 male and female brains were profiled for 

methylation status of the mouse multi-tissue epigenetic clock genes (Vaiserman, 2019b). 

Briefly, DNA from frozen brain samples was purified using the Quick-DNATM 

Miniprep Plus kit (Cat. No. D4068). EZ DNA Methylation-LightningTM Kit (Cat. No. 

D5030) was used to perform the bisulfite conversion, followed by enrichment for target 

loci and sequencing on an Illumina® HiSeq instrument. Sequence reads were identified 

using Illumina base calling software and aligned to the mouse reference genome 

(GRCm38) using Bismark (Krueger & Andrews, 2011) which was also used for 

methylation calling. Methylation level was estimated as the proportion of reads mapped 

to each cytosine relative to the total number mapped reads to the site. Comparison was 

done between the methylation data of each brain sample and the reference mouse 

epiclock data to estimate epigenetic age by Zymo’s DNAge® predictor tool as described 

earlier (Coninx et al., 2020). 
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Whole genome bisulfite sequencing (WGBS)  

 

Genome-scale DNA methylation was profiled of GD15 female and male fetal 

brain and placenta. DNA was extracted using Gentra Puregene Tissue Kit (catalog 

#158667, Qiagen) as per the manufacturer’s instruction. Equimolar amounts of DNA 

from the three biological replicates were pooled for each sample and used for global 

methylation profiling as described earlier (Docherty et al., 2009). After bisulfite 

conversion of DNA, NEBNext® Ultra™ II DNA Library Prep Kit (New England 

Biolabs, MA) was used to generate sequencing libraries. Library preparation and 

sequencing were performed at the University of Missouri Genomics Technology Core. 

The libraries were sequenced to 20x genome coverage (150 bases sequence reads) using 

NovaSeq 6000.  

 

WGBS data analysis 

 

Data analysis was performed by Bismark (Krueger & Andrews, 2011). Briefly, 

the GRCm38 genome sequences were bisulfite converted and indexed using the 

‘bismark_genome_preparation’ function. The read alignment was performed by bowtie2 

aligner implemented within Bismark (Langmead & Salzberg, 2012). The methylation 

sites were extracted using the bismark_methylation_extractor to generate methylation 

coverage of each sample in genome-wide manner. The coverage files contained 
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chromosome name, start position, end position, methylation percentage, and number of 

methylated, and unmethylated reads for each CpG site. We only focused on CpG sites as 

they represent the majority of methylations in mammalian genomes (Moore et al., 2013). 

The sites that had low coverage (read counts < 8) were excluded from further analysis (Y. 

Chen et al., 2018). The count data was converted to beta-values of methylation as 

described earlier (Du et al., 2010). 

 

Genomic distribution of methylation sites 

  

All genomic computations were performed using the BEDTools (Quinlan & Hall, 

2010) to identify methylation in different features of genomic locations based on genome 

annotation (GRCm38) obtained from UCSC Genome Browser. In addition, Awk, grep, 

and sed custom codes were used whenever required to perform specific data analyses 

such as filtration and counting of methylation sites in different annotation features. 

 

RNA-seq  

 

RNA-seq was performed to profile gene expression of PND5 and WK70 brains of 

both sexes. The RNA-seq data of fetal brain and placenta of males and females were 

generated from the same strain and same gestation day in our recent study (Dhakal et al., 

2021a), publicly available in the Gene Expression Omnibus database (accession # 

GSE157555). TRIzol (Catalog 15596026, Thermo Fisher) based protocol was used to 
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isolate total RNA followed by treatment with DNase I to remove genomic DNA which 

was further purified using a RNeasy MinElute Cleanup Kit (Qiagen). The RNA quality 

was checked using a Fragment Analyzer (Advanced Analytical Technologies). The RNA 

concentration was determined using a Qubit 2.0 Fluorometer (Life Technologies). 

Libraries were prepared from total RNA using the Illumina TruSeq Stranded Total RNA 

with Ribo-Zero Gold Library Prep Kit at the University of Missouri Genomics 

Technology Core. Each library was sequenced (~30 million paired end reads, 150 bases 

read length) using Illumina NovaSeq 6000 sequencer.  

 

RNA-seq data analysis 

 

RNA-seq data analysis was performed as described in our earlier works (Dhakal 

et al., 2021a; Strawn et al., 2021). Briefly, the quality of raw sequences was checked with 

FastQC followed by trimming the adaptors from the sequence reads by cutadapt. The 

fqtrim tool was used to perform base quality trimming (Phred score >30) by sliding 

window scan (6 nucleotides). The quality reads were then mapped to the mouse reference 

genome GRCm38 using Hisat2 aligner (D. Kim et al., 2015). Read counting from the 

alignment data was performed by FeatureCounts (Liao et al., 2014). The feature count 

data was then analyzed using packages in R. 

 

Mutual information network analysis 
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The mutual information theory (MI) approach (Steuer et al., 2002a) was used to 

infer gene expression networks. MI is a measure of the information content that two 

variables share: a numerical value ranging from 0 to 1 depending on, intuitively, how 

much knowing one variable would predict the variability of the other. We calculated MIs 

in a pair-wise manner, both at sample and gene levels, to generate a weighted adjacency 

matrix by the Maximum Relevance Minimum Redundancy (MRMR) method (Radovic et 

al., 2017). Then mutual information network analysis was performed using minet (Meyer 

et al., 2008) followed by network visualization by GGally.  

 

Statistical analysis  

 

All statistical tests were performed in R. Chi-Square analysis was performed to 

infer the significance of 2x2 contingency tests. Enrichment analysis was performed by 

Fisher exact tests followed by multiple corrections of p-values by False Discovery Rate 

(FDR). Comparison of variation between methylation and expression was based on beta-

values of methylation (Du et al., 2010) and fragment per kilobase per million (FPKM) 

values of expression (Mortazavi et al., 2008). Distance calculation of methylation and 

expression variation was based on the Euclidean method. Hierarchical clustering was 

performed from the distance measures by ward.D2 as the method of agglomeration.  

Comparison between clusters (tanglegram analysis) was performed using the package 

dendextend. The canonical correlation analysis was performed by cancor function of 

CCA package. In this analysis, expression of epiclock genes in the GD15 fetal brain was 



 

 

 

 

27 

treated as the dependent variable (y-values) and that of placenta was treated as the 

independent variable (x-values). Correlation coefficients (coefficients of x and y values) 

were multiplied with the respective data matrices of fetal brain and placenta to generate 

covariates that were used for comparison. To train neural network models by 

backpropagation using the weight backtracking method the neuralnet package was used 

(Riedmiller, 1994). A neural network consists of three layers: input- layer that takes 

training data that the model would learn, hidden-layer that uses backpropagation to 

optimize the weights of the input variables to train the model, output-layer that predicts 

variable of test data by the trained model. The methylation data of the aging brain was 

used as predicted values, and those of fetal and postnatal brains were used as predictor 

values. The trained model was used to separately predict the methylation in male and 

female aging brains. Finally, the observed and model-predicted values of the aging brain 

in both sexes were compared using caret to identify methylations in the developing brain 

that were predictive of methylations in the aging brain. 
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Results 

 

Epigenetic clock profiles of male and female brain 

 

DNA methylation of mouse epiclock genes was profiled in GD15 (gestation day 

15), PND5 (postnatal day 5), and WK70 (week 70) brains of both sexes (Table 2.1). The 

methylation data were used in epigenetic age (also called DNA age) analysis (Handl et 

al., 2019) which showed that despite the chronological age of the animals, the female 

brain was biologically younger (29.6 weeks) than the male brain (38.1 weeks). The 

female brain showed an elevated level of methylation than the male brain for 854 sites, 

whereas the male brain showed higher methylation than the female brain for 1,028 sites 

(Figure 2.1a). A lower level of epiclock methylation was observed in the fetal and 

postnatal brain compared to the aging brain of week 70 (Figure 2.1e). Methylation level 

changed in the brain among the three life stages (fetal, postnatal, and aging) in a sex-

biased manner (Figure 2.1b). No significant bias was observed in a 2x2 contingency 

analysis relative to the number of sites with either increased or decreased methylation in 

male and female brains between fetal and postnatal stages (P =0.84), but a significant (P 

< 0.0001) difference was observed between postnatal and aging stages. Upon aging, a 

greater number of sites showed increased methylation in the brain of males compared to 

females (Figure 2.1b). Furthermore, specific epiclock genes were found to be methylated 

in a sex-specific manner at all three life stages. A total of 245 epiclock sites showed an 

increased methylation in the female brain compared the male brain at fetal, postnatal, and 
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adult stages (Figure 2.1c). In contrast, an opposite pattern was observed with 187 sites 

(Figure 2.1d). Also, the median methylation level of female bias sites was consistently 

higher for that of the male bias sites (Figure 2.1d). Moreover, the female-bias sites 

showed an increased level of variation in methylation level than that of male-bias sites, 

and this pattern was consistent at the each of the stages. 

 

Developmental methylations and brain aging 

 

Neural network (NN) modeling was used to test whether methylation changes of 

epiclock genes at developmental stages (fetal and postnatal) in the brain are predictors of 

methylation of the adult aging brain (Figure 2.2). NN modeling leverages training data at 

the input layer and learns data variation of predicted variable relative to predictors via 

predefined hidden layers and performs prediction of the variable of interest from a test 

data at the output later. The epiclock methylation status of the brain at fetal and postnatal 

stages was used to train a neural network (NN) model to learn the corresponding changes 

in methylation of the aging brain separately in males and females. To predict the 

methylation status of the aging brain in both sexes, the trained models were used. In the 

female brain, the NN converged after 778 iterative steps (number of optimizations at an 

error rate of less than 5%) with an average error rate of 1.69 in the female brain (Figure 

2.2a). However, the models converged with only 175 iterations and an average error of 

1.15 in the male brain (Figure 2.2b). This reinforces our observation that variation in 

epiclock methylation is relatively elevated in the female brain compared to the male 
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brain. The confusion matrix showing the number of true and false predictions relative to 

the observed data (Figure 2.2c and d) shows that the model identified 131 methylations 

in the brain that occurred in the fetal and postnatal stages and are predictive of epiclock 

changes in the brain upon aging. They included the 76 and 37 predictive methylations for 

brain aging in females and males respectively among which some are shown in Table 

2.3.  

 

Expression of epiclock genes in the brain 

 

RNA was sequenced to profile gene expression of the same brain samples used 

for methylation analysis. Methylation changes of the predictive markers identified from 

neuralnet analysis (listed in Table 2.3) were compared with the expression level of the 

cognate genes in the brain at each stage. The tanglegram in Figure 2.3a showed that low 

methylation leads to higher expression in the fetal brain. In contrast, an increase in 

methylation suppressed these genes in the brain upon aging (Figure 2.3b and c).   

 

We further compared expression changes of the epiclock genes in the brain 

relative to the placenta by hierarchical clustering (Figure 2.4a). The analysis showed that 

epiclock genes were expressed in the fetal brain more similarly with the placenta than the 

postnatal and aging brain. However, the genes which are not related to mouse epiclock 

did not show this pattern (Figure 2.4b). In non-epiclock genes, expression of fetal brain 

grouped with that of the postnatal and aging brain, and placental gene expression was 
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distinct. This suggested that the epigenetic clock is coordinately expressed between the 

fetal brain and placenta. Furthermore, canonical correlation analysis (CCA) (Zhuang et 

al., 2020) was performed to determine if epiclock gene expression of the fetal brain was 

canonically correlated with the placental one. CCA showed that covariates of expression 

(which is expression multiplied with the correlation coefficient) of epiclock genes in the 

fetal brain showed a positive correlation with the placenta (Figure 2.4c). However, such 

relationship was not present in the expression of non-epiclock genes. This corroborated 

our idea that epigenetic clock genes are active during pregnancy and is likely regulated in 

the brain-placental axis (Behura, Dhakal, et al., 2019a; Behura, Kelleher, et al., 2019a) 

 

DNA Methylation of placenta and fetal brain  

 

To further analyze the global methylation patterns of the placenta comparatively 

with fetal brain in both males and females, whole-genome bisulfite sequencing (WGBS) 

was performed. WGBS (available at GEO, accession# GSE157553) identified 15,269 

sites and 17,028 CpG methylated sites in female-biased (FB) and male-biased (MB) 

manner respectively in both fetal brain and placenta (Figure 2.5a and b). Female-biased 

(FB) methylation sites had higher methylation level in the female fetal brain and placenta. 

In contrast, the male-biased (MB) methylation sites had higher methylation level in the 

male fetal brain and placenta. Several of the genomic position and methylation level of 

these sites are provided in Table 2.4. A significant bias (P=0.0003) was observed in the 

relative location of these methylation sites within genes relative to intergenic regions 
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(Figure 2.5c). While some genes harbored either female-biased or male-biased 

methylations, genes were also identified that harbored both (Figure 2.5d).  

 

The sex-biased methylations in gene bodies were predominantly found in introns 

and accounted for roughly 11-fold more than those found in exons (Table 2.1). Also, 

frequency of sex-biased methylations was low in the untranslated regions (UTRs). We 

found 630 FB and 587 MB methylations within cis-regulatory regions but rarely in the 

promoters and Refseq functional elements, which are nongenic human and mouse 

elements derived and validated from the literature (Farrell et al., 2022). Sex biased 

methylations were more frequent in CpG shores than CpG islands (Table 2.1). Moreover, 

many sex-biased methylations were identified within repeat elements, most of which 

were retrotransposons, both within genic and intergenic regions. We showed that the 

number of sex-biased methylations was significantly different between genic and 

intergenic repeats and methylation occurred at an elevated level in repeats compared to in 

non-repeat sequences (Figure 2.6). As these methylations occurred in both the placenta 

and fetal brain, the results suggest a role of heterochromatin methylation in sex-biased 

epigenetic regulation of fetal brain and placenta  (Brown et al., 2012; Chatterjee et al., 

2016; Decato et al., 2017; Spiers et al., 2015).    

 

Functional annotation of genes harboring these methylations, showed significant 

enrichment of specific pathways (Fisher exact test, P < 9.05), most of which were related 

to signaling. The overrepresented pathways with the highest fold enrichment are listed in 
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Table 2.5. Furthermore, genes with female-biased methylations were enriched with T cell 

activation, Huntington disease, FGF, and Cadherin signaling pathways. Genes with male-

bias methylations were enriched with pathways of axon guidance mediated by netrin, 

histamine H1 receptor-mediated signaling, thyrotropin-releasing hormone receptor 

signaling, and heterotrimeric G-protein signaling. In addition, specific pathways were 

commonly enriched by genes harboring both FB and MB methylations (see Table 2.5).   

 

Expression network of epiclock and signaling genes in brain 

 

We identified specific epiclock genes and signaling pathway genes that were 

methylated in a coordinated manner in both placenta and fetal brain. Principal component 

analysis (PCA) of 327 sex-biased methylations that occurred in these genes (listed in 

Table 2.6) showed that these methylations occurred in single clusters with the epiclock 

and signaling genes (Figure 2.7a). Also, hierarchical cluster analysis showed that these 

methylations grouped together in signaling and epiclock genes but in a differential 

manner in males compared to females. Clustering was performed to split the 

dendrograms into two clusters (k=2) which showed specific epiclock genes and signaling 

genes clustered in one of the clusters when those genes harbored methylation that was FB 

in both placenta and fetal brain. However, that pattern was not observed with MB 

methylations. This suggested the coordinated methylation pattern of specific epiclock 

genes along with specific signaling genes in both placenta and fetal brain when they 

harbored female-biased methylations. Thus, we wanted to know what those specific 
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genes were.  We found that those genes included epiclock genes that were identified as 

predictors of brain aging from the neuralnet analysis and specific genes of the 

gonadotropin-releasing hormone receptor (GnRHR) pathway (Table 2.6). 

 

Mutual information network analysis (Steuer et al., 2002b) of expression changes 

of those specific signaling genes and epiclock genes (Table 2.6) further showed that they 

interacted in males compared to females in a differential manner (Figure 2.8a and b).  

We further found that that the expression of these genes was mutually informative in the 

brain and the placenta as shown in the Circos plots in Figure 2.8c and d. The plots show 

that expression changes of these genes in the placenta have commonalities (shared 

arches) with the fetal, postnatal, and aging brain (Figure 2.8c and d). This suggested that 

crosstalk among the epiclock and GnRHR pathway genes in the placenta is epigenetically 

maintained in the brain throughout life in a sex-biased manner. 

