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ABSTRACT

Privacy and security of data have been a critical concern at the state, organization

and individual levels since times immemorial. New and innovative methods for data

storage, retrieval and analysis have given rise to greater challenges on these fronts.

Online social networks (OSNs) are at the forefront of individual privacy concerns due

to their ubiquity, popularity and possession of a large collection of users’ personal

data. These OSNs use recommender systems along with their integration partners

(IPs) for offering an enriching user experience and growth. However, the recommender

systems provided by these OSNs inadvertently leak private user information.

In this work, we develop solutions targeted at addressing existing, real-world pri-

vacy issues for recommender systems that are deployed across multiple OSNs. Specif-

ically, we identify the various ways through which privacy leaks can occur in a friend

recommendation system (FRS), and propose a comprehensive solution that integrates

both Differential Privacy and Secure Multi-Party Computation (MPC) to provide a

holistic privacy guarantee. We model a privacy-preserving similarity computation

framework and library named Lucene-P2. It includes the efficient privacy-preserving

Latent Semantic Indexing (LSI) extension. OSNs can use the Lucene-P2 framework

to evaluate similarity scores for their private inputs without sharing them. Security

proofs are provided under semi-honest and malicious adversary models.

We analyze the computation and communication complexities of the protocols

proposed and empirically test them on real-world datasets. These solutions provide

functional efficiency and data utility for practical applications to an extent.

x



Chapter 1

Introduction

Online Social Networks (OSNs) are ubiquitous today, and have gone far beyond

their original intent and impacted human life across multiple spheres such as en-

abling knowledge creation [1], sociopolitical movements [2], health management [3,4],

etc. Following the original OSNs that enable users to connect with old or new

friends/acquaintances, there are other emerging and more specialized OSNs that cater

to certain demand or enable specific services for the users, such as, Spotify (Music),

Instagram (Photos), Fitbit (Fitness), and so on.

Depending on the function and the type of an OSN, personalised recommendations

can be made to its users regarding new friends, groups, events, goods for purchase,

etc. OSNs use friend recommender systems (FRS) to increase their user base and

enrich online user interaction. In order to prvide more accurate recommendations,

the existing FRS also leverages information from other OSNs by forming integration

partners (IP) [5]. However, these partnerships have led to many security and privacy

issues. For example, Facebook’s (FB) partners namely Microsoft’s Bing can see vir-

tually all FB users’ friends without consent, and Netflix and Spotify were able to read

FB user’s private messages [6, 7].

Consider the example of Spotify which allows its users to connect or create an
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account using the individual’s Facebook account. The users can listen to songs and

create their own contents, they can also follow their friends’ collection or some artist.

As a result, a small network can be formed by Spotify users. However, Spotify can-

not boast of a rich, stable and robust network that Facebook has of its users, that is

created over a duration of almost a decade. Reaching that stage of network structure

would take some time and not allow Spotify the ability to provide more accurate

recommendations, of either users or songs, to its users. One solution to this prob-

lem is that Spotify can, in collaboration with Facebook, provide diverse yet relevant

recommendations to its users. Here, Spotify (the client) and Facebook (the server)

would be in an integration partnership with the server providing recommendation

services, based on its social network data, to the client. While this has benefits, there

are numerous privacy/security risks:

1. Leaking the server’s social network data to the client : The client can recreate

the server’s owned network to a certain extent by repeatedly running queries

for the same users. Using a mutual friends based FRS, the client can repeatedly

execute such type of query to infer one friendship at a time. Eventually, the

client may be able to construct the original graph or sub-graph of friendship

that is owned by the server.

2. Leaking client’s user information: The server knows which users in its network

are subscribing to the services provided by the client. Users subscribing to

client’s services might want to keep this membership information private from

the server. On the other hand, the client may want to keep its users’ information

private.

3. Leaking client’s network data to the server : The server can recreate the net-

work on the client by analyzing the recommendation scores and patterns of

users queried. It can assume that the user always picks the top one or two
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recommended users and create a sub-graph of the possible friendship graph for

a user that would be created on the client.

1.1 Overview

In this section, we cover the problem addressed in this work. Initially we define the

problem and then describe the adversary model in which the protocol is proposed.

1.1.1 Problem Definition

In this work, we propose privacy-preserving friend recommendation (PPFR) protocols

in the aforementioned integration partnership environment to protect the private

network data at both the server S and the client C. In practice, the server in our

application domain is a well-established social network like Facebook, and the client

is a specialized social network who wants to provide friend recommendations to its

own users based on the social network data from the server. The network datasets are

modeled as graphs and denoted byGS andGC at the server and the client respectively.

Without any security guarantee, a mutual friend based FR generally works as

follows: given a user u at the client C, C selects a set of users {v1, . . . , vm} who may

potentially become friends with u. C issues a query in the form of m pairs of user-ids,

(u, v1), . . . , (u, vm), to the server S. For each pair (u, vi), S performs the necessary

computation to obtain the mutual friends count si ← mGS
(u, vi) which will be sent

to C. The client can then make use of the scores to recommend some users (e.g., top

k or above a predefined threshold) in v1, . . . , vm to u. Thus, the FR functionality is

defined as follows between a server S and a client C:

FR(〈S,GS〉, 〈C, (u, v1), . . . , (u, vm)〉)→ 〈C, s1, . . . , sm〉 (1.1)
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1.1.2 Adversary Model and Protocol Overview

We assume the server and the client are semi-honest [8]. That is, the participants fol-

low the prescribed steps of the protocol, and then try to learn additional information.

In addition, we assume the parties are computationally bounded. For a privacy-

preserving friend recommendation (PPFR) protocol in the integration partnership

environment, the following information needs to be protected.

• GS: The server’s network data that needs to be protected from the client. Since

information regarding GS can be inferred from the mutual friends counts, this

implies that s1, . . . , sm should be protected.

• GC : Information regarding the client’s network data should not be disclosed

to the server. This implies that the server should not know the user ids, e.g.,

(u, v1), . . . , (u, vm) used in the recommendation.

In order to prevent the server from knowing (u, v1), . . . , (u, vm) and simultaneously

derives s1, . . . , sm, one natural choice is to adopt Secure Multiparty Computation

(SMC) techniques [8] to implement the FR functionality given in Equation 1.1. How-

ever, SMC alone is not sufficient. As discussed previously, the similarity scores can

leak information regarding the server’s network data GS.

What if we modify the FR functionality? Instead of returning the similarity

scores, the server can return (1) the top k most similar users where 1 ≤ k ≤ m,

or (2) all the users whose similarity scores are above a given threshold. While both

options seemingly leak less information about GS, it is hard to actually quantify the

exact degree of information leakage. Instead, we adopt Differential Privacy (DP)

[9–11] as a formal and quantifiable model to control information leakage from the

similarity scores. Specially, only differentially private similarity scores are returned

to the client. In summary, the key novelty of our proposed PPFR protocol is to
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intelligently combine two dominant privacy-preserving tools to prevent information

leaking during the friend recommendation process.

1.2 Contribution

We contribute two major solutions here. The first solution addresses the real-world

privacy issues in friend recommendation within an integrated collaborative environ-

ment. In this case, an integrated environment consists of two or more organisations,

e.g. OSNs, that want to provide a cross-platform service (recommendation) while

leveraging their individual private inputs and resources in a privacy-preserving way.

Similarly, the second solution, named Lucene-P2, addresses the privacy issues in

distributed text-based search for documents. Lucene-P2 allows two parties to com-

pute secure similarity amongst their private input documents without actually shar-

ing them. However, the application of Lucene-P2 is not just restricted to document

entities but it can be used to compute privacy-preserving similarity scores for any

text-based entities. Thus, it enables privacy-preserving entity-based friend recom-

mendation e.g. two OSNs may obtain similarity scores for their private users without

sharing their user information with each other to perform friend recommendations.

Given below is a list of contributions with regards to the privacy-preserving

(friend) recommendation in integrated environments and privacy-preserving (docu-

ment, entity or friend) recommendation in distributed environment.

1.2.1 Privacy-Preserving Friend Recommendation based on
Common Friends

Following are our contributions by way of the PPFR protocol.

1. We provide the Privacy-preserving Friend Recommendation (PPFR) protocol

that integrates both Secure Multi-party Computation (SMC) and Differential
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Privacy (DP) to provide a holistic privacy guarantee. More precisely, we guar-

antee privacy of GC depending on the underlying homomorphic encryption used,

i.e. the Paillier Cryptosystem [12], and GS to an extent (ε) provided by ε-DP.

2. We provide the security analysis for PPFR in the semi-honest adversary model.

3. We present time and communication complexities for the PPFR protocol.

4. We empirically test the solution on the DBLP real-world dataset. Performance

is reported along with utility evaluation e.g. Kendall’s τ , Spearman correlation

coefficient ρ, precision, recall etc.

1.2.2 Privacy-Preserving Friend Recommendation based on
Similar Profiles

The filtering technique of this solution is analogous to the content-based filtering tech-

nique used in recommender systems. As mentioned earlier, the privacy-preserving

entity-based recommendation could be applied for any entity e.g. documents, prod-

ucts, users etc. In this work, we provide Lucene-P2, which has been developed for

document entities. Lucene-P2 can be easily modified for enabling Privacy-preserving

Friend Recommendation by having the documents contain user profile information or

by constructing the internal vectors from the OSN user profiles.

Our contributions are as follows:

Objective and Contribution

A system overview of Lucene-P2 is given in Figure 1.1 where Alice, with a query

document, wants to retrieve relevant information from Bob’s collection.

• Input representation: Initially, both Alice and Bob’s inputs will be processed

by the data representation component whose outputs become the inputs to the

next component.
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• Secure correlation computation: This component returns the IDs of documents

in Bob’s collection most relevant to Alice’s query. During the process, no other

information regarding the private inputs of Alice and Bob is disclosed to the

other party.

• Information sharing: Once Bob knows which documents are correlated to Alice’s

query, the actual documents that satisfy predetermined access control policies

will be shared with Alice.

Apache Lucene forms a significant core of other Apache projects, such as Apache

Solr, Elasticsearch, DocFetcher, Swiftype, etc. All of these are widely used in en-

terprise and research environments. Hence, addressing the privacy-preserving side

of similarity computation in Lucene has a broad and realistic impact, e.g., Cloudera,

Hortonworks, and MapR big data solutions, Human Metabolome Database interfaces,

etc.

As the name implies, the framework utilizes Lucene to produce an inverted index

for a document collection and represents each document within the vector space

model. Although Lucene provides an approach to compute information relevancy or

correlation, when used directly, Alice must disclose her private query document to

Bob and vice versa. Therefore, one of the key technical contributions of our model

is the introduction of secure protocols to compute information correlation without

disclosing any private (and irrelevant) information.

Figure 1.1: System Overview
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The main objective of this work is to develop the core techniques required by the

Lucene-P2 framework to control disclosure without relying upon a trusted third party.

Since un- or semi-structured information (e.g., text-based documents) are ubiquitous

in many organizations and on the Internet, we focus on supporting the standard user

query-document response model. The access control component of the framework

can adopt the existing access control methodologies. As a result, this work only

focuses on the secure correlation computation (SCC) module. A basic version of an

SCC protocol can be defined as follows:

SCC(〈Pa, q〉, 〈Pb, D〉)→ s1, . . . , sn (1.2)

where Pa and Pb denote Alice and Bob respectively. Each pair of angular brackets

on the left of Equation 1.2 indicates the private input of the corresponding party.

The final result is a set of n similarity scores s1, . . . , sn based on the scoring function

adopted in Lucene (details are given in Section 2.2). The proposed SCC protocols

are computationally secure under the semi-honest model defined in the literature of

secure multi-party computation [13,14], and we will discuss its limitations and poten-

tial extensions under the malicious adversary model. In addition, our design goal is to

minimize the number of servers needed and the interactions or round complexity be-

tween the client and the servers. The main contributions of this work are summarized

below:

• To model and develop a privacy-preserving framework and library based on

the non-secure similarity computation framework offered by Apache Lucene, a

widely used Information Retrieval (IR) library.

• As part of the proposed framework, we have developed various Multi-Party

Computation protocols based on either additive homomorphic cryptosystems

or secret sharing schemes.
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• We apply the dimension reduction technique, Latent Semantic Indexing (LSI),

to the SCC protocol, called SCC-LSI, evaluate and compare the performance

improvement on a real dataset.

• We provide the security and complexity analysis of these techniques, and ex-

amine the implications of the proposed protocols under the semi-honest and

malicious adversary models.
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Chapter 2

Related Work and Background

A large amount of interesting work has been done in the area of Recommender Systems

(RSs), in general, as well as within the field of Privacy-preserving Data Analytics. Due

to the sensitive nature of the data processed by these RSs, there is a high requirement

for some privacy-preserving RS solutions. In this chapter, we begin by covering the

background details of concepts used within this work and a few related references.

2.1 Related Work

In this section, we see a few related works in privacy-preserving friend recommen-

dation and privacy-preserving document-similarity computation. It is interesting to

note that our second work, i.e. the privacy-preserving document-similarity compu-

tation, involves secure similarity computation amongst two documents belonging to

two different parties. This approach can be applied as content-based friend recom-

mendation. This content-based friend recommendation is achievable by representing

the user profiles as vectors in Euclidean space.
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2.1.1 Private Friend Recommendation

As specified earlier, Differential Privacy guarantees an individual’s privacy while en-

abling the analysis of the differentially private data. In this section, we consider other

similar works in the areas of differential privacy (DP), multi-party computing (MPC)

and online social networks (OSN).

Due to the promise of providing user-level privacy, DP has been widely used in On-

line Social Networks. Primarily, within OSNs, DP is used for publishing the network

data in the form of histograms [15–19]. Our work does not use DP for publishing pu-

poses but to enable interactive cross-OSN collaboration for recommendation purposes.

