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Modeling State Duration and Emission Dependence in

Hidden Markov and Hidden Semi-Markov Models

Shirley Rojas Salazar

Drs. Erin M. Schliep and Christopher K. Wikle, Dissertation Supervisors

ABSTRACT

Hidden Markov models (HMM) are composed of a latent state sequence and an ob-

servation sequence conditionally independent on the states, which follows an emission

distribution. Hidden semi-Markov models (HSMM) extend the HMM by explicitly

modeling the duration in the states. This dissertation expands the HSMM by in-

troducing non-homogeneity in the duration model, with duration parameters defined

as functions of time-varying covariates, which has not been considered to date. This

model is applied to high-frequency environmental data. The variable transition HMM

(VTHMM) also expands the HMM by considering the duration in the state transition

probabilities. We present a VTHMM for team sports data to obtain inference on the

dynamic network of players in a game, and model high temporal resolution player

location data. Lastly, the conditional independence assumption in the emission dis-

tribution can be violated, in particular with high-frequency data. We propose two

novel approaches to address the conditional dependence, by introducing data sub-

sampling in the MCMC sampling algorithm for parameter inference in HMMs and

HSMMs, and by considering basis function expansions in the emission distribution.
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Chapter 1

Introduction

A hidden Markov model (HMM) is composed of two stochastic processes, a sequence

of unobserved discrete states and another set of observable random variables that

are assumed conditionally independent given the state at each observed time point

(Yu, 2016; Rabiner, 1989). There is a probability defined for the transition from one

state to another, which is conditional on the current state. The probability of self-

transitioning (i.e., remaining in the same state) is non-zero, which implies that the

time spent in each state follows a geometric distribution (Yu, 2010). The duration

has to be explicitly modeled in processes for which this distributional assumption

may not be realistic. This model extension corresponds to the hidden semi-Markov

model (HSMM) (Yu, 2016).

HMMs and HSMMs have been applied in numerous areas. There is an increasing

number of high-frequency data sets being collected from new kinds of instruments

(e.g., wearable devices, health monitoring, ecological tracking, and behavior sampling

(acceleration)). HMMs and HSMMs are an appropriate approach for analyzing these
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high temporal resolution data when the observations are considered to be related to a

latent or unobserved process. Among the first areas to take advantage of these models

was speech recognition, but they have since been applied in other areas such as activity

recognition (Duong et al., 2005; Natarajan and Nevatia, 2007), event recognition in

videos (Motoi et al., 2012; Xie et al., 2004), animal movement (Scharf et al., 2016;

Leos-Barajas et al., 2017), and animal behavior (Ruiz-Suarez et al., 2022). For a more

comprehensive list of applications of these models see Mor et al. (2021), and Chapter

9 in Yu (2016).

Consider environmental time series, which are increasingly being measured at

high temporal resolutions. For example, Woillez et al. (2016) applied an HMM to

high-resolution temperature and depth data for geolocation and tracking of pelagic

fish. Rousseeuw et al. (2015) analyzed data measured every 20 minutes in a marine

station and applied a hybrid HMM to model phytoplankton dynamics. Stoner and

Economou (2020) developed an HMM to analyze sub-daily rainfall data, and applied

it to a dataset of hourly time series of rainfall in Exeter, UK. An example of the

use of an HSMM for high-frequency data corresponds to the study by Sansom and

Thompson (2008), which applied an HSMM using a high temporal resolution rainfall

dataset collected in New Zealand to study the spatial and temporal variation of

rainfall.

Time-series data from wearable devices are another example of high temporal

resolution data that have been analyzed with HMMs and HSMMs. Wearable devices

are accessories, or smart clothes, worn on or near the body (Motti, 2020) that provide

users with information regarding, among other things, their health (Wu and Haick,

2018) and physical activity (Li et al., 2016). These devices have been used in contexts
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such as health or sports to monitor the performance of athletes during training or

competition. The data collected by wearing devices are obtained at an extremely

high-frequency for a large number of variables, including acceleration, velocity, and

heart rate (Kos and Kramberger, 2017; Motti, 2020). There are several applications

of HMMs to these type of data. One such example is the activity recognition analysis

by Thomas et al. (2010) who apply both an HMM and a semi-Markov model (SMM)

to acceleration data collected at 100 Hz in training sessions of elite swimmers. In

another example, Huang et al. (2018) applied an HMM to physical activity data from

individuals collected every 5 minutes over several days to obtain inference on activity

states.

The chapters of this dissertation present HMMs and HSMMs that deal with high-

frequency data in the environmental and sports context. In the sections of this chapter

we give a brief overview of the HMM and introduce various ways of modeling the state

duration, which includes the use of HSMMs. We also provide insight into the violation

of the assumption of conditional independence in the emission distribution when we

analyze high-frequency data. Lastly, an overview of the chapters of this dissertation

is provided.

1.1 A Brief Overview of Hidden Markov Models

In this section we briefly describe HMMs, variable transition HMMs (VTHMMs) and

HSMMs.

3



1.1.1 HMM

The first of the two stochastic processes in an HMM is the unobserved state sequence,

denoted as s = (s1, . . . , sT )
′, where st ∈ {1, 2, . . . , S} for time t = 1, . . . , T , and S is

the total number of unique states. In addition, we have an observation sequence de-

noted as y = (y1, . . . , yT )
′. In a discrete-time HMM, the probabilities of transitioning

from one state to another are denoted as pj,k, with pj,k = P (st+1 = k | st = j), where

1 ≤ j, k ≤ S, and
∑S

k=1 pj,k = 1. These entries make up the transition probability

matrix, P. The observations have a distribution yt ∼ f (θst) with state-dependent

parameters θst ∈ {θ1, · · · , θS}. Figure 1.1A illustrates the HMM, where one observa-

tion is emitted by each state, and at each time point there is a transition in the state

sequence.

In HMMs, the duration in each state follows a geometric distribution and is not

explicitly modeled (Yu, 2010). The duration can be considered in HMMs with the

following general approaches: HSMMs, variable transition HMMs (VTHMMs), and

expanded state HMMs (Johnson, 2005).

1.1.2 HSMM

Figure 1.1C illustrates the sequences in an HSMM. Here, there is still a sequence

of states, but instead of only one observation emitted per state, we have a group

of observations emitted in each state. Each of the groups of observations from each

state can be viewed as segments, labeled as q, with q = 1, . . . , Q. The number

of observations in each of the Q segments defines the duration in the state. Here

we consider the state sequence as s = (s1, . . . , sQ)
′, where sq ∈ {1, 2, . . . , S}. The

duration in each segment is denoted as τq. The distribution of these durations is

4



defined generally as τq ∼ h
(
ϕsq

)
with state-dependent parameters ϕsq .

The state-specific parameters ϕsq in the duration distribution are assumed to be

constant over time. However, with this approach we cannot capture the temporal

variation in the duration in each state. There is a need to introduce non-homogeneity

explicitly in the state duration modeling. Although non-homogeneity has been defined

in the emission distribution, and in the transition probabilities, to date it has not been

explicitly presented in HSMMs.

1.1.3 VTHMM

In the VTHMM, as with the HMM, one observation is emitted by each state (Figure

1.1B). However, the transition probabilities pj,k are not constant in time. Rather,

they are a function of the duration in the state at time t, and are denoted as

pj,k(dt) = P (st+1 = k | st = j, dt). This model, with duration dependent state transi-

tion probabilities, was introduced by Vaseghi (1995) and Ramesh and Wilpon (1992).

It is also presented in Azimi et al. (2005) with an improvement in computational

efficiency. In a non-homogeneous or inhomogeneous HMM, the transition probabil-

ities are not constant in time. As such, the VTHMM can be regarded as a type of

non-homogeneous HMM. In Yu (2016), it is referred to as a special case of a HSMM,

where transition to the same state (self-transition) is allowed.

1.2 Conditional independence assumption

An observation in an HMM (or HSMM) is assumed to be independent of previous

observations and states conditioned on the current state. Thus, it is conditionally
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independent given the current state (Pohle et al., 2017; Yu, 2016). In some observation

sequences, especially with high-frequency data, it is unlikely that an observation at

time t is not related to the observation at t − 1 or previous observations even after

conditioning on the latent state at time t.

A common approach to deal with this conditional independence violation is the

use of Markov-switching regression models Hamilton (2010), which incorporate an

autoregressive structure into the emission distribution. There are several applications

of HMMs and HSMMs that use an AR or a VAR structure (Ruiz-Suarez et al.,

2022; Langrock et al., 2017; Xu and Liu, 2021, e.g.). Other approaches, which are

computationally more challenging, include the use of neural networks (Dai et al.,

2017; Ravuri and Wegmann, 2016).

There are other potential approaches that can be incorporated in HMMs and

HSMMs to account for the conditional dependence. These include the use of ba-

sis functions, or subsampling the data within the sampling algorithm for parameter

inference. Basis function expansions are used to model temporal and spatial depen-

dence Wikle et al. (2019), and can be easily integrated into the emission distribution

as nonparametric temporal random effects. Langrock et al. (2015) introduced basis

functions (penalized splines) to model the observation sequence more flexibly, but

basis functions have not been utilized with the purpose of accounting for residual

dependence in the emission distribution. On the other hand, data subsampling has

been used to reduce computational time in MCMC sampling algorithms (Maclaurin

and Adams, 2015; Quiroz et al., 2019), but it has not been explored as an option to

reduce the impact of autocorrelation in the observation sequence.
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1.3 Overview of the Chapters

The chapters of this dissertation consider duration modeling and solutions to con-

ditional independence violation in HMMs and HSMMs, with applications to high

temporal resolution data. In the second chapter we model the duration explicitly in

an HSMM with a flexible approach that defines time-varying state duration param-

eters. The third chapter considers an implicit modeling of the duration through a

VTHMM in the context of networks in team sports. In the fourth chapter, we propose

new ways for dealing with conditional dependence in the emission distribution and

evaluate their impact through simulation and a real-world data set.

In Chapter 2 we model the duration in HSMMs by defining the duration distri-

bution parameter as a function of time-varying covariates. This is a novel approach

since the duration parameters in HSMMs have in the past been assumed to be con-

stant over time. To this end, we provide a flexible method for situations in which this

parameter changes over time. We apply the model to environmental high-frequency

data that is commonly used as an indicator of cyanobacteria in a lake.

In Chapter 3 we apply a VTHMM in the context of a dynamic network to implicitly

model the duration in a state. We define the state transition probabilities as a function

of time-varying covariates, and among those covariates we include the duration in the

state. We model the locations of players in the context of team sports, specifically

soccer. The data come from wearable devices that record the locations at a high

temporal resolution (every second). To model these locations we adapt a model

originally proposed for animal movement. We assume a two state model where the

states define the connection or non-connection between each pair of players. Our

model provides a non-deterministic way of defining the adjacency matrix in a team

7



sports dynamic network, which has not been considered in this context. Our approach

represents a contribution to the methods available to model team sports data since

it provides a framework to model player movement in a game, assuming there is an

underlying network and considering the duration of a connection (or non-connection)

and other time-varying covariates to explain the probability of having (or not having)

a connection throughout the game.

In Chapter 4 we explore how inference of the emission distribution parameters

is affected by the presence of conditional dependence in the observation sequence

of HMM and HSMMs. We introduce two novel approaches to tackle the conditional

independence violation in the emission distribution. The models proposed are applied

to the same environmental dataset used in Chapter 2, to illustrate how the analysis of

these types of datasets can account for the conditional dependence of high temporal

resolution observations. The approaches we propose are not constrained to only

tackle dependence with an autoregressive structure, unlike current methods such as

Markov-switching autoregressive models, and they also provide a computationally

more efficient alternative to current neural network approaches.

The concluding chapter provides a brief overview and discussion of future work

to extend the models presented in this dissertation. The future work includes the

application of the model developed in Chapter 2 with other duration distributions,

such as a geometric mixture, and further exploring the criteria for number of states

selection. Also, future work involves the extension of the model in Chapter 3 to

consider the graph-coupled hidden Markov model (Dong et al., 2012).

8
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Figure 1.1: State and observation sequences. Panel A. HMM: One observation is
emitted by each state in the sequence. Panel B. VTHMM: One observation is emit-
ted by each state in the sequence and the transition probability is a function of the
duration. Panel C. HSMM: Several observations are emitted by each state, the num-
ber is determined by the duration in the state.
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Chapter 2

A Bayesian Hidden Semi-Markov
Model with Covariate-Dependent
State Duration Parameters for
High-Frequency Environmental
Data

2.1 Introduction

Environmental time series data are measured at different frequencies, with a gen-

eral increasing trend towards high temporal resolutions. These high-frequency data

can be studied using a wide range of analyses. For example, Li and Sun (2021)

presented a stochastic precipitation generator and applied it to high-frequency (30-

second) rainfall data. Lin et al. (2020) used high-frequency (1-second) supervisory

control and data acquisition (SCADA) wind power data to predict power. They uti-
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lized a deep neural network to predict the wind power and incorporated the isolation

forest method to identify anomalies in the data points. High-frequency time series

data are also collected in lakes and have been analyzed with different models and

statistical approaches. Carpenter et al. (2020) studied the dynamics of cyanobacteria

in Lake Mendota (Wisconsin, USA) using a drift-diffusion-jump model. The model

was applied to phycocyanin concentrations measured every minute for the years 2008

through 2018. They found that for each of the years studied, the concentration of

phycocyanin can be summarized with two stable states. Coloso et al. (2011) studied

drivers of lake ecosystem metabolism by fitting multiple linear regression models to

high-frequency data from two temperate lakes. For each of the dependent variables,

gross primary production, respiration, and net ecosystem production, different impor-

tant drivers were identified, including temperature, wind speed, photosynthetically

active radiation, among others.