 

Discussion 

 

The epigenetic age was estimated in male and female brain of mice strain 

C57BL/6J. The epigenetic age of the male brain was higher than the female brain, but the 

chronological age was the same (70 weeks). This suggested that the biological aging of 

the brain is sexually dimorphic. Sexual dimorphisms of the brain have been reported in 

different animals, including birds (Hutchison et al., 1995), flies (Cachero et al., 2010), 

rodents and humans (Gorski, 1985). Particularly, sex differences in brain aging have been 
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investigated in several studies (Armstrong et al., 2019b; Coffey et al., 1998; Costantino & 

Paneni, 2020; Guebel & Torres, 2016; Rothwell et al., 2022). Our results in mice is 

consistent with the similar observation in humans where the female brain is known to 

remain younger than the male brain in a persistent manner (Goyal et al., 2019a). Studies 

on evolution suggest that natural selection may shape brain neoteny (youth), and such 

selective forces vary between and within species (Rothwell et al., 2022; Somel et al., 

2009). Also, aging of the brain can vary at an individual and population levels within 

species (Kverková et al., 2020; Vidal-Pineiro et al., 2021). Such variation in brain aging 

has been studied in humans (Brewster et al., 2019). Inbred mouse strains are also known 

to age differentially (Yuan et al., 2009), showing evidence that sex has influences on 

aging (Mitchell et al., 2016). 

 

DNA methylation changes in the brain during development and aging (L. Li et al., 

2020; Numata et al., 2012; Tognini et al., 2015). Our data showed that specific CpG sites 

are persistently methylated in a sex-specific manner in fetal, postnatal, and old age. 

Mouse epigenetic clock, a reliable predictor of aging (Stubbs et al., 2017b), identified 

CpGs  (n=275) that were methylated higher in females than males. Relatively fewer sites 

(n=187) showed methylation higher in males than females at all three stages. 

Interestingly, the female biased sites were more in number and had a higher level of 

methylation than male bias sites (Figure 2.1). This implied that the female brain may be 

persistently methylated at a higher level than the male brain, which supported the idea 

that the female brain is actively methylated to suppress genes that lead to brain 
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masculinization (Nugent et al., 2015). Applying the predictive modeling approach, we 

identified specific epiclock methylation and associated genes as predictors of brain aging 

in both sexes.  

 

Methylation had an impact on the expression of epiclock genes in the brain 

(Figure 2.3). Methylation level was lower in the brain at fetal and postnatal stages 

compared to old age whereas expression level was higher in postnatal and old ages than 

in fetal stage. This contrasting pattern gave evidence to support that methylation likely 

suppressed gene expression at the postnatal stage in mice. An earlier study in humans has 

shown that at the postnatal age the brain transcriptome undergoes a significant 

remodeling (Somel et al., 2009). We further showed that epiclock gene expression of the 

fetal brain was more like that of the placenta than the neonatal or aging brain. Non-

epiclock genes lacked this pattern. Expression of those genes in the fetal brain was more 

like the brain at postnatal and aging stages than the placenta. This suggested that 

transcriptional crosstalk between the placenta and fetal brain may be differentially 

regulated for epiclock genes compared to non-epiclock genes. This prompted us to profile 

global methylation of the placenta relative to the fetal brain in both sexes.    

 

Whole-genome methylation profiling was performed with the fetal brain and 

placenta to account for any tissue-specific variation in DNA methylation (Horvath, 2013; 

Stubbs et al., 2017a; Teschendorff et al., 2020). Common methylation sites and 

concordance in DNA methylation between different tissues with accumulated 
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methylation at specific sites are known (Hannon et al., 2021). Methylation in the brain is 

known to have concordance with blood. Concordance in DNA methylation in mouse 

placenta and fetal brain in response to exposure to polychlorinated biphenyls (Laufer et 

al., 2021) and prenatal stress (Jensen Peña et al., 2012) were shown, suggesting possible 

crosstalk in epigenetic changes between the placenta and fetal brain during pregnancy. 

We observed from the WGBS data that the placenta and fetal brain coordinated 

methylation of specific CpG sites in a sex-biased manner (Figure 2.5). Methylation 

occurred in gene bodies more often than in intergenic regions, which supports earlier 

reports that gene body methylations play essential roles in placental functions (Lim et al., 

2017; Schroeder et al., 2015). We observed that the sex-biased methylations was higher 

in different repeat elements including L1 retrotransposons, Alu repeats and short 

interspersed repeats (Figure 2.6) further showing evidence that repeated DNA 

methylation may influence physiological processes of pregnancy (Gruzieva et al., 2019) 

as well as aging processes of brain (Rath & Kanungo, 1989).  

 

A key finding of this study is the evidence of crosstalk of the epigenetic clock 

with GnRHR pathway in the placenta and fetal brain. Our data showed CpG sites 

associated with specific epiclock and GnRHR pathway genes (Table 2.6) methylated in 

statistically clustered patterns in both the placenta and fetal brain. The methylation 

pattern was different in fetuses of both sexes. Network analysis of expression of these 

genes further demonstrated a link between the placenta and the fetal brain that is 

maintained in the brain at postnatal and the aging stage. GnRH plays key roles in 
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mammalian reproduction by inducing luteinizing hormone (LH), and follicle-stimulating 

hormone (FSH). Also, it has functions in DNA modification required to express the target 

genes in gonadotrope (Melamed et al., 2018). Besides a role in the anterior pituitary, 

GnRH also plays major roles in the placenta, likely to modulate the maternal-fetal 

interface (Sasaki & Norwitz, 2011). Gonadotropin production varies in a sex-dependent 

manner during late gestation, in which fetal androgen plays a critical regulatory function 

in mice (Kreisman et al., 2017). Moreover, regulation of GnRH is suppressed by 

androgen in males, which plays pivotal roles in brain masculinization (Zuloaga et al., 

2008). Suppression of genes associated with brain masculinization is mediated by DNA 

methylation in the female brains (Nugent et al., 2015). Multiple studies suggested that 

exposure to sex hormone at the fetal stage plays a leading role in sex-specific fetal 

programming of cellular metabolism that creates a differential risk to metabolic diseases 

later in life (Dearden et al., 2018; Hägg & Jylhävä, 2021), including a metabolic decline 

of the brain (Goyal et al., 2019b).  

 

Conclusion 

 

To conclude, this study suggests that fetal sex influences the epigenetic crosstalk 

between fetal brain and placenta that is linked to the sex-biased aging program of the 

brain. Also, our results support the DevAge theory (Dilman, 1971c) which states that 

early-life developmental processes have common links to aging processes and highlight 



 

 

 

 

39 

that aging is a biological process that originates from the fetal stage and persists 

throughout the later stages of life.  



 

 

 

 

40 

Table 2.1 Number of FB (Female biased) and MB (Male biased) methylations in fetal 

brain and placenta in different genic and intergenic features of the genome. 

Feature FB MB 

Exon 662 730 

Intron 7594 8141 

UTRs 298 331 

Promoter 3 4 

CpG island 1 3 

CpG shore 165 175 

Refseq Functional Element 14 20 
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 Table 2.2 Methylation level (beta-value) of mouse epigenetic clock sites in fetal (GD15), postnatal (PND5), and aging 

(WK70) brains of female and male mice. Associated genes are also shown. 

 

 

 

 

Chromosome Position Name F_BR_GD15 F_BR_PND5 F_BR_WK70M_BR_GD15 M_BR_PND5 M_BR_WK70 Gene_name
1 32172750 1-32172750 0.001215067 0.00456621 0.001963351 0.003930818 0.001623377 0.007194245 Khdrbs2
2 18800576 2-18800576 0.010757378 0.021183346 0.098827773 0.008666004 0.024535316 0.149434704 Carlr
3 53477663 3-53477663 0.907038513 0.852130326 0.787556904 0.89785832 0.673343606 0.787661406 Proser1
4 40229898 4-40229898 0.960171017 0.95460441 0.951617604 0.955917713 0.935718617 0.970364542 Ddx58
5 21373477 5-21373477 0.541202673 0.481081081 0.653061224 0.517060367 0.527881041 0.641935484 Ccdc146
6 5297577 6-5297577 0.124763705 0.046791444 0.100478469 0.092029581 0.060928433 0.122854562 Pon2
7 19303711 7-19303711 0.045977011 0.07480315 0.218023256 0.040100251 0.05664488 0.260340633 Fosb
8 22566876 8-22566876 0.947660756 0.93729097 0.86746988 0.936261261 0.948269955 0.813284359 Slc20a2
9 21792884 9-21792884 0.269831731 0.127704117 0.180578287 0.287228405 0.13229104 0.21319797 Kank2
10 33624501 10-336245010.006849315 0.01594533 0.006702413 0.002945508 0.005291005 0.001297017 Clvs2
11 3160011 11-3160011 0.880535667 0.890525781 0.8820012 0.876858584 0.86722979 0.870711619 Sfi1
12 78749659 12-787496590.008824456 0.003913894 0.007282658 0.00562527 0.002511301 0.013949433 Mpp5
13 43559423 13-435594230.079320113 0.020231214 0.07768595 0.120063191 0.050955414 0.028513238 Mcur1
14 31641051 14-316410510.000864678 0.001610306 0.001620746 0.003407984 0.001251564 0.001645639 Hacl1
15 74751284 15-747512840.828838357 0.724596144 0.640053227 0.836333578 0.612273642 0.667590028 Lynx1
16 10502161 16-105021610.021176471 0.078947368 0.395973154 0.029761905 0.138263666 0.381132075 Ciita
17 29326177 17-293261770.122844828 0.197160883 0.695710456 0.182628062 0.255842558 0.677664975 Pi16
18 32430782 18-324307820.928981565 0.89018148 0.77815797 0.903990399 0.89468232 0.748406677 Bin1
19 6830335 19-6830335 0.011640212 0.113018598 0.369200395 0.002614379 0.103979461 0.454655381 Rps6ka4
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Table 2.3. List of early-life methylation markers predictive of brain aging in males and females. 

 

  

Methylation site Gene Fetal brain Postnatal brain Aging brain Neuralnet result
10-54755455 Khdrbs2 0.83098592 0.799191375 0.73565381 Predictive of brain aging in female
10-121150451 Tns1 0.95439469 0.959183673 0.970037453 Predictive of brain aging in female
11-97626436 Brinp2 0.17851959 0.321721311 0.700342466 Predictive of brain aging in female
11-101165647 Clvs2 0.55225989 0.866161616 0.914498141 Predictive of brain aging in female
15-102460507 Abca7 0.64544139 0.573699422 0.670899471 Predictive of brain aging in female
1-137182659 Rhot1 0.96491228 0.913972603 0.895018747 Predictive of brain aging in male
10-79888816 Unc45b 0.67190227 0.634974533 0.773553719 Predictive of brain aging in male
10-121150433 Bcas3 0.94322344 0.896720167 0.910039113 Predictive of brain aging in male
11-48845486 Srcin1 0.42694497 0.479259259 0.716759003 Predictive of brain aging in male
13-107680956 Stard3 0.93743372 0.937759336 0.897897898 Predictive of brain aging in male
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Table 2.4. List of CpG sites showing sex-biased methylation in both placenta and fetal brain. The methylation level is also 

shown and associated genes are also listed. 

 

Name Chromosome Position Gene

Brain 
(female 
fetus)

Placenta 
(female 
fetus)

Brain  
(male fetus)

Placenta 
(male fetus)

Sex bias 
pattern

1-4037421 1 4037421 Rp1 0.26303441 1 -0.4150375 -1.5849625 Female bias
2-3459224 2 3459224 Dclre1c 1 0.48542683 0 -0.4150375 Female bias
3-5398964 3 5398964 Zfhx4 0.5849625 0.5849625 0 -0.4854268 Female bias
4-6429147 4 6429147 Nsmaf 2.169925 0.67807191 -0.4150375 0 Female bias
5-3584384 5 3584384 Rbm48 2.32192809 1.32192809 0 0 Female bias
6-4083012 6 4083012 Bet1 1 1.22239242 -0.4150375 -0.1926451 Female bias
7-3686598 7 3686598 Mboat7 1.22239242 0.73696559 -0.4150375 -0.4854268 Female bias
8-4311639 8 4311639 Elavl1 1 0.48542683 -0.5849625 -0.5849625 Female bias
9-5349702 9 5349702 Casp12 1.87446912 1 0 0 Female bias
10-3768162 10 3768162 Plekhg1 1 0.48542683 -0.5849625 -0.4150375 Female bias
11-5035886 11 5035886 Ap1b1 0.5849625 1 -1 0 Female bias
12-3477392 12 3477392 Asxl2 1.32192809 0.22239242 0 -0.4150375 Female bias
13-4512818 13 4512818 Akr1c20 1.169925 0.80735492 -1 -0.4854268 Female bias
14-8149103 14 8149103 Pxk 1.5849625 1.87446912 0 0 Female bias
15-4551977 15 4551977 Plcxd3 2.32192809 0.32192809 0 0 Female bias
16-4109355 16 4109355 Crebbp 0.5849625 0.22239242 0 0 Female bias
17-3638733 17 3638733 Nox3 2.45943162 0.5849625 0 -0.4150375 Female bias
18-3385814 18 3385814 Cul2 2.32192809 1.32192809 0 -0.7369656 Female bias
19-4428639 19 4428639 Rhod 1 0.48542683 0 0 Female bias
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1-3455194 1 3455194 Xkr4 -0.7369656 -2.3219281 0.5849625 0.4150375 Male bias
2-3323341 2 3323341 Nmt2 0 -1 1.32192809 0.73696559 Male bias
3-7371213 3 7371213 Pkia 0 -1 0.5849625 0.5849625 Male bias
4-3708410 4 3708410 Lyn -0.4150375 0 2.32192809 0.73696559 Male bias
5-3363851 5 3363851 Cdk6 -0.4150375 -1.5849625 1 0.4150375 Male bias
6-3561053 6 3561053 Vps50 0 0 1.22239242 0.73696559 Male bias
7-4059197 7 4059197 Lair1 -0.4150375 -0.6780719 0.32192809 0.5849625 Male bias
8-3238770 8 3238770 Insr 0 0 1.5849625 0.73696559 Male bias
9-4749268 9 4749268 Gria4 -0.2630344 -1.4150375 0.48542683 0.4150375 Male bias
10-4663032 10 4663032 Esr1 0 0 0.73696559 0.32192809 Male bias
11-3676152 11 3676152 Morc2a 0 -1.5849625 1.80735492 0.48542683 Male bias
12-3461044 12 3461044 Asxl2 0 -0.4854268 0.5849625 0.4150375 Male bias
13-3886171 13 3886171 Net1 0 -1 1.80735492 1 Male bias
14-7929403 14 7929403 Flnb 0 -0.4854268 0.5849625 0.73696559 Male bias
15-3336130 15 3336130 Ghr 0 -1.5849625 1.32192809 1 Male bias
16-4717870 16 4717870 Nmral1 -0.7369656 -0.4150375 0.26303441 0.48542683 Male bias
17-5001488 17 5001488 Arid1b -0.5849625 0 1.5849625 1.32192809 Male bias
18-3325440 18 3325440 Crem 0 -0.4150375 2.32192809 1 Male bias
19-3326148 19 3326148 Cpt1a -1.169925 0 1 0.5849625 Male bias
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Table 2.5. Significant enrichment of specific pathways by the genes that contain either 

male or female biased methylation in the placenta and fetal brain. 

Pathway Number of 
genes

Fold 
Enrichment

False 
Discovery 
Rate

Sex bias

Metabotropic glutamate 
receptor group I pathway 14 3.29 0.0103 Female bias

Ionotropic glutamate receptor 
pathway 24 2.71 0.0051 Female bias

Metabotropic glutamate 
receptor group III pathway 28 2.26 0.0092 Female bias

Endothelin signaling pathway 32 2.15 0.0080 Female bias

CCKR signaling map 61 2.11 0.0002 Female bias

EGF receptor signaling 
pathway 50 2 0.0034 Female bias
Metabotropic glutamate 
receptor group I pathway 15 3.37 0.0072 Male bias
Axon guidance mediated by 
netrin 17 2.55 0.0365 Male bias
Histamine H1 receptor 
mediated signaling pathway 20 2.4 0.0239 Male bias
Metabotropic glutamate 
receptor group III pathway 30 2.31 0.0050 Male bias
Ionotropic glutamate receptor 
pathway 21 2.26 0.0309 Male bias
Endothelin signaling pathway 35 2.25 0.0042 Male bias
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Table 2.6. List of methylation levels in epiclock and pathway signaling genes showing differential crosstalk in males versus 

females. The brain epiclock genes which were identified as predictive markers aging and the genes associated with the GnRHR 

pathway are indicated.  

