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ABSTRACT

Dynamic equations parameterized by differential equations are used to represent a va-

riety of real-world processes. The equations used to describe these processes are generally

derived based on physical principles and a scientific understanding of the process. Statis-

ticians have embedded these physically-inspired differential equations into a probabilistic

framework, providing uncertainty quantification to parameter estimates and model specifi-

cation. These statistical models typically rely on a predefined differential equation or class

of models to represent the dynamics of the system. Recently, methods have been developed

to discover the governing equation of complex systems. However, these approaches rarely

account for uncertainty in the discovered equations, and when uncertainty is accounted for,

it is not for the complete system. This dissertation begins with a statistical model for the

seasonal temperature cycle over North America, where the dynamics of the system are pa-

rameterized by a specified functional form. The model highlights how the seasonal cycle

is changing in space and time, motivating the need to better understand the driving mech-

anisms of such systems. Then, a statistical approach to data-driven discovery is proposed,

where uncertainty is incorporated throughout the complete modeling process. The novelty
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of the approach is the dynamics are treated as a random process, which has not be consid-

ered previously in the data-driven discovery literature. The proposed approach sits at the

junction between the statistical approach of incorporating dynamic equations in a proba-

bilistic framework and the data-driven discovery methods proposed in computer science,

physics, and applied mathematics. The proposed method is put into context within the

broader literature, highlighting its contribution to the field of data-driven discovery.
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Chapter 1

Introduction

A reoccurring theme at the intersection of statistical and atmospheric sciences is to pro-

vide a more complete understanding to our physical world through scientifically motivated

models. Pivotal in that understanding is the quantification of the inherent uncertainty in

meteorological processes stemming from our inability to perfectly characterize a process.

To complicate the issue, the Earth’s climate is changing asynchronously across space and

time, altering the manner in which atmospheric systems interact and our predisposition on

how the systems are characterized. This necessitates methods that can characterize how

complex systems interact and discover the mechanisms driving these systems.

One such system where the mechanisms driving the system are unknown is the seasonal

temperature cycle, which is often characterized through harmonic components. That is, the

temperature cycle can be decomposed in terms of its annual (e.g., one cycle per year)

and semi-annual (e.g., two cycles per year) harmonic components. Higher-order harmonic

terms could be included, but the annual and semi-annual harmonic components have been

shown to explain the majority of the variation in the temperature cycle. While the annual
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harmonic can be attributed to Earth’s orbital path around the sun, the importance of the

semi-annual harmonic is not as obvious. In the Southern latitudes, the semi-annual cycle

has been shown to result from differential heating in north-south land-sea contrasts between

Antarctica and the Southern Ocean (van Loon, 1967), while the semi-annual cycle in the

Northern Hemisphere has been shown to be related to an east-west land-sea contrast (Wikle

and Chen, 1996). It is known that the land-sea contrast plays a role in the semi-annual

cycle, and it is hypothesized that anthropogenic climate change will lead to asynchronous

changes in the semi-annual cycle because the land and ocean have different responses to

greenhouse-related heating. However, the specific mechanisms of this changing system

and how to properly characterize them remain unknown.

In Chapter 2, we propose a model to jointly quantify the minimum and maximum tem-

perature cycles parameterized by their annual and semi-annual harmonic components. The

model enables the identification of spatial and temporal changes in the seasonal tempera-

ture cycle, capturing spatial dependence, temporal dynamics, and multivariate dependence

of these harmonics through spatially and temporally varying coefficients. The model is ap-

plied to minimum and maximum temperature over North America from 1979-2018, with

regions experiencing significant shifts in the temperature cycle being highlighted through

changes in the two harmonics. Our results provide further insight into how the temperature

cycles are shifting when parameterized functionally using harmonics and the importance

the semi-annual harmonic has on the seasonal temperature cycle.

The seasonal cycle analysis from Chapter 2 suggests potential hypotheses that may

govern the dynamics of this changing process. Current deterministic coupled global ocean-

atmosphere models can mimic this behavior and provide projections of how it may change

in the future. However, such models are nearly as complex as the real-world system and
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the specific dynamic mechanisms that are responsible for the asymmetric response of the

seasonal cycle to climate change are unclear. This suggests the need to discover the specific

dynamic mechanisms in the presence of uncertain observations. Recently, a body of litera-

ture has surfaced within the fields of computer science, physics, and applied mathematics

that aims to discover the governing equations driving nonlinear systems, generally termed

data-driven discovery of nonlinear dynamic equations. We provide a substantive literature

review of these methods in Chapter 3, highlighting the strengths, weaknesses, similarities,

and differences of various approaches and provide parallels to classical statistical model-

ing of dynamic systems. The general idea behind data-driven discovery is to relate the

time derivative of a system to a function of the system. The problem can be parameterized

as an ordinary or partial differential equation (ODE/PDE) where the left hand side of the

equation is a temporal derivative and the right hand side is some nonlinear function of the

system (e.g., interactions, space and/or time derivatives, etc.).

The difficulty of data-driven discovery in this modeling framework is computing deriva-

tives in space or time or both, especially with observation uncertainty. The computed

derivatives are used to determine the dynamics of the system, where proper recovery of

the derivatives is pivotal to the method being able to discover the dynamics. In Chapter 3,

we provide a comprehensive discussion of the numerous methods by which this process can

be done. However, these various methods each have some crucial short-comings. These

methods are rarely applied to real-world problems, favoring simulations by which to ex-

hibit their contributions to the literature. While there is little to no discussion as to why the

methods are rarely applied to real-world systems, it is most likely due to the difficulty real-

world data pose. For example, in the simulations, the true equation is known and it is easy

to assess model discovery accuracy. In a real-world system, we must rely on the scientific
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literature to provide a hypothesis as to the correct equation, but there is no guarantee the

“true” dynamics abide by these hypotheses. Additionally, the ability to handle observation

uncertainty in the form of missing data or measurement noise is also a limitation of these

approaches.

To account for the inherent uncertainty in real-world data, a statistical framework to

data-driven discovery of nonlinear dynamics can be used. As we will discuss in Chap-

ter 3, and exemplified by Chapters 4 and 5, statistical methods for data-driven discovery

provide a framework that can accommodate data imperfections and be applied to a wider

range of problems. However, few methods for data-driven discovery consider uncertainty

quantification, and those that do treat the systems as true realizations as opposed to random

processes. Specifically, these methods rely on denoising the data and computing deriva-

tives a prior, treating these derived values as the fixed and known observation. By not

properly accounting for the randomness of the observed process, these methods disregard

observational uncertainty (missing data and measurement noise). In turn, this means the

estimated uncertainty in these approaches is dependent on the method(s) used to denoise

and differentiate the data and fail to properly represent the uncertainty of the system.

In Chapters 4 and 5 we will develop a statistical method for data-driven discovery of

nonlinear dynamic equations that considers the dynamic system a random process, enabling

uncertainty quantification throughout the entire process. Chapter 4 develops a Bayesian

approach for data-driven discovery of ordinary differential equations (ODEs), bringing the

current work of data-driven discovery to the statistical sciences. In contrast to the prior

methods of data-driven discovery with uncertainty, we treat the system as a random pro-

cess within a Bayesian hierarchical model (BHM) where the dynamic process is modeled

as a latent process that is represented using a basis function expansion. Using the BHM
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framework, where the dynamics are latent and the system is a random process, results in

our approach being able to accommodate missing data, properly account for measurement

uncertainty, and provide proper uncertainty quantification to the system. To illustrate the

advantage of the statistical approach to data-driven discovery, we show the robustness of

the model to observational noise and missing data on multiple simulated datasets. We then

apply the method to three real-world problems - the historic Hare-Lynx predator-prey sys-

tem, a motion tracked pendulum, and Pacific sea surface temperature.

In Chapter 5 we extend the model from Chapter 4 to space-time processes and propose a

Bayesian approach for data-driven discovery of partial differential equations (PDEs). The

addition of the spatial dimension requires that the problem be reformulated using higher-

order tensors, where the dynamic process is represented as a higher-order basis function

expansion. Different from the other approaches used to discover PDEs, our approach again

models the system as a random process and can accommodate missing data. In addition, the

framework can accommodate systems where the response is dependent on temporal and/or

spatio-temporal derivatives of the system. The applicability of the proposed methodology

is illustrated on three simulated systems with varying amounts of observational uncertainty

and missing data. The method is also applied to a real-world system, where we infer how

the vorticity of the streamfunction evolves over time.

The dissertation is concluded in Chapter 6. Specifically, we provide a quick summary

and four potential ways to extend and improve on the work presented here.
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Chapter 2

On the spatial and temporal shift in the
archetypal seasonal temperature cycle as
driven by annual and semi-annual
harmonics

2.1 Introduction

In ecology, “spatial synchrony” is a concept that describes coincident in time variations in

an ecological process across geographically separated populations (Liebhold et al., 2004).

In many cases, this synchrony leads to symbiotic relationships that are tied to environmental

seasonal cycles. For example, an important climate-driven issue facing forest health con-

cerns native bark beetle infestations, with current beetle outbreaks among the most severe

in recorded history (Bentz et al., 2010). Historically, exposure to very cold temperatures is

necessary to control the beetle population, but increasing seasonal minimum temperatures

in northern latitudes has disrupted this historical synchrony, limiting beetle mortality, and
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increasing tree mortality. Other examples of spatial synchrony being disrupted by changes

in environmental seasonal cycles include ocean primary productivity (Defriez et al., 2016),

lake stratification (Kraemer et al., 2015), migration patterns (Usui et al., 2017), and flood

hazards (Arnell and Gosling, 2016), among others. The broad extent of these impacts high-

light the importance of understanding how spatial patterns in environmental seasonal cycles

vary through time.

The seasonal cycle in atmospheric variables is a direct response to the variation in solar

insolation due to the Earth’s orbital path around the Sun. Specifically, the atmospheric re-

sponse to the overhead Sun crossing the equator twice a year suggests a more complicated

seasonal variation that includes both an annual and a semi-annual harmonic. The annual

(first) harmonic is a sinusoid that has one cycle per year and the semi-annual (second) har-

monic is a sinusoid that has two cycles per year (see Eqn. 2.1). Harmonic analysis has been

used by meteorologists and climatologists to characterize the connection between these

harmonics and the observed seasonal cycle since the early 20th century (e.g., see Hsu and

Wallace (1976a,b) for a review of this early work). Although the semi-annual harmonic

typically contributes less variance to the seasonal cycle than the annual harmonic in the

Northern mid-latitudes, its amplitude and phase vary considerably across space, and there

are regions in which it can significantly affect the seasonal cycle (e.g., shifting the phase,

strengthening the peak, flattening the minimum; see White and Wallace (1978)). One of

the first studies to discuss a specific dynamical mechanism behind the semi-annual cycle

was van Loon (1967), in which he showed that the semi-annual cycle in the high South-

ern latitudes was the result of differential heating due to north–south land/sea contrasts

between Antarctica and the Southern ocean. Unlike the north–south contrast exhibited in

high latitudes, Wikle and Chen (1996) showed evidence that the Northern hemisphere ex-
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tratropical semi-annual cycle exhibits a strong east–west structure and is governed by the

spatio-temporal asymmetries in the seasonal variation of the northern hemisphere station-

ary eddies (e.g., the wave structure in the atmospheric circulation). Because this variation

in stationary eddies is due to east–west differential heating from land/sea contrasts, the

fundamental mechanism for both the extra-tropical and high-latitude semi-annual cycles is

due to land–sea contrasts and the impact this has on the atmospheric circulation.

It is well-known that atmospheric circulation patterns are varying due to differing re-

sponses of land and sea to climate forcing (e.g., Sutton et al. (2007)). This suggests that

the annual and semi-annual harmonics are also likely varying. Stine et al. (2009) inves-

tigated the change in the annual harmonic component of surface temperature between the

years 1900-1953 and 1954-2007 by looking at the lag (difference between temperature and

local solar insolation phases) and gain (ratio of temperature and insolation amplitudes).

Based on simple t-test comparisons of the lag and gain for the different time periods, they

showed that the annual temperature cycle has changed, but asymmetrically across space.

Dwyer et al. (2012) also showed that there has been heterogeneous variation in the an-

nual amplitude and phase of the mean surface temperature cycle in response to greenhouse

gases. These analyses did not explicitly consider the semi-annual component of the sea-

sonal cycle, multivariate seasonal variation of atmospheric variables, nor did they consider

a formal model-based uncertainty quantification framework that could accommodate spa-

tial and temporal variation of the harmonics.

Dynamic spatio-temporal models (DSTMs) are well established in the literature for

modeling complex spatial processes that evolve over time (see Cressie and Wikle (2011)

for a collection of references and methods). Statistical DSTMs are able to capture spatial

and temporal dependence in the process across different scales, while retaining the ability
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to capture uncertainty in parameter estimation and prediction. Surface temperatures over

land generally can be decomposed into three components: a term to account for trend, a

seasonal component, and a “weather” component. We would expect the first two of these

components to vary somewhat slowly across time, with near-by locations experiencing sim-

ilar temperatures and temperature variation through time, whereas the weather component

corresponds to a dynamic process observed at finer spatial and temporal scales (Wikle et al.,

1998). The most natural way to accommodate slowly varying time variation in trend and

seasonal parameters is via the dynamic linear model (DLM) paradigm (e.g., West and Har-

rison (2006)). Such models are commonly extended to the dynamic evolution of parameters

in spatio-temporal and multivariate settings by representing the parameters as spatial fields

that vary in time according to a DLM (e.g., see the overviews in Gelfand et al. (2010);

Cressie and Wikle (2011); Banerjee et al. (2014); Gelfand et al. (2017)).

The main modeling contribution of this work is the development of a joint statisti-

cal framework for time-varying minimum and maximum temperature cycles, which are

specified through the annual and semi-annual harmonics, while accounting for spatial and

temporal dependence. This model is motivated by the fact that responses to changes in

heating are asymmetric in space; thus, we expect that the annual and semi-annual har-

monics in temperature are varying in time differently across space, leading to time-varying

differences in seasonal cycles. By adopting a Bayesian framework for parameter estima-

tion for the associated DSTM model, we are able to quantify the extent to which regions

across North America are experiencing significant shifts in the minimum and maximum

temperature cycles. Significant asymmetric shifts in minimum and maximum temperature

seasonal cycles may seriously affect biological processes that are synchronously linked to

such cycles.
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The remainder of this Chapter is structured as follows. In Section 2.2 we describe the

data used in the analysis and provide a brief exploratory analysis to motivate the work.

Section 2.3 details the joint model specification using the annual and semi-annual harmon-

ics and methods for model inference. Section 2.4 presents the findings of the analysis and

Section 2.5 provides a discussion and directions for future work.

2.2 Data and Preliminary Analysis

For the analyses presented here, we consider air temperature (deg C) data at two meters

above the surface obtained from the National Center for Environmental Prediction (NCEP)

Reanalysis1. The data are available at three hour intervals for each day from January 1,

1979 to December 31, 2018, which we summarize as daily minimum and maximum tem-

perature. Since daily minimum and maximum temperature are products of the diurnal cy-

cle, not extremes in the context of block maximum (Cooley and Sain, 2010) or exceedances

over threshold (Chavez-Demoulin and Davison, 2005), we do not consider them within the

extreme value theory framework. The data are on a 349× 277 Northern Lambert Confor-

mal Conic grid, with corners at approximately (1.000N, 145.500W), (0.898N, 68.320W),

(46.354N, 2.570W), and (46.634N, 148.642E). All data exploration was conducted on a

reduced spatial domain with corners at approximately (16.103N, 140.543W), (15.997N,

73.229W), (57.601N, 22.274W), and (57.856N, 168.499E).

Let zt denote temperature (say, minimum or maximum) on day t where t = 1, . . . ,T ,

and T is the number of days in the year (365 or 366 for leap years). The discrete Fourier

1https://www.esrl.noaa.gov/psd/
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series representation of the time series, expressed in amplitude-phase form, is given as

zt = a0 +
bT/2c

∑
h=1

Ah cos
(2πht

T
+ϕh

)
, (2.1)

where Ah and ϕh are the amplitude and phase, respectively, for the hth harmonic compo-

nent, and b c is the “floor function” that returns the largest integer value of the argument.

Reparameterizing Eqn. 2.1 in terms of its Fourier coefficients results in

zt = a0 +
bT/2c

∑
h=1

ah cos
(2πth

T

)
+bh sin

(2πth
T

)
, (2.2)

where ah and bh are the Fourier coefficients for the hth harmonic, related to the amplitude

by Ah =
√

a2
h +b2

h, Ah ∈ [0,∞), and the phase by ϕh = tan−1(−bh/ah), ϕh ∈ [−π/h,π/h].

As discussed in the Section 2.1, higher order harmonics lack a clear physical interpretation,

so we restrict our estimation to the first two harmonics (i.e., h = 1,2, where h = 1 and h = 2

correspond to the annual and semi-annual harmonic, respectively), and refer to a “cycle”

as the sum of the first and second harmonics hereafter.

To investigate the possible relative importance of the semi-annual harmonic in North

American minimum and maximum temperature cycles, Figure 2.1 shows the estimated

seasonal cycles for minimum temperature when both the annual and semi-annual harmonic

components are included (solid) compared to those in which only the annual component

is considered (dashed). These estimated cycles are shown for two different years, 1979

and 1999, and two different locations, one in central Texas and the other in Kings Canyon

National Park, California. The top panel shows the estimated cycle for the year 1979, the

middle panel for the year 1999, and the bottom panel shows the difference between the two

cycles, with the estimates from the 1979 cycle subtracted from the 1999 cycle. These plots
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Figure 2.1: Comparison of estimated seasonal cycle for minimum temperature using the
first and second Fourier harmonics (solid line) compared to just the first Fourier harmonic
(dashed line) in central Texas and Kings Canyon National Park, California. The top plot is
the estimated cycle for 1979, the middle for 1999, and the bottom showing the difference
(1999 year - 1979 year).

illustrate the impact the semi-annual component can have on the temperature cycle, how

the impact changes through time, and how these features vary across space. The estimated

cycles for 1979 are very similar for both locations, suggesting the semi-annual harmonic

had little influence on the minimum temperature cycle at these locations. Conversely, the

temperature cycles for 1999 are much more dissonant for both locations, implying the semi-

annual harmonic had a greater impact on the temperature cycle in 1999 than in 1979. The

impact of the semi-annual harmonic of minimum temperature can be seen clearly in the

bottom panel, where the difference between the estimated cycles between the two years
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Figure 2.2: Computed t-statistics of the Fourier coefficients for the minimum temperature
cycle. Locations with 95% point-wise confidence intervals not including 0 are shown, with
the color corresponding to the t-statistic value.

using both annual and semi-annual components in central Texas shows a cyclical deviation

from the difference in cycle estimates using only the annual component. At Kings Canyon,

the cycle with the annual and semi-annual components oscillates about the difference using

only the annual component. This suggests that the impact of the semi-annual component

is spatially and temporally varying, and is important in capturing shifts in the temperature

cycle through time.

To identify differential change in space through time in the annual and semi-annual

harmonics, we investigate daily temperature data for each location for two separated 15-
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Figure 2.3: Computed t-statistics of the Fourier coefficients for the maximum temperature
cycle. Locations with 95% point-wise confidence intervals not including 0 are shown, with
the color corresponding to the t-statistic value.

year time periods; period one from 1979 - 1994 and period two from 2003 - 2018. From

the annual and semi-annual harmonic estimates, we calculate the phase and amplitude for

each year for each of the two time periods. As an exploratory comparison of the two peri-

ods at each location, we compute t-statistics of the difference (second period - first period)

for both the annual and semi-annual phase and amplitude. Figures 2.2 and 2.3 show the

t-statistics over the region for all four components (A1, ϕ1, A2, ϕ2) for minimum and max-

imum temperature, respectively. T-statistics that are large (in magnitude) suggest possible

shifts in temperature cycles. For example, in both the minimum and maximum temperature
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annual phase, a large area in the northeast of the continent has experienced a negative shift,

implying the peak of the wave is occurring earlier in the recent years. Additionally, the shift

in the annual amplitude for both the minimum and maximum cycles are alike, with areas

over the Pacific, central United States, and northern Canada having similar spatial patterns

and values. The shifts in the semi-annual amplitude and phase of both cycles have similar

spatial patterns, with areas in the northwest United States and northern Canada most closely

resembling each other. These results for the annual amplitude and phase closely resemble

the results over North America reported in Stine et al. (2009), however our findings are

purely exploratory as they do not account for any spatial, temporal, or process dependence,

which could have important effects on reported regions of significant change.

These preliminary analyses identified possible shifts in the annual and semi-annual

harmonic components of minimum and maximum temperature over North America, which

suggest changes in the cycles themselves, and that these changes might vary considerably

across space. Our aim is to obtain full probabilistic inference with regard to these changes

in minimum and maximum temperature cycles across the region. Specifically, we propose

a multivariate statistical DSTM that captures the relationship between the minimum and

maximum temperature cycles, as well as spatial and temporal dependence. This model will

be used to quantify the uncertainty associated with potential seasonal cycle changes over

space and time.
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2.3 Bayesian Hierarchical Formulation

2.3.1 Data model

Let z1`(s) = [z11(s), ...,z1T`(s)]
′ and z2`(s) = [z21(s), ...,z2T`(s)]

′ denote the centered, by

year, minimum and maximum temperature, respectively, for year `, `= 1, . . . ,L at location

s, s∈ {s1, ...,sn}where T` is the number of days in year `. The linear model for temperature

at location s, year `, and variable j can be specified in terms of the Fourier coefficients (e.g.,

(2.2)) by

z j`(s) = X`β̃ j`(s)+ ε̃ j`(s) j = 1,2, (2.3)

where X` = [ρ1,ψ1,ρ2,ψ2], and β̃ j`(s) = [a1(s),b1(s),a2(s),b2(s)]′, with the tth element

of ρh andψh equal to ρht = cos(2πh(t−1)/T`) and ψht = sin(2πh(t−1)/T`), respectively,

for h = 1,2, and ε̃ j`(s)
iid∼ N(0, σ̃2

ε j
(s)IT`). Here, σ̃2

ε j
(s) is the variance for the jth variable

at location s, which is assumed constant over years for each cycle and location. Although

the simplifying assumption of i.i.d. errors assumes no residual temporal autocorrelation

as would be present in “weather” processes, preliminary analyses that accounted for this

correlation through a daily random effect did not substantially impact parameter inference.

As such, the model with daily random effects was not considered further due to the added

computational complexity.

Spatial and temporal dependence is modeled using spatially-varying harmonic coeffi-

cients and with a random walk time structure. Specifically, the harmonic coefficients, β̃`,

are spatial processes and the spatial field evolves according to a random walk. Letting p= 4

denote the number of Fourier coefficients per cycle, the 2p-vector of spatially-varying co-
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efficients, β̃`(s) =
[
β̃1`(s)

′
, β̃2`(s)

′
]′

, for year `, location s is modeled by

β̃`(s)|β̃`−1(s), w̃`(s)∼ N
(
β̃`−1(s)+ w̃`(s),Σ̃β

)
(2.4)

where w̃`(s) =
[
w̃1`(s)

′
, w̃2`(s)

′
]′

with w̃ j`(s) = [w̃ j1`(s), ..., w̃ jp`(s)]′, and

w̃ jk`(s)
ind.∼ GP

(
0,C

(
·;θ jk

))
,

where k = 1, ..., p, Σ̃β is a 2p× 2p unstructured covariance matrix, and GP(0,C(·;θ jk))

denotes a Gaussian process over the spatial domain (Cressie, 1993). Each spatial pro-

cess w̃`(s) accounts for the residual spatial variation in the Fourier coefficients between

year `− 1 and `. We assume an exponential covariance function, where C(s,s′;θ jk) =

σ2
jk exp{−||s− s′||/φ jk}, ||s− s′|| is the Euclidean distance between locations s and s′, and

θ jk = {σ2
jk,φ jk} consists of the spatial variance and decay parameters, respectively, for

process k = 1, ..., p. Note that the spatial covariance is process and parameter specific, but

assumed constant across years.

Based on the similarities in the parameter estimates discussed in Section 2.2, the har-

monic coefficients for both the minimum and maximum cycles are modeled jointly to bor-

row strength. Dependence between the minimum and maximum temperature cycles is cap-

tured through the covariance structure in the coefficients, Σ̃β . If dependence between the

minimum and maximum temperature cycles is present, we expect the p× p off-diagonal

sub-matrices of Σ̃β to be non-zero. Lastly, we let β̃0(s)|µ0 ∼ N(µ0,Σ0), completing the

model specification.
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2.3.2 Predictive Process

Model inference presents computational challenges due to the number of spatial locations,

years, harmonics, and processes. For example, a single draw from the conditional distri-

bution of β̃`(s)|β̃`−1(s), w̃`(s) requires matrix operations on a 2pn×2pn matrix, which is

computationally prohibitive for even modest sized data sets. Therefore, we propose using

spatio-temporal predictive processes (Finley et al., 2012) to enhance computational effi-

ciency.

Let S= {s1, ...,sn} be the locations where minimum and maximum temperature data are

available. Next, define knot locations S∗ = {s∗1, ...,s∗m} located inside the domain of interest

where m� n. For cycle j, at location s, year `, for process k, we define the predictive

process (Finley et al., 2012) as

w jk`(s) = E(w̃ jk`(s)|w̃∗jk`) = c(s;θ jk)
′C∗(θ jk)

−1w̃∗jk`, (2.5)

where w̃∗jk` = [w̃ jk`(s∗1), ..., w̃ jk`(s∗m)]
′
, c(s;θ jk)

′ is a 1×m vector whose ath element is

C(s,s∗a;θ jk), and C∗(θ jk) is the m×m matrix with element (a,b) given by C(s∗a,s∗b;θ jk).

Let β`(s) =
[
β′1`(s),β

′
2`(s)

]′
and w`(s) =

[
w11`(s), ...,w1p`(s),w21`(s), ...,w2p`(s)

]′
, then

the predictive process for the coefficients at year `, β`(s), is predicated on all previous

predictive processes,

β`(s) =
`

∑
r=1

wr(s)+ηr,

where ηr ∼ N(0,Σβ ) and Σβ is defined as in (2.4). The resulting distribution of the coef-
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ficients is

β`(s)|β`−1(s),w`(s)∼ N
(
β`−1(s)+w`(s),Σβ

)
,

and the data model (equation 2.3) can be rewritten in the form of the predictive process.

z j`(s) = X`β j`(s)+ε j`(s), j = 1,2,

where ε j`(s)
iid∼ N(0,σ2

ε j
(s)IT`) is defined the same as in Eqn. 2.3. Therefore, conditioned

on the predictive process, the coefficient process is spatially independent, and draws from

the full conditional of β`(s) can be obtained univariately.

2.3.3 Parameter Models

To fully specify the Bayesian hierarchical model, we assign prior distributions to all re-

maining parameters. Conjugate, non-informative priors were chosen when available to

ease computational burden. For σ2
ε`
(s), the variance for location s that is shared across time

is modeled σ2
ε j
(s) ∼ Inv-Gamma(a,b). For the 2p× 2p covariance matrix of the β pa-

rameters we assign Σβ ∼ Inv-Wishart(V,ξ ). Lastly, the spatial variance for the kth spatial

process is modeled σ2
jk ∼ Inv-Gamma(a jk,b jk). All hyperpriors were chosen such that the

priors have finite first moments, specifically V = I8, ξ = 11, and a = b = ak = bk = 2 for

all k. Preliminary analyses with a uniform prior distribution for the spatial decay parame-

ter, φ jk indicated that this parameter had little impact on the inference of the parameters of

interest. Therefore, we set φ jk = φ to a fixed value in our analysis.
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The full hierarchical model can be written

n

∏
s=1

L

∏
`=1

2

∏
j=1

[
z j`(s)|β j`(s),σ2

ε j
(s)
] n

∏
s=1

L

∏
`=1

[
β`(s)|β`−1(s),w`(s),Σβ ,θ jk

]
n

∏
s=1

[
β0(s)|µ0,Σ0

] n

∏
s=1

L

∏
`=1

[
w̃∗`(s)|θ jk

][
Σβ

] n

∏
s=1

2

∏
j=1

[
σ

2
ε j
(s)
] 2

∏
j=1

p

∏
k=1

[
σ

2
jk

]
,

(2.6)

where w`(s) is a deterministic composition of w̃∗` , as shown in (2.5).

2.3.4 Model Inference

Recall from Section 2.2 that the motivation for this modeling effort is purely inferential.

Specifically, we are interested in inference with respect to the spatial processes of harmonic

coefficients, β`(s) for `∈ {1, ...,L}. We obtain samples from the joint posterior distribution

using a Gibbs sampling algorithm, the details of which are given in Appendix A. Each of

the parameters described above have conjugate full-conditional distributions. To improve

computational efficiency of our sampling algorithm, we also took advantage of parallel

computation when possible. Specifically, conditioned on the predictive process, w`, the

parameters β` are spatially independent and can be updated in parallel.

Posterior inference will focus on the comparison of the amplitude and phase of the an-

nual and semi-annual harmonics across all years and spatial locations. Visualizing their

spatial evolution over time provides insight into how the temperature cycle changes across

years. Using samples from the posterior distribution of β`(s), we can obtain full posterior

inference for the phase and amplitude of the annual and semi-annual harmonics using com-

position sampling. We can also compute important characteristics of these cycles, such as

the day at which the cycle reached its peak or trough. These peak and trough days can be

compared across time to quantify shifts in temperature cycles which may have important
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impacts on spatial synchrony. In addition, we can identify similarities and differences in

shifts in minimum and maximum temperature cycles.