Hidden Markov and hidden semi-Markov models provide an alternative approach

for analyzing high-frequency environmental data. A hidden Markov model (HMM)

consists of a sequence of unobserved discrete states and another set of observable

random variables that are assumed conditionally independent given the state at each

observed time point (Rabiner, 1989). The transition from one state to another de-

pends on a transition probability, which is defined conditionally on the current state,

and where the probability of self-transitioning (i.e., remaining in the same state) is

non-zero. This non-zero probability implies that the time spent in each state follows

a geometric distribution (Yu, 2010). However, this distributional assumption may not

be realistic for some processes, making it necessary to additionally model the state

duration. This model extension defines the hidden semi-Markov model (HSMM) (Yu,
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2016).

Environmental data have been modeled with HMMs and HSMMs. For example,

Rousseeuw et al. (2015) applied a hybrid HMM to model phytoplankton dynamics us-

ing data measured every 20 minutes in a marine station. They incorporated a spectral

clustering method into their HMM modeling in order to build a fully unsupervised

HMM. Stoner and Economou (2020) developed an HMM to analyze sub-daily rain-

fall data, and, through the use of simulations, were able to show that their model

can capture characteristics such as long dry periods or seasonal variation. They also

applied the model to a real dataset of hourly time series of rainfall in Exeter, UK.

Similar types of data have been analyzed with semi-Markov and HSMMs. For exam-

ple, King and Langrock (2016) present an extension of the Arnason-Schwarz model

where they define a semi-Markov model for the state process, and apply the model

to capture-recapture data of house finches. Sansom and Thompson (2008) studied

the spatial and temporal variation of rainfall with an HSMM using a high temporal

resolution rainfall dataset collected in New Zealand.

When the duration in an HSMM is modeled with a Poisson distribution, the

duration parameter, which can be different for each hidden state, is assumed to be

constant in time. This assumption, however, might not be reasonable in all cases. If

we consider, for example, hourly rainfall data observed over the course of a year, and

we model it with two different states representing wet and dry episodes, we would

expect the length of time of these episodes to be different depending on the time of

year due to seasonal rainfall patterns (e.g., monsoon season).

To capture this temporal variation in the duration in each state, we extend the

HSMM by modeling the duration parameters as a function of time varying covariates.
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This enables the identification of factors associated with the time spent in the different

states. For example, when there is a state transition, the duration parameter for the

new state could be modeled as a function of covariates observed in the period leading

up to the transition, or the value of the covariate at the moment right before the

switch. The functional relationship between covariates and the parameters of the

duration distribution could be state-specific, and modeling these relationships can

provide important inference with regard to their extent and direction. Importantly,

inference is not obtained at the high-frequency level at which the data are collected,

but rather in terms of the duration intervals.

The goal of this chapter is to develop an HSMM with time-varying duration pa-

rameters that are dependent on covariates for studying high-frequency environmental

data. Specifically, we model high-frequency concentrations of phycocyanin, an esti-

mate of presence or relative abundance of cyanobacteria (blue-green algae), in Lake

Mendota, Wisconsin. We use covariates to explain the variation in the duration in

each state and obtain inference on important characteristics. Previous approaches

using HMMs or HSMMs have included covariates in the observation model or in the

specification of transition probabilities (e.g. Koki et al., 2020; Economou et al., 2014;

Titman and Sharples, 2010), but the inclusion of covariates in the model for state

durations has not been considered explicitly. By modeling the state transition prob-

abilities with covariates, the durations are modeled but in an implicit way, such as in

Stoner and Economou (2020).

Understanding the temporal variation in cyanobacteria concentration as well as

drivers of this variation in urban lakes is important to public health. There has

been an increase in cyanobacterial blooms (Huisman et al., 2018) and these high
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concentrations of blue-green algae can produce toxins that are linked to illness in

humans and animals (Paerl and Huisman, 2008; Falconer, 1999; Havens, 2008).

The remainder of this chapter is outlined as follows. In Section 2.2 we present

the phycocyanin data used in this analysis. Section 2.3 provides a description of the

HSMM, which defines the duration distribution parameter as a function of covari-

ates. The results of the model applied to the phycocyanin dataset are presented in

Section 2.4. Lastly, Section 2.5 provides a discussion and conclusion, as well as future

extensions.

2.2 High-frequency Lake Mendota data

The high-frequency environmental data in this application correspond to measure-

ments from Lake Mendota, Wisconsin, in 2018. The data can be found in the North

Temperate Lakes Long-Term Ecological Research program database (Lead PI et al.,

2020). Sensors in an instrumented buoy located in the lake recorded measurements

every minute. In 2018, the buoy recorded observations from April 11 to November 15.

The dataset consists of several other variables including weather conditions (air tem-

perature, relative humidity, wind speed, and wind direction), and lake characteristics

(such as chlorophyll, photosyntetically-active radiation, dissolved oxygen, etc).

Phycocyanin is a pigment of cyanobacteria, and provides an estimate or diagnostic

of its presence and concentration (Carpenter et al., 2020). Given that high concentra-

tions of cyanobacteria are a major public health concern, particularly in urban lakes

such as Lake Mendota, it is essential to understand the temporal variation in con-

centration levels as well as possible environmental drivers of this variation. For each
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year of their study, Carpenter et al. (2020) modeled the phycocyanin concentrations

and identified two regimes of low and high phycocyanin, as well as abrupt transitions

between the states. The objective of our analysis is to extend on their work by de-

scribing the latent states of cyanobacteria as captured by phycocyanin concentration,

the duration in each of those states, and the covariates associated with that duration.

Following the methods in Carpenter et al. (2020), we consider the standardized

levels of phycocyanin as our observation sequence. We first compute the maximum

hourly measurement, which results in a total of 5232 observations (Figure 2.1). These

maximum values of phycocyanin are measured in relative fluorescent units (RFU).

They are standardized by being log transformed (log10), centered and scaled, and

fitted using a dynamic linear model. See the supplementary information in Carpenter

et al. (2020) for more details.

In a study done in Lake Mendota, Soranno (1997) found that weather variables can

impact the dynamics of algae at finer time scales. Considering this, the variables we

examine as possible covariates to capture the time variation in the state durations are

hourly average air temperature, wind speed, relative humidity and photosynthetically-

active radiation (PAR). During the time period April 11 to November 15, 2018, the air

temperature, measured in ◦C, ranged from -7 to 33, with a mean of 17. The average

and maximum wind speed were 3.8 and 15 m/s respectively. Relative humidity ranged

from 21% to 100% with an average of 74%. Radiation was measured with a surface

sensor in µmolm−2 s−1 and it ranged from 0 to nearly 2000.
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Figure 2.1: Phycocyanin standardized levels in Lake Mendota, 2018. Panel A. Full
period (mid April to mid November). Panels B and C show the observations in more
detail for two 5-day periods in June and November, respectively

2.3 Hidden semi-Markov model with covariate de-

pendent duration parameters

We begin by specifying the HMM and important notation. Then, we extend the HMM

to the HSMM, develop the state-specific duration model as a function of covariates,

and describe the methods for Bayesian inference.
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2.3.1 Hidden Markov model and notation

An HMM includes two stochastic processes, one represents a Markov chain of states

that are hidden, and the other generates a sequence of observations that are influenced

by the unobservable states (Rabiner, 1989; Yu, 2010). In a discrete-time HMM, the

sequence of observations from time 1 to n can be denoted as y = (y1, . . . , yn)
′. The

corresponding sequence of unobserved states is denoted as S = (S1, . . . , Sn)
′, where

Si ∈ {1, 2, . . . ,M}, i = 1, . . . , n, and M is the total number of unique states. The

state at time 1 has a distribution defined by ρj = P (S1 = j), j = 1, . . . ,M . The

transition to the next state, S2, is conditional on state S1 according to the Markov

property. In general, the transition probability matrix P provides the probabilities of

transitioning from one state to another when the state space is discrete and constant

in time. The matrix P, has entries pj,k, with pj,k = P (Si+1 = k | Si = j), where

1 ≤ j, k ≤M , and
∑M

k=1 pj,k = 1.

Observations are emitted by each of the states in the hidden sequence (Figure

2.2A) following a state-dependent probability distribution f(y|θ,S). Assuming the

observation distribution is Gaussian, the parameters θ correspond to the mean and

variance for each state: µ = (µ1, · · · , µM)′ and σ2 = (σ2
1, · · · , σ2

M)′. The joint likeli-

hood of the observations can be written as:

L(y | µ,σ2,S) =
n∏

i=1

f(yi|µSi
, σ2

Si
),

and the likelihood of the Markov chain is:

L(S | ρ,P) = ρS1

n−1∏
i=1

pSi,Si+1
.
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The complete likelihood of the Markov model is the joint likelihood of observations

and states: L(y,S | µ,σ2,ρ,P) = L(y | µ,σ2,S) × L(S | ρ,P). In summary, an

HMM with M states and n observations has a set of model parameters that includes

the emission distribution parameters µ and σ2, the initial distribution probabilities

ρ, and the transition probability matrix P.

A

States

Observations

S1

y1

S2

y2

S3

y3

· · ·

· · ·

Sn

yn

B

States S1 S2 SQ· · ·

· · ·Observations y1 y2 · · · yτ1 yT1+1 yT1+2 · · · yT1+τ2 yTQ−1+1 yTQ−1+2 · · · yTQ−1+τQ

Durations τ1 τ2 τQ· · ·

Figure 2.2: State and observation sequences. Panel A. HMM: One observation is
emitted by each state in the sequence. Panel B. HSMM: Several observations are
emitted by each state, the number is determined by the duration in the state

2.3.2 Hidden semi-Markov model

Figure 2.2B illustrates the HSMM where instead of assuming there is only one obser-

vation per state, a sequence of observations are emitted. The number of observations

depends on the amount of time spent in the state. Following the notation in Economou

et al. (2014), let τ represent the length of time that the sequence remains in a state

before transitioning. These durations are labeled in Figure 2.2B as τ1, . . . , τQ, where

Q is the number of intervals or segments. For q = 1, . . . , Q we define Tq to be the
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cumulative duration in segments 1 through q. Lastly, we define hj(τ | ϕj) as the

duration distribution for each state j, j = 1, . . . ,M , with parameter ϕj.

Similar to the Markov model, the likelihood of the semi-Markov model has two

main components consisting of the likelihood of the observations conditional on the

states and the likelihood of the semi-Markov chain of states. The joint likelihood of the

observations can be specified analogous to the HMM case, but is written incorporating

the segment-specific notation

L(y|µ,σ2,S) =
n∏

i=1

f(yi|µSi
, σ2

Si
) =

Q∏
q=1

f(yτq |µSq , σ
2
Sq
), (2.1)

where yτq corresponds to the vector of all the observations in time interval q. The

likelihood of the state sequence includes the distribution of the first state, the transi-

tion probabilities for the state switches, as well as the information from the duration

times

L(S1, . . . , SQ, τ1, . . . , τQ|ρ,P,ϕ) = ρS1

Q−1∏
q=1

hSq(τq | ϕSq)pSq ,Sq+1hSQ
(τQ | ϕSQ

). (2.2)

Thus, the joint distribution of data, states and durations of the hidden semi-Markov

model can be written as

L(yτ1 , . . . ,yτQ , S1, . . . , SQ, τ1, . . . , τQ | µ,σ2,ρ,P,ϕ)

= ρS1

Q−1∏
q=1

hSq(τq|ϕSq)pSq ,Sq+1f(yτq |µSq , σ
2
Sq
)

× hSQ
(τQ|ϕSQ

)f(yτQ|µSQ
, σ2

SQ
).

(2.3)

Note we have added the duration distribution parameters of each state to the list

of parameters of the HMM. Specifically, the set of model parameters of the HSMM
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presented includes µ,σ2,ρ,P, ϕ, S, and τ .

2.3.3 Use of covariates to model duration

Previous approaches have specified non-homogeneous HMM and HSMMs by mod-

eling the parameters of the emission distribution or the probabilities of transition

using covariates. We propose introducing non-homogeneity in the HSMM duration

by letting the parameters of the state duration distribution vary in time as a function

of covariates. If we let the duration distribution be a zero-truncated Poisson, we can

define the duration parameter ϕSq+1 of the interval q+1 as a function of the covariate

measurements observed prior to the transition at Tq+1. Notice that this specification

enables the duration parameter to be both state-specific and vary in time.