The aforementioned DP histogram publication solutions cannot capture large-scale

and frequent changes within the network that could be possible in our method.

Apart from using DP for publishing network histograms, considerable amount of

work focusses on publishing non-histogram data which prevents node re-identification

or edge disclosure. Generally, these techniques are termed as node-DP [19] and edge-

DP [20], respectively. Node-DP protects the presence of a user within the dataset,

whereas edge-DP protects the presence of a relationship. In Friend-Rec-P2, we are

protecting existing friendships while recommending friends. k-edge privacy is a gen-

eral form of node-DP (k ← (n− 1)) and edge-DP (k ← 1) for n nodes. [21] propose a

trust-based friend recommendation system in OSNs using multi-hop trust chain based

on user attributes. Their approach uses kNN for co-ordinate matching and creating

a trust network. [22] computes recommender results by aggregating multi-hop trust

chain utilities in a privacy-preserving way. Trust-based networks are difficult to quan-

tify and track with time. [23] provide two algorithms based on additive homomorphic

encryption scheme and anonymous message routing. The solution maintains the users’

friend list private, which is similar to our approach, however, their friend recommen-

dation is accurate and may leak more information than required. All the solutions

are developed for a single OSN as against our solution for two integration partner
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OSNs. Other private friend recommendation techniques involve using anonymization

techniques e.g. [24] propose segmentation tree approach over hypergraph model of

graph.

2.1.2 Privacy-Preserving Text-based Search

Existing approaches to similar document detection, without considering privacy pro-

tection, have been developed to identify correlated contents. The idea of detecting

similar documents was introduced in [25]. Given a document, a set of (non-crypto)

hashes are computed based on all possible substrings of a certain length. A subset

of these hashes is then applied to represent each document as fingerprints. Two doc-

uments are deemed to be similar if the number of fingerprints in common is greater

than some pre-defined threshold. There has been a variety of research into document

fingerprints [26–34]. While hashing appears to have some inherent privacy-preserving

properties (because the text is not revealed in the clear), in practice, any overlapping

text (i.e., matching hashes that corresponding to words, n-grams, or sentences) are

revealed. This results in the disclosure of an unknown amount of text. It leads to

protocols that are less secure than what we introduce in this work.

There are several alternative approaches which merit attention. First, ranking

methods from the information retrieval literature provide an alternative strategy to

detect similar documents [35, 36]. In this setting, a vector space model is relied

upon for detecting similar documents. By contrast, there are instance-based cluster-

ing techniques have been suggested [37]. Still, all of these approaches assume that

information is accessible to at least the service providers. Therefore, they are not

applicable to our problem.
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Secure Correlation Detection Approaches

The problem, as well as solutions, to secure similar document detection (SSDD)

[38–40] is closely related to our work. The SSDD problem was first introduced in

[40], where a secure protocol was proposed to compute the cosine similarity between

two documents that were independently owned by two parties without leaking their

actual contents. The approach offered in [39] utilized a local clustering technique to

reduce the computation complexity of the solution. The research in [38] adopted a

different document representation model and developed a secure protocol to compute

the Jaccard coefficient between two documents. Our approach is different from the set

of existing techniques. First, our approach provides for a substantially more advanced

similarity function to identify correlated information, which is commonly used in the

existing information retrieval (IR) toolkit. Secondly, we introduce a programming

library that can be combined with Lucene. In doing so, we provide users with the

flexibility to implement their own privacy-preserving IR applications.

A more recent paper [41] investigated the problem of privacy-preserving plagiarism

detection. Although the application is similar, the approach to the solution is very

different. For a start, it requires three entities to execute - root server, querier and

document submitter. It runs in two phases: in the first phase, document sources are

obtained, while in second phase, the sentences are aligned with the sources, if they

are similar. Although the second phase is similar in nature to our work, it is too

computationally expensive as sentences are represented by tf-idf (Term Frequency

in sentence/snippet-Inverse Snippet Frequency) and then dot product is computed,

for every pair of snippets/sentences belonging to each similar candidate document

sources obtained in the first phase, the same way as what we perform it using secure

dot product techniques given in [39, 40]. However, we do it between two parties and

have tf-idf at document level which can dramatically reduce the number of pair-wise

comparisons. Their scoring function is not commonly adopted in IR tasks. The
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approach also needs to disclose certain summary information of each document to

the cloud server. As a result, the solutions presented in this work are more secure

and practical.

In [42], the authors proposed a new framework, based on topic disclosure model

and an algorithm that suppresses the user intention for a search query. The decoy

terms, using ghost queries, are added to protect user’s query privacy. The paper [43]

addressed the problem of search privacy in the Internet using a statistical approach.

The authors model the problem of query scrambling into a set covering problem.

In [44], the authors proposed a browser extension that can semantically dissociate

queries in real time. It is basically a proxy between the user and search engine. For

dissociation purposes, the authors use the concept of Personalized Query Classifica-

tion. It is possible that such an extension can violate terms and conditions of search

services and dissociated profiles can be easily identified as those would be different

than average non-dissociated profiles. In summary, all these techniques are based

on information obfuscation and do not achieve the same secure guarantee as our

approach. Also, these techniques are not applicable for securely computing Lucene

similarity metrics.

Private Keyword Search, Private Information Retrieval, and Private
Statistics Evaluation

Private key word search techniques over encrypted data [45–52] focus on the situation

where an entity outsources its data, in encrypted form, to a remote server. The server,

in turn, performs the computation necessary to return only the encrypted data that

contain some specific keywords in a user query. Under our proposed problem domain,

first of all, the data are not encrypted. Secondly, keyword matching is only one

way to measure similarity. When data are not encrypted, more efficient privacy-

preserving protocols can be designed to compute advanced similarity measures (e.g.,
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the one invoked in Lucene). The same arguments can be applied to order-preserving

or searchable encryption schemes (e.g., [53–55]).

It should be recognized that private information retrieval (PIR) [56–63] is also

related to the work addressed in this work. However, most existing techniques only

protect the search (or user query) from disclosure and provide no control to the

server. The information being searched is, in theory, completely open. In [63], in-

formation is protected in both ways; however, the retrieved information cannot be

relied upon to compute more advanced similarity measures (e.g., cosine similarity

and KL-divergence) that are necessary for IR applications to identify the relevant

information. In SPIN [64], a user can query de-identified medical records. Yet we

cannot adopt this system because it is specialized to the medical domain and the user

queries are not protected from the system operator.

Private statistics evaluation [65] focuses on the task of securely evaluating a func-

tion on selected data points which can be reduced to secure evaluation of a multivari-

ate polynomial. There are no straightforward ways to apply these protocols to solve

the proposed problem, especially when our goal is to minimize the number of servers

and the round complexity.

2.2 Background

We classify the background technical details into security and privacy related ones

and information retrieval-based ones. We cover the main relevant topics below.

2.2.1 Data Privacy and Security Primitives

We provide the key technical background and threat models that are needed to de-

velop the proposed protocols. We then discuss friend recommendation (FR) based on

the criteria of number of mutual friends and provide a brief overview of differential

15



privacy (DP) [66], its application within our work in order to enhance the privacy.

The Threat and Adversary Model

Regarding a distributed protocol, security is generally related to the amount of in-

formation leaked during the protocol execution. To maximize privacy protection, the

ideal solution is to utilize a trusted third party (TTP) to perform all the required

computations. However, it is not realistic to assume the existence of such a TTP. As

a result, we adopt the fundamental methodologies in the literature of secure multi-

party computation (SMC) [13]. Briefly speaking, the goal of SMC is to develop a

secure protocol that provides the same security guarantee as the TTP model.

In order to prove the security guarantee of an SMC protocol, we need to clarify

the adversary model assumed in the design of the proposed secure protocols. An

adversarial model generally specifies what an adversary or attacker is allowed to do

during an execution of a secure protocol. Under SMC, there are three adversary

models [14, 67]: semi-honest, malicious and covert. The semi-honest model assumes

that the participating parties follow the protocol, but they are allowed to compute

any other information based on their own inputs, outputs and the messages received

during the execution of an SMC protocol. Under the malicious model, the participat-

ing parties can diverge arbitrarily from the prescribed computation, e.g., a malicious

party can distort his or her local computation. Under the covert model, malicious

behavior may not be preventable during protocol execution, but can be detected later.

In this work, we initially assume the participating parties are semi-honest. De-

veloping protocols under the semi-honest setting is an important first step towards

constructing protocols with stronger security guarantees. Subsequently, we will show

how to extend our protocols to satisfy the malicious adversary model. In addition, at

most one party can be malicious in a two-party SMC protocol. If both servers were

malicious, computations would be out of control, and there is nothing we can do about
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it. Thus, in SMC, two-party secure protocols always assume that there is no collusion

and at least one of the parties is semi-honest. The following definition captures the

properties of the secure protocol under a semi-honest adversary model [14].

Definition 1. Let ai be the input of party Pi, Πi(π) be Pi’s execution image of the

protocol π and bi be the output for party Pi computed from π. Then, π is secure if

Πi(π) can be simulated from ai and bi such that distribution of the simulated image

is computationally indistinguishable from Πi(π).

An execution image generally includes the inputs, the outputs and the messages

communicated during protocol execution. To prove a protocol is secure under the

semi-honest model, we generally need to show that the execution image of a protocol

does not leak any information regarding the private inputs of participating parties [14].

Differential Privacy (DP)

Differential Privacy (DP) [66] is a privacy model that provides a formal mathematical

bound on the increase in privacy risk. This privacy risk could be for any person whose

data is being used within some computation. An algorithm can be considered to be

differentially private if for all possible outputs, the likelihood of getting any output

does not significantly vary based on the inclusion or exclusion of any single person’s

data. Differential Privacy i.e. ε-DP could be formally defined as provided below:

For ε > 0, a mechanism (viz algorithm) T (·) with domain G is ε-differentially

private if for every x, y ∈ G such that ‖x− y‖1 ≤ 1 and every Λ ⊆ Range(T ),

Pr [T (x) ∈ Λ] ≤ eεPr [T (y) ∈ Λ]

While there are many general ways to achieve Differential Privacy, here we consider

the simple Laplace Mechanism [68]. In this Laplace mechanism, a suitably scaled noise

is added to the output. More specifically, the global sensitivity Sm of the function m
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is computed as the maximum change in the output for any two neighboring inputs.

Finally, the mechanism involves adding noise, proportional to Sm/ε, to the output.

Additive Homomorphic Encryption

The proposed protocols adopt an additive homomorphic encryption (HEnc) scheme

as the building block. Let Epk and Dpr be the encryption and decryption functions

in an HEnc scheme with public key pk and private key pr. Without pr, no one can

discover x from Epk(x) in polynomial time. An HEnc has the following properties:

• The encryption function is additively homomorphic:

Epu(x1 + x2) = Epu(x1)× Epu(x2).

• Given a constant c and Epu(x), Epu(c · x) = Epu(x)c.

• The encryption function is probabilistic and semantically secure [69]. In other

words, two encryptions of x differ with very high probability.

Any homomorphic encryption system is applicable, however, in this work we adopt

the Paillier encryption scheme [70] for its efficiency and implementation simplicity.

2.2.2 Information Retrieval Primitives

Here, we provide a few brief details of the information retrieval topics relevant to our

research. These topics include the prominent filtering approaches of recommender

systems, a simple friend recommendation criteria that is used in online social net-

works. Similarly, we cover a similarity metric used for recommendation etc., within

Apache Lucene (Core), a widely-used and open-source information retrieval library.

Filtering Approaches in Recommender Systems

A wide variety of considerations have to be made while proposing a Recommender

System (RS). Some of the prominent factors involve type of data, filtering algorithm,
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model used, techniques, scalability required, objective and quality of recommenda-

tions required, etc. [71]. Prominent amongst these is the filtering algorithm employed.

Content-based filtering and collaborative filtering are the major filtering algorithms

apart from the demographic and hybrid ones. A short description of these follows.

1. Content-based Filtering: In this method, similarity is computed between ex-

isting entities and entities to be recommended. In this approach, information

about the entities should be known beforehand. For example, a user is recom-

mended an item that is similar to previous items that the user had purchased.

2. Collaborative Filtering: In this method, a set of users provide entities with

scores. Items ranked by users similar to the user being recommended are filtered

Our proposed solutions can be categorized into these two filtering methods.

Friend Recommendation based on Mutual Friends

The topic of FR is widely addressed [72, 73]. One of the most common features in a

social network to use for FR is related to the number of common friends between two

users. This feature assumes that two people are more likely to be friends if they have

some common friends amongst themselves. The similarity score using mutual friends

can be computed based on set intersection. Given two users u and v, let lu and lv

denote the friend lists of u and v respectively. Then, their similarity is computed as:

Similarity(u, v) = |lu ∩ lv| (2.1)

The Similarity Metric in Lucene

As stated in the previous sections, the main challenge is to securely identify the corre-

lated information. Since Lucene is a popular information retrieval tool, we will adopt
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Table 2.1: Legend of Common Notations

Symbol Definition

D A document collection
q, ~q A query document and its vector form
d, ~d A document from D and its vector form
m Size of the global vector space
t A term in a document
n n = |D| (document collection size)
SCC Secure Correlation Computation
tf-idf Term and inverse document frequencies

its similarity metrics to identify correlated information. In the later sections, we will

propose a simplified version that can be evaluated more efficiently without affecting

the effectiveness in our problem domain. The notations adopted are presented in

Table 2.1, and the similarity metric in Lucene is defined by the following equations:

score(q, d) = coord(q, d) · queryNorm(q) ·
∑
t∈q

weight(t, d) (2.2)

weight(t, d) = tf(t, d) · idf(t)2 · getBoost(t) · norm(t, d) (2.3)

norm(t, d) = lengthNorm(d) ·
∏

field f in d named t

f.boost() (2.4)

where q denotes a query document and d belongs to a document collection. The summaries

of the sub-functions used in the above equations are given below, in an item-wise manner:

• f .boost() - get field f ’s, index-time specified, boost value:

Boost real values indicate the importance of a field within a document. Highly relevant

fields, with respect to indexing and thereby searching, are comparatively awarded

higher values with respect to others. If there are multiple fields with the same name,

say t, then a product of all of their individual boost values is computed and returned.