2.4 Results

We fitted the model to the NCEP Reanalysis temperature data introduced in Section 2.2.

The spatial domain of interest spanned the continental United States and portions of Mexico

and Canada, with corners at approximately (25.039N, 120.243W), (21.399N, 79.588W),

(46.471N, 64.321W), and (52.7418N, 128.744W). We thinned the data spatially to reduce

the overall dimension, keeping every other location in both the longitudinal and latitudinal

directions. This resulted in daily minimum and maximum temperature values at 3621 spa-

tial locations over 40 years, for a total of over 1.06× 108 data points. For the predictive

process outlined in Section 2.3.2, we chose 144 knot locations evenly spaced across the

domain of interest. All temperature time series were centered since the focus of inference

is on the harmonics and change in harmonics as opposed to raw temperature.

Using MCMC and the Gibbs sampling algorithm (see Appendix A), we obtained 5000

samples from the joint posterior distribution. The first 1000 samples were discarded as

burn-in and the remaining 4000 samples were retained for posterior inference. All compu-

tation and posterior inference was performed on a high performance computing infrastruc-

ture2 due to the dimensionality of the data and Bayesian inference output. Convergence of

model parameters was assessed visually via trace plots, with no issues detected.

Posterior distributions of the annual and semi-annual phase and amplitude of minimum

and maximum temperature cycles were obtained for each year using composition sampling.

2Computation was performed on a Linux workstation using an Intel(R) Xeon(R) CPU E5-2680 v4 @
2.40GHz processor utilizing 24 cores.
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Figure 2.4: Posterior mean estimates of the minimum temperature annual and semi-annual
harmonics for 2004. The left two panels show the annual and semi-annual amplitude (deg
C), and the right two panels show the annual and semi-annual phase (radians). Location
A corresponds to the top plot in Figure 2.6; Location B corresponds to the middle plot in
Figure 2.6; Location C corresponds to the bottom plot in Figure 2.6.

Posterior mean estimates of these four cycle quantities for minimum and maximum tem-

perature for the year 2004 are shown in Figures 2.4 and 2.5, respectively. For both figures,

estimates of the annual and semi-annual harmonics are shown on the top and bottom pan-

els, respectively, while the amplitude and phase estimates are shown on the left and right,

respectively. A prominent spatial feature of the temperature harmonics is the wave-like pat-

tern that appears in the semi-annual amplitude and phase. This wave can been seen most

prominently in the bottom-right panel of Figure 2.4 where a band of semi-annual phase

values close to 0 (or π) spans from the north-west United States down through the center
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Figure 2.5: Posterior mean estimates of the maximum temperature annual and semi-annual
harmonics for 2004. The left two panels show the annual and semi-annual amplitude (deg
C), and the right two panels show the annual and semi-annual phase (radians). Location
A corresponds to the top plot in Figure 2.6; Location B corresponds to the middle plot in
Figure 2.6; Location C corresponds to the bottom plot in Figure 2.6.

of the United States. The semi-annual phase estimates on either side of this band deviate

from 0 (or π). The same spatial pattern appears in the semi-annual amplitude, where there

is a band of smaller amplitudes following approximately the same path.

These same spatial patterns can are seen in Figure 2.5 for the semi-annual components

of the maximum temperature cycle. In the bottom-right panel, the western United States

have a contiguous area of lighter colored values close to 1.5 that are bordered by values

close to 0 (or π). While less prominent than the minimum semi-annual amplitude, the max-

imum semi-annual amplitude has a band of smaller amplitudes that spans from the southern
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United States up through the center of the United States. These spatial patterns likely arise

because of the east-west structure of the semi-annual harmonic due to the land/sea contrast

as discussed in the introduction and by Wikle and Chen (1996).

To investigate the temporal variation in minimum and maximum temperature cycles

throughout the 40 year period, we produced an animation of the posterior mean estimates

of amplitude and phase for the first and second harmonics3. The animation illustrates the

slow evolution of the annual components and the temporal volatility of the semi-annual

components. While the wave-like patterns seen in 2004 (Figures 2.4 and 2.5) are the most

common, variations of these spatial patterns appear in both the maximum and minimum

semi-annual amplitude and phase in other years. Similar wave-like spatial patterns have

been detected for geopotential height (Wallace et al., 1993; Thompson and Wallace, 1998;

Thiébaux et al., 1986; Wikle and Chen, 1996) as discussed in the Section 2.1.

To illustrate the component-wise difference in minimum and maximum temperature cy-

cles, Figure 2.6 shows posterior estimates of the annual and semi-annual amplitudes (height

of the point on the y-axis) and phase (angular direction of the arrow) simultaneously for

minimum and maximum temperature at three different spatial locations. The locations, de-

noted “A”, “B”, and “C” in Figures 2.4 and 2.5, are in the west, north central, and northeast,

respectively. The relationship between the minimum and maximum annual amplitudes dif-

fer across space, which could be attributed to climatological variations. Specifically, for

locations “A” and “B”, the range between the minimum and maximum annual amplitudes

is greater than for location “C”, and the interannual variability for the annual amplitudes

is much greater for location “B” than locations “A” and “C”. The minimum and maxi-

mum semi-annual phase are the same for most years (i.e., phase locked), with relatively

3https://joshuanorth.shinyapps.io/harmonics application/
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Figure 2.6: The phase in radians (angular direction of the arrow/line), ϕ ∈ [0,2π], and amplitude
(height of the point) in degrees Celsius, A ∈ [0,∞), for the minimum (blue) and maximum (red)
temperature cycles at three spatial locations across the United States. Arrows correspond to the
annual estimates and lines correspond to the semi-annual estimates. See Figure 2.4 corresponding
to geographic locations, with the top plot corresponding to location A, middle plot to location B,
and bottom plot to location C.
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Figure 2.7: Day at which the maximum temperature cycle reaches its peak. The left image
is the average over the years 1979-1988, the center image is the average over the years
2009-2018, and the right image is the difference between the two images (2009-2018 minus
1979-1988), showing only locations where there is a significant difference.

little year-to-year change in the semi-annual amplitude. Compared to the annual phase,

the semi-annual phase is more volatile with each location experiencing differing degrees of

variability. The semi-annual phase appears the most variable for location “C”.

The extent to which the temperature cycles have shifted (i.e., how the temperature cycle

determined by the estimates of the first two harmonics has changed over time) over the

40 year period can be seen by comparing the day of the year at which the temperature

cycles are at their peak and trough. We computed the average peak and trough day for the

years 1979-1988 and 2009-2018 as well as the differences between these two time periods

(computed as 2009-2018 minus 1979-1988). These posterior distributions can be used

to identify spatial regions experiencing significant shifts in the minimum and maximum

temperature cycles. We consider a shift to be significant if the 95% credible interval of the

difference does not include zero.

Figures 2.7 and 2.8 show the average day of the year in which the maximum and min-

imum temperature cycles, respectively, obtain their peak, as determined by the first two

harmonics. The peak day for maximum temperature can be thought of as the hottest day
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Figure 2.8: Day at which the minimum temperature wave reaches its peak. The left image is
the average over the years 1979-1988, the center image is the average over the years 2009-
2018, and the right image is the difference between the two images (2009-2018 minus
1979-1988), showing only locations where there is a significant difference.

of the year, and the peak day for minimum temperature is the day at which the warmest

low temperature occurs. The differences in peak days between the two decades for both

maximum and minimum temperature clearly identify regions experiencing seasonal shifts

in temperature. The areas in red indicate locations for which the peak day is occurring

later in the year for the 2009-2018 decade, whereas blue regions correspond to locations in

which the peak day is occurring earlier in the year for the more recent decade. The spa-

tial patterns in the shifts in maximum and minimum temperature appear similar across the

domain. The northern regions (Montana, the Dakotas, Minnesota, and Canada) appear to

be experiencing the greatest shift towards later seasonal peaks, with much of the western

United States experiencing more moderate shifts. For both minimum and maximum tem-

perature, the only two areas experiencing a shift to earlier seasonal peaks are located in the

Midwest United States and along the Northwest coast.

Figures 2.9 and 2.10 show the day for which each maximum and minimum temper-

ature cycle reaches its trough as determined by the first two harmonics. For minimum

temperature, the trough corresponds to the coldest day of the year, and for the maximum
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Figure 2.9: Day at which the maximum temperature cycle reaches its lowest. The left
image is the average over the years 1979-1988, the center image is the average over the
years 2009-2018, and the right image is the difference between the two images (2009-2018
minus 1979-1988), showing only locations where there is a significant difference.

temperature, the trough captures the day of the coldest high temperature. Again, we see

very similar patterns between minimum and maximum temperature cycles and shifts. In

contrast to the spatial distribution of the shift for the peak day, the spatial distribution of the

shift for the trough day has a strong north/south pattern. The northern half of the United

States and Canada are experiencing a shift toward later seasonal troughs, whereas the south-

ern half of the United States and Mexico are experiencing a shift toward earlier seasonal

troughs.

To highlight the contribution of the semi-annual component on the temperature shift, we

obtained posterior distributions of the peak and trough days as well as the decadal shifts for

both the minimum and maximum temperature cycles using only the annual components.

We then computed the posterior difference in the decadal shifts between those obtained

when both the annual and semi-annual component were included and those when only the

annual component was included. The posterior mean of these differences are shown in Fig-

ure 2.11. We considered the contribution of the semi-annual component to be significant

if the 95% point-wise credible interval of the posterior distribution of differences did not
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Figure 2.10: Day at which the minimum temperature cycle reaches its lowest. The left
image is the average over the years 1979-1988, the center image is the average over the
years 2009-2018, and the right image is the difference between the two images (2009-2018
minus 1979-1988), showing only locations where there is a significant difference.

include zero. Based on these posterior credible intervals, white indicates locations where

the semi-annual harmonic did not significantly contribute to the shift in the temperature cy-

cle. All other locations indicate that the semi-annual component contributed significantly

in capturing shifts in temperature cycles between the two decades. In the left panels of Fig-

ure 2.11, red (blue) indicates locations for which the peak day has shifted to later (earlier)

in the year when the semi-annual harmonic is considered. Similarly, in the right panels of

Figure 2.11, red (blue) indicate locations where the trough day occurs later (earlier) in the

year when the semi-annual harmonic is considered. In each of these figures, the shading

corresponds to the magnitude of these differences. The spatial distribution of significant

semi-annual harmonic contributions are similar for both the minimum and maximum tem-

perature cycles. The magnitude of the shift is higher for maximum temperature than for

minimum, which could be attributed to the maximum temperature having more seasonal

variation than the minimum. The semi-annual component significantly contributes to the

later peak day (positive shift) in both the minimum and maximum temperature cycle in the

North (North Dakota, South Dakota, and Minnesota), Southwest (New Mexico and Ari-
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Figure 2.11: Difference of the decadal shifts for the estimates considering the annual and
semi-annual component with estimates considering only the annual component. Shading
corresponds to the magnitude of the differences, with white areas corresponding to loca-
tions where the semi-annual component is not significant. Red indicates the peak/trough
day has occurred later in the year when the semi-annual harmonic is considered, and blue
indicates the peak/trough has occurred earlier in the year.

zona), and the Gulf of Mexico. The semi-annual component significantly contributes to the

earlier trough day (negative shift) in both minimum and maximum temperature cycles in

the Gulf of Mexico and western United States.

To visualize the importance of modeling the dependence between the parameters, Fig-
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Figure 2.12: Posterior mean estimate of covariance, Σβ . All numeric values on the figure
have been rounded to two digits for readability. The posterior estimates of the symmetric
matrix are shown numerically in the upper triangle while the lower triangle shows the mag-
nitude on the color-scale for easy comparison. The two 4×4 sub-matrices on the diagonal
correspond the the covariance between the minimum and maximum Fourier coefficients,
respectively. The off-diagonal 4× 4 block sub-matrix corresponds to the covariance be-
tween the minimum and maximum Fourier coefficients.

ure 2.12 shows the posterior mean estimate for the covariance matrix, Σ̂β . The two 4×4

sub-matrices on the diagonal of Σ̂β correspond to the estimated covariance of the minimum

and maximum Fourier coefficients, respectively. The 4× 4 off-diagonal block sub-matrix

of Σ̂β corresponds the estimated covariance between the minimum and maximum Fourier

coefficients. Within each 4×4 sub-matrix, the top 2×2 and bottom 2×2 sub-matrices on

the diagonal correspond to the estimated covariance of the annual and semi-annual Fourier

31



coefficients, respectively, and the two 2×2 off-diagonal block sub-matrices correspond to

the estimated covariance between the annual and semi-annual Fourier coefficients. The

posterior estimates of the symmetric matrix are shown numerically in the upper triangle

while the lower triangle shows the magnitude on the color-scale for easy comparison. All

elements of the matrix were significant based on their 95% credible intervals not covering

0. From Figure 2.12, aside from the expected main diagonal component, the off-diagonal

block 4× 4 sub-matrix has a strong diagonal component. The diagonal elements of the

sub-matrix show the positive dependence between the minimum and maximum tempera-

ture cycles. The two 4× 4 sub-matrices on the diagonal, which capture the dependence

between the harmonic coefficients within the minimum and maximum cycles, share a sim-

ilar structure. All 4 diagonal and off-diagonal block sub-matrices show the same positive

and negative correlation, with negative dependence only between the semi-annual cosine

term to the annual sine term. Importantly, this negative dependence between the semi-

annual cosine term and annual sine term is consistent both within and between minimum

and maximum cycles.

2.5 Discussion and Future Work

We proposed modeling minimum and maximum temperature cycles jointly through the

components of the annual and semi-annual harmonics using a DSTM to detect tempo-

ral changes in the seasonal temperature cycle that may vary across space. Implementing

our model in a Bayesian paradigm, we obtain estimates of the annual and semi-annual

phase and amplitude through composition sampling. Spatial maps showing the difference

in peak/trough days of the minimum and maximum temperature cycles for the years 2009-
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2018 relative to 1979-1988 identified regions experiencing seasonal shifts, as well as re-

gions for which the semi-annual component contributed significantly to these shifts. These

maps showed that the peak day for both minimum and maximum temperature cycles has

shifted to later in the year in northern regions, and the trough day has shifted toward later in

the year in the northern half and earlier in the year in the southern half of the United States.

The results of our analysis can be compared to those presented in previous research.

For example, a similar east-west structure in the semi-annual cycle was reported by Wikle

and Chen (1996) and attributed to the land-sea contrast. Additionally, using only the annual

harmonic, Stine et al. (2009) found an asymmetrical spatial pattern in the shift of the tem-

perature cycle. However, since we considered both the annual and semiannual harmonic,

our results differed from theirs in terms of the regions identified as experiencing asymmet-

ric shifts in temperature cycles. Lastly, our model detected spatially-varying shifts in the

peak/trough of the temperature cycle ranging between 15 days earlier to 15 days later in

the year, whereas Dwyer et al. (2012) reported the annual phase in the temperature cycle is

shifting to only later in the year.

While the results of our model have scientific merit of their own, they can also be used

to detect changes in spatial synchrony between temperature cycles and other important

environmental processes. For example, incorporating estimates of shifting temperature

cycles in models for bird migration could identify regions for which the spatial synchrony

between migration patterns of birds and temperature cycles have been disrupted. Similarly,

we can investigate the effects temperature shifts on the occupancy or abundance of native

bark beetles, which could lead to improved predictions of beetle spread or risk of invasion

as well as aid in conservation efforts. While these are just two brief examples, a better

understanding of the direction and magnitude in the shifts in temperature cycles over the
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last 40 years will motivate future scientific hypotheses with regard to the effects of these

changes on important environmental processes.
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Chapter 3

A Review of Data-Driven Discovery of
Dynamic Systems

3.1 Introduction

Recently there has been a push from within the computer science, physics, and mathe-

matical fields to learn the governing equations in complex dynamic systems parameterized

through dynamic equations (DE). There are a variety of reasons researchers may want to

know the underlying laws driving a system – to reinforce their assumptions, uncover extra

information about the system, or to produce a more realistic mathematical equation for the

system. Historically, scientists have relied on their ability represent physical systems using

mathematical equations in the form of DEs. Dating back to at least the inference of equa-

tions describing the motion of orbital bodies around the sun based on the positions of celes-

tial bodies (Legendre, 1806; Gauss, 1809), DEs have been used to model the evolution of

complex processes (e.g., the use of susceptible, infected, recovered models for epidemics),
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and have become ubiquitous across virtually every area of science and engineering. Here,

we review some of the methods used to discover the governing equations driving complex,

potentially nonlinear, processes, often referred to as data-driven discovery.

Consider the general DE describing the evolution of a continuous process {u(s, t) : s ∈

Ds, t ∈ Dt},

ut(J)(s, t) = M
(
u(s, t),ux(s, t),uy(s, t), ...,ut(1)(s, t), ...,ut(J−1)(s, t),ω(s, t)

)
(3.1)

where the vector u(s, t) ∈ RN denotes the state of the system at location s and time t,

ut( j)(s, t) is the jth order temporal derivative of u(s, t), J denotes the highest order of the

temporal derivative, M(·) represents the (potentially nonlinear) evolution function, and

ω(s, t) represents any covariates that might be included in the system. We will denote

partial derivatives by a subscript; that is ∂u
∂x = ux and ∂u

∂ t = ut , for example. Here, N is

the number of components in the system (e.g., u(s, t) = [u(s, t,1),u(s, t,2), ...,u(s, t,N)]′,

sometimes called the system state), s∈ {s1, ...,sS}= Ds is a discrete location in the domain

with |Ds|= S, and t ∈ {1, ...,T}=Dt is the realization of the system at discrete times where

|Dt |= T . Equation (3.1) is composed of partial derivatives of the system with Ds ∈R2 and

s = (x,y) and is often referred to as a partial differential equation (PDE). Removing the

spatial component from (3.1) results in a temporal ordinary differential equation (ODE),

ut(J)(t) = M
(
u(t),ut(1)(t), ...,ut(J−1)(t),ω(t)

)
, (3.2)

where M is composed solely of derivatives of the components in time (i.e., no partial deriva-

tives) and Ds ∈ R1 and s = x. This review will focus on methods to discover the evolution

function M for both PDEs (3.1) and ODEs (3.2).
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The goal of data-driven discovery is to learn the governing equation(s) in (3.1) and (3.2)

– specifically the (non)linear function M – having only observed noisy realizations of u

(i.e., true derivatives are unknown). Broadly, there are two approaches used for data-driven

discovery. The first approach uses sparse regression where a library of potential solutions

are proposed and the correct solution set is obtained by regularization based techniques,

resulting in a sparse solution. The second uses symbolic regression where the solution is

learned, or generated, through the estimation procedure. Within both of these approaches,

regression based methods or deep models are used to facilitate the discovery process. While

delineation between these methods is not always clear, we attempt to separate the ideas into

three categories – classical sparse methods, classical symbolic methods, and deep model-

ing methods using either symbolic or sparse regression techniques. Methods to quantify

uncertainty in the discovered equations have been proposed, but they do not account for

uncertainty in the observed data, missing a vital piece of the statistical puzzle. We draw

parallels between traditional statistical models and data-driven discovery, discussing how

statistical models can be formulated for data-driven discovery and highlighting how the

proposed statistical data-driven discovery methods can be improved upon.

3.2 Sparse Regression

Sparse regression approaches for dynamic discovery of ODEs and PDEs are fundamentally

the same. We formulate the general approach using (3.1), noting that the approach for (3.2)

is equivalent but with only one spatial location (i.e., S = 1). First, consider rewritting (3.1)

37



as a linear (in parameters) system

ut(J)(s, t) = f(u(s, t), ...)M, (3.3)

where M is a D×N sparse matrix of coefficients and f(·) is a vector-valued nonlinear trans-

formation function of length D termed the feature library. The input of the arguments for

f(·) are general and contain anything that potentially relates to the system (e.g., advection

term, polynomial terms, interactions). Sparse identification seeks to identify relevant terms

of M, thereby identifying the terms of f that drive the system and discovering the governing

dynamics.

Denote the matrix of all data (all components at all time points) for the jth derivative

of the system as

Ut( j) =



ut( j)(s1,1,1) ut( j)(s1,1,2) · · · ut( j)(s1,1,N)

ut( j)(s1,2,1) ut( j)(s1,2,2) · · · ut( j)(s1,2,N)

...
...

...

ut( j)(sS,T,1) ut( j)(sS,T,2) · · · ut( j)(sS,T,N)


.

The response matrix is Ut(J) of size (ST )×N and we generically denote the feature library

as

F =
[
1,Ut(0), ...,Ut(J),Ux,Uy,Uxx, ...,Ω

]
.

where Ω are the associated covariates at each space-time step and F is a (ST )×D ma-

trix. The library may also contain interactions of the components, partial derivatives, and
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covariates. This reduces to a linear system

Ut(J) = FM, (3.4)

whereby identifying the terms of M that are non-zero, the DE is identified.

However, the derivatives of the system are rarely observed (i.e., only Ut(0)(t) is mea-

sured). To obtain derivatives in space and time, numerical techniques are used to approx-

imate the derivatives. There are multiple methods to approximate derivatives numerically,

and the choice of approximation has the potential to impact the discovered equation. Orig-

inally, a finite difference approach was suggested, but this approach is sensitive to noise.

When measurement noise is present, data are either smoothed a priori and then derivatives

are computed, or derivatives are computed using total variation regularization (Chartrand,

2011) or polynomial interpolation (Knowles and Renka, 2012).

Due to both the numerical approximation of the derivative and the potential for noise in

the observed data, (3.4) does not hold exactly. Instead,

Ut(J) = FM+ε, (3.5)

where ε i.i.d.∼ N(0,σ2IN) and σ2 is the variance in the data. It is crucial to note that σ2

is not the measurement uncertainty from the original data, but rather some form of un-

certainty associated with the model approximation and the numerical differentiation. To

induce sparsity, solutions to (3.5) of the form

M = argmin
M̂
‖Ut(J)−FM̂‖2

2 +Penθ (M̂), (3.6)
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are sought, where Penθ (M̂) generically denotes some penalty term based on parameters θ

(i.e., Penθ (M̂) = λ‖M̂‖1 where θ = λ for the LASSO penalty).

3.2.1 Deterministic Approaches

The majority of deterministic approaches are composed of three steps – denoising and

differentiation, constructing a feature library, and sparse regression. Assuming data have

been properly differentiated and a library has been proposed, the deterministic approach

seeks solutions of the form (3.6). The original sparse regression approach to data-driven

discovery, Sparse Identification of Nonlinear Dynamics (SINDy; Brunton et al., 2016), uses

sequential threshold least-squares (STLS; Algorithm 2) to discover the governing terms for

ODEs. While the original paper does not discuss the algorithm in terms of a penalty term,

STLS has been shown to be equivalent to the `0 penalty, Penθ (M̂) = ‖M̂‖0 (Zhang and

Schaeffer, 2019), which removes values of M less than some pre-specified threshold κ .

That is, at each iteration of the minimization procedure, values of M < κ are set to zero and

the remaining values of M are re-estimated. In the original implementation, the algorithm

was only iterated over 10 times, but a stopping criteria (e.g., change in loss or identified

parameters) could be used. In this manner, a sparse solution set is obtained.

SINDy is illustrated on a variety of simulated ODE problems with varying amounts of

noise. The examples used generally contain a lot of observations (on the order of hundreds

of thousands), and it is unclear the impact of noise if a smaller number of observations

were considered. In contrast to the symbolic approaches discussed in Section 3.3, SINDy

can be fit rather quickly. However, a drawback of the approach is the sensitivity to the

thresholding parameter and the dependence on the method approximating the derivative.

To extend SINDy to PDEs, Rudy et al. (2017) propose Sequential Threshold Ridge
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Regression (STRidge, Algorithm 3), a variant to STLS. Due to the correlation present in F

for data pertaining to PDEs, STLS was insufficient at finding a sparse solution set. Instead,

STRidge uses the same iterative technique as STLS, where values of M < κ are set to

zero at each iteration, but with the addition of the penalty term Penθ (M̂) = λ‖M̂‖2
2. Cross-

validation is then used to find the optimal values for κ and λ . The effectiveness of STRidge

is shown on multiple simulated data sets with varying noise. Again, in comparison to the

symbolic counterparts, the algorithm is quick, but still dependent on the method used to

approximate the derivative.

STRidge can be adapted to allow for parametric PDEs by grouping terms either spatially

or temporally (Rudy et al., 2019a). To incorporate parametric PDEs in 3.4, the coefficients

now vary in space or time (i.e., M(s) or M(t)) and F is constructed as a block diagonal

matrix of the appropriate form (e.g., either in space or time). Similar to the group LASSO

(Meier et al., 2008), coefficients are assigned group indices g ∈ G by grouping the same

location in space over the entire time domain (e.g., g≡ s and G ≡DS) or the same time point

over the whole spatial domain (e.g., g≡ t and G ≡ DT ). Within the STRidge algorithm all

coefficients with the same group index are set to zero if ‖M(g)‖2 < κ . In this manner,

the same dynamics are identified across space and time and only the coefficient estimate is

allowed to vary in space or time.

Champion et al. (2020) propose a robust unifying algorithm (Algorithm 4) for the

SINDy framework based on sparse relaxed regularized regression (SR3; Zhang and Lin,

2018). SR3 introduces an auxiliary variable W within the penalization term, resulting in

Penθ (M̂) = λR(W)+ 1
2ν
‖M̂−W‖, where R(·) is another penalization term (e.g. `1). The

addition of the auxiliary variable provides a geometrically more favorable surface to opti-

mize (Zhang and Lin, 2018). SR3 is shown to be able to handle outliers (a potential issue
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when numerically differentiating noisy data), accommodate parametric formulations, and

allow for physical constraints in the library.

While not discussed in detail here, there are other areas of DE where discovery has been

applied and approaches at discovering dynamics within the sparse identification category.

Applying SINDy to stochastic differential equations (Boninsegna et al., 2018) and systems

where the dynamics evolve on a different coordinate system (Champion et al., 2019) fur-

ther build on the SINDy applicability. Instead of using finite differences or total variation

regularization, Schaeffer (2017) use spectral methods to compute spatial derivatives and

the Douglas-Rachford algorithm (Combettes and Pesquet, 2011) to find a sparse solution.

Further consideration of highly corrupt signals (Tran and Ward, 2017), convergence prop-

erties of the SINDy algorithm (Zhang and Schaeffer, 2019), and the choice of denoising

and differentiation methods (Lagergren et al., 2020) have also received treatment within

the literature. For ease of use, SINDy and some related variants have been developed into

a python package PySINDy (de Silva et al., 2020).

3.2.2 Addressing Uncertainty

Bayesian and bootstrapping approaches have been proposed to quantify uncertainty in

the parameters for the sparse regression formulation of data-driven discovery. These ap-

proaches seek to quantify the variability in the discovered equation and parameters for

(3.5).

Bayesian Approach

A penalized likelihood estimator of the form (3.6) can analogously be cast as the posterior

mode in a Bayesian framework under the prior p(M|θ) where Pen(M̂)θ = log p(M|θ).
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That is, (3.5) can be formulated in the Bayesian framework where priors are put on M and

σ2. Instead of an optimization procedure, the Bayesian approach aims to sample from the

joint posterior distribution

p(M,σ2|F,Ut( j)) ∝ p(Ut( j)|F,M,σ2)p(M|θ)p(σ2), (3.7)

where p(Ut( j)|F,M,σ2) is the data likelihood (3.5), and p(M|θ) and p(σ2) are prior dis-

tributions for M and σ2, respectively. To enforce a sparse solution set in a Bayesian frame-

work, a regularization prior is placed on the parameter of interest, in this case M. Further

discussion comparing the sparse regression approach to a Bayesian formulation of the prob-

lem is explored by Niven et al. (2020).

Using the Bayesian framework in an algorithmic setting, Zhang and Lin (2018) pro-

pose using the priors p(md|αd) = ∏
D
d=1 N(0,α−1

d ), p(σ2) = IG(as,bs), and p(α−1
d ) =

IG(aa,ba). They estimate the parameters using a threshold sparse Bayesian regression

algorithm, which maximizes the marginal likelihood instead of sampling from the full con-

ditionals. Their algorithm uses a hard thresholding parameter, similar to the deterministic

sparse regression approaches, where at each iteration values of the posterior M < κ are

set to zero. From their procedure, they are able to assign what they term “error bars” to

their parameter estimates based on the ratio of the estimate for the posterior variance to the

estimate for the posterior mean squared. Zhang and Lin (2018) consider many of the same

simulated ODEs and PDEs used to illustrate the deterministic approaches and provide er-

ror bars to the parameter estimates for these systems with varying amounts of measurement

noise.

Hirsh et al. (2021) explore the use of two common Bayesian selection priors on system

discovery and uncertainty quantification – the continuous spike and slab (i.e., stochastic
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search variable selection (SSVS); Mitchell and Beauchamp, 1988; George et al., 1993;

George and McCulloch, 1997), and the regularized horseshoe (Carvalho et al., 2010; Pi-

ironen and Vehtari, 2017) – calling the approach uncertainty quantification SINDy (UQ-

SINDy). Their choice of priors are distinct in that SSVS is a mixture of two continuous

mean zero Gaussian distributions and the horseshoe is part of the global-local shrinkage

prior family. For the SSVS prior, variables that are not to be included in the model are

sampled from a mean zero Gaussian distribution with a small variance, rendering their ef-

fect on inference negligible, and variables that are to be included are sampled from a mean

zero Gaussian distribution with a larger variance. The posterior inclusion probability for a

variable is the number of times it was sampled from the Gaussian with a large variance over

the total number of samples. In contrast, the horseshoe prior has a hyper-prior performing

global shrinkage on all variables in conjunction with individual hyper-priors on all the vari-

ables performing individual shrinkage. To determine the probability a variable is included

under the regularized horseshoe, the ratio of the estimate of M with no prior and with the

horseshoe prior is computed, providing a pseudo-probability (i.e., not necessarily bounded

by 0 and 1) of inclusion probabilities. Using both of these priors, Hirsh et al. (2021) pro-

vide inclusion probabilities for multiple simulated ODE systems with varying amounts of

noise and to the classic hare-lynx population data set (Elton and Nicholson, 1942).