Let X be an n × r covariate matrix with rows corresponding to times 1 to n,

where r is the number of covariates. Let βSq+1 be an (r + 1)-dimensional coefficient

vector for state Sq+1 (accounting for an intercept in the model). Then the duration

parameter for interval q + 1, which we denote as ϕSq+1(X1:Tq ,βSq+1), is a function of

the covariate values observed up to time point Tq (the first Tq rows of X), and state

specific coefficients βSq+1 . Here, ϕSq+1(X1:Tq ,βSq+1) can take any functional form of

the covariates as long as ϕSq+1 > 0. For example, we can write the function as

ϕSq+1(X1:Tq ,βSq+1) = g
(
β0,Sq+1 + β1,Sq+1f1

(
x1,1:Tq

)
+ · · ·+ βr,Sq+1fr

(
xr,1:Tq

))
, (2.4)

where g(·) is a specified function that ensures ϕSq+1 > 0, and f1(·), . . . , fr(·) can

be any function of the covariates observed from time 1 to the time previous to the

transition, Tq. The joint distribution, which now includes the state-specific duration

parameter function, can be written as:
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L(yτ1 , . . . , yτQ , S1, . . . , SQ, τ1, . . . , τQ | µ,σ2,ρ,P,B,X)

= ρS1hS1 (τ1 | ϕS1(X0,βS1)) f(yτ1|µS1 , σ
2
S1
)

×
Q∏

q=2

hSq

(
τq | ϕSq(X1:Tq−1 ,βSq)

)
pSq−1,Sqf(yτq |µSq , σ

2
Sq
),

(2.5)

where X0 are the initial values for the covariates, and B is the matrix of β-coefficients

with M rows and the number of columns is the number of covariates, r, plus an

intercept:

B =



β0,1 β1,1 · · · βr,1

β0,2 β1,2 · · · βr,2
...

...
. . .

...

β0,M β1,M · · · βr,M


.

That is, β′
Sq

is the row of B that corresponds to state Sq. For example, when the

state in interval q is 1, then βSq=1 = (β0,1, β1,1, . . . , βr,1)
′.

2.3.4 Estimation of model parameters

Model inference can be obtained in a Bayesian framework using Markov chain Monte

Carlo (MCMC) and a Metropolis-within-Gibbs sampling algorithm (see Appendix

A.1 for the detailed sampling algorithm). To complete the model specification, we

assign diffuse priors to the model parameters. The means of the emission distribution

are assigned independent Normal priors, N (0, 10000) and the variances are assigned

inverse-Gamma priors, IG (3, 3). The initial probabilities, as well as each of the rows

of the transition matrix, have Dirichlet priors with concentration parameters of 1.

The coefficient parameters in the model for the state-specific durations are assumed
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to be independent and distributed as N (0, 10000).

The posterior distribution of the states, durations, and rest of the parameters of

the HSMM can be summarized as:

p(S, τ ,µ,σ2,ρ,P,B | y,X) ∝ p(y | S,µ,σ2)× p(τ | S,B,X)× p(S | ρ,P)

×p(µ | θµ,λ
2
µ)× p(σ2 | θσ2 ,λσ2)× p(B | θB,λ

2
B)× p(ρ | θρ)× p(P | θP ).

(2.6)

The state means and variances, initial probabilities, and transition probabilities can

be sampled from their full conditionals using a Gibbs update, whereas a Metropolis

algorithm is needed for the duration distribution coefficients.

Economou et al. (2014) provide an MCMC implementation of the HSMM using

a forward algorithm to estimate the parameters, which alleviates the need to sample

the state sequence in the process. However, our model requires sampling the states

in order to obtain inference on the parameters of the duration distributions. The

state sequence in an HSMM can be sampled with the Gibbs sampler presented in

Johnson and Willsky (2013), and we use it to sample the states in each iteration of

our MCMC. We verified with a simulation that our sampling algorithm can recover

the true parameters.

2.4 Application to Lake Mendota phycocyanin data

The HSMM specified in (2.5) was used to model the hourly maximum standardized

levels of phycocyanin in Lake Mendota for the period April 11 to November 15, 2018.

In our investigation, we considered different choices of the number of states as well as

different functions of the covariates in the duration distribution and chose the model
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with the lowest deviance information criterion DIC.

Recall that the number of states in HMMs and HSMMs has to be chosen a priori

and is usually based on information criteria or expert knowledge (Liu and Song,

2020). Carpenter et al. (2020) identified two stable states representing high and low

phycocyanin, as well as an unstable equilibrium between the two states. Motivated

by their analysis, we investigated both a two state model and three state model.

The duration (hours) in each state is modeled using a zero-truncated Poisson

distribution, where the duration parameter is defined as a function of four covariates.

These include temperature, wind speed, relative humidity, and PAR. Including the

intercept term, this results in five coefficient parameters for each state. Following the

notation in (2.4), the duration parameter function in this application is defined as:

ϕSq+1(X1:Tq ,βSq+1) = exp
[
β0,Sq+1 + β1,Sq+1f(x1,Tq−l:Tq) + β2,Sq+1f(x2,Tq−l:Tq)

+β3,Sq+1f(x3,Tq−l:Tq) + β4,Sq+1f(x4,Tq−l:Tq)
]
,

(2.7)

where f(xr,Tq−l:Tq) is a function of covariate r from time Tq−l to Tq. The functions f(·)

we considered were the mean, maximum, slope, variance and sum, for time periods

of 3, 6, 12 and 24 hours (l=2, 5, 11, 23, respectively).

For each model considered, the MCMC algorithm was run for 60000 iterations.

The first 20000 iterations were obtained using an adaptive random walk Metropolis

algorithm for the duration distribution coefficients. These iterations were used to

select the proposal variances for the random walk and then discarded. The remaining

40000 iterations were obtained based on these fixed proposal variances and these

samples were used for parameter inference.

The three-state model with covariates defined as the maximum over the 12 hours

(l = 11) before a transition resulted in the lowest DIC. All subsequent results and
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model inference pertain to this model.

The posterior mean and 95% credible intervals for the emission distribution pa-

rameters in each of the states is presented in Table 2.1. There is a clear distinction

between the mean phycocyanin in each state since none of the credible intervals over-

lap. The three states represent low, medium, and high cyanobacteria states. The

variability in the lower state is notably higher, and the wide range of this state can

be seen in Figure 2.3. These low, medium and high states of cyanobacteria can be

associated with the regimes found in Carpenter et al. (2020). Recall that they identi-

fied two stable states, which are comparable to our low and high states (S1 and S3),

while the shifts in between these two regimes correspond to our middle state (S2).

Table 2.1: Posterior mean and 95% CI of the emission distribution parameters

State Mean Variance
S1 -2.19 (-2.26, -2.09) 0.74 (0.68, 0.83)
S2 0.08 (-0.05, 0.25) 0.44 (0.36, 0.51)
S3 1.73 (1.65, 1.81) 0.44 (0.39, 0.51)

The posterior probabilities of transitioning are shown in Table 2.2. Overall, it is

more likely there is a transition between adjacent states (e.g., 1 to 2) than a jump

from 1 to 3. This is also true for transitions from higher to lower cyanobacteria states

(e.g., 3 to 2). The transition between adjacent states is expected given that the

middle state represents a passing state from regimes of cyanobacteria concentration.

24



−2.5

0.0

2.5

04−11 00:00 05−23 00:00 07−03 00:00 08−14 00:00 09−25 00:00 11−05 00:00
Hour

P
hy

co
cy

an
in

 (
st

an
d 

le
v)

States

1
2
3

A

0%

25%

50%

75%

100%

10−13 09:00 10−15 01:00 10−16 17:00 10−18 09:00 10−20 01:00 10−21 17:00
Hour

State

1
2
3

B

Figure 2.3: Phycocyanin standardized levels classified by latent states of cyanobacte-
ria. Panel A. Full state sequence. For each time point, the state is the mode obtained
among all iterations. Panel B zooms in the period enclosed in the rectangle above. A
percent stacked bar for each time point shows the relative distribution of the states
sampled in the iterations

Table 2.2: Posterior mean and 95% CI for the state transition probabilities.

Transition State 1 State 2 State 3
State 1 – 0.96 (0.87, 1) 0.04 (0, 0.13)
State 2 0.59 (0.43, 0.73) – 0.41 (0.27, 0.57)
State 3 0.09 (0, 0.27) 0.91 (0.73, 1) –
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Table 2.3 provides the number of segments in each state as well as summaries of

the duration parameters and durations for each state. The second state has more

segments, yet the average duration parameter for this state is much smaller than the

other two states. The first and third state have fewer segments, but both the mean

and variation in the duration parameter is greater than for the second state. The

variation in the duration parameters both within and between states signifies the

importance of modeling the durations using covariates and state-specific parameters.

Table 2.3: Segments and duration parameter statistics

State # segments
Duration parameter Duration (hours)

Mean Minimum Maximum Mean Minimum Maximum
S1 27 79.7 55.9 102.3 79.7 20 145
S2 44 31.7 14.1 66.5 31.6 1 94
S3 18 97.5 32.7 220.2 96.4 17 230

The posterior means and credible intervals for the coefficients of the state-specific

duration distribution parameters are given in Table 2.4, with the significant coeffi-

cients presented in bold font. The coefficients of the duration distribution provide

information about the average hourly duration in the states.

Air temperature is significant in capturing the variation in the duration in the

high cyanobacteria state and is directly related to the duration. That is, when the

maximum temperature in the hours before a transition to this state is warmer, the

duration is longer. Wind speed is significant in the low cyanobacteria state. When the

maximum of wind speeds in the 12 hours prior to a transition to the low cyanobacteria

state is high, we anticipate a shorter duration in that state. Relative humidity is a

significant predictor of duration in the second state, with an inverse relation. Lastly,
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the photosyntetically-active radiation covariate is related to the third state. The

negative coefficient for this state indicates that when the maximum value of PAR is

at higher levels in the half day before there is a transition to the higher cyanobacteria

state, we expect a decrease in the duration.

Table 2.4: Posterior mean and 95% CI of the duration parameter coefficients.

Variable State 1 State 2 State 3
Intercept 4.34 (4.25, 4.42) 3.40 (3.16, 3.56) 4.46 (3.98, 4.87)
Temperature 0 (-0.08, 0.09) 0.16 (0, 0.32) 0.40 (0.05, 0.74)
Wind speed -0.12 (-0.23, -0.05) 0.13 (-0.07, 0.25) 0.01 (-0.34, 0.27)
Relative humidity -0.02 (-0.15, 0.06) -0.27 (-0.41, -0.05) -0.24 (-0.61, 0.16)
PAR 0.01 (-0.09, 0.11) 0.04 (-0.13, 0.21) -0.55 (-0.86, -0.30)

2.5 Discussion

In this work we present an extension of the HSMM and apply it to high-frequency

environmental data. Using a zero-truncated Poisson distribution for the duration

(hours) in each state, we investigated the variation in time spent in each state as

a function of time-varying covariates. Although not demonstrated here, this model

could be applied to obtain predictions of the next states in the sequence and their

expected duration.

In our application, the model enabled the characterization of cyanobacteria con-

centration in a lake and the detection of important differences in the relationship

between the duration in the states and the covariates. The variability of the duration

parameters in the different segments supports the introduction of non-homogeneity

in the HSMM. While our modeling approach identified similar states of cyanobacteria

27



levels as in Carpenter et al. (2020), we identified unique sets of weather covariates

associated with the duration in each of the states.

Higher spring air temperature has been shown to be directly related to cyanobac-

terial biovolume (Ho and Michalak, 2020). As such, the effect of temperature on the

duration in the high cyanobacteria state was expected given that cyanobacteria thrive

under warm temperature (Paerl and Huisman, 2008). With respect to wind speed,

it is possible that transitions between steady states can be due to wind mixing. For

example, Soranno (1997) showed that wind velocity was low during high-pigment con-

ditions, specifically when compared to the wind speeds in the days leading up to these

periods. Isles et al. (2015) showed a sharp threshold for physical mixing of the water

column at approximately 4.5 m/s, which could break up either stable state (S1 or S3

in our model). Whereas precipitation has been shown to be related to blooms (Reich-

waldt and Ghadouani, 2012; Carpenter et al., 2020), these data were not available for

this analysis and will be investigated in future analyses. Given the relationship be-

tween relative humidity and precipitation, the relationship between humidity and the

duration in the middle state detected in our model might be an indirect association.

Lastly, Rousso et al. (2021) found that phycocyanin readings may be underestimated

when fluorescence measurements are taken under bright light, which may explain the

inverse relation we detected in our model between PAR and the duration in the high

state.

The inference obtained from the duration in this model can be potentially associ-

ated with ecological resilience. Arani et al. (2021) propose to measure resilience, the

maximum perturbation that a system endures without transitioning to another state,

with life expectancy. They present how to fit a Langevin equation to time series data
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to capture the different forces that affect a system, and obtain the mean exit time

from a state to quantify life expectancy. The information provided by our model in

terms of duration in a particular state before transitioning to another can be explored

to measure life expectancy as well.

Other approaches exist for introducing non-homogeneity into HSMMs. For ex-

ample, parameters corresponding to transition probabilities could also be modeled

as a function of covariates. However, the focus of the analysis presented here was

in capturing the variation in the duration of time in each state. Given that a direct

transition from the low to the high state, or vice versa, is unlikely, it was not necessary

to model the transition probabilities in terms of covariates for this application.

