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ABSTRACT

Any software system of non-trivial size cannot be easily and completely tested

because the domain of all possible inputs is complex and very large. In this

study, we use a technique called partition testing, in which we divide the

input domain of all potential testing cases D into K ≥ 2 non-overlapping

sub-domains. Each sub-domain can therefore be tested independently from

the others. We employ two methods, a fully sequential method and two-

stages method, that are based on a sample of the test cases to allocate the

test cases among partitions and minimize the variance of estimated software

reliability when usage probabilities are random. These methods allow us to

take advantages from the previous testing as we test and, as a result, dynam-

ically improve the distribution of test cases throughout the reliability testing

process. By dynamically allocating test cases to partitions, these methods

aim to minimize the variance of the reliability estimation. The variance in-
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curred by fully sequential method and the variance incurred by two-stages

method are compared with the variance incurred by the optimal and the vari-

ance incurred by the balanced sampling method. Using theoretical results

and a Monte Carlo simulation, the fully sampling method and the two-stages

method perform better than the balanced sampling method and are nearly

optimal.
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CHAPTER 1

INTRODUCTION

Software reliability is one of the most essential characteristics for a critical

system that can impact the lives of humans. Reliability is the ability of the

software system to preserve a specific level of efficiency when used under a

specified set of circumstances. To ensure the reliability of software, developers

have to make a test at the end of the development cycle. The decision makers

are based on the outcome of these testing to determine whether it is the time

to launch the software or not.

Software that is highly accurate profits some industries and academic

organizations. So, all companies and users are looking for a reliable software

to reduce both risk and cost. However,unreliable software can have disastrous

consequences. In April 2018, A ”simple” software upgrade that resulted in

a significant banking outage led to millions of TSB Bank customers being

locked out of their accounts. Although the system upgrade was planned,

it seems that it wasn’t done sufficiently. Customer login problems started

occurring as soon as TSB turned on the new system. Details of people’s

accounts were revealed to others. Additionally, inaccurate credits and debts

were reported.Many customers were unable to access their accounts for two

weeks before being allowed access[10].
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An extensive test is defined as the set of all possible system input. Since

the domain of all possible inputs is complex and very large, exhaustive testing

is not possible in software reliability for any non-trivial software. As a result,

just a small portion of the program’s input domain can be allocated for testing

using some testing strategy. Numerous testing strategies have been explored

and put into use, including functional testing [7], control flow coverage [1],

data flow coverage [12], mutation testing [4], partition analysis [22], and

others[26, ?, 28, 29]. The strategy used in this paper’s approach focuses on

partition testing, which divides the input domain of all potential test cases

D into K ≥ 2 non-overlapping sub-domains, where each sub-domains can be

tested independently from the others. If test case j is taken from partition i,

then none of the other partitions will have test case j. Our goal of this paper

is to minimize the variance of the overall estimated reliability of the software

by allocating the test cases to the partitions.
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CHAPTER 2

SOFTWARE RELIABILITY ESTIMATION FOR K PARTITIONS

2.1 Introduction

In this chapter, we start by officially defining our partition testing model

as a mathematical model that can be thought of as a stratified random sam-

pling model [3, 11] composed of:

• The partitions D1,D2, . . . ,Dk must cover the entire domain D and be

mutually disjointed so that

D =
k⋃

i=1

Di

Di ∩Dj = ∅ , i ̸= j

where Di sub-domain of the ith partition, D is the domain of all test

cases, and k is the total number of partitions.

• The sizes of samples n1, n2, . . . , nk are taken from sub-domainD1,D2, . . . ,Dk

and N the total number of test cases

k∑
i=1

ni = N

3



Considering a simple random sample is taken from the whole domain D,

we define the probability Pi as a ”usage probability [27]” for each partitionDi.

As a result, if we observe a sample of users chosen at random, Pi percent of

their software usage is typically found in test cases of sub-domain Di. Hence,

Pi will be assumed unknown and
k∑

i=1

Pi = 1. Furthermore, we describe θi as

the reliability of each sub-domain Di. The previous definitions are used to

determine the overall software reliability, η:

η =
k∑

i=1

Piθi

As mentioned above, any software system of non-trivial size cannot be

completely tested. We use partition testing technique divide the N test cases

allocated for reliability estimation across the k partitions, and then utilize

the results to estimate each θi. Thus, the estimate of the overall software

reliability η,denoted by η̂ can be determined as:

η̂ =
k∑

i=1

Piθ̂i

where θ̂i is the estimate of θi after all ni tests have been allocated to partitions

i such that:

θ̂i =

ni∑
j=1

Xij

ni

4



where ni is the number of test cases allocated to partitions i and Xij are the

outcome of the jth test taken from the ith partition modeled as Bernoulli

random variable with a parameter θi such that:

Xij =

 1 ,if the jth test case of ith partition succeeds

0 ,if the jth test case of ith partition fails

We shall assume that Pi and θi are independents, where i = 1, . . . , k. Since

the objective is to allocate the test cases among partitions to determine the

optimal estimated software reliability, we will approach the process with the

goal of minimizing the variance of our estimated reliability as follow:

V ar[
k∑

i=1

Piθ̂i] =
k∑

i=1

V ar[Piθ̂i] + 2
k∑

j=1

∑
i<j

Cov(Piθ̂i, Pj θ̂j) (2.1)

In the next section, we will show the near-optimal method that minimizes

the variance of our estimated reliability.

2.2 Optimal Sampling Method

Our goal in this section is to determine the optimal estimated software

reliability by minimizing the variance of our estimated reliability. This sec-

tion will begin with an important lemma by Rekab [13].
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Rekab’s Lemma: If X and X are independent, then Y/X=Y , X/Y=X and

V ar(XY ) = E(Y )2V ar(X) + V ar(Y )E(X2)

We will start our goal of minimizing the variance of our estimated relia-

bility :

V ar[
k∑

i=1

Piθ̂i] =
k∑

i=1

V ar[Piθ̂i] + 2
k∑

j=1

∑
i<j

Cov(Piθ̂i, Pj θ̂j) (2.2)

Using Rekab’s Lemma, the first term on the right side of equation (2.2)

becomes

k∑
i=1

V ar[Piθ̂i] =
k∑

i=1

[V ar(θ̂i)E(P 2
i ) + V ar(Pi)E

2(θ̂i)]

=
k∑

i=1

[
σ2
xi

ni

E(P 2
i ) + V ar(Pi)θ

2
i ], where σ2

xi
= θi(1− θi)

(2.3)

and the second term on the left side of equation (2.2) becomes

2
k∑

j=1

∑
i<j

Cov(Piθ̂i, Pj θ̂j) = 2
k∑

j=1

∑
i<j

θiθjCov(Pi, Pj) (2.4)