However, UQ-SINDy is limited in that the uncertainty being quantified is the uncer-

tainty in the numerical approximation of the system (i.e., the numerical differentiation and

de-noising). That is, because the approximated derivative is, in fact, a single realization

of the true derivative (which is unknown), the uncertainty estimates recovered by this ap-

proach are biased toward this single approximation of the derivative. A more complete

treatment of the problem would be to consider the derivative as a random process and ac-
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count for uncertainty in the random process.

Yang et al. (2020) propose the use of Bayesian differentiable programming as a method

by which to discover the dynamics and account for measurement uncertainty when estimat-

ing parameters. Generally speaking, Bayesian differentiable programming uses a numerical

solver (e.g., Runge-Kutta) to predict the state at a new time, and the loss between the pre-

dicted data and observed data is used to estimate parameters. More precisely, let Mθ (u(t))

be the output of a numerical solver at time t. Bayesian differentiable programming aims to

minimize ∑‖u(t +∆t)−Mθ (u(t))‖2, where ∆t does not need to be uniformly spaced. The

parameters are estimated using Hamiltonian Monte Carlo and differentiable programming

is used to compute gradients within the Hamiltonian Monte Carlo algorithm. By directly

relating the observed data to the dynamics, measurement uncertainty is accounted for in

the estimation procedure, providing a more thorough statistical treatment to the data-driven

discovery problem. The approach is illustrated on multiple simulated ODE systems with

varying amounts of measurement noise.

Bootstrap Approach

Fasel et al. (2021) propose two methods of bootstrapping (3.4) – either sampling rows of

the data (i.e., space-time sampling) or sampling library terms (i.e., columns of F). The

first approach samples rows of the data with replacement and uses STRigde to estimate the

parameters in the model q times. In the second approach, the columns of F are sampled

without replacement to create q data sets, and again STRidge is used to estimate parame-

ters. For both methods, the q models are then averaged and coefficients with an inclusion

probability below some pre-specified value are set to zero. Uncertainty is quantified by the

inclusion probability and the distribution of values obtained from the q different estimates.
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However, as with Hirsh et al. (2021), the uncertainty associated with the observed data is

not considered and the numerical approximation to the derivative is assumed the true real-

ization of the derivative, limiting true uncertainty quantification. The method is illustrated

on multiple simulated ODE and PDE systems with varying noise and applied to the classic

hare-lynx population data set.

3.3 Symbolic Regression

Symbolic regression is a type of regression that searches over mathematical expressions

(e.g., +,−,×) to find the optimal model for a given data set (Wang et al., 2019). This ap-

proach differs from classical regression where the model structure is fixed and a set of pa-

rameters are estimated. One of the main challenges underlying symbolic regression is that

there are an infinite number of combinations of expressions that can be used to fit any par-

ticular data set. An algorithmic procedure called genetic programming is used to efficiently

search over the possible model structures (Willis, 1997; Koza et al., 1993; Koza, 1994) and

regression techniques are used to determine coefficient values given the model structure.

Genetic programming follows Darwin’s theory of evolution, selecting the “fittest” solution

that is the product of generations of evolution (i.e., iterating through an algorithm). Here,

we give a brief overview of genetic programming and its roll in symbolic regression and

subsequently data-driven discovery of dynamics. For a more detailed overview of genetic

programming, see Minnebo and Stijven (Chapter 4, 2011) and Garg and Tai (2012).

Genetic programming relies on a predefined function set of mathematical expressions.

For symbolic regression, the function set typically consists of basic mathematical expres-

sions such as addition, multiplication, and trigonometric terms (see Nicolau and Agapitos,
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Figure 3.1: Symbolic representation of f (X ,Y ) = X
10 +Y ∗1.2cos(X).

2018, for details on function set choice). Possible model solutions are constructed using a

combination of functions from the function set and encoded in a tree structure (Figure 3.1).

Within the tree, decision nodes are the mathematical expressions and terminal nodes are the

input data passed into the mathematical expression. To make the searchable space smaller,

the maximum node size of the tree can be specified (i.e., restrict the depth of the tree). A

population of potential solutions is composed of individual potential solutions. The ability

of an individual to properly represent data is determined based on the fitness function, which

is analogous to an objective or loss function in statistics. Individuals can then reproduce

to create a copy of themselves, crossover with another individual, or mutate themselves.

Crossover is where two individuals swap sub-trees (i.e., randomly select a decision node

from each tree and exchange) to produce two new individuals, which is equivalent to par-

ents producing offspring with shared genetics. Mutation is where an individuals decision

node is randomly changed (e.g., plus to multiplication or plus to a variable), which is akin

to a genetic mutation.
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The general algorithm for genetic programming proposes an initial population, assesses

the fitness of each individual, and then generates the next population based on the fittest

individuals of the current population (Algorithm 5). Taking the fitness function to be based

on regression, where the goal is to minimize mean squared error or the one minus r-squared

(Schmidt and Lipson, 2009), results in symbolic regression. This basic genetic program-

ming/symbolic regression method has generated multiple extensions (Icke and Bongard,

2013; Chen et al., 2017; Amir Haeri et al., 2017; Jin et al., 2019) and incurred extensive

discussion (Korns, 2014; Nicolau and Agapitos, 2018; Ahvanooey et al., 2019).

Within the context of data-driven discovery, symbolic regression attempts to find the

evolution function M(·) in (3.1) or (3.2). The difficulty is relating a proposed choice for

M(·) that is generated withing the genetic algorithm to derivatives of the observed data.

Specifically, because derivatives of the system are unknown, either the fitness function

needs to account for the derivative or the derivatives must be obtained in order to use a

traditional fitness function.

Bongard and Lipson (2007) were the first to apply symbolic regression to data-driven

discovery of dynamic systems, focusing on the discovery of ODEs. In order to use symbolic

regression to discover dynamic models with potentially nonlinear interactions of multiple

variables, the authors introduced partitioning, automated probing, and snipping within a

symbolic regression algorithm. Partitioning regards each variable in a system separately,

even though they may be coupled, drastically reducing the search space of possible equa-

tions. With partitioning, a candidate equation for a single variable is integrated with the

others assumed fixed. Automated probing is where initial conditions used for temporal in-

tegration of the dynamic equation of the system are found. Last, snipping is the process of

simplifying and restructuring models by replacing sub-expressions (sub-trees) in the gener-
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ated population with a constant. Using these three components, each variable in the system

is integrated forward in time to produce a “test” based on the initial condition and com-

pared to the observed data. The fitness of each potential solution is computed based on the

average absolute difference between the observed data and the test.

Bongard and Lipson (2007) incorporate these components into the symbolic regression

methodology by generating an initial population, partitioning the system, probing for ini-

tial conditions, snipping the solutions, assessing the fitness, and repeat. The approach is

illustrated on simulated data and on two real-world examples - the classic hare-lynx system

and data they collect from a pendulum. However, their method is sensitive to noise and has

the same demanding computational requirements as other symbolic regression algorithms.

Schmidt and Lipson (2009) adopt a different approach to data-driven discovery with

symbolic regression. They search over a function space constrained by a loss function

dependent on partial derivatives computed from the symbolic functions and from the data.

Specifically, given two variables observed over time, x(t) and y(t) (i.e., u(t) = [x(t),y(t)]′),

the numerical estimate of the partial derivatives between the pair is approximated as ∆x
∆y ≈

dx
dt /

dy
dt , where dx

dt and dy
dt are estimated using local polynomial fits (Thompson and Wallace,

1998). From a potential solution function (i.e., generated in the genetic algorithm), the

partial derivatives can be computed using symbolic differentiation to get δx
δy (i.e., from the

symbolic function). To determine how well the potential function expresses the data, the

mean log error between the approximated and symbolic partial derivatives,

− 1
N

N

∑
i=1

log
(

1+abs
(

∆x
∆y
− δx

δy

))
,

is used as the fitness function. While not discussed here, the approach can be extended

to systems with more than two variables by looking at pairs of the variables in the system
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(see supplementary material of Schmidt and Lipson, 2009, for details). In this manner, they

assign a fitness to each proposed individual based on how well the derivative of the system

relates to the derivative of the data, resulting in data-driven discovery using symbolic re-

gression. However, noise can be impactful because the derivatives from the observed data

are approximated numerically. To accommodate measurement uncertainty, Schmidt and

Lipson (2009) use Loess smoothing (Cleveland and Devlin, 1988) prior to fitting to remove

the high frequency noise. Their approach is illustrated using simulated data and data col-

lected by motion tracked cameras, showing an ability to recover the equations on complex,

real-world problems. However, similar to Bongard and Lipson (2007), the method is also

computationally cumbersome with some examples reportedly taking days to converge.

Motivated by symbolic and sparse regression, Maslyaev et al. (2019) embed sparse

regression within the coefficient estimation step in a symbolic regression algorithm to dis-

cover the governing equations of PDEs. In their approach, derivatives of the data are com-

puted a priori using finite difference (in the same manner as sparse regression discussed in

Section 3.2) and used as the response in symbolic regression. Within the symbolic regres-

sion algorithm, after a population has been proposed, sparse regression using an `1 penalty

is employed, the fitness of each individual in the population is assessed, and mutation,

crossover, and replication are performed in the usual manner. Because derivatives are com-

puted before the estimation procedure, they are able to be incorporated into the function

set. This allows for the discovered equations to contain spatial derivatives. The approach

is tested on multiple simulated PDEs with varying amounts of measurement noise. How-

ever, the robustness to measurement noise is dependent on the numerical method used to

approximate the derivative, and it is unclear how this impacts model results. Additionally,

while specifics are not given, the approach is computationally cumbersome, owing in part

50



to the symbolic regression.

3.4 Deep Models

Deep modeling has been considered for data-driven dynamic discovery in two different

ways – approximating and learning dynamics. Approximating dynamics using deep models

provides a computationally cheap method to generate data from complex systems while still

preserving physical aspects of the system (i.e., emulation). While this review is concerned

with the discovery of the governing equations and refers to “data-driven discovery” as the

discovery of the functional form of the governing system, deep models approximating the

dynamics are an important part of the literature and we devote a section to them. Deep

models coinciding with our definition of data-driven discovery have also been developed.

There are multiple approaches by which dynamics can be approximated and subsequently

learned, and we provide a discussion of these following the discussion on approximating

dynamics.

3.4.1 Approximating Dynamics with Deep Models

One method of approximating dynamics considers a so-called physics-informed neural net-

work (PINN; Raissi et al., 2017a,b; Raissi, 2018; Raissi et al., 2019, 2020). PINNs are ap-

plicable to both continuous and discrete time models, and we discuss only the continuous

version here. Define

g(s, t) = ut(J)(s, t)+M (u(s, t),ux(s, t), ...) , (3.8)
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and assume the form of M is known. Approximating u(s, t) with a neural network results

in the PINN g(s, t), where the derivatives associated with the PINN are computed using

automatic differentiation. The neural network is trained using the loss function MSE =

MSEu +MSEg where MSEu is the mean squared error of neural network approximating

u(s, t) and MSEg =
1

Ng
∑

Ng
i=1 ‖g(si, ti)‖2 is the mean squared error associated with structure

imposed by g(·). In this manner, the neural network is trained such that it obeys the physical

constraints imposed by g(·).

Neural networks have also been used to approximate the evolution operator M using

a residual network (ResNet). Framing the problem similar to the Euler approximation

U(t +∆t)≈ U(t)+∆tM(U(t)), the goal is to find a suitable approximation for M(), there-

by approximating the dynamics. In contrast to PINN, physics are not incorporated into the

NN and the structure of the NN is dependent completely on the data. Applying the problem

to ODEs, Qin et al. (2019) show how a recurrent ResNet with uniform time steps (i.e.,

uniform ∆t) and a recursive ResNet with adaptive time steps can be used to approximate

dynamics. This approach is further extended to PDEs (Wu and Xiu, 2020), where the

evolution operator is first approximated by basis functions and coefficients, and a ResNet

is fit to the basis coefficients.

While not described in detail here, there are other approaches to approximating DE

using deep models. Physics-informed candidate functions can be used with numerical in-

tegration in an objective function to restrict the temporal evolution of a NN (Sun et al.,

2019). NN have also been used to approximate parametric PDEs (Khoo et al., 2021), rep-

resent molecular dynamics (Mardt et al., 2018), and approximate ODEs with time-varying

measurement data (Wu and Xiu, 2019).
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3.4.2 Discovering Dynamics with Deep Models

Deep modeling using neural networks (NNs) have become increasingly popular in recent

years due to NN’s ability as a universal approximator (Hornik et al., 1989). Additionally,

computing derivatives of NNs is possible through automatic differentiation (e.g., using Py-

Torch; Paszke et al., 2017). Assuming a surface can be approximated using a NN, deriva-

tives of the surface in space or time or both are obtainable. This approach, where deriva-

tives are computed using NN, is used in many of the deep model approaches to data-driven

discovery.

Deep Models with Sparse Regression

A common issue with data-driven discovery in the “classical” sparse regression approach is

the sensitivity to noise when approximating derivatives numerically. To address this issue,

Both et al. (2021) propose using a NN to approximate the system, and then perform sparse

regression within the NN. Let Û be the output of a NN and construct F in (3.4) using Û

and derivatives computed from Û via automatic differentiation. The NN is trained using

the loss function

L =
1

ST ∑ |U− Û|2 + 1
ST ∑ |FM− Ût(J)|

2 +λ ∑ |M|.

After training the NN and estimating parameters, most terms of M are still nonzero (but

very close to zero), and a thresholding is performed on M to obtain the final sparse repre-

sentation. Through this formulation of the problem, whereby derivatives are obtained from

a NN, Both et al. (2021) show their ability to recover highly corrupt signals from traditional

PDE systems and apply their approach to a real-world electrophoresis experiment.
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Deep Models with Symbolic Regression

Using symbolic regression with a neural network has become an increasingly popular

method for data-driven discovery. In a series of papers, Xu et al. (2019, 2020, 2021)

construct a deep-learning genetic algorithm for the discovery of parametric PDEs (DLGA-

PDE) with sparse and noisy data. DLGA-PDE first trains a NN that is used to compute

derivatives and generate meta-data (global and local data), thereby producing a complete

de-noised reconstruction of the surface (i.e., noisy sparse data are handled through the NN).

Using the local metadata produced by the NN, a genetic algorithm learns the general form

of the PDE and identifies which parameters vary spatially or temporally. At this step, the

coefficients may be incorrect or missrepresent the system because the global structure of

the data is not accounted for. To correct the coefficient estimates, a second NN is trained us-

ing the discovered structure of the PDE and the global metadata. Last, a genetic algorithm

is used to discover the general form of the varying coefficients.

One method of implementing symbolic regression within a deep model is to allow the

activation functions to be composed of the function set instead of classic activation func-

tions (e.g., sigmoid or ReLU; Martius and Lampert, 2016; Sahoo et al., 2018; Kim et al.,

2021). Motivated by this idea, Long et al. (2019) propose a symbolic regression NN, Sym-

Net. Similar to a typical NN, the `th layer of SymNet is

f` = W`[f0, f`−1]+b`,

where f0 is the function set that contains partial derivatives (e.g., f0 = [u,ux,uy, ...]). In

this manner, each subsequent layer adds a dimension to the activation function based on

the previous layer, allowing the construction of complex functions. Similar to Long et al.
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(2017), spatial derivatives are computed using finite-difference via convolution operators.

To model the time dependence of PDEs, they employ the forward Euler approximation,

termed a δ t-block, as

U(t +δ t)≈ U(t)+δ t ·SymNetk
m(u,ux,uy, ...),

where δ t is the temporal discritization, and SymNetk
m(u,ux,uy, ...) has k hidden layers (i.e.,

` = 0, ...,k) and m variables (i.e., number of arguments u,ux,uy, ...). In order to facilitate

long-term predictions, they train multiple δ t-blocks as a group so the system has long-term

accuracy.

Distinct from the previous two approaches, Atkinson et al. (2019) incorporate differen-

tial operators into the function set of a genetic algorithm. They train a NN on the observed

data and supply the NN to a genetic algorithm where the function set contains typical op-

erators (e.g., addition, multiplication) and differential operators. The differential operators

are computed from the NN using PyTorch (Paszke et al., 2017), enabling the inclusion of

derivatives in the search space of the genetic algorithm.

3.5 Physical Statistical Models

To account for observational uncertainty and missing data when modeling complex non-

linear systems, dynamic equations (DE) parameterized by ordinary and partial differential

equations have been incorporated into Bayesian hierarchical models (BHM). While there

are various methods by which to model DE in a probabilistic framework, here we focus on

physical statistical models (PSM; Berliner, 1996; Royle et al., 1999; Wikle et al., 2001) due

to the similarities with data-driven discovery that will become apparent shortly. Broadly,
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PSM are a class of BHMs where scientific knowledge about some process is known and

incorporated into the model structure.

PSMs are generally composed of three modeling stages – data, process, and parame-

ter models – where dynamics are modeled in the process model and the observed data are

modeled conditioned on the latent dynamics. That is, the observed data are considered to

be a realization of the “true” latent dynamic process. This formulation results in the data

being described conditionally given the process model, simplifying the dependence struc-

ture in the data model and enabling complex structure to be captured in the process stage.

The evolution of the latent dynamic process is then parameterized by a DE, incorporating

physical dynamics into the modeling framework.

Consider the R(t)×1 observed data vectors V(t)≡ [v(r1, t), ...,v(rR(t), t)]′ where {v(r, t) :

r ∈ Ds, t ∈ Dt} where r ∈ {r1, ...,rR(t)} ⊂ Ds is a discrete location in the spatial domain

with Ds, t ∈ {1, ...,T} ⊂ Dt is the realization of the system at discrete times in some

temporal window Dt . Assume we are interested in the latent “true” dynamic process

{u(s, t) : s ∈ Ds, t ∈ Dt} where U(t) ≡ [u(s1, t), ...,u(sS, t)]′ is a length S vector. It is com-

mon that the observation locations do not coincide with the process (e.g., due to missing

data or different resolution). In the case of missing observations, the observed data are

mapped to the latent process using an incidence matrix H(t), which is a matrix of zeros

except for a single one in each row corresponding the the observation associated with a

process location (see Chapter 7 of Cressie and Wikle, 2011, for examples of H(t)). The

general data model for time t is

V(t) = H(t)U(t)+η(t), (3.9)

where H(t) ∈ RL(t)×N and uncertainty in the observations of the process are captured by
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η(t)
indep.∼ NL(t)(0,ΣV (t)) where ΣV (t) is the variance/covariance matrix.

By specifying how U(t) evolves over time, the dynamic process is characterized. For

example, the process model, which specifies this evolution under a first-order Markov as-

sumption, is given as

U(t) = M(U(t−1),θ)+ε(t), (3.10)

where M(·) is some (non)linear function relating a previous space-time location (or mul-

tiple locations) to the next, θ are parameters associated with M, and ε(t) i.i.d.∼ N(0,ΣU) is

a mean zero Gaussian process with variance/covariance matrix ΣU . While not discussed

here, the error term ε(t) can be considered multiplicative (see Chapter 7 of Cressie and

Wikle, 2011, for more detail).

Physical dynamics are encoded through the parameterization of M. Here, we consider

physical dynamic parameterizations (i.e., ODEs and PDEs), but a general autoregressive

structure for M (i.e., not parameterized with differential equations) can also be considered.

Consider the general PDE

Ut(t) = M(U(t),θ),

analogous to the motivating PDE (3.1), which can be approximated using finite differences

U(t) = U(t−1)+∆tM(U(t−1),θ),

where ∆t is the difference in time between time t and t−1 and θ are parameters associated

with the PDE. Because the finite difference approximation can be written as a linear system,
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we can write

U(t) = MU(t−1), (3.11)

where M is a sparse matrix derived from the finite difference scheme. Replacing the general

process model with (3.11), the process model parameterized by a linear finite difference

equation is

U(t) = MU(t−1)+ε(t), (3.12)

where ε(t) may now account for approximation error due to the finite difference approxi-

mation.

As a clarifying example, assume a spatio-temporal process U(x, t) in one-dimensional

space 0≤ x≤ L and time t. Assume the process is approximated by the diffusion equation

Ut(x, t) = bUxx(x, t) where b is a diffusion constant and the boundary conditions Y (0, t) =

U0 and U(L, t) =UL and initial condition {U(0, t) : 0≤ x≤ L} are known. Using numerical

analysis, the time derivative can be approximated using the forward difference

Ut(x, t)≈
U(x, t +∆t)−U(x, t)

∆t
,

and the spatial derivative can be approximated by the central difference

Uxx(x, t)≈
U(x+∆x, t)−2U(x, t)+U(x−∆x, t)

∆x2 .
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Using the finite difference approximation, we can reformulate the diffusion equation as

U(x, t +∆t)≈U(x, t)+
b∆t
∆x2 (U(x+∆x, t)−2U(x, t)+U(x−∆x, t)) .

Assuming three internal spatial locations, x1,x2,x3 and boundary locations x0,xL, let U(t)=

[U(x1, t),U(x2, t),U(x3, t)]′ and Ub(t) = [U(x0, t),U(xL, t)]′. Then,

U(t +∆t)≈


1− 2b∆t

∆x2
b∆t
∆x2 0

b∆t
∆x2 1− 2b∆t

∆x2
b∆t
∆x2

0 b∆t
∆x2 1− 2b∆t

∆x2

U(t)+


b∆t
∆x2 0

0 0

0 b∆t
∆x2

Ub(t),

which can be written more compactly as U(t +∆t) ≈MU(t)+MbUb(t). Thus, the PDE

dynamics have been “encoded” into the structure of the transition operator, M. In most

PSM implementations, the (banded) structure of M is retained, but the specific elements

are estimated from the data, rather than given by the finite difference representation. This

adds flexibility and explicitly assumes that the PDE is not an exact representation of the

data. Note that other PDE representations, such as finite element, or spectral, can be used

to motivate such models.

This simple example can be made more complex by considering a parametric diffusion

equation (i.e., resulting in M(θ) instead of M) or by placing priors on the boundary con-

ditions and or the initial condition (see Cressie and Wikle, 2011, for details). Additionally,

there are certain numerical conditions that need to be satisfied in order to guarantee nu-

merical stability from the approximation, which can vary based on the system and approx-

imation scheme considered (e.g., see CFL condition in Higham et al., 2016). For a more

complete overview of PSMs and possible parameterizations, see Berliner (2003); Cressie
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and Wikle (2011); Kuhnert (2017) and references within.

PSMs have been used to study a variety of real-world systems. PSMs parameterized us-

ing shallow-water equations (Wikle, 2003) and the Rayleigh friction equation (Milliff et al.,

2011) have been used to study ocean surface winds. Using a parametric diffusion equation

(Wikle, 2003) or parametric reaction-diffusion equation (Hooten and Wikle, 2008), PSMs

have modeled the spread of invasive avian species. PSMs can be grouped into a larger cat-

egory of models called general quadratic nonlinear model (GQN; Wikle and Hooten, 2010;

Wikle and Holan, 2011; Gladish and Wikle, 2014), which accommodate multiple classes

of scientific-based parameterization such as PDEs and integro-difference equations.

3.5.1 General Quadratic Nonlinear Models

General quadratic nonlinear models provide a nice generalization to the PSM framework

and, as discussed in the subsequent section, provide an interesting link between data-driven

discovery methods and PSMs. The general GQN model is

u(si, t) =
S

∑
j=1

ai ju(s j, t−1)+
S

∑
k=1

S

∑
l=1

bi,klu(sk, t−1)g(u(sl, t−1);θ)+ ε(si, t), (3.13)

for i = 1, ...,S, where ai j are linear evolution parameters, bi,kl are nonlinear evolution pa-

rameters, g() is some transformation function of u(t−1) dependent on parameters θ, and

ε(si, t) is an error process. The motivation here is that many real-world mechanistic pro-

cesses have been described by PDEs that have quadratic (nonlinear) interactions, often

where the interaction of system components consists of the multiplication of one compo-

nent times a transformation of another (see Wikle and Hooten, 2010, for details).
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Equation (3.13) can be condensed in matrix form as

U(t) = AU(t−1)+(IS⊗g(U(t−1);θ)′)BU(t−1)+ε(t), (3.14)

where A and B are matrices constructed from ai j and bi,kl , respectively, and IS is a size

S identity matrix (see Wikle and Hooten, 2010, for specific details). From (3.14), we see

that letting M(U(t−1),θ) =AU(t−1)+(IS⊗g(V(t−1);θ)′)BU(t−1) recovers the PSM

model. The GQN framework is very flexible, due in part to the over-parameterization of

the model from all possible quadratic interactions. To constrain the parameter space, either

physics-informed priors or strong shrinkage priors are used. For examples on what these

constraints may be and the underlying physical motivation, see Wikle and Hooten (2010).

3.5.2 Relation to Data-Driven Discovery

While unexplored in the literature, there is a strong connection between PSMs (particularly,

the more general GQNs) and data-driven discovery. Formulating a BHM where the latent

process evolves according to the generic PDE (3.1), the two-stage data-process model for

location s and time t is

v(s, t) = H(s, t)u(s, t)+ε(s, t)

ut(J)(s, t) = M(u(s, t),ux(s, t), ...)+ε(s, t),
(3.15)

where ε(s, t) ∼ N(0,ΣV (s, t)) is the measurement error process with ΣV (s, t) a variance/-

covariance matrix, ε(s, t)∼ N(0,ΣU(s, t)) the process model error process with ΣU(s, t) a

variance/covariance matrix. However, as discussed in Section 3.5, PSMs rely on M to be

parameterized according to known dynamics. Instead, borrowing the notion of a feature li-
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brary from the sparse regression approach to data-driven discovery, linearizing the process

model results in a matrix of coefficients M and a feature library f(·). The goal is to find

the correct values of M (as in sparse regression), given a library of values to search over

f(·). The connection in the case of GQN is that we rarely need the whole set of quadratic

interactions, so the “discovery” connection is selecting which quadratic components are

needed to describe the data.

As an example, consider two approaches that can be used to incorporate dynamic dis-

covery into PSMs - employing a finite difference scheme or using (3.5) for the process

model – each of which have their own pros and cons. The finite difference approach results

in the same model as in Section 3.5 and 3.5.1,

v(s, t) = H(s, t)u(s, t)+ε(s, t)

u(s, t) = Mf(u(s, t−1),ux(s, t−1), ...)+ε(s, t),
(3.16)

where M represents the coefficients associated with the finite difference and the discovered

equation. Directly incorporating (3.5) in the process model results in

v(s, t) = H(s, t)u(s, t)+ε(s, t)

ut(J)(s, t) = Mf(u(s, t),ux(s, t), ...)+ε(s, t),
(3.17)

where now the temporal derivative is directly related to a library of potential functions and

M represents the coefficients associated only with the discovered equation.

The benefit of formulating the problem using (3.16) is a Kalman filter or ensemble

Kalman filter can be used to estimate parameters (see Stroud et al., 2018; Katzfuss et al.,

2020, for examples of the Kalman filter with dynamic systems in statistics). Addition-

ally, as mentioned previously, the GQN framework naturally provides a construction of
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an over-parameterized library of potential dynamical interactions into the library. How-

ever, interpreting parameters can be difficult and incorporating spatial derivatives into the

library is not as straightforward as with traditional PSMs. In contrast, (3.17) has a very

clear interpretation of parameters but requires a method to obtain derivatives. Additionally,

model estimation will rely on Metropolis-Hastings Monte-Carlo as the Markov assumption

required for Kalman filter and EnKF methods is violated. For both approaches, parameter

shrinkage or variable selection or both will need to be employed on M, producing a sparse

solution set. The field of Bayesian variable selection is quite large and there are a variety

of priors that can be used (see George et al., 1993; Park and Casella, 2008; Carvalho et al.,

2010; Li and Lin, 2010, for possible choices)

Assuming model estimation is possible, either formulation provides significant con-

tributions to the data-driven discovery. In contrast to the sparse regression approaches

with uncertainty quantification discussed in Section 3.2.2, (3.16) and (3.17) treat the latent

process u(s, t) as a random process and do not disregard the measurement noise when esti-

mating the system. That is, instead of computing derivatives and de-noising prior to model

estimation, uncertainty in the derivatives as a product of measurement noise is accounted

for. This makes estimation more challenging as the derivatives are no longer assumed

known a prior. Additionally, missing data can be handled through the incidence matrix H.