 

 

Chro
moso
me Name FBR FPL MBR MPL Gene

Gene 
function

Sex bias 
(methylati
on site)

Epiclcock marker 
gene (predicted 
from Neuralnet 

GnRH 
Pathway 
gene

1 1-168261622 1 0.625 0.5 0.33333333 Pbx1 Signaling Female - YES

1 1-191193287 1 0.77777778 0.5 0.5 Atf3 Signaling Female - YES

1 1-32274727 1 1 0.5 0 Khdrbs2 Epiclock Female

Predictive of brain 

aging in female -

1 1-32459781 0.75 1 0.5 0 Khdrbs2 Epiclock Female

Predictive of brain 

aging in female -

11 11-85667778 0.57142857 1 0.5 0.375 Bcas3 Epiclock Female

Predictive of brain 

aging in male -

11 11-85775960 0.66666667 0.88888889 0.4 0.5 Bcas3 Epiclock Female

Predictive of brain 

aging in male -

1 1-168221413 0.5 0.5 1 0.66666667 Pbx1 Signaling Male - YES

1 1-191208401 0.5 0.14285714 0.875 0.66666667 Atf3 Signaling Male - YES

10 10-81645423 0 0.5 1 0.66666667 Ankrd24 Epiclock Male

Predictive of brain 

aging in female -

11 11-46017605 0.5 0.375 0.66666667 1 Sox30 Epiclock Male

Predictive of brain 

aging in female -

11 11-85462708 0 0.28571429 0.8 0.625 Bcas3 Epiclock Male

Predictive of brain 

aging in male -

11 11-85469852 0.33333333 0.33333333 0.8 0.8 Bcas3 Epiclock Male

Predictive of brain 

aging in male -
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Figure 2.1. A. Venn Diagram showing DNA age estimation, based on methylation status of epigenetic clock test, of male and 
female brain of 70 weeks old mice. B. Comparison of methylation of epiclock genes in the male and female brain at fetal stage 
(gestation day 15) and neonatal stage (postnatal day 5) with aged stage (week 70).  C. Number of epiclock sites showing 
consistent female bias or male biased methylation among fetal, postnatal, and aging brain. D. Boxplot showing the pattern of 
variation of female biased epiclock methylation at the three stages in the brain of both sexes. E. Heatmap showing variation in 
methylation of mouse epigenetic clock in the brain of males and females at GD 15, PND5 5, and WK70. The scale on the top 
left shows the color codes for methylation levels. 
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Figure 2.2. Neural network modeling of epigenetic clock of brain. A. Epigenetic clock 
with female-biased methylation data was used to train a neural network model. B. 
Separately, the epigenetic clock with male-biased methylation data was used to train the 
neural network model. The trained models were then used reciprocal predictions of 
methylation of aging brain, i.e., model from male-biased epiclock data was used to 
predict methylation level of female aging brain (C), and the model from male-biased 
epiclock data was used to predict methylation level of female aging brain (D).  The 
confusion matrix showing the number of true and false prediction relative the observed 
methylation data is presented in C and D. 
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Figure 2.3. Comparison of methylation and expression variation of epiclock prediction makers of brain aging.  A. Tanglegram 
showing comparison of methylation and expression patterns the epiclock predictive genes (from neural network modeling) 
among the fetal, neonatal, and aging brain of both sexes. B. Heatmap of methylation variation of epiclock predictive genes.  C. 
Heatmap of expression variation of epiclock predictive genes. 
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Figure 2.4. Comparison of placenta and brain gene expression. A. Heatmap of expression of epiclock genes in placenta along 
with fetal brain, neonatal brain, and aging brain.  B. Heatmap of expression of non-epiclock genes in placenta along with fetal 
brain, neonatal brain, and aging brain. C. CCA analysis of brain and placenta (GD15) methylation data. the genes overlapping 
the methylations were grouped as epiclock or non-epiclock genes. CCA was then done on each. Covariates (x=placenta and 
y=fetal brain of both sexes) were calculated and plotted here. 
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Figure 2.5. A. Boxplot showing that specific sites are methylated in a female-biased (FB) 
manner in both placenta and fetal brain. B. Boxplot showing that specific sites are 
methylated in a male-biased (MB) manner in both placenta and fetal brain. C. Bar plot 
showing the number of methylations female-biased and male-biased methylations within 
genes or in intergenic regions. The 2x2 contingency test p-value of association (sex vs. 
location) is shown. D.  Venn diagram showing number of genes with either male-biased 
or female-biased methylation or both male as well as female biased methylation. The 
cartoons show location of male and female biased methylations in those genes.  
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Figure 2.6. Methylation of repeat elements in placenta and fetal brain. A. Schematic representation of methylation of repeat 
elements either in genic or intergenic regions. B. Bar plot showing number of all methylations (sex-biased or not) in different 
repeat elements. Top repeats (based on number of methylation) are only shown. C. Number of sex biased methylations 
observed in both placenta and fetal brain are differentially associated (significance level shown) with repeat elements within 
genes or intergenic regions. D. Comparison of methylation level of epiclock sites found within repeat elements among fetal, 
neonatal, and aged brain of both sexes. E. Comparison of methylation level of epiclock sites found within non-repeat elements 
among fetal, neonatal, and aged brain of both sexes. 
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Figure 2.7. Sex-biased methylation changes among epiclock and signaling genes in the 
brain. A. Principal Component Analysis of male (M) and female (F) biased changes in 
methylation of epiclock and signaling genes in brain among the fetal, neonatal and aging 
stages. The data color codes are according to types of gene methylations described in the 
legend right to the plot.  B. Circular dendrogram based on hierarchical cluster analysis of 
female-biased methylations. It shows co-variation of methylation of epiclock and 
signaling in single cluster. The leaf color in the dendrogram matches to color code 
description in A. The branch color of two clusters is shown in red and green. C. Circular 
dendrogram based on hierarchical cluster analysis of male-bias methylations. It lacks co-
variation of methylation between epiclock and signaling genes. The leaf color in the 
dendrogram matches to color code description in A. The branch color of two clusters is 
shown in red and green. 
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Figure 2.8. Crosstalk among epiclock and signaling genes.  Expression network among 
epiclock and signaling genes associated with female-biased (A) and male-biased 
methylations (B). The male and female biased methylations of these genes are described 
in Figure 2.7A. In the network plots, genes are color coded as indicated. Network edges 
(interaction between genes) in both plots were inferred based on feature selection by 
maximum relevancy and minimum redundancy in mutual information of expression 
changes of the genes. C. Circos plot showing placental links with brain in the mutual 
information of expression among the epiclock and signaling genes (described in A). D. 
Circos plot showing placental links with brain in the mutual information of expression 
among the epiclock and signaling genes (described in B). The arches in both C and D 
represent the information contents in gene expression between placenta and brain (shown 
on the circumference of the plots, and color coded). 
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Chapter 3 

Dysregulation of fetal brain development in mice lacking Caveolin 1   

 

Abstract 

 

Caveolin-1 (Cav-1) encodes a major component of caveolae which are flask shaped 

membrane invaginations found as abundant surface feature of endothelial cells. Caveolae 

are also found in adipocytes and embryonic notochord cells, and they are also present in 

many other cell types albeit at low numbers. Mice lacking Cav-1 (Razani et al., 2001) 

have revealed numerous phenotypes, including reproductive ((D. S. Park et al., 2002), 

(Song et al., 2022), (Feng et al., 2012)) as well as neurologic ((Head et al., 2010c), (Choi 

et al., 2016), (Jasmin et al., 2007), (Takayasu et al., 2010)) resulting from the loss of Cav-

1. Cav-1 knockout (KO) mice show Alzheimer’s like symptoms as early as 3-6 months 

after birth. Increased amyloid beta, tau, astrogliosis and decreased cerebrovascular 

volume are observed in the brain of these mice. As Cav-1 plays a key role to modulate 

beta-secretase activity, association of Cav-1 with Alzheimer’s Disease (AD) pathologies 

in these mice has been suggested. This study was performed to determine changes in 

gene expression and DNA methylation of fetal brain due to loss of Cav-1. Another aim of 

this study was to identify brain cells dysregulated in the Cav-1 KO compared to the 

wildtype fetal brain. The results of this study showed that lack of Cav-1 leads to 

extensive dysregulation of genes of fetal brain development on gestation day 15. Several 
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epigenetic clock genes were differentially methylated in Cav-1-KO compared to WT 

mice fetal brain. Single nuclei RNA sequencing identified specific glial and neuronal 

cells being dysregulated in the fetal brain due to the absence of Cav-1. Based on these 

results, we propose a model for fetal links of Alzheimer’s symptoms in mice lacking 

Cav-1. 

 

Introduction 

 

A relationship between reproduction and life-span is suggested from studies that 

observed correlations between lifespan and gestation times among mammals (Fushan et 

al., 2015b), the shape of the placenta and life-span of men (D. J. P. Barker et al., 2011b), 

and fertility and lifespan of women (Kuningas et al., 2011). In addition, studies have 

further showed that lifespan and reproduction have common regulatory mechanisms that 

control nutrient sensing and cellular homeostasis (Aguilaniu, 2015b) (Antebi, 2013) 

(Templeman & Murphy, 2018) (Maklakov et al., 2008). However, there is still a 

significant gap in our knowledge about links between lifespan and reproduction, 

particularly the relationship between fetal lifespan programming and regulation of the 

brain-placental axis. In several studies, it has been shown that sex also influences the 

occurrence of specific brain diseases during old age (Thibaut, 2016b). In the uterus, a 

male fetus is generally associated with at higher risk of death than a female fetus 

(DiPietro & Voegtline, 2017). But, the effect of fetal sex on the aging process of brain 

remains elusive (McCarthy, 2016b). 
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Fetal brain development was investigated in this study using mice lacking 

Caveolin-1 (Cav-1), which is a pro-longevity gene. Additionally, Cav-1 plays a major 

role in the regulation of angiogenesis in mice (Chang et al., 2009). Mice lacking the Cav-

1 gene have shown to have impaired endothelia as there are no caveolae membranes in 

the endothelial cells (D. S. Park et al., 2003). In mice as well as in human placenta, 

caveolae are formed in endothelial cells and also in smooth muscle cells and mesothelial 

cells of the yolk sac (Mohanty et al., 2010). Ablation of Cav-1 reduces mice lifespan by 

nearly 50% (D. S. Park et al., 2003). Cav-1 null mice, though viable and fertile, show 

hyperproliferative and vascular abnormalities (Razani et al., 2001). At young age (3-6 

month old), these mice exhibit neuronal aging resembling > 18 months of aging in wild-

type mice (Head et al., 2010c). Interestingly, our previous study showed that fetal sex has 

an influence on the expression of pro- and anti-longevity genes between placenta and 

fetal brain. Genes related to specific biological functions are known to have association 

with aging, including genes related to  ribosome assembly (GO:0042255) (MacInnes, 

2016), ribosomal small subunit biogenesis (GO:0042274) (Tiku & Antebi, 2018), rRNA 

processing (GO:0006364) (Tiku & Antebi, 2018), mitochondrial respiratory chain 

complex I assembly (GO:0032981) (Hur et al., 2014), NADH dehydrogenase complex 

assembly (GO:0010257) (Hur et al., 2014), ncRNA processing (GO:0034470) (S. S. Kim 

& Lee, 2019), regulation of programmed cell death (GO:0043067) (Shen & Tower, 

2009), and response to oxidative stress (GO:0006979) (Ristow & Schmeisser, 2011). 
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Understanding mechanisms of fetal origin of brain diseases (Räikkönen et al., 

2012; Schlotz & Phillips, 2009; Wadhwa, 2005; Weinstock, 2005) will lead to the 

development of novel strategies of early diagnosis of the disease. The Cav-1 KO mice 

show Alzheimer’s like symptoms as early as 3-6 months after birth (Head et al., 2010a). 

Increased amyloid beta, tau, astrogliosis and decreased cerebrovascular volume are 

observed in the brain of these mice (Head et al., 2010a). As Cav-1 plays a key role in 

modulating beta-secretase activity (Hattori et al., 2006), association of Cav-1 with AD 

pathologies in these mice has been suggested (Head et al., 2010a). Therefore, to link 

lifespan and reproduction we compared the genetic regulation of fetal brain development 

in Cav-1 KO mice model with C57BL/6J wildtype strain and established a relationship 

between the fetal brain and placenta.    

 

Materials and methods 

 

Animal Breeding and Sample Collection 

 

C57BL/6J wild-type (WT) mice and Cav-1 KO mice were obtained from Jackson 

Laboratory (stock no. 000664, stock no. 007083). Adult female mice were mated with 

fertile males to induce pregnancy. Pregnant WT mice were euthanized on GD15. The 

fetal brain and placenta were collected from all implantation sites. The placenta was 

carefully separated from the decidua. All the samples were washed in sterile PBS and 

snap frozen in liquid nitrogen. Additionally, C57BL/6J and Cav-1 KO mice were aged 
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under proper conditions and euthanized using CO2 followed by cervical dislocation. 

C57BL/6J mice were collected on postnatal day 5 and 70 weeks of age and Cav-1 null 

mice were collected at day 17 and 70 weeks. The organs were washed in PBS and snap 

frozen in liquid nitrogen. All animal procedures were approved by the Institutional 

Animal Care and Use Committee of the University of Missouri-Columbia and were 

conducted according to the Guide for the Care and Use of Laboratory Animals ((National 

Institutes of Health, Bethesda, MD, USA). 

 

RNA Extraction 

 

Total RNA was isolated from frozen tissue samples using an AllPrep DNA/RNA 

Mini Kit (Qiagen, Cat No./ID: 80204) as per the manufacturer’s instruction. Each fetal 

brain was homogenized with 500 ul to 1 ml RLT buffer (Qiagen, Cat No./ID: 79216) and 

5μl 2-mercaptoethanol. Homogenization was done in a 15 ml Falcon tube using a 

benchtop VDI 25 tissue homogenizer (VWR). The homogenate was transferred to the 

mini column then centrifuged for 1 minute at ≥ 8000 x g. From the supernatant, 750μl 

was transferred into RNase/DNase-free Axygen conical tubes (Corning Axygen, 1.5ml) 

and mixed with 1 volume 70% ethanol to precipitate RNA. RNA was eluted in 30μl 

nuclease-free water twice for a total volume of 60μl. RNA from a total of 27 samples (3 

gestation days, 3 biological replicates, and 2 strains) were generated. Concentration and 

purity of the RNA were determined using Nanodrop 1000 spectrophotometer (Thermo 

Fisher Scientific) before each sample was diluted to 100ng/μl using nuclease-free water. 
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Gene expression profiling by RNA sequencing 

 

Illumina sequencing libraries were generated from the total RNA of each sample. 

Preparation of libraries and RNA sequencing (RNA-seq) were performed by the 

Novogene Cooperation Inc. (8801 Folsom Blvd #290, Sacramento, CA 95826). Each 

library was sequenced to 20 million paired end reads of 150 bases using a NovaSeq 

sequencer. 

 

RNA-seq Data Analysis 

 

RNA-seq data analysis was performed as described in our earlier works (Dhakal 

et al., 2021a; Strawn et al., 2021). Briefly, the quality of raw sequences was checked with 

FastQC followed by trimming the adaptors from the sequence reads by cutadapt. The 

fqtrim tool was used to perform base quality trimming (Phred score >30) by sliding 

window scan (6 nucleotides). The quality reads were then mapped to the mouse reference 

genome GRCm38 using Hisat2 aligner (D. Kim et al., 2015). Read counting from the 

alignment data was performed by FeatureCounts (Liao et al., 2014). The feature count 

data was then analyzed using packages in R. 
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Single-nuclei RNA sequencing  

 

Single nuclei from fetal brain and placenta were isolated using Pure Prep Nuclei 

Isolation kit (Sigma, St. Louis, MO, USA) as per manufacturer’s instruction. The 

protocol was improvised to isolate single nuclei from frozen samples of mouse brain. 

Briefly, frozen brain samples after thawing were minced into small pieces and added to 

the lysis buffer. Using a dounce homogenizer, each sample was homogenized until the 

solution looked evenly mixed, which generally required 15-20 dounces. A 70µm cell 

strainer was used to filter the nuclei from the lysed cells, diluted and layered over a 

freshly prepared 1.8M sucrose cushion solution to collect single nuclei. After 

centrifugation and suspension with the kit provided storage buffer (ice cold), final 

purification of single nuclei was performed by filtering through a 40µm cell strainer. The 

purified nuclei were then counted using a Countess II FL Automated Cell Counter 

(ThermoFisher). 

 

The freshly prepared nuclei were sent to the University of Missouri Genomics 

Technology Core to prepare sequencing libraries using 10X Genomics Chromium Single 

Cell 3ʹ GEM, Library & Gel Bead Kit v3.1. Briefly, cell suspension concentration and 

viability were measured with an Invitrogen Countess II automated cell counter.  Cell 

suspension, reverse transcription master mix, and partitioning oil were loaded on a 

Chromium Next GEM G chip with a cell capture target of 10,000 cells per library.  Post-

Chromium controller GEMs were transferred to a PCR strip tube and reverse 
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transcription performed on an Applied Biosystems Veriti thermal cycler at 53°C for 45 

minutes.  cDNA was amplified for 12 cycles and purified using Axygen AxyPrep 

MagPCR Clean-up beads.  cDNA fragmentation, end-repair, A-tailing, and ligation of 

sequencing adaptors was performed according to manufacturer specifications.  The final 

library was quantified with the Qubit HS DNA kit and the fragment size was analyzed 

using an Agilent Fragment Analyzer system.  Libraries were pooled and sequenced on an 

Illumina NovaSeq to generate 50,000 reads per cell with a sequencing configuration of 28 

base pair (bp) on read1 and 98 bp on read2. Each library was sequenced to a depth of 

20,000 paired-end (single-indexing) reads per nucleus using NovaSeq 6000. The base call 

(BCL) files generated from Illumina machine were processed by Cell Ranger pipeline (v. 