• lengthNorm(d) - field length norm:

As shown in Equation 2.4, the norm is calculated based on the number of tokens
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in a field within a document. This ensures parity among short and long fields in a

document for computing scores. The fields chosen must contain the term t.

• norm(t,d) - document normalization factor:

Each document has a variable number of fields. Such fields are of varying sizes and

user-defined. These fields have a field name (title, abstract, etc.) and associated

information (i.e. boost values). In this case, the normalization factor (see equation

2.4) is computed as a product of field f ’s boost values and the document length norm.

• getBoost(t) - query term boost:

Users can mark and indicate a term t’s importance to the query q during query

creation. This can be done by providing boost values for term t. This function, i.e.

getBoost(t), returns this preset boosting value for term t. The default value is 1.

• idf(t) - inverse document frequency; expression = 1 + log
[
|D|

df(t)+1

]
:

The idf(t) function returns the inverse document frequency of any term t in the col-

lection. Document frequency (df) is the number of documents the term appears in.

High idf() score for a term indicates that it is a greater representative of documents as

compared to the terms with low score. Low idf() score terms occur in a relatively high

number of documents, thereby qualifying those documents to only a small extent.

• tf(t, d) - term frequency:

tf(t, d) provides the square root of the term frequency of the term t in document d.

• queryNorm(q) - query normalizing factor; expression =
[√∑

t∈q(idf(t))2
]−1

:

This returns a normalization factor for a query document q. This ensures that query

with frequently-occurring terms is evaluated on par with the one having compara-

tively less frequently-occurring terms. The normalization factor is constant for all the

documents d that are compared against the input query document q, as a result, it

does not affect the order of recommendation ranking for these documents, if omitted.

• coord(q, d) - common terms; expression = |q∩d|
|q| :

Captures relatedness i.e. the ratio of q’s terms present within the given document d.
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Chapter 3

Privacy-Preserving Friend
Recommendation based on Common
Friends

Ubiquitous Online Social Networks (OSN)s play a vital role in information creation, propa-

gation and consumption. Given the recent multiplicity of OSNs with specially accumulated

knowledge, integration partnerships are formed (without regard to privacy) to provide an en-

riched, integrated and personalized social experience. However, given the increasing privacy

concerns and threats, it is important to develop methods that can provide collaborative ca-

pabilities while preserving user privacy. In this chapter, we focus on friend recommendation

systems (FRS) for such partnered OSNs. We identify the various ways through which pri-

vacy leaks can occur, and propose a comprehensive solution that integrates both Differential

Privacy and Secure Multi-Party Computation to provide a holistic privacy guarantee. We

analyze the security of the proposed approach and evaluate the proposed solution in terms

of both utility and computational complexity by experimenting with DBLP real dataset.
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3.1 The Proposed Protocol

In this section, we discuss the details of our proposed PPFR protocol. Under Secure Mul-

tiparty Computation (SMC), there are several ways to implement a secure protocol, e.g.,

additive homomorphic encryption (HEnc), secret sharing (SS), oblivious transfer (OT), gar-

ble circuits(GC), and fully homomorphic encryption (FHE). Approaches based on OT, GC

and FHE requires the FR functionality being represented as a Boolean or an arithmetic

circuit. When the dataset at the server is very large, the size of the circuit can become

intractable. In addition, the social network data GS keep changing all the time, the circuit

has to be reconstructed every time a change is made to GS . SS based approach requires at

least three independent parties. HEnc provides a good balance among these factors. There-

fore, the proposed protocol utilizes an HEnc scheme, such as Paillier [12]. More importantly,

our protocol design provides a novel way to securely compute the similarity score based on

mutual friends which can be implemented with any specific aforementioned SMC approach.

3.1.1 Protocol Initialization

The algorithm and sub-algorithms are dependent upon an encryption system (HEnc) which

exhibits homomorphic additive properties. We use the Paillier Cryptosystem [12] for this

purpose, with pu being the public key and pr, the private key, known by the client only.

Under DF, ε guarantees an upper bound on the difference of the output distributions from

any two input datasets that differ by a single record. The lower the value of ε, the more

similar the two distributions would be and the more similar the two distributions are, the

more difficult it would be to predict which dataset out of the two was the actual input.

The parties running the PPFR protocol should agree upon this value prior to the execution.

From ε, we can derive λ, the scaling parameter of Laplace distribution from which the noise

will be generated. Note that the global sensitivity of the similarity is 1 since at most the

number of common users can increase (or decrease) by 1. Therefore λ set to 1/ε is sufficient

to ensure ε-differential privacy.
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3.1.2 The Main Protocol

The key steps of the proposed PPFR protocol are given in Algorithm 1. The private input

from the server is its network data GS , represented as an adjacency list L: user ui’s friend

list is denoted by Li. The private input from the client is a pair of users (ua, ub), and

the protocol returns a similarity score between the two users based on GS . To achieve the

functionality given in Equation 1.1, the protocol can be run in parallel with each of m user

pairs: (u, v1), . . . , (u, vm), and m similarity scores are returned to the client at the end. We

assume that there is a mapping from a user id to a value in Z∗N . All notations in Algorithm

1 that represent users are in Z∗N . Step-by-step explanations of the protocol are given below,

and the index i is in {1, . . . , n} where n is the number of users at the server.

• Step 1: The client encrypts the users ids. Instead of ua and ub, the client encrypts

−ua and −ub which is equivalent to N − ua and N − ub. At the end of the step, the

encrypted inverses of the user ids, Epu(−ua) and Epu(−ub), are sent to the server.

• Step 2: Γi is an encryption of user id ui, and Γ̂i is a random permutation of Γi to

hide the relative positions of ua and ub in GS . In practice, it seems this permutation

is not necessary; however, it is needed to formally prove the security of the protocol.

ηi is equal to 0 if ui = ua in the permuted user list; otherwise, it is a random value

chosen from Z∗N . θi is defined similarly, except that it is equal to 0 if ui = ub. Since

the computations are performed based on the encrypted ua and ub, the server does

not know which ui corresponds to ua or ub. In other words, the server does not know

the similarity score is computed for which two users.

• Step 3: The client decrypts Epu(ηi) and Epu(θi), and construct n encrypted values,

each of which is denoted by Epu(ki), where ki is equal to 1 if either ηi or θi is 0.

Alternatively, we can interpret that ki is equal to 1 if either ua = ui or ub = ui. This

implies that there are only two kis equal to 1, and the rest of ki values are 0s.

• Step 4: For each friend list Li, the server computes Epu(ωi): each user uj in Li is

replaced with Epu(kj) or the jth encrypted value received from the client. Then these
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encrypted values are multiplied together to get Epu(ωi). Based on the kj values, ωi

can only have three distinct values:

– ωi = 0: indicating that ui is not a friend of ua or ub.

– ωi = 1: indicating that ui is a friend of ua or ub, but not both.

– ωi = 2: indicating that ui is a friend of both ua and ub.

Suppose that we can derive a value ω′i such that ω′i = 0 if ωi = 1 or ωi = 0, and ω′i = 1

if ωi = 2. Then
∑m

i=1 ω
′
i is the mutual friend count of ua and ub. To derive ω′i, we use

the following equation:

ω′i =
ωi(ωi − 1)

2
(3.1)

The goal of Steps 5 and 6 is to derive Epu(ω′i) fromE(ωi). Since ωi can leak information

about GS , the server randomizes it, by adding a random value, to produce Epu(ωi+ri).

• Step 5: Decrypting Epu(ωi + ri), the client obtains ωi + ri. Then the client computes

(ωi + ri)(ωi − 1 + ri), and sends the encrypted result to the server.

• Step 6: Since the server knows ri and Epu(ωi), the server can obtain

Epu(−2riωi + ri − r2
i )

Multiplying it with Epu((ωi + ri)(ωi − 1 + ri)), the server obtains Epu(ωi(ωi − 1)).

Because h is the multiplicative inverse of 2 in Z∗N , the sub-step (c) produces the

encryption of ω′i. Based on how ω′i is derived, we know that ρ is the mutual friend

count. The sub-step (f) randomizes the actual score by adding a noise generated from

a Laplace distribution.

• Step 7: The client decrypts the encrypted score to get the differentially private simi-

larity score for ua and ub.
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Algorithm 1 PPFR(〈Server, GS〉, 〈Client, ua, ub〉)→ 〈Client, s〉
Require: h← 2−1 mod N , and the index i varies from 1 to n where n denotes the

number of users at the server
1: Client:

(a) Compute Epu(−ua) and Epu(−ub)
(b) Send both to the server

2: Server:

(a) Receive Epu(−ua) and Epu(−ub) from the client

(b) Compute Γi ← Epu(ui)

(c) Γ̂i ← π(Γi), where π is a random permutation

(d) Epu(ηi)←
[
Γ̂i · Epu(−ua)

]ri
, where ri ∈R Z∗N

(e) Epu(θi)←
[
Γ̂i · Epu(−ub)

]r′i
, where r′i ∈R Z∗N

(f) Send Epu(ηi) and Epu(θi) to the client

3: Client:

(a) Receive Epu(ηi) and Epu(θi) from the server

(b) Decrypt Epu(ηi) and Epu(θi) to obtain ηi and θi
(c) Compute Epu(ki), such that,

ki ←

{
1 if ηi = 0 or θi = 0

0 otherwise

(d) Send Epu(ki) to the server

4: Server:

(a) Receive Epu(ki) from the client

(b) Epu(ωi)←
∏

uj∈Li
Epu(kj)

(c) Epu(ωi + ri)← Epu(ωi)× Epu(ri), where ri ∈R ZN
(d) Send Epu(ωi + ri) to the client
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5: Client:

(a) Receive Epu(ωi + ri) from the server

(b) ωi + ri ← Dpr(Epu(ωi + ri))

(c) Compute Epu((ωi + ri)(ωi − 1 + ri)) and send them to the server

6: Server:

(a) Receive Epu((ωi + ri)(ωi − 1 + ri)) from the client

(b) Epu(ωi(ωi − 1))← Epu((ωi + ri)(ωi − 1 + ri))× Epu(−2riωi + ri − r2
i )

(c) Epu(ω′i)← [Epu(ωi(ωi − 1))]h

(d) Epu(ρ)←
∏n

i=1 Epu(ω
′
i)

(e) Compute noise δ′ ← dδe, where δ ∼R Laplace(0, λ)

(f) Epu(s)← Epu(ρ)× Epu(δ′)
(g) Send Epu(s) to the client

7: Client:

(a) Receive Epu(s) from the server

(b) s← Dpr(Epu(s))

3.1.3 Security Analysis

The security of PPFR can be proved using the simulation method in [8]. First, we need to

build a simulator based on the private input and output for each party. Since the computa-

tions between the two parties are asymmetric, the simulators are different for the individual

parties. Let ΠS and ΠC denote the real execution images for the server and the client re-

spectively. Similarly, Π∼S and Π∼C denote the simulated execution images. Next, we show

how to construct a simulator Simulator-S to produce Π∼S .

Simulator-S

Algorithm 2 Simulator-S(pu)

Require: pu is the public key of Paillier
1: Generate four randoms r1, r2, r3 and r4 from ZN
2: Return Epu(r1), Epu(r2), Epu(r3) and Epu(r4)

For a two-party distributed protocol, private information can be disclosed from the
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messages exchanged during the execution of the protocol. The server receives messages

from the client at Steps 2, 4 and 6 of the PPRF protocol. Thus, the real execution image

ΠS consists of the following information (1 ≤ i ≤ n):

• Epu(−ua), Epu(−ub), Epu(ki) and Epu((ωi + ri)(ωi − 1 + ri))

The key steps of Simulator-S are given in Algorithm 2, and the simulated execution image

Π∼S consists of

• Epu(r1), Epu(r2), Epu(r3) and Epu(r4)

where each encrypted value corresponds to the value from the real execution.

Claim 1. Π∼S is computationally indistinguishable from ΠS.

Proof. Suppose the claim is not true, then this implies that one of the Epu(ri) values is

computationally distinguishable from the corresponding value of the real execution image.

Without loss of generality, assume Epu(r1) is computationally distinguishable from Epu(ua).

However, this contradicts the fact that the Paillier encryption scheme is semantically secure

or computationally indistinguishable [12]. Therefore, Π∼S must be computationally indistin-

guishable from ΠS .

The above claim demonstrates that fact that any information that the server learned

during the execution of PPFR can be derived by what the server already knows. Thus,

from the client’s perspective, the protocol is computationally secure. Next we need to prove

the protocol is secure from the server’s perspective by building a simulator to simulate the

client’s execution image.