By formulating the problem within a BHM, known methods accounting for missing data

can be used, providing more real-world applicability than the deterministic counterparts.
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System Missing Real
Reference Library (ODE/PDE) Type UQ Noise Data Data
Bongard et al. (2007) Symbolic ODE T No No No Yes
Schmidt et al. (2009) Symbolic ODE T No Yes No Yes
Maslyaev et al. (2019) Symbolic PDE T No Yes No No
Brunton et al. (2016) Sparse ODE T No Yes No No
Rudy et al. (2017) Sparse PDE T No Yes No No
Rudy et al. (2019) Sparse PDE T No Yes No No
Schaeffer (2017) Sparse PDE T No Yes No No
Hirsh et al. (2021) Sparse ODE B Yes Yes No Yes
Zhang et al. (2018) Sparse PDE B Yes Yes No No
Yang et al. (2020) Sparse ODE B Yes Yes No No
Fasel et al. (2021) Sparse PDE BO Yes Yes No Yes
Both et al. (2021) Sparse PDE NN No Yes No Yes
Xu et al. (2021) Symbolic PDE NN No Yes Yes No
Long et al. (2019) Symbolic PDE NN No No No No
Atkinson et al. (2019) Symbolic PDE NN No No No Yes
Chapter 4 Sparse ODE B Yes Yes Yes Yes
Chapter 5 Sparse PDE B Yes Yes Yes Yes

Table 3.1: Summary of some discussed papers where the columns are: Library - method
used to construct the library, System - type of system, either ODE or PDE, considered, Type
- our categorization of the model (combined with library to get the section it is discussed in)
where T is Traditional, B is Bayesian, BO is Bootstrap, and NN is Neural Network, UQ -
if uncertainty quantification is considered, Noise - if the approach considers or can accom-
modate measurement noise, Missing Data - if the approach considers or can accommodate
missing data, Real Data - if the approach is illustrated using real data.

3.6 Discussion

While relatively young, the field of data-driven discovery is expanding quickly. The areas

that are currently under-studied include properly accounting for uncertainty quantification

and missing data and applications of the methods on real-world data sets (see Table 3.1).

One method of addressing these issues is the use of statistical methods via Bayesian hi-

erarchical models. BHMs have been extensively used in the statistical literature and are a

proven method to account for measurement uncertainty and missing data and have been
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applied to a variety of real-world problems. However, the extensions discussed using

BHMs relies on the same assumptions as the sparse regression approach – the library is

pre-specified.

The ability to remove the pre-specified library assumption while retaining the benefits

of the statistical approach promises to be a major improvement in the data-driven discovery

realm. A recent advance in symbolic regression is the extension to the Bayesian framework

(Jin et al., 2019). The incorporation of Bayesian symbolic regression into a BHM could

provide the next step to a truly user-free, unbiased, method at data-driven discovery. Ad-

ditionally, recent advances in deep modeling, where NN have been embedded in the BHM

(Zammit-Mangion et al., 2021), could provide a framework where symbolic regression

using a NN can be combined with a BHM, providing a alternate method of joining the

approaches.

In the following two chapters, we propose a method addressing uncertainty quantifi-

cation in data-driven discovery of nonlinear dynamic equations (see Table 3.1 for context

within the literature). Originally proposed for ODEs, the method is generalized to PDEs,

providing the ability to discover a variety of DE within a unified probabilistic framework.
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Chapter 4

A Bayesian Approach for Data-Driven
Dynamic Equation Discovery of
Ordinary Differential Equations

4.1 Introduction

Mathematical modeling using mechanistic dynamic equations (DEs) is a rich and diverse

field with many real-world applications. Historically, biology, ecology, epidemiology, eco-

nomics, and atmospheric and geological sciences, among others, have used DEs to model

the evolution of complex processes. Generally, the DE in complex models are derived based

on an understanding of the governing dynamics of the system of interest, termed mechanis-

tic modeling, and are usually an approximation of the real-world dynamics. Mechanistic

modeling has a long history, dating back to at least Legendre (1806) and Gauss (1809) who

infer equations describing the motion of orbital bodies around the sun based on the posi-

tions of celestial bodies. More recently, mechanistic modeling has been used in ecology

66



(Holmes et al., 1994; Hastings, 1996), epidemiology (Zhang et al., 2017; Mangal et al.,

2008), pharmacodynamics (Mager et al., 2003; Goutelle et al., 2008), and atmospheric sci-

ences (Zeng et al., 1996; Riley et al., 2002), among many others. Mechanistic modeling

typically adopts a deterministic perspective of the system that ignores observational uncer-

tainty, attributing any discrepancy in the estimates to the chaotic nature of the world, and

assuming the specified dynamics adequately represent the true system.

Using DEs to motivate statistical models, Berliner (1996), Royle et al. (1999) and Wikle

et al. (2001) take a Bayesian hierarchical approach to model the dynamic process in a la-

tent space. Their approach, termed physical-statistical modeling (PSM), motivates dynamic

equations through mechanistic relationships and enables researchers to model complex dy-

namic systems within a statistical framework (Berliner, 2003) (see also Kuhnert, 2017).

Modeling the dynamics in a latent space allows the model to separately quantify uncer-

tainty in the observed process and model specification. For example, Wikle et al. (2001)

and Milliff et al. (2011) use PSM’s to model surface winds over the Equatorial Pacific

and Mediterranean Sea, respectively. In both cases, the authors model the surface wind

motivated by dynamics supported by the physical understanding of the system. Critically,

allowing the parameters in these DE to be random processes (i.e., spatial fields, time se-

ries) enables flexible learning and uncertainty quantification. Wikle (2003) and Hooten

and Wikle (2008) use this approach with discretized nonlinear reaction-diffusion equations

to model the continuous processes for growth and spread of the House Finches across

the eastern United states and Eurasian-Collard Doves across the southern United States,

respectively. Wikle and Hooten (2010) formalize this approach and define a general frame-

work for linear and nonlinear mechanistically motivated models, termed General Quadratic

Nonlinear models (GQN). GQN models are able to accommodate many classes of DE sys-
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tems, and are implemented in a BHM framework that accommodates uncertainty, missing

data, and regularization. GQN models are also computationally expensive, can be unstable

without careful modeling choices, and often require informative priors. Except in a few

specialized cases, the DE used in all of these complex models are approximations of the

true underlying dynamics.

Recently, work has been done to discover the governing equation(s) that define dynamic

systems in a purely deterministic setting. Seminal work by Bongard and Lipson (2007) and

Schmidt and Lipson (2009) presents a new method to dynamic system discovery using

symbolic regression. While this approach uncovers nonlinear dynamics that drive data, it is

not scalable to large dynamic systems. In order to combat this scaling issue, Brunton et al.

(2016) shift the focus of dynamic system discovery to one of sparse identification, propos-

ing the Sparse Identification of Nonlinear Dynamics (SINDy) model. SINDy involves three

important components: (1) numerical differentiation, (2) determining the candidate func-

tions, termed the “feature library”, and (3) sparse regression. Numerical differentiation can

also be combined with a de-noising procedure, and is often computed through the finite dif-

ference approximation. The feature library is chosen based on the system in question, and

represents the maximum feature space to be considered (see Section 4.3.2 below for more

detail). Last, sparse regression is performed using an `1-norm-based algorithm termed

“sparse relaxed regularized regression” (Zheng et al., 2019). The basic SINDy model is

easily accessible through the Python package PySINDy (de Silva et al., 2020).

The basic SINDy approach has been extended in numerous studies. For example, sparse

identification was first extended to partial differential equations via the PDE-FIND algo-

rithm (Rudy et al., 2017), and later extended to PDEs with non-constant coefficients (Rudy

et al., 2019a). Using a deep feed-forward network, Long et al. (2017) propose a general
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method to learn PDE dynamics, coined PDE-Net. To account for stochasticity in the evolu-

tion process, Boninsegna et al. (2018) consider cases where stochastic differential equations

are more appropriate. To improve on the numerical approximation, Schaeffer (2017), Scha-

effer et al. (2018), and Lagergren et al. (2020) propose methods to calculate the derivative

that are more robust to noise, resulting in better performance.

From a more statistical perspective, Zhang and Lin (2018) and Niven et al. (2020)

consider a Bayesian approach to the sparse regression problem and Fasel et al. (2021)

take an ensemble approach, allowing for parameter uncertainty quantification. However, to

the best of our knowledge, uncertainty is only considered for the parameters, and not the

dynamic process.

While SINDy and the related extensions have been shown to perform well, there are

two important shortcomings. First, using a multi-step procedure where the de-noising and

differentiation are preformed independently of the estimation procedure, uncertainty is not

propagated throughout the model. For example, when de-noising and differentiation is

done first, the observation uncertainty is not accounted for when modeling the process, and

the resulting derivative is assumed to be the truth. Second, in the SINDy class of models,

the inherit dependence between the derivative and the dynamic process is not explicitly

accounted for when using the multi-step procedure.

To address the issue with the multi-step procedure, Galioto and Gorodetsky (2020) and

Yang et al. (2020) take a Bayesian hierarchical modeling approach to nonlinear dynamic

discovery. Galioto and Gorodetsky (2020) show how the Kalman filter can be adapted to

estimate the state-space of nonlinear systems when the functional form of the system is

known, highlighting the advantage of accounting for measurement, system, and parameter

uncertainty. Yang et al. (2020) use differentiable programming within a Bayesian context
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to quantify uncertainty on model parameters, allowing for the dynamic system to be discov-

ered using the library approach similar to SINDy-based methods. However, each of these

approaches has limitations. The Kalman approach is unable to identify the functional form

of a nonlinear system. For the differentiable programming approach, because the dynamics

are not modeled as a latent process, the method cannot handle missing data. Additionally,

both numerically estimate the derivative, which can lead to adverse affects when noise is

present in the system (see Section 4.2.2 for more discussion).

To address these limitations, we present a Bayesian hierarchical modeling approach

for data driven discovery of dynamics explicitly accounting for uncertainty associated with

each aspect of the problem. The first significant contribution of this work is that unlike the

other data-driven discovery methods presented in the literature, we account for uncertainty

in the observed data and represent the dynamic system as a latent process in a multilevel

model. The data model accounts for the measurement (or observation) error given the true,

but unobserved, latent process. Second, explicitly accounting for the dependence between

the derivative and the dynamic process, we model them jointly using a basis expansion with

a common set of basis coefficients. Estimating the basis coefficients conditioned jointly on

the basis expansion for the derivative and the system builds dependence between the dy-

namic process and its derivatives. Third, the basis expansion also allows us to compute the

derivatives analytically, bypassing the need for a numerical approximation of the derivative.

Additionally, because we estimate the dynamic process in a latent space, we model the dy-

namics as the true underlying process generating the observations. Finally, we explicitly

include priors for sparcity in two places in the multi-level model.

Our Bayesian hierarchical approach to data-driven discovery of nonlinear dynamic

equations enables uncertainty quantification at all levels of the model (data, process, and
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parameters). Using basis functions to obtain derivatives, we bypass the need for a multi-

step procedure and do not require any pre-filtering of the observed data. However, as in

SINDy, we retain the use of the feature library, using variable selection to identify a sparse

solution set of the feature library. Modeling the dynamic system as a latent process in the

second layer of our hierarchical model allows us to recover the dynamic equations in a

statistical framework. By accounting for the dependence structure in the dynamic process,

our method does not require as many observations as the machine learning-centric meth-

ods. Additionally, our method can handle scenarios with missing data, including sporadic

missingness and imperfect data, as well as an entire missing system component.

We illustrate our method’s performance on data generated from different well-known

dynamic processes with varying levels of measurement noise, missing data, and with a

missing component. Through simulation, we find our approach to be robust to measure-

ment noise and able to learn the dynamics of complex dynamical systems. We also apply

our method to a real-world application and recover dynamics consistent with the theoretical

physics of the systems.

The remainder of this article is organized as follows. In Section 4.2 we give back-

ground on the general dynamical system, state how we make inference on the derivative

of the system, and present the Bayesian hierarchical model. In Section 4.3, we describe

parameter estimation and discuss modeling choices. In Section 4.4, we test our method on

multiple simulated data sets and perform inference on three real-world data sets. Section

4.5 concludes the chapter.
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4.2 Bayesian Dynamic Equation Discovery

Here, we propose a general hierarchical model for making inference on nonlinear dynamic

systems. Analogous to the observation and state model in state-space modeling of time

series (e.g., Shumway and Stoffer, 2017), we consider the dynamic process to be latent and

the observed data to be a noisy realization of the “true” underlying process. As is customary

in hierarchical modeling, we specify the three components of the model, namely the data

model, the process model, and the parameter models in the sections below. In Section

4.2.1 we motivate the dynamic systems and describe in detail the components of the latent

process. Section 4.2.2 describes how we use basis functions to approximate the latent

process and obtain derivatives of the system. We specify the data model in Section 4.2.3,

and specify the prior distributions in Section 4.2.4.

4.2.1 Dynamic System

Consider the ordinary differential equation (ODE) dynamic system

d(J)

dt(J)
u(t) = ut(J)(t) = M(ut(0)(t),ut(1)(t), ...,ut(J−1)(t)), (4.1)

where the vector u(t) ∈ RN denotes the realization of the system at time t, the function

M(·) represents the (potentially nonlinear) evolution function, and ut( j)(t), j = 0, ...,J rep-

resents the jth derivative of u(t). Equations of the form of (4.1) are often used to model

processes in biology, ecology, climatology, epidemiology, economics, meteorology, phar-

macodynamics, and geological sciences, among others.

For illustration, we consider mechanistic systems that only have a few relevant terms

that govern the dynamics (e.g., the pendulum equations, Lorenz attractor, Lotka–Volterra
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model; Higham et al., 2016) so the function space of M(·) will be sparse. We can reparam-

eterize (4.1) to be intrinsically linear (in parameters) as

ut(J)(t) = Mf(ut(0)(t),ut(1)(t), ...,ut(J−1)(t)), (4.2)

where M is a N ×D sparse matrix of coefficients and f(·) is a vector-valued nonlinear

transformation function of length D. The inputs of the function f(·) contain arguments that

potentially relate to the dynamic system (i.e., more than just the lower order terms of the

system). That is, the functions fi(·), i = 1, ...,D are any functions that potentially represent

(4.1) (e.g., polynomials, sinusoids, interactions). Crucially, these functions are chosen

based on an educated understanding of the general properties of system in question (e.g.,

diffusion, advection, growth), with the hope that all the correct terms in the “true” system

are included. Thus, D can be quite large and depending on the number of hypothesized

functions chosen, (4.2) has the potential to be drastically over-parameterized. As such, a

method to induce sparseness in M will be required.

As an example, consider the Lotka-Volterra system (Lotka, 1920),

dx
dt

= αx−βxy

dy
dt

= δxy− γy,

where u(t)≡ [x(t),y(t)], x is the number of prey, y is the number of predators, α is the prey

population growth rate, β is the rate of predation, δ is the predator population growth, and
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γ is the death rate of the predator population. In terms of (4.2), this can be represented as

ut(t) =

α 0 −β

0 −γ δ




xt

yt

xtyt

 .

However, because we generally do not know f(u(t)) = [x(t),y(t),x(t)y(t)]′, we specify

f(u(t)) in terms of possible solutions to the function (e.g., all polynomials up to the third

order, sinusoids, etc.). Then, by selecting against coefficients in M (i.e., identifying the

terms that should be zero) we recover the solution to the dynamic equation.

In real-world problems, (4.2) does not hold exactly. Stochastic forcing could perturb

the system (e.g., weather systems, demographic stochasticity) or there could be error in the

model specification. We accommodate this unknown stochasticity including an additive

error term

ut(J)(t) = Mf(ut(0)(t),ut(1)(t), ...,ut(J−1)(t))+η(t), (4.3)

where, for example, η(t) i.i.d.∼ N(0,ΣU) is a mean zero Gaussian process with variance/-

covariance matrix ΣU .

4.2.2 Basis Expansion

Define the expansion of the nth element of u(t) as

u(t,n) =
∞

∑
k=1

A(n,k)φ(t,k), n = 1, ...,N,
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where {φ(t,k) : k = 1,2, ...} are basis function that are differential to (at least) order J

and defined at any time t, and {A(n,k) : k = 1,2, ...} are the associated basis coefficients.

To reduce the dimension and transition to discretely observed time data, we keep the first

k = 1, ..., pa terms and define φ(t,k) at finite times t = 1, ...,T . Let U ≈ AΦ, where U =

{u(t)}t=1,...,T is an N× T matrix, Φ is a pa× T matrix of differentiable basis functions

where each column is given by φ(t) ≡ (φ(t,1), ...,φ(t, pa)), and A is the N× pa matrix

of basis coefficients with columns given by A(k) ≡ (A(1,k), ...,A(N,k)). We can then

analytically obtain higher order derivatives of the elements of U by taking derivatives of the

basis functions. Specifically, let Ut( j) ≈ AΦt( j), j = 0, ...,J, where Φt( j) is a pa×T matrix

of the jth derivative of known basis functions {φt( j)(t)} (e.g., the tth column of Φt( j) is

φt( j)(t)≡ (φt( j)(t,1), ...,φt( j)(t, pa))). For time t, ut( j)(t) = Aφt( j)(t) with φt( j)(t) ∈Rpa and

(4.3) can be rewritten,

Aφt(J)(t) = Mf(A,φt(0)(t), ...,φt(J−1)(t))+ηt .

In summary, decomposing U using temporal basis function expansions accomplishes

two tasks. First, it enables inference on the derivative of the process, {ut( j)(t)}, when only

the process, {ut(0)(t)}, is observed. Because Ut( j) is decomposed in terms of A for j =

0, ...,J, the estimate of A is jointly informed by the system and the derivatives, allowing for

information to be shared between the system and the derivatives. Second, by keeping pa�

T basis functions, the resulting reconstruction of AΦt(0) is smooth (Wang et al., 2016) (note,

this implies ηt now also includes truncation error). This is important because numerically

estimating the derivative (e.g., via a finite difference) when the dynamic process {ut( j)(t)}

is noisy can amplify the noise of the higher order terms in the system (e.g., {ut( j)(t)} for

j = 1, ...,J, Chartrand, 2011). By taking derivatives analytically through basis functions,
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the system is more robust to noise.

4.2.3 Data Model

We assume v(t) is an observation of the latent process ut(0)(t) outlined in Section 4.2.2 with

unknown measurement uncertainty. We model v(t) using a generalization to the traditional

linear data error model that links the dynamics to the observed process (e.g., see Cressie

and Wikle, 2011, Chapter 7). That is, we model

v(t) = H(t)ut(0)(t)+ ε̃(t),

where v(t) ∈ RL(t) and H(t) is a L(t)×N matrix that maps the latent process to the ob-

served process and accounts for possible missing observations at time t. Uncertainty in the

observations of the process are captured by ε̃(t)
indep.∼ NL(t)(0,Σ̃V (t)), where Σ̃V (t) is the

variance/covariance matrix.

Missing data are common in applications. A benefit of the hierarchical model is that

it can easily accommodate missing data. Since the latent process is fully specified and

missing data are handled at the data level, missing data do not impact the process model.

We handle scenarios with missing data by allowing the dimension of H(t) to vary in time. If

there are no missing data at time t, then L(t) = N and H(t) = IN . When one or more system

components are missing data, then the row corresponding to the missing system component

is removed. For example, if we have a three-dimensional system, say u(t)= [a(t),b(t),c(t)]
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and the observation component for b(t) is missing at time t, then

H(t) =

1 0 0

0 0 1

 .
This representation can also accommodate situations where an entire system component

is not observed. Again, H(t) is chosen such that the latent system, of dimension N, can map

to the observation system of dimension L(t) < N (recall, H(t) is a L(t)×N matrix). We

then allow the process model to learn the missing dynamic process based purely on the

dependence that is present within the process model. However, as we will discuss in more

depth through the Lorenz attractor example in Section 4.4.1, there are limitations to the

extent of missing information that can be accommodated and care needs to be taken when

interpreting these cases.

4.2.4 Parameter Model

Combining the process and observation equations results in the first two levels of our pro-

posed Bayesian hierarchical model. As defined in Section 4.2.2 and 4.2.3, for discrete time

points t = 1, ...,T , the first two layers of our general model are

v(t) = H(t)ut(0)(t)+ ε̃(t) = H(t)Aφt(0)(t)+ε(t)

Aφt(J)(t) = Mf(A,φt(0)(t), ...,φt(J−1)(t))+η(t),
(4.4)

where ε(t)
indep.∼ NL(t)(0,ΣV (t)) and ΣV (t) is the L(t)×L(t) measurement error covariance

matrix where L(t) is the dimension at time t (Figure 4.1). For clarity, we present the details

the model parameters in Table 4.1. Our goal is to make inference on the unknown param-
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Figure 4.1: (A) Data model relating the observed measurements V to the latent dynamic
process Ut(0) and accounting for measurement error ε̃. Note, we do not include H in our
pictorial representation of the equation and the error is not to scale. (B) Basis representa-
tion of the dynamic process where Ut(0) ≈AΦt(0) and ε now accounts for the approximation
uncertainty. (C) Process model where the derivative of the dynamic process AΦt(0) is re-
lated to the product of the parameter coefficient matrix M and the library of function f(·)
plus model uncertainty η. (D) The recovered equation which is computed from M after
the model parameters have been estimated. (E) Resulting dynamic equation mean (a) and
equation uncertainty (b) which are computed from M after the model parameters have been
estimated.

eters M,A,ΣU , and ΣV , where M defines the nonlinear dynamic equation, A defines the

smooth latent process, ΣU captures the error dependencies within the dynamic equation,

and ΣV captures the measurement uncertainty associated with the observed process. To

complete our Bayesian hierarchical model, we define the following priors.

As mentioned in Section 4.2.1, M has the potential to be over-parameterized. To induce

sparcity into our estimate of M, we use the stochastic search variable selection (SSVS,
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Model Symbol Description Dimension
Variable

Data v(t) Observed data L(t)×1
Data H(t) Mapping matrix L(t)×N
Data ε(t) Data uncertainty distribution L(t)×1
Data ΣV (t) Measurement error covariance matrix L(t)×L(t)

Process ut(0)(t) Dynamic process N×1
Process A Basis coefficients N× pa
Process φt( j)(t) jth order basis function at time t pa×1
Process M Dynamic evolution matrix N×D
Process f(·) Feature library N×1
Process η Process uncertainty distribution N×1
Process ΣU Dynamic equation error covariance matrix N×N

Dimension
T Number of observed time points 1
L(t) Dimension of observation vector at time t 1
N Dimension of latent process (dynamic system) 1
D Number of library functions 1
pa Number of basis functions 1
J Highest order derivative in the dynamic system 1
Indices
t Time interval, t = 1, ...,T 1
j Order of the derivative, j = 1, ...,J 1

Table 4.1: List of symbols used in the Bayesian hierarchical model.

George et al., 1993) prior. Specifically,

vec(M)∼ NND(0,ΣM),

ΣM = diag(γ(c1)
1 , ...,γ

(cND)
ND ),

where γ
(cl)
l = v1 if cl = 1 and γ

(cl)
l = v0 if cl = 0. The latent variable, cl , is the inclusion

indicator, and the posterior of cl specifies the probability of inclusion for any parameter in

M. The hyperpriors v0 and v1 are chosen such that v0 is small (e.g., v0 = 10−6) and v1 is

large (e.g., v1 = 104). Whereas, any method to induce sparsity in M can be used, we choose
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SSVS because it provides the inclusion probabilities and has been shown to work well in

nonlinear dynamic models (Wikle and Holan, 2011).

Within the SSVS prior, ν0 and ν1 determine how parsimonious the selected model will

be. This is due to the ratio

pl =
π[m(l)|cl = 1, ·]

π[m(l)|cl = 1, ·]+ (1−π)[m(l)|cl = 0]

for m ≡ vec(M) and l = 1, ...,ND, which determines the inclusion probability for m(l),

where [m(l)|·] denotes the distribution of m(l) given all relevant parameters. George et al.

(1993); George and McCulloch (1997); George et al. (2008) discuss the specification of

ν0,ν1 in detail, and we summarize some of the key points here. One should choose ν0 and

ν1 such that if cl = 0, m(l) can safely be replaced with zero, and if cl = 1, m(l) then a

non-zero estimate should be included with some probability pi. However, in practice we

do not know which values of m should or should not be included. As a general rule, we

found ν0 = 10−6 and ν1 = 104 work well for most of the simulations we present. However,

when models have small parameter values (e.g., see the SIR example in Section 4.4), we

find smaller values, such as ν0 = 10−8 and ν1 = 102, are needed.

Both ΣV (t) and ΣU have the potential to have small parameter values, and inference

using traditional conjugate Inverse Gamma/Wishart priors are overly sensitive to the choice

of hyperpriors when estimates are small (Gelman, 2006). Instead, we use the conjugate

Half-t prior proposed by Huang and Wand (2013) for covariance estimation, which imposes

less prior information and does not have as strong of influence on small estimates.

We restrict the measurement error to be diagonally structured (although this restric-

tion can be removed if warranted) since it is often assumed that measurement noise is

independent (Cressie and Wikle, 2011). Let ΣV (t) = H(t)diag(σ2(1), ...,σ2(N))H(t)′,
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where each diagonal element, σ2(1), ...,σ2(N), is assigned a conjugate Half-t(2,10−5)

prior. In order to account for system dependence within the multivariate latent process

error, we model ΣU as a full rank matrix, which enables us to borrow strength across sys-

tems and improve model performance. We assign the matrix Half-t(νk,Bk) prior to ΣU

with νk = 2,Bk = 10−5,k = 1, ...,N.

Last, we specify the Bayesian elastic net prior (Li and Lin, 2010) on A. Specifically,

our prior is

π(A) ∝ exp{−λ1‖A‖1−λ2‖A‖2
2},

where λ1,λ2 are penalty parameters. We use the elastic net prior to help regularize the

basis coefficients and select against unneeded basis functions. It is possible to specify

hyperpriors for the two penalty terms, but we find inference is not overly sensitive to the

choice of penalty parameters and fix them to a small value (e.g., 0.1 or 0.01).

4.3 Algorithm and MCMC

There are five full-conditional distributions of interest, [M|·], [ΣV |·], [ΣU |·], [A|·], and

[c|·] (see Appendix C.1 for the details of the distributions) when performing MCMC infer-

ence for this model. The four components M,ΣV ,ΣU and c are updated using classical

Bayesian methods and A is updated using a stochastic gradient approach. We present the

general MCMC procedure in Algorithm 1. Within the general MCMC procedure, there are

implementation details that warrant a more detailed discussion. Additionally, because the

framework we present is general, some modeling choices are problem specific. We discuss

how to address these challenges Section 4.3.1.
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Algorithm 1: MCMC Sampling Algorithm
Require V, f(·), pα ,∆t, |Z |,κ,ν0,ν1
Initialize all parameter values
for `= 1,2, . . . till convergence do

1. Sample M(`) from [M|·]

2. Sample c(`)i from [ci|·] for i = 1, . . .ND

3. Sample Σ
(`)
V from [ΣV |·]

4. Sample Σ
(`)
U from [ΣU |·]

5. Sample A(`) from (4.5)
end

4.3.1 Basis Estimation

The basis coefficients pose an estimation challenge because they are embedded in the non-

linear function f(·) and since f(·) is problem specific, it needs to be specified generally

to accommodate different problems. In principle, an Expectation-Maximization (EM) or

Metropolis-Hastings (MH) algorithm could be used to estimate A, but they require f(·) to

be known and convergence with either of these methods is slow in our setting. Instead, we

use an adapted version of SGD with a constant learning rate (SGDCL; Mandt et al., 2016),

which has been shown to scale well.

As with SGD, SGDCL relies on the gradient of a loss function and a learning rate. For

SGDCL, the loss function is the negative log posterior for our parameters of interest, A.

Here, the loss function for a single time is

L (t) =− log([v(t)|H(t),A,φt(0)(t),ΣV (t)][A,φt(J)(t)|M,A,φt(0)(t), ...,φt(J−1)(t),ΣU ])+

1
T

(
λ1‖A‖1 +λ2‖A‖2

2
)
.
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The gradient of the loss function is dependent on ∂

∂A f(A,φ
(0)
t , ...,φ

(J−1)
t ), which we gener-

ically denote as
.
Ft , and the gradient of L (t), ∂L (t)

∂A = ∇AL (t), is

∇AL (t) =−H(t)Σ−1
V (t)v(t)φt(0)(t)

′+H(t)′Σ−1
V (t)H(t)Aφt(0)(t)φt(0)(t)

′

+Σ−1
U Aφt(J)(t)φt(J)(t)

′−Σ−1
U Mf(t)φt(J)(t)

′−φt(J)(t)
′A′Σ−1

U M
.
F(t)

+ f(t)′M′Σ−1
U M

.
F(t)+

1
N
(λ1sign(A)+2λ2A) .

SGDCL methods replace the true gradient with the stochastic estimate,

∇̂L Z (t) =
1
Z ∑

t∈Z
∇AL (t),

where Z ⊂ {1, ...,T} is a random subset of the observations, called a mini-batch, and |Z |

is the cardinality of the set. Within the context of a MCMC algorithm, the `th update of A

is given by

A(`) = A(`−1)−κ∇̂L Z (`)(A(`−1)), (4.5)

where Z (`) denotes a random minibatch specific to the ` update and κ is the learning

rate. Mandt et al. (2016) show how to select the constant κ , or a preconditioning matrix

(i.e, replace κ with a matrix K), to match the stationary distribution to the posterior. In

practice, we find κ is problem dependent. If there is a lot of observation noise in the data,

an adaptive approach may provide the best results. Specifically, an upper bound is specified

for the learning rate. Then, during the burnin process, the learning rate decreases at equal

intervals from this initial value to a specified lower bound. After burnin, the learning rate

stays fixed at the specified lower bound throughout the sampling algorithm. If there is
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minimal to no noise, then a fixed small value for κ for the entirety of the sampler works

best.

The final challenge to estimating A is computing
.
F(t). Because f(·) is problem specific,

.
F(t) is also problem specific and needs to be obtained generally. To overcome this issue, we

use automatic differentiation (AD). AD has become increasingly popular, especially with

the increasing interest in deep models, and allows one to analytically compute the derivative

of f(·). There are many different libraries and programs that perform AD, and for our

implementation we use the ForwardDiff (Revels et al., 2016) package in Julia (Bezanson

et al., 2017).