3.0.1) to generate the FASTQ files. The STAR aligner (Dobin et al., 2013) was used to 

map the reads in the FASTQ files to the mouse reference genome to generate read count 

data of genes expressed in the single cells. 

 

The count data was processed by Seurat (Butler et al., 2018b) to identify 

expression clusters, and assign clusters to cell types. Briefly, data integration was 

performed by identifying integration anchors for the first 20 dimensions of data variation 

among the wildtype and Cav-I null brain samples. The normalized integrated data was 

subjected to principal component analysis (PCA) followed by non-linear dimensional 

reduction by tSNE (t-distributed stochastic neighbor embedding) (Kobak & Berens, 

2019). This approach was used to identify individual clusters of cells that were 

canonically correlated in gene expression between WT and Cav-1 null brain samples. The 
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‘FindAllMarkers’ function of Seurat was used to identify marker genes of each cluster. 

The marker genes were then used to annotate cell types of the expression clusters based 

on marker genes of brain cells curated in PanglaoDB (Franzén et al., 2019). At this step, 

the identified cell clusters in the integrated dataset were renamed to include information 

about cell type, stage (fetal, young, or adult), and strain (WT or Cav-1-KO) to facilitate 

cell identification in the downstream analyses. 

 

Epigenetic clock profiling 

 

Mouse multi-tissue epigenetic clock genes (Vaiserman, 2019b) were profiled with 

DNA of wild-type gestation day 15.5, postnatal day 5, week 70 and Cav-1 knock out GD 

15.5, week 17 male and female brains using the Zymo (ZYMO RESEARCH, Irvine, CA 

92614, U.S.A) DNAge® estimation service, which is based the Horvath pan-tissue clock 

using elastic net regression (Chew et al., 2018). Briefly, DNA from frozen brain samples 

was purified using the Quick-DNATM Miniprep Plus kit (Cat. No. D4068). Bisulfite 

conversion was performed using the EZ DNA Methylation-Lightning TM Kit (Cat. No. 

D5030), followed by enrichment for target loci and sequencing on an Illumina® HiSeq 

instrument. Sequence reads were identified using Illumina base calling software and 

aligned to the mouse reference genome (GRCm38) using Bismark (Krueger & Andrews, 

2011) which was also used for methylation calling. Methylation level was estimated as 

the proportion of reads mapped to each cytosine relative to the total number mapped 

reads to the site. The methylation data of each brain sample was then compared with 
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mouse epiclock data to estimate epigenetic age by Zymo’s DNAge® predictor tool as 

described earlier (Coninx et al., 2020). 

 

Results  

 

Lack of Cav-1 dysregulates fetal brain development 

 

Gene expression was profiled by RNA-Seq to examine the whole transcriptome of 

the female fetal brains of C57BL/6J and Cav-1 null mice at gestation day (GD) 12.5, 15.5 

and 17.5. Hierarchical clustering showed that at GD 12.5 and 15.5, the female fetal brain 

of C57BL/6J is transcriptionally distinct from Cav-1 knockout mice. However, at GD 

17.5 the Cav-1 knockout female fetal brain did not cluster differently from C57BL/6J due 

to technical errors or due to small number of differentially expressed genes. (Figure 3.1). 

Similar results were shown between the gestation days in the Principal Component 

Analysis performed on wildtype and Cav-1 KO female fetal brains (Figure 3.2). 

 

Differential expression analysis performed by edgeR identified genes with 

significant changes in the expression of the female fetal brain of C57BL/6J and Cav-1 

knockout mice at gestation days 12.5, 15.5 and 17.5. The data showed that there were 

greater number of upregulated and downregulated genes at GD 15.5 compared to 12.5 

and 17.5 (GD 12.5: UP=186, DOWN=980; GD 15.5: UP=1648, DOWN=6306; GD17.5: 

UP=22, DOWN=75) (Figure 3.3). The volcano plot of GD 15.5 showed a greater number 
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of differentially expressed genes than GD 12.5 and 17.5 (Figure 3.4). Moreover, there 

was a greater number of differentially expressed genes between GD 15.5 and 17.5 

(n=5624 genes) than between GD 12.5 and GD 15.5 (n= 5192 genes) in Cav-1 KO mice 

compared with wildtype, showing more regulation of genes in the later stages of gestation 

in mice (Table 3.1). Among the DEGs, between GD 12.5 and 15.5, only three genes 

(Gm36952, 7SK, H4c18) were downregulated in wildtype and upregulated in Cav-1 KO, 

whereas, three more genes (Matn1, Six6, Oc90) were upregulated in wildtype but 

downregulated in the knockout model. On the contrary, when GD 17.5 was compared 

with GD 15.5, only two genes (Vwf, 4930509E16Rik) were downregulated in wildtype 

and upregulated in Cav-1 KO. However, twenty-three genes (such as Haglr, Alas2, Hbb-

bt, Hbb-bs, Rpl-29,7SK, Hbba-1, Hba-a2) were upregulated in wildtype but 

downregulated in Cav-1 KO model.  

 

Functional annotation of the differentially expressed genes 

 

PANTHER pathway analysis was performed on the female fetal brain samples at 

gestation days 12.5, 15.5 and 17.5 of C57BL/6J compared to Cav-1 KO mice to identify 

specific pathway(s) that were over-represented by the differentially expressed genes. The 

analysis showed that hedgehog signaling pathway, notch signaling pathway, integrin 

signaling pathway, cadherin signaling pathway, angiogenesis, wnt signaling pathway and 

Alzheimer disease presenilin pathway were downregulated in both gestation day 12.5 and 

15.5 but almost double fold enriched in GD 12.5. However, some additional pathways 
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were downregulated at only GD 15.5 including VEGF signaling pathway, Insulin/IGF 

pathway-protein kinase B signaling cascade, Alzheimer disease-amyloid secretase 

pathway, Huntington disease, p53 pathway, PDGF signaling pathway, inflammation 

pathways and TGF-beta signaling pathway. On the contrary, there were no significant 

pathways on GD 17.5 (Table 3.2). 

 

In addition to PANTHER Pathway analysis, Gene Ontology (GO) analysis was 

used to predict the functions of the differentially expressed genes of female fetal brain of 

C57BL/6J compared to Cav-1 KO mice on gestation day 12.5, 15.5 and 17.5. Significant 

enrichment of 2417 GO terms were identified for genes that were downregulated at the 

three gestation days. During 12.5, signaling pathways were downregulated; these 

pathways play a role in spinal cord neuron cell fate specification, ventral spinal cord 

interneuron specification, and patterning along with intramembranous and direct 

ossification. Progressively, at GD 15.5, downregulated biological processes included 

spinal cord interneuron and neuron differentiation and fate commitment in ventral and 

dorsal sides. On the contrary, during GD 17.5, regulation of odontogenesis skeletal 

system morphogenesis was downregulated. Interestingly, regulation of cellular response 

to growth factor stimulus was downregulated during this later stage of female fetal brain 

development (Table 3.3). 

 

When GD 17.5 was compared with GD 15.5 in both mice strains, 23 genes were 

upregulated in wildtype but downregulated in Cav-1-KO female fetal brains, among 
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which three GO biological processes were found to be enriched: haptoglobin binding 

process, oxygen carrier activity and oxygen binding process. Oxygen supply is crucial in 

cell development and lack of oxygen in tissues is termed as hypoxia. Low oxygen supply 

can result in a decline in other cellular process and can result in aging-related diseases 

(Yeo, 2019). Downregulation of these biological processes in Cav-1 KO may be 

responsible for facilitating faster aging in them.  

 

DNA methylation changes in fetal brain due to lack of Cav-1 

 

Methylation profiling was performed for the known epigenetic clock sites 

(n=2,046) associated with aging genes in GD15.5 fetal brain Cav-1-KO compared to WT 

mice. More than 60% of these sites showed at least 2-fold changes in methylation level in 

Cav-1-KO fetal brain compared to WT mice (Figure 3.5A). In addition, we observed that 

these methylations were enriched in the chromatin regions occupied by modified histone 

proteins, particularly histone 3 trimethylation of lysine 3 and 4 (H3K4me3 and 

H3K9Me3) known in mouse brain (Figure 3.5B).  

 

Lack of Cav-1 leads to dysregulation of specific cell types of fetal brain 

 

We performed single-nuclei RNA sequencing (snRNA-seq) of GD15.5 fetal brain 

of WT and Cav-1-KO mice. Prediction of cell clusters by Seurat (Butler et al., 2018a) 

showed that specific glial and neuronal cells were dysregulated in the fetal brain due to 
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the absence of Cav-1. While oligodendrocytes, Cajal-Retzius cells, microglia and retinal 

ganglion cells showed correlated expression in the WT fetal brain, the Cav-1-KO fetal 

brain showed correlated expression among oligodendrocytes, Cajal-Retzius cells, 

microglia, and ependymal cells but not the retinal ganglion cells (Figure 3.6).  

 

Differences in gene expression between wildtype and caveolin-1 lacking placenta  

 

The gene expression of female placenta of wildtype was generated in a recent 

study which was compared against the Cav-1 KO female placental data. The hierarchical 

cluster portrays how the female placenta of wildtype was clearly distinct from the 

placenta of the knockout female placenta (Figure 3.7B). Differential gene expression was 

further analyzed using edgeR which showed there were 2088 upregulated genes and 3746 

downregulated genes when knockout female placenta was compared with wildtype. GO 

analysis of differentially expressed genes showed 934 enriched biological processes 

among which negative regulation of very low-density lipoprotein particle remodeling and 

serine-type peptidase activity were upregulated. In addition, processes, including 

response to methanol and chromate, were upregulated in both types of placentas. 

Conversely, biological processes for mitotic spindle assembly, elongation, and histone 

H3-K4 monomethylation (H3K4me) were downregulated in the placenta. Further 

analysis done using PANTHER Pathways showed that the cytoskeletal regulation by Rho 

GTPase, Alzheimer disease-presenilin pathway and Wnt signaling pathway were 

downregulated in female placenta of both strains (Table 3.4). In contrast, it was 
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previously found that the Alzheimer disease-presenilin pathway was downregulated in 

female fetal brain of wildtype and Cav-1 knockout during GD 12.5 and 15.5 showing 

opposite regulation of this pathway in fetal brain and placenta. Furthermore, only blood 

coagulation pathway was upregulated in the placenta of both kinds at GD 15.5.  

 

The gene Rhox13 was downregulated in wildtype but upregulated in Cav-1 KO 

placenta and Gapdh was upregulated in WT and downregulated in KO when female 

placenta was compared with male placenta showing there was not much difference in sex 

specific gene expression. Interestingly, GAPDH (glyceraldehyde-3-phosphate 

dehydrogenase) inhibition has been shown in the Alzheimer’s disease brain. GAPDH 

interacts with the amyloid-beta protein precursor (AbetaPP), which is a 

neurodegenerative disease associated protein (Butterfield et al., 2010). The 

downregulation of GADPH in the placenta of Cav-1 KO showed evidence that placenta 

can regulate the development of potential gene expression leading to AD in Cav-1 brain 

from fetal stage.  

 

Relationship of gene expression between fetal brain and placenta  

 

The gene expression of GD 15.5 Cav-1 KO female fetal brain and placenta was 

compared with WT using previously generated data of female fetal brain and placenta of 

C57BL/6J. Hierarchical clustering showed that, the female fetal brain and placenta of 

C57BL/6J was transcriptionally distinct from Cav-1 knockout mice (Figure 3.7A). 



 

 

 

 

70 

Differential expression analysis by edgeR identified genes with significant changes in the 

expression of the female fetal brain and placenta of C57BL/6J and Cav-1 knockout mice. 

The brain placental DEG lists of wildtype and Cav-1 KO mice were compared and the 

results were illustrated by a Venn diagram (Figure 3.8). There was a total of 20,124 

genes that were differentially expressed among which 6,922 genes were downregulated 

and 5,339 genes were upregulated in both strains. In contrast, there were only 51 genes 

that were downregulated in Cav-1 KO but upregulated in wildtype, and 117 genes were 

upregulated in Cav-1 KO but downregulated in wildtype.  

 

PANTHER Pathway analysis was done on the differentially expressed genes to 

figure out which cellular pathways the genes represent. The analysis showed that blood 

coagulation, integrin signaling pathway, angiogenesis, PDGF signaling pathway and 

Gonadotropin-releasing hormone receptor pathway were downregulated in the brain and 

placenta of both strains. Additionally, upregulated in fetal brain and placenta in both 

strains included opioid proenkephalin, and opioid prodynorphin pathway. Moreover, 

some hormone releasing pathways, including oxytocin receptor mediated signaling 

pathway and thyrotropin-releasing hormone receptor signaling pathway were also 

upregulated in both strains. In addition, Alzheimer disease-amyloid secretase pathway 

was also upregulated in both strains.  

 

GO analysis was done on the differentially expressed genes of the fetal brain and 

placenta of Cav-1 KO and C57BL/6J mice to find out which biological processes were 
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associated with those genes. Among the enriched upregulated biological processes, 

several brain developmental processes were present, such as forebrain pattern formation, 

neuronal dense core vesicle exocytosis and cerebral cortex GABAergic interneuron 

migration. This implies that some biological processes were similarly regulated in the 

placenta and the fetal brain, therefore affecting the development of the brain. Moreover, 

biological processes including T cell mediated cytotoxicity, and positive regulation of 

lactation were upregulated in both strains. Conversely, among the 51 genes (such as 

Il1rl1, Atp51, Fgfbp1, Hoxc4) and 117 genes (such as Pttg1, Thbs4, Fasn, Lrp4, nectin1, 

Fzd8, Spon1, foxf2, fzd1, Adamts12, Nog, Ubqln2, Pouf31) that were oppositely 

expressed in the brain and placenta included several genes.  

 

Discussion 

 

The knockout of caveolin 1 protein showed a larger number of differentially 

expressed genes during GD 15.5 than other two time points. This suggested that the 

absence of Cav-1 affected the developmental processes in the forebrain, hindbrain, and 

spinal cord. The Gene Ontology (GO) analysis also showed that the biological process 

associated with ventral and dorsal spinal cord neuron differentiation was downregulated 

during GD 15.5 in Cav-1 KO mice compared with WT mice (Table 3.3).   

Results of hierarchical clustering in our study reflects differences in 

developmental stages in earlier studies. The histology atlas of mice fetal brain (V. S. 

Chen et al., 2017) shows that during GD 12.5 the forebrain, especially the medial, lateral, 
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and caudal ganglionic sections, proliferates and expands at a fast rate. Also, the choroid 

plexus first appears at this stage and the hypothalamus starts to grow bigger in the 

diencephalon. In addition, the olfactory (CN1) nerves grow from the multi-layered 

olfactory epithelium in the caudodorsal nasal cavity, while the hippocampus is still not 

developed at this stage. Moreover, the hindbrain goes through significant changes in its 

conformation, and differentiation of Purkinje cells start during GD 11 to 13. 

Simultaneously, the mantle and marginal zones of the spinal cord start growing at this 

stage. The spinal cord expands laterally in the ventral horn more compared to the thoracic 

and lumbar divisions. The progression of fetal brain development is also shown during 

GD 15.5 when the six layers of the cerebral cortex are distinctive, with neurons 

developing to make the layers superficial. Many neurons such as GABAergic inhibitory 

neurons develop through the growing cerebral cortex. By GD 15.5 the pituitary stalk is 

also formed. Additionally, in the hindbrain the population of neurons grow rapidly at this 

stage and the spinal cord columns are more prominent and significantly grows. 

Simultaneously at GD 15.5 the cranial nerves also are distinctive in the spinal cord. 

Progressively, different developmental stages occur during GD 17.5 when the forebrain is 

significantly developed with prominent layers, but the hippocampus still does not 

develop. By this stage the pituitary gland gets well developed and the Rathke’s pouch can 

be visualized as a small cleft. Also, the neurosecretory structures for hormones such as 

oxytocin develop in the forebrain. Moreover, in the hindbrain the Purkinje cells are well 

formed and in the spinal cord, the structure is very similar to the adult stage where the 

sympathetic nervous system starts to appear first in this stage (V. S. Chen et al., 2017). 
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Altogether, the differences in the developmental stages are well supported by earlier 

studies and are portrayed by our hierarchal clustering results. 