In both HMMs and HSMMs, observations are assumed to be conditionally inde-

pendent given the state, meaning they are independent of previous states and obser-

vations (Pohle et al., 2017; Yu, 2016). Incorporating more flexible data models in

HSMMs, such as those that account for possible dependence between high-frequency

observations, is an open research area and will be subject of future work.
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Chapter 3

Variable Transition Hidden
Markov Model for Network
Estimation with Team Sports Data

3.1 Introduction

Network analysis, both static and dynamic, has proven to be a useful tool for analyzing

data from team sports. In such applications, a network consists of a set of actors that

correspond to the players of a team, and the edges are the relations between the

players. Network analysis can help provide inference concerning the performance of

players, team strategy, and evolution of relations between players over time, among

others. For example, Peña and Touchette (2012) used network analysis in a soccer

game to derive a passing network and learn about the strategy of teams. Park and

Yilmaz (2010) analyzed video data from a soccer game with a social network based

on directed and weighted interactions between the actors. Other examples of social
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network analysis in team sports can be found in Clemente et al. (2016).

Hidden Markov models (HMM) and hidden semi-Markov models (HSMM) have

also been applied to sports and team sports data, mostly in applications related

to activity recognition or event detection. These models consider a Markov chain

of unobserved states and a sequence of observations dependent on the states (Yu,

2010). Motoi et al. (2012) used a Bayesian HMM to create metadata for sports

games through event detection, and their method was evaluated using video data of

soccer games to detect events such as kick offs, corner kicks, or goal kicks. Thomas

et al. (2010) performed activity recognition using both an HMM and a semi-Markov

model (SMM) applied to swimming data collected with a wearable sensor, where the

segmentation of the session improved evaluation of the training. Wang et al. (2016)

applied two HMMs to classify badminton strokes based on acceleration magnitude.

The first HMM was used to recognize whether or not the motions corresponded to a

stroke, and the second was used to classify the strokes into different types.

HMMs can be combined with network analysis of sports data. Du et al. (2020)

integrated an HMM into the analysis of network data to provide a model for a player’s

performance in basketball games. The authors analyzed data from 20 games, where

the observation data were the points that a player obtained in each game and the

states defined their performance. A benefit of the combination of HMMs with net-

works is that it provides a way of modeling edges as a latent network. Usually, the

relations among the players are defined in terms of the passes between them (Peña

and Touchette, 2012; Park and Yilmaz, 2010), either as an indicator of whether or

not there is a connection present, or as the number of passes. However, the edges in

a dynamic network can also be modeled as the hidden states in an HMM, which, to
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our knowledge, has not been applied in the team sports context.

The transition probabilities between states in an HMM can be nonstationary

(time-varying). From a modeling perspective, the transition probabilities can be

allowed to change over time as functions of time-varying covariates. This approach

has been used in many applications of HMM and HSMMs. For example, in the sports

context, Ötting et al. (2021) defined the state transition probability as a function of

covariates to account for factors that contribute to a change in the state. In their

work, the states represented the level of control of a team and the covariates used for

the transitions were score difference, an indicator of home game, the market value

of the opposing team and the minute of the game. Another covariate that can be

included in the specification of the transition probabilities is the time in the state.

Both Vaseghi (1991, 1995) and Ramesh and Wilpon (1992) introduced such duration-

dependent state transition probabilities. In this case, the probability of transition to

the next state is a function of the time spent in the state before the transition. This

type of inhomogeneous HMM is termed a “variable transition hidden Markov model”

(VTHMM), and is one of the methods of duration modeling in HMMs (Johnson,

2005) in addition to HSMMs.

In this chapter, we develop a model with a latent network to capture edges between

players in team sports with a VTHMM using player location data. The states are the

edges between players and the probability of these edges is defined in terms of the

time that the players have been connected, as well as other covariates of interest. To

analyze location data of players in the context of a network with an HMM, we adapt

the model developed by Scharf et al. (2016) for the state-dependent distribution of our

HMM (note, they modeled animal telemetry data assuming there is a latent dynamic
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social network). The contribution of this work is threefold. First, we extend the use

of animal movement models to study team sports. Second, we propose modeling the

dynamic process using a VTHMM and incorporate the duration in the state transition

probability. Lastly, it provides a model-based framework to learn the underlying

networks of the players in contrast to previous deterministic approaches.

The chapter is organized as follows. Section 3.2 presents the model, with the

adaptation of the model in Scharf et al. (2016) for our observation model and with

the transition probability function for the state model. Section 3.3 introduces the

player location data from a soccer game that motivated our analysis and the results

of applying our methods to the data. Lastly, Section 3.4 includes a discussion and

directions for future work.

3.2 Model

An HMM is a mixture model that contains two parts, a finite state Markov chain,

which is the mixing distribution, and a sequence of observations that are dependent

on the Markov chain of states (Scott, 2002; Zucchini et al., 2017). The state sequence

can be denoted as S = (S1, . . . , ST )
′, where St ∈ {1, 2, . . . ,M}, for time t = 1, . . . , T ,

and with M being the total number of unique states. The transition from state k at

time t to state l at time t+1 is defined by the probability pk,l = P (St+1 = l | St = k).

We can model the observation sequence y = (y1, . . . , yT )
′ with a state-dependent

probability distribution with parameters θ, often referred to as emission distribution,

f(y|θ,S).

The duration is not explicitly modeled in HMMs. Rather, it implicitly follows a ge-
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ometric distribution (Yu, 2010). There are various ways to incorporate duration mod-

eling into HMMs. These approaches include hidden semi-Markov models (HSMM),

variable transition HMMs (VTHMM), and standard HMMs that have complex state

topologies or expanded states (Johnson, 2005).

The VTHMM is an HMM where the transition probabilities depend on the time

spent so far in the current state (Vaseghi, 1995). The probabilities are defined as

pk,l(dt) = P (St+1 = l | St = k, dt), with dt being the duration spent in the current

state (i.e., state k) up to time t. The emission distribution is defined in the same way

for both types of models. The VTHMM can also be seen as a type of inhomogeneous

or nonstationary HMM. In these models the transition probabilities are not constant

in time, and will change according to time-dependent covariates. The model we

present in this chapter is an expanded VTHMM where other covariates in addition

to the duration are considered in the state transition probabilities.

In the following subsections we present the details of a VTHMM applied to player

location data in team sports. In Section 3.2.1 we present the function for the transition

probabilities, which takes into account time-dependent covariates and duration, and

in Section 3.2.2 we describe the model used for the observed player location data.

3.2.1 Duration dependent state transitions

In our model for team sports data we assume that at each time point t there is an

underlying network G. This network can be represented as a graph, with an adjacency

matrix at t denoted as Wt. The edges in G are unweighted and undirected, meaning

that the entries ofWt only indicate whether or not there is a relation between players i

and j. We regard this relation as a latent connection between the players and analyze
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it as a hidden state sequence in our model. Specifically, we consider a two state model.

For each pair of players i and j, there is a state sequence wij,1, . . . , wij,T , where the

states represent a connection at time t, wij,t = 1, or no connection at time t, wij,t = 0.

The transition probabilities are defined in terms of covariates and the duration in

the current state, i.e., the duration of the presence or absence of a connection. The

covariates are time-dependent, implying the transition probabilities are also time

dependent, and are observed for each pair of players at each time point. We denote

the r-th covariate observed for the ij pair at time t as xij,r,t, where r = 1, . . . , q. We

denote the time that the ij pair has spent in the current state up to time t as dij,t. If

we consider the absence of a connection state at time t, wij,t = 0, the probability of

remaining in that same state from time t to t+ 1 is

P (wij,t+1 = 0 | wij,t = 0,xij,t, dij,t) =

logit−1(β
(0)
0 + β

(0)
1 xij,1,t + · · ·+ β(0)

q xij,q,t + β
(0)
q+1dij,t).

(3.1)

Conversely, if we consider the presence of a connection state at time t, wij,t = 1, the

probability of remaining in that same state from time t to t+ 1 is

P (wij,t+1 = 1 | wij,t = 1,xij,t, dij,t) =

logit−1(β
(1)
0 + β

(1)
1 xij,1,t + · · ·+ β(1)

q xij,q,t + β
(1)
q+1dij,t).

(3.2)

Here there are q + 1 covariates, including the duration, dij,t. The coefficients β(0) =(
β
(0)
0 , β

(0)
1 , . . . , β

(0)
q+1

)′
and β(1) =

(
β
(1)
0 , β

(1)
1 , . . . , β

(1)
q+1

)′
represent the vector of coef-

ficients associated with the no connection state and connection state, respectively.

Note that the probability of transitioning from state wij,t = 0 to wij,t+1 = 1 from

time t to time t + 1 is 1 − P (wij,t+1 = 0 | wij,t = 0,xij,t, dij,t). This probability is
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similarly defined for a transition from the connected to the unconnected state. The

state at time t = 1 for any ij pair is modeled as wij,1 ∼ Bern(p1), where p1 is the

initial probability of a connection.

3.2.2 Emission model

The emission model in a VTHMM is defined in the same way as in a standard HMM.

The emission model we present for player location data in team sports is a hierarchical

model. We denote the observed location for an individual i at time t as si,t ∈ R2,

and define it as a function of a latent process µi,t ∈ R2, which is the true location of

the player. The model for the observed location data is si,t = µi,t+ ϵ1, where ϵ is the

measurement error and is distributed N(0, τ 2).

The model we consider for the latent location is an extension of the Gaussian

Markov random field (GMRF) model presented in Scharf et al. (2016). In modeling

animal movement, Scharf et al. (2016) assume there is a latent social network for the

animals. They model the positions of the animals at time t with a GMRF conditional

on the positions at time t − 1 and on the latent network at t. Their modeling of

movement considers an alignment mechanism to examine the movement of connected

animals in the same direction and an attraction mechanism to reflect the movement

of an animal towards the others to which it is connected. These collective behaviors

of alignment and attraction in animal movement can be used to study the dynamical

systems in team sports (Welch et al., 2021). Alignment and attraction between the

players are important in order to capture the possible synchrony of the players, as

well as possible expansion and contraction of the team on the field. In addition to

these two collective behaviors, we also consider the current direction of movement of
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each player by including a direction vector for each individual in the model.

Here, we consider n players with locations recorded at T time points. Before

presenting our model, we first define some of the important terms and notation in-

troduced by Scharf et al. (2016). The number of connections that player i has at

time t ranges from 0 to n − 1. We denote this count as wc
i+,t. When a player is not

connected to any other, in order to have a nonzero precision, we define wc
i+,t to be a

positive constant c . Then, we define the mean location of all players that individual

i is connected to, µ̄i,t, as

µ̄i,t =
n∑

j ̸=i

wij,t

wc
i+,t

µj,t.

The vector that points from the location of player i to the mean of its connections,

µ̄i,t, is defined as µ̃i,t. When player i has one or more connections, it is defined as

µ̃i,t ≡
µ̄i,t − µi,t

∥µ̄i,t − µi,t∥2
.

If player i is not connected to any other player at time t, µ̃i,t = 0. The unit direction

vector for player i at time t is

δi,t :=
µi,t − µi,t−1

∥µi,t − µi,t−1∥
.

Next we model µt, the latent locations of all the players at time t, conditional

on the latent state sequences for all pairs of players as well as the positions at the

previous two time points. The multivariate model for t = 3, . . . , T is defined as

[
µt | µt−1,µt−2, α, γ, η, σ

2, c,Wt

]
≡ N (µt−1 + γµ̃t−1 + ηδt−1,Qt) , (3.3)
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where γ is the coefficient of the attraction component µ̃t, and η is the coefficient as-

sociated with our unit direction vector term δt. The elements of the GMRF precision

matrix Qt can be specified, following Scharf et al. (2016). That is,

Qij,t ≡

−αwij,tσ
−2I2, j ̸= i

wc
i+,tσ

−2I2, j = i,

where α is the coefficient associated with the alignment effect. Recall that wc
i+,t

denotes the number of connections of player i, and that wc
i+,t = c when the player i

is not connected to any other at time t, in order for the precision of this player to be

nonzero. We restrict the value of c to be between 0 and 1 to reflect that the precision

of the players latent location will be lower when it has no connections. This general

model can be adapted with other terms depending on the specific sport data being

analyzed.

3.2.3 Parameter estimation

A Bayesian approach can be used to estimate the parameters in this model. The full

conditionals for the model parameters, the location process, and the state sequences

are given in Appendix B.2. We assign diffuse priors to the parameters. The coefficients

of the probability functions are assigned the prior distribution N(0, 1000), and the

initial probability of connection for all player pairs is assigned a Beta(1,1) prior.

Regarding the parameters of the emission model, we specify a Half-Cauchy(0.5) prior

for the variance, and Beta(1,1) for c. We follow Scharf et al. (2016) and specify a prior

with a shifted and scaled Beta distribution to consider the support for the alignment

coefficient as (-1,1). Both the attraction coefficient and direction vector coefficient are
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assigned a N(0, 1000) priors. For the variance of the measurement error, we specify a

conjugate inverse-Gamma prior. We verified through simulation that we can capture

the true parameters except for σ2 (see Appendix B.3).

3.3 Application

3.3.1 Soccer data

The data used in this application come from high-resolution tracking data of a Major

League Soccer (MLS) game from 2017. The data were recorded with a minimax device

from Catapult and recovered through their Sprint software (Catapult-Innovations,

2013). The raw data were collected on each player at a rate of 25Hz for approximately

150 minutes starting at the warm-up and extending through the end of the game. For

this analysis, the data were thinned to 1Hz.