Note that we need to estimate the latent process Ut(0) , and all subsequent derivatives

Ut(J) for j = 1, ...,J in the model. Without using a basis expansion approach, estimating

each of these processes requires an O(T ) calculation. With the basis expansion, this reduces

the computational burden to O(pa) for each process. We further reduce the computation

required using the SGDCL to O(|Z |), where |Z | � pa� T .

4.3.2 Choice of Functional Library

Choosing the potential solutions (the function library f(·)) generally requires some extra

thought. Ideally, the functions are chosen based on a general physical understanding of

the system (e.g., diffusion, advection, growth). However, this is not always possible. In

general, most ordinary differential equations are functions of polynomials and interactions

(e.g., Lorenz attractor, van der Pol oscillator, Lotka–Volterra model; Higham et al., 2016).

Because of this, we default to a using a library of polynomial functions and interactions

when a physical understanding of the system is not applicable. While there are scenarios

where more terms need to be included in the library (e.g., sinusoidal terms), using polyno-
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mials and interactions as a default library covers a wide range of potential systems.

4.3.3 Choice of Basis Functions

The choice of basis functions have the potential to affect the model fit. Ramsay and Silver-

man (2005, Chapter 3) provide a discussion on how to choose basis functions based on the

“shape” of the data, and we will summarize some key points here. For our method we con-

sider two basis function classes, the B-spline and Fourier basis, with the B-spline being a

local basis function and Fourier a global basis function. While we only discuss the B-spline

and Fourier basis, other basis functions could be chosen. The Fourier basis is best suited

for periodic data with no strong local features and where the curvature of the function is

the same order everywhere. In contrast, the B-spline basis works best with non-periodic

functions that may or may not have strong local features. With respect to differentiation,

the Fourier basis is infinitely differentiable, and the m order B-spline basis is differentiable

up to order m−1. However, Fourier series suffer from a ringing effect (Hewitt and Hewitt,

1979), and we find the effect is worsened when derivatives greater than the first order are

considered or there are local regions with little curvature. This issue makes the Fourier

series less useful in practice. B-splines do not suffer from the ringing effect, making them

better suited for higher order dynamic systems. The amount of noise in the data also impact

the choice of basis. For both local and global basis functions, enough basis functions need

to be included so the estimated solution curve is flexible, the dynamics are captured, and

the posterior latent space is properly explored, but not so many such that unnecessary noise

is captured (see examples below for relation of number of basis functions to number of ob-

servations). In general, we found the B-spline basis resulted in the best model performance

and use them for all of our simulations and examples.
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4.4 Simulations and Examples

Here, we show our proposed model’s ability to detect the dynamic equation on four sim-

ulated data sets and on three real world data sets. Unless otherwise stated, all reported

estimates are rounded to three significant digits for readability and significant terms are

shown in bold within their respective tables. As stated in Section 4.3.1, when noise is

present in the system, we specify an initial upper bound for the learning rate and decay to

a lower bound during the burn-in phase. Where applicable, we denote the upper bound for

the learning rate as κu and the lower bound as κl . Generally, we only specify two learning

rates for problems with excessive noise, where the initial large learning rate preforms large

scale learning and the smaller learning rate limits excessive noise (from keeping a large

learning rate) from being artificially injected into the system. If a lower and upper bound

are not specified, then the specified κ is constant for the duration of the sampler. For all

simulations and real-world examples, we obtain 10000 posterior samples and discard the

first 5000 as burn-in. Convergence of model parameters was assessed visually via trace

plots, with no issues detected.

4.4.1 Simulations

We show our ability to recover nonlinear equations on data simulated from four systems:

the Susceptible, Infected, Removed (SIR) epidemic model, the Lotka-Volterra (or predator-

prey) system, a coupled pendulum, and the Lorenz-63 attractor. To simulate data from the

nonlinear systems we use a 4th-order Runge-Kutta (RK4) method. To simulate measure-

ment noise, we add mean zero Gaussian noise to the state vector; specifically v(t)+ ε(t),

where v(t) is the simulated data, ε(t)∼N(0,ξ IN) is the additional noise, and ξ is the mag-
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Model Parameter Values Initial Values ∆t Time Range

SIR
β = 15,γ = 0.9 [S, I,R]′ = [99,1,0]′ 0.01 [0,3]
n = 100

Lotka-Volterra
α = 1.1,β = 0.4 [x,y]′ = [10,10]′ 0.1 [0,100]
δ = 0.1,γ = 0.4

Coupled Pendulum
g = 9.8, l = 1 [θ1,θ2]

′ = [π/2,−π/4]′ 0.01 [0,10]
k = 1,m = 1

Lorenz-63
σ = 10, ρ = 8/3 [x,y,z]′ = [−8,7,27]′ 0.01 [0,10]
β = 28

Table 4.2: Parameter values, initial values, time step, and time range for each simulated
data set.

nitude of the noise variance. Using the Lotka-Volterra system, SIR model, and Lorenz-63

attractor, we will show how the method performs with varying amounts of measurement

noise. In addition, for the Lorenz-63 attractor, we will show how the model performs when

data are missing sporadically or when an entire system component is missing. Last, we will

compare our method to SINDy using data simulated from the Lorenz-63 attractor. For all

the simulated data, the parameter values, initial values, time step, and time range are given

in Table 4.2.

SIR Model

Susceptible, Infected, and Removed (SIR) models are commonly used to model infectious

diseases (Kermack and McKendrick, 1927). At their core, SIR models relate the number

of individuals in a population to the number of infected and removed individuals through

infection and removal rates. The number of susceptible (S), infectious (I), and removed (R)

87



individuals are related by the nonlinear ODEs:

dS
dt

=−β

n
IS

dI
dt

=
β

n
IS− γI

dR
dt

= γI

(4.6)

where β is the exposure rate, γ is the removal rate, and n is the total population. We

simulate from (4.6) with the model and simulation parameters given in Table 4.2 with no

measurement noise (ξ = 0) and measurement noise (ξ = 1). If a simulated value with

noise is below zero, which is not biologically possible, we set the value to zero. The data

are shown in Figure 4.2, where the x-axis and y-axis correspond to a hypothetical time

period and population, respectively. The data with no measurement noise are represented

by the solid lines and the data with measurement noise are represented by the solid points.

For both simulated data sets, we fit the proposed model with parameters pα = 200, |Z |=

20,ν0 = 10−8,ν1 = 102. With no measurement noise our learning rate is κ = 10−8 and with

measurement noise we specify κ = 1. Our library of potential solutions are all polynomials

up to the third order with all possible interactions except we do not include the removed

term in our library because biologically it is not plausible. After obtaining posterior sam-

ples, we keep only terms with greater than a 99% inclusion probability. The recovered

equations and 95% credible intervals without and with measurement noise for the included

terms are shown in Tables 4.3 and 4.4, respectively. For both situations we correctly iden-

tify the components of the dynamic system and the credible intervals of all parameters

cover the truth.
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Figure 4.2: Data simulated from the SIR model, (4.6) with parameters n = 100,β = 15,γ =
0.9, and initial condition [S, I,R]′ = [99,1,0]′ for times t = 0 to t = 3 with a time step of
∆t = 0.01. The solid lines represent the true system with no measurement noise (ξ = 0),
and the dots are the data with measurement noise (ξ = 1).

Lotka-Volterra System

The Lotka-Volterra (LV) equations are often used in biological modeling to describe the

dynamics of two (or more) interacting species, commonly a predator-prey interaction. The

LV equation consists of the two nonlinear ODEs:

dx
dt

= αx−βxy

dy
dt

= δxy− γy,
(4.7)

where x is the number of prey, y is the number of predators, α is the prey population growth

rate, β is the rate of predation, δ is the predator population growth, and γ is the death rate of
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System Equation

True Equation
dS/dt −0.150SI
dI/dt −0.900I +0.150SI
dR/dt 0.900I

Posterior Mean
dS/dt −0.150SI
dI/dt −0.900I+0.150SI
dR/dt 0.900I

95% Credible Interval
dS/dt (−0.153,−0.147)SI
dI/dt (−0.900,−0.900)I +(0.147,0.153)SI
dR/dt (0.900,0.900)I

Table 4.3: Posterior mean estimates and 95% credible intervals (lower bound, upper bound)
for the SIR simulation with no measurement noise (ξ = 0).

System Equation

True Equation
dS/dt −0.150SI
dI/dt −0.900I +0.150SI
dR/dt 0.900I

Posterior Mean
dS/dt −0.155SI
dI/dt −0.998I+0.150SI
dR/dt 0.908I

95% Credible Interval
dS/dt (−0.185,−0.129)SI
dI/dt (−1.125,−0.869)I +(0.135,0.165)SI
dR/dt (0.790,1.026)I

Table 4.4: Posterior mean estimates and 95% credible intervals (lower bound, upper bound)
for the SIR simulation with measurement noise (ξ = 1).

the predator population. We simulate from (4.7) with the model and simulation parameters

given in Table 4.2. The simulated data are shown in Figure 4.3, where the blue line is

the true system with no noise (ξ = 0) and the data with measurement noise ξ = 1 are

depicted by the red dots. Because the system is only defined for positive x and y, if the

noisy simulated data is less than zero, we set it equal to zero.

We fit the proposed model with parameters pα = 400, |Z | = 50,ν0 = 10−6,ν1 = 104.

With no measurement noise, we set κ = 10−2 and with measurement noise we set κ = 1.

Our library of potential solutions are all polynomials up to the third order with all possible
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Figure 4.3: Data simulated from the Lotka-Volterra system, (4.7) with parameters α =
1.1,β = 0.4,δ = 0.1,γ = 0.4, and initial condition [x,y]′ = [10,10]′ for times t = 0 to t =
100 with a time step of ∆t = 0.1. The solid blue line is the true system with no measurement
noise (ξ = 0), and the red dots are the data with measurement noise (ξ = 1).

System Equation

True Equation
dx/dt 1.100x−0.400xy
dy/dt −0.400y+0.100xy

Posterior Mean
dx/dt 1.099x−0.409xy
dy/dt −0.403y+0.129xy

95% Credible Interval
dx/dt (1.061,1.145)x+(−0.590,−0.275)xy
dy/dt (−0.420,−0.397)y+(0.084,0.260)xy

Table 4.5: Posterior mean estimates and 95% credible intervals (lower bound, upper bound)
for the Lotka-Volterra simulation without measurement noise.

interactions. After obtaining posterior samples, we keep only terms with greater than a 99%

inclusion probability. The recovered equations and 95% credible intervals without and with

measurement noise for the selected terms are shown in Tables 4.5 and 4.6, respectively. We

see the identified system is correct for both simulations and the credible intervals for all

identified parameters are significant and cover the true parameter values.
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System Equation

True Equation
dx/dt 1.100x−0.400xy
dy/dt −0.400y+0.100xy

Posterior Mean
dx/dt 1.045x−0.482xy
dy/dt −0.395y+0.135xy

95% Credible Interval
dx/dt (0.822,1.238)x+(−0.673,−0.228)xy
dy/dt (−0.444,−0.357)y+(0.058,0.246)xy

Table 4.6: Posterior mean estimates and 95% credible intervals (lower bound, upper bound)
for the Lotka-Volterra simulation with measurement noise (ξ = 1).

Coupled Pendulum

A coupled pendulum system consists of two individual pendulums coupled by a spring,

resulting in the motion of each pendulum being dependent on the other. Let {θi, i = 1,2}

be the angle from vertical for each pendulum, m the mass of each body, L the length of

the rod, k is the spring constant, and g the gravitational acceleration. Then, the coupled

pendulum system is described by the set of second-order ODEs:

d2θ1

dt2 =−g
L

sinθ1−
k
m
(θ1−θ2)

d2θ2

dt2 =−g
L

sinθ2 +
k
m
(θ1−θ2).

(4.8)

We simulate from (4.8) with the model and simulation parameters given in Table 4.2. The

simulated data are shown in Figure 4.4 where the angle from vertical for each pendulum

are plotted against time.

We fit the proposed model with parameters pα = 200, |Z |= 50,κ = 10−8,ν0 = 10−6,ν1 =

104. Our library of potential solutions contained polynomials up to the second order, an

intercept, and sin and cos terms. After obtaining posterior samples, we select only terms

that have inclusion probability greater than 99%. Table 4.7 shows the posterior mean for

the selected terms the 95% posterior credible intervals. We see the identified solution is
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Figure 4.4: Data simulated from the coupled pendulum, (4.8) with parameters g = 9.8, l =
1,k = 1,m = 1, and initial condition [θ1,θ2]

′ = [π/2,−π/4]′ for times t = 0 to t = 10 with
a time step of ∆t = 0.01.

System Equation

True
d2θ1/dt2 −1θ1 +1θ2−9.8sin(θ1)
d2θ2/dt2 1θ1−1θ2−9.8sin(θ2)

Mean
d2θ1/dt2 −1.005θ1 +1.000θ2−9.795sin(θ1)
d2θ2/dt2 1.000θ1−1.002θ2−9.797sin(θ2)

95% CI
d2θ1/dt2 (−1.102,−0.904)θ1 +(0.997,1.003)θ2 +(−9.901,−9.693)sin(θ1)
d2θ2/dt2 (0.997,1.004)θ1 +(−1.089,−0.918)θ2 +(−9.886,−9.706)sin(θ2)

Table 4.7: Posterior mean estimates and 95% credible intervals (lower bound, upper bound)
for the coupled pendulum.

correct and the credible intervals for the identified parameters cover the truth.

Lorenz-63

For our last simulation study, we use a classic nonlinear dynamical system - the Lorenz-

63 attractor (Lorenz, 1963). The Lorenz-63 attractor, originally proposed to represent a

93



Figure 4.5: Simulated data from the Lorenz attractor under scenarios (1) and (2). The blue
lines correspond to scenario (1) with no measurement noise and the red dots correspond to
scenario (2) with measurement noise (c = 1).

simplified chaotic atmospheric system, consists of the three ODEs:

dx
dt

= σ(y− x)

dy
dt

= x(ρ− z)− y

dz
dt

= xy−β z,

(4.9)

where x is proportional to the convection rate, y is proportional to the temperature difference

in ascending and descending currents, and z is proportional to the vertical temperature

distortion. We test our method on five scenarios: (1) no measurement noise (ξ = 0), (2)

measurement noise (ξ = 1), (3) measurement noise (ξ = 5), (4) measurement noise (ξ =

10), and (5) measurement noise (ξ = 1) and 5% of the data missing at random. For all five

scenarios, we simulate from (4.9) with the model and simulation parameters given in Table

4.2. The simulated data for scenario (1) and (2) are shown in Figure 4.5, with scenario (1)

represented by the blue lines scenario (2) by the red dots.
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System Equation

True
dx/dt −10x+10y
dy/dt 28x−1y−1xz
dz/dt −2.667z+1xy

Mean
dx/dt −9.947x+9.980y
dy/dt 27.932x−0.980y−0.997xz
dz/dt −2.666z+0.999xy

95% CI
dx/dt (−10.169,−9.700)x+(9.826,10.121)y
dy/dt (26.963,28.855)x+(−1.269,−0.697)y+(−1.051,−0.939)xz
dz/dt (−2.700,−2.634)z+(0.977,1.021)xy

Table 4.8: Posterior mean estimates and 95% credible intervals (lower bound, upper bound)
for the Lorenz-63 simulation with no measurement noise (ξ = 0).

For all scenarios, we fit the proposed model with model parameters pα = 400, |Z | =

50,ν0 = 10−6,ν1 = 104. For scenario (1) κ = 0.1, scenario (2) κ = 10, scenario (3)

κu = 100,κl = 10, scenario (4) κu = 100,κl = 10, and scenario (5) κ = 10. The larger

learning rate for scenario (3) and (4) is due to the anticipated magnitude of measurement

noise. Our library of potential solutions are all polynomials up to the third order with all

possible interactions. After obtaining posterior samples, we select only terms that have

inclusion probability greater than 99%. The recovered systems and 95% posterior credible

intervals for scenario (1) are shown in Table 4.8, and the 95% posterior credible intervals

for scenarios (2) - (5) are shown in Table 4.9. The recovered systems and 95% posterior

credible intervals for scenarios (2) - (5) are shown in Tables C.1 - C.4 in Appendix C.2.

When there is no noise, we correctly identify the dynamic system and all credible intervals

cover the truth. When noise is present, we miss-identify the y component for all scenar-

ios and fewer posterior credible intervals cover the correct parameter values as the noise

increases (scenario (2) through scenario (4)). However, the method identifies the correct

solution (except for one term) in all scenarios, including when data are missing at random.

95



Scenario System Equation

True Equation
dx/dt −10x+10y
dy/dt 28x−1y−1xz
dz/dt −2.667z+1xy

Scenario (2)
dx/dt (−10.325,−7.538)x+ (8.393,10.305)y
dy/dt (23.697,27.060)x+ (−1.035,−0.791)xz
dz/dt (−2.822,−2.518)z+ (0.810,1.063)xy

Scenario (3)
dx/dt (−9.695,−6.533)x+(7.791,9.997)y
dy/dt (22.432,26.811)x+ (−1.028,−0.728)xz
dz/dt (−2.886,−2.516)z+ (0.713,1.019)xy

Scenario (4)
dx/dt (−8.653,−5.609)x+(7.095,9.445)y
dy/dt (22.339,26.409)x+ (−1.005,−0.723)xz
dz/dt (−2.868,−2.472)z+(0.594,0.942)xy

Scenario (5)
dx/dt (−10.173,−6.942)x+ (7.931,10.132)y
dy/dt (24.037,28.186)x+ (−1.052,−0.774)xz
dz/dt (−2.658,−2.285)z+ (0.722,1.093)xy

Table 4.9: 95% posterior credible intervals (lower bound, upper bound) for scenarios (2) -
(5).

Missing System Component - Lorenz 63

As discussed briefly in Section 4.2.3, our model can accommodate certain scenarios where

an entire system component is unobserved. To show this, we use the Lorenz-63 data sim-

ulated without measurement noise, shown by the blue line in the top panel of Figure 4.5.

However, instead of using all components as data we only use yt and zt , omitting the xt

component. This results in L(t) = 2 and N = 3, so our latent space has a longer dimension

than our observed space. To complicate the issue, the Lorenz system is unidentifiable, with

[−xt ,−yt ,zt ] being an alternate solution to [xt ,yt ,zt ]. We fit the proposed model with model

parameters pα = 200, |Z | = 50,ν0 = 10−6,ν1 = 104,κu = 102,κl = 101. Our library of

potential solutions are all polynomials up to the second order with all possible interactions,

and an intercept. Different from the previous Lorenz simulations, we use fewer basis func-

tions to force the latent space to be more structured a smaller library of potential solutions
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System Equation

True Equation
dx/dt −10x+10y
dy/dt 28x−1y−1xz
dz/dt −2.667z+1xy

Posterior Mean
dx/dt −6.938x+11.58y
dy/dt 19.623x−0.713xz
dz/dt −2.648z+0.749xy

95% Credible Interval
dx/dt (−9.128,−3.430)x+(9.715,13.900)y
dy/dt (18.060,21.752)x+(−0.713,−0.661)xz
dz/dt (−2.804,−2.512)z+(0.699,0.837)xy

Table 4.10: Posterior mean estimates and 95% credible intervals (lower bound, upper
bound) for the Lorenz-63 simulation with the dx/dt component missing.

to restrict the solution space and make the solution identifiable. After obtaining posterior

samples, and keeping only terms with greater than 99% inclusion probability, the recovered

systems and 95% posterior credible intervals are shown in Table 4.10. We see the correct

terms, except for the y in the dy/dt component, are identified in the solution. Thus, the

model is able to infer the missing xt component based solely on the relationship between

the components yt and zt .

Comparison to SINDy

Here we compare our proposed method to the current state-of-the-art, SINDy. As with any

model, SINDy relies on the specification of model parameters, which have the potential to

impact results. We use the default settings except we specify the library of possible coeffi-

cients to be polynomials up to the third order with all possible interactions, i.e., the same

library specified in Section 4.4.1. We acknowledge the possibility that a different choice

of model parameters could lead to better results. We run the SINDy model with data gen-

erated from scenarios (1) - (4) of Section 4.4.1, the Lorenz-63 attractor with measurement

noise ξ = 0, 1, 5, and 10. The SINDy model takes less than one second to run (compared
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ξ System Equation

0
dx/dt −9.980x+9.980y
dy/dt 27.808x−0.964y−0.995xz
dz/dt −2.659z+0.997xy

1
dx/dt −1.169x+4.535y−0.230z+0.192x2−0.331xy−0.233xz+0.141y2 +0.148yz
dy/dt 18.643x+3.866y−0.747xz−0.119yz
dz/dt 0.461x−0.287y−3.011z+0.453x2 +0.494y2

5
dx/dt 4.925x+0.782y−0.384z+0.283x2−0.462xy−0.367xz+0.178y2 +0.223yz
dy/dt 12.425x+5.839y−0.155z+0.248x2−0.402xy−0.581xz+0.164y2−0.152yz
dz/dt −0.443x−2.067z−0.182x2 +1.023xy

10
dx/dt 5.222x+0.455y−0.329z+0.244x2−0.397xy−0.345xz+0.133y2 +0.205yz
dy/dt 9.959x+5.692y+0.192x2−0.173xy−0.518xz−0.127yz
dz/dt −0.757x−1.676z−0.233x2 +0.973xy

Table 4.11: Recovered equations for the Lorenz-63 simulation using the SINDy algorithm
with varying amounts of noise.

to approximately 20 minutes for our proposed method), and the recovered equations are

shown in Table 4.11. We see the method is impacted by noise, and as the data becomes

more corrupted the relevant terms in the Lorenz system become obscured by extraneous

terms. Additionally, the uncertainty in the parameter estimates is not provided by SINDy.

In this scenario, we feel our proposed method out performs SINDy, but this will not

always be the case. Here, we only have 1000 time points for each system compared to

hundreds of thousands of data points in the original SINDy paper. As of the writing of this

manuscript, our model is impractical to use when the data is on the order of hundreds of

thousands of observations as the MCMC estimation procedure will take too long. In con-

trast to SINDy, our method is best suited for cases where there is considerable measurement

noise, the amount of data available is relatively small, and uncertainty quantification (pa-

rameter inference) is of interest.
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4.4.2 Real-World Data

We demonstrate our model by discovering the dynamics of three real-world systems: the

historic Hare-Lynx predator prey system, motion tracked pendulum, and Sea Surface Tem-

perature.

Hare and Lynx Population Dynamics

We consider the historic Canadian lynx and snowshoe hare data set1. The data, black

dots shown in Figure 4.6 for the Hare (top) and Lynx (bottom), document the population

dynamics between the two species from 1845 to 1939 and were originally recorded by

the Hudson’s Bay Company (HBC, Elton and Nicholson, 1942). As discussed by Bulmer

(1974), the data are reminiscent of a predator-prey relationship with a cycle of approxi-

mately 10 years. Based on the work by Bulmer (1974), we use a library of polynomials

up to the third order with all possible interactions. We fit the proposed model for with

model parameters pa = 40, |Z |= 20,ν0 = 10−6,ν1 = 104,κ = 10. After obtaining poste-

rior samples, we keep only terms with greater than 99% inclusion probability. The iden-

tified system and 95% posterior credible intervals are shown in Table 4.12. We see the

recovered solution has the same components as the Lotka-Volterra system, which is ex-

pected. However, there is some debate in the literature as to whether the Lotka-Volterra

equations accurately represent the Hare-Lynx system (Zhang et al., 2007) or whether there

should be another trophic level included in the system to accurately capture the dynamics

(Krebs et al., 2001). Regardless, we do get results corresponding to the Lotka-Volterra

system, suggesting predator-prey interactions are present.

1https://tuvalabs.com/datasets/lynx and snowshoe hare in canada/activities
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Figure 4.6: Hare-Lynx population relationship shown through the number of pelts the Hud-
son’s Bay company recorded between 1845 and 1935. The black points signify the true data
and the blue line is the recovered system for the Hare (top) and Lynx (bottom).

Motion Tracked Pendulum

In their seminal paper on data-driven discovery, Schmidt and Lipson (2009) provide motion

tracked data for multiple physical systems. Here, we use their motion tracked data on the

single pendulum, shown in Figure 4.7. The data consist of the angle of the pendulum from

vertical at time t. It is key to note the data are not sampled at equal intervals. In this sce-

nario, basic principles in physics suggest a solution to the system. Using this information
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System Equation

Posterior Mean
dH/dt 6.049H−0.272HL
dL/dt −6.232L+0.168HL

95% Credible Interval
dH/dt (3.530,8.426)H +(−0.400,−0.144)HL
dL/dt (−7.655,−4.796)L+(0.124,0.210)HL

Table 4.12: Posterior mean estimates and 95% credible intervals (lower bound, upper
bound) for the Hare-Lynx data.

System Equation

Theoretical Equation d2θ/dt2 −g
l sin(θ)− b

mω

Posterior Mean d2θ/dt2 −1.357sin(θ)−0.012ω

95% Credible Interval d2θ/dt2 (−1.360,−1.354)sin(θ)+(−0.014,−0.009)ω

Table 4.13: Posterior mean estimates and 95% credible intervals (lower bound, upper
bound) for the motion tracked pendulum data.

to inform our choices, our library of potential solutions includes

θ ,sin(θ),cos(θ),θ/sin(θ),θ/cos(θ),ω,ω2,ω sin(θ),ω cos(θ),sin(ω),cos(ω),

where θ is the angle from vertical and ω refers to the derivative of θ .

We fit our proposed method with pa = 250, |Z | = 20,ν0 = 10−6,ν1 = 104,κ = 10−6.

After obtaining posterior samples, we select only terms that were included with greater

than 99% probability. The posterior mean and 95% credible intervals for the selected terms

are shown in Table 4.13 along with the theoretical solution. While we do not know the

actual parameter values for the true system, the terms in the identified system agree with

the theoretical equation and all selected parameters are significant.
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Figure 4.7: Pendulum’s angle from vertical over time from the motion tracked data. The
black points signify the true data and the blue line is the recovered system.

Sea Surface Temperature

The transitions from El Niño (anomalous warming) to La Niña (anomalous cooling) in the

tropical Pacific ocean is known as the El Niño–Southern Oscillation (ENSO) cycle, and

occurs quasi-periodically every 3-5 years (Philander, 1990). ENSO influences atmospheric

and ecological systems globally and governmental agencies and industries rely on accurate

forecasts of the event to make management decisions. Using publicly available sea surface

temperature data from the IRI/LDEO Climate Data Library and originally produced by

the National Ocean and Atmospheric Administration (NOAA) (Huang et al., 2017)2, we

recover implicit dynamics of the ENSO system. The data consist of monthly sea surface

temperature (SST) anomalies from January 1926 to November 2021 and include multiple

2http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.ERSST/.version5/.anom/
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ENSO cycles. We focus on two of the more recent events, the 1997-98 and 2015-16 ENSO

cycles. We subset the data to include all time points leading up to each of these ENSO

cycles – that is, January 1926 to March 1997 and January 1926 to February 2015, which we

label ENSO-97 and ENSO-15, respectively. ENSO-97 and ENSO-15 are each decomposed

using empirical orthogonal functions (EOFs) (Cressie and Wikle, 2011), where the first ten

temporal principal component time series associated with the EOFs are treated as data and

used to learn the dynamics.

In this application, we know that we are not considering all possible mechanisms driv-

ing SST (e.g., those associated with atmospheric winds, subsurface temperatures). Mo-

tivated by the success of statistical models in long-lead forecasting of ENSO (Barnston

et al., 1999; Jan van Oldenborgh et al., 2005), our focus is on estimating the system and

using it to forecast SST forward in time. As is customary in such applications, we use

the average SST in the Niño 3.4 region (5S - 5N, 120W - 70W) to summarize the in-

tensity of an El Niño event. Using the ENSO-97 and ENSO-15 data leading up to the

1997 and 2015 El Niño events, respectively, we learn the dynamics and generate a 12

month forecast of the SST for each event. For both ENSO-97 and ENSO-15, our library

of potential functions are all polynomials up to the second order with all possible interac-

tions (see Table C.5 for more detail). We implement our approach with model parameters

pa = 200, |Z | = 50,ν0 = 10−6,ν1 = 104,κ = 1. We then compute the mean and highest

posterior density (HPD) interval of the Niño 3.4 Index for each forecast and compare to the

truth (Figure 4.8). For both ENSO events, we capture the parabolic increase and decrease

in the Niño 3.4 Index with the point-wise HPD intervals covering the true Niño 3.4 Index

for all but one forecast.
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Figure 4.8: (A) Monthly SST anomalies as the ENSO shifts into El Niño (warming phase)
shown in two month increments. From top to bottom, the left column is the SST corre-
sponding to March, May, and July 2015, and the right column is the SST corresponding
to September, November, and January 2015-16. (B) Predictions of the Niño 3.4 Index for
the 1997-98 ENSO event showing the true (blue), posterior predicted mean (red), and 95%
highest posterior credible intervals (red bands). (C) Predictions of the Niño 3.4 Index for
the 2015-16 ENSO event showing the true (blue), posterior predicted mean (red), and 95%
highest posterior credible intervals (red bands). Note - (B) and (C) are on different scales.