Therefore, we define the variance of our estimated reliability η̂ as

V ar[η̂] =
k∑

i=1

σ2
xi

ni
E(P 2

i ) + C

where C = 2
k∑

j=1

∑
i<j

θiθjCov(Pi, Pj) +
∑k

i=1[V ar(Pi)θ
2
i ]

(2.5)
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The problem’s objective can now be restated as follows: find the best

sampling strategy that will choose n1, n2, . . . , nk test cases so that the vari-

ance is as small as possible. The equation (2.5) can be written as

V ar(η̂) =

k∑
i=1

(
√

E(P 2
i )σxi

)2

N

+ 1
N

k−1∑
i=1

k∑
j=i+1

(
ni

√
E(P 2

j )σxj
− nj

√
E(P 2

i )σxi

ninj
)2 + C

(2.6)

Hence, the variance is bounded by:

V ar(η̂) ≥

k∑
i=1

(
√

E(P 2
i )σxi

)2

N
+ C (2.7)

with equality if:

ni

nj

=

√
E(P 2

i )σxi√
E(P 2

j )σxj

(2.8)
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Therefore, the optimal allocation is determined by:

N

nj

=

k∑
i=1

√
E(P 2

i )σxi√
E(P 2

j )σxj

nj = N

√
E(P 2

j )σxj

k∑
i=1

√
E(P 2

i )σxi

where j = 1, . . . , k − 1

nk = N −
k−1∑
j=1

nj

By achieving the equality of equation (2.7), the variance explained by the

optimal allocation, which is:

V ar(η̂opt) =

k∑
i=1

(
√

E(P 2
i )σxi

)2

N
+ C (2.9)

Since the optimal allocation depends on the actual reliabilities which are

unknown, the optimal sampling scheme is not practical. As a result of this

shortcoming, we decided to employ dynamic allocation approaches, which

are discussed in chapter(4) and chapter(5).
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CHAPTER 3

SOFTWARE RELIABILITY ESTIMATION FOR TWO PARTITIONS

3.1 Introduction

In this chapter, we introduce the same problem in chapter 2 when we have

two partitions, k = 2 for one reason. The reason is we will use two partitions

in Monte Carlo Simulation in chapter 6. Now, we start by considering the

case in which the test domain is divided into two subdomains D1, D2, each

with reliability θ1 and θ1. Samples of sizes n1 and n2 are drawn from sub-

domainsD1, D2, respectively such thatN = n1+n2. We have one assumption

which is Pi and θi where i = 1, 2 are independents. We define η as η =

P1θ1 + P2θ2.

We have

E(X) = θ1 , E(Y ) = θ2

V ar(X) = θ1(1− θ1) = σ2
x , V ar(Y ) = θ2(1− θ2) = σ2

y

The strategy that minimizes the variance of our estimated reliability for

two partitions will be presented in the next section.
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3.2 Optimal Sampling Method

We aim to minimize the variance of our estimated reliability for two par-

titions in this section to determine the optimal estimated software reliability.

Thus, the variance of our estimated reliability for two partitions is shown as:

V ar[η̂] = V ar[P1θ̂1 + P2θ̂2] = V ar[P1θ̂1 + (1− P1)θ̂2]

= V ar[P1θ̂1] + V ar[(1− P1)θ̂2] + 2Cov(P1θ̂1, (1− P1)θ̂2)

(3.1)

by using Rekab’s Lemma, the first term of the right hand side of equation

(3.1) becomes

V ar[P1θ̂1] = V ar(θ̂1)E(P 2
1 ) + V ar(P1)E

2(θ̂1)

=
σ2
x

n1

E(P 2
1 ) + V ar(P1)θ

2
1

(3.2)

by using Rekab’s Lemma, the second term of the right hand side of equation

(3.1) becomes

V ar
[
(1− P1)θ̂2] = V ar(θ̂2)E((1− P1)

2) + V ar(1− P1)E
2(θ̂2)

=
σ2
y

n2

E((1− P1)
2) + V ar(P1)θ

2
2

(3.3)
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Since Pi and θi where i = 1, 2 are independents, the last term of the right

hand side of equation (3.1) becomes

Cov(P1θ̂1, (1− p)θ̂2) = Cov(P1θ̂1, θ̂2)− Cov(P1θ̂1, P1θ̂2)

Cov(P1θ̂1, θ̂2) = E(P1θ̂1θ̂2)− E(P1θ̂1)E(θ̂2)

= E(P1θ̂1)E(θ̂2)− E(P1θ̂1)E(θ̂2) = 0

Cov(P1θ̂1, P1θ̂2) = E
(
P 2
1 θ̂1θ̂2

)
− E(P1θ̂1) · E(P1θ̂2)

= E
(
P 2
1

)
E(θ̂1)E(θ̂2)− E(P1)E(θ̂1)E(P1)E(θ̂2)

= E
(
P 2
1

)
θ1θ2 − E2(P1)θ1θ2 =

(
E
(
P 2
1

)
− E2(P1)

)
θ1θ2

= V ar(P1)θ1θ2

2Cov(P1θ̂1, (1− P1)θ̂2) = −2V ar(P1)θ1θ2

(3.4)

Substitute the equations (3.2), (3.3),and (3.4) into equation (3.1)

V ar[P1θ̂1 + (1− P1)θ̂2] =
σ2
x

n1

E(P 2
1 ) + θ21V ar(P1) +

σ2
y

n2

E((1− P1)
2)

+θ22V ar(P1)− 2V ar(P1)θ1θ2

(3.5)

Thus, the variance of our estimated reliability will written as:

Var[P1θ̂1 + P2θ̂2] =
σ2
x

n1

E(P 2
1 ) +

σ2
y

n2

E(P 2
2 ) + Var(P1)(θ1 − θ2)

2 (3.6)

Now, we need to choose the optimal n1, n2 so that equation (3.6) is minimum.

Since the third term of equation (3.6) depends on the unknown operational

11



profiles, and unknown software reliability estimator, so we can not handle it.

In the next step, we will manipulate the rest of equation (3.6).

First, Let α = E(P 2
1 ) and β = E(P 2

2 ).