Based on the observed locations of the players, we computed two quantities to

use as covariates in the state transition probabilities. The first was the difference in

turning angle for each pair of players at each time point, which was obtained by first

computing the turning angle for each player. The second quantity used as a covariate

was the distance between each pair of players at each time point.

We selected four different five minute segments (T=300 time points) of the game

to apply the model. Each of these segments were selected based on different events

occurring within the game. Segments I & II are from the first half, and III & IV

from the second half. A goal was scored in segments II and III, one from each team.

The goal in segment II was scored by team B during the middle of the segment. In
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segment III, team A scored from a penalty kick at the end of the segment.

We ran a Markov chain Monte Carlo algorithm for each of the eight cases (two

teams, four segments) for 75000 iterations. The first 30000 were discarded as burn-in.

For our observed data model we assumed the variance of the measurement error to

be fixed. The Catapult devices are accurate within 10cm, and translating this value

to our units, we have τ = 8.3e− 07.

3.3.2 Results

We applied the variable time hidden Markov model to the two teams in the soccer

game for each of the segments. The model was applied separately to each team to

learn about their attraction, alignment and connection parameters within team. The

parameter estimates for Team A are in Tables B.3.1 & 3.2, and those for Team B are

in Tables 3.3 & 3.4.

Emission model

From the observation model, we detect that the alignment is high in all segments for

both teams, where the posterior mean for α ≈ 0.9 for all cases. This was expected

because of the nature of play in a soccer game. Recall the attraction and direction

vectors take values between -1 to 1. When comparing their coefficients, γ and η, we

see that the coefficient of the unit direction vector is larger than the coefficient for

attraction for all segments for both teams. The variance estimate is also similar in

all segments for both teams.
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State transitions

The coefficients associated with the state transition probabilities vary by team and

segment. The duration is significant for team A only in two cases. In Table B.3.1,

we see that for segment II, the posterior mean of the duration coefficient for the

unconnected state probability (β
(0)
1 ) is negative and significantly different from 0

based on its 95% credible interval. This indicates that the longer a pair of players is

unconnected, the lower the probability that they will remain in that state, when all

the other covariates are held constant. We find a similar relation between duration

and the probability of the connection state in segment IV (Table 3.2). Thus, we

can state that when a pair of players is connected, the probability that they remain

connected diminishes with time.

For Team B, the duration covariate is significant in three cases. We see the

coefficient estimate of β1 is significantly positive in the unconnected state probability

in segment IV (Table 3.4), and in the connection probability in segment II (Table

3.3). These significant positive coefficients indicate that the longer a pair of players

has been in the respective connectivity state, the longer they will stay in it, given

all the other covariates remain the same. Additionally, in segment IV, we expect the

probability of remaining in the connection state to diminish the longer that a pair

has been connected.

The angle and distance covariates, as well as their interaction do not significantly

capture variation in the probability of remaining connected in any of the segments

for team A. However, they do capture variation in the probability of the unconnected

state. From Table B.3.1 in segment II and Table 3.2 in segment III, we see the

distance coefficient β
(0)
3 is significant, indicating that the further away two players
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are, the higher the probability that they will remain unconnected. The interaction

coefficient β
(0)
4 is significant as shown in the segment IV column, suggesting that the

probability of staying unconnected will change depending on how far apart the pair

of players are and if they are moving away or toward one another.

For Team B, the interaction between angle and distance is significant for the

unconnected state, as seen in segments I, II (Table 3.3) and III (Table 3.4). However,

it is not significant in the unconnected probability of segment IV. We find that the

main effects of angle and distance each have a positive effect. The bigger the difference

in the turning angle between two players, the higher the probability that they remain

unconnected. In addition, the further away that two players are from one another on

the field, the higher the probability they will remain unconnected in the next time

point.

Looking further into the connection state probabilities of Team B, we find for

segments II (Table 3.3) and III (Table 3.4) that the interaction between the angle

and distance covariates is significant with a positive coefficient β
(1)
4 . Some of the

main effects in the connection state probability are significant in segments I and IV.

For segment I, we find that the bigger the difference in the turning angle between

two players, signifying that they are moving away from each other, the lower the

probability that they will remain connected. We also see in segment I that the

distance coefficient β
(1)
3 is positive, meaning that the further away two players are

in the field, the higher the probability that they remain connected. This may seem

counter intuitive at first, given that we would expect players that are closer to be

connected. However, given the nature of a soccer game, two players can still be in

synchrony even if they are far apart in space. Lastly, in segment IV, the difference
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in angle is significant, and the coefficient β
(1)
2 is negative. This is intuitive since it

means that as two players are moving away from each other, it is less likely that they

will remain connected.

Estimated dynamic network

As stated previously, the network between players in team sports has traditionally

been defined deterministically. For example, in soccer, the edges of the network may

be determined by whether or not there is a pass between two players, or by the count

of these passes (Peña and Touchette, 2012; Clemente et al., 2016). With our data-

driven approach, we obtain probabilistic estimates of connections between each pair

of players at each time point. These probabilities are summarized in Figure 3.1 by

considering the count of the connected pairs in each of the segments. We can observe

the variation in the number of connections throughout the segment, and observe how

the connections change after the scored goals in segments II and III.

3.4 Discussion

We presented a VTHMM that considers a network for the latent stochastic compo-

nent and a GMRF to model the data component. We expanded the VTHMM to

accommodate other time varying covariates for the transition probabilities, in addi-

tion to the duration in a state. For modeling the team sport observed location data

we take advantage of a GMRF model developed in an animal movement ecological

context.

In our application we considered data from a professional soccer game. We were
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able to learn about the alignment, attraction, and direction of the players in differ-

ent segments of the game. We also determined which covariates helped explain the

variation in the transition probabilities for the two states.

In addition to parameter estimation, we obtain estimates of the underlying dy-

namic network. Importantly, we estimate the adjacency matrix rather than define

it in a deterministic way through information such as passes between players. With

this estimated network we have the information necessary to compute different met-

rics associated with networks in team sports, at both the player and team level. For

example, Clemente et al. (2016) present, among other measures, the degree centrality

index, which is a count of the connections of a player, to identify players that are

more important for the general structure of the team network.

Our approach is flexible in that covariates that are included in either the emission

model or the state transition model can be modified or replaced by other covariates

that may provide more information specific to the team sport data being analyzed.

For example, sport specific positional covariates, ball possession, occurrence of par-

ticular events, or proximity to specific locations on the playing field (e.g., the three

point line in basketball) could all be considered.

A disadvantage of the model presented here is that computational time increases as

more individuals are considered. This is because the analysis is based on information

between all pairs of players. In future work we will consider alternative estimation

approaches to reduce the computational time in order to enable modeling both teams

simultaneously. For an application like the one presented here, this will allow us to

compare and contrast the information obtained for each team with the information

from all individuals in the game. The computational cost of the current model also
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prohibits the analysis of an entire game when data are at high temporal frequency.
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Chapter 4

Accounting for dependence in the
emission distribution of Hidden
Semi-Markov Models

4.1 Introduction

In both HMMs and HSMMs, observations are modeled with an emission distribution

conditioned on a latent state process. Typically, these observations are assumed to

be conditionally independent given the state, meaning they are independent of previ-

ous states and observations (Pohle et al., 2017; Yu, 2016). However, high-frequency

data are more likely to be highly correlated such that this conditional independence

assumption may be inappropriate. The violation of the conditional independence as-

sumption can have an impact on statistical inference. For example, Pohle et al. (2017)

presented a simulation study to determine the effects of assumption violations in the

selection of the number of states in HMMs, and determined that when the Akaike
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and Bayesian information criteria are used to select between models, the number of

states will be overestimated when the assumption is violated.

Markov-switching regression models (MSR) and neural networks (NN) are two

approaches that have been used when the conditional independence assumption is

not met. In MSR, the observations are modeled as a function of covariates or as

an autoregressive model (Langrock et al., 2017). In the context of NN, Ravuri and

Wegmann (2016) apply a deep neural network HMM (DNN-HMM) and show that

deeper NNs compensate for the conditional independence assumption violation more

than shallow NNs. In addition, Dai et al. (2017) consider a recurrent hidden semi-

Markov model (R-HSMM) that incorporates a recurrent neural network (RNN) in

the observation model of an HSMM. This model formulation can accommodate more

complex dependencies in the observation sequence.

The disadvantages of approaches such as NNs are that they are computationally

expensive to implement and difficult to interpret and obtain uncertainty quantifica-

tion. Thus, it is useful to consider a more computationally tractable approach for

mitigating the conditional dependence. One approach that has not been considered

in this context is data subsampling. Data subsampling is used for reducing compu-

tational cost or in determining the sampling distribution of a statistic. For instance,

when dealing with large datasets, it has been used to increase efficiency in Firefly

Monte Carlo (FlyMC) (Maclaurin and Adams, 2015) and in subsampling Markov

chain Monte Carlo (MCMC) (Quiroz et al., 2019). Both of these approaches present

an MCMC sampling algorithm that considers only a subset of the data at each iter-

ation. Experiments conducted to evaluate the performance of FlyMC found it to be

more efficient than standard MCMC sampling in many instances. Similarly, Quiroz
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et al. (2019) showed that subsampling MCMC is often more efficient than standard

MCMC and other competing subsampling algorithms. Bradley (2021) provides an

approach to incorporate subsampling into the Bayesian hierarchical framework. The

author adds a subset model to the general notation of this hierarchical framework, and

the data model is then considered a data subset model. Lastly, the subsampling ap-

proach in MCMC is also explored by Li and Wong (2018) in their mini-batch tempered

MCMC approach and by Wu et al. (2019) with their mini-batch Metropolis-Hastings

MCMC. These studies suggest that random data subsampling might be introduced

as part of the MCMC algorithm for HSMMs as an attempt to reduce or eliminate

the conditional dependence in the data. We investigate this approach in this chapter,

along with other, model-based, approaches that directly account for dependence in

the observation sequence.

In this chapter we present and compare methods that either mitigate or accom-

modate conditional dependence in the observation sequence of HMMs and HSMMs.

First, we propose a novel approach to mitigate the dependence by introducing data

subsampling. As an alternative approach, we consider the use of basis function expan-

sions as random effects (Ruppert et al., 2003) in the emission distribution to capture

dependencies in the data. Whereas basis functions have been used as an alternative to

parametric models in HMMs (Langrock et al., 2015), they have not been considered

with the goal of dealing with the conditional dependence. Lastly, we compare these

two approaches with traditional autoregressive models in HSMMs.

In our investigation, we conduct two simulation studies. The first simulation

study investigates the implementation and benefits of using subsampling when fitting

HSMMs. This includes comparing various subsampling rates as well as levels of
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autocorrelation in the observation sequence. Then, we compare the three approaches

(subsampling, basis functions, and autoregressive models) under a set of generative

models with varying dependence.

We apply the models to high-frequency environmental data where there is depen-

dence in the observation sequence. Specifically, we model high-frequency phycocyanin

measurements, an indicator of lake cyanobacteria concentration, in Lake Mendota,

Wisconsin. We investigate the similarities and differences in posterior inference ob-

tained for these data under the different approaches.

The remaining part of this chapter is outlined as follows. Section 4.2 presents

three different approaches to deal with conditional dependence when fitting HMMs.

A simulation study for the subsampling approach is included in Section 4.3.1. A

more general simulation study comparing the subsampling approach, basis function

model, and autoregressive model is included in Section 4.3.2. Section 4.4 shows

the application of these modeling approaches to high-frequency lake phycocyanin

data. Lastly, in Section 4.5 we discuss future work related to conditional dependence

modeling.

4.2 Dependence modeling

HMM and HSMM models have two components, each of which are stochastic pro-

cesses. One is a Markov chain of hidden states and the other is a time series of

observed data, which are conditional on the hidden states (Rabiner, 1989; Yu, 2010).

The difference between them is that in the HSMM case the duration in a state is

modeled explicitly, since, unlike the HMM where we have one observation per state
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in the sequence, in the HSMM we have several observations being emitted by each

state in the sequence. In the discrete-time case, the number of observations emitted

corresponds to the duration in the state.

In a discrete-time HMM, the sequence of observations from time 1 to T can be

denoted as y = (y1, . . . , yT )
′. The corresponding sequence of unobserved states is

denoted as s = (s1, . . . , sT )
′, where st ∈ {1, 2, . . . , S}, t = 1, . . . , T , and S is the

total number of unique states. Observations are emitted by each of the states in the

hidden sequence following a state-dependent probability distribution, which is usually

a Gaussian distribution with the respective mean and variance for each state, that is

yt ∼ N
(
µst , τ

2
st

)
, with µst ∈ {µ1, · · · , µS} and τ 2st ∈ {τ 21 , · · · , τ 2S}.

Both the HMM and HSMM typically rely on a conditional independence assump-

tion in the emission distribution. That is, conditioned on the true (latent) state, the

observations are independent of each other. This is a simplifying assumption that

is based on historical use of such models for observation sequences that were fairly

low frequency. However, given the influx of high-frequency data from modern sensors

(e.g., wearable devices), this conditional independence assumption may not be ten-

able, and one must address the potential for dependence in the emission distribution

conditioned on the true state process.