Simulator-C

The client receives messages from the server at Steps 3, 5 and 7 of the PPRF protocol. Thus,

the real execution image ΠC consists of the following:

• X ∼ 〈Epu(η1), . . . , Epu(ηn), Epu(θ1), . . . , Epu(θn), η ≡ η1 · · · ηn, θ ≡ θ1 · · · θn〉

• Y ∼ 〈Epu(ω1 + r1), . . . , Epu(ωn + rn), ωi + ri, . . . , ωn + rn〉
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Algorithm 3 Simulator-C(pr, s)

Require: pr is the private key of Paillier, s is the output from PPRF
1: For 1 ≤ j ≤ n, randomly generate r1j, r2j, and r3j from ZN
2: For 1 ≤ j ≤ n, compute Epu(r1j), Epu(r2j) and Epu(r3j)
3: Let η′ and θ′ be random permutations of a sequence of n values, such that only

one of them is 0 and the rest are randomly generated from Z∗N
4: Return the following (1 ≤ j ≤ n)

• X ′ ∼ 〈Epu(r1j), Epu(r2j), η
′, θ′〉

• Y ′ ∼ 〈Epu(r3j), r3j〉
• Z ′ ∼ 〈Epu(s), s〉

• Z ∼ 〈Epu(s), s〉

where X, Y and Z denote the random variables related to the corresponding pair of values.

For each pair, the first component is the message received, and the second component is the

value derived from the first component. The simulator needs to simulate these messages and

the information derived from them. Algorithm 3 provides the key steps for Simulator-C.

Claim 2. Π∼C is computationally indistinguishable from ΠC .

Proof. This proof is very similar to that of the previous claim. We omit some of the technical

details. However, we want to emphasize that η′ is indistinguishable from η due to the fact

that the user list is randomly permuted at Step 2(c) of Algorithm 1.

The above claim demonstrates that fact that any information that the client learned

during the execution of the PPFR protocol can be derived by its private input and output.

Thus, from the server’s perspective, the protocol is computationally secure. Combining

both, we prove the security of PPFR. Since appropriately scaled Laplacian noise is added

to the output, differential privacy is achieved as well.

3.1.4 Complexity Analysis

In order to theoretically measure the computation complexity of PPFR, our analyses are

based on the number of the most expensive operations used in the protocol which happen
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to be the encryption E and decryption D operations, as well as the exponentiation of a

ciphertext. We use the Paillier cryptosystem where the costs of E and D are approximately

similar. We represent both costs as e, use x to represent the cost of obtaining the expo-

nentiation of a ciphertext, and use p to represent the cost of multiplying two ciphertests.

Let t be the number of bits required for representing the ciphertext. The overall protocol

complexity is derived for both the parties (the client and server), and provided in table 3.1,

where O and Tx represent the computation and communication complexity, respectively.

Step Server Client
O Tx O Tx

1 2e 2t
2 ne+ 2nx+ 2np 2nt
3 3ne nt
4 (n2 − 2m)e+ ne+ np nt
5 2ne nt
6 (n+ 1)e+ (2n+ 1)p+ x t
7 e

Total (n2 + 3n− 2m+ 1)e+
(3n+ 1)t (5n+ 3)e 2(n+ 1)t

(2n+ 1)x+ (5n+ 1)p

Table 3.1: Computation and Communication Complexity of the PPFR algorithm

3.2 Experimental Results

In this section, we provide a detailed empirical analysis, both qualitative and quantitative,

of the performance of the various algorithms proposed.

3.2.1 Experimental Setup

Dataset: In the absence of social network data, we use the real-world DBLP computer

science bibliography dataset (Aug. 2018) [74] to test our system. The original dataset

contains 6420665 bibliographic records. The dataset is preprocessed as follows:

From the dataset we extract 2185132 authors (represented as nodes) and their corre-

sponding collaborator list giving us 9507042 edges that represent each collaboration re-
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lationship. One issue with the DBLP dataset is that author names are used to identify

authors, and therefore, common names would be associated with all the papers attributed

for that particular name and consequently all the collaborators for those papers as well e.g.

one of the commonly occurring names had 2575 number of collaborators. Since the recom-

mendation functionality is based on the collaborator (or friend) count, we removed outliers

(i.e., authors with collaborator count that is more than three standard deviations above the

mean). After this we still have 2156785 authors, but the maximum number of collaborators

is reduced to 73.

Machine Hardware Details: The machines used for both S and C have the following

specifications:

• Processor: 64-bit Intel® Xeon® CPU E2186G @ 3.80GHz 12CPU(s)

• Memory: 62GiB DIMM DDR4 2666MHz (0.4 ns)

• Hard disk: 1024GB PC400 NVMe SK hynix

Programming Languages and Libraries: The entire implementation is in C. The GNU

GMP [75] library was used for efficiently computing the cryptographic primitives required

for the algorithms. The public key encryption scheme, used in the algorithms, was based on

the Pailler Cryptosystem [12] for the cryptosystem’s additive homomorphic properties.

3.2.2 Empirical Analysis

In this section, we report on the performance of the algorithm with the strongest privacy

guarantee viz. the optimum PPFR algorithm, by varying different parameters such as the

dataset size, the key size, and the count of queries.

Performance Evaluation:

First, we vary the user count (n). As seen in Figure 3.1, the query response time linearly

increases with the number of users in the database. A single query run for 20%, i.e. roughly

0.4 million, of the total DBLP authors takes under 685s to complete. Typically, the size
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Figure 3.1: Run time vs node count

of the dataset considered by any OSN to run queries over would be lesser, by orders of

magnitude than the 0.2 million users here, for any normal user. It is to be noted that

certain online social services (C) restrictively operate for a given region, or a set of users

only. Based on this background information, the data owner (S) can always consider a

subset of its graph GS to run queries. Access to this background information does not harm

our privacy guarantee of maintaining relationships or friends private nor leak users ids in

GM nor leak potential new friendships formed in GM by way of this application.

Next, we vary the edge count (m). The results are shown in Figure 3.2, and are similar

to the case of varying author (node) count. Note however, that figure 3.2 was generated by

regulating the node percentage. Therefore, it involves a combined effect of edge count and

node count variation on times reported, i.e. it is not purely independent of the number of

authors n.

Figure 3.3 shows the time taken by S and C when the keysize is varied. As expect, the

time for execution increases exponentially with respect to the key size. Typically, the key

size used is 1024. 20% of the nodes were considered in order to obtain this result.

Finally, we vary the count of queries(q) and obtain the total CPU time and the Wall

clock time. As can be seen from the figure 3.4, the times are linear in q.
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Figure 3.2: Run time vs edge count

Figure 3.3: Run time vs public key size
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Figure 3.4: Run time vs count of queries

Utility Evaluation:

In this section, we plot Spearman’s corrected ρ [76], Kendall’s τ , τb [77] as well as the

precision, recall and f-measure statistics [78] of the top-k recommended users in order to

measure the utility of the proposed approach. ρ measures the magnitude and direction of

the monotonic relationship amongst the variables while τ (τb) measures the difference in

probabilities of data being in the same order and in different order [77]. We measured both

Kendall’s τ and Kendall’s τb, since τb accounts for ties that can occur, especially, in ranked

lists for non-DP scores. Although the number of ties depends on the underlying DBLP

dataset, in this case, measuring τ and τb provides some information about the underlying

dataset while highlighting the need for using pre-processing techniques that can reduce the

ties and improve the overall utility of the system or vice-versa.

The utility coefficients are computed over the ranked list of size c before and after

perturbation. These coefficients are averaged over 10000 times with a list generated each

time for a randomly selected author. Please note that for c = 70 there were less number of

authors to choose from as compared to other list sizes.

Figures 3.5, 3.7, and 3.9 measure the utility when the list size (c) is varied.From Figure
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Figure 3.5: Spearman coeff. (ρ) vs list size (c)

3.5, we can see how PPFR’s ρ initially decreases as the list size increases (until c = 10)

and then subsequently rises along with c. This is uniquely captured just by the Spearman

coefficient and not by τ or τb. The reason for this behaviour might be that for a given ε

and sensitivity S (S = 1 for edge DP), for any list score, the differences in ranks before

and after perturbation might be bounded to some extent while the n, i.e. c in this case, is

incremented. Figures 3.6, 3.8, and 3.10 measure the utility for different values of the privacy

parameter ε. As expected, the utility of PPFR increases as ε is increased. The utility also

increases as the list size is increased. From figure 3.10, it can be seen that low c values with

high ε perform better than high c value and low ε values.

Unlike Spearman’s, Kendall’s coefficients do not reach their lowest values closer to c = 10,

see figures 3.7, 3.9, however, they do show mild fluctuations around it indicating greater

uncertainty. In general, τb ≥ τ against both c and privacy loss parameter ε, which can be

seen from Figures 3.7 - 3.10

We also measure precision, recall and the f-measure statistic for top-k ranks within a

list of size c. Due to space restrictions we only report results for k = 5 and k = 10. From

Figures (3.11), (3.12), (3.13), (3.14), (3.15), (3.16), it can be seen that the observed precision

is generally higher than the recall. This effect is due to the multiple rank ties found in scores
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Figure 3.6: Spearman coeff. (ρ) vs Privacy loss (ε)

before DP perturbation.

Figures (3.11), (3.12), (3.13), (3.14), (3.15), (3.16) and (3.17) show the relation of preci-

sion, recall and f-measure with c. For both top-5 and top-10, as c rises, all the three metrics

decrease and the relationship increasingly represents a decreasing logarithmic relation. It

can be seen that top-10 performs better as compared to top-5 for the f-measure statistic.

Furthermore utility increases with rise in ε, except for c = 5 and c = 10 where it is constant

at 1. It can be seen that for lower values of c, the precision, recall and f-measure increase

in an approximately linear way.

Figure 3.17 shows the relation of utility with respect to k. In this figure we plot precision,

recall and f-measure by varying list sizes (c) for ε = 0.1. As expected, the utility for a fixed

k decreases as c is incremented. It is seen that by incrementing k, the utility score initially

decreases but then rises depending significantly on the other parameters. This information

is useful if top-k has to be applied on some sub-graph only as depending on the sub-graph

size (c) selected, system utility may get unintentionally modified.
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Figure 3.7: Kendall coeff. (τ) vs list size (c)

Figure 3.8: Kendall coeff. (τ) vs Privacy loss (ε)
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Figure 3.9: Kendall coeff. (τb) vs list size (c)

Figure 3.10: Kendall coeff. (τb) vs Privacy loss (ε)
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Figure 3.11: Top-5: Precision vs Privacy loss (ε)

Figure 3.12: Top-10: Precision vs Privacy loss (ε)
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Figure 3.13: Top-5: Recall vs Privacy loss (ε)

Figure 3.14: Top-10: Recall vs Privacy loss (ε)
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Figure 3.15: Top-5: F-measure vs Privacy loss (ε)

Figure 3.16: Top-10: F-measure vs Privacy loss (ε)
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Figure 3.17: Precision, Recall, F-measure vs k for the algorithm PPFR
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Chapter 4

Privacy-Preserving Friend
Recommendation based on Common
Friends - Using Secret Sharing
Approaches

The work presented in this chapter is an extension of the work presented in the previous

chapter 3. The fundamental differences between the two approaches, however, are the algo-

rithms, number of parties required for computations, the privacy-preserving methodologies

used and the speedup gained as a result of them. Both of these techniques have their benefits

and can be deployed as per the underlying system requirements in which these would be

applied.

In the previous approach, a Differential Private (DP) noise was added in step (f) of

algorithm (1) in order to prevent the leakage of information over a bound specified by the

DP parameter ε [79]. The same approach can be applied to the algorithm presented in this

chapter. Therefore, in this chapter we will leave out the discussion of the commonalities

between the two approaches referenced here.

The chief difference is in the way the mutual friend count score is computed. In the

previous approach we used Additive Homomorphic Encryption (HEnc) while in this proposed

solution we use the additive secret sharing technique. Both are Multi-Party Computation
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(MPC) techniques.

4.1 The Proposed Protocol

In this section, we provide the details about the PPFR–SI algorithm and its pre-processing

step defined by PPFR–SI-PreProc algorithm.

4.1.1 Protocol Initialization

Algorithm 4 PPFR–SI-PreProc (〈P1, GS〉)→ (〈P0, [A]P0

Q 〉, 〈P2, [A]P2

Q 〉)

Require: h← 2−1 mod N , n denotes the number of users at the server. Index i s.t.
1 ≤ i ≤ n. Q is a randomly generated large prime s.t. Q ∈ ZN . An×n ← GS’s
adjacency matrix representation, ai,j ← element at row i and column j in A,
where 1 ≤ i, j ≤ n. [x]Pl

Q ← share of x belonging to party Pl.
1: P1:

(a) Generate adjacency matrix An×n from GS s.t. ai,j ∈ A

(b) Randomly generate two shares [ai,j]
P0

Q and [ai,j]
P2

Q from ai,j

(c) Send [A]P0

Q to P0, where [ai,j]
P0

Q ∈ [A]P0

Q

(d) Send [A]P2

Q to P2, where [ai,j]
P2

Q ∈ [A]P2

Q

2: P0:

(a) Receive [A]P0

Q from P1

3: P2:

(a) Receive [A]P2

Q from P1
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4.1.2 The Main Protocol

Algorithm 5 PPFR–SI (〈P0, [A]P0

Q 〉, 〈P1, A〉, 〈P2, ua, ub, [A]P2

Q 〉)→ 〈P2, s〉

Require: h← 2−1 mod N , and the index i varies from 1 to n where n denotes the
number of users at the server. Let Q be a randomly generated large prime such
that Q ∈ ZN . Let matrix An×n represent GS’s adjacency matrix representation.