 

In addition, at GD 17.5 GO analysis showed three downregulated biological 

processes in Cav-1 KO fetal brain: haptoglobin binding process, oxygen carrier activity 

and oxygen binding process. Oxygen supply is crucial in cell development and lack of 

oxygen in tissues is called “hypoxia”. Low oxygen supply can result in a decline in other 

cellular process and can result in aging-related diseases (Yeo, 2019). As these biological 

processes are downregulated in Cav-1 KO, these can be responsible for facilitating faster 

aging in them by causing a lack of oxygen in the fetal brain. Noticeably, 7SK was 

downregulated in the wildtype and upregulated in the KO model during early stage, but 

showed opposite regulation during later stage of fetal brain development. 7SK is a non-

coding RNA that has been called the master neuron development regulator (Briese & 

Sendtner, 2021). We further found few other genes that are regulated differently in the 

KO fetal brain. During GD 12.5 and 15.5, H4c18 was downregulated in wildtype and 

upregulated in Cav-1 KO. Conversely, Six6, which is responsible for inducing 

mammalian transcription of luteinizing hormone releasing (GnRH) neurons that play a 

significant role in regulating mammalian fertility by maintaining hypothalamus-pituitary-

gonadal (HPG) (Pandolfi et al., 2019), was downregulated in KO fetal brain and 

upregulated in WT, implying that the fertility of Cav-1 fertility is also determined from 

the fetal stage. On the contrary, when GD 17.5 was compared with GD 15.5, Vwf, which 

is a receptor for angiogenic growth factor and plays a role in immune response in 
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Alzheimer’s disease (Lau, Cao, et al., 2020), was downregulated in wildtype and 

upregulated in Cav-1 KO, showing fetal origin of AD in Cav-1 KO. However, Hbba-1 

and Hba-a2, which are shown to be downregulated in patients with variant Creutzfeldt-

Jakob disease (Vanni et al., 2018), were upregulated in wildtype but downregulated in 

Cav-1 KO model. These results indicate the possible link of faster aging with Cav-1 KO 

mice and fetal origin of neurodegenerative diseases in mammals. 

 

We further observed that methylation was enriched in the chromatin regions 

occupied by modified histone proteins, particularly histone 3 trimethylation of lysine 3 

and 4  (H3K4me3 and H3K9Me3) (Figure 3.5B) which were identified in mice with 

Alzheimer’s Disease (AD)-like neurodegeneration in a previous study (Gjoneska et al., 

2015). In addition, meta-analysis of marker genes of brain cells (Dhakal et al., 2021a) 

showed that several clock genes identified from our methylation assay were markers of 

glia cells of fetal brain in Cav-1-KO mice. Moreover, our single nuclei RNA Seq has 

found several distinct cell clusters between the KO fetal brain and wildtype. Among 

which, retinal ganglion cells are known targets of Alzheimer’s Disease (Bevan et al., 

2020; Blanks et al., 1989; Curcio & Drucker, 1993). Association of ependymal cells with 

AD is also known (Gião et al., 2022; Liddelow, 2015). Our findings align with the “Glial 

Cell Dysregulation Hypothesis”, suggesting that glial cell dysregulation is linked to 

functional impairment of neuronal cells in Alzheimer’s Disease (von Bernhardi, 2007). 
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Among the upregulated genes in Cav-1 brain and placenta and downregulated in 

wildtype we found Il1rl1, which is the receptor for IL33 (Palmer et al., 2008), and was 

found to improve the beta amyloid pathology in microglial cells in AD brain (Lau, Chen, 

et al., 2020). Additionally, ATP5l, which was identified as one of the major genes in 

creating a model for Alzheimer’s and affects the dysregulated oxidative phosphorylation 

in mitochondria in the frontal cortex of brain (Finney et al., 2022), was also upregulated 

in Cav-1 KO. Moreover, Fgfbp1 which was found to be a Wnt/Beta-catenin-regulated 

gene in the endothelial cells in mouse brain to maintain blood brain barrier (Cottarelli et 

al., 2020), was also upregulated in the knockout brain-placenta genes along with HOXC4, 

which is a Wnt-induced spinal marker (B.-C. Liu et al., 2021). Among the 117 genes that 

were downregulated in Cav-1 KO but upregulated in wildtype, there was PTTG1 

(Pituitary tumor-transforming gene), which has been associated with many oncogenic 

pathways; specifically low expression has been seen in low grade gliomas, meningiomas 

and schwannomas (Salehi et al., 2013) indicating the potential of fetal origin of 

oncogenes in the knockout model. In addition, Thbs4 was also shown to be have low 

expression levels in the female in human brain (Cagliani et al., 2013), implicating sex-

biased expression. Interestingly, LRP4 was shown to have a role in Alzheimer’s, with low 

expression of this gene found in the postmortem brain of AD patients (H. Zhang et al., 

2020). Its downregulation in the KO model clearly shows the role of brain-placental axis 

in fetal programming. Additional genes whose downregulation has been associated with 

AD were also expressed in the same manner. These include Spon1, which binds to the 

binding site of amyloid precursor protein (APP) that blocks the trigger of  amyloid 
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genesis and reduces the amyloid beta plaque formation (S. Y. Park et al., 2020), and 

Adamts12, which is an Alzheimer’s hallmark in the disease pathology (Sarnowski et al., 

2022). Other brain development related genes that were downregulated in knockout in 

brain-placental DEG list include Nectin 1, which is responsible for early life stress on 

neuronal plasticity (C. Wu et al., 2022a); Fzd8, which acts in altering the cell cycle 

timing and size of brain in neural progenitors (Franchini & Pollard, 2015); Foxf2, which 

is responsible for blood-brain barrier breakdown (Reyahi et al., 2015); fzd1, which was 

shown to regulate neurogenesis in adult hippocampus (Mardones et al., 2016); stroke 

genes, such as Nog (Zou et al., 2019); UBQLN2, which has been newly associated with 

neurodegeneration (Renaud et al., 2019); and Pouf31 which promotes the fate 

commitment of pluripotent stem cells in neurons and activates the internal neural 

induction programs, antagonizes extrinsic inhibitory signals in neurons (Q. Zhu et al., 

2014). These is also evidence that the lack of caveolin-1 protein alters the regulation of 

several brain development genes in the placenta.  

 

Conclusion 

 

The findings of this study suggests that Cav-1 may play a role in fetal brain 

development in mice. Our observation of genes associated with presenilin, and amyloid 

secretase pathways of AD and genes associated with histone methylation and chromatin 

indicate that lack of Cav-1 likely pose risk for later epigenetic alteration of brain. This 

double-hit mechanism (dysregulated fetal brain development and altered epigenetic states 
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of brain genes during aging) may be associated with early adulthood onset of AD 

symptoms. Moreover, our findings from the single nuclei RNA sequencing support the 

“Glial Cell Dysregulation Hypothesis”, suggesting that glial cell dysregulation is linked 

to functional impairment of neuronal cell in AD (Von Bernhardi, 2007).  In conclusion, 

this study shows that Cav-1 null mice can be used as a model to dissect fetal links of AD.
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Table 3.1 Differentially expressed genes between GD 12.5 vs 15.5 and GD 15.5 vs 17.5 

compared between Cav-1 KO and wildtype mice (C57BL/6J). 

 

Gestation Stage Number of genes  

DOWN_CAV-1_12.5_15.5 1797 

UP_CAV-1_12.5_15.5 634 

DOWN_BL6_12.5_15.5 915 

DOWN_BL6_12.5_15.5:DOWN_CAV-1_12.5_15.5 1001 

DOWN_BL6_12.5_15.5:UP_CAV-1_12.5_15.5 3 

UP_BL6_12.5_15.5 476 

UP_BL6_12.5_15.5:DOWN_CAV-1_12.5_15.5 3 

UP_BL6_12.5_15.5:UP_CAV-1_12.5_15.5 363 

Sum 12.5vs15.5 5192 

DOWN_CAV-1_15.5_17.5 1541 

UP_Cav-1_15.5_17.5 315 

DOWN_BL6_15.5_17.5 1524 

DOWN_BL6_15.5_17.5:DOWN_CAV-1_15.5_17.5 846 

DOWN_BL6_15.5_17.5:UP_Cav-1_15.5_17.5 2 

UP_BL6_15.5_17.5 1209 

UP_BL6_15.5_17.5:DOWN_CAV-1_15.5_17.5 23 

UP_BL6_15.5_17.5:UP_Cav-1_15.5_17.5 164 

Sum 15.5vs17.5 5624 
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Table 3.2 PANTHER Pathways downregulated during GD 12.5 and 15.5 in both 

wildtype and Cav-1 KO mice female fetal brain. 

Pathway 

Number 

of DEGs 

Fold 

Enrichment FDR 

Gestation 

day  

Hedgehog signaling pathway 

(P00025) 5 6.6/2.65 1.85E-03 12.5/15.5 

Notch signaling pathway (P00045) 10 6.14/3.04 1.86E-05 12.5/15.5 

Alzheimer disease-presenilin 

pathway (P00004) 22 4.57/2.18 2.49E-08 12.5/15.5 

Integrin signalling pathway (P00034) 29 4.03/2.28 2.08E-09 12.5/15.5 

Angiogenesis (P00005) 24 3.54/2.26 4.33E-07 12.5/15.5 

Cadherin signaling pathway (P00012) 18 2.93/2.59 1.10E-04 12.5/15.5 

Wnt signaling pathway (P00057) 32 2.71/2.25 1.39E-06 12.5/15.5 

VEGF signaling pathway (P00056) 40 2.44 2.87E-04 15.5 

Insulin/IGF pathway-protein kinase B 

signaling cascade (P00033) 23 2.41 9.98E-03 15.5 

PDGF signaling pathway (P00047) 76 2.17 4.62E-06 15.5 

Alzheimer disease-amyloid secretase 

pathway (P00003) 30 1.85 4.24E-02 15.5 

p53 pathway (P00059) 37 1.72 4.68E-02 15.5 

TGF-beta signaling pathway 

(P00052) 41 1.66 4.41E-02 15.5 

Inflammation mediated by 

chemokine and cytokine signaling 

pathway (P00031) 95 1.49 1.03E-02 15.5 
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Table 3.3 Gene Ontology biological processes downregulated on gestation days 12.5, 

15.5 and 17.5 in wildtype and Cav-1 KO female fetal brain.  

GO Biological Process 
Number 
of DEGs 

Fold 
Enrichment FDR GD 

smoothened signaling pathway involved in 
spinal cord motor neuron cell fate 
specification (GO:0021776) 3 26.41 1.90E-02 12.5 
smoothened signaling pathway involved in 
ventral spinal cord interneuron specification 
(GO:0021775) 3 26.41 1.89E-02 12.5 
smoothened signaling pathway involved in 
ventral spinal cord patterning (GO:0021910) 4 26.41 3.11E-03 12.5 
intramembranous ossification (GO:0001957) 5 22.01 8.61E-04 12.5 
direct ossification (GO:0036072) 5 22.01 8.59E-04 12.5 
spinal cord association neuron differentiation 
(GO:0021527) 13 4.08 7.51E-03 15.5 
ventral spinal cord interneuron differentiation 
(GO:0021514) 14 4.08 4.87E-03 15.5 
cell fate commitment involved in pattern 
specification (GO:0060581) 12 4.08 1.15E-02 15.5 
ventral spinal cord interneuron fate 
commitment (GO:0060579) 12 4.08 1.15E-02 15.5 
dorsal spinal cord development 
(GO:0021516) 20 3.89 5.42E-04 15.5 
regulation of odontogenesis of dentin-
containing tooth (GO:0042487) 3  > 100 8.02E-03 17.5 
regulation of odontogenesis (GO:0042481) 3 74.99 1.50E-02 17.5 
negative regulation of cellular response to 
growth factor stimulus (GO:0090288) 4 21.36 3.48E-02 17.5 
skeletal system morphogenesis 
(GO:0048705) 6 12.99 1.10E-02 17.5 
regulation of cellular response to growth 
factor stimulus (GO:0090287) 6 10.44 2.31E-02 17.5 
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Table 3.4 Gene Ontology biological processes and PANTHER Pathways differentially 

expressed in female placenta of wildtype and Cav-1 KO strain.  

GO biological process  DEG 

Fold 

Enrichment FDR Expression 

negative regulation of very-low-density 

lipoprotein particle remodeling 

(GO:0010903) 4 22.94 1.82E-02 UP 

response to methanol (GO:0033986) 4 22.94 1.81E-02 UP 

response to chromate (GO:0046687) 4 18.35 2.75E-02 UP 

negative regulation of serine-type 

peptidase activity (GO:1902572) 7 17.84 3.96E-04 UP 

mitotic spindle midzone assembly 

(GO:0051256) 7 6.69 1.97E-02 DOWN 

mitotic spindle elongation (GO:0000022) 7 6.69 1.96E-02 DOWN 

histone H3-K4 dimethylation 

(GO:0044648) 6 6.55 4.51E-02 DOWN 

spindle elongation (GO:0051231) 7 5.94 2.98E-02 DOWN 

histone H3-K4 monomethylation 

(GO:0097692) 7 5.94 2.98E-02 DOWN 

PANTHER Pathways         

Blood coagulation (P00011) 22 9.7 2.68E-11 UP 

Cytoskeletal regulation by Rho GTPase 

(P00016) 25 2.39 1.89E-02 DOWN 

Alzheimer disease-presenilin pathway 

(P00004) 33 1.99 4.33E-02 DOWN 

Wnt signaling pathway (P00057) 69 1.69 1.49E-02 DOWN 
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Figure 3.1 A. A hierarchical clustering of gene expression variation also shows that 
female fetal brain gene expression pattern on GD 12.5, 15.5 and 17.5 is different between 
the wildtype (BA, BB, BC) and Cav-1 knockout model (CA, CB, CC). The scale of 
branch height is shown to the left of the cladogram. 
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Figure 3.2 A principal component analysis of the gene expression variation of female 
fetal brain on gestation day (GD) 12.5, 15.5 and 17.5. 
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Figure 3.3 Significant changes (False discovery rate < 0.05) of genes in the developing 
fetal brain of Cav-1-KO compared to wildtype C57BL/6J mice at gestation day (d) 12.5, 
15.5 and 17.5. The number of upregulated genes is shown by the upward directed arrow, 
and number of downregulated genes are shown in downward facing arrow. 
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Figure 3.4 Volcano plots showing differential expression of genes in female fetal brain 
between gestation 12.5, 15.5 and 17.5 compared between wildtype and Cav-1 KO mice. 
In each plot, the y-axis shows the –log10 of the False discovery rate (FDR) values and x-
axis shows log of Fold Change (FC) values. The red color shows genes that were 
downregulated, and blue color shows genes upregulated between the two groups in each 
plot. The horizontal line above value 0 in axis represent the FDR value of 0.05, the value 
used to identify significance of differential expression of genes 
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Figure 3.5. A. Changes in methylation of epigenetic clock sites of aging genes in d15 
fetal brain of Cav-1-KO compared to WT mice. B. SeqMonk mouse genome browser 
showing a representative example of positional association between DNA methylation 
and chromatin occupancy of modified (lysine 3 and 4) histone 3 proteins. 
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Figure 3.6. tSNE plots showing differential cluster patterns of brain cells in the fetal 
brain (GD15) of WT and Cav-1 KO mice. Ret: Retinal ganglion cells, Oli: 
Oligodendrocytes, Mic: Microglia, Tri: Trigeminal neurons, Caj: Cajal-Retzius cells, 
Epe: Ependymal cells, Int: Interneurons. 
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Figure 3.7 A. A hierarchical clustering shows that the gene expression variation of 
female fetal brain and placenta of wildtype is different from Cav-1 knockout model at 
GD 15.5. B. A hierarchical clustering illustrates that the placenta of female fetus of 
C57BL/6J is distinct from Cav-1 KO model at gestation day 15.5. The scale of branch 
height is shown to the left of the cladogram. In the figure, WTBR.1 WTBR.2 WTBR.3 
indicate wildtype female fetal brain, WTPL.1, WTPL.2, WTPL.3 indicate wildtype 
female placenta, Cav-1.BR1, Cav-1.BR2, Cav-1.BR3 indicate Cav-1 KO female fetal 
brain, Cav-1.PL1, Cav-1.PL2, Cav-1.PL3 indicate Cav-1 KO female placenta. 
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Figure 3.8 Venn Diagram showing differential gene expression between brain-placenta 
of wildtype and Cav-1 KO female fetus. In the figure, DOWN means downregulated 
genes and UP means upregulated genes.  
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Chapter 4 

 Use of AKR/J mice to study early-life links of brain aging 

 

Abstract 

 

Aging poses the primary risk for several chronic diseases including cancer, 

Parkinson’s, and Alzheimer’s diseases in human. However, links between aging and 

cancer or neurological diseases are not well understood. Aging causes physiological and 

functional decline of all organs which can lead to clinical complications such as 

metabolic syndrome multiple organ failure. Aging can vary among animals with different 

life spans. Studies have observed correlations between lifespan and gestation times 

among mammals. Links between lifespan and reproduction are known. AKR/J mice have 

endogenous AKV virus that leads to the onset of Leukemia which reduces lifespan of 

these mice compared to that of C57BL/6J in which AKV is absent. In this study, we 

compared the gene expression pattern of fetal brain and placenta of AKR/J with 

C57BL/6J to understand molecular and cellular links to between aging and leukemia. We 

show that genes related to aging and neurodegenerative diseases are regulated in specific 

patterns between the fetal brain and placenta of AKR/J mice. We performed targeted 

methylation profiling of a total of 2,045 single bases of mouse genome that are associated 

with the mouse epigenetic clock and showed that brain of AKR/J mice ages faster than 

that of C57BL/6J mice suggesting a link between leukemia and neuronal aging.  By 
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crossing AKR/J with C57BL/6J mice, analyzing pooled DNA of F2 progenies by whole-

genome sequencing as well as single-cell ATAC-seq (Assay for Transposase-Accessible 

Chromatin by sequencing), we further show that specific transcription factors may be 

involved in the differential gene regulation of fetal brain in AKR/J mice compared to 

C57BL/6J mice. Together, the results of this study provide foundational knowledge that 

will lead to establishing the link between reproduction and aging.   