The next subsections outline options for mitigating and accommodating condi-

tional dependence in the observation sequence. These include a model with an au-

toregressive error structure (AR(1)), a model with random effects represented by a

basis function expansion, and a new approach based on data subsampling. The AR

case explicitly models the dependence through an autocorrelation parameter. The

basis function model approximates the dependence in the data functionally through
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a combination of basis functions with random coefficients. Lastly, the subsampling

approach considers a standard HMM (or HSMM) but mitigates the dependence by

thinning the observation sequence at each iteration of the sampling algorithm (in a

Bayesian setting).

4.2.1 AR structure model

Several applications of HMM and HSMM have already considered an autoregressive

structure in the emission model. Ruiz-Suarez et al. (2022) summarizes how the state-

dependent distributions in HMM and HSMM can include autoregressive processes

of order p (AR(p)-HMM and AR(p)-HSMM). They use these models, along with

standard HMM and HSMM, to compare the error classification in supervised learning

of sheep behavioral states given that their observed accelerometer data is collected

at a high frequency, and thus has high temporal dependence. In addition, Xu and

Liu (2021) incorporate a vector autoregressive structure in an analysis of multivariate

financial time-series data, given that financial returns data appear to have temporal

dependence.

For our purposes of comparison, we consider here in (4.1) a univariate state-

dependent distribution with an AR(1) structure, where the autocorrelation parameter

is denoted as ψ. More generally, we can allow the autocorrelation parameter to be

state-specific (i.e., ψst).

yt = µst + ψst

(
yst−1 − µst−1

)
+ θt, θt ∼ N(0, τ 2st). (4.1)
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4.2.2 Basis function model

Here, we account for the conditional dependence in the observation sequence through

the use of basis function expansions with random expansion coefficients. Basis func-

tions are applied in several contexts to model dependence in time and space (e.g.

Wikle et al., 2019; Hefley et al., 2017). However, this nonparametric approach has

not been applied in the context of HMM and HSMM with the goal of mitigating the

violation of conditional independence. By using a combination of basis functions, we

do not aim to explicitly model the residual autocorrelation in the data, but rather to

approximate the dependence in a flexible functional manner.

We consider a general model with this nonparametric structure as presented in

(4.2). Here we have K temporal basis functions, which we denote as ϕk,t where k =

1, . . . , K. The random coefficients associated with these functions are denoted ck. In

our simulations, we model these coefficients using independent Normal distributions,

but other choices could be considered. Similar to the AR model, these coefficients

can be shared across all observations or defined to be state-specific (i.e., ck,st).

yt = µst +
K∑
k=1

ckϕk,t + θt, θt ∼ N(0, τ 2st). (4.2)

4.2.3 Subsampling

We propose an alternative method to these model-based approaches for handling

dependence in the observation data for situations where one does not expect the

residual dependence to affect the latent state. Specifically, we model the observations

as in a standard HMM or HSMM, but mitigate the dependence by thinning the

observation sequence, which we denote as ỹ (4.3). Here, thinning refers to randomly
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subsampling the data to diminish the dependence. In a Bayesian setting, where we

have an MCMC algorithm to sample from the conditional distributions of our emission

distribution parameters, we perform this random subsampling at each iteration of the

MCMC algorithm, such as in approaches like Firefly Monte Carlo (Maclaurin and

Adams, 2015).

ỹt = µst + θt, θt ∼ N(0, τ 2st), (4.3)

where ỹt ∈ ỹt is a subset of size ñ from 1, . . . , T .

4.3 Simulation study

We consider two simulation studies here. The first looks at the proposed subsampling

approach since this is new to the HMM and HSMM literature. This is then followed

by a more general robustness study that compares subsampling as well as the AR(1)

and basis function approaches described in Section 4.2.

4.3.1 Subsampling simulation study

As an illustration of the subsampling approach, we consider a simulation study to

investigate the effect of the conditional independence assumption violation in the

emission distribution parameter estimation, as well as to determine how the subsam-

pling approach helps in the estimation when this violation is present. We simulate

dependent data using an AR(1) model under several scenarios. Then, we fit an HSMM

model to each generated dataset using a data subsampling approach, where at each

iteration of the MCMC algorithm, an independent and random subset of the data is
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selected according to a specified sampling rate, and we will have a new observation

sequence denoted by ỹ of size ñ. Once the subsampled observation sequence is de-

fined, we sample the state means and variances from their full conditional distribution

((4.4) and (4.5), respectively). Using a Normal prior distribution with parameters θµ

and λ2µ, the full conditional for each mean is:

µj|· ∼ N


T∑

t=1
ytI(St=j,yt∈ỹ)

τ2j
+ θµ

λ2
µ

ñj

τ2j
+ 1

λ2
µ

,
1

ñj

τ2j
+ 1

λ2
µ

 , (4.4)

where I(·) is the indicator function and ñj is the total number of observations of

vector ỹ emitted by state j. Using an inverse-Gamma (IG) prior with parameters θτ2

and λτ2 , the full conditional for each variance is:

τ 2j |· ∼ IG

(
θτ2 +

ñj

2
, λτ2 +

1

2

T∑
t=1

(ytI(St = j, yi ∈ ỹ)− µj)
2

)
. (4.5)

The different scenarios included in this simulation study are defined according to

sample size, autocorrelation parameter, and number of states. Three different number

of states are considered (S = 2, 3 and 4), while the possible values for the autocorre-

lation parameter are 0.25, 0.50, and 0.75, as well as a case with no autocorrelation.

Although the number of simulated observations varies across all realizations, we con-

sider two cases consisting of approximately 2500 and 5000 observations. Overall, 24

scenarios were considered, each with 100 realizations.

The procedure for simulating the data is as follows. First, the initial state, s1,

is sampled from its distribution. Next, the first duration, d1, is generated from the

corresponding zero-truncated Poisson distribution. The observations, y1, y2, . . . , yd1 ,

are generated from a Normal distribution with a specified autocorrelation. Then, the
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second state, s2, is sampled conditional on s1 according to a transition probability

matrix P. After that, the duration is sampled as well as the observations emitted by

that second state. The process continues until the specified sample size is reached.

Each of the simulated realizations is modeled with an HSMM assuming indepen-

dence in the observations. For ease of computation, the states and other parameters

are fixed and only the emission distribution parameters are estimated.

In this approach, each iteration of the MCMC algorithm uses a different random

subset of data according to a pre-specified percentage. The sampling rates consid-

ered are 100, 90, 80, . . . , 10%. The 90% credible intervals (CI) for the mean and

variance parameters for all 100 datasets across all scenarios and sampling rates are

calculated. We assess the subsampling approach by comparing the empirical cover-

age, and determine the preferred data sampling rate as the one that results in the

nominal coverage.

The results of the simulation study are provided in Tables 4.1 to 4.3. Overall, the

correlation in the data affects the estimation of the emission distribution parameters,

but the effect can be reduced by subsampling during the model fitting procedure. The

empirical coverage is calculated as the percentage of 90% CIs that captured the true

parameter values. Tables 4.1 to 4.3 present the empirical coverage for the different

autocorrelation parameters, sample size and sampling rates utilized. This coverage

corresponds to the average coverage of the different state means. The empirical

coverage is similar for the two sample size and number of states scenarios.

There are two important results provided in the tables. First, as indicated by the

first row of the tables where no subsampling was used, the more correlated the data

are, the worse the model does in recovering the true parameter values. Second, the
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empirical coverage increases as the sampling rate decreases. As we reduce the percent

of data used, we are able to reduce the dependence in the data and thus improve our

estimates of uncertainty. For a case where the autocorrelation is approximately 0.75

and the entire dataset is utilized (i.e., sampling rate = 100%), the coverage is low,

indicating the need to use a smaller sampling rate. Lastly, for data having autocor-

relation close to 0.25, we obtain nominal coverage of the emission distribution means

when using approximately 80% of the dataset in the MCMC sampling algorithm.

Table 4.1: Coverage percentage of the emission distribution means, 2 states case.

Sampling rate %
ψ (T≈2500) ψ (T≈5000)

0.25 0.50 0.75 0.25 0.50 0.75
100 78 68 44 76 68 55
90 83 73 50 81 74 60
80 87 80 54 86 76 66
70 92 84 62 90 81 72
60 96 85 67 93 84 77
50 98 88 70 94 88 81
40 98 93 76 97 94 86
30 100 96 88 100 98 91
20 100 99 92 100 100 96
10 100 100 100 100 100 100
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Table 4.2: Coverage percentage of the emission distribution means, 3 states case.

Sampling rate %
ψ (T≈2500) ψ (T≈5000)

0.25 0.50 0.75 0.25 0.50 0.75
100 77 68 50 82 67 50
90 82 75 56 86 73 55
80 89 80 60 90 76 60
70 92 84 65 92 81 64
60 96 87 71 94 86 72
50 99 92 79 96 92 79
40 99 96 84 99 96 84
30 100 99 90 100 98 90
20 100 100 95 100 100 95
10 100 100 100 100 100 99

Table 4.3: Coverage percentage of the emission distribution means, 4 states case.

Sampling rate %
ψ (T≈2500) ψ (T≈5000)

0.25 0.50 0.75 0.25 0.50 0.75
100 80 66 52 80 67 53
90 86 70 57 86 72 56
80 89 75 61 89 78 58
70 94 81 66 93 83 62
60 96 85 69 95 86 69
50 98 90 75 97 90 76
40 100 96 82 98 95 83
30 100 99 87 99 98 90
20 100 100 94 100 100 96
10 100 100 99 100 100 99

4.3.2 Robustness study

In this section we consider a simulation study to evaluate the effectiveness of the

three approaches outlined in Section 4.2 for accommodating/mitigating dependence

in HMM/HSMM emission distributions.
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Data generation

We consider data generated under three different scenarios. In the scenario 1, af-

ter conditioning on the states, there is no dependence in the observation sequence.

For the other two scenarios we considered dependence in the observation sequence.

Specifically, in scenario 2 there is AR(1) dependence in the observations, with the

same autocorrelation parameter ψ, whereas in scenario 3 we have AR(1) dependence

but the autocorrelation parameter is different for each state, ψst . The other pa-

rameters of the model are the same for all scenarios; i.e., we considered the same

transition probabilities and the same duration parameters. Once we generated the

state sequence, we generated the emission data according to the three scenarios. The

datasets have 2011, 2012 and 2021 observations, respectively. We also take into ac-

count measurement error and define an observation model the same way for the three

scenarios:

yt = ηst + ϵt, ϵt ∼ N(0, σ2), (4.6)

where yt is an observation at time t, ηt is the true emitted value at that time, and σ2

is the measurement error variance.

The generative model in scenario 1 defines the true observation at time t, using

a Normal distribution with a state-specific mean, µst and state-specific variance, τ 2st .

The model is given by:

ηt = µst + θt, θt ∼ N(0, τ 2st). (4.7)

In the second scenario, we have general dependence. We assume a Normal dis-

tribution where the mean corresponds to the mean of the state at time t plus the
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autocorrelation component. The variance is also state specific. The model is written:

ηt = µst + ψ
(
ηt−1 − µst−1

)
+ θt, θt ∼ N(0, τ 2st). (4.8)

Lastly, scenario 3 expands on the scenario 2 by considering a state-dependent

autocorrelation parameter:

ηt = µst + ψst

(
ηt−1 − µst−1

)
+ θt, θt ∼ N(0, τ 2st). (4.9)

Again, we retain state specific mean and variance parameters

Models applied to generated data

We fitted six different models to the datasets generated under the three scenarios.

The first two models assume conditional independence (4.10).

ηt = µst + θt, θt ∼ N(0, τ 2st). (4.10)

In the first case, we obtain parameter estimates as in a standard HSMM. In the second,

we introduce subsampling in the sampling algorithm when obtaining posterior draws

of the emission distribution parameters.

We then fitted models that consider dependence in the observations. Two models

assume the data have an AR(1) structure and another two models employ basis

function expansions. The AR(1) models include a model where the autocorrelation

parameter is independent of the state (4.11) and another where the autocorrelation

parameter is dependent on the state (refeqmod4).

ηt = µst + ψ
(
ηt−1 − µst−1

)
+ θt, θt ∼ N(0, τ 2st). (4.11)
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ηt = µst + ψst

(
ηt−1 − µst−1

)
+ θt, θt ∼ N(0, τ 2st). (4.12)

The basis function models use Fourier basis functions (Wikle et al., 2019). In one

case, the coefficients are independent of the state (4.13) and in the other we have

state-dependent coefficients (4.14). In both models we considered 6 basis functions

(K = 6). In both models, we assume independent Normal distributions with mean 0

and variance ρ2 = 100 for each basis function coefficient.

ηt = µst +
K∑
k=1

ckϕk,t + θt, θt ∼ N(0, τ 2st). (4.13)

ηt = µst +
K∑
k=1

ck,stϕk,t + θt, θt ∼ N(0, τ 2st). (4.14)

Results of models applied to the generated data

After fitting the 6 models under each of the 3 data scenarios, we obtained the posterior

mean and credible intervals (CIs) of the emission distribution parameters. Figure 4.1

shows the estimates for the state means, where the true means used to generate the

data in each scenario are marked with a horizontal line. Figure labels M1 through

M6 correspond to the models introduced in Section 4.3.2 in their respective order.