Hence the first and second terms of equation (3.6) can be rewritten such that:

ασ2
x

n1
+

βσ2
y

n2

=
n2 ασ2

x + n1 β σ2
y

n1n2

=
N(n2 ασ2

x + n1 β σ2
y)

N n1n2

=
(n1 + n2)(n2 ασ2

x + n1 β σ2
y)

(n1 + n2) n1n2

=
(n1n2 + n2

2) ασ
2
x + (n2

1 + n1n2) β σ2
y

(n1 + n2) n1n2

=
n1n2ασ

2
x + n2

2 ασ2
x + n2

1β σ2
y + n1n2 β σ2

y

(n1 + n2) n1n2

12



=
n1n2ασ

2
x + n2

2 ασ2
x + n2

1β σ2
y + n1n2 β σ2

y

(n1 + n2) n1n2

+
2
√
α
√

βσ2
xσ

2
y − 2

√
α
√

βσ2
xσ

2
y

(n1 + n2) n1n2

=
n1n2ασ

2
x + n1n2 β σ2

y + 2n1n2

√
α
√

βσ2
xσ

2
y

(n1 + n2) n1n1n2

+
n2
2 ασ2

x + n2
1β σ2

y − 2n1n2

√
α
√
βσ2

xσ
2
y

(n1 + n2) n1n2

=
(
√
ασx +

√
βσy)

2

(n1 + n2)
+

(n2

√
ασx − n1

√
βσy)

2

(n1 + n2) n1n2

=
(
√
ασx +

√
βσy)

2

(n1 + n2)
+

(n2

√
ασx − n1

√
βσy)

2

N n1n2

Thus, the variance of overall software reliability estimator can be given

by:

V ar(η̂) = Var(P1)(θ1 − θ2)
2 +

(
√
ασx +

√
βσy)

2

(n1 + n2)
+

(n2

√
ασx − n1

√
βσy)

2

N n1n2

= Var(P1)(θ1 − θ2)
2 +

(√
E(P 2

1 )σx +
√

E(P 2
2 ) σy

)2

N

+

(
n2

√
E(p2)σx − n1

√
E(P 2

2 )σy

)2

N n1n2

(3.7)

By selection of n1, n2, our goal is to minimize V ar(η̂) in above equation.

Note the first two terms of (3.7) relies on the fixed total number of test cases,

13



the unknown operational profiles, and unknown software reliability estima-

tors. Since they are fixed, we cannot manipulate it.

Hence, we can see that the variance is bounded by:

V ar(η̂) ≥ Var(P1)(θ1 − θ2)
2 +

(√
E(P 2

1 )σx +
√

E(P 2
2 ) σy

)2

N
(3.8)

with equality if:

n1

n2

=

√
E(P 2

1 )σx√
E(P 2

2 )σy

(3.9)

By achieving the equality of (3.8), we obtain the variance incurred by the

optimal allocation that is:

V ar(η̂) = Var(P1)(θ1 − θ2)
2 +

(√
E(P 2

1 )σx +
√

E(P 2
2 ) σy

)2

N
(3.10)

In the next step, We need to find n1, n2. First, add 1 to both sides of equation

(3.9), Then

1 +
n1

n2

= 1 +

√
E(P 2

1 )σx√
E(P 2

2 )σy

N

n2

=

√
E(P 2

1 )σx +
√
E(P 2

2 )σy√
E(P 2

2 )σy

14



n2 = N(

√
E(P 2

2 )σy√
E(P 2

1 )σx +
√

E(P 2
2 )σy

)

n1 = N − n2

The optimal sampling strategy is not practical since the optimal allocation

depends on the actual reliabilities, which are unknown. According to this

issue, we chose to use dynamic allocation methods, which are explained in

next two chapters.
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CHAPTER 4

FULLY SEQUENTIAL ESTIMATION IN SOFTWARE RELIABILITY

4.1 Introduction

We will go through one of the sequential sampling approach for test-

ing software and estimating software reliability. This sequential allocation

refines learning about the software by allocating test cases based on previ-

ous outcomes throughout the testing process. In a fully sequential sampling

approach, test cases were allocated to partitions one by one in each stage,

with an allocation decision made after each test outcome. The purpose of

this method is to find the near optimal distribution of test cases across sub-

domains that minimizes the variance of the overall software reliability esti-

mator. This fully sequential approach is predicted to perform better and be

more accurate than the balanced sampling strategy, which determines the

number of test cases in advance for each partition.

4.2 Fully Sequential Method

This sequential allocation refines learning about the software by allocat-

ing test cases based on previous outcomes throughout the testing process. In

a fully sequential sampling approach, test cases were allocated to partitions
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one by one in each stage, with an allocation decision made after each test

outcome. The purpose of this method is to find the near optimal distribution

of test cases across sub-domains that minimizes the variance of the overall

software reliability estimator. Since the actual conditional reliabilities θi in

equation (2.9) for each sub-domain are unknown, we need to estimate its

value during the testing process and choose which sub-domain to sample

from to adjust the ratio such that

nl,i
nl,j

is close to Ĉi,j(l)

where

Ĉi,j(l) =

√
E(p2i )σxi√
E((p2j))σxj

(4.1)

The fully sequential design is outlined as follows:

Step1: Distribute l test case through partitions and estimate the relia-

bility for each partition.

Step 2: After l tests have been allocated, where l ≥ k,we take test l + 1

from partition i if for all j:

nl,i

nl,j

< Ĉi,j(l) (4.2)
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where nl,i are the cumulative test cases allocated to partition i after l tests

have been allocated and nl,j are the cumulative test cases allocated to par-

tition j after l tests have been allocated and the estimated reliability for

partition i is given by:

θ̂l,i =

nl,i∑
m=1

Xim

nl,i

Step 3: We will sequentially apply step 2 until all N tests are allocated.

4.3 Comparison

We contrasted the balancing sampling, optimal sampling and fully se-

quential sampling methods using theoretical results which will be discussed

in the next section and Monte Carlos simulations which will be discussed

in the chapter 6. This comparison is done with a goal on minimizing the

variance of the estimated overall software reliability. We show that a fully

sequential method is effective even with a large number of test cases N .

Furthermore, we expected that the fully sequential sampling method would

outperform a balanced sampling method. This prediction of the fully se-

quential method is based on the allocation improvements that are feasible as

we gain more knowledge of the program. We therefore have the chance to

18



learn from the errors made in selecting the distribution of test cases among

partitions by using the results of previous tests. The distribution of test

cases significantly affects the software reliability estimator’s accuracy. As we

mention in chapter 2, the first two terms of the next equation is fixed and

independent of the partition sample size ni and nj.

V ar(η̂) =

k∑
i=1

(
√

E(P 2
i )σxi

)2

N

+ 1
N

k−1∑
i=1

k∑
j=i+1

(
ni

√
E(P 2

j )σxj
− nj

√
E(P 2

i )σxi

ninj
)2 + C

(4.3)

The variance of a fully sequential method is obtained by selecting n1, n2, . . . , nk

such that the second term is forced to be zero in order to achieve the optimal.

V ar(η̂) ≥

k∑
i=1

(
√

E(P 2
i )σxi

)2

N + C
(4.4)

In the next section, we will present the theoretical result of comparisons

between the fully sequential sampling and the optimal sampling. We also

present results from Monte Carlo simulations that compare a fully sequential

sampling method with a balanced sampling method in chapter 6.
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4.4 Theoretical Result

We will show the theoretical result of comparisons between fully sequen-

tial sampling and the optimal sampling when N is large. Particularly, we aim

to identify V ar{η̂Fully} − V ar{η̂Optimal}, where V ar{η̂Fully} is the variance

incurred by the fully sequential sampling and V ar{η̂Optimal} is the variance

observed by the optimal sampling. The next theorem quantifies the order of

V ar{η̂Fully} − V ar{η̂Optimal} for large N .