 

Introduction 

 

Aging causes decline of immune systems (Fabbri et al., 2015) that often leads to 

chronic diseases and progressive complications such as organ failure (Neild, 2001). 

Importantly, aging has the most influence on cancer incidences in humans (Berben et al., 

2021). Leukemia represents different types of blood-related cancers and kills nearly 0.35 

million people globally each year. In the United States alone, more than 459,000 people 

are living with leukemia, with 61,059 new cases being detected in year 2021 alone. 

Leukemia incidence is expected to rise with increase in the aging population. According 

to the National Cancer Institute, it is rising by 3.2% in the recent years in the United 

States.  

 

Understanding the biological links between aging and leukemia (and other types 

of cancer) is highly important to develop intervention strategies by targeting those 

specific links. Several studies have shown associations between leukemia and cognitive 
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aging (Meyers et al., 2005). Cross-sectional study showed functional decline in cognition 

among people with chronic lymphatic leukemia (Williams et al., 2020). Vascular aging, 

particularly of bone-marrow endothelial cells, has direct influence on risk of developing 

leukemia (Lazzari et al., 2018). Bone-marrow is a potential source of neurons and 

endothelial cells for reparative processes in response to brain injury such as cerebral 

ischemia (Hess et al., 2002). Epigenetic changes in the DNA of blood upon aging are 

well known (Chew et al., 2018; Farré et al., 2015; Mori et al., n.d.; Schachtschneider et 

al., 2020). Striking correspondences in DNA methylation between blood and brain were 

shown in several studies (Edgar et al., 2017; Farré et al., 2015; Lin et al., 2018; Tylee et 

al., 2013; Walton et al., 2016; Wei et al., 2020). However, whether leukemia and brain 

aging are epigenetically related is not known.  

 

The murine leukemia viruses (MLVs), which are the causes of cancer in mice, are 

retroviruses belonging to the gammaretroviral genus. Endogenous MLVs, which are 

passed from one generation to the next by germ line, get integrated into the host genome. 

AKR/J inbred mice has AKV which is an endogenous MLV. Ecotropic expression of 

AKV is found in all tissues from birth in AKR/J mice (Herr & Gilbert, 1982). Leukemia 

progression occurs in an age-dependent manner in these mice. Onset of leukemia occurs 

as early as three months of age, and most AKR/J mice (60 to 90%) show cancer by age 

10 months and die within a month or two after the onset. In an earlier study, genetic 

mapping identified a locus (AKv1) for mouse susceptibility to AKV (Rowe et al., 1972). 

Subsequently, a second locus (AKv2) was found for AKV susceptibility (Kozak & Rowe, 
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1980). In a relatively recent study it was shown that the Apolipoprotein B gene Apobec3 

could also be associated with contrasting susceptibility of AKR/J and C57BL/6J mice to 

AKV (Langlois et al., 2009). Due to inherent susceptibility to AKV and development of 

leukemia, the AKR/J mice have significantly shorter lifespan (nearly three-fold less) 

compared to C57BL/6J mice.  

 

Several inbred strains derived from AKR/J show different rates of aging. Some of 

those are prone (SAMP) and others are resistant (SAMR) to accelerated senescence. 

There is a high level of ecotropic expression of AKV in the brain of SAMP mice but not 

in SAMR mice (Carp et al., 2002). Moreover, in SAMP mice, AKV is expressed 

abundantly in specific brain cells, primarily in neurons, astrocytes, vascular endothelium, 

and oligodendroglia (Jeong et al., 2002). However, SAMP and SAMR mice cannot be 

used in genetic mapping experiments because these mice are derived from the same 

inbred mice, so they lack the level of genetic polymorphisms required for mapping 

studies. On the other hand, AKR/J and C57BL/6J strains have extensive genetic 

polymorphisms (Lilue et al., 2018).   

 

One of the aims of this study is to understand gene expression changes in the 

brain during fetal development of AKR/J relative to C57BL/6J mice. The second aim of 

this study is to identify segregating loci that are linked to differential aging of brain in 

AKR/J mice relative to that of C57BL/6J mice. Finally, this study also investigates 
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chromatin structure and identifies candidate transcription factors associated with 

differential gene expression in the fetal brain of AKR/J relative to C57BL/6J mice. 

 

Methods 

 

Animal Breeding and Sample Collection 

 

C57BL/6J and AKR/J mice were obtained from Jackson Laboratory. Adult female 

mice were mated with fertile males of each strain to induce pregnancy. Pregnant mice 

were euthanized on GD15.5. The fetal brain and placenta were collected from all 

implantation sites. The placenta was carefully separated from the decidua. All the 

samples were washed in sterile PBS and snap frozen in liquid nitrogen. All animal 

procedures were approved by the Institutional Animal Care and Use Committee of the 

University of Missouri-Columbia and were conducted according to the Guide for the 

Care and Use of Laboratory Animals (National Institutes of Health, Bethesda, MD, 

USA). 

 

RNA Extraction 

 

All the samples were then processed for RNA analysis. Total RNA was isolated 

from frozen tissue samples using an AllPrep DNA/RNA Mini Kit (Qiagen, Cat No./ID: 

80204) as per the manufacturer’s instruction. Each fetal brain was homogenized with 500 
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ul to 1 ml RLT buffer (Qiagen, Cat No./ID: 79216) and 5μl 2-mercaptoethanol. 

Homogenization was done in a 15 ml Falcon tube using a benchtop VDI 25 tissue 

homogenizer (VWR). The homogenate was transferred to the mini column then 

centrifuged for 1 minute at ≥ 8000 x g. From the supernatant, 750μl was transferred into 

RNase/DNase-free Axygen conical tubes (Corning Axygen, 1.5ml) and mixed with 1 

volume 70% ethanol to precipitate RNA. RNA was eluted in 30μl nuclease-free water 

twice for a total volume of 60μl. RNA from a total of 27 samples (3 gestation days, 3 

biological replicates, and 2 strains) were generated. Concentration and purity of the RNA 

was determined using Nanodrop 1000 spectrophotometer (Thermo Fisher Scientific) 

before each sample was diluted to 100ng/μl using nuclease-free water. 

 

Gene expression profiling by RNA-seq 

 

Illumina sequencing libraries were generated from the total RNA of each sample. 

Preparation of libraries and RNA sequencing (RNA-seq) were performed by the 

Novogene Cooperation Inc. (8801 Folsom Blvd #290, Sacramento, CA 95826). Each 

library was sequenced to 20 million paired end reads of 150 bases using a NovaSeq 

sequencer. 

 

RNA-seq data analysis 
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RNA-seq data analysis was performed as described in our earlier works (Dhakal 

et al., 2021a; Strawn et al., 2021). Briefly, the quality of raw sequences was checked with 

FastQC followed by trimming the adaptors from the sequence reads by cutadapt. The 

fqtrim tool was used to perform base quality trimming (Phred score >30) by sliding 

window scan (6 nucleotides). The high quality reads were then mapped to the mouse 

reference genome GRCm38 using Hisat2 aligner (D. Kim et al., 2015). Read counting 

from the alignment data was performed by FeatureCounts (Liao et al., 2014). The feature 

count data was then analyzed using packages in R. 

 

Bulk Segregant Analysis (BSA) 

 

Our strategy of mapping genetic loci linked to brain aging in AKR/J mice is 

illustrated in Figure 4.16 This approach integrates BSA-seq method of QTL (quantitative 

trait loci) mapping (Arnold et al., 2011; Tang et al., 2018; Xia et al., 2010) with whole-

genome sequencing as well as whole-genome bisulfite sequencing (WGBS) (Islam et al., 

2022; Laufer et al., 2021) of F2 mapping population from AKR/J x C57BL/6J crosses. 

The F2s were phenotyped based on epigenetic age of brain as well as parental color coat 

(black: C57BL/6J and white: AKR/J). The segregating genetic variation (from whole-

genome sequencing) and their allelic methylation from WGBS was used for association 

analysis by binomial mixed model (Fan et al., 2019).   
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DNA was prepared using AllPrep DNA/RNA Mini Kit (Qiagen, Cat No./ID: 

80204) as per manufacturer’s instruction. DNA quality and quantity was checked 

according to the previously used method (Islam et al., 2022). Phenotyping of brain age 

was based on the rate of brain aging (brainYEAR) of F2s. Based on the brainYEAR 

phenotype scores, two F2 pools: low brainYEAR (C57BL/6J parental phenotype) and 

high brainYEAR (AKR/J parental phenotype) were prepared. The two pooled F2s 

contained segregating alleles linked to the brainYEAR phenotypes. Bulk DNA was 

prepared by combining equimolar amounts of DNA from the mice of the two pools. At 

least 25% of the mapping population was represented in the pools to ensure segregation 

of rare variants in BSA-seq (Tang et al., 2018).  

 

In BSA-seq, genome sequencing coverage should be enough to cover rare variants 

that might be present in the pooled DNAs. We achieved this by sequencing the libaries to 

genome coverage, which represents ploidy of cells multiplied with the number of 

indviduals represented in the pool (Magwene et al., 2011; Navarro-Escalante et al., 

2020), higher than the effective pool size. This roughly translates to 20x coverage in our 

experiment. Library preparation and sequencing were performed using Illumina NovaSeq 

platform at the Univeristy of Missouri Genomics Technology Core. Paired-end reads 

(150 bases) at 20x genome covarege were generated.  

 

The genome sequence data was checked for quality by FastQC. Quality control 

was performed using Trimmomatic tool (Bolger et al., 2014). Read mapping to mouse 
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reference genome assembly (GRCM39) was performed using the Burrows-Wheeler 

Aligner (BWA) (H. Li & Durbin, 2009). Variant analysis was performed using the 

Genome Analysis Toolkit (GATK) with recommended best practices (Van der Auwera et 

al., 2013). The read alignment files (BAM format) were subjected to post-alignment steps 

to remove duplicates, insertion/deletion (InDel) realignment and base quality 

recalibration prior to SNP calling. SNP calling was performed using Haplotypecaller 

which performs genotype likelihood test for each SNP (Single nucleotide Polymorphism)  

in individual samples followed by a ‘joint genotyping’ analysis to identify raw SNPs. The 

variant recalibration step was performed to identify high quality SNPs. The SNPs 

generated using this approach were used to calculate SNP-index which is the proportion 

of alleles of each SNP bewteen the two bulks. A SNP-index of ~0.5 reflects equal 

representation of both parents (no linkage to the phenotype). Those SNPs were excluded 

from the analysis. Sliding window analysis (J. Zhang & Panthee, 2020) was peformed to 

identify genomic regions that were signifcantly enriched with SNPs showing delta SNP-

index (difference in SNP-index between the two bulks) greater than zero (see Figure 

4.8). The genotype-phenotype association tests was performed using the R package 

QTLseqr. 

 

Single-nuclei ATAC-seq (snATAC-seq) 

 

Single nuclei from brain samples from pooled brain of F2s were isolated using 

Pure Prep Nuclei Isolation kit (Sigma, St. Louis, MO, USA) as per manufacturer’s 
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instruction. We isolated single nuclei from flash frozen samples of mouse brain. Briefly, 

frozen brain samples after thawing were minced into small pieces and added to lysis 

buffer. Using a dounce homogenizer, the sample was homogenized until the solution 

looked well mixed, which generally required 15-20 dounces. A 70µm cell strainer was 

used to filter the nuclei from the lysed cells, diluted and layered over a freshly prepared 

1.8M sucrose cushion solution to collect single nuclei. After centrifugation and 

suspension with the kit provided storage buffer (ice cold), final purification of single 

nuclei was performed by filtering through a 40µm cell strainer. The purified nuclei were 

then counted using a Countess II FL Automated Cell Counter (ThermoFisher). The nuclei 

pellet was resuspended in 10 μl chilled nuclei buffer. Nuclei counting was performed 

using a Countess II FL Automated Cell Counter. The nuclei were used to prepare ATAC-

seq libraries at the University of Missouri DNA core facility using the Chromium Single 

Cell ATAC Reagent Kit according to the manufacture’s guide. 

 

Data analysis of snATAC-seq:  

 

The raw data was processed by the Cell Ranger pipeline. The BWA-MEM 

(Burrows-Wheeler Aligner Maximal Exact Matches) aligner was used to perform read 

mapping to the reference genome of mouse. The peak/cell and the fragment/cell count 

data generated from Cell Ranger was used to analyze open chromatins in single nuclei 

using the R package Signac (Stuart et al., 2020). First, we calculated transcriptional start 

site (TSS) enrichment score, nucleosome banding pattern, number of fragments in peaks, 
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proportion of fragments per peak, and proportion of reads in genomic blacklist regions to 

perform the recommended (ENCODE) quality control steps using Signac. The count data 

was then normalized by TF-IDF (term frequency-inverse document frequency) (Moussa 

& Măndoiu, 2018) followed by feature selection and dimension reduction. Non-linear 

dimension reduction and clustering was performed by UMAP (uniform manifold 

approximation and projection) method (Becht et al., 2018) implemented within Signac. 

Differential chromatin accessible tests (Gontarz et al., 2020) were performed to compare 

open chromatin regions (peaks) between cell types in each sample. Motif enrichment 

analysis was then performed by hypergeometric test implemented within Signac. The 

known TF motifs in the JASPAR database (R package JASPAR2020) was used to 

determine motif incidences within each peak. When multiple TF motifs were enriched 

within a peak, the motif that was closest to the peak summit was used.  

 

Results 

 

Gene expression differences during development of fetal brain of AKR/J relative to 

C57BL/6J  

 

RNA sequencing was performed to profile gene expression of fetal brain of 

AKR/J mice and C57BL/6J mice (female sex used in both strains) at three gestation times 

(GDs 12.5, 15.5 and 15.5). Hierarchical clustering showed that the fetal brain of these 

two strains were transcriptionally distinct in each gestation period (Figure 4.1). 
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Differential expression (DE) analysis by edgeR identified 2961 genes at GD 12.5, 711 

genes at GD 15.5 and 266 genes at GD 17.5 that were upregulated in AKR/J relative to 

C57BL/6J female fetal brain (Figure 4.2). While the number of upregulated genes 

decreased with the progression of gestation days, the downregulated genes showed a 

different pattern. The results showed that 3647 genes at GD 12.5, 4646 genes at GD 15.5 

and 1011 genes at GD 17.5 were downregulated in AKR/J relative to C57BL/6J female 

fetal brain (Figure 4.3). The volcano plots (Figure 4.3) showed that the number of DEGs 

is the highest during early gestation which is GD 12.5. Moreover, Principal Component 

Analysis (PCA) showed distinct clusters indicating differences in gene expression in the 

fetal brains of the two strains (Figure 4.4).  