For scenario 1, with no dependence in the observation sequence we observe that,

as expected, the first model (M1) captures the true state values in the CIs, and so do

all the other models, except model 6 (M6). We note that the subsampling approach

(M2) produces wider credible intervals. Again, this is expected because we have less

(independent) data available for the estimation.

In the second data scenario, in which the generative model matches model M3,
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Figure 4.1: Credible intervals (bars) and posterior means (points) of emission distri-
bution mean by state and scenario. Panels A, B & C correspond to the three data
scenarios. The horizontal lines represent the true means.

we see that this third model captures the true values as expected. It is worth noting

that model M2 performs equally as well as M3. The model that does not account

for the dependence (M1) underestimates the true mean of states 2 and 3, similar to

M4. The basis function model M5 captures the true means of states 2 and 3, but

underestimates the mean of state 3. Again, M6 does not recover the true means.

All models, except M6, capture the true means of the first state in the third data

scenario. The second state mean is captured by all models except M4 and M6, but
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model M4 does capture the third state mean which is missed by all the other models.

Model M4 is the same model used to generate the data in this last scenario, and we

would have expected it to perform better than the rest of models. There appears to

be a trade-off in this model in terms of parameter estimation for states 2 and 3, given

that the autoregressive coefficients are over/underestimated for the second and third

states, respectively (see Table C.1.1 in the Appendix).

In Figure 4.2, the true variance for each state is indicated with a horizontal line.

In the first scenario, all models can recover the true variance for all states, except

M6 which only recovers the second state variance. In the other two scenarios, several

models fail to capture some of the true values. The credible intervals obtained in

models M1, M2, and M5 capture most of the true variances, but the autoregressive

models (M3 and M4) fail to capture all three variances in scenarios 2 and 3. We

expected these AR models to perform equally or better as the other models that do

not directly model the autocorrelation in the emission distribution.

4.4 Real data example

This section presents an analysis of a real-world dataset using the subsampling and the

flexible basis function approach. Recall, subsampling would typically be applied when

one does not believe a priori that conditional dependence will affect the estimation of

the state process, while the basis function approach would be used if one thought this

dependence could affect the state process. Here, our goal is to illustrate the methods

on real-world data and to examine the differences in the associated posterior inference.
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Figure 4.2: Credible intervals (bars) and posterior means (points) of emission distri-
bution variance by state and scenario. Panels A, B & C correspond to the three
data scenarios. The horizontal lines represent the true variances.

4.4.1 Lake Mendota phycocyanin data

We illustrate the use of two of the models presented in Section 4.2 with high-frequency

phycocyanin measurements from Lake Mendota, Wisconsin, in 2018. These data were

analyzed in Chapter 2, where we fitted a HSMM to explore the temporal variation in

concentration levels of cyanobacteria as well as identify possible environmental drivers

of this variation. Recall that phycocyanin is an indicator of cyanobacteria concen-

tration in the lake. High levels of cyanobacteria can lead to adverse health effects in
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both humans and the environment. The data can be found in the North Temperate

Lakes Long-Term Ecological Research program database (Lead PI et al., 2020). In

2018, sensors on an instrumented buoy located in the lake recorded measurements

from April 11 to November 15. In our analysis, we model hourly measurements of

phycocyanin in Lake Mendota during the data collection period.

4.4.2 HSMM with subsampling applied to phycocyanin data

To determine the optimal subsampling rate for our analysis, we first fitted the HSMM

model without subsampling and determined an approximate value for the size of the

segments. The durations within each state varied by state and through time. The

average duration ranged from 21 to 55. We divided the data into segments to resem-

ble the groups of emitted data by a state and calculated the mean autocorrelation

across all groups. By considering group sizes ranging between 21 to 55, we obtained

autocorrelation estimates ranging between 0.65 to 0.80. We compared these estimates

to those shown in Table 4.2 in order to identify an optimal subsampling rate. Us-

ing ψ = 0.75 suggests a subsampling rate of approximately 30% for estimating the

emission distribution parameters. The remaining results presented in this subsection

assume ψ = 0.75 and a subsampling rate of 30%.

Table 4.4 presents the posterior means and CIs for the estimation of the emission

distribution parameters under subsampling. We modeled the duration in each state

with a zero-truncated Poisson (ZTP) distribution, where the intensity parameter was

state-specific. The posterior mean and CIs for these estimates are also given in Table

4.4. The states of cyanobacteria concentration identified with this model can be

classified as low, medium and high. These levels can be associated with the regimes
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found in Carpenter et al. (2020).

Table 4.4: Posterior mean and credible intervals for emission distribution and duration
parameters of HSMM with subsampling for phycocyanin data

State Mean Variance ZTP parameter
S1 -2.26 (-2.35,-2.16) 0.69 (0.60,0.80) 79.2 (73.9,85.3)
S2 -0.13 (-0.24,-0.01) 0.50 (0.40,0.60) 34.0 (29.8,37.3)
S3 1.60 (1.52,1.68) 0.53 (0.45,0.61) 135.9 (126.3,144.2)

Figure 4.3 shows the estimated cyanobacteria state sequence. There is a clear

distinction between the states, and we can see there is more variability among the

observations of the low cyanobacteria state, while the medium and high states have

observations with similar variances, which are smaller than in the low state. The

middle state, has less duration on average than the other two states, and we can

identify that the lake is at high levels of cyanobacteria for longer periods of time.
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Figure 4.3: Estimated cyanobacteria state sequence with HSMM with subsampling

We fitted a HSMM that does not account for conditional dependence, and show
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the results in Table 4.5 and Figure 4.4 for comparison. The state sequence is very

similar, and although the parameter estimates are not the same, they are close. In

general, with this standard approach we see narrower CIs than with the HSMM with

subsampling, as expected since the effective degrees of freedom are less than the full

sample size given conditional dependence.

Table 4.5: Posterior mean and credible intervals for emission distribution and duration
parameters of HSMM for phycocyanin data

State Mean Variance ZTP parameter
S1 -2.19 (-2.23,-2.15) 0.55 (0.49,0.62) 80.53 (76.6,85.39)
S2 0.03 (-0.01,0.08) 0.23 (0.18,0.29) 30.47 (28.63,32.47)
S3 1.69 (1.66,1.72) 0.28 (0.22,0.33) 97.9 (93.2,102.75)
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Figure 4.4: Estimated cyanobacteria state sequence with HSMM

71



4.4.3 HSMM with basis functions applied to phycocyanin
data

Next, we applied the basis function approach for HSMM in (4.13) to the phycocyanin

observations. In this model, we used the same number of states as in Section 4.4.2

as well as the same state-specific ZTP distribution for the durations. We used 10

Fourier basis functions and assumed the random coefficients were the same across

the three states. Table 4.6 presents the posterior means and CIs for the estimation

of emission distribution parameters, as well as the duration parameters. The basis

function coefficient estimates are given in Table 4.7. Note that the basis coefficients

are essentially nuisance parameters in this analysis. However, if it was of interest,

one could evaluate the sample cloud of implied time series from the basis expansion,

or consider the time series implied by posterior mean coefficients.

Table 4.6: Posterior mean and credible intervals for emission distribution and duration
parameters of HSMM with basis functions for phycocyanin data

State Mean Variance ZTP parameter
S1 -1.87 (-1.91,-1.82) 0.37 (0.33,0.41) 66.66 (62.95,70.85)
S2 -0.27 (-0.32,-0.23) 0.17 (0.14,0.2) 27.7 (26.03,29.42)
S3 0.95 (0.93,0.98) 0.14 (0.12,0.17) 67.4 (64.09,71.57)

The parameter estimation is different than in the HSMM with subsampling. As

expected given our simulation study in Section 4.3.2, the credible intervals are nar-

rower than in the subsampling HSMM. The state-variance estimates are smaller with

the basis function model and in Figure 4.5 we see more overlap in the estimated state

sequence. This model differs in all parameter estimates from the subsampling case.

In both models we observe that the middle state, which is a transition state between

the two regimes identified in Carpenter et al. (2020), has smaller duration than the
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Table 4.7: Posterior mean and credible intervals for basis functions coefficients

Coefficient Estimation
1 -21.59 (-22.89,-20.28)
2 -9.46 (-10.73,-8.18)
3 -42.67 (-44.21,-41.14)
4 -42.2 (-43.67,-40.73)
5 7.29 (5.74,8.91)
6 -40.42 (-41.65,-39.19)
7 -27.92 (-29.27,-26.6)
8 11.65 (10.16,13.21)
9 -18.97 (-20.6,-17.48)
10 -0.28 (-1.56,1.03)

other two states.

Both approaches are helpful in identifying the low, medium and high levels of

cyanobacteria in the lake, their mean and variance, and the length of time the lake

stays in each of these states. If the residual dependence is not thought to be tied to

what the true biological states are, we can use the inference from the subsampling

approach.

4.5 Discussion

We explored options for mitigating and accommodating conditional dependence in

HSMMs, given that this assumption violation affects the estimation of the emission

distribution parameters. Markov-switching models have been more commonly used

for this purpose but we have proposed new ways to deal with this dependence.

In general, incorporating basis function expansion random effects has proven suc-

cessful in dealing with temporal dependence in data. It was then a reasonable step to

consider the use of basis functions in the context of HMM and HSMMs for the same
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Figure 4.5: Estimated cyanobacteria state sequence with HSMM with basis functions

purpose. The basis function model offers flexibility to address the dependence in this

context, without directly having to model the autocorrelation in the data.

From our subsampling simulation study, we confirmed that the autocorrelation in

the data affects parameter estimation. In fact, as the autocorrelation increases, the

credible intervals are less likely to capture the true parameter values. Subsampling

with decreased sampling rates can be employed to compensate for these effects. In

the robustness study used to compare the different models we see that, in terms of

mean estimation, the model with subsampling and the basis function model without

state-specific coefficients perform better than the autoregressive models and the model

that ignores the residual dependence. In the variance estimation, we observed that

the autoregressive models do not capture the true parameters, even when the data

actually have an autoregressive error structure.

Ruiz-Suarez et al. (2022) show that for classification purposes, models with an AR
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structure generally perform similarly to models that ignore dependence. Even though

classification was not the goal of our analysis, we saw similar results in all our models,

except M6. The classification error was 2% or less in models M1 through M5, except

for the autoregressive model with state-specific autocorrelation parameters (M4) in

data scenario 3, where it was 5%. Even though we usually consider unsupervised

applications and concentrate only on inference of the emission distribution param-

eters as in this chapter, it is interesting to note that the different approaches have

comparable state sequence estimations.

In the real-world data application we compared the subsampling (M2) and the

basis function (M5) approaches. Parameter inference is not the same with these two

models, and the basis function model shows more overlap in the estimated states and

the categorization of states as low, medium and high concentration of cyanobacteria

is less evident. The subsampling approach produces wider credible intervals for the

estimated parameters and the states are more clearly separated in terms of their

means, but this also implies higher state variances. The basis function model, on

the other hand, shows more overlap in the estimated state sequence, but less state

variance. The subsampling approach is recommended in this case given that the

residual dependence prevents identification of scientific meaningful states.

Although our simulation studies presented cases with autoregressive dependence,

real-world data are likely to have more complex dependence. As future work, we will

explore how our proposed subsampling method and the basis function model perform

in more complex settings. We expect this will also require the use of more complex

basis functions such as multi-scale bases (Wikle et al., 2019).

Currently, we estimate the state sequence at each iteration of our sampling al-
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gorithm. There are other Bayesian approaches (as well as frequentist) for HMMs

and HSMMs that do not require the state sequence estimation. We will examine

possibilities for incorporating subsampling into these other estimation approaches.
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Chapter 5

Summary and Future Work

The two main subjects addressed in this dissertation were state duration modeling

and solutions to conditional dependence in the emission distribution of HMMs and

HSMMs. We developed a model that allows for state duration modeling in cases where

the duration distribution parameters cannot be considered constant over time by

defining these parameters as functions of time-varying covariates. We also presented

a framework for analyzing team sports location data. The focus of this work was in

estimating the underlying network of players and exploring the covariates associated

with the probability of connections between pairs of players. Lastly, we provide

alternative approaches to modeling and mitigating conditional dependence in the

emission distribution. However, these methods and models can be further extended.

In the following paragraphs, we briefly point out some of the future work related to

these efforts.

In the model in Chapter 2, we assumed a zero-truncated Poisson distribution for

the state durations. There are other distributions that can be considered and this
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choice is application specific. The parameters of the duration distribution can also be

defined as functions of time-varying covariates. One possible choice might be another

discrete distribution, such as a negative binomial, or a more complex distribution like

a geometric mixture.

An important consideration in HMMs and HSMMs is the number of states, which

is usually determined through information criteria or expert knowledge (Liu and Song,

2020). In our application in Chapter 2, we relied on expert knowledge and the DIC

to inform our decision. However, information criteria can lead to selecting a higher

number of states given that they under-penalize model complexity, as mentioned

in Celeux and Durand (2008) and in the discussion of Spiegelhalter et al. (2002).