Theorem 1 The difference between the variance incurred by the fully

Sequential Sampling Scheme and that incurred by the optimal sampling is

an order of 1
N .

Proof: We want to show that

lim
N→∞

[V ar(η̂fully)− V ar(η̂optimal)] = 0

,where

V ar(η̂fully) =

k∑
i=1

(
√

E(P 2
i )σxi

)2

N

+ 1
N

k−1∑
i=1

k∑
j=i+1

(
ni

√
E(P 2

j )σxj
− nj

√
E(P 2

i )σxi

ninj
)2 + C

(4.5)
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and

V ar(η̂opt) =

k∑
i=1

(
√
E(P 2

i )σxi
)2

N
+ C (4.6)

Therefore,

[V ar(η̂fully)− V ar(η̂optimal)] =

1
N

k−1∑
i=1

k∑
j=i+1

(
ni

√
E(P 2

j )σxj
− nj

√
E(P 2

i )σxi

ninj
)2

(4.7)

We can prove the theorem by showing equation(4.7) = 0 as N → ∞.

Hence, the proof follows if we can prove: ni
nj

= Ĉi,j as N → ∞. To show

the rest of the proof Using Rekab [15], let l be large enough and define li

such that:

l(i) = sup{t < l :
ni,t

nj,t

< Ci,j(t) forall j ̸= i}

and l(i) → ∞ as l → ∞. Then

ni,l

nj,l

≤
ni,l(i) + 1

nj,l(i)
≤ Ci,j(l

(i)) +
1

nj,l(i)

. On the other hand,

ni,l

nj,l

≥
ni,l(i) − 1

nj,l(i)
≥ Ci,j(l

(i))(1− 1

nj,l(i)
)

The theorem follows by the strong law of large numbers.
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This approach aims to develop an optimal sampling method by dynamic

allocation among partitions as we get more insight into software performance.

The benefit of this method is that we may get insightful information for each

sub-domain and use it to improve the next test cases sequential allocation

among partitions. The disadvantage of this method is that we must decide

l = N −K decisions to distribute the test cases and calculate our estimate.

Additionally, the process should be automated because running test cases

can be time-consuming and expensive. According to the disadvantage of this

method, we will present the two-stages method in the next chapter.
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CHAPTER 5

TWO-STAGES ESTIMATION IN SOFTWARE RELIABILITY

5.1 Introduction

We examine the same issue as in the previous chapter in this one: how

test cases might be distributed among partitions. The allocation strategy’s

goal is to minimize the variance of the overall estimated software reliability in

order to obtain the most accurate software reliability. We discussed the fully

sequential sampling method in the last chapter, which calls for test cases to

be run sequentially so that allocation decisions can be made after each test

execution. A fully sequential sampling method can be difficult, expensive,

and time-consuming in some situations. As a result, we suggested a different

sequential sampling method that, in some circumstances, is more practical.

This chapter introduces a two-stage sampling strategy. In comparison

to the fully sequential sampling method, the proposed method might be

easier to implement. Because this two-stage sampling method is carried

out in two stages, less computation is needed. According to the outcomes

of the first stage, we used our method to determine the size of the second

stage. We compared the outcomes of the two-stage sampling method with

the balanced sampling method to show the effectiveness of the two-stage
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method as determined by the variance of the overall estimated reliability.

As we know from the previous chapter, the optimal sampling method

can only be theoretical and not practical because the software reliability for

each partition θi is unknown. In a balanced sampling method, we decide in

advance how to distribute test cases among partitions, so we cannot improve

our distribution during testing. Due to the drawbacks of the balanced sam-

pling method, we were motivated to use a dynamic allocation approach.

5.2 Two-stages Method

In a two-stage sampling method, we have two assumptions:

I: Total number of test cases is fixed.

N = n1 + n2 + · · ·+ nk

II: Each partition will be tested independently of the other partitions.

Our aim is to allocate the N test cases among k partitions to get the most

accurate software reliability. This process was established by minimizing the
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variance of the estimated software reliability.

V ar[η̂] =
k∑

i=1

V ar[Piθ̂i] + 2
k∑

j=1

∑
i<j

Cov(Piθ̂i, Pj θ̂j) (5.1)

The equation above can be written as:

V ar(η̂) =

k∑
i=1

(
√

E(P 2
i )σxi

)2

N

+ 1
N

k−1∑
i=1

k∑
j=i+1

(
ni

√
E(P 2

j )σxj
− nj

√
E(P 2

i )σxi

ninj
)2 + C

(5.2)

From the above equations, the variance will be bounded below by:

V ar(η̂) ≥

k∑
i=1

(
√

E(P 2
i )σxi

)2

N
+ C (5.3)

with equality if:

ni

nj

=

√
E(P 2

i )σxi√
E(P 2

j )σxj

(5.4)

The optimal variance is attained when the equality of the previous equa-
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tion can be satisfied. In order to minimize the variance of the software

reliability estimator, we aim to determine the sample sizes for both ni and

nj. In the following sections, we distribute the test cases into partitions by

the two-stages method.

5.2.1 First Stage

In this stage, our initial test cases are chosen at random from each parti-

tion. Numerous studies have demonstrated that the anticipated initial sam-

ple size should be about
√
N [14]. Let the initial sample size L =

√
N be a

sequence of positive numbers such that:

I: lim
N→∞

L = ∞.

II :L ≤ N
k

,where k is the number of partitions.

III: If lim
N→∞

L
N = 0,which means that L is relatively small compared to N.

After allocating test cases for each partition, we can estimate the software

reliability with the results of the small sample size by:

θ̂i =

√
N∑

j=1

Xij

√
N

Furthermore, based on the initial sample, the overall software reliability es-

timator is provided by:

26



η̂i =
k∑

i=1

piθ̂i

=
k∑

i=1

[pi

√
N∑

j=1

Xij

√
N

]

(5.5)

We can estimate θi based on the initial sample once the results of the test

cases for each partition have been determined. A decision regarding how

to distribute test cases in the second stage is significantly influenced by the

findings of the first stage.

5.2.2 Second Stage

In this stage, the remaining test cases would be sequentially distributed

among partitions using the knowledge we achieved from the first stage, to

minimize the variance in overall software reliability. Since there are k sub-

domains, we want to know how many test cases there are for n1, n2, . . . , nk.