 

Gene Ontology (GO) analysis of the DE genes was performed. At GD 12.5, the 

upregulated biological processes were proton motive force-driven mitochondrial ATP 

synthesis (GO:0042776), the process of NADH to ubiquinone and ubiquinol to 

cytochrome c in the mitochondrial electron transport (GO:0006120, GO: 0006122), 

NADH dehydrogenase complex assembly (GO:0010257) and mitochondrial respiratory 

chain complex I assembly (GO:0032981) (Table 4.1). In contrast, the downregulated 

processes were presynaptic active zone organization (GO:1990709), negative regulation 

of mitophagy (GO:1901525), neurotransmitter receptor diffusion trapping (GO:0099628), 

postsynaptic neurotransmitter receptor diffusion trapping (GO:0098970) and receptor 

diffusion trapping (GO:00989953). Our results show that the downregulated processes 

were more associated to neural development (Table 4.1). Moreover, there were no 
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significant GO terms for upregulated genes at GD 15.5, but the neural regulatory 

biological processes that were downregulated were maintenance of postsynaptic 

specialization structure (GO:0098880), regulation of synaptic membrane adhesion 

(GO:0099179), regulation of glutamate receptor signaling pathway (GO:19000449), 

regulation of modification of postsynaptic actin cytoskeleton (GO:1905274) and 

cerebellar granule cell differentiation (GO:0021707).  On GD 17.5 the regulation of 

opioid receptor signaling pathway (GO:2000474), positive regulation of long-term 

synaptic depression (GO:1900464), regulation of postsynaptic density (GO:0099151) and 

specialization (GO:0099150) assembly and regulation of excitatory synapse assembly 

(GO:1904889) were downregulated with no significantly enriched terms for upregulated 

genes (Table 4.1). 

 

PANTHER pathways analysis identified blood coagulation pathway (P00011) and 

wnt signaling pathway (P00057) enriched among the upregulated genes, and synaptic 

vesicle trafficking (P05734), metabotropic glutamate group I pathway (P00041), axon 

guidance mediated by netrin (P00009), hedgehog signaling pathway (P00025) and 

GABA-B receptor II signaling pathway (P05731) enriched among the downregulated 

genes in AKR/J compared to C57BL/6J fetal brains on GD12.5. As the brain developed 

to GD15.5, no specific pathway was enriched among the upregulated genes whereas the 

metabotropic glutamate receptor group I pathway (P00041), axon guidance mediated by 

netrin pathway (P00009), axon guidance mediated by semaphorins (P00007) and by Slit 

or Robo (P00008) and ionotropic glutamate receptor pathway (P00037), were enriched by 
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the downregulated genes. On GD 17.5, the GABA-B receptor II signaling pathway 

(P05731) was downregulated again at late gestation GD17.5 with almost double fold 

enrichment and the ionotropic glutamate receptor pathway (P00037) continued to be 

downregulated at this stage but with higher fold enrichment. Other downregulated 

pathways were pyridoxal phosphate salvage pathway (P02770), vitamin B6 metabolism 

pathway (P02787), Opioid proenkephalin pathway (P05915) with no significantly 

enriched upregulated pathways. The results are summarized in Table 4.2.  

 

We further compared Differentially Expressed (DE) genes on GD 15.5 relative to 

GD 12.5. There were 15 genes that were downregulated in AKR/J but upregulated in 

C57BL/6J during this period. They included Ifi202b, Nr1h5, Guca2b, Htra1, Cuzd1, 

Cdh3, Col4a1/2, Sptb, Hspa1a and Ccbe1. In contrast, the genes that were upregulated in 

AKR/J but downregulated in C57BL/6J were Kirrel2, Nphs1, Tarbp1 and Pgk1-rs7. We 

also identified genes which showed opposite expression pattern in GD 17.5 compared 

with GD 15.5. Adamts3/18, Nos1, Nfix, Tenm2 and Tiam2 were upregulated in AKR/J 

and downregulated in C57BL/6J during this period.  

 

Gene expression in the placenta between AKR/J and C57BL/6J  

 

RNA-seq was performed to profile gene expression of the placenta of GD15.5 

female fetus of AKR/J compared to that of C57BL/6J. Hierarchical clustering showed 

that the placenta is transcriptionally distinct between the two strains on GD15.5 (Figure 
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4.5). Differential expression analysis by edgeR further identified 2960 upregulated and 

3640 downregulated differentially expressed genes in the placenta between the two 

strains.  

 

Gene Ontology (GO) analysis identified biological processes that were 

upregulated, such as positive regulation by host of viral transcription (GO:0043923), 

regulation of myoblast proliferation (GO:2000291), negative regulation of nitric oxide 

biosynthetic process (GO:0045019), nitric oxide metabolic process (GO:1904406) and 

miRNA transcription (GO:1902894). In contrast, processes related nucleobase 

biosynthetic process (GO:0046112), serine family amino acid biosynthetic process 

(GO:0009070), dopamine receptor signaling pathway (GO:0007212), negative regulation 

of hydrogen peroxide-induced cell death (GO:1903206) and response to reactive oxygen 

species (GO:1901032) were downregulated (Table 4.3). 

 

PANTHER pathways analysis showed enrichment of ionotropic glutamate 

receptor pathway (P00037), metabotropic glutamate receptor group III pathway 

(P00039), p38 MAPK pathway (P05918), interleukin signaling pathway (P00036), 

Parkinson disease pathway (P00049), EGF receptor signaling pathway (P00018), 

Alzheimer disease-presenilin pathway (P00004) and Huntington disease pathway 

(P00029) were upregulated in AKR/J placenta. On the contrary, p53 pathway (P04393), 

apoptosis signaling pathway (P00006), CCLR signaling pathway (P06959) and 
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gonadotropin-releasing hormone receptor pathway (P06664) were significantly enriched 

among the downregulated pathways in AKR/J placenta (Table 4.4). 

 

Comparative analysis of DE genes of placenta and fetal brain between AKR/J and 

C57BL/6J  

The Venn diagram in Figure 4.6 shows a comparative distribution of DE genes of 

placenta and fetal brain between AKR/J and C57BL/6J mice. The figure shows that there 

were 6252 genes commonly downregulated and 5321 genes commonly upregulated in the 

fetal brain relative to the placenta in both the strains. However, there were 11 genes that 

were downregulated in AKR/J but upregulated in C57BL/6J fetal brain relative to 

respective placenta. Another, 172 genes showed the opposite expression pattern.  

Gene Ontology analysis (Table 4.5) identified significant enrichment of 

biological processes for upregulated genes in both strains such as spinal cord association 

neuron differentiation (GO:0021527), forebrain dorsal/ventral pattern formation 

(GO:0021798), gamma-aminobutyric acid secretion (GO:0014051), clustering of voltage-

gated potassium channels (GO:0045163) and presynaptic dense core vesicle exocytosis 

(GO:0099525). The commonly downregulated processes showed enrichment of natural 

killer cell mediated cytotoxicity (GO:0042270), positive regulation of lactation 

(GO:1903487), cellular response to lipoteichoic acid (GO:0071223), T cell mediated 

cytotoxicity (GO:0001913) and skin morphogenesis (GO:0043489). 
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PANTHER pathway analysis (Table 4.6) identified 31 pathways that were 

enriched among the upregulated DE genes.  They included endogenous cannabinoid 

signaling pathway (P05730), ionotropic glutamate receptor pathway (P00037), 

metabotropic glutamate receptor group III pathway (P00039), GABA-B receptor II 

signaling pathway (P05731) and cadherin signaling pathway (P00012). On the other 

hand, only 8 pathways were enriched among the downregulated genes in the fetal brain of 

both strains. They included blood coagulation pathway (P00011), integrin signaling 

pathway (P00034), cytoskeletal regulation by Rho GTPase (P00016), apoptosis signaling 

pathway (P00006) and angiogenesis pathway (P00005) among others (Table 4.6).  

 

Epigenetic clock analysis of aging brain  

 

Epigenetic clock analysis, which is an assay based on the principles of Horvath 

pan-tissue clock (Chew et al., 2018), was performed (Zymo DNAge®, Irvine, CA) by 

profiling methylation of the 2,045 CpG sites of epigenetic clock genes (Stubbs et al., 

2017a) in the male and female brain of AKR/J and C57BL/6J mice at fetal, postnatal and 

old stages (Figure 4.7). The methylation data was then used to estimate brain age by 

elastic net regression by Zymo’s DNAge® predictor tool (Coninx et al., 2020). The rate 

of brain aging was calculated using a novel score called brainYEAR (YEAR: Year-wise 

Epigenetic Age Rise) that estimates rate of increase of brain biological age per year of 

chronological age. The brainYEAR = 1 means that brain ages according to chronological 

ages, and brainYEAR < 1 means slow biological aging, often referred to as SuperAger 
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(Harrison et al., 2012; Kwak et al., 2018; Rogalski et al., 2013). On the other hand, 

brainYEAR > 1 means accelerated aging of brain. The brainYEAR analysis showed that 

brain of AKR/J mice aged in an accelerated manner, nearly 2x fold, compared to that of 

C57BL/6J mice (Figure 4.8).  

 

Identification of segregating loci liked to accelerated brain aging of AKR/J mice 

 

Crosses were performed between AKR/J female and C57BL/6J male mice (8 

weeks old) to generate 32 F2s (Figure 4.9). The genome sequences of AKR/J and 

C57BL/6J differ by ~6.8 million single nucleotide polymorphisms (SNPs). We analyzed 

those SNPs relative to the sites methylated in the fetal brain of C57BL/6J mice generated 

by whole-genome bisulfite sequencing in our earlier work (Islam et al., 2022). The 

analysis identified a total of 37,424 SNPs where the reference alleles were methylated in 

the fetal brain of C57BL/6J mice. An additional 192,522 SNPs were found within 100 bp 

(with median distance 28 bp) of the methylation sites in the fetal brain. A representative 

genome browser image in Figure 4.10 shows positional correspondences between SNPs 

and brain methylation sites.  

 

Gene expression studies of aging brain of AKR/J compared to C57BL/6J mice 

 

We performed RNA sequencing of brain from AKR/J and C57BL/6J mice of both 

sexes at young and old ages. The brain of AKR/J mice at young age showed a reduced 
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level of gene expression compared to brain of C57BL/6J mice at old age (Figure 4.11) 

suggesting that genes in the brain of AKR/J mice at a young age may function same way 

as those in C57BL/6J mice at an old age. 

 

Single-cell open chromatin profiling of brain between AKR/J vs C57BL/6J mice 

 

Single-nuclei ATAC seq analysis identified open chromatin in 13,908 cells of 

AKR/J male brain, 14,185 cells of AKR/J female brain, 15,930 cells of C57BL/6J male 

brain and 6.946 cells of C57BL/6J female brain. Cluster analysis followed by non-linear 

dimension reduction showed variation in fragment counts that mapped to the open 

chromatin revealing different clusters (Figure 4.12 & 4.13). The number of the peaks 

representing the open chromatin represented 36% of cells of AKR/J male brain, 36.2 % 

cells of AKR/J female brain, 34.1% cells of C57BL/6J male brain and 39.4% of 

C57BL/6J female brain. The number of single cells with open chromatin varied between 

the two strains. Only 1608 cells harbored common open chromatin regions between the 

brain cells of both strains and both sexes (Figure 4.14). Also, there were brain cells that 

had open chromatin in a strain-specific manner. These were relatively less in AKR/J mice 

compared to C57BL/6J brain. Genes associated with the open chromatin regions were 

analyzed. Comparison of the top 20 genes for enrichment of binding motifs of 

transcription factor (TF) showed similar proportions of TF motifs in both the strains 

(Figure 4.15) indicating that same TFs may bind to the open chromatin regions of the 

fetal brain cells in both the AKR/J and C57BL/6J mice. 
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Discussion 

 

In this study, we sequenced RNA from fetal brain of C57BL/6J and AKR/J. Our 

results show differential gene expression in the fetal brain of AKR/J compared to 

C57BL/6J mice at gestation day 12.5, 15.5 and 17.5. Our results support the previous 

studies which showed that the mouse fetal brain goes through changes over the gestation 

period (V. S. Chen et al., 2017). It has been shown that during GD 12.5, the fetal 

forebrain is proliferated and expanded at a fast rate especially the medial, lateral, and 

caudal ganglionic sections with the choroid plexus appearing at this stage and the 

hypothalamus starting to grow bigger in the diencephalon. Simultaneously, the spinal 

cord start growing at this stage. At this stage, GABAergic inhibitory neurons develop 

through the growing cerebral cortex. On GD 15.5, the hindbrain the population of 

neurons grows rapidly at this stage and the spinal cord columns are more prominent and 

starts growing rapidly. On GD 17.5, the neurosecretory structures for hormones such as 

oxytocin develop in the forebrain while the hindbrain the Purkinje cells are well formed 

(V. S. Chen et al., 2017).  

 

Gene Ontology analysis identified over-represented biological processes of 

Differentially Expressed (DE) genes of the fetal brains of both strains at different 

gestation days (GD 12.2, 15.5, 17.5). The upregulated processes at GD 12.5 were 

mitochondrial ATP Synthase activity, mitochondrial electron transport activity, proton 
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motive force-driven ATP synthesis activity, NADH dehydrogenase activity (one of the 

major electron donors in oxidative phosphorylation (Ying, 2008)). Interestingly, increase 

of mitochondrial oxidative metabolism has been recognized as a metabolic hallmark for 

leukemia (Byrd et al., 2013) (Kuntz et al., 2017) (E. A. Lee et al., 2015) (Sriskanthadevan 

et al., 2015) (Suganuma et al., 2010) (Nelson et al., 2021), which suggests that the 

hallmark is present in the early gestational fetal brain in AKR/J mice. ATP synthase has 

been further shown to be the target of lipid oxidative damage in human brain and in aging 

and it is considered as anti-aging therapeutic target (Jové et al., 2019). Mitochondria are 

one of the most significant sources of Reactive Oxygen Species (ROS) in the brain 

known as mitochondrial ROS (mtROS) and they are the center for major cellular 

functions, most importantly ATP synthesis through oxidative phosphorylation which 

produces ROS as well (Stefanatos & Sanz, 2018). Altogether, these findings coincide 

with our results. Moreover, during GD 15.5 glutamate receptor signaling pathway was 

downregulated in the fetal brain. It has been shown before that over 40% of the synapses 

in the neurons are glutamergic and it is firmly regulated in the neurons, astrocytes, and 

endothelial cells via metabolite exchange. Strikingly, in an Alzheimer’s disease brain the 

amyloid beta pathology can reduce the glutamate uptake in astrocytes that can lead to 

swelling of neurones, membrane integrity destruction and cell death (Conway, 2020). It 

has also been shown that glutamate concentrations were lower in the AD patients in the 

posterior cingulate cortex (Fayed et al., 2011) (Gimse et al., 2019). These differentially 

regulated cellular processes suggest that the fetal brain programming can be different 
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based on the potential of faster aging in the adult stage and can show hallmarks of aging 

related diseases before the diseases are expressed in older age.  

 

Our results from PANTHER pathway analysis are also consistent with the 

previous findings. During GD 12.5 hedgehog signaling pathway was downregulated in 

the female fetal brain of AKR/J relative to C57BL/6J. Previous studies showed that 

depletion of this pathway reduces the lifespan, dopaminergic neuron integrity and 

locomotor activity in AD drosophila which is a disease model for human amyloid beta in 

the glia cells, indicating that the Hedgehog signaling pathway is essential for lifespan 

deduction (Rallis et al., 2020). Moreover, glutamate receptor pathways were also 

downregulated at all gestation days, which is consistent with the GO analysis of our 

results, and was also shown to be decreased in AD brain (Fayed et al., 2011). 

Simultaneously, at GD 15.5 the axon guidance by netrin-1 was downregulated, which can 

result in compromised transmission excitatory synapses and LTP at Schaffer collateral 

synapses (Glasgow et al., 2020). Progressively at GD 17.5 fetal brain, the pyridoxal 

phosphate salvage pathway was downregulated. It was previously shown to be a major 

cofactor of different metabolic enzymes including amino acid metabolism with change 

with age (Bode & van den Berg, 1991) (de Lucia et al., 2021). Furthermore, 

downregulation of Vitamin B6 metabolism  at this stage supports the previous study that 

Vitamin B6 has a negative correlation with brain function during aging (Nwanaji-

Enwerem et al., 2021). The GABABergenic receptor II signaling, which has a role in 

depression at advanced age (Lissemore et al., 2018), was also downregulated in AKR/J 
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relative to C57BL/6J. Interestingly, the pathway is also related to the opioid 

proenkephalin pathway which causes nervous disorders (Monstein et al., 1986).  

 

The role of the placenta is significant in brain development during gestation. The 

differentially expressed genes in AKR/J placenta relative to C57BL/6J at GD 15.5 are 

related to aging related diseases that are regulated in the placenta. Our results showed the 

p38 MAPK pathway was upregulated in the placenta. This pathway regulates CryaB and 

has been found in increased levels in the brain cortex with progression of AD (Muraleva 

et al., 2019). Moreover, interleukin signaling pathway was upregulated as well. In a 

previous study it has been shown that IL-6 activation in placenta can block maternal 

immune activation which is a risk factor of autism (W.-L. Wu et al., 2017). Furthermore, 

gonadotropin-releasing hormone receptor pathway, which is shown to be linked with 

neurodegenerative pathophysiology (L. Wang et al., 2010), was downregulated. 