We are interested in exploring an ad hoc approach that seemed to perform well in

preliminary analyses. Our proposed approach uses an MCMC convergence diagnostic

as an alternative to choosing the appropriate number of states. This convergence

measure is the multivariate potential scale reduction factor (MPSRF) discussed in

Brooks and Gelman (1998). Our experience has shown that multiple chains do not

converge when the number of states is too large, and thus, favor models with fewer

states. As future research We would like to explore this approach to model selection

more formally.

We can extend the methods developed in Chapter 3 to coupled hidden Markov

models (CHMMs), which considers several HMMs jointly (Brand, 1997). In these

models, the probability of transition in a one model depends on not only its cur-

rent state but also the current state of the other models. Following the notation in

Touloupou et al. (2019), for a chain c ∈ {1, 2, . . . , C} at time t ∈ {1, 2, . . . , T}, s[c]t

is the hidden state and y
[c]
t is an observation emitted by that state. The transition
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probability is defined as P (s
[c]
t = j|s[c]t−1 = i, s

[−c]
t−1 ), where i, j belong to the state space

with S states, and s
[−c]
t−1 is the vector of the states at time t − 1 of all the chains

except chain c. In modeling team sport data, we can explore the inclusion of states

of other pairs of players as covariates in the function of the probability of connection.

This approach is similar to the approach taken in Dong et al. (2012) who extend the

CHMM to include dependencies from a network in the graph-coupled hidden Markov

model (GCHMM). Other extensions of the model in Chapter 3 would be to consider

the case where the probability of connection between two players depends on group

membership. This is similar to stochastic block models Snijders and Nowicki (1997).

Lastly, one could focus on the structure of the network as a whole when defining the

states of the HMM rather than on pairs of players.
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Appendix A

Supplement for Chapter 2

A.1 Sampling algorithm
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Algorithm 1 MCMC sampling algorithm

Initial values

1: Define initial values for parameters ρ(0),P(0),B(0).
2: Generate the state sequence S(0) as follows:

a: Sample the first state S
(0)
q=1 using ρ(0).

b: Calculate ϕ
(0)
Sq=1

using X and β
(0)
Sq=1

.

c: Sample τ
(0)
1 from a zero-truncated Poisson with parameter ϕ

(0)
Sq=1

.

d: Define S1:T1 = Sq=1.

e: Sample S
(0)
q=2 conditional on S

(0)
q=1 using P(0).

f: Calculate ϕ
(0)
Sq=2

using X and β
(0)
Sq=2

.

g: Sample τ
(0)
2 from a zero-truncated Poisson with parameter ϕ

(0)
Sq=2

.

h: Define ST1+1:T2 = Sq=2.

i: Continue until Tq = n.

3: Calculate µ(0) and σ2(0) based on S(0).

Iterations

1: for iteration l = 1, 2, . . . do
2: Update ρ(l−1) using Gibbs sampling:

ρ(l) ∼ Dir
(
I
(
S
(l−1)
1 = 1

)
+ θρ1 , . . . , I

(
S
(l−1)
1 =M

)
+ θρM

)
,

where I(·) is the indicator function.
3: Update the j-th row of P(l−1) for j = 1, 2, . . . ,M , using Gibbs sampling:

P
(l)
j ∼ Dir

(
nj1 + θPj1

, . . . , njM + θPjM

)
,

where njk =
Q−1∑
q=1

I
(
S
(l−1)
q = j, S

(l−1)
q+1 = k

)
is the total number of transitions from

state j to state k.
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Algorithm 1 MCMC sampling algorithm (continued)

4: Update β
(l−1)
j for j = 1, 2, . . . ,M using random-walk Metropolis. Sample z ∼

N(0, κ2βj
Ir+1), where Ir+1 is an identity matrix of order r+1, and define the proposal

vector β
(∗)
j = β

(l−1)
j + z. Then calculate the Metropolis ratio as:

mβj
=


Q∏

q=1

ZTP
(
τ
(l−1)
q | ϕ(∗)

q

)
Q∏

q=1

ZTP
(
τ
(l−1)
q | ϕ(l−1)

q

)
×

 N
(
β

(∗)
j | θβj

, λ2βj
Ir+1

)
N
(
β

(l−1)
j | θβj

, λ2βj
Ir+1

)
 ,

and if u < mβj
, with u ∼ Unif(0, 1), let β

(l)
j = β

(∗)
j , and update ϕ(l−1), ϕ(l) = ϕ(∗).

5: Update S(l−1) and τ (l−1) with the sampler in Johnson and Willsky (2013) for
the finite HSMM.

6: Update µ
(l−1)
j for j = 1, 2, . . . ,M using Gibbs sampling:

µj ∼ N


n∑

i=1
yiI(Si=j)

σ2
j
(l−1) + θµ

λ2
µ

nj

σ2
j
(l−1) +

1
λ2
µ

,
1

nj

σ2
j
(l−1) +

1
λ2
µ

 ,

where I(·) is the indicator function and nj is the total number of observations
emitted by state j.

7: Update σ2
j
(l−1)

for j = 1, 2, . . . ,M using Gibbs sampling:

σ2
j ∼ IG

(
θσ2 +

nj

2
, λσ2 +

1

2

n∑
i=1

(
yiI(Si = j)− µ

(l−1)
j

)2)
.

8: Save ρ(l),P(l),B(l),ϕ(l),S(l), τ (l),µ(l) and σ2(l).
9: end for
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Appendix B

Supplement for Chapter 3

B.1 Posterior distribution[
µ,W, τ 2, γ, η, c, α, σ2, p1,β

(0),β(1) | s
]

∝ [s | µ, τ 2] [µ | W, γ, η, c, α, σ2] [W | p1,β(0),β(1)]
× [τ 2|ατ , βτ ] [γ|µγ, σ

2
γ] [η|µη, σ

2
η] [c|ac, bc] [α|aα, bα] [σ2|ασ, βσ]

× [p1|ap1 , bp1 ] [β(0)|µβ(0) , σ2
β(0) ] [β

(1)|µβ(1) , σ2
β(1) ]

B.2 Full conditional distributions

τ 2

τ 2|· ∼ IG(α∗
τ , βτ

∗)

α∗
τ ≡ ατ + nT

β∗
τ ≡ βτ +

1

2

T∑
t=1

(s(t)− µ(t))′ (s(t)− µ(t))
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γ

γ|· ∼ N(µ∗
γ, σ

2
γ
∗
)

σ2
γ
∗ ≡

(
1

σ2
γ

+
T∑
t=2

µ̃(t− 1)′Q(t)µ̃(t− 1)

)−1

µ∗
γ ≡ σ2

γ
∗
(
µγ +

T∑
t=2

µ̃(t− 1)′Q(t)(µ(t)− µ(t− 1)− ηd(t− 1))

)

Here Q(t) = σ−2K(t), with K(t) ≡ (Wc
+(t)− αW(t))⊗ I2.

η

η|· ∼ N(µ∗
η, σ

2
η
∗
)

σ2
η
∗ ≡

(
1

σ2
η

+
T∑
t=2

d(t− 1)′Q(t)d(t− 1)

)−1

µ∗
η ≡ σ2

η
∗
(
µη +

T∑
t=2

d(t− 1)′Q(t)(µ(t)− µ(t− 1)− γµ̃(t− 1))

)

c

MH step with kernel:

[c|·] ∝ c

n∑
i=1

T∑
t=2

I{wi+(t)=0}
exp

(
1

2σ2

n∑
i=1

T∑
t=2

cI{wi+(t)=0}hi(t)
′hi(t)

)

× cac−1(1− c)bc−1

with hi(t) ≡ µi(t)−µi(t− 1)− γµ̃i(t− 1)− ηdi(t− 1), and proposal distribution
N(c(l−1), σ2

c−tune) (the ratio includes the correction for the transformed proposal).
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α

M-H step, where the kernel of the full conditional density is:

[α | ·] ∝
T∏
t=2

|Q(t)|1/2 exp
{
−1

2
h(t)

′
Q(t)h(t)

}
(1 + α)aα−1(1− α)bα−11(−1,1)(α),

keeping in mind that we find α in Q(t), since Q(t) = σ−2(Wc
+(t)− αW(t))⊗ I2.

Also, we have h(t) = µ(t) − [µ(t− 1) + γµ̃(t− 1) + ηd(t− 1)], and the proposal
distribution is N(α(l−1), σ2

α−tune).

σ2

σ2 | · ∼ IG(α∗
σ, β

∗
σ)

α∗
σ ≡ ασ + nT

β∗
σ ≡ βσ +

1

2

T∑
t=2

A′K(t)A,

with A = (µi,t − µi(t− 1)− βµ̃i(t− 1)− ηdi(t− 1))

p1

p1 | · ∼ Beta(a∗p1 , b
∗
p1
)

a∗p1 ≡ ap1 +
∑
i<j

wij(1)

b∗p1 ≡ bp1 +
∑
i<j

(1− wij(1))

β(0),β(1)

M-H step for each vector. The kernel of the full conditional density is:
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[β(0) | ·] ∝
T∏
t=2

[
logit−1(β(0)′x)

](1−w(t−1))(1−w(t)) [
1− logit−1(β(0)′x)

](1−w(t−1))w(t)

× exp

(
−1

2
β(0)′σ−2

β(0)Iβ
(0)

)

[β(1) | ·] ∝
T∏
t=2

[
logit−1(β(1)′x)

]w(t−1)w(t) [
1− logit−1(β(1)′x)

]w(t−1)(1−w(t))

× exp

(
−1

2
β(1)′σ−2

β(1)Iβ
(1)

)

The proposal distribution is: N(β(k)(l−1)
, σ2

β(k)−tune
Ir+1), where r corresponds to

the number of covariates, and k = 0, 1.

µ

M-H step at each time point, with the following as the kernel of the each full condi-
tional density:

[µi(1)|·] ∝ [si(1)|µi(1), τ
2I2]× [µi(2)|µi(1), . . . ]× [µi(3)|µi(2),µi(1), . . . ]

[µi(t)|·] ∝ [si(t)|µi(t), τ
2I2]× [µi(t)|µi(t− 1),µi(t− 2), . . . ]

× [µi(t+ 1)|µi(t),µi(t− 1), . . . ]× [µi(t+ 2)|µi(t+ 1),µi(t), . . . ]

[µi(T − 1)|·] ∝ [si(T − 1)|µi(T − 1), τ 2I2]× [µi(T − 1)|µi(T − 2),µi(T − 3), . . . ]

× [µi(T )|µi(T − 1),µi(T − 2), . . . ]

[µi(T )|·] ∝ [si(T )|µi(T ), τ
2I2]× [µi(T )|µi(T − 1),µi(T − 2), . . . ]

At each time point, the proposal distribution is N(µi(t)
(l−1), σ2

µ−tuneI2), where l
represents the iteration.
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W

M-H step for the state at each time point. For the state at time t, we consider the
information from the segment it belongs to, given that the states in that segment will
be dependent on the state at t. Let there be Q segments, with q = 1, ..., Q, and T
timepoints with t = 1, ...T . The state for pair i, j at time t is denoted as w(t). The
state w(t) is in segment q, and that goes from tq,ini to tq,fin, where tq,ini ≤ t ≤ tq,fin.
The full conditional distribution of w(t) is proportional to:

[w(t) | ·] ∝ pw(t−1),w(t) × pw(t),w(t+1) × · · · × pw(tq,fin),w(tq,fin+1)

×[µ(t) | w(t), w(t− 1), . . . ]× [µ(t+ 1) | w(t+ 1), w(t), . . . ].

(B.1)

The probability of transition from the state at time t to the state at t+1 is defined
as:

pw(t),w(t+1) = h[β
(w(t))
0 + β

(w(t))
1 f(w(t), w(t− 1), . . . ) + . . . ],

with h(·) being either logit−1(·) if the transition is to the same state or 1−logit−1(·)
if the transition is to a different state. The proposed state is 1 − w(t)(l−1), that is,
the opposite of the state from the last iteration l − 1.

B.3 Simulation results
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Appendix C

Supplement for Chapter 4

C.1 Posterior estimates of autoregressive model

(M4) in scenario 3

Table C.1.1: Posterior mean estimates and CI, M4 data scenario 3

State AR(1) coefficients Estimated coefficients
S1 0.5 0.418 (0.319,0.514)
S2 0.05 0.202 (0.129,0.273)
S3 0.8 0.565 (0.485,0.644)

C.2 Full conditional distributions

Latent process η

Metropolis-hastings update, where the proportional to the log-posterior for ηSt,t is:
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∝ − 1

2σ2
{y − (ηSt,t)}

2 − 1

2τ 2

{
ηSt,t −

(
µSt +

K∑
k=1

ckϕk,t

)}2

Basis coefficients

The prior of the vector of basis coefficients c is N(m,S), with m a vector of K zeros,
and S = ρ2IK . The full conditional distribution for c is N(µ∗,Σ∗), with

µ∗ = ΣΦ⊤T −1 (η − µ) ,

and

Σ∗ =
(
Φ⊤T −1Φ+ S−1

)−1

where Φ is the matrix of basis functions with dimension T × K, η is the vector of
true observations of length T and µ is the vector of state-specific means associated to
each observation, that is µ = (µs1 , µs2 , . . . , µsT )

′. The matrix T is a T × T diagonal
matrix, with diagonal elements τ 2s1 , τ

2
s2
, . . . , τ 2sT .
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