1: P1:

(a) Generate shares [ui]
P0

Q and [ui]
P1

Q from ui

(b) Send γ1,i, γ2,i and [ui]
P0

Q to P0, where γ1,i, γ2,i ∈R ZQ
2: P0:

(a) Receive γ1,i, γ2,i and [ui]
P0

Q from P1

3: P2:

(a) Generate shares [ua]
P0

Q , [ua]
P1

Q and [ub]
P0

Q , [ub]
P1

Q from ua, ub, respectively

(b) Send [ua]
Pl

Q , [ub]
Pl

Q to Pl, where l ∈ {0, 1}
4: Pl: l ∈ {0, 1}

(a) Receive [ua]
Pl

Q , [ub]
Pl

Q from P2

(b) Compute [κ1,i]
Pl

Q ← γ1,i ·
(

[ua]
Pl

Q − [ui]
Pl

Q

)
and [κ2,i]

Pl

Q ← γ2,i ·
(

[ub]
Pl

Q − [ui]
Pl

Q

)
(c) Send [κ1,i]

Pl

Q and [κ2,i]
Pl

Q to P2

5: P2:

(a) Receive [κ1,i]
Pl

Q and [κ2,i]
Pl

Q from Pl, where l ∈ {0, 1}

(b) Construct κ1,i and κ2,i from [κ1,i]
Pl

Q and [κ2,i]
Pl

Q , respectively, where l ∈ {0, 1}
(c) Compute query indices α, β from κ1, κ2 via eqs. (4.1), (4.2), respectively

α←

{
r1,i ∀κ1,i 6= 0

i ∃κ1,i = 0
(4.1) β ←

{
r2,i ∀κ2,i 6= 0

i ∃κ2,i = 0
(4.2)

where, both r1,i, r2,i ∈R {1, 2, . . . , n} are randomly generated

(d) Send α, β to P0

6: P0:

(a) Receive α, β from P2

45



7: P1:

(a) Generate n Beaver product triplet shares: [xj]
P0

Q , [xj]
P2

Q , [yj]
P0

Q , [yj]
P2

Q ,
[xj · yj]P0

Q , [xj · yj]P2

Q , where, xj, yj ∈R ZQ and 1 ≤ j ≤ n

(b) Send [xj]
P0

Q , [yj]
P0

Q , and [xj · yj]P0

Q to P0

(c) Similarly, send [xj]
P2

Q , [yj]
P2

Q , and [xj · yj]P2

Q to P2

8: P1:

(a) Compute noise δ′ ← dδe, where δ ∼R Laplace(0, λ)

(b) Generate random shares [δ′]P0

Q and [δ′]P2

Q from δ′

(c) Send [δ′]P0

Q to P0

(d) Send [δ′]P2

Q to P2

9: Pl: l ∈ {0, 2}, 1 ≤ j ≤ n

(a) Receive [xj]
Pl

Q , [yj]
Pl

Q , [xj · yj]Pl

Q from P0(
Let [cj]

Pl

Q ← [aα,j]
Pl

Q and [dj]
Pl

Q ← [aβ,j]
Pl

Q

)
(b) Compute [cj + xj]

Pl

Q , [dj + yj]
Pl

Q

(c) Send [cj + xj]
Pl

Q , [dj + yj]
Pl

Q to P2−l

(d) Receive [cj + xj]
P2−l

Q , [dj + yj]
P2−l

Q from P2−l

(e) Compute (cj + xj), (dj + yj)

(f) Compute [cj · dj]Pl

Q ← (cj + xj) [dj + yj]
Pl

Q − (cj + xj) [yj]
Pl

Q − (dj + yj) [cj]
Pl

Q +

[xj · yj]Pl

Q

(g) Compute [ρ]Pl

Q ←
∑n

j=1 [cj · dj]Pl

Q

(h) Compute [s]Pl

Q ← [ρ]Pl

Q + [δ′]Pl

Q

10: P0:

(a) Send [s]P0

Q to P2

11: P2:

(a) Receive [s]P0

Q from P0

(b) Compute s← [s]P0

Q + [s]P2

Q
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4.1.3 Security Analysis

In this section we provide the security analysis of PPFR–SI and PPFR–SI-PreProc protocol

The private data i.e. adjacency matrix A for P1 and query ids ua and ub for P2 are exposed

as shares only.

Both the shares need to be held by the adversary in order to regenerate the secret or

private data, which does not happen in this case. It is important to note that α and β, the

shares of query user ids, are supposed to be known as per the protocol.

Except what is supposed to be known as per protocol specifications, all intermediate

data are shared as shares. Secret sharing being inherently information theoretic in nature

helps us to prove that the protocol is secure [80].

4.1.4 Complexity Analysis

In this section, we present the complexity analysis of the PPFR–SI main protocol given in

algorithm (5). The main operations performed for the shares are share generation, their

re-construction, addition, product of shares (not the secrets) as well as sending them over

to the other party. Complexity costs can be categorized as computational and transfer costs

over the network.

Computational Costs: Computational costs could be further classified as product and

addition costs, as given below.

1. Product cost (p): Let the cost of product of two shares, and not their secret, be

represented by ’p’. Cost p also includes the modulus of the product result by Q.

2. Addition cost (a): Share generation operation involves random number generation for

one part of share and subtraction from the secret to generate the other part of share.

Random number generation can be considered as a constant ’read’ operation and a

huge amount of these random values can be created as a pre-processing step for the

algorithm. Thus, subtraction operation is involved primarily followed by a modulus

operation by Q. Subtraction could be generalized as an addition operation. Each
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addition operation over the shares is strictly followed by a modulus by Q. Let the

joint cost of addition (subtraction) and modulus operation be denoted by ’a’. Likewise,

share reconstruction requires plain addition followed by the modulus operation.

Due to the nature of the operations, product operation p is more expensive than the

addition cost a of the shares.

Communication cost: In Secure Multi-Party Computation (SMC), parties have to

transfer intermediate data for secure evaluation of the function. In the case of our solution,

PPFR–SI, share values are transferred over the network. In order to measure the cost for

communication, we can simply count the number of shares being transferred from one party

to the other. Since all the shares are of constant size, we can represent the size of a share as

t bytes. For example, if party P1 sends one share across to party P2, we can note only the

transfer operation of t bytes once.

Complexity Analysis: Table (4.1) represents the computation and communication

costs for the PPFR–SI algorithm (see alg. 5). n is the number of nodes within the graph

GS over which the mutual friend count score is to be computed, please see section (4.1)

for relevant details. We report both the costs for all the three parties involved in the

computation. For each party, computation costs are represented under column titled O,

while the communication costs are represented using Tx.

It can be seen that for all the parties, the computation and communication costs are

linear in terms of the number of nodes (n) within the network i.e. O(n). The constant terms

have been dropped as per the standard practice in reporting complexities. Considering

the share product cost (p) to be higher than addition cost (a), party P0 has the highest

computational workload followed by parties P1 and P2.

P1 has the most communication complexity due to sending out the shares of user ids

(ui) as well as the Beaver triplet shares in steps (1) and (7), respectively.

PPFR–SI vs PPFR

We presented protocol PPFR, see alg. (1), which computes the same function, i.e. mutual

friend or neighbor count, as that of PPFR–SI (5). However, PPFR uses the additive homo-

morphic properties of public key cryptosystem to arrive at the solution, while using just two
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Step
Third Party Server Client

(P0) (P1) (P2)
O Tx O Tx O Tx

1 2na 3nt
2
3 2a 4t
4 2n(a+ p) 2nt 2n(a+ p) 2nt
5 na 2t
6
7 2n(a+ p) 6nt
8 a 2t
9 n(8a+ 3p) 2nt n(8a+ 3p) 2nt
10 t
11 1

Total 5n(2a+ p) 4nt 2n(3a+ 2p) 11nt 3n(3a+ p) 2nt

Table 4.1: Computation and Communication Complexity of the PPFR–SI algorithm

parties P1 and P2. Both these protocols add Differential Private noise to avoid leaking any

possible edge level information from their outputs. Both these protocols can be deployed

based on the system constraints of number of parties afforded.

Complexity of PPFR is provided in section (3.1.4) and table (3.1). It can be theoretically

seen that PPFR–SI outperforms PPFR significantly with the help of an additional party,

namely, P0.

Computation complexity of PPFR is quadratic (O(n2)) in e and linear (O(n)) in x and

p, where e, x and p stand for costs of encryption/decryption, exponentiation over ciphertext

domain and product over ciphertext domain, respectively. These are significant costs over

the linear complexities discussed in this section for PPFR–SI. Moreover, ciphertexts span

thousands of bits i.e. 2048 or 4096 where as the shares could be represented within 64 bits.

Thus, costs for a, and p for PPFR–SI are quite low, i.e. orders of magnitude lower, than

costs for e, x and p for PPFR due to its need to compute over encrypted data.

Additionally, when comparing the communication complexities, both are linear in t,

however, t of PPFR typically consists of 2048 or 4096 bits whereas for PPFR–SI it would be

64 bits only, which would lead to significant decrease in network traffic in favor of PPFR–SI.
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4.2 Experimental Results

In this section, we will discuss about the experimental details such as the setup used in

terms of the computing hardware and dataset. We will also provide some analysis based on

the graphs, which depict the performances among the parties in PPFR–SI protocol.

4.2.1 Experimental Setup

Dataset: The dataset used for experimental purposes is the same as the one used for PPFR

as described in section 3.2.1 and provided here. In the absence of social network data, we

use the real-world DBLP computer science bibliography dataset (Aug. 2018) [74] to test

our system. The original dataset contains 6420665 bibliographic records. The dataset is

pre-processed as follows:

From the dataset we extract 2185132 authors (represented as nodes) and their corre-

sponding collaborator list giving us 9507042 edges that represent each collaboration re-

lationship. One issue with the DBLP dataset is that author names are used to identify

authors, and therefore, common names would be associated with all the papers attributed

for that particular name and consequently all the collaborators for those papers as well e.g.

one of the commonly occurring names had 2575 number of collaborators. Since the recom-

mendation functionality is based on the collaborator (or friend) count, we removed outliers

(i.e., authors with collaborator count that is more than three standard deviations above the

mean). After this we still have 2156785 authors, but the maximum number of collaborators

is reduced to 73.

Machine Hardware Details: The machines used for both S and C have the following

specifications:

• Processor: 64-bit Intel® Xeon® Gold 6240R CPU @ 2.40GHz

• Memory: 196Gib DIMM DDR4

• Hard disk: 480GB SSD SATA 3.3, 6.0 Gb/s
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Programming Languages and Libraries: The entire implementation was done in C

language. No external library was required except ’pthread’ unlike PPFR.

4.2.2 Empirical Analysis

In this section, we provide the plots with graphs for various parties for their CPU time i.e.

User time + System time for PPFR–SI. We also compare the protocol with the PPFR

algorithm to display its efficiency and improvement.

Figure 4.1: Pre-Proc CPU time vs node count

Performance Evaluation: Figures 4.1, 4.2, 4.3 and 4.4 provide an empirical compar-

ison among the times i.e. CPU and Wall clock times versus the number of nodes in the

graph.

Figure 4.1 shows the comparison in terms of the parties involved in the PPFR protocol.

As can be seen, major bulk of work is done by the P1. This work primarily consists of

generating adjacency matrix A and then creating out shares for all the individual values in

it. The graphs shown for PPFR–SI and its pre-processing counterpart PPFR–SI-PreProc

are for 32 bit shares.

Similar pattern can be seen in figure (4.2) where bulk of work is done by P1.
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Figure 4.2: Proc. CPU time vs node count

Figure (4.3) shows the performance for algorithm PPFR–SI-PreProc (see alg. (4)). This

is a one-time operation only so it does not affect most of the queries. PPFR–SI requires

that this protocol is run at least once and then PPFR–SI could be run as many times.

Figure (4.4) shows wall clock time comparison between Homomorphic Encryption-based

protocol PPFR and PPFR–SI. It is for a single query. Public key size (N) for PPFR was

1024, while for PPFR–SI the share size was 32 bits. As can be seen in the figure, PPFR–SI

significantly outperforms PPFR as the query time is under 0.2 seconds throughout the values

of n used. PPFR takes about 2861 seconds to compute over 215678 nodes.
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Figure 4.3: Pre-Proc Wall time vs node count

Figure 4.4: Comparing performance between PPFR–SI and PPFR
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Chapter 5

PPFR–AL: Efficient PPFR over
Adjacency List using Secret-Sharing

In the previous sections, we saw the protocols - PPFR, PPFR–SI. PPFR was designed

using Homomorphic Encryption as the building block. It was computed over adjacency list.

Then we saw the PPFR–SI algorithm, which used additive secret sharing as the building

block and ran faster that PPFR. Although it was designed to compute over the adjacency

matrix and required a pre-processing algorithm (PPFR–SI-PreProc), which was to be run

at the start, atleast once. In this section we propose an algorithm which is linear in terms

of number of nodes n as complexity and operates on the adjacency list representation.

We present a novel, privacy-preserving way to compute mutual neighbor count for two

vertices in a graph over three parties. The method is realized using the secret-sharing, the

secure multi-party computation technique (SMCs). The logic is based on obtaining the

cardinality of a set intersection operation in a privacy-preserving way.
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5.1 The Proposed Protocol

5.1.1 Problem Addressed

Let there be three parties - P0, P1, P2. P1 owns its private graph G containing vertices

or nodes (V ) and edges or relationships (E) among the nodes. P2 would like to know the

mutually adjacent node count (s) for any two nodes, say ux, and uy, both of which may or

may not be in G, but computed in collaboration with P1.

However, there are a few privacy constraints in this problem scenario, such as:

1. P1 would like to keep its graph (G) private or atleast have an upper bound (ε) on the

amount of information leaked from the final count score s

2. P2 would like to keep its query nodes’ ids (ux, uy) private

3. P2 would like to keep the final score (s) private

5.1.2 Protocols In Brief

In this section, we propose the protocols that enable the functionality of Privacy-Preserving

Mutual Neighbor Count Computation (PP-MNCC) for two given vertices in a given graph.

Privacy-Preserving Mutual Neighbor Count Computation (PP-MNCC)
Protocol

PP-MNCC requires three parties for its evaluation. Here, two parties P1 and P2 provide their

private inputs, while an additional third party (P0) assists them to reduce the complexity

of overall computation.