So, the total of the remaining N − k
√
N test cases would mathematically be

such that:
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

n1 −
√
N For partition one

n2 −
√
N For partition two

· · ·

nk −
√
N For partition k

The test cases for each partition will be chosen by combining the outcomes

from the first stage with the optimal theoretical results. For each partition,

the number of test cases ni where i = 1, . . . , k are calculated as follows:

nj,TwoStage = N

√
E(P 2

j )σxj

k∑
i=1

√
E(P 2

i )σxi

where j = 1, . . . , k − 1

nk,TwoStage = N −
k−1∑
j=1

nj

After we complete the second stage, we can determine the variance incurred

by the two-stage sampling approach that is clarified:

V ar[η̂] =
k∑

i=1

V ar[Piθ̂i] + 2
k∑

j=1

∑
i<j

Cov(Piθ̂i, Pj θ̂j) (5.6)
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5.3 Comparison

We will compare between the balancing sampling, optimal sampling, and

two-stages approaches using theoretical results, which are presented in the

next section, and Monte Carlos simulations, which are covered in chapter 6.

The aim of this comparison is to minimize the variance of the estimated over-

all software reliability. We demonstrate that a two-stage method still works

well even with a large number of test cases N . Furthermore, we expected

that the two-stages method would perform better than a balanced sampling

method. This two-stage method prediction is predicated on allocation im-

provements that are doable as we learn more about stage one. As a result,

we have the opportunity to learn from the mistakes made when choosing

the test case distribution among the partitions in the first stage. Therefore,

the distribution of test cases in the second stage significantly improve the

software reliability estimator’s accuracy. As we noted in chapter 2, the first

two terms of equation (2.9) are fixed and independent of the partition sample

size nj where j = 1, . . . , k − 1 and nk.

The variance of the two-stage method is obtained by selecting nj and nk

such that the second term is forced to be zero in order to achieve the optimal.

V ar(η̂) ≥

k∑
i=1

(
√

E(P 2
i )σxi

)2

N + C
(5.7)
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In the next section, we will show the theoretical result of comparisons between

the two-stages method and the optimal sampling. We also will present results

from Monte Carlo simulations that compare the two-stages sampling method

with a balanced sampling method in the next chapter.

5.4 Theoretical Result

We will show the theoretical result of comparisons between two-stages

sampling and the optimal sampling when N is large. Particularly, we aim to

identify V ar{η̂2stages} − V ar{η̂Optimal}, where V ar{η̂2stages} is the variance

incurred by the two-stages sampling and V ar{η̂Optimal} is the variance ob-

served by the optimal sampling. The next theorem quantifies the order of

V ar{η̂2stages} − V ar{η̂Optimal} for large N .

Theorem 2 The difference between the variance incurred by the two-

stage sampling method and that incurred by the optimal sampling is an

order of 1
N .

Proof: We want to show that

lim
N→∞

[V ar(η̂TwoStage)− V ar(η̂optimal)] = 0

.
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The proof will therefore follow if we demonstrate that the test cases for

partition j are nearly equal to

√
E(P 2

j )σxj

k∑
i=1

√
E(P 2

i )σxi

We are aware that the estimation of nj should not be smaller than the initial

sample and should not go beyond the remaining test cases for stage two,

which is:

nj = min{N − (k − 1)L,max{L, nj}}

. Next, divide both sides by N , then

nj

N
= min{N

N
− (k − 1)L

N
,max{ L

N
,
nj

N
}}

Now, using the estimate of nj in above

nj

N
= min{1− (k − 1)L

N
,max{ L

N
,

√
E(P 2

j )σxj

k∑
i=1

√
E(P 2

i )σxi

}}

Hence, if we test a large number of test cases N , the proportion of
nj

N reach
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such as √
E(P 2

j )σxj

k∑
i=1

√
E(P 2

i )σxi

In the next chapter, we will use the Monte Carlo simulation to prove that

the two-stage sampling scheme is much more effective than the balanced

sampling scheme.
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CHAPTER 6

MONTE CARLO SIMULATIONS

We consider the case in which the test domain is divided into two subdo-

mains D1, D2, each with reliability θ1 and θ1. In each sub-domain we assume

that the unknown usage probability P1 and P2 follow Beta distribution such

that P1 ∼ Beta(a, b), P2 ∼ Beta(b, a). Before we start with a Monte Carlo

Simulations, lets find from the next equation when test cases n1 and n2 are

equal:

n1
n2

=

√
E(P 2

1 )σx√
E(P 2

2 )σy

=

√
(a ∗ b)/((a+ b)2 ∗ (a+ b+ 1)) + (a/(a+ b))2

√
(θ1(1− θ1))√

(a ∗ b)/((a+ b)2 ∗ (a+ b+ 1)) + (b/(a+ b))2
√
(θ2(1− θ2))

(6.1)

It is clear that n1 = n2 in the next two cases:

• a = b and θ1 = θ2

• a = b and θ1 = 1− θ2

In the next two sections, we will show simulations for the fully sequen-

tial method and the two-stages method that we discussed in chapter 4 and

chapter 5.
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6.1 Monte Carlo Simulation For the Fully Sequential Method

In this section, we begin by showing the results of an experimental com-

parison between the fully allocation, the optimal allocation, and the balanced

allocation in Table 1 through Table 4. In columns three, four and five of these

tables, we show the estimated variance for the fully allocation sampling, the

optimal allocation sampling and the balanced allocation sampling, while col-

umn six shows the ratio of the fully over the balanced. Column seven of

these tables show the mean number of component 1 to be tested.

In Tables 5,6,7,and 8, we display the result of speed where

Speed = N ∗ {V ar{η̂Fully} − V ar{η̂Optimal}}

In these tables, we show the different cases for a and b with θ1 = 0.8 and

θ2 = 0.9 when N becomes very large.

Table 1 shows scenarios with uniform prior where a = 1 and b = 1. Given that

this is the most typical prior parameter configuration, it can be concluded

that little is actually known about the reliability of each partition. In these

cases, except two cases in row 1 and row 2, the ratios less than 1 show that

we still benefit from using the fully sequential method over the balanced

allocation. The only two cases in which the balanced allocation is best when

the reliability of partitions is θ1 = θ2 or θ1 = 1 − θ2 such as the case in row
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one and row two of the Table 1. This happens simply because the optimal

sampling for equal probabilities must fulfill

n1 = n2 =
1

2
N.

Table 2 through Table 4 represent a high expected reliability in each

partition since a = 1, 0.5, 0.1 which is much larger than b = 0.05, 0.01, 0.001.

This is a very likely scenario in reality and shows that high reliability in each

sub-domain is assumed. The fully sequential sampling method outperformed

very well over the balanced allocation under these situations, especially when

the reliability for each subdomain is equal (θ1 = θ2).

The results in Tables 2 through 4 show that the fully sequential sampling

consistently performs close to optimal sampling, regardless of the reliability

or usage probability for each partition. As an example, the result of the fully

in row six of Table 2 is .0053062230 , which is extremely close to the optimal

.005305491 while the balanced is .008182202. Inferentially, this is what is

anticipated from the fully method over the balanced method given that the

fully sampling scheme dynamically employs information obtained during the

testing process.