4.5 Conclusion

We have proposed a Bayesian hierarchical method to learn complex nonlinear dynamic

equations using a data-driven approach. Our proposed method is robust to measurement

noise and missing data, and can accommodate situations where a component is completely

unobserved. The statistical approach to dynamic equation discovery is our most significant

contribution, where we provide uncertainty quantification and inclusion probabilities to

the terms in the library. This is possible because of the Bayesian hierarchical model that is

composed of three components: a data model accounting for the uncertainty in the observed
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data, a process model learning the nonlinear dynamics in a latent space, and prior models.

Additionally, we are able to bypass the need for numerical differentiation by expanding our

latent process in terms of basis functions. As a whole, our proposed hierarchical model

overcomes the limitations of the multi-step procedure and provides a complete statistical

framework to the dynamic equation discovery problem.

We see two clear extensions to our research. The most beneficial extensions relate to

the specification of the feature library. A library-free approach, which removes the poten-

tial bias associated with the specification of the library, would result in a truly data-driven

approach. Additionally, allowing for time-varying parameters will increase the number of

real-world applications for which the method can be applied. Most apparent are extensions

to the SIR class of models where government intervention, variant strains, and other factors

could be accounted for in the model. Another extension would be to impose restricts on

different components of the system through the library. For example, when the environ-

ment may impact the population but not vise versa. Allowing this unidirectional forcing

is beneficial from a physical viewpoint because it restricts the method from considering

potential solutions that are not possible. Last, the work can be extended include to partial

differential equations (Chapter 5). This would allow for the discovery of nonlinear dynamic

spatial processes with uncertainty quantification.
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Chapter 5

A Bayesian Approach for Data-Driven
Dynamic Equation Discovery for Partial
Differential Equations

5.1 Introduction

Dynamic equations (DE) parameterized by partial differential equations (PDE) – an equa-

tion relating a partial derivative of a variable to a function of its current state – are used

across all fields of science and engineering to describe complex processes. DEs encode

physical processes by a set of mathematical equations, enabling complex systems such as

the spread of infectious disease (Bolker and Grenfell, 1995; Mangal et al., 2008; Kühnert

et al., 2014), evolution of invasive species (Hastings, 1996; Liu et al., 2019), weather and

climate (Charney et al., 1950; Holton and Hakim, 2012), and the flow of fluids (White

and Majdalani, 2006) to be characterized and modeled (see also Higham et al., 2016, for

further discussion). Given that any real world process is only approximately characterized
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by mathematical relationships, mathematically derived DEs are inherently unable to com-

pletely characterize a real world system. This suggests the need to use observations of the

real world system to better characterize the underlying DEs.

Recently, there has been a push to use data to discover the governing equations in these

complex systems. Originally proposed using symbolic regression (Bongard and Lipson,

2007; Schmidt and Lipson, 2009), the focus has since shifted to either sparse regression

or deep modeling. The original sparse regression approach, termed Sparse Identification

of Nonlinear Dynamics (SINDy; Brunton et al., 2016), used numerical differentiation to

construct a response that is regressed against a library of functions that potentially govern

the system. Through sparse regression, either with an `1 penalization term (Tibshirani,

1996) or using a thresholding approach (Zheng et al., 2019; Champion et al., 2020), key

terms governing a variety of ordinary differential equations (ODE) are identified. Using

the fundamental idea of SINDy, the framework was extended to include PDEs and para-

metric forms (Schaeffer, 2017; Rudy et al., 2017, 2019a,b), stochastic dynamical systems

(Boninsegna et al., 2018), uncertainty quantification of the parameters (Zhang and Lin,

2018; Yang et al., 2019; Niven et al., 2020; Fasel et al., 2021; Hirsh et al., 2021), and has

been incorporated into a Python package (PySINDy; de Silva et al., 2020).

Deep models used for data-driven discovery of dynamics can broadly be grouped into

two categories – approximating dynamics (Raissi et al., 2017a; Raissi and Karniadakis,

2018; Raissi et al., 2020; Sun et al., 2019; Wu and Xiu, 2020) and discovering dynam-

ics (Both et al., 2021; Xu et al., 2019, 2020, 2021; Long et al., 2017, 2019). Using deep

models to approximate the dynamics of complex systems enables a computationally cheap

method to obtain measurements of otherwise difficult to simulate systems while still obey-

ing physical principles (see Reichstein et al., 2019, for an in-depth discussion on the topic).
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However, our goal is the discovery of the governing equations and refer to “data-driven

discovery” as the discovery of the functional form of the system in contrast to generating

realistic dynamics. Deep models have also been used to discover the governing equations of

complex systems. Combining deep modeling and sparse identification, Both et al. (2021)

approximate the PDE using a neural network, which is used to compute derivatives and

construct a sparse formulation similar to the SINDy approach. Long et al. (2017, 2019)

use a symbolic neural network, an extension of symbolic regression, and a numerical ap-

proximation of differential operators in a feed-forward network to discover PDEs and Xu

et al. (2021) use a fully connected neural network with a genetic algorithm to express and

generate terms of a PDE.

Two open problems in data-driven discovery are (i) accounting for measurement un-

certainty (i.e., missing data and measurement noise) and (ii) parameter uncertainty. Ex-

isting methods that extend the SINDy framework to account for uncertainty quantification

employ either a bootstrap approach (Fasel et al., 2021) or a Bayesian approach with vari-

able shrinkage/selection priors placed on the coefficients associated with the library terms

(Zhang and Lin, 2018; Niven et al., 2020; Hirsh et al., 2021). These approaches directly

follow the first step of the SINDy framework, where derivatives are computed numerically,

data is de-noised, and the feature library is constructed. In this manner, the true uncer-

tainty associated with the observed data is ignored; the estimate for the system uncertainty

is now dependent on the numerical differentiation method, which subsequently influences

the estimate for the parameter uncertainty. Yang et al. (2020) developed a method to jointly

account for uncertainty in the observed data and parameters based on differential Bayesian

programming, and while this approach now directly accounts for measurement uncertainty,

it requires derivatives be computed using a numerical solver (e.g., Runge-Kutta). This can

108



lead to numerical instabilities, and cannot account for missing data.

To account for observational uncertainty and missing data when modeling complex

non-linear systems, statisticians have incorporated dynamic equations parameterized by

PDEs into Bayesian hierarchical models (BHM; Berliner, 1996; Royle et al., 1999; Wikle

et al., 2001). These models, sometimes called physical statistical models (PSM), enable

modeling mechanistic relationships within a probabilistic framework (see Berliner, 2003;

Cressie and Wikle, 2011; Kuhnert, 2017, for an overview). PSMs are composed of three

sub-models – data, process, and parameter models. To account for observational and mech-

anistic uncertainty, PSMs consider the dynamics to be latent in the process stage, and rep-

resent the observed data in the data stage conditioned on these latent dynamics. While

PSMs have been used to model and better understand complex systems, such as ocean

surface winds (Wikle et al., 2001; Milliff et al., 2011) and the spread of avian species

(Wikle, 2003; Hooten and Wikle, 2008), they require the dynamic relationships (although

not weights/parameters associated with those relationships) to be specified a priori. To

increase flexibility for representing complex processes, PSMs consider the parameters that

describe the influence of dynamic components to be random, and often allow them to have

spatial or temporal dependence, enabling the model to adapt to the data. While PSMs

are adaptable to a variety of problems and provide inference on how the process may be

evolving, they cannot be used to discover new dynamical relationships.

Chapter 4 of this dissertation proposed a Bayesian data-driven discovery method that

accounts for observational and parameter uncertainty using a BHM framework composed

of data, process, and parameter models for ODEs. Analogous to PSMs, the dynamics are

modeled as a latent process and observational error is accounted for in the data model. Al-

lowing the dynamics to be a latent random process is different than previous data-driven
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discovery methods that attempt to quantify uncertainty. To link the dynamic system to its

derivatives probabilistically, the dynamic process and all the derivatives are modeled using

a basis expansion with a common set of basis functions. Derivatives are then obtained an-

alytically using the basis expansion, which incorporates dependence between the dynamic

process and its derivatives. A library of potential functions can be constructed based on the

basis coefficients and functions, and a variable selection prior is used to identify the key

functions governing the nonlinear system.

Here, we propose a spatio-temporal extension to Bayesian data-driven discovery for

PDEs. While our general framework is the same as North et al. (2022), the addition of the

spatial dimension requires a reformulation of the process model. To account for the extra

dimension (i.e., space), we model the dynamic process as a higher-order tensor where the

dimensions represent space, time, and the number of components (sometimes called the

system states) in the system. The tensor is decomposed using differentiable basis functions

in space and time, probabilistically linking the dynamic system with its spatial and temporal

derivatives. The basis decomposition is incorporated into the BHM, enabling potential

functions to be constructed using the basis functions and coefficients. A variable selection

prior on the coefficients produces a sparse solution set and the resulting system. In contrast

to the ODE discovery problem, the library of potential functions for PDEs can exhibit

strong multicollinearity and accounting for this multicollinearity is another fundamental

extension beyond the previous approach.

We demonstrate our method on data generated from Burgers’ equation, the heat equa-

tion, and a predator-prey reaction-diffusion equation with varying levels of measurement

noise. In addition, we demonstrate our model’s ability to accommodate missing data us-

ing Burgers’ equation. The simulations show that our approach is robust to measurement
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noise and missing data, able to learn the dynamics of complex systems, and provides for-

mal uncertainty quantification on parameter estimates and the confidence of the discovered

dynamics. Last, we apply our method to to infer the evolution of atmospheric vorticity

over time having only observed the streamfunction and obtain results that coincide with

geophysical laws (i.e., the barotropic vorticity equation).

The remainder of this chapter is organized as follows. In Section 5.2 we define the

tensor and derivative notation used throughout the manuscript. In Section 5.3 we give

background on the general dynamic system, showcase how inference on the derivative of

the system is made, and present the Bayesian hierarchical model. In Section 5.4 we describe

parameter estimation and discuss modeling choices. In Section 5.5 we demonstrate our

method on multiple simulated data sets and in Section 5.6 we perform inference on a real-

world system. Section 5.7 concludes the chapter.

5.2 Preliminary Notation

In this section we define tensor and derivative notation. All variables in this section are used

only for illustrating notation. Problem specific notation will be introduced in Section 5.3.

5.2.1 Tensor Notation

PDEs are commonly defined over multiple dimensions (e.g., space, time, components), and

benefit from the use of higher-order tensor notation when the number of dimensions is three

or more. We generally follow the notation of Kolda and Bader (2009) and refer the reader

to their work for more details and references of tensor notation and applications.

Let X ∈ RI1×I2...×IN be a tensor of order N where the (i1, i2, ..., iN) element is denoted
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by X(i1, i2, ..., iN). A slice of the tensor is a two-dimensional section where all but two

indices are held constant. For example, the horizontal, lateral, and frontal slices of the third

order tensor Y ∈ RI×J×K are denoted by Yi::, Y: j:, and Y::k, respectively. A tensor can be

converted to a matrix using n-mode matricization (also known as unfolding or flattening).

The n-mode matricization of the tensor X, denoted by X(n), arranges the mode−n fibers

(the higher-order equivalent of matrix rows and columns) to be columns in the resulting

matrix. For example, the possible modes of Y are Y(1) ∈ RI×(J×K), Y(2) ∈ RJ×(I×K), and

Y(3) ∈RK×(I×J). In general, we will only be concerned with the mode-3 matricization of a

tensor and will denote Y in place of Y(3) (all other modes will be properly denoted).

To multiply a tensor by a matrix B ∈ RIn×J , we use the n-mode product (i.e., multiply

a tensor by a matrix or vector in mode n). The n-mode product of the tensor X and matrix

B is denoted as X×n B and is of size I1× I2...× In−1× J× In+1× ...× IN . Equivalently, in

terms of unfolded (matricized) tensors, Z= X×n B⇔ Z(n) = BX(n).

5.2.2 Tensor Basis Representation

Let Y ∈ RI×J×K be the order 3 tensor from Section 5.2.1. Define the expansion of the

(i, j,k) element of Y as

y(i, j,k)≡
∞

∑
p=1

∞

∑
q=1

∞

∑
r=1

g(p,q,r)a(i, p)b( j,q)c(k,r),

where {a(i, p) : p = 1,2, ...}, {b( j,q) : q = 1,2, ...}, and {c(k,r) : r = 1,2, ...} are basis

functions and {g(p,q,r) : p,q,r = 1,2, ...} is the tensor of associated basis coefficients. To

reduce the dimension, we keep the first P,Q, and R terms from a,b, and c, and define each

basis function at discrete values p= 1, ...,P, q= 1, ...,Q, and r = 1, ...,R, respectively. That
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is, let

Y≈
P

∑
p=1

Q

∑
q=1

R

∑
r=1

g(p,q,r)a(p)◦b(q)◦ c(r) = [[G;A,B,C]] = G×1 A×2 B×3 C,

where ◦ is the vector outer product, A is a I×P, B is a J×Q, and C is a K×R matrix

of basis coefficients where each column is given by a(p) ≡ (a(1, p), ...,a(I, p)), b(q) ≡

(b(1,q), ...,a(J,q)), and c(r)≡ (a(1,r), ...,a(K,r)), and [[G;A,B,C]] is shorthand notation

introduced in Kolda (2006). Our basis decomposition is similar to the Tucker decomposi-

tion (Tucker, 1966), except we assume A,B, and C are known and our goal is to estimate G.

Note, we provide the expansion only for an order 3 tensor (sufficient for this manuscript),

but the concept can be extended to higher order tensors.

5.2.3 Derivative Notation

As discussed in Section 5.1, we propose a method to discover the governing equations in

PDEs. As the name suggests, a PDE is composed of partial derivatives of some variable

u = u(x,y, t) that is indexed in space or time or both. We denote partial derivatives using a

subscript, for example ∂u
∂ t = ut , ∂u

∂x = ux, ∂ 2u
∂ t2 = utt , and so forth. We denote the ith order

of a derivative generally as ∂ (i)t
∂ t(i)

= ut(i) . In order to disambiguate notation, we denote the

index of a vector/matrix/tensor using parentheses (e.g., a(i),A(i, j),A(i, j,k)), reserving

the subscript to denote derivatives.

Within the PDE literature there are different choices of notation to denote the same

operation. For example, the Laplacian operator can be denoted as ∆u = ∇2u = ∇ ·∇u =

∂ 2u
∂x2 +

∂ 2u
∂y2 = uxx+uyy. Wherever an operator such as the Laplacian is used for the first time,

we will define it. This may result in our notation differing from other texts, but we aim to
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be consistent within the paper.

5.3 Bayesian Dynamic Equation Discovery

Here we propose a general hierarchical model for making inference on nonlinear spatio-

temporal dynamic systems. We begin by motivating the general class of PDEs and manip-

ulate them to fit within a statistical framework.

5.3.1 Dynamic Equations

Consider the general PDE dynamic system describing the evolution of a continuous field

{u(s, t) : s ∈ Ds, t ∈ Dt},

ut(J)(s, t) = M
(
u(s, t),ux(s, t),uy(s, t),uxy(s, t), ...,ut(1)(s, t), ...,ut(J−1)(s, t),ω(s, t)

)
(5.1)

where the vector u(s, t) ∈ RN denotes the realization of the N-dimensional system at lo-

cation s and time t (e.g., u(s, t) = [u(s, t,1),u(s, t,2), ...,u(s, t,N)]′), M(·) represents the

(potentially nonlinear) evolution function, and ω(s, t) represents any covariates that might

be included in the system. Here, s ∈ {s1, ...,sS} = Ds is a spatial location in the domain

with |Ds| = S, and t ∈ {1, ...,T} = Dt is the temporal realization of the system where

|Dt | = T . Whereas we define (5.1) in two dimensions with Ds ∈ R2 and s = (x,y), the

problem can be simplified to one dimension (i.e., Ds ∈ R1 and s = x) or generalized to

higher spatial dimensions. Finally, as is common in the dynamic systems literature, we

refer to the N-dimensional multivariate vector u(s, t) as the state or system state, and use

the term component to refer to each of the N elements of u(s, t).
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We reparameterize 5.1 to be intrinsically linear (in parameters) as

ut(J)(s, t) = Mf
(
u(s, t),ux(s, t),uy(s, t),uxy(s, t), ...,ut(1)(s, t), ...,ut(J−1)(s, t),ω(s, t)

)
,

(5.2)

where M is a N ×D sparse matrix of coefficients and f(·) is a vector-valued nonlinear

transformation function of length D. The input of the arguments for f(·) are general and

contain anything that potentially relates to the system. For example, this could include

terms describing advection, diffusion, dispersion and growth, polynomial functions and

interactions, or sinusoidal functions, and are chosen based on a general mechanistic under-

standing of the system. This results in D being quite large and (5.2) has the potential to be

highly over-parameterized. Thus, we will employ regularization to induce sparsity in the

matrix M.

As an example of a classic PDE within our framework, consider the reaction diffusion

equation

ut(s, t) = D∇
2u(s, t)+g(u(s, t)),

where u(s, t) = [b(s, t),d(s, t)]′ represents the densities of two processes, D is a diagonal

matrix where diag(D)= [Db,Dd] are the diffusion constants, and g(u(s, t))= [gb(b(s, t),d(s, t)),

gd(b(s, t),d(s, t))]′ are (non)linear reaction functions. The reaction-diffusion equation can

be used to model the densities of prey (b) and predator (d) populations (Hastings, 1996).

For a predator-prey model, a possible choice for the reaction function is g(u(s, t)) = [γb−

δbd,−µd +ηbd]′, a simplistic representation of the Lotka-Volterra system where γ and δ

represent the prey’s birth and predation rates, respectively, and µ and η represent the preda-
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tor death and kill success rates. Following (5.2), and suppressing the spatial and temporal

indices, we have

bt

dt

=

γ 0 −δ Db Db 0 0

0 −µ η 0 0 Dd Dd

[b d bd bxx byy dxx dyy

]′
.

Typically we do not know f(·)= [b,d,bd,bxx,byy,dxx,dyy]
′ and instead highly over-parameterize

f(·) by including a library of potential terms and select against the coefficients in M to iden-

tify relevant terms.

In real-world problems, (5.2) does not hold exactly. Stochastic forcing could perturb

the system (e.g., weather systems, demographic stochasticity) or there could be error in the

model specification. We accommodate this unknown stochasticity by including an additive

error term

ut(J)(s, t) = Mf
(
u(s, t),ux(s, t),uy(s, t),uxy(s, t), ...,ut(1)(s, t), ...,ut(J−1)(s, t),ω(s, t)

)
+η(s, t),

(5.3)

where, for example, η(s, t) i.i.d.∼ N(0,ΣU) is a mean zero Gaussian process with variance/-

covariance matrix ΣU . In general, spatial or temporal dependencies could be considered in

this error term.

To represent (5.3) using tensor notation, let U = {u(s, t,n) : s ∈ Ds, t = 1, ...,T,n =

1, ...,N} where U ∈ RS×T×N is the tensor of the dynamic process. Similarly, let F ∈

RS×T×D be the function f(·) evaluated at each location in space-time and η̃ ∈ RS×T×N
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is the space-time-component uncertainty tensor. The tensor formulation of (5.3) in then

Ut(J) = F×3 M+ η̃. (5.4)

This forms the core of our process model, where we relate the temporal derivative of some

space-time-component process to a nonlinear function of its current state. While not ex-

plicitly stated in (5.4), F is still a function of the state process U.

5.3.2 Basis Representation

As described in Section 5.2.2, we can represent the U tensor using basis functions. Decom-

posing U in terms of a finite collection of spatial, temporal, and component basis functions,

we write

U≈
P

∑
p=1

Q

∑
q=1

R

∑
r=1

a(p,q,r)ψ(p)◦φ(q)◦θ(r) =A×1 Ψ×2 Φ×3 Θ := [[A;Ψ,Φ,Θ]],

where A ∈ RP×Q×R, Ψ ∈ RS×P, Φ ∈ RT×Q, and Θ ∈ RN×R. Here, Ψ,Φ, and Θ are

matrices of spatial, temporal, and component basis functions, respectively, and A is a tensor

of basis coefficients (traditionally called the core tensor).

We can obtain derivatives of the elements of U analytically by taking derivatives of the

basis functions. Specifically, let Ψ and Φ be matrices of basis functions differentiable up

to at least the highest order considered in (5.1). We then compute spatial and temporal

derivatives of U by computing the derivatives of Ψ and Φ. That is, denote ∂

∂xΨ = Ψx,
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∂

∂yΨ = Ψy, ∂

∂ t Φ = Φt , and so forth. Derivatives of U are then computed as

∂

∂ t
U=A×1 Ψ×2 Φt×3 Θ = [[A;Ψ,Φt ,Θ]]

∂

∂x
U=A×1 Ψx×2 Φ×3 Θ = [[A;Ψx,Φ,Θ]]

∂ 2

∂x∂y
U=A×1 Ψxy×2 Φ×3 Θ = [[A;Ψxy,Φ,Θ]],

(5.5)

and so forth. Representing (5.4) using the basis decomposition, we have

[[A;Ψ,Φt(J),Θ]] = F×3 M+ η̃, (5.6)

where η̃ may include truncation error. While not explicitly stated, F now depends on

Ψ,Φ,Θ, and A.

Proposition 1. The mode-3 decomposition of [[A;Ψ,Φt(J),Θ]] =F×3 M+η̃ where η(s, t) i.i.d.∼

NN(0,ΣU) in space and time at location s and time t is

ΘA(φt(J)(t)⊗ψ(s))
′ =

Mf(A,ψ(s),ψx(s),ψy(s),ψxy(s), ...,φt(0)(t), ...,φt(J)(t),ω(s, t))+η(s, t),
(5.7)

where A is a R×PQ matrix of basis coefficients, ψ(s) is a length-P vector of spatial basis

functions, φ(t) is a length-Q vector of temporal basis functions, and Θ is a N×R matrix

of component basis functions.

Proof. See Appendix D.3.

Decomposing (5.4) in terms of basis functions and taking the mode-3 matricization

accomplishes two tasks. First, this enables inference on derivatives of the process u(s, t)

when only the process is known (e.g., see (5.5)). Second, keeping fewer basis functions

118



than observations (e.g., P < S, Q < T ) allows the reconstruction of U to be smooth (Wang

et al., 2016).

Note, we include Θ for generality in the construction of our method. While one could

specify Θ in terms of basis functions, our goal is not to reduce the dimension of the system

state variables. In our analyses, we choose Θ to be the identity matrix.

5.3.3 Transformation of Derivative

Up to this point, we have considered PDEs that relate the temporal derivative (of some

order J) of the continuous surface u (left hand side (LHS) of (5.1)) to a function of its

current state on (right hand side (RHS) of (5.1)). However, equations with a spatio-temporal

derivative of u on the LHS are common (e.g., vorticity equation, Higham et al., 2016). For

example, the LHS of (5.1) could depend on the Laplacian operator, where ∇2ut(J)(s, t) =

uxxt(J)(s, t)+uyyt(J)(s, t).

To be more general, we now allow the LHS of (5.1) to be a function of spatio-temporal

derivatives of u and consider the more general PDE

g(ut(J)(s, t)) = M
(
u(s, t),ux(s, t),uy(s, t),ψxy(s), ...,ut(1)(s, t), ...,ut(J−1)(s, t),ω(s, t)

)
,

(5.8)

where g(·) is some linear differential operator. The original PDE (5.1) is a special case of

(5.8) where g(·) is the identity function.

Proposition 2. Let g(·) be a linear differential operator. The basis formulation of a PDE
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with a space-time function g(ut(J)(s, t)) on the LHS is

ΘA(φt(J)(t)⊗g(ψ(s)))′.

Proof. See Appendix D.3.

From Proposition 2, the basis representation of a PDE with a spatio-temporal function

on the LHS is

ΘA(φt(J)(t)⊗g(ψ(s)))′ =

Mf(A,ψ(s),ψx(s),ψy(s),ψxy(s), ...,φt(0)(t), ...,φt(J)(t),ω(s, t))+η(s, t),
(5.9)

where η(s, t) i.i.d.∼ NN(0,ΣU) in space and time. Completing the example from before using

the g = ∇2 Laplacian operator, the LHS for (5.9) is ΘA(φt(J)(t)⊗ (ψxx(s)+ψyy(s)))′.

5.3.4 Data Model

We assume v(s, t) is an observation of the N-dimensional latent process outlined in Section

5.3.2 with some unknown measurement uncertainty. We model v(s, t) using a generaliza-

tion to the traditional linear data error model that links the dynamics to the observed process

(e.g., see Cressie and Wikle, 2011, Chapter 7). That is, we model

v(s, t) = H(s, t)u(s, t)+ ε̃(s, t), (5.10)

where v(s, t) ∈ RL(s,t), H(s, t) ∈ RL(s,t)×N is the incidence matrix that maps from u(s, t)

to v(s, t), and uncertainty in the observations of the process are captured by ε̃(s, t) indep.∼

NL(s,t)(0,Σ̃V (s, t)). The dimension of the data, L(s, t), is allowed to vary based on the
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space-time location due to potentially missing data and we assume the errors are indepen-

dent in space and time.

Within the hierarchical model, missing data are accommodated by allowing the dimen-

sion of the incidence matrix, H(s, t), to vary in time. Since missing data are handled in

the data model and the latent process is fully specified, missing data do not impact the

process model specification. If there are no missing data at time t and location s, then

L(s, t) = N and H(s, t) = IN . When one or more system components are missing data,

the row corresponding to the missing system component is removed. For example, if we

have a three-dimensional system, say u(s, t) = [a(s, t),b(s, t),c(s, t)] and the observation

component for b(s, t) is missing at location s and time t, then

H(s, t) =

1 0 0

0 0 1

 .
See Chapter 7 of Cressie and Wikle (2011) for more discussion of this approach for accom-

modating missing observations in hierarchical spatio-temporal models.

Incorporating the basis expansion of the process in (5.10), at location s and time t,

v(s, t) = H(s, t)ΘA(φt(0)(t)⊗ψ(s))
′+ε, (5.11)

where ε(s, t) indep.∼ NL(0,ΣV (s, t)) and ε(s, t) now accounts for the discrepancy between the

“true” underlying process and our approximation using the basis formulation.
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5.3.5 Parameter Model

The data and process equations correspond to the first and second level of our hierarchical

model, respectively. For convince, we restate (5.11) and (5.9) for location s and time t

v(s, t) = H(s, t)ΘA(φt(0)(t)⊗ψ(s))
′+ε(s, t)

ΘA(φt(J)(t)⊗g(ψ(s)))′ = Mf(A,ψ(s),ψx(s),ψy(s), ...,φt(0)(t), ...,ω(s, t))+η(s, t),

where ε(s, t) indep.∼ NL(s,t)(0,ΣV (s, t)) and η(s, t) i.i.d.∼ NN(0,ΣU). For clarity, we present the

details on the model parameters in Table 5.1. Our goal is to make inference on the unknown

parameters M,ΣU ,ΣV (s, t), and A. The sparse matrix M identifies the nonlinear dynamic

equation, ΣU captures the error dependencies within the dynamic equation, ΣV (s, t) cap-

tures the measurement uncertainty associated with the observed process, and A defines the

smooth latent process.

To complete our Bayesian hierarchical model, we define the following priors on these

parameters. We use the spike-and-slab prior (Mitchell and Beauchamp, 1988; George et al.,

1993) to induce sparsity into M. We write

M(n)|γ(n),σ2
U(n) =

D

∏
d=1

[(1−γ(n,d))δ0 +γ(n,d)p(M(n,d)|σ2
U(n), ·)],

where M(n,d) denotes coefficient d of component n, γ is a matrix of inclusion indicators

of the same dimension as M, δ0 denotes the Dirac function at 0, σ2
U(n) is the nth diagonal

component of ΣU , p(γ(n,d) = 1|πn) = π(n), and π(n)∼ Beta(a,b). That is, if a variable

is not included (i.e., γ(n,d) = 0), then the corresponding element M(n,d) is zero. If a

variable is included (i.e., γ(n,d) = 1), then the corresponding element M(n,d) is non-zero.

There are multiple choices for the prior p(M(n,d)|σ2
U(n), ·). We specify the g-slab prior
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Model Symbol Description Dimension
Variable

Data v(s, t) Observed data L(s, t)×1
Data H(s, t) Mapping matrix L(s, t)×N
Data ε(s, t) Data uncertainty distribution L(s, t)×1
Data ΣV (s, t) Measurement error covariance matrix L(s, t)×L(s, t)

Process u(s, t) Dynamic process N×1
Process A Basis coefficient tensor P×Q×N
Process A Basis coefficient matrix (mode-3) N× (P×Q)
Process ψ(s) spatial basis function for location s P×1
Process φt( j)(t) jth order temporal basis function for time t Q×1
Process Θ component basis function matrix N×R
Process M Dynamic evolution matrix N×D
Process f(·) Feature library D×1
Process η(s, t) Process uncertainty distribution N×1
Process ΣU Dynamic equation error covariance matrix N×N

Dimension
T Number of observed time points 1
S Number of observed spatial locations 1
L(s, t) Dimension of observation vector at

time t and location s 1
N Dimension of latent process

(dynamic system) 1
D Number of library functions 1
P Number of spatial basis functions 1
Q Number of temporal basis functions 1
R Number of component basis functions 1
J Highest order derivative in the dynamic system 1
Indices
t Time interval, t ∈ {1, ...,T}= Dt , |Dt |= T 1
s Spatial location, s ∈ {s1, ...,sS}= Ds, |Ds|= S 1
j Order of the derivative, j = 1, ...,J 1

Table 5.1: List of symbols used in the Bayesian hierarchical model.

corresponding to Zellner’s g-prior (Zellner, 1986) where g is taken to be the size of the data.