Additionally, serine biosynthetic process, which is previously shown to be impaired in 

AD mice and patients (Le Douce et al., 2020), was downregulated. Our data shows 

downregulation of dopamine receptor signaling pathway. Interestingly, in Parkinson’s 

disease progression loss of dopamine occurs due to dysfunctional dopamine signaling 

which is also the central symptom for Huntington’s disease (Klein et al., 2019). 

Moreover, nitric oxide metabolic process, which is known for its production of ROS that 

is one of the causes of neurodegenerative diseases such as Parkinson’s disease (Hannibal, 

2016), was upregulated in the placenta. Our data further indicated that production of ROS 

in the placenta is likely due to the downregulation of the pathways: negative regulation of 
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hydrogen peroxide included cell death and negative regulation of response to ROS. 

Hydrogen peroxide included cell death is known to promote the production of ROS 

(Premratanachai et al., 2020). Altogether, our results show that placenta has a role in 

programming the fetal brain in regulating the production of ROS in the female fetal brain 

of AKR/J relative to C57BL/6J.  

 

Our data further identified genes that were differentially expressed between the 

fetal brain of AKR/J compared to C57BL6/J at different gestation times. Tarbp1, which 

has DNA methylation sites that were linked to the ADHD symptoms in adults and 

children (Weiß et al., 2021), was upregulated in AKR/J but downregulated in C57BL/6J 

during brain development from GD 12.5 to 15.5. Also, Pgk1-rs7, which codes for 

phosphoglycerate kinase (PGK), is an important enzyme for glycolysis and has been 

associated with the PGK activity in patients with Parkinson’s Disease (Fujino et al., 

2021), was upregulated in AKR/J fetal brain in our study. Strikingly, during the mid to 

late stage of gestation several genes (Adamrs3, Nos-1, Adamts18, Tenm2), related to 

neuronal diseases, were upregulated in AKR/J but downregulated in C57BL/6J. Adamts3 

(A disintegrin and metalloproteinase with thrombosin motifs-3) is an inactivator of 

Reelin, which an extracellular matrix protein secreted by Cajal-Retzius cells and is 

reduced in brain with schizophrenia symptoms (Tsuneura et al., 2021). Nos-1 is strongly 

associated with Schizophrenia as well through its production nitric oxide (Cui et al., 

2010). In addition, Adamts18 is generally found in the brain of people 72-74 years old. 

Lack of this gene in mice causes reduction in levels of depression like behavior in 
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wildtype littermates (R. Zhu et al., 2019). Moreover, specific CpG methylation sites in 

Tenm2 has positive relation with neonatal infection (Everson et al., 2020). Therefore, 

many genes associated with Schizophrenia, AD, PD and Huntington diseases were 

uniquely regulated in AKR/J fetal brain.  

 

Comparison of differentially expressed genes (DEG) in the fetal brain and 

placenta between the two strains generated lists of genes which we call “brain-placental 

DEGs”. Nectin1 and Ankdd1b were downregulated in AKR/J brain and placenta. 

Previous study shows that reduced level of Nectin1 in the mice is linked to cognitive and 

structural abnormalities along with early-life stress related cognitive disorders (C. Wu et 

al., 2022b). Additionally, Ankdd1b is related to migraine and a number of other brain 

related diseases (Yang et al., 2018).  In contrast, specific genes were upregulated in the 

AKR/J brain placental DEGs but downregulated in C57BL/6J. They included Rpl10, 

which is highly expressed in the hippocampus of mice with autism (Klauck et al., 2006); 

Cxcl2 that promotes the transport and proliferation of Acute Myeloid Leukemia (AML) 

cells (L. Li et al., 2021); Rpl34-As1, which is expressed in the tumor grade glioma tissues 

(D. Zhang et al., 2021); Hoxa-as3, which is activated in glioma patients (F. Wu et al., 

2017); Malat1, which promotes inflammation in Parkinson’s disease (L.-J. Cai et al., 

2020); and Kcnq1ot1, which controls blood-brain barrier function (N. Liu et al., 2021). 

The contrasting regulation of these genes in AKR/J brain placenta compared to C57BL/6J 

further enforces our suggestion that fetal brain programming is different in the mice with 

naturally selected shorter life span. Furthermore, the epigenetic clock analysis on brain of 
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AKR/J and C57BL/6J mice at different life-stages showed that brain ages faster in AKR/J 

mice compared to that of C57BL/6J mice.  

 

Conclusion 

 

The findings of this study show that fetal brain development in AKR/J mice is 

differentially regulated compared to C57BL/6J mice. Specific epigenetic (methylation 

and chromatin structure) changes are likely linked to the transcriptomic differences in the 

brain development of these mouse strains. The study has generated foundational 

resources to further delineate epigenetic mechanisms of fetal links to neuronal aging in 

leukemic AKR/J mice.

 
  



 

 

 

 

116 

Table 4.1 Gene Ontology (GO) analysis on the female fetal brain at GD 12.5, GD 15.5, 

and GD 17.5 of AKR/J relative to C57BL/6J. Upregulated biological processes shown as 

UP and downregulated as DOWN. 
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Table 4.2 PANTHER Pathway analysis on the female fetal brain at GD 12.5, GD 15.5, 
and GD 17.5 of AKR/J relative to C57BL/6J. Upregulated biological processes shown as 
UP and downregulated as DOWN. 

PANTHER Pathways DEG Fold 
Enrichment FDR GD 

Blood coagulation (P00011) 16 5.22 1.17E-04 12.5_UP 

Wnt signaling pathway (P00057) 4 0.22 1.33E-02 12.5_UP 

Synaptic vesicle trafficking (P05734) 18 4.11 3.58E-04 12.5_DOWN 

Metabotropic glutamate receptor group I 
pathway (P00041) 13 3.84 3.52E-03 12.5_DOWN 

Axon guidance mediated by netrin 
(P00009) 16 3.24 3.88E-03 12.5_DOWN 

Hedgehog signaling pathway (P00025) 9 3.19 3.53E-02 12.5_DOWN 
GABA-B receptor II signaling (P05731) 16 3.06 4.74E-03 12.5_DOWN 

Metabotropic glutamate receptor group I 
pathway (P00041) 17 3.94 5.83E-04 15.5_DOWN 

Axon guidance mediated by semaphorins 
(P00007) 11 2.92 3.03E-02 15.5_DOWN 

Axon guidance mediated by Slit/Robo 
(P00008) 13 2.89 2.68E-02 15.5_DOWN 

Axon guidance mediated by netrin 
(P00009) 18 2.86 6.07E-03 15.5_DOWN 

Ionotropic glutamate receptor pathway 
(P00037) 25 2.84 6.66E-04 15.5_DOWN 

Pyridoxal phosphate salvage pathway 
(P02770) 2 31.7 3.94E-02 17.5_DOWN 

Vitamin B6 metabolism (P02787) 3 23.77 1.05E-02 17.5_DOWN 

GABA-B receptor II signaling (P05731) 8 6.85 1.56E-03 17.5_DOWN 

Ionotropic glutamate receptor pathway 
(P00037) 9 5.82 1.43E-03 17.5_DOWN 

Opioid proenkephalin pathway (P05915) 6 5 2.11E-02 17.5_DOWN 
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Table 4.3 Gene Ontology (GO) analysis on Differentially Expressed Genes (DEGs) of 

the placenta at gestation day (GD) 15.5 of AKR/J relative to C57BL/6J. 

GO Analysis DEG 
Fold 

Enrichment 
FDR GD 

positive regulation by host of viral 

transcription (GO:0043923) 
10 4.38 1.63E-02 UP 

regulation of myoblast proliferation 

(GO:2000291) 
9 4.19 3.25E-02 UP 

negative regulation of nitric oxide 

biosynthetic process (GO:0045019) 
11 4.1 1.40E-02 UP 

negative regulation of nitric oxide 

metabolic process (GO:1904406) 
11 4.1 1.40E-02 UP 

negative regulation of miRNA 

transcription (GO:1902894) 
12 3.89 1.19E-02 UP 

nucleobase biosynthetic process 

(GO:0046112) 
11 3.93 2.54E-02 DOWN 

serine family amino acid biosynthetic 

process (GO:0009070) 
10 3.8 4.58E-02 DOWN 

dopamine receptor signaling pathway 

(GO:0007212) 
15 3.14 1.98E-02 DOWN 

negative regulation of hydrogen peroxide-

induced cell death (GO:1903206) 
13 3.04 4.65E-02 DOWN 

negative regulation of response to reactive 

oxygen species (GO:1901032) 
13 3.04 4.64E-02 DOWN 
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Table 4.4 PANTHER Pathway analysis on differentially expressed genes (DEGs) of the 

placenta at gestation day (GD) 15.5 of AKR/J relative to C57BL/6J. 

PANTHER Pathways DEG 
Fold 

Enrichment 
FDR GD 

Ionotropic glutamate receptor pathway 

(P00037) 
18 2.74 1.09E-02 UP 

Metabotropic glutamate receptor group III 

pathway (P00039) 
25 2.7 4.03E-03 UP 

p38 MAPK pathway (P05918) 14 2.55 4.45E-02 UP 

Interleukin signaling pathway (P00036) 29 2.48 5.75E-03 UP 

Parkinson disease (P00049) 27 2.1 1.75E-02 UP 

EGF receptor signaling pathway (P00018) 38 2.08 4.76E-03 UP 

Alzheimer disease-presenilin pathway 

(P00004) 
33 1.94 1.37E-02 UP 

Huntington disease (P00029) 39 1.9 1.21E-02 UP 

p53 pathway (P00059) 30 2.07 3.33E-02 DOWN 

Apoptosis signaling pathway (P00006) 40 1.96 1.37E-02 DOWN 

CCKR signaling map (P06959) 50 1.86 1.23E-02 DOWN 

Gonadotropin-releasing hormone receptor 

pathway (P06664) 
71 1.84 1.71E-03 DOWN 
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Table 4.5 Gene Ontology (GO) analysis of the female fetal brain-placental differentially 

expressed genes (DEGs) at gestation day (GD) 15.5 of AKR/J compared to C57BL/6J. 

 

GO biological process complete DEG Fold 
Enrichment FDR Expression 

spinal cord association neuron 
differentiation (GO:0021527) 13 6.13 4.32E-04 UP 

forebrain dorsal/ventral pattern 
formation (GO:0021798) 7 6.13 2.44E-02 UP 

gamma-aminobutyric acid secretion 
(GO:0014051) 6 6.13 4.76E-02 UP 

clustering of voltage-gated 
potassium channels (GO:0045163) 6 6.13 4.76E-02 UP 

presynaptic dense core vesicle 
exocytosis (GO:0099525) 6 6.13 4.75E-02 UP 

protection from natural killer cell 
mediated cytotoxicity 
(GO:0042270) 

11 3.93 2.89E-02 DOWN 

regulation of lactation 
(GO:1903487) 28 3.93 2.81E-05 DOWN 

cellular response to lipoteichoic 
acid (GO:0071223) 10 3.93 4.29E-02 DOWN 

response to lipoteichoic acid 
(GO:0070391) 10 3.93 4.29E-02 DOWN 

positive regulation of lactation 
(GO:1903489) 27 3.93 4.20E-05 DOWN 

T cell mediated cytotoxicity 
(GO:0001913) 12 3.63 2.83E-02 DOWN 

embryonic skeletal system 
morphogenesis (GO:0048704) 5 30.86 1.08E-02 

AKR/J UP 
C57BL/6J 
DOWN 

embryonic skeletal system 
development (GO:0048706) 

5 22.99 2.20E-02 
AKR/J UP 
C57BL/6J 
DOWN 
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Table 4.6 PANTHER Pathway analysis of the female fetal brain-placental differentially 

expressed genes (DEGs) at gestation day (GD) 15.5 of AKR/J compared to C57BL/6J. 

 

PANTHER Pathways DEG 
Fold 

Enrichment 
FDR Expression 

Endogenous cannabinoid signaling 

(P05730) 
16 3.92 9.17E-04 UP 

Ionotropic glutamate receptor 

pathway (P00037) 
31 3.88 9.07E-07 UP 

Metabotropic glutamate receptor 

group III pathway (P00039) 
42 3.73 1.59E-08 UP 

GABA-B receptor II signaling 

(P05731) 
22 3.64 1.52E-04 UP 

Cadherin signaling pathway 

(P00012) 
96 3.63 1.78E-18 UP 

Blood coagulation (P00011) 36 2.72 6.65E-04 DOWN 

Integrin signalling pathway 

(P00034) 
101 2.09 8.64E-07 DOWN 

Cytoskeletal regulation by Rho 

GTPase (P00016) 
38 1.87 4.65E-02 DOWN 

Apoptosis signaling pathway 

(P00006) 
58 1.84 8.84E-03 DOWN 

Angiogenesis (P00005) 80 1.76 1.98E-03 DOWN 
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Figure 4.1 Hierarchical Clustering Analysis of differentially expressed genes at gestation day 12.5 (A), 15.5 (B) and 17.5 (C) 
of female fetal brain of AKR/J mice relative to C57BL/6J mice. BA, BB, BC are fetal brains of C57BL/6J at every stage. AA, 
AB, AC are fetal brains of AKR/J at every stage. 
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Figure 4.2 Differentially expressed genes at gestation day 12.5, 15.5 and 17.5 of female 
fetal brain of AKR/J mice relative to C57BL/6J mice. Upregulated genes are shown by 
the blue upward arrow and downregulated genes shown by downward arrow.  
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Figure 4.3 Volcano plot of differentially expressed genes at gestation day 12.5, 15.5 and 
17.5 of female fetal brain of AKR/J mice relative to C57BL/6J mice. Red shows 
downregulated genes and   blue shows upregulated genes. Every dot represents one gene. 
The plots are made with the accuracy of False Discovery Rate (FDR) 0.05 as mentioned 
on the plots.  
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Figure 4.4 Principal Component Analysis of differentially expressed genes at gestation day 12.5, 15.5 and 17.5 of female fetal 
brain of AKR/J mice relative to C57BL/6J mice showing different clustering of AKR/J (solid black line) and C57BL/6J (dotted 
line) on GD 12.5 and GD 15.5 and overlapping on GD 17.5. BA, BB, BC are fetal brains of C57BL/6J at every stage. AA, AB, 
AC are fetal brains of AKR/J at every stage. 
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Figure 4.5 Hierarchical Clustering Analysis of differentially expressed genes at gestation 
day 15.5 (B) of female placenta of AKR/J mice (AKR.FPL1, AKR.FPL2, AKR.FPL3) 
relative to C57BL/6J mice (WTPL.1, WTPL.2, WTPL.3). 
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Figure 4.6 Venn diagram showing the comparison of differentially expressed genes between the female brain-placenta of 
AKR/J and C57BL/6J mice. The upregulated brain-placental differentially expressed genes of AKR/J are shown as UP: AKR, 
downregulated AKR/J genes are shown as DOWN: AKR, upregulated genes of C57BL/6J are shown as UP:BL6 and 
downregulated genes as DOWN:BL6.  
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Figure 4.7 Coordinated changes in DNA methylation of fetal brain with placenta in a 

sex-dependent manner (FB: female bias; MB: male bias). BR=brain, Pl=Placenta, 

F=female, M=male. 
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Figure 4.8 BrainYEAR differences between C57BL/6J and AKR/J male and female 

mice. 
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Figure 4.9 Cross between AKR/J and C57BL/6J generated 32 F2s. 
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Figure 4.10 SNP and methylation sites in a region of mouse chromosome 14. These methylations were found in brain of fetal 
mice.  
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Figure 4.11 Global gene expression patterns in the brain of young (Y) and old (O) mice 
of strain AKR/J (column names begin with A) and C57BL/6J (column names begin with 
B). 
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Figure 4.12 tSNE clusters of brain cells based on variation of open chromatins in C57BL/6J mice. Clusters are shown in 
different colors. Each dot represent a brain cell. 
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Figure 4.13 tSNE clusters of brain cells based on variation of open chromatins in AKR/J mice. Clusters are shown in different 
colors. Each dot represent a brain cell. 
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Figure 4.14 Number of cells where open chromatins were identified in male (M) and 
female (F) brain of C57BL/6J and AKR/J mice. 
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Figure 4.15 Pie chart showing proportion of transcription factor motifs in the open 
chromatins of the top 20 genes (based on number of peaks of genes) in male an female 

brain of the two strains. 
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Figure 4.16 Strategy of F2 pooling for BSA-seq analysis. After phenotyping F2s for 
brain age (brainYEAR score from epigenetic clock analysis), mice representing both ends 

(low and high) in the variation of brain age, was pooled. The bulk DNA from those two 
pools was used for whole-genome sequencing. The sequence data was mapped to 

reference genome of parental mice with low brainYEAR (in this project, it is the genome 
of C57BL/6J which is the mouse reference genome). Mapping data was used to identify 

SNPs that was scored based on SNP-index for the two groups as shown. Finally, delta 
SNP index which is the difference between the two groups was used in sliding window 

analysis to identify genomic regions that control brain aging. 
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