For example, consider Table 4:

θ1 = 0.4 , θ2 = 0.6
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The ratio of the variance produced by the fully allocation to the variance

produced by the balanced allocation is .616519908. The fully has average

sample-size of n1, n2:

48 mean of component 1 to be tested and

2 mean of component 2 to be tested,

whereas the balanced allocation has an average sample-size of n1, n2:

25 each of mean of component 1 and component 2 to be tested.

The results of various Monte Carlo simulations of a and b for the particular

case where θ1 = 0.8 and θ2 = 0.9 are shown in Tables 5 to 8, giving readers

an indication of the speed at which this happens. When N becomes very

large in Tables 5 to 8, the speed gets close to 0. This indicates that the fully

sequential sampling gets close to optimal as the total number of test cases get

large. For the sample sizes that are considered, the excess variance incurred

by the fully over variance incurred by optimal is of the order of 1
N .

6.2 Monte Carlo Simulation For the Two-Stages Method

We begin this section by presenting the results of an experimental com-

parison of the two-stages allocation, the optimal allocation, and the balanced

allocation in Tables 9 through 12. The estimated variance for the two-stages
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allocation sampling, the optimal allocation sampling, and the balanced allo-

cation sampling are displayed in columns three, four, and five of the tables,

respectively, while the ratio of the two-stages allocation sampling to the bal-

anced sampling is displayed in column six. The mean number of component

1 tests is displayed in column 7 of these tables.

Tables 13, 14, 15, and 16 show the outcome of speed where

Speed = N ∗ {V ar{η̂Two−stages} − V ar{η̂Optimal}}

In these tables, we display the various scenarios for a and b with θ1 = 0.8

and θ2 = 0.9 when N increases significantly.

Table 9 displays scenarios with uniform priors where a = 1 and b = 1.

It can be inferred that little is actually known about the reliability of each

partition due to the most typical prior parameter configuration. Except for

the two cases in rows 1 and 2, the ratios less than 1 in these cases demonstrate

that we continue to gain advantages using the two-stages method over the

balanced allocation. When the reliability of partitions is θ1 = θ2 or θ1 =

1 − θ2, as in the cases of row one and row two of Table 9, the only two

cases in which the balanced allocation is best. This occurs simply because

n1 = n2 =
1
2N must be met for the best sampling to yield equal probabilities.

Tables 10 through 12 show a high level of expected reliability for each par-

tition because a = 1, 0.5, 0.1 is a much larger value than b = 0.05, 0.01, 0.001.
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The assumption of high reliability in each sub-domain is demonstrated by

the fact that this is a very probable scenario in reality. Under these circum-

stances, especially when the reliability for each subdomain is equal (θ1 = θ2),

the two-stages sampling method performed much better than the balanced

allocation.

No matter the reliability or usage probability for each partition, the re-

sults in Tables 10 through 12 demonstrate that two-stage sampling is closer

to optimal sampling than balanced sampling. For instance, the outcome of

the two-stages in row one of table 11 is .002225688, which is close to the

optimal .002183488 while the balanced is .003553253. Since the two-stages

sampling scheme employs information obtained during the first stage, this is

what is expected inferentially: for the two-stages method to do better than

the balanced method.

For instance, consider Table 11:

θ1 = 0.9 , θ2 = 0.99

The ratio of the variance produced by the two-stages allocation to the vari-

ance produced by the balanced allocation is .59006776. The two stages have

an average sample size of n1, n2:

43 on average for the component 1 that will be tested, and
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7 on average for the component 2 that will be tested

While the balanced allocation has an average sample size of n1, n2:

25 on average for component 1 and component 2 to be tested.

Tables 13 to 16 give readers an idea of the speed at which this occurs

by displaying the results of various Monte Carlo simulations of a and b for

the specific case where θ1 = 0.8 and θ2 = 0.9. In Tables 13 to 16, the speed

approaches zero when N grows extremely large. This shows that, as the total

number of test cases increases, the two-stages sampling method gets closer

to optimal level. For the sample sizes taken in to consideration, the excess

variance incurred by the two-stages over variance incurred by the optimal is

of the order of 1
N .

Although these results of the study are convincing, a tester may have

other goals in addition to minimizing variance. In reality, reliability test-

ing may only serve as a barometer to assess the reaching of a milestone or

being ready for release. Knowing precisely how unreliable a system is may

be useless if it is evidently insufficient under these conditions. However, the

methods described here hold significant promise for situations where relia-

bility is close to meaningful levels.
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CHAPTER 7

SUMMARY AND CONCLUSION

When estimating software reliability, the optimal sampling scheme is eas-

ily determined but it is not practical. It depends on unknown parameters

such as the reliability of each strata and the usage probabilities. In order to

minimize the optimal, we employed two methods to allocate the test cases

among partitions. By dynamically allocating test cases to partitions, this

method aims to minimize the variance of the reliability estimation. we pre-

sented a fully sequential sampling method

In this dissertation, we employed two methods to estimate the reliability

of software system using partition testing. We have shown by theoretical re-

sults and Monte Carlo simulations that the fully sequential sampling method

and two-stages sampling method perform at least as well as balanced sam-

pling method, which allocates test cases beforehand, and is nearly optimal.

After providing some background information about reliability in the first

chapter, we presented software reliability estimation for K partitions in the

second chapter. We have shown the variance of estimated reliability when us-

age probabilities Pi are unknown using Rekab’s Lemma. Also, we determined

the optimal estimated software reliability. In the same way as chapter 2, we

addressed software reliability estimation for two partitions in more detail in
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chapter 3 and one assumption.

In the fourth chapter, we presented the first method which is a fully

sequential sampling method to estimate the reliability of software systems

using partition testing. Furthermore, we introduced the second method,

two-stages sampling, in the fifth chapter. According to the fully sequential

sampling method, test cases are allocated one at a time, allowing decisions

to be made after each test is run, while the two-stages sampling method al-

locates test cases in two batches. As a result, it is highly implementable, less

expensive, and still produces reliable results. We have shown in both chap-

ters by theoretical results that both methods, the fully sequential sampling

method and the two-stages sampling method, perform at least as well as the

balanced sampling method, which allocates test cases beforehand.

We showed the Monte Carlo simulations for two partitions in chapter 6.