See Malsiner-Walli and Wagner (2016) for other potential choices and further discussion.

While other shrinkage/selection priors could be used, such as Stochastic Search Vari-
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able Selection (SSVS; George et al., 1993), LASSO (Park and Casella, 2008), or Horseshoe

(Carvalho et al., 2010), we found the spike-and-slab to be preferable since it performs well

with correlated predictors (Ročková and George, 2014), which is generally present in the

feature library (see Section 5.4). Additionally, the posterior summary of the latent variable

γ(n,d) gives the inclusion probability for each component of M, providing further insight

into the certainty of the recovered system. For all examples presented below, we determine

the identified system as composed of terms that are included with at least 50% posterior

probability. However, this threshold is subjective and one could choose a different value

depending on their specific application.

To estimate γ and avoid reducibility of the Markov chain, we compute the marginal

posterior distribution [γ|A,Θ,Φt(J),Ψ,ΣU ] ∝ [A,Θ,Φt(J),Ψ|γ,ΣU ][γ], which is obtained

by integrating over the parameters subject to selection. That is,

[A,Θ,Φt(J),Ψ|γ,ΣU ] =
∫ ∫

[A,Θ,Φt(J),Ψ|M,ΣU ,γ][M][ΣU ]dMdΣU .

To make the integration analytically tractable and keep conjugacy in the BHM, we re-

strict ΣU to be diagonally structured where ΣU = diag(σ2
U(1), ...,σ

2
U(N)). Each diagonal

element is assigned the non-informative prior σ2
U(n) ∝ 1/σ2

U(n),n = 1, ...,N. Then, the

probability any element is included is given as

p(γ(n,d) = 1|·) = 1

1+ 1−π(n)
π(n) Rγ(n,d)

(5.12)

where

Rγ(n,d) =
[A,Θ,Φt(J),Ψ|γ(n,d) = 0]
[A,Θ,Φt(J),Ψ|γ(n,d) = 1]

.
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In situations where dependence between the components is required, a different prior could

be used.

There is potential for elements of the variance-covariance matrix ΣV (s, t) to have small

values. Inference using traditional conjugate Inverse Gamma/Wishart priors are overly

sensitive to the choice of hyperpriors when estimates are small (Gelman, 2006). Instead,

we use the conjugate Half-t prior proposed by Huang and Wand (2013) for covariance

estimation, which imposes less prior information and does not have as strong of influ-

ence on small estimates. We restrict the measurement error to be diagonally structured

since it is often a reasonable assumption that measurement noise is independent (Cressie

and Wikle, 2011) (although this restriction can be removed if warranted). Let ΣV (s, t) =

H(s, t)diag(σ2
V (1), ...,σ

2
V (N))H(s, t)′, where each diagonal element, σ2

V (1), ...,σ
2
V (N), is

assigned a conjugate Half-t(2,10−5) prior.

Finally, in order to induce sparcity in the basis coefficients, we assign a Bayesian elastic

net prior (Li and Lin, 2010) to A. Specifically, our prior is

π(A) ∝ exp{−λ1‖A‖1−λ2‖A‖2
2},

where λ1,λ2 are penalty parameters. The elastic net prior helps regularize the basis co-

efficients against basis functions. While it is possible to specify hyperpriors for the two

penalty terms, we find inference is not overly sensitive to the choice of penalty parameters

and fix them each to a small value (e.g., 0.01 or 0.001).
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5.4 Model Estimation

Our goal is to obtain samples from the joint posterior distribution [M,ΣU ,ΣV ,γ,A|·]. We

achieve this by sampling from the five full-conditional distributions [M|·], [ΣU |·], [ΣV |·],

[γ|·], and [A|·] (see Appendix D.2 for the details of the distributions and sampling algo-

rithm) using a Markov chain Monte Carlo (MCMC) sampling scheme. The four compo-

nents M,ΣU ,ΣV and γ are updated using classical Bayesian methods and A is updated

using a stochastic gradient approach. Due to the variety of problems for which our method

is applicable, some modeling choices are case specific. Additionally, some aspects of the

implementation of the MCMC framework warrant a more detailed discussion. The follow-

ing sections provide additional information pertaining to these model specifications and

procedures.

5.4.1 Basis Coefficient Estimation

The basis coefficients, A, completely define the latent process and all derivatives in both

space and time, meaning proper estimation is crucial to the discovery process. Since

A is embedded within the nonlinear function f(·) (see Proposition 1) and f (·) is prob-

lem specific, it is difficult to estimate. To accommodate a generically specified f(·), we

use an adapted version of stochastic gradient descent (SGD) with a constant learning rate

(SGDCL; Mandt et al., 2016). Whereas other approaches to estimate A (e.g., Expectation-

Maximization or Metropolis-Hastings) could be used, SGDCL provides important advan-

tages – a conjugate updating scheme and a reduced computational cost for any specification

of f(·).

As with SGD, SGDCL relies on the gradient of a loss function and a learning rate. For
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SGDCL, the loss function is the negative log posterior for our parameters of interest, A.

The loss function at location s and time t is

L (A;s, t) =− log([v(s, t)|A,H(s, t),Θ,φt(0)(t),ψ(s),ΣV ]

[A,Θ,φt( j)(t),g(ψ(s))|M,ΣU ,A,Θ,φt(0)(t), ...,φt(J−1)(t),ψ(s),ψx(s), ...])

− log([A]).

To simplify notation, denote B0(s, t) = φt(0)(t)⊗ψ(s) and BJ(s, t) = φt(J)(t)⊗ g(ψ(s)).

Then, the gradient of the loss function L (A;s, t), ∂L (A;s,t)
∂A = ∇AL (A;s, t) for location s

and time t is

∇L (A;s, t) =−Θ′H′(s, t)Σ−1
V v(s, t)B0(s, t)+Θ′H′(s, t)Σ−1

V H(s, t)ΘAB′0(s, t)B0(s, t)

+Θ′Σ−1
U ΘAB′J(s, t)BJ(s, t)−Θ′Σ−1

U Mf(s, t)BJ(s, t)

−BJ(s, t)A′Θ′Σ−1
U M

.
F
′
(s, t)+ f′(s, t)M′Σ−1

U M
.
F
′
(s, t)

+
1

ST
(λ1sign(A)+2λ2A) ,

where
.
F(s, t) generically denotes ∂

∂A f(A, ·).

SGDCL (Mandt et al., 2016) replaces the true gradient with the stochastic estimate,

∇̂L Z (A) =
1
|Z | ∑

z∈Z
∇AL (A;z),

where Z ⊂ Ds×Dt is a random subset of the observations, called a mini-batch, and |Z |

is the cardinality of the set. Within the context of a MCMC algorithm, the `th update of A
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is given by

A(`) = A(`−1)−κ∇̂L Z (`)(A(`−1)), (5.13)

where Z (`) denotes a random minibatch specific to the ` update and κ is the learning rate.

To accommodate different scales for each component, we allow κ to be a vector of length

N where each component can have a specific learning rate.

The final challenge to estimating A is computing
.
F(s, t). Because f(·) is problem spe-

cific,
.
F(s, t) is also problem specific. One option is to use automatic differentiation (AD) to

analytically compute the derivative of f(·). There are many different libraries and programs

that perform AD, and we explored the use of the ForwardDiff (Revels et al., 2016) package

in Julia (Bezanson et al., 2017) with success. However, there is computational overhead to

AD. For all the examples presented here we computed
.
F(s, t) without AD for each problem

to mitigate this computation bottleneck.

5.4.2 Choice of Basis Functions

The choice of basis functions are subjective and have the potential to affect the model

fit (Chapter 4 of this dissertation). Furthermore, the choice of spatial and temporal basis

functions do not need to be the same (e.g., radial basis functions in space and Fourier

basis functions in time). There are other choices regarding basis functions that need to

be taken into consideration (see Ramsay and Silverman, 2005, Chapter 3 for a discussion

on how to choose basis functions based on the “shape” of the data). The most important

requirement is that the spatial and temporal basis functions need to be differentiable up

to at least the highest order spatial and temporal derivative considered, respectively. We
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found local basis functions (e.g., B-splines) perform better than global basis functions (e.g.,

Fourier basis functions) (see Chapter 4 of this dissertation), especially when there are local

regions with minimal curvature. For these reasons, we use B-splines of an order greater

than our highest derivative (in both space and time). In choosing how many basis functions

to use, enough need to be included such that the estimated solution curve is flexible, the

dynamics are captured, and the posterior latent space is properly explored, but not so many

such that unnecessary noise is introduced into the system. Empirically, we found a ratio of

approximately 1 basis function to every 3 to 5 observations to work well.

5.4.3 Choice of Feature Library

The choice of functions for the feature library is crucial to the identification of the sys-

tem. Our method is restricted to search over a predefined set of functions, meaning that

our method is unable to identify an important function if it is not included in the library.

For this reason, it is best to over-parameterize the feature library (and hence M) instead of

specifying a restrictive set of functions. Additionally, some knowledge of the problem is

beneficial (i.e., this is not a black-box approach). Having an understanding of the potential

dynamics a priori can assist in the recovery of important dynamics. For example, if the

system appears to diffuse over time, then a diffusion term should be included. A good de-

fault choice is polynomial terms that interact with varying orders of spatial and/or temporal

derivatives of the process (e.g., see the library for Burgers’ example) as this will cover a

wide collection of systems.

With regard to the choice of g(·) in (5.8) and (5.9), scientific knowledge of the problem

is required. The choice of g(·) is not searched over as with the library terms; rather it

is pre-specified. As we show in our real-world example, we knew a prior our goal was
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to make inference on the Laplacian of our system of interest. Specifically, our goal is to

make inference on the vorticity of the streamfunction. Vorticity is obtained by taking the

Laplacian of the streamfunction. As such, this transformation function is not learned from

the data, rather, it is a modeling choice that is user specified (the default is the identity as

in Proposition 1).

5.4.4 Multicollinearity in Library

A major issue facing the identification of spatio-temporal dynamic equations is multi-

collinearity in the feature library. Figure 5.1 shows the correlation between different com-

ponents of a library using data generated from Burgers’ equation. In this example, the

polynomial terms, u,u2, and u3, are very positively linearly correlated (ρ > 0.8), posing a

challenge to parameter inference. As with classical regression, multicollinearity has the po-

tential to introduce bias into the coefficient estimates, including altering their sign. While

the spike-and-slab has been shown to perform well with correlated variables, as discussed

in Section 5.3.5, the problem still persists and can pose an estimation issue in problems

similar to the example using Burgers’ equation.

This issue originates from the over-inflation of minor reductions in the residual sum

of squares (RSS) when a highly correlated, but incorrect term, is included. Specifically,

the probability of including any term in the library (5.12) is dependent on the ratio of the

residual sum of squares for the model with the M(n,d) term included (RSSγ ) to the model

without the M(n,d) term included (RSS\γ ) through the value of Rγ(n,d). That is, under the

g-prior

Rγ(n,d) = (g+1)1/2(RSSγ/RSS\γ)
ST/2−1.
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Figure 5.1: Correlation between terms of a potential feature library using data generated
from Burgers’ equation.

Because RSSγ < RSS\γ , the ratio is bound between 0 and 1, where correct terms in the

library result in the ratio being closer to 0 and incorrect terms result in the ratio being close

to 1. However, as the ratio is raised to a power of ST/2− 1 (proportional to the number

of observations), the value of R goes to 0 as the number of observations goes to infinity,

resulting in all variables being found significant. This issue is exacerbated by correlated

variables, especially if there are multiple confounding variables where the system can be

approximated by some linear combination of the feature library without the true terms being

included.

To combat this issue we propose a method to reduce the impact of correlated variables

(i.e., variables where in the ratio of RSSs being close to 1 are found significant). For this, we
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subsample the process when estimating the inclusion latent variable γ. That is, to compute

(5.12) within each iteration of the Gibbs sampler, we randomly sample the process. This

results in

R∗γ(n,d) = (g+1)1/2(RSS\γ/RSSγ)
S∗T ∗/2−1,

where S∗ and T ∗ are the size of the subsampled dimensions. We provide details on how to

choose the subsample size and our choices for the examples in Appendix D.1. Note that

this subsampling is only done for the γ update step of the algorithm.

5.5 Simulations

We show our proposed model is able to discover dynamic equations using data simulated

from three well known systems – Burgers’ equation, the heat equation, and a reaction-

diffusion system. For all three examples, we investigate the impact of measurement noise

on inference. We simulate measurement noise by adding mean zero Gaussian errors to

the state vector. Specifically, we let v(s, t) = u(s, t)+ε(s, t), where u(s, t) is the simulated

data, ε(s, t)∼ ζ σN(0,IN) is the additive noise, σ is the standard deviation of the simulated

process u(s, t), and ζ is the percent of noise ranging from 0 to 1. In addition, we show

how the model performs when data are missing sporadically for Burger’s equation. Unless

otherwise stated, all reported estimates are rounded to three significant digits for readability.

For all simulations and real-world examples, we obtain 5000 posterior samples and discard

the first 2500 as burn-in.
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5.5.1 Burgers’ Equation

Burgers’ equation is a simplification of the Navier-Stokes equations, describing the speed

of a fluid at a location in space and time (Bateman, 1915; Burgers, 1948). We consider

Burgers’ equation in one spatial dimension defined by the nonlinear PDE

ut(x, t) =−u(x, t)ux(x, t)+νuxx(x, t), (5.14)

where u(x, t) is the speed of the fluid at location x and time t and ν is the viscosity of the

fluid. Data are generated using spectral differentiation and the Tsit5 (Tsitouras, 2011) nu-

merical solver from the Julia package DifferentialEquations.jl (Rackauckas and Nie, 2017)

with initial condition u(x,0) = exp{−(x+2)2}. The simulated data consist of 256 spatial

locations across 101 time points where Ds = [−8,8] and Dt = [0,10] (Figure 5.2). We con-

sider four cases – no measurement noise, 2% measurement noise, 5% measurement noise,

and 2% measurement noise with 5% of data missing at random.

For all four cases we specify the model with P = 50,Q = 20, |Z |= 100,κ = 10−4 and

define the feature library as

[u,u2,u3,ux,uux,u2ux,u3ux,uxx,uuxx,u2uxx,u3uxx,uxxx,uuxxx,u2uxxx,u3uxxx].

After obtaining posterior samples, we keep only terms with greater than a 50% inclusion

probability to be included in the identified equation. The recovered equations and 95%

highest posterior density (HPD) interval without and with measurement noise for the in-

cluded terms are shown in Table 5.2. In addition, Table 5.3 shows the next two terms that

would be included in the model based on their inclusion probabilities. In all four scenarios

we correctly identify the true components of the dynamic system.
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Figure 5.2: Data simulated from Burgers’ equation with (A) no added measurement noise,
(B) 2% added measurement noise, (C) 5% added measurement noise, and (D) 5% of data
missing at random and 2% measurement noise.

The credible intervals of all parameters cover the true value with the exception of uxx

in the cases with 5% noise and 2% noise with 5% missing data. In addition, no extraneous

terms are identified in any scenario. The probability of including another term (uxxx for all

four cases) is low, giving us relative certainty that the identified equation is indeed correct.

Clearly, the methodology eventually will fail when measurement error is too large or there

is too much missing data. For example, we found when the measurement noise is greater

than 8% or more than 10% of data are missing, we no longer recover the true model.
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Noise Missing Data Statistic Discovered Equation
Mean ut =−0.994uux +0.098uxx

0% 0% Lower HPD ut =−1.022uux +0.092uxx
Upper HPD ut =−0.964uux +0.103uxx

Mean ut =−0.990uux +0.096uxx
2% 0% Lower HPD ut =−1.033uux +0.086uxx

Upper HPD ut =−0.954uux +0.103uxx
Mean ut =−0.981uux +0.094uxx

5% 0% Lower HPD ut =−1.022uux +0.087uxx
Upper HPD ut =−0.951uux +0.099uxx

Mean ut =−0.957uux +0.087uxx
2% 5% Lower HPD ut =−1.003uux +0.078uxx

Upper HPD ut =−0.931uux +0.095uxx

Table 5.2: Discovered Burgers’ equation (mean) and lower and upper HPD intervals with
varying amounts of noise and missingness. The true Burgers’ equation is ut =−uux +uxx.

Noise Missing Data First Term Probability Second Term Probability
0% 0% uxxx 0.193 uuxxx 0.139
2% 0% uxxx 0.222 uuxxx 0.145
5% 0% uxxx 0.235 uuxxx 0.164
2% 5% uxxx 0.229 uuxxx 0.150

Table 5.3: Feature library term with the highest (first term) and next highest (second term)
probability of inclusion that was not included in the discovered equation for data generated
from Burgers’ equation.

5.5.2 Heat Equation

The two-dimensional (2D) heat equation can be used to model the dissipation of heat over

time. We consider the 2D heat equation described by the PDE

ut(s, t) = α∇
2u(s, t) = αuxx(s, t)+αuyy(s, t), (5.15)

where u(s, t) is the temperature of the surface at location s = (x,y) and time t, α is the

thermal diffusivity, and ∇2 = uxx +uyy denotes the Laplacian operator. Data are simulated
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Figure 5.3: Data generated from the heat equation with 5% noise at time step 0 (left,
corresponding to t = 0) and time step 21 (right, corresponding to t = 0.2).

using a central finite difference scheme over the spatial domain Ds = [0,20]× [0,20] with a

spatial resolution of 0.5 for both the x and y directions, and over the time domain Dt = [0,2]

with a temporal resolution of 0.01. The thermal diffusivity, α , is set to 1. The surface is

initialized as

u(s,0) = sin(2πx/40)∗ cos(2πy/40). (5.16)

We consider three cases – no measurement noise, 2% measurement noise, and 5% mea-

surement noise (Figure 5.3).

For all cases we specify our model with P = 100,Q = 80, |Z | = 100,κ = 10−4 and
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Noise Statistic Recovered Equation
Mean ut = 1.001uxx +1.000uyy

0% Lower HPD ut = 0.999uxx +0.998uyy
Upper HPD ut = 1.002uxx +1.002uyy

Mean ut = 0.997uxx +1.002uyy
2% Lower HPD ut = 0.991uxx +0.995uyy

Upper HPD ut = 1.002uxx +1.009uyy
Mean ut = 0.986uxx +0.994uyy

5% Lower HPD ut = 0.967uxx +0.977uyy
Upper HPD ut = 1.000uxx +1.016uyy

Table 5.4: Discovered heat equation (mean) and lower and upper HPD intervals with vary-
ing amounts of noise where the true Heat equation is ut = uxx +uyy.

define the feature library as

[u,u2,u3,ux,uux,u2ux,u3ux,uxx,uuxx,u2uxx,u3uxx,uy,uuy,

u2uy,u3uy,uxy,uuxy,u2uxy,u3uxy,uyy,uuyy,u2uyy,u3uyy].

Again, keeping terms with greater than 50% inclusion probability, the recovered equation

and 95% HPD interval are shown in Table 5.4. For all scenarios, we are able to correctly

identify the true terms. All HPD intervals cover the truth, and no extraneous terms are

identified. Table 5.5 shows the next two most likely terms to be included for each scenario.

As with before, the probability of including a extraneous term is low, giving us reasonable

confidence in to our discovered equation.
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Noise First Term Probability Second Term Probability
0% u3uxy 0.050 u2uxy 0.037
2% u 0.015 u2uxx 0.013
5% u 0.030 u2uxx 0.010

Table 5.5: Feature library term with the highest (first term) and next highest (second term)
probability of inclusion that was not included in the discovered equation for data generated
from the heat equation.

5.5.3 Reaction-Diffusion Equation

The reaction-diffusion equation can be used to model the change in concentration or density

of substances over time. We consider the 2D reaction-diffusion parameterized by the PDE

ut(s, t) = D∇
2u(s, t)+g(u(s, t)),

where u(s, t) = [u(s, t),v(s, t)]′ may represent the concentration or density of two pro-

cesses, D is a diagonal matrix of the diffusion coefficient for each process, and g(·) is

the (non)linear reaction function. The reaction-diffusion equation can be used to model the

interaction between a predator and prey population (Hastings, 1996; Liu et al., 2019). To

represent the interaction between prey and predator populations, we let u = [u,v]′ where u

and v are the densities of the prey and predator populations, respectively. We define g(·) to

be the classic Lotka-Volterra model with a carrying capacity for the prey. Specifically,

g(·) =

gu(u(s, t),v(s, t))

gv(u(s, t),v(s, t))

=

γ0u(s, t)− γ0
γ1

u2(s, t)−βu(s, t)v(s, t)

µu(s, t)v(s, t)−ηv(s, t)

 ,
where γ0 is the prey growth rate, γ1 is the prey carrying capacity, β predation rate, µ is the

predator growth rate, and η is the predator death rate.
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Figure 5.4: Data generated from the prey (left) and predator (right) reaction-diffusion sys-
tem with 5% measurement noise. Data are shown at time steps 11 (top, corresponding to
t = 1) and 31 (bottom, corresponding to t = 3).

Suppressing the spatial and temporal indices, the predator-prey reaction-diffusion equa-

tion is

ut = Duuxx +Duuyy + γ0u− γ0

γ1
u2−βuv

vt = Dvvxx +Dvvyy +µuv−ηv.
(5.17)

We simulate from (5.17) with γ0 = 0.4,γ1 = 1.5,β = 0.5,µ = 0.3,η = 0.1 using a cen-

tral finite difference scheme over the spatial domain Ds = [−10,10]× [−10,10] and the

temporal domain Dt = [0,10] with a spatial and temporal resolution of (0.5,0.5) and 0.1,
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Noise Component Statistic Recovered Equation
Mean ut = 0.400u−0.266u2−0.500uv+0.099uxx +0.100uyy

0% Prey Lower ut = 0.399u−0.267u2−0.503uv+0.098uxx +0.099uyy

Upper ut = 0.400u−0.266u2−0.497uv+0.100uxx +0.101uyy

Mean vt =−0.100v+0.300uv+0.099vxx +0.099vyy

0% Predator Lower vt =−0.100v+0.299uv+0.099vxx +0.099vyy

Upper vt =−0.100v+0.300uv+0.100vxx +0.100vyy

Table 5.6: Discovered predator-prey reaction-diffusion equation (mean) and lower and up-
per HPD intervals with no noise. The true equations are ut = 0.4u− 0.26u2− 0.5uv+
0.1uxx +0.1uyy and vt = 0.3uv−0.1v+0.1vxx +0.1vyy.

Noise Component Statistic Recovered Equation
Mean ut = 0.403u−0.270u2−0.492uv+0.144uxx +0.145uyy

2% Prey Lower ut = 0.400u−0.274u2−0.501uv+0.095uxx +0.097uyy

Upper ut = 0.405u−0.267u2−0.487uv+0.163uxx +0.164uyy

Mean vt =−0.098v+0.297uv+0.136vxx +0.138vyy

2% Predator Lower vt =−0.100v+0.296uv+0.095vxx +0.099vyy

Upper vt =−0.098v+0.300uv+0.161vxx +0.155vyy

Table 5.7: Discovered predator-prey reaction-diffusion equation (mean) and lower and up-
per HPD intervals with 2% noise. The true equations are ut = 0.4u− 0.26u2− 0.5uv+
0.1uxx +0.1uyy and vt = 0.3uv−0.1v+0.1vxx +0.1vyy.

respectively. The prey and predator densities are initialized as

u(s,0) = exp{cos(2πx/15)sin(2πy/15)}

v(s,0) = 0.1exp{cos(2πy/30)sin(2πx/30−5)},

respectively. We again consider three scenarios – no measurement noise, 2% measurement

noise, and 5% measurement noise (Figure 5.4).

For all cases we specify our model with P = 225,Q = 40, |Z |= 100,κ = [10−4,10−6]
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Noise Component Statistic Recovered Equation
Mean ut = 0.401u−0.269u2−0.493uv+0.090uxx +0.099uyy

5% Prey Lower ut = 0.400u−0.270u2−0.504uv+0.085uxx +0.091uyy

Upper ut = 0.403u−0.267u2−0.487uv+0.093uxx +0.102uyy

Mean vt =−0.101v+0.300uv+0.092vxx +0.106vyy

5% Predator Lower vt =−0.103v+0.297uv+0.086vxx +0.097vyy

Upper vt =−0.099v+0.302uv+0.095vxx +0.151vyy

Table 5.8: Discovered predator-prey reaction-diffusion equation (mean) and lower and up-
per HPD intervals with 5% noise. The true equations are ut = 0.4u− 0.26u2− 0.5uv+
0.1uxx +0.1uyy and vt = 0.3uv−0.1v+0.1vxx +0.1vyy.

Noise Component First Term Probability Second Term Probability
0% Prey u3 0.040 uxy 0.039
0% Predator u2v 0.057 uxx 0.036
2% Prey vvy 0.022 vyy 0.020
2% Predator v3 0.020 vvx 0.019
5% Prey vxx 0.029 vx 0.027
5% Predator u2 0.024 u 0.023

Table 5.9: Feature library term with the highest (first term) and next highest (second term)
probability of inclusion that was not included in the discovered equation for data generated
from the reaction-diffusion equation.

and define the feature library as

[u,u2,u3,v,v2,v3,uv,u2v,uv2,uux,uuy,vvx,vvy,ux,uy,uxx,uyy,uxy,vx,vy,vxx,vyy,vxy].

Posterior estimates of terms with greater than 50% inclusion probability are shown in Ta-

bles 5.6, 5.7, and 5.8 for the case with no noise, 2% measurement noise, and 5% measure-

ment noise, respectively. The next two most likely terms and the probability of including

each term for all cases are shown in Table 5.9. With no measurement noise, we see all terms

are correctly identified and the 95% HPD intervals all cover the truth. For the scenario with

2% noise, all terms are correctly identified and all coefficients except for u2 in the prey
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equation cover the truth. The scenario with 5% measurement noise correctly identifies all

terms and only u2 and uxx for the prey equation and vxx for the predator equation have 95%

credible intervals that do not cover the truth. We again see the probability of including

an extraneous term is low for all scenarios, providing further confidence to our discovered

equation.

5.6 Barotropic Vorticity Equation

Here we show the ability of our model to discover the governing dynamic equations using

real world data. The 500-hPa level of the atmosphere is often known as the “level of non-

divergence” because in the absence of strong cyclogenesis, the flow is essentially horizontal

and non-divergent. Such flows can often be modeled quite effectively with barotropic dy-

namics (in a barotropic fluid, the density is constant along a constant pressure surface).

Indeed, the first successful numerical weather forecasts were based on the advection of rel-

ative vorticity (rotation of the fluid in the horizontal dimnension) at the 500-hPa level using

the so-called barotropic vorticity equation (BVE; Charney et al., 1950). The BVE is given

as

ξt(s, t) =−v(s, t) ·∇(ξ (s, t)+ f (φ(s))), (5.18)

where ξ = ∂v
∂x −

∂u
∂y = ∂ 2ψ

∂x2 + ∂ 2ψ

∂y2 is the relative vorticity, v = (u,v) is the non-divergent

horizontal wind, u = −∂ψ

∂y is the Zonal wind, v = ∂ψ

∂x is the Meridional wind, ψ is the

streamfunction, f = 2Ωsin(φ) is the Coriolis parameter with Ω = 7.292× 10−5 rad s−1

the angular speed of rotation of the Earth (note – not to be confused with the dynamic

discover library as defined previously), and φ(s) the latitude in radians at location s. Note
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that the relative vorticity can be written as the Laplacian of the streamfunction, and the non-

divergent velocities of the flow can be written in terms of the gradient of the stream function

(e.g., Holton and Hakim, 2012). Then, expanding the BVE in terms of the streamfunction

and suppressing the spatial and temporal indices, we get

∇
2
ψt = ψyψxxx +ψyψxyy−ψxψxxy−ψxψyyy−ψx fy, (5.19)

where ∇2ψt = ψxxt +ψyyt . Note, the streamfunction is a computed quantity based on the

observed geopotential height, Φ, where ψ(s, t) = Φ∗(s, t)/ f (φ(s)), Φ∗(s, t) = Φ(s, t)−∫
D Φ(s, t), and D is the observed domain.

Here, we use hourly data generated using Copernicus Atmosphere Monitoring Service

information (2022)1 of relative geopotential height at 500-hPA. Data are collected hourly

from December 1st to December 31, 2018 over the spatial domain Ds = [−150◦W,−50◦W ]×

[20◦N,60◦N] at a resolution of 1.5 degrees (Figure 5.5), resulting in (67×27)×744 space-

time locations. We compute the streamfunction from the geopotential height and use this

as the observed data for the discovery. We also compute the derivative of the Coriolis pa-

rameter (e.g., Rossby parameter) in the latitudinal direction, fy = 2Ωcos(φ(s))/a, where

a = 6.371×106 is the radius of Earth in meters, and use it as a covariate in the model (i.e.,

ω(s, t) = fy(s) from (5.9)).