In order to evaluate PP-MNCC, P1 uses its private input graph and P2 uses its private

input query consisting of a pair of vertices, which may or may not be a part of P1’s graph. At

the end of the PP-MNCC protocol, P2 is able to reconstruct the count of mutual neighbors

for both of its input vertices. The third party (P0) assists the computation but it cannot learn

any information from the randomized data, that it is exposed to, during the computation.
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With respect to the privacy aspect of PP-MNCC only, firstly, P2’s private input query

nodes are not leaked. Secondly, P1 cannot determine the score, s, reconstructed by P2.

However, P2 can learn about P1’s graph data based on the output score (s). If the ideal

Trusted Third Party model (TTP) is used instead of the secret-sharing approach provided

here, the same information would have been leaked. Thus, the information leaked using

simply the output score is not an issue for the PP-MNCC protocol. However, to overcome

this shortcoming, we protect P1’s graph data to an extent provided by the noise addition

mechanism of the edge-based ε-Differential Privacy.

Logically, PP-MNCC is based on the following simple steps:

1. Identify records corresponding to both the query vertices

2. Construct a set of adjacent nodes for each of those records

3. Compute a set-intersection for these sets

4. Report the cardinality of the resultant intersection set

5.1.3 Notations

Table 2.1 contains notations that would be used in the following sections.

5.1.4 Defining Structures and Constructs

Here we discuss about the constructs that form the basis of the algorithms proposed. They

consist mainly of basic structures and their respective notations.

Let graph G = {V,E}, where, V is a set of vertices (ui) and E is a set of edges such

that edge ei,j (= ej,i) indicates some relationship between entity i and entity j, such that

i 6= j, in a non-looped and undirected graph. These entities are referred, across parties

participating in SMC, using some public pseudo-ids denoted by ui. ui could be numeric ids,

email id hashes, social media handle hashes, ORCIDs etc.

With the aid of examples from figures 5.1 and 5.2 we highlight the terminology usage

undertaken henceforth in this work.
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Symbol Constraints Description
ui ui ∈ ZQ Vertex (node) pseudo id
V V = {ui|ui ∈ ZQ} Set of vertices

ei,j
ei,j = {ui, uj} |
ui 6= uj ∈ V

ui and uj are related

E E = {ei,j|ui, uj ∈ V } Set of edges
G G = {V,E} Network graph

Vd+ Vd+ ⊆ V, deg(ui) ≥ d
Vertices with
minimum degree d

ux, uy ux, uy
?
∈ V Query node ids for x and y

Li Li = {uj|(ei,j ∈ E)} Neighbor node list for ui
L L = {Li|∀ui ∈ V } Adjacency list for graph G
~kx kxi ∈ {0, 1} Query index vector for ux
~ωx ωxi ∈ {0, 1} Neighborhood vector for ux

~σx,y σx,yi ∈ {0, 1}
Mutual neighbors
vector of ux and uy

ρx,y
0 ≤ s ≤ min(tx, ty),
s = ρx,y, tk = deg(uk)

Mutual neighbor
count of ux, uy

P1 Server
P2 Client
P0 Facilitator, third party
[x]Pl

Q [x]Pl

Q ∈R ZQ, l ∈ {0, 1, 2} Secret share of x for Pl
GP1 Party P1’s private graph G

Table 5.1: Notations for PPFR–AL Protocol
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Adjacency List (L)

Li = {uj |(ei,j ∈ E & ui, uj ∈ V & i 6= j)} (5.1)

L = {Li|∀ui ∈ V } (5.2)

L represents the adjacency list for the graph G. Li provides a set of entities adjacent

(neighboring) to ui in G. L could be represented as per equation 5.2, e.g. figure 5.1.

Query Vector (~kx)

kxi =


1 i = x, ui ∈ V

0 i 6= x, ui ∈ V
(5.3)

Given ux, vector ~kx is a query vector that is represented as a binary vector. All the ver-

tices in V have a corresponding component in ~kx. kxi represents the value of ith component

(that represents ui) in ~kx and indirectly represents boolean value of ux
?
= ui. 1 is set for the

component corresponding to query id (item) ux and 0 otherwise, see equation (5.3).

Neighborhood Vector (~ωx)

ωxi =


1 ex,i ∈ E, x 6= i

0 otherwise
(5.4)

Similar to query vector, given ux, vector ~ωx is a neighborhood or relationship vector that

is represented as a binary vector. 1 is set for the component corresponding to an item (or

user id) uy in the case where a relationship exists between ux and uy, x 6= y, or 0 is set

otherwise, see equation 5.4.
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Mutual Neighbor Vector (~σx,y)

σx,yj = ωxj · ω
y
j (5.5)

Given neighbor vectors ~ωx and ~ωy for nodes ux and uy, respectively. σ
x,y
j = 1 or non-zero

indicates that uj is a neighbor of both ux and uy, i.e. a mutual neighbor. If σx,yj = 0, then

uj is strictly a neighbor of one of them or none of them.

Mutual Neighbor Count (ρx,y or sx,y)

ρx,y = sx,y =

|~σx,y |∑
j←1

σx,yj (5.6)

Given mutual neighbor vector (~σx,y), compute mutual neighbor count by adding up all the

components in the given vector (~σx,y). This is also represented using the variable s.

Query List (Λx)

Λxi = {kxj |(ei,j ∈ E & ui, uj ∈ V & i 6= j)} (5.7)

Given ~kx and L, Λx indicates that the list structure is obtained by simply replacing ui with

kxi within L. It can be observed that Λxi will have exactly one entry or item as 1 if ui is a

neighbor of ux in G and provided ux and ui are distinct.

Secret Shared Lists and Vectors

For each of the lists and vectors specified in the earlier sections, here we provide the notations

used for their secret shared representations for some generic party Pl, where l ∈ {0, 1, 2}.
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1. Adjacency List Share
(

[L]Pl
Q

)
-

[Li]
Pl
Q =

{
[uj ]

Pl
Q |(ei,j ∈ E & ui, uj ∈ V & i 6= j)

}

[L]Pl
Q =

{
[Li]

Pl
Q |∀ui ∈ V

}

2. Query Vector Share
([
~kx
]Pl

Q

)
-

[kxi ]Pl
Q =


[1]Pl

Q i = x, ui ∈ V

[0]Pl
Q i 6= x, ui ∈ V

3. Neighborhood Vector Share
(

[~ωx]Pl
Q

)
-

[ωxi ]Pl
Q =


[1]Pl

Q ex,i ∈ E, x 6= i

[0]Pl
Q otherwise

4. Query List Share
(

[Λx]Pl
Q

)
-

[Λxi ]Pl
Q =

{[
kxj
]Pl

Q
|(ei,j ∈ E & ui, uj ∈ V & i 6= j)

}

L =



La : {ub, uc, ud}
Lb : {ua}
Lc : {ua, ud}
Ld : {ua, uc}
Le : φ

(5.8)

Figure 5.1: Example: Adjacency List (L)
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~ka = {1, 0, 0, 0, 0}
~kd = {0, 0, 0, 1, 0}

(a) Query Vector (~kx)

~ωa = {0, 1, 1, 1, 0}
~ωd = {1, 0, 1, 0, 0}

(b) Neighborhood Vector (~ωx)

Figure 5.2: Example: Query and Neighborhood Vectors

Λa =



Λa
a : {0, 0, 0}

Λa
b : {1}

Λa
c : {1, 0}

Λa
d : {1, 0}

Λa
e : φ

(a) Query List (Λa)

Λd =



Λd
a : {0, 0, 1}

Λd
b : {0}

Λd
c : {0, 1}

Λd
d : {0, 0}

Λd
e : φ

(b) Query List (Λd)

Figure 5.3: Example: Query List (Λx)

[
~ka
]Pl

Q
=
{

[1]Pl

Q , [0]Pl

Q , [0]Pl

Q , [0]Pl

Q , [0]Pl

Q

}
[~ωa]Pl

Q =
{

[0]Pl

Q , [1]Pl

Q , [1]Pl

Q , [1]Pl

Q , [0]Pl

Q

}
[
~σa,d

]Pl

Q
=
{

[0]Pl

Q , [0]Pl

Q , [1]Pl

Q , [0]Pl

Q , [0]Pl

Q

}
(a) Vector Share Notation for Party Pl

[
Λd
]Pl

Q
=



[
Λd
a

]Pl

Q
:
{

[0]Pl

Q , [0]Pl

Q , [1]Pl

Q

}
[
Λd
b

]Pl

Q
:
{

[0]Pl

Q

}
[
Λd
c

]Pl

Q
:
{

[0]Pl

Q , [1]Pl

Q

}
[
Λd
d

]Pl

Q
:
{

[0]Pl

Q , [0]Pl

Q

}
[
Λd
e

]Pl

Q
: φ

(b) Query List Share Notation (
[
Λd
]Pl

Q
) for Party Pl

Figure 5.4: Example: Vectors and Lists represented as secret shares
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5.1.5 Protocol Ordering and Initialization

Algorithm PP-MNCC (alg. 9) is the main algorithm that provides the functionality of

Privacy-Preserving Mutual Neighbor Count Computation. PP-MNCC is based upon three

sub-algorithms that help in Query Vector Computation (~kx, ~ky), Neighborhood Vector Com-

putation (~ωx, ~ωy) and Beaver Triples Multiplication (~σx,y).

The Query Vector Computation protocol has two variants based on the number of parties,

which is based on the pseudo-id assumption used. Namely, those protocols are PP2-QVC

(alg. 6) and PP3-QVC (alg. 7) for two and three parties, respectively. PPFR–AL (alg.

8) performs the neighborhood vector computation. PP-BM is the Beaver Triples-based

Multiplication proposed by [81] and as applied by [82]. Given private inputs [x]P0
Q and

[y]P0
Q owned by P0 and private inputs [x]P1

Q and [y]P1
Q owned by P1, PP-BM provides private

outputs [x · y]P0
Q to P0 and [x · y]P1

Q to P1, respectively, without disclosing any information

about x, y, and (x · y) to either parties. PP-BM requires a third party in order to generate

random Beaver triples for performing the computation.

5.1.6 Two Party Query Vector Computation (Alg. PP2-QVC)

Algorithm PP2-QVC, see alg. (6), is a two party protocol that computes query vector
(
~kx
)
,

given ux, in a privacy-preserving way. P1 and P2 are the parties involved in this protocol.

GS and ux are the private inputs of P1 and P2, respectively. P2 obtains private
(
~kx
)
after

successful execution of PP2-QVC.

PP2-QVC using an example

Table 5.2 and 5.3 provide the state of variables for PP2-QVC. The example is the same as

in fig. (5.1) on which P1’s private graph GS is based, P2’s private queries are ua and ud.

PP2-QVC step-wise details

Following are the details of the steps provided in algorithm PP2-QVC (alg. 6):
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Algorithm 6 PP2-QVC (〈P1, GS〉, 〈P2, ux〉) →
(
〈P1, φ〉, 〈P2, ~k

x〉
)

Require: Index i varies from 1 to n where n = |V | at the P1. Select Q as a large
prime. All computations are modulo Q i.e. from the finite field ZQ.

1: P1:

(a) Generate non-zero random ri, such that, ri ∈R ZN
(b) Compute αi ← (ui · ri)
(c) Send αi to P2

2: P2:

(a) Receive αi from P1

(b) Compute βi ← αi · (u−1
x )

(c) Generate non-zero random si, such that, si ∈R ZN
(d) Compute δi ← (βi · si)
(e) Send δi to P1

3: P1:

(a) Receive δi from P2

(b) Compute ηi ← δi ·
(
r−1
i

)
(c) Send ηi to P2

4: P2:

(a) Receive ηi from P1

(b) Compute θi ← ηi ·
(
s−1
i

)
(c) Assign kxi as:

kxi =

{
1 if θi = 1

0 otherwise

V ui ri αi u−1
x βi si δi

a 17 4 25 29 37 31 29
b 34 18 10 − 32 30 14
c 18 42 25 − 37 27 10
d 3 13 39 − 13 41 17
e 5 6 30 − 10 21 38

Table 5.2: Alg. PP2-QVC Variable States: Q = 43, x = d (1/2)
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r−1
i ηi s−1

i θi kxi
11 18 25 20 0
12 39 33 40 0
42 33 8 6 0
10 41 21 1 1
36 35 41 16 0

Table 5.3: Alg. PP2-QVC Variable States: Q = 43, x = d (2/2)

St 1: P1 randomizes its nodes’ pseudo-ids and stores them as αi. After randomizing αi is

sent to P2.

St 2: P2 wants to keep its query node id ux private so obtains its multiplicative inverse

modulo Q from ZQ. P2 computes βi as a product of received αi and u−1
x . It then

randomizes βi using randomly generated si from ZQ. The product δi is then sent to

P1. For the correct index k, such that k = x, value of δk would be (1 · rk · sk).

St 3: In this step, P1 receives δi and removes the randomization that it introduced by

obtaining a product of inverse of ri (i.e. r−1
i ) and δi. This is called ηi which is sent

to P2.

St 4: Similar to earlier step, P2 receives ηi and removes the randomization effect of si to

obtain θi. At index location k, such that k = x, θi = 1 while rest locations would be

ratios of ids.

5.1.7 PP3-QVC: For Three Party Query Vector Computation

Algorithm PP3-QVC (alg. 7) is a three party protocol that computes the query vector
(
~kx
)

in a privacy-preserving way. ux and GS are the private inputs of P2 and P1, respectively.

P2 obtains private
(
~kx
)
after successful execution of PP3-QVC.