In the first section, comparisons have been made between the fully sequen-

tial sampling method, the optimal allocation, and the balanced method. It

is indicated that the fully sequential sampling method outperforms the bal-

anced method. In the second section, we compared the two-stages sampling

method, the optimal allocation, and the balanced method. It is shown that

the two-stages sampling method performs better than the balanced method.

n our future studies, we will use a fully Bayesian approach allowing the

conditional reliability of each strata to be randomly distributed with inde-
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pendent priors and random usage probabilities. Other sampling schemes such

as multistage and accelerated sampling schemes will be compared to the best

fixed sampling scheme and to the optimal. The comparisons shall be carried

both theoretically and numerically.
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TABLES

Table 1: Comparison of Fully, Optimal, and Balanced allocation sampling
[Uniform prior a = 1 , b = 1]

[N=50 ,and 1000 replication]

θ1 θ2 Fully Optimal Balanced Ratio E{n1}

.1 .1 .0024 .0024 .0024 1 25.1

.4 .6 .009774557 .009733333 .009733333 1.004235343 23.9

.5 .7 .0094551280 .00945505 .009466667 .998781092 23.68

.5 .8 .0129273500 .0129 .01296667 .99696761 23.78

.5 .9 .0177884600 .0176 .01786667 .995622575 23.6

.7 .8 .0057478630 .00574404 .005766667 .996739191 24.66

.7 .9 .0072756410 .007166364 .007333333 .992132909 24.68

.8 .9 .0041346150 .0041 .004166667 .992307521 24.9

.9 .99 .001966346 .001738995 .002007 .979743896 25.34
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Table 2: Comparison of Fully, Optimal, and Balanced allocation sampling
[a = 1 , b = 0.05]

[N=50 ,and 1000 replication]

θ1 θ2 Fully Optimal Balanced Ratio E{n1}

.1 .1 .002266392 .00225832 .003432753 .660225772 45.4

.4 .6 .0069286190 .006907093 .01003891 .690176424 45.2

.5 .7 .0070178390 .007012827 .01038131 .676007074 44.88

.5 .8 .0079207200 .007919169 .01143866 .692451738 44.8

.5 .9 .0091847540 .00913253 .01291895 .710952051 44.42

.7 .8 .0053062230 .005305491 .008182202 .648507944 44.38

.7 .9 .0056853500 .005659081 .00877759 .647711957 44.02

.8 .9 .0039658150 .003961007 .006255605 .633961863 43.38

.9 .99 .0021199760 .002036239 .0035338 .599913974 41.68
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Table 3: Comparison of Fully, Optimal, and Balanced allocation sampling
[a = 0.5 , b = 0.01]

[N=50 ,and 1000 replication]

θ1 θ2 Fully Optimal Balanced Ratio E{n1}

.1 .1 .002183872 .002183488 .003553253 .614612019 47.06

.4 .6 .0063773540 .006331863 .009984569 .63872101 46.66

.5 .7 .0064907070 .006469629 .01035839 .626613499 46.68

.5 .8 .0069633030 .006961367 .0109687 .634833937 46.44

.5 .9 .0076106860 .007608121 .01182312 .64371215 46.4

.7 .8 .0050918570 .005088309 .008392 .606751311 45.94

.7 .9 .0052503830 .005244705 .008737199 .600922904 46

.8 .9 .0038261340 .003809875 .006407479 .597135629 45.36

.9 .99 .0020768860 .001993675 .003614351 .574622111 43.76
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Table 4: Comparison of Fully, Optimal, and Balanced allocation sampling
[a = 0.1 , b = 0.001]

[N=50 ,and 1000 replication]

θ1 θ2 Fully Optimal Balanced Ratio E{n1}

.1 .1 .002137929 .002136472 .003593525 .594939231 47.6

.4 .6 .006127518 .006053405 .009938881 .616519908 47.54

.5 .7 .0062479680 .00620481 .01032376 .605202756 47.5

.5 .8 .0065431240 .006531045 .01075094 .60860948 47.52

.5 .9 .0069563420 .006952974 .01134899 .612948113 47.26

.7 .8 .0049889570 .004964367 .008455926 .589995348 47.04

.7 .9 .0050460280 .005045904 .008697831 .580147855 46.88

.8 .9 .0037322700 .003723625 .006452321 .578438363 46.12

.9 .99 .00202979 .001967131 .003636804 .558124661 45.14

46



Table 5: Comparison of Fully and Optimal allocation sampling [ a = 1 ,
b = 1 , θ1 = 0.8 , θ2 = 0.9 ,and 1000 replication]

N Fully Optimal speed

10 .0191666700 .0171666700 .0200000000
20 .0094865320 .0090000000 .0097306400
30 .0065178570 .0062777780 .0072023700
40 .0050689220 .0049166670 .0060902000
50 .0042094020 .0041000000 .0054701000
60 .0036401560 .0035555560 .0050760000
70 .0032352940 .0031666670 .0048038900
80 .0029325620 .0028750000 .0046049600
90 .0026976280 .0026481480 .0044532000
100 .0025100040 .0024666670 .0043337000
200 .001669084 .00165 .0038168000
500 .0011670450 .00116 .0035225000
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Table 6: Comparison of Fully and Optimal allocation sampling [ a = 1 ,
b = 0.05 , θ1 = 0.8 , θ2 = 0.9 ,and 1000 replication]

N Fully Optimal speed

10 .0199018300 .0189201300 .0098170000
20 .0100615300 .0095706780 .0098170400
30 .0067814280 .0064541940 .0098170200
40 .0050397960 .0048959520 .0057537600
50 .0040352440 .0039610070 .0037118500
60 .0033801160 .0033377110 .0025443000
70 .0029184780 .0028924990 .0018185300
80 .0025753390 .0025585900 .0013399200
90 .0023101070 .0022988830 .0010101600
100 .0020988680 .0020911170 .0007751000
200 .0011585420 .0011561720 .0004740000
500 .0005954183 .0005952048 .0001067500
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Table 7: Comparison of Fully and Optimal allocation sampling [ a = 0.5 ,
b = 0.01 , θ1 = 0.8 , θ2 = 0.9 ,and 1000 replication]

N Fully Optimal speed

10 .0227813200 .0185401500 .0424117000
20 .0107516400 .0093337270 .0283582600
30 .0066809120 .0062649200 .0124797600
40 .0050178680 .0047305170 .0114940400
50 .0039638220 .0038098750 .0076973500
60 .0032360050 .0031961140 .0023934600
70 .0027693260 .0027577130 .0008129100
80 .0024390740 .0024289120 .0008129600
90 .0021790810 .0021731780 .0005312700
100 .0019708100 .0019685910 .0002219000
200 .001048237 .001047949 .0000576000
500 .0004955822 .000495564 .0000091500
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Table 8: Comparison of Fully and Optimal allocation sampling [ a = 0.1 ,
b = 0.001 , θ1 = 0.8 , θ2 = 0.9 ,and 1000 replication]

N Fully Optimal speed

10 .0202781100 .0182619800 .0201613000
20 .0096692040 .0091755060 .0098739600
30 .0063789590 .0061466830 .0069682800
40 .0047731240 .0046322720 .0056340800
50 .0037914470 .0037236250 .0033911000
60 .0031357890 .0031178600 .0010757400
70 .0027213560 .0026851710 .0025329500
80 .0023728820 .0023606540 .0009782400
90 .0021116640 .0021082520 .0003070800
100 .0019066220 .0019063310 .0000291000
200 .000997731 .000997684 .0000093600
500 .0004524991 .000452496 .0000017000
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Table 9: Comparison of Two Stages, Optimal, and Balanced allocation
sampling [Uniform prior a = 1 , b = 1]