We specify our model with P = 200,Q = 300, |Z | = 200,κ = 10−4 and define the

1https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.
bd0915c6?tab=overview
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Figure 5.5: Streamfunction (meters2/second) data at 12pm on December 1, 2, 3, and 4,
2018. Purple and green correspond to lower value and upper values, respectively, with
contour lines included for visual aid.

feature library as

[ψ,ψx,ψxx,ψy,ψyy,ψxy,ψxψxxx,ψyψxxx,ψxψyyy,ψyψyyy,

ψxψxxy,ψyψxxy,ψxψxyy,ψyψxyy,ψx fy,ψy fy]

Posterior estimates for the recovered equation are shown in Table 5.10, where only terms

with a posterior inclusion probability greater than 50% were kept. While we do not know

the true equation in this case (because the barotropic vorticity equation is only an approxi-

mation of the dynamics in the atmosphere), we see the discovered equation closely resem-
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bles the hypothesized BVE. The sign for each discovered term aligns with the sign in the

BVE, however the coefficient values are different and the ψx fy term is not significant. This

could be due to the system not being perfectly barotropic (e.g., baroclinic), which would

require library terms our current framework cannot accommodate (e.g., flow in the verti-

cal direction, density, temperature). The reason the ψx fy term shows up as non-significant

could be due to the system experiencing predominately zonal (east-west) flow (i.e., rela-

tively weak meridional (north-south) flow). Visual examination of the data suggests that the

flow is dominated by zonal flow and this is further confirmed when we note that the mag-

nitude of the planetary vorticity term in the BVE (ψx fy) is an order of magnitude smaller

compared to the relative vorticity terms (recall, ψx corresponds to the meridional compo-

nent of the non-divergent velocity). Yet, the planetary vorticity term still is important to

the advection of relative vorticity because of the Coriolis effect on the flow, resulting in

the term being identified as important (if not significant). In our results, the coefficient for

ψx fy is estimated to be an order of magnitude larger to make up for the scaling difference

in the data, but because it is not overly influential on the system, its HPD covers zero. If the

meridional flow was stronger, the scale of ψx fy would be larger and this would be reflected

by the scale of the coefficient. Regardless, we are able to infer properties of the system

of interest (i.e., the vorticity of the streamfunction) and obtain results that generally align

with the theoretical equation. To the best of our knowledge, this is the first time that data-

driven discovery methods have been applied to real-world atmospheric data and identified

physically plausible features.

145



Statistic Discovered Equation
Mean ∇2ψt = 0.289ψyψxxx +0.277ψyψxyy−0.280ψxψxxy−0.185ψxψyyy−6.354ψx fy

Lower HPD ∇2ψt = 0.235ψyψxxx +0.267ψyψxyy−0.343ψxψxxy−0.215ψxψyyy−7.570ψx fy

Upper HPD ∇2ψt = 0.317ψyψxxx +0.286ψyψxyy−0.223ψxψxxy−0.160ψxψyyy +1.491ψx fy

Table 5.10: Discovered equation for the BVE (mean) and lower and upper HPD intervals
where the theoretical BVE is ∇2ψt = ψyψxxx +ψyψxyy−ψxψxxy−ψxψyyy−ψx fy.

5.7 Conclusion

We have proposed a data-driven approach for learning complex non-linear spatio-temporal

dynamic equations that is robust to measurement noise and missing data. Our approach

uses a Bayesian hierarchical model where the dynamic equation is embedded in the la-

tent process enabling the discovery of dynamic equations within the statistical framework.

Additionally, the model provides probabilistic estimates of inclusion for each component

of the feature library and estimates of uncertainty for the recovered parameters, giving a

deeper understanding to the dynamic system. This all stems from the expansion of the dy-

namic process in terms of basis functions, bypassing the need for numerical differentiation

and enabling the estimate of the derivatives within a probabilistic framework.

While our proposed method is able to correctly discover the underlying dynamics as

illustrated by our simulation examples, there are situations in which it will not perform

well. For example, take the vorticity transport equation (a product of the Navier-Stokes

equation)

ξt = ν∇
2w− 1

Re
·∇ξ ,

where ξ is the vorticity, ν is he viscosity of the fluid, and Re is the Reynolds number. A

classic example assumes ν = 1 and Re = 100, resulting in the coefficients of ξx and ξy
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to be 0.01. While undoubtedly important for the dynamics, the effects of ξx and ξy are

weak compared to the effects of ξxx and ξyy, and the proposed method will have difficulty

identifying ξx and ξy.

The proposed method makes two crucial model assumptions – the data is Gaussian and

the coefficients do not vary spatially. Relaxing these assumptions would make the method

applicable to a wider range of real-world problems. That is, a non-Gaussian response

enables the discovery of systems where the response may be binary or count data and

spatially-varying coefficients accounts for the effects of environmental factors, for example,

to be included. This would enable systems such as the spread of invasive species where the

diffusion coefficient is non-homogeneous in space, infection diseases, or presence-absence

of a species to be studied under the guise of dynamic discovery. This significant model

extension is the focus of on-going work.

Improvements to the current framework should focus on the specification of the feature

library and the selection prior. A feature library that is uninhibited by the users choice (i.e.,

the model could generate library terms) would remove user bias. This is akin to what has

been proposed with symbolic regression. Also, a different choice in selection prior for the

coefficients, perhaps one that also penalizes model complexity, has the potential to improve

selection performance. While there are a variety of selection priors in the literature, a prior

directed towards this problem will provide noticeable improvement on the identification of

the system.
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Chapter 6

Summary and Concluding Remarks

The field of data-driven discovery is rapidly expanding due to the availability of data, the

need to understand complex systems, and increasing computational advances. However,

the applicability of these methods is limited due to their treatment of observation and pro-

cess uncertainty. Chapter 2 presented a system where the governing dynamics are unknown

and the system is modeled using a functional form to describe its evolution. We provided a

substantive literature review to current methods of data-driven discovery in Chapter 3, high-

lighting the need for statistical approaches to the current work. In Chapter 4 we proposed

a statistical framework for the discovery of dynamic equations parameterized by ordinary

differential equations that evolve over time. This framework was further expanded in Chap-

ter 5, enabling the discovery of space-time processes parameterized by partial differential

equations.

There are multiple directions the framework presented here could be extended. The

most pressing extension concerns the choice of selection prior for the feature library terms.

As discussed in Chapter 5, the terms in the feature library have the potential to be highly
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correlated, which can result in confounding and cause incorrect terms to have an over-

inflated inclusion probability. While the spike and slab prior is one possible solution to this

issue, the choice of prior should be investigated further in order to account for complex

library specifications. The development of a prior tailored to this specific problem is allur-

ing. The ideal prior should have a penalty based on the number of selected terms, a penalty

based on the correlation between parameter values, and be robust to the size of the data.

In addition, the ability to assign an inclusion probability, such as with the spike and slab,

is desirable so that a measure of confidence can be given to each term in the library. The

inclusion probability could be replaced with a shrinkage component so long as incorrect

terms are shrunk close to zero, thereby negating the effect of incorrect terms.

Another major improvement to the current framework would be to learn, rather than

specify, the feature library. Similar to the symbolic regression methods, where potential

functions are learned based on a function set, a method to learn the library would remove

user bias. This approach is related to the selection prior, where the need for a more robust

selection prior is nullified if the library is able to be learned based on the data. However,

Bayesian approaches for symbolic regression are rare (Jin et al., 2019). Additionally, the

adaption of symbolic regression into the proposed framework promises to be difficult. The

difficulty is due to the computational requirements of both symbolic regression and the

proposed framework and the ability to embed the basis representation of the dynamics into

a symbolic regression framework.

To make the method applicable to more real-world systems, the framework can be

extended to include spatially indexed functions. For example, the dispersal rate of avian

species may not be spatially constant (Wikle, 2003; Hooten and Wikle, 2008), and allowing

for this flexibility would aide in recovering the “true” dynamics. This can be achieved by
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allowing the coefficient matrix M to be spatially indexed (i.e., M(s)). Then, a spatial

process, such as a Gaussian process, would need to be incorporated for each term of M(s)

so the dynamics “evolve” smoothly over space. However, in order to keep the discovered

dynamics consistent, the identified terms at each spatial location would need to remain

the same and only the coefficient values should be allowed to vary. If this were not the

case, different dynamics may be identified at different neighboring locations, resulting in

non-contiguous dynamics. Spatially varying dynamics could still be identified through the

values of M(s), where values of M(s) may be zero over some locations and non-zero over

others, producing different discovered dynamics at different locations.

Last, the data-driven discovery models in Chapters 4 and 5 can be extended to accom-

modate a non-Gaussian response. Specifically, the data model can be written generally

as

v(s, t)∼ f (v(s, t)|H(s, t),A,Θ,φt(0)(t),ψ(s)),

where f is a distribution function. This changes the likelihood, and subsequently the update

step for A, where the estimation of A now depends on the choice of the distribution function

f . For example, assume f is part of the exponential family,

f (v(s, t)|A, ·) = h((s, t))exp{ξ (A, ·)Γ(v(s, t))−α(A, ·)} ,

where · represents H(s, t),Θ,φt(0)(t),ψ(s). The loss function at location s and time t is

L (A;s, t) =− log( f (v(s, t)|A, ·)− log([A,Θ,φt( j)(t),g(ψ(s))|M, ...])− log([A]).
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Using the same notation as Chapter 5, denote B0(s, t) = φt(0)(t)⊗ψ(s) and BJ(s, t) =

φt(J)(t)⊗g(ψ(s)). Then, the gradient of the loss function for location s and time t is

∇L (A;s, t) =
∂

∂A
ξ (A, ·)Γ(v(s, t)))− ∂

∂A
α(A, ·)

+Θ′Σ−1
U ΘAB′J(s, t)BJ(s, t)−Θ′Σ−1

U Mf(s, t)BJ(s, t)

−BJ(s, t)A′Θ′Σ−1
U M

.
F
′
(s, t)+ f′(s, t)M′Σ−1

U M
.
F
′
(s, t)

− ∂

∂A
log([A]),

where
.
F(s, t) generically denotes ∂

∂A f(A, ·). For any member of the exponential family, we

get a relatively simple form for ∇L (A;s, t) given the parameters of the exponential family

and a prior for A. This can be extended to non-exponential family members, but there is no

concise general form for all of the non-exponential family distribution functions. The ex-

tension to non-Gaussian data will enable the discovery of dynamics for systems with binary

or count data. For example, from an ecological perspective this includes presence/absence

or abundance monitoring and from an epidemiological perspective this includes monitoring

the spread of disease.
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Appendix A

Chapter 2 Appendix

All code can be found at https://github.com/jsnowynorth/Harmonics. This includes code

for downloading and processing the data, the sampler (listed below), and processing the

results.

Defining notation that will be used and restructuring equations to match those used in

the sampler, let

z`(s) = [z1`(s)′,z2`(s)′]′ ∼ N (X`β`(s),Σε(s)) , where

X` =

X` 0

0 X`

 , and Σε`
(s) =

σ2
ε1
(s)IT` 0

0 σ2
ε2
(s)IT`

 .
Writing the β’s in block notation, which will be used in the update of the predictive process,

let B` = [β`(s1)
′, ...,β`(sn)

′]′ and ΣB = In⊗Σβ , resulting in

B` ∼ N (B`−1 +F`w̃∗` ,ΣB) ,
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where F` = Block-Diag[C(θ11)C∗(θ11), ...,C(θ2p)C∗(θ2p)].

The Gibbs sampler algorithm for (2.6) is initialized by setting all parameters to some

starting values. Then, for each iteration of the Gibbs sampler, parameters are updated:

1. For `= 1, ...,L, update [w̃∗|·]∼ N
(
V−1

w aw,V−1
w
)

where

aw = F′`Σ
−1
B (B`−B`−1) ,

Vw = F′`Σ
−1
B F`+Σ−1

W ,

where Σ−1
W = Block-Diag[C∗(θ11)

−1, ...,C∗(θ2p)
−1].

2. For k = 1, ..., p and j = 1,2, update [σ2
jk|·]∼ IG(a,b), where

a =
Lm
2

+a jk and b = b jk +
1
2

L

∑
`=1

w̃∗
′

jk`C
∗(θ jk)

−1w̃∗jk`,

where a jk and b+ jk are chosen hyperpriors, and w̃∗jk` denotes the kth predictive

process for cycle j for all knot locations.

3. For s = s1, ...,sn, update[β0(si)|·]∼ N
(
V−1

0 a0,V−1
0
)

where

a0 = Σ−1
β
(β1(si)−w1(si))+Σ−1

0 µ0,

V0 = Σ−1
β

+Σ−1
0 .
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4. For `= 1, ...,L and s = s1, ...,sn, update [β`(si)|·]∼ N
(
V−1a,V−1), where

a = X`(si)
′Σ−1

ε`
(si)z`(si)+Σ−1

β
(β`−1(si)+w`(si))+Σ−1

β
(β`+1(si)+w`+1(si)) ,

V = X`(si)
′Σ−1

ε`
(si)X`(si)+2Σ−1

β

5. [Σβ |·]∼ IW (Λ,Ξ), where

Λ =V +
n

∑
i=1

L

∑
`=1

(β`(si)−β`−1(si)−w`(si))
′ (β`(si)−β`−1(si)−w`(si)) ,

Ξ = nL+ξ .

6. For s = s1, ...,sn and j = 1,2, update [σ2
ε j
(si)|·]∼ IG(aε ,bε), where

aε =
L∗n

2
+a and bε = b+

1
2

L

∑
`=1

(z j`(si)−X`β j`(si))
′(z j`(si)−X`β j`(si)).
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Appendix B

Chapter 3 Appendix

Algorithm 2: Sequential Threshold Least-Squares: SINDy
Input: K,κ
Data: Ut(J),F
Result: M
Initialize: M = (F′F+λ I)−1F′Ut(J)

for k = 1 to K do
γ = |M|< κ ; /* Matrix identifying small coefficients
*/

M(γ) = 0 ; /* Threshold M */
for n = 1, ...,N do

i := γ(n) == 0 ; /* Identify non-zero columns */
m(n) = (F(i)′F(i))−1F(i)′Ut(J) ; /* Regress */

end
end
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Algorithm 3: Sequential Threshold Ridge Regression: PDE-FIND
Input: K,κ,λ
Data: Ut(J),F
Result: M
Initialize: M = (F′F+λ I)−1F′Ut(J)

for k = 1 to K do
γ = |M|< κ ; /* Matrix identifying small coefficients
*/

M(γ) = 0 ; /* Threshold M */
for n = 1, ...,N do

i := γ(n) == 0 ; /* Identify non-zero columns */
m(n) = (F(i)′F(i)+λ I)−1F(i)′Ut(J) ; /* Regress */

end
end

Algorithm 4: Sparse Relaxed Regularized Regression: SR3
Input: K,κ,λ , tolerance
Data: Ut(J),F,W

0

Result: M
Initialize: k = 0, err = 2∗ tolerance, M = (F′F+λ I)−1F′Ut(J)

while err > tolerance do
k = k+1;
Mk = argmin

M̂

1
2‖Ut(J)−FM̂′‖2 + 1

2ν
‖M̂−Wk−1‖2;

Wk = proxλ ,ν ,R(Mk) ; /* prox is the proximal gradient */
err = ‖Wk−Wk−1‖/ν ;

end
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Algorithm 5: General Genetic Algorithm
Input: Stopping criteria - ξ , function set, fitness function - f (), summary statistic

- T ()
Result: Best individual
Initialize: P = Randomly generate the initial population based on the defined
functional set, ∆C = 2ξ ,∆N = 0

while |T (∆C)−T (∆N)|> ξ do
∆C = f (P) ; /* Evaluate fitness of current individuals
*/

P = Generate new population based on reproduction, crossover, and mutation
where individuals are chosen based on fitness level (i.e., higher fitness equals
higher probability of being chosen) ;

∆N = f (P) ; /* Evaluate fitness of new individuals */
end
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Appendix C

Chapter 4 Appendix

C.1 Chapter 4 Sampling Algorithm

For time point t = 1, ...,T , the full model is

vt = HAφt(0) +εt , εt ∼ NL(t)(0,ΣV (t))

Aφt(J) = Mf(Aφt(0))+ηt , ηt ∼ NN(0,ΣU)

vec(M)∼ NND(0,ΣM)

ΣM = diag(γ(c1)
1 , ...,γ

(cND)
ND )

ΣV (t) = H(t)diag(σ2(1), ...,σ2(N))H(t)′

σ
2(k)∼ IG(νr/2,2νr/brk), k = 1, ...,N

brk ∼ IG(1/2,1/B2
rk), k = 1, ...,N

ΣU ∼ IW (νq−n−1,2νqdiag(1/bq1, ...,1/bqn))

bqk ∼ IG(1/2,1/B2
qk), k = 1, ...,N
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Defining notation that will be used in the sampler, let X1:T ≡ [u(1), ...,u(T )], X
(J)

1:T ≡

[ut(J)(1), ...,ut(J)(T )], F1:T ≡ [f(1), ..., f(T )], and m ≡ vec(M). For each iteration of the

Gibbs sampler, parameters are updated:

1. Update [M|·]∼ Gau(V−1
m am,V−1

m ), where

Vm =
(
F ′

1:T ⊗ IN
)′
(IT ⊗ΣU)

−1 (F ′
1:T ⊗ IN

)
+Σ−1

M ,

am =
(
F ′

1:T ⊗ IN
)′
(IT ⊗ΣU)

−1vec(X (J)
1:T ).

2. For l = 1, . . .ND, update γ
(cl)
l = v1 if cl = 1 and γ

(cl)
l = v0 if cl = 0 where [cl|·] ∼

Bern(pl) and

pl =
π[m(l)|cl = 1, ·]

π[m(l)|cl = 1, ·]+ (1−π)[m(l)|cl = 0, ·]

3. For k = 1, ...,N, update [σ2(k)|·]∼ IG(ârk , b̂rk) where

ârk = (T +νrk)/2,

b̂rk = (νrk/brk)+
1
2

T

∑
t=1

(v(k, t)−H(k, t)A(k)φt(0)(t))
2,

where H(k, t) is the kth row of H(t).

4. For k = 1, ...,N, update [brk |·]∼ IG(Ârk , B̂rk) where

Ârk = (νrk +1)/2,

B̂rk = (νrk/σ
2(k))+1/Brk .
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5. Update [ΣU |·]∼ IW (ν̂ ,Ψ̂) where

ν̂ = νq +T −1,

Ψ̂ = 2∗νq ∗diag(1/bq1, ...,1/bqn)+(X
(J)

1:T −MF1:T )
′(X

(J)
1:T −MF1:T ).

6. For k = 1, ...,N, update [bqk |·]∼ IG(Âqk , B̂qk) where

Âqk = (νqk +1)/2,

B̂qk = (νqk(ΣU)
−1
kk )+1/Bqk .

7. Update [A|·] from (4.5).

C.2 Chapter 4 Tables

System Equation

True Equation
dx/dt −10x+10y
dy/dt 28x−1y−1xz
dz/dt −2.667z+1xy

Posterior Mean
dx/dt −8.894x+9.321y
dy/dt 25.438x−0.914xz
dz/dt −2.669z+0.942xy

95% Credible Interval
dx/dt (−10.325,−7.538)x+(8.393,10.305)y
dy/dt (23.697,27.060)x+(−1.035,−0.791)xz
dz/dt (−2.822,−2.518)z+(0.810,1.063)xy

Table C.1: Parameter estimates and 95% credible intervals (lower bound, upper bound) for
the Lorenz-63 simulation under scenario (2) with measurement noise (c = 1).
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System Equation

True Equation
dx/dt −10x+10y
dy/dt 28x−1y−1xz
dz/dt −2.667z+1xy

Posterior Mean
dx/dt −8.067x+8.847y
dy/dt 24.749x−0.883xz
dz/dt −2.696z+0.875xy

95% Credible Interval
dx/dt (−9.695,−6.533)x+(7.791,9.997)y
dy/dt (22.432,26.811)x+(−1.028,−0.728)xz
dz/dt (−2.886,−2.516)z+(0.713,1.019)xy

Table C.2: Parameter estimates and 95% credible intervals (lower bound, upper bound) for
the Lorenz-63 simulation under scenario (3) with measurement noise (c = 5).

System Equation

True Equation
dx/dt −10x+10y
dy/dt 28x−1y−1xz
dz/dt −2.667z+1xy

Posterior Mean
dx/dt −7.154x+8.260y
dy/dt 24.346x−0.865xz
dz/dt −2.674z+0.780xy

95% Credible Interval
dx/dt (−8.653,−5.609)x+(7.095,9.445)y
dy/dt (22.339,26.409)x+(−1.005,−0.723)xz
dz/dt (−2.868,−2.472)z+(0.594,0.942)xy

Table C.3: Parameter estimates and 95% credible intervals (lower bound, upper bound) for
the Lorenz-63 simulation under scenario (4) with measurement noise (c = 10).
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System Equation

True Equation
dx/dt −10x+10y
dy/dt 28x−1y−1xz
dz/dt −2.667z+1xy

Posterior Mean
dx/dt −8.587x+9.088y
dy/dt +26.086x−0.911xz
dz/dt −2.465z+0.918xy

95% Credible Interval
dx/dt (−10.173,−6.942)x+(7.931,10.132)y
dy/dt (24.037,28.186)x+(−1.052,−0.774)xz
dz/dt (−2.658,−2.285)z+(0.722,1.093)xy

Table C.4: Parameter estimates and 95% credible intervals (lower bound, upper bound) for
the Lorenz-63 simulation under scenario (5) with measurement noise (c = 1) and missing
data.

Principal ENSO97 ENSO15
Component Linear Polynomial Linear Polynomial

1 5 12 8 11
2 4 10 4 11
3 3 5 6 12
4 3 13 2 4
5 2 9 3 12
6 3 7 2 7
7 3 5 2 6
8 2 5 1 7
9 2 5 0 8

10 1 8 2 4

Table C.5: Number of linear and polynomial terms that were included with greater than
99% probability for the model fit to ENSO97 (left) and ENSO15 (Right).
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Appendix D

Chapter 5 Appendix

D.1 Inclusion Probabilities for Spike and Slab

Let the residual sum of squares for the model with the M(n,d) term included be RSSγ and

the model without the M(n,d) term included be RSS\γ . The probability any element is

included is given as

p(γ(n,d) = 1|·) = 1

1+ 1−π(n)
π(n) Rγ(n,d)

where

Rγ(n,d) = (g+1)1/2

(
RSSγ

RSS\γ

)ST/2−1

.
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Denote β =
RSSγ

RSS\γ
and solving for the number of observations ST ,

nobs := ST = 2
(

log
(

Rγ(n,d)
(g+1)1/2

)/
log(β )+1

)
.

We then use the value of nobs to inform our subsample size based on g, the ratio of the

RSSs, and an informed value of R. For example, assume π = 0.5 such that every parameter

has a 50% chance of being included in the model. We would take R = 1 resulting in

p(γ(n,d) = 1|·) = 0.5. nobs is then chosen by solving the equation under a hypothetical β

(e.g., 0.99 or 0.95).

In choosing the value β there are a couple things to consider. If the terms in the library

are highly correlated, there is likely to be confounding and incorrect variables may have a

larger impact on the RSS. This issue is detected using the condition number of the correla-

tion matrix (e.g., F∗′F∗ where F∗ is the normalized version of F), where a large condition

number (e.g., greater than 1000) indicates multicollinearity. Under the scenario where the

condition number is large, β should be chosen to be smaller (i.e., 0.9 or 0.95), resulting in

a smaller subsampled size. Alternatively, if the variables are less correlated (i.e., condition

number smaller than 1000), the impact of an incorrect variable on the RSS will be less.

In this case β can be chosen to be closer to one (e.g., 0.99 or 0.999), resulting in a larger

subsample size. When fitting the model, the parameter π will be estimated and will (likely)

not be 0.5. However, empirically we have found taking π = 0.5 and R = 1 to solve for nobs

works well.

For the simulations, the condition number of the correlation matrix for Burgers’ is

approximately 28940, the Heat equation is approximately 1840, and the reaction-diffusion

equation is approximately 6510. We chose β to be 0.9, 0.99, and 0.95 for Burgers’, the

Heat, and the reaction-diffusion equations, respectively. For the real-world example, the
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condition number of the correlation matrix is approximately 480 and we chose β to be

0.99.

A parallel can be drawn between the subsampling and sequential thresholded least

squares (STLS; Brunton et al., 2016) or sequential threshold ridge regression (STRidge;

Rudy et al., 2017). Because the inclusion probability is affected by the subsample size (i.e.,

reduces the inclusion probability or highly unlikely terms), this is analogous to a probabilis-

tic extension of the thresholding approaches. That is, instead of assigning a hard threshold,

where values less than a predetermined value are set to zero, the subsampling approach

impacts the probability of a variable being included below a certain threshold based on a

specified β .

D.2 Sampling Algorithm

To simplify notation, denote B0(s, t) =φt(0)(t)⊗ψ(s) and BJ(s, t) =φt(J)(t)⊗g(ψ(s)). At

time t and location s, the full model is
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v(s, t)∼ N(ΘAB′0(s, t),ΣV (s, t))

ΘAB′J(s, t)∼ N(Mf(s, t),ΣU)

M(n)|γ(n),σ2
U(n) =

D

∏
d=1

[(1−γ(n,d))δ0 +γ(n,d)p(M(n,d)|σ2
U(n), ·)]

p(γnd = 1|πn) = πn

π ∼ Beta(a,b)

ΣV = H(s, t)diag(σ2
V 1, ...,σ

2
V N)H

′(s, t)

σ
2
V n ∼ IG(νV/2,νy/aV n)

ΣU = diag(σ2
U1, ...,σ

2
UN)

σ
2
Un ∝ 1/σ

2
Un.

For iteration `= 1, ...,L do:

1. Obtain minibatch Q.

2. Update γ: Subsample data based on choice of nobs. Denote fγ as the design matrix

consisting only of columns of f corresponding to non-zero effects, Gγ =
g

g+1(f
′
γfγ)−1,gγ =

Gγf′γΘA(n)B′J , and yγ = 1
2((ΘA(n)B′J)′(ΘA(n)B′J)− g′γG−1

γ gγ). Let Gγ,0,gγ,0,

and yγ,0 correspond to γ(d) = 0 and Gγ,1,gγ,1, and yγ,1 correspond to γ(d) = 1.

Sample each element of γnd,n = 1, ...,N,d = 1, ...,D of the indicator vector γ from

p(γnd = 1|γ\nd,Θ,A(n),B′J) =
1

1+Rγ(n,d)1−πn
πn

,

where Rγ(n,d) = (g+1)1/2 yγ,1
yγ,0

nobs/2−1
.
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3. Update π: For n = 1, ...,N, sample

[πn|·]∼ Beta

(
a+∑

d
γnd,b+D−∑

d
γnd

)
.

4. Update M: For n = 1, ...,N, set Mnd = 0 is γnd = 0. For non-zero elements, sample

[Mn|·]∼ Gau
(
gγ ,σ2

UnGγ

)
.

5. Update ΣU : For n = 1, ...,N, sample

[σ2
Un|·]∼ IG

(
N−1

2
,
1
2
(
(ΘA(3)B′J(s, t))

′(ΘA(3)B′J(s, t))−g′γG−1
γ gγ

))
.

6. Update ΣV : For n = 1, ...,N, sample

[σ2
V n|·]∼ IG

(
T S+νV

2
,

νV

aV
+

1
2

T

∑
t=1

S

∑
s=1

(V (s, t,n)−θ(n)AB′0(s, t))(V (s, t,n)−θ(n)AB′0(s, t))
′
)

and

[aV n|·]∼ IG

νV +1
2

,
νV

σ2
V n +

1
A2

V


7. Update A: Use (4.5) to update A.
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D.3 Proof of Propositions

Proposition 1. The mode-3 decomposition of [[A;Ψ,Φt(J),Θ]] =F×3 M+η̃ where η(s, t) i.i.d.∼

NN(0,ΣU) in space and time at location s and time t is

ΘA(φt(J)(t)⊗ψ(s))
′ =

Mf(A,ψ(s),ψx(s),ψy(s),ψxy(s), ...,φt(0)(t), ...,φt(J)(t),ω(s, t))+η(s, t),

where A is a R×PQ matrix of basis coefficients, ψ(s) is a length-P vector of spatial basis

functions, φ(t) is a length-Q vector of temporal basis functions, and Θ is a N×R matrix

of component basis functions.

Proof of Proposition 1. For the LHS, ΘA(Φt(J) ⊗Ψ)′ is the mode-3 matri-

cization of A×1 Ψ×2 Φt(J) ×3 Θ (see Kolda, 2006, for a proof of this prop-

erty). For the RHS, from the property of the n-mode product, F×3 M = Mf(·),

where f(·) is the mode-3 matricization of F. The arguments of f(·), namely

U,Ux,Uy, ...,Ut(0), ...,Ut(J−1) , are represented using their basis expansion, re-

sulting in f(·) depending on Ψ,Φ,Θ,A and any derivatives of Ψ and Φ needed

for the library. The value at a specific space-time location is determined from

the sth and tth column of Ψ and Φ, respectively. The last term on the RHS,

η(s, t), is a the mode-3 matricization of the uncertainty tensor η̃, where each

space-time location has the same variance-covariance matrix ΣU .

Proposition 2. Let g(·) be a linear differential operator. The basis formulation of a PDE
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with a space-time response g(ut(J)(s, t)) is

ΘA(φt(J)(t)⊗g(ψ(s)))′.

Proof of Proposition 2. Let g(U) = {g(u(s, t,n)) : s ∈ Ds, t = 1, ...,T,n =

1, ...,N} be a function of the tensor of the continuous process observed at dis-

crete space-time locations. Decomposing g(U) in terms of spatial, temporal,

and component basis functions, g(U) ≈ g([[A;Ψ,Φt(J),Θ]]). From Proposi-

tion 1, the mode-3 basis decomposition of g([[A;Ψ,Φt(J),Θ]]) is g(ΘA(Φt(J)⊗

Ψ))′. By linearity of g(·) and properties of the Kronecker product,

g(ΘA(Φt(J)⊗Ψ))′ = ΘA(Φt(J)⊗g(Ψ))′.

The function at time t and location s is ΘA(φt(J)(t)⊗g(ψ(s)))′.
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