PP3-QVC using an example

Table (5.4) and (5.5) provide a brief instance of the protocol variables’ values for the example

shown in figure (5.1) for Q = 43 and x = d.
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Algorithm 7 PP3-QVC (〈P0, φ〉, 〈P1, GS〉, 〈P2, ux〉)→
(
〈P0, φ〉, 〈P1, φ〉, 〈P2, ~k

x〉
)

Require: The index i varies from 1 to |V |. Select N as a large prime. All computa-
tions are modulo N i.e. from the finite field ZN .

1: P1:

(a) Generate shares [ui]
P0

Q and [ui]
P1

Q from ui

(b) Generate random numbers ri such that ri ∈R ZQ
(c) Send ri and [ui]

P0

Q to P0

2: P0:

(a) Receive ri and [ui]
P0

Q from P1

3: P2:

(a) Generate shares [ux]
P0

Q , [ux]
P1

Q from ux

(b) Send [ux]
P0

Q , [ux]
P1

Q to P0, P1, respectively

4: Pl: l ∈ {0, 1}
(a) Receive [ux]

Pl

Q from P2 as c← [ux]
Pl

Q

(b) Compute [κi]
Pl

Q ← ri ·
(
c− [ui]

Pl

Q

)
(c) Send [κi]

Pl

Q to P2

5: P2:

(a) Receive [κi]
P0

Q , [κi]
P1

Q from P0, P1, respectively

(b) Construct κi from shares [κi]
P0

Q and [κi]
P1

Q

(c) Assign ~kx, such that,

kxi ←

{
1 if κi = 0

0 otherwise

V ui [ui]
P0

Q [ui]
P1

Q ri
a 17 29 31 5
b 34 30 4 9
c 18 19 42 12
d 3 14 32 37
e 5 3 2 25

Table 5.4: Alg. PP3-QVC Variable States: Q = 43, x = d (1/2)
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ux [ux]
P0

Q [ux]
P1

Q [κi]
P0

Q [κi]
P1

Q κi kxi
3 8 38 24 35 16 0
− − − 17 5 22 0
− − − 40 38 35 0
− − − 36 7 0 1
− − − 9 40 6 0

Table 5.5: Alg. PP3-QVC Variable States: Q = 43, x = d (2/2)

5.1.8 The Main Protocol

Algorithm PP-MNCC, i.e. alg. (9), defines the functionality of the privacy-preserving

mutual neighbor count s. P1’s adjacency list L (i.e. graph G) and P2’s query user ids ux

and uy are their private inputs. Finally, on successful completion of the protocol only P2 can

obtain the score s. Party P0 does not provide any of its private inputs neither can it deduce

any information about L, 〈ux, uy〉 nor any information about s. P0 generates random Beaver

multiplication triples required for the privacy-preserving multiplication of secret shares.
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Algorithm 8 PPFR–AL
(
〈P0, φ〉, 〈P1, L〉, 〈P2, ~k

x〉
)

→(
〈P0, [~ω

x]P0

Q 〉, 〈P1, φ〉, 〈P2, [~ω
x]P2

Q 〉
)

Require: i s.t. ui ∈ V , j s.t. uj ∈ (V1+ + ∆), ∆ is set of randomly added fake
isolated nodes. V1+ ⊆ V , V1+ is a set of nodes with a degree of atleast 1. Q is a
large prime. All computations are modulo Q i.e. from finite field ZQ.

1: P2:

(a) Generate shares [kxi ]P1

Q and [kxi ]P2

Q from kx

(b) Send [kxi ]P1

Q to P1

2: P1:

(a) Receive [kxi ]P1

Q from P2

(b) Compute
[
Ωx
j

]P0

Q
as per equation (5.9):

[
Ωx
j

]P0

Q
←

∑
∀ui∈Lj

[kxi ]P1

Q (5.9)

(c) Generate shares of 0 i.e. [0j]
P0

Q and [0j]
P2

Q

(d) Compute αj ←
[
Ωx
j

]P0

Q
+ [0j]

P0

Q

(e) Send [0j]
P2

Q to P2

(f) Send αj to P0

3: P2:

1. Receive [0j]
P2

Q from P1

2. Generate a random number p s.t. p ∈R ZQ, p 6= 0

3. Compute p [kxi ]P2

Q ←
(
p · [kxi ]P2

Q

)
4. Send p [kxi ]P2

Q to P1
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4: P1:

1. Receive p [kxi ]P2

Q from P2

2. Compute p
[
Ωx
j

]P2

Q
as per equation (5.10):

p
[
Ωx
j

]P2

Q
←

∑
∀ui∈Lj

p [kxi ]P2

Q (5.10)

3. Generate random numbers rj s.t. rj ∈ ZQ, rj 6= 0

4. Compute βj ← p
[
Ωx
j

]P2

Q
+ rj

5. Send βj to P2

6. Send rj to P0

5: P2:

1. Receive βj from P1

2. Compute
[
ωxj
]P2

Q
← βj +

(
p · [0j]P2

Q

)
3. Send p to P0

6: P0:

1. Receive αj and rj from P1

2. Receive p from P2

3. Compute
[
ωxj
]P0

Q
←
(
p · [αj]P0

Q

)
− rj

PP-MNCC using an example

Following are the intermediate variable states for a brief example graph shown in figure

(5.1). Here, x = a, y = d, and Q = 43.

1. P0, P1, P2: Compute query vector ~ka for id ua

~ka = {1, 0, 0, 0, 0}

2. P0, P1, P2: Compute query vector ~kd for id ud

~kd = {0, 0, 0, 1, 0}
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Algorithm 9 PP-MNCC (〈P0, φ〉 , 〈P1, L〉, 〈P2, ux, uy〉) → 〈P2, s〉
Require: i s.t. ui ∈ V , j s.t. uj ∈ (V1+ + ∆), ∆ is set of randomly added fake

isolated nodes. V1+ ⊆ V , V1+ is a set of nodes with a degree of atleast 1. Q is a
large prime. All computations are modulo Q i.e. from finite field ZQ.

1: P0, P1, P2: Compute query vector ~kx for id ux

(〈P2, k
x
i 〉)← PP3-QVC (〈P1, L〉 , 〈P2, ux〉)

2: P0, P1, P2: Compute query vector ~ky for id uy

(〈P2, k
y
i 〉)← PP3-QVC (〈P1, L〉 , 〈P2, uy〉)

3: P0, P1, P2: Compute neighbor vector [~ωx]Pl

Q , l ∈ {0, 2}(〈
P0, [~ω

x]P0

Q

〉
,
〈
P2, [~ω

x]P2

Q

〉)
← PPFR–AL(

〈P1, L〉 ,
〈
P2, ~k

x
〉)

4: P0, P1, P2: Compute neighbor vector [~ωy]Pl

Q , l ∈ {0, 2}(〈
P0, [~ω

y]P0

Q

〉
,
〈
P2, [~ω

y]P2

Q

〉)
← PPFR–AL(

〈P1, L〉 ,
〈
P2, ~k

y
〉)

5: P0, P1, P2: Compute mutual neighbor vector [~σx,y]Pl

Q , l ∈ {0, 2}(〈
P0, [~σ

x,y]P0

Q

〉
,
〈
P2, [~σ

x,y]P2

Q

〉)
← PP-BM(〈

P0, [~ω
x]P0

Q , [~ωy]P0

Q

〉
,
〈
P2, [~ω

x]P2

Q , [~ωy]P2

Q

〉)
6: P0 and P2: Compute mutual neighbor count [ρ]Pl

Q , l ∈ {0, 2}

[ρ]Pl

Q ←
|V1++∆|∑
j←1

[
σx,yj

]Pl

Q

7: P0: Send [ρ]P0

Q to P2

8: P2:

(a) Receive [ρ]P0

Q from P0

(a) Construct ρ from shares [ρ]P0

Q , [ρ]P2

Q and set s← ρ
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3. P0, P1, P2: Compute neighbor vector [~ωa]Pl
Q , l ∈ {0, 2}

[~ωa]Pl
Q =

{
[0]Pl

Q , [1]Pl
Q , [1]Pl

Q , [1]Pl
Q , [0]Pl

Q

}

4. P0, P1, P2: Compute neighbor vector
[
~ωd
]Pl

Q
, l ∈ {0, 2}

[
~ωd
]Pl

Q
=
{

[1]Pl
Q , [0]Pl

Q , [1]Pl
Q , [0]Pl

Q , [0]Pl
Q

}

5. P0, P1, P2: Compute mutual neighbor vector
[
~σa,d

]Pl

Q
, l ∈ {0, 2}

[
~σa,d

]Pl

Q
=
{

[0]Pl
Q , [0]Pl

Q , [1]Pl
Q , [0]Pl

Q , [0]Pl
Q

}

6. P0 and P2: Compute mutual neighbor count [ρ]Pl
Q , l ∈ {0, 2}

[ρ]Pl
Q ← [1]Pl

Q =

|V1++∆|∑
j←1

[
σa,dj

]Pl

Q

7. P0: Send [ρ]P0
Q to P2

8. P2:

(a) Receive [ρ]P0
Q from P0

(b) Construct ρ from shares [ρ]P0
Q , [ρ]P2

Q and set s← 1 = ρ

5.1.9 Complexity Analysis: The PPFR–AL Protocol

We provide the complexity analysis for the main protocol PPFR–AL in this sub-section.

Protocol analysis is done in a similar way as described in section (4.1.4). The computation

costs over the shares for addition, subtraction, share generation and reconstruction opera-

tions is represented by a, while p is the cost for multiplication of shares. The communication

cost of sending a share over the network is represented by t, where t can be the number
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of bits required to represent the share. A detailed discussion about these costs has been

provided earlier in the section (4.1.4) for PPFR–SI protocol.

Let l represent |(V1+ + ∆)| i.e. the summation of the cardinality of the set of nodes

having at least one neighbor i.e. |V1+| and the cardinality of the set of fake nodes (∆) added

so as to hide the number of nodes with a degree of at least 1 or, in other words, the number

of isolated nodes. 0 ≤ |V1+| ≤ 2m, where m = |E|. |∆| � m. Therefore, l has an upper

bound of 3m as 0 ≤ l ≤ 3m.

Complexity for PPFR–AL

Step
Third Party Server Client

(P0) (P1) (P2)
O Tx O Tx O Tx

1 na nt
2 2(m+ l)a 2lt
3 np nt
4 (2m+ l)a 2lt
5 la+ lp 1
6 la+ lp

Total l(a+ p) (4m+ 3l)a 4lt (n+ l)(a+ p) 2nt+ 1

Table 5.6: Computation and Communication Complexity of the PPFR–AL protocol

Table 5.6 provides the complexity information for PPFR–AL protocol. It is clear that

the computation complexities of P0, and P1 are linear in terms of the number of edges m.

While the computation and communication complexities for party P2 is linear in the number

of nodes i.e. n. The communication complexity for P1 is linear in the number of edges m.

Using protocol PPFR–SI’s complexity analysis, given in section (4.1.4), and the com-

plexity analysis of PPFR–AL in this section, it can be seen that, for parties P0 and P1,

both the protocols are linear in terms of number of nodes and edges, respectively. This is

significantly better than for protocol PPFR, which is quadratic in the number of nodes (n),

see section (3.1) for more details. The added benefit of PPFR–AL is that it does not require

the one-time quadratic in n operation of PPFR–SI-PreProc, which is required by PPFR–SI.

As compared to PPFR–SI, PPFR–AL is quite efficient especially when |E| � |V |.
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Chapter 6

Privacy-Preserving Friend
Recommendation based on Similar
Profiles

6.1 Introduction

There is ample evidence to show that sharing information has great benefits to society across

a wide range of sectors and applications. For instance, information sharing endeavors can

support the scientific discovery process, enable governments to assess and refine policies,

and enhance intelligence and national security. At the same time, our societal norms and

legal boundaries provide for confidentiality and personal privacy rights, such that not all

useful information is readily accessible. One way in which society has attempted to resolve

this tension is through the adoption of laws that use a “minimum necessary” principle,

which is typified in the U.S. Health Insurance Portability and Accountability Act of 1996

(HIPAA). Under this principle, (potentially sensitive) data can be shared with requesters

(e.g., biomedical scientists), provided that it is restricted to minimum amount necessary to

pursue an investigation. Yet, how can we engineer information management and retrieval

systems to support such principles? The key to enabling and facilitating information sharing

is to develop a framework under which people can identify and share only what is needed
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(based on information content) without disclosing what is not needed [83].

In this work, we address this issue through the integration of Lucene, a popular open

source feature rich search engine library [84], with privacy-preserving functionality, the hy-

brid of which we refer to as Lucene-P2. In addition to identifying the need-to-know, Lucene-

P2 can enable a large array of useful applications. For context, let us consider two driving

examples. First, imagine a peer-reviewed journal (or research-oriented conference) receives

a number of paper submissions. It is in the best interests of the editor to determine if any

of the submissions contain plagiarized materials. In addition, the editor may want to know

if any papers under reviews have been simultaneously submitted to other journals (i.e., the

double submission problem). Since paper submissions are confidential, the editor cannot

simply utilize the existing plagiarism detection systems to check for double submission. On

the other hand, the Lucene-P2 framework can directly be invoked to solve this problem.

Second, let us consider the medical domain, where an agency in control of drug safety

aims to learn if a certain pharmaceutical that has been recently introduced into the market

is inducing adverse events at a greater than expected rate, so that further investigative

action can be instituted. Due to privacy and confidentiality issues, the events at disparate

healthcare providers may not be shared freely [85]. This problem is exacerbated by the

fact that without making any information available, the agency (or biomedical scientists

more generally) will never know about the existence of such data. As a consequence, they

will never ask permission to access it. We acknowledge that information sharing in the

medical domain is subject to very strict guidelines, but it is possible if “Use or disclosure

is sought solely to review protected health information as necessary to prepare a research

protocol or for similar purposes preparatory to research” [86]. Thus, we believe that the

Lucene-P2 framework can be relied upon to justify this necessity without disclosing protected

information.
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6.1.1 Why Adopting Lucene?