[N=50 ,and 1000 replication]

θ1 θ2 2stages Optimal Balanced Ratio E{n1}

.1 .1 .002405899 .0024 .0024 1.002457917 31.851

.4 .6 .009989469 .009733333 .009733333 1.026315343 22.864

.5 .7 .0094600560 .00945505 .009466667 .999301655 23.801

.5 .8 .0129380000 .0129 .01296667 .997788947 26.157

.5 .9 .0178000400 .0176 .01786667 .99627071 31.534

.7 .8 .0057571710 .00574404 .005766667 .998353295 25.675

.7 .9 .0072858240 .007166364 .007333333 .9935215 32.311

.8 .9 .0041432170 .0041 .004166667 .994372 31.87

.9 0.99 .001766679 .001738995 .002007 .880258595 41.551
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Table 10: Comparison of Two Stages, Optimal, and Balanced allocation
sampling [a = 1 , b = 0.05]

[N=50 ,and 1000 replication]

θ1 θ2 2stages Optimal Balanced Ratio E{n1}

.1 .1 .002313736 .00225832 .003432753 .674017618 39.988

.4 .6 .0073014310 .006907093 .01003891 .727313125 37.114

.5 .7 .0075048000 .007012827 .01038131 .722914545 37.474

.5 .8 .0085532520 .007919169 .01143866 .747749474 38.26

.5 .9 .0097339950 .00913253 .01291895 .753466419 39.712

.7 .8 .0057144850 .005305491 .008182202 .698404293 38.272

.7 .9 .0060807540 .005659081 .00877759 .692758946 39.886

.8 0.9 .0042097460 .003961007 .006255605 .672955853 40.102

.9 .99 .0022025940 .002036239 .0035338 .623293339 42.622
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Table 11: Comparison of Two Stages, Optimal, and Balanced allocation
sampling [a = 0.5 , b = 0.01]

[N=50 ,and 1000 replication]

θ1 θ2 2stages Optimal Balanced Ratio E{n1}

.1 .1 .002225688 .002183488 .003553253 .62638039 40.812

.4 .6 .0067431420 .006331863 .009984569 .675356342 39.108

.5 .7 .0069355380 .006469629 .01035839 .669557528 39.332

.5 .8 .0074492650 .006961367 .0109687 .679138366 39.74

.5 .9 .0081226580 .007608121 .01182312 .687014764 40.86

.7 .8 .0054382210 .005088309 .008392 .648024428 39.8

.7 .9 .0056434610 .005244705 .008737199 .645911922 40.948

.8 .9 .0040256200 .003809875 .006407479 .628268934 40.952

.9 .99 .0021327120 .001993675 .003614351 .59006776 42.776
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Table 12: Comparison of Two Stages, Optimal, and Balanced allocation
sampling [a = 0.1 , b = 0.001]

[N=50 ,and 1000 replication]

θ1 θ2 2stages Optimal Balanced Ratio E{n1}

.1 .1 .00223718 .002136472 .003593525 .62255863 40.856

.4 .6 .0066047490 .006053405 .009938881 .664536481 39.104

.5 .7 .0068141200 .00620481 .01032376 .660042465 39.352

.5 .8 .0071495260 .006531045 .01075094 .665014036 39.86

.5 .9 .0075374000 .006952974 .01134899 .664147206 40.996

.7 .8 .0054519840 .004964367 .008455926 .644753041 39.888

.7 .9 .0054905850 .005045904 .008697831 .631259104 40.892

.8 .9 .0039845970 .003723625 .006452321 .617544756 40.98

.9 .99 .0021001770 .001967131 .003636804 .577478742 42.724
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Table 13: Comparison of Two Stages and Optimal allocation sampling [
a = 1 , b = 1 , θ1 = 0.8 , θ2 = 0.9 ,and 1000 replication]

N 2stages Optimal speed

10 .0174709100 .0171666700 .0030424000
20 .0092228890 .0090000000 .0044577800
30 .0065382790 .0062777780 .0078150300
40 .0051650980 .0049166670 .0099372400
50 .0044042220 .0041000000 .0152111000
60 .0038128540 .0035555560 .0154378800
70 .0034132140 .0031666670 .0172582900
80 .0031199520 .0028750000 .0195961600
90 .0028596910 .0026481480 .0190388700
100 .0026500900 .0024666670 .0183423000
200 .001736136 .00165 .0172272000
500 .0011887280 .00116 .0143640000
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Table 14: Comparison of Two Stages and Optimal allocation sampling [
a = 1 , b = 0.05 , θ1 = 0.8 , θ2 = 0.9 ,and 1000 replication]

N 2stages Optimal speed

10 .0219423900 .0189201300 .0302226000
20 .0105000200 .0095706780 .0185868400
30 .0069086120 .0064541940 .0136325400
40 .0051865770 .0048959520 .0116250000
50 .0041522310 .0039610070 .0095612000
60 .0034956930 .0033377110 .0094789200
70 .0030123300 .0028924990 .0083881700
80 .0026624020 .0025585900 .0083049600
90 .0023840250 .0022988830 .0076627800
100 .0021594910 .0020911170 .0068374000
200 .0011785730 .0011561720 .0044802000
500 .0006003431 .0005952048 .0025691500
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Table 15: Comparison of Two Stages and Optimal allocation sampling [
a = 0.5 , b = 0.01 , θ1 = 0.8 , θ2 = 0.9 ,and 1000 replication]

N 2stages Optimal speed

10 .0228064600 .0185401500 .0426631000
20 .0106595600 .0093337270 .0265166600
30 .0069550240 .0062649200 .0207031200
40 .0051744560 .0047305170 .0177575600
50 .0041364680 .0038098750 .0163296500
60 .0034081150 .0031961140 .0127200600
70 .0029098930 .0027577130 .0106526000
80 .0025422040 .0024289120 .0090633600
90 .0022661620 .0021731780 .0083685600
100 .0020444080 .0019685910 .0075817000
200 .001074416 .001047949 .0052934000
500 .0005038655 .000495564 .0041507500
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Table 16: Comparison of Two Stages and Optimal allocation sampling [
a = 0.1 , b = 0.001 , θ1 = 0.8 , θ2 = 0.9 ,and 1000 replication]

N 2stages Optimal speed

10 .0248309800 .0182619800 .0656900000
20 .0106126800 .0091755060 .0287434800
30 .0069409220 .0061466830 .0238271700
40 .0050887550 .0046322720 .0182593200
50 .0040436420 .0037236250 .0160008500
60 .0033481380 .0031178600 .0138166800
70 .0028789780 .0026851710 .0135664900
80 .0025019390 .0023606540 .0113028000
90 .0022230910 .0021082520 .0103355100
100 .0019910810 .0019063310 .0084750000
200 .00102504 .000997684 .0054712000
500 .0004602199 .000452496 .0038619500
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