Lucene [84] is a Java-based text indexing and search library that allows users to develop

text-search based information retrieval applications. Lucene adopts the most widely used

information retrieval models. Given a document collection, it can build an inverted index

and produce text representations under the vector space model with Term Frequency -

Inverse Document Frequency (tf-idf) information [87]. The Lucene library also implements

commonly used similarity metric to measure information correlation which is more accurate

than a simple cosine similarity and keyword based search model. To directly adopt Lucene

in the proposed problem domain, the participating parties have to share their information

one way or the other, causing privacy issues. In our proposed framework, Lucene is only used

locally or independently by each party to produce the index structures, the vector space and

the tf-idf frequency vectors. We also adopt Lucene’s similarity metrics due to their proven

effectiveness in text retrieval. Because of its widespread use, by building privacy-preserving

features into the Lucene library, we believe this can facilitate user adoption of the proposed

privacy enhancing technology.

6.2 Transformations for Cryptographic Processing

Here we illustrate how the normalization, scaling and floor transformations are performed

on the Term-Document Matrix (TDM), where an entry TDM(i, j) represents the term-

frequency-inverse-document frequency for term ti in document dj . Cryptographic operations

d1 d2 d3


1.403 0.0741 0.6222 t1
1.1636 0.8108 4.5333 t2
3.2381 16.2 0.3333 t3
0.7439 0.59 5.6667 t4

Figure 6.1: Term-Document Matrix (TDM)
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0.3702 0.0046 0.0853
0.3071 0.05 0.6218
0.8545 0.9981 0.0457
0.1963 0.0363 0.7772


(a) Column-wise Normaliza-
tion


370.2 4.6 85.3
307.1 50.0 621.8
854.5 998.1 45.7
196.3 36.3 777.2


(b) Scaling-up, e.g., by factor
1000

d1 d2 d3


370 4 85 t1
307 50 621 t2
854 998 45 t3
196 36 777 t4

(c) Floor Transformation

Figure 6.2: Transformation stages:- (6.2a) NM, (6.2b) SM, (6.2c) FM

under the Paillier Cryptosystem require the plaintext to be of integer form. Figures 6.1 and

6.2 display the transformation process required in the proposed protocols. Column-wise

normalization helps to eliminate the factor of document length, as shown in Figure 6.2a.

The values lie in [0, 1]. The next step consists of scaling-up the numbers by a factor, say

1000, which depends on the number of dimensions or terms m. Factor is chosen in such

a way that the final product should not cause an overflow. Scaling-up is shown in Figure

6.2b. The final step is simply obtaining the floor transformation or casting the data type

from real to integer. It is important to note that since transformations are performed along

document or query vectors, the relative ordering of similarity between documents would be

unaffected.

Although not possible during the generation of document vectors, negative values may

be produced during the singular value decomposition process. These negative values can be

transformed by performing either the Translation of Axes or the Shifting of Origin method

commonly used in coordinate geometry. The shifting parameter is based on the smallest

(negative) number in the matrix.

6.3 Secure Correlation Computation

In this section, we develop a secure correlation computation (SCC) protocol for the Lucene-

P2 framework that computes scores according to Equation 2.2 with slight modifications:

• coord(q, d) - Since results from different queries are not compared, we can remove the
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normalizing factor in the common term function without affecting the rankings among

the retrieved results.

• queryNorm(q) - This function returns a constant value when the input query is fixed.

Thus, this function can be removed without affecting the relative ordering among the

retrieved result.

• getBoost(t) - In Lucene, the getBoost function is generally set to 1 for every term. In

this work, we will adopt the same output for the getBoost function.

According to the formulation given in Equation 1.2, the proposed SCC protocols are secure

in the sense that:

• the query document q from Pa is not disclosed to Pb and

• Pb’s document collection D is not disclosed to Pa.

The two terms in Equation 2.2, coord(q, d) and
∑

t∈q weight(t, d), have to be computed

securely. Before detailing the proposed protocols, we next clarify how documents are repre-

sented.

6.3.1 Pre-Processing Stage

To be consistent with Lucene, both the query q and the document d are represented in the

same global vector space G. We assume the size of G is bounded by m. The notations

~q and ~d are used to represent q and d under the vector space information retrieval model.

These vectors can be binary or the tf-idf weighting. In addition, ~q[i] and ~d[i] represent the

ith components of ~q and ~d respectively. The following information needs to be computed

beforehand:

• The global vector space G: is generated based on Pb’s document collection and is

shared with Pa.

• According to G, both Pa and Pb can generate the term frequency vectors ~q, ~d and ~d′
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as follows:

~q[i] ← tf(G[i], q)
?
> 0

~d[i] ← tf(G[i], d)
?
> 0

~d′[i] ← weight(G[i], d)

where ~q and ~d are binary vectors under the vector space model; i.e., an entry value 1 means

the corresponding term exists in the document and 0 otherwise. By contrast, ~d′ contains

the tf-idf related information based on Equation 2.3. These vectors are computed locally at

each party, so no secure protocols are needed to perform these tasks.

6.3.2 The SCC Protocol

The design of SCC is based on the following observations:

• Although ~d′ contains fraction values, these values can be scaled up by a constant

factor to ensure that secure computations are done over the integer domain, which is

required under the adopted encryption scheme. Note that since N is at least a 1,024-

bit number, for most applications, the scaled values should still be bounded by N .

For instance, suppose the scaled up numbers are 100-bit long (a very large number for

most applications), the similarity scores are bounded by 200-bit more or less. Thus,

scaling the values will extremely unlikely to cause inaccurate results due to exceeding

the domain limit. Plus, we can always increase the size of N if needed.

• The common term function coord(q, d) is equivalent to ~q • ~d, the dot product between

~q and ~d.

• The summation part of the score function
∑

tεq weight(t, d) is equivalent to ~q • ~d′.

In the protocol, Pa has the private key pr of an HEnc scheme, while the public key pu is

known to Pb. The private-public key pair can be generated by Pa.

The input for this algorithm comes from both parties Pa and Pb. Pa provides the query

document q. The output consists of a set of similarity scores related to each document in
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Algorithm 10 SCC(〈Pa, q〉, 〈Pb, D〉)→ s1, . . . , sn

Require: The global vector space G and the size of the document collection D are
known to both parties; q is Pa’s private input, and D is Pb’s private input

1: Pb

Compute ~dj and ~d′j based on G, where n = |D|, m = |G|, 1 ≤ j ≤ n

2: Pa

1. Generate a private-public key pair (pr, pu) of an HEnc scheme and send pu
to Pb

2. Generate ~q based on G

3. Compute Epu(~q[1]), . . . , Epu(~q[m]) and send to Pb
3: Pb (j = 1 to n)

1. Compute sj1 ←
∏m

i=1∧ ~dj [i] 6=0Epu(~q[i])

2. Compute sj2 ←
∏m

i=1 Epu(~q[i])
~d′j [i]

4: Pa and Pb (j = 1 to n)

〈Pa, sj〉 ← MP(〈Pa, pr〉, 〈Pb, pu, sj1 , sj2〉), where sj = Dpr(sj1) ·Dpr(sj2)

5: Pa

Send s1, . . . , sn to Pb

Pb’s collection. The SCC protocol is a secure two-party protocol, i.e., it is run by both

the parties Pa and Pb. Some steps of the protocol are run by a single party and some by

both parties. Labels Pa and Pb, appearing next to the protocol step number, indicate which

party is executing that step. The final step is a two-party protocol in itself and hence, is

represented by the Pa and Pb label. Next, we step through the details of each individual

sub-step presented in Algorithm 10.

• Public input - Pb, using Lucene, produces the global vector space G. We have

removed the stop words and have used the Porter stemming algorithm [88] provided

by Lucene. Once G is generated, it is sent to the querying party Pa when it requests

to start the Lucene-P2 system.

• Step 1 - Based on G, Pb creates two vectors ~d and ~d′, for every document in D,

by relying upon a one-to-one mapping of vector dimensions and specifically ordered

terms in the global vector space G. ~d and ~d′ are the binary and the tf-idf document
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Algorithm 11 MP(〈Pa, pr〉, 〈Pb, Epu(x), Epu(y)〉)→ 〈Pa, x · y〉
Require: Pa: private key pr; Pb: Epu(x) and Epu(y), pu is the public key of an HEnc
1: Pb

1. Randomly generate r1 and r2 from ZN

2. Compute Epu(x+ r1) and Epu(y + r2) and send them to Pa
2: Pa

1. Decrypt Epu(x+ r1) and Epu(y + r2) to get x+ r1 and y + r2

2. Compute Epu(xy + xr2 + yr1 + r1r2) and send it to Pb
3: Pb

1. Compute Epu(xr2), Epu(yr1) and Epu(r1r2)

2. Derive Epu(xy) and send it to Pa
4: Pa

Decrypt Epu(xy) to get xy

vectors, respectively, as discussed in Section 6.3.1.

• Step 2 - To execute the SCC protocol, Pa generates a private-public key pair (pr, pu)

of an HEnc scheme, such as Paillier. At this point, Pa shares the public key pu with Pb.

Once Pa receives the global vector space G from Pb, it constructs a binary document

vector ~q for the query document q as described in Section 6.3.1. At the end of the

step, Pa encrypts ~q component-wise using its public key pu and sends the encrypted

query to Pb.

• Step 3 - Pb generates Epu
(
~q • ~dj

)
and Epu

(
~q • ~d′j

)
denoted by sj1 and sj2 respec-

tively.

• Step 4 - Both parties utilize a well-known secure multiplication (MP) protocol (see

Algorithm 11) to produce
(
~q • ~dj

)
·
(
~q • ~d′j

)
which is only known to Pa.

For completeness, the key steps of MP are provided in Algorithm 11. Given two ciphertexts

Epu(x) and Epu(y) from Pb, the MP protocol computes and returns the plaintext x ·y to Pa.

• Step 1 - Pb generates two random numbers r1 and r2 from ZN to randomize Epu(x)

and Epu(y), respectively. The randomizations Epu(x+r1) and Epu(y+r2) are obtained
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by using the additive homomorphic property. Epu(x + r1) and Epu(y + r2) are then

sent to Pa.

• Step 2(1) - Pa knows the private key pr. Thus, given a ciphertext c = Epu(m), where

pu is the public key, Pa can compute its plaintext m by computing m = Epr(c). After

obtaining Epu(x+ r1) and Epu(y+ r2), Pa decrypts them to get plaintexts x+ r1 and

y + r2.

• Step 2(2) - Once x+r1 and y+r2 have been derived, Pa multiplies them and encrypts

the result using pu. Epu((x+r1)·(y+r2)) = Epu(xy+xr2+yr1+r1r2). The encrypted

result is then sent to Pb.

• Step 3(1) - Pb knows Epu(x), Epu(y), r1 and r2. Using the additive homomorphic

property, Pb computes:

Epu(r2 · x) = Epu(x)r2

Epu(r1 · y) = Epu(y)r1

Epu(r1 · r2) = Epu(r1 · r2)

• Step 3(2) - Again using the additive homomorphic property, Pb computes:

Epu(−r2 · x) = Epu(r2 · x)N−1

Epu(−r1 · y) = Epu(r1 · y)N−1

Epu(−r1 · r2) = Epu(r1 · r2)N−1

These values are then multiplied with Epu(xy + xr2 + yr1 + r1r2), obtained from Pa,

to realize the encrypted form of x · y. Then Pb sends Epu(xy) to Pa for decryption.

• Step 4 - Pa decrypts the obtained ciphertext Epu(x · y) using its private key pr to

derive x · y.
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6.3.3 Security Analysis

In addition to the similarity scores, the proposed SCC protocol discloses the global vector

space G and the size of Pb’s document collection under the semi-honest model. The security

of SCC can be proved using the simulation method in [14] according to Definition 1. First,

we need to build a simulator based on the private input and output for each party. Since

the computations between the two parties are asymmetric, the simulators are different for

the individual parties. According to the SCC protocol, let ΠPa and ΠPb
denote the real

execution images for parties Pa and Pb respectively. Similarly, ΠS
Pa

and ΠS
Pb

denote the

simulated execution images. Next, we show how to construct a simulator Simulator-ΠS
Pa

to

produce ΠS
Pa
.

Simulator-ΠS
Pa

Algorithm 12 Simulator-ΠS
Pa

(pu, s1, . . . , sn)

Require: pu is the public key of Paillier, s1, . . . , sn are the output from SCC
1: For 1 ≤ j ≤ n, randomly generate αj and βj from ZN
2: For 1 ≤ j ≤ n, compute Epu(αj), Epu(βj) and Epu(sj)
3: Return the following (1 ≤ j ≤ n)

• X ′ ∼ 〈Epu(αj), αj〉
• Y ′ ∼ 〈Epu(βj), βj〉
• Z ′ ∼ 〈Epu(sj), sj〉

For a two-party distributed protocol, private information can be disclosed from the

messages exchanged during the execution of the protocol. Party Pa receives messages from

Pb at step 4 of the SCC protocol which translates into the steps 1(2) and 3(2) of the MP

protocol. More specifically, Pa receives the following messages: Epu(xj + rj1), Epu(yj + rj2)

and Epu(xjyj), where xj and yj represent the underlying values of sj1 and sj2 computed at

step 3 of Algorithm 10 and the r values are randomly generated for each pair of xj and yi.

Thus, the real execution image ΠPa consists of the following information (1 ≤ j ≤ n):

• X ∼ 〈Epu(xj + rj1), xj + rj1〉
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• Y ∼ 〈Epu(yj + rj2), yj + rj2〉

• Z ∼ 〈Epu(xjyj), xjyj〉

where X, Y and Z denote the random variables related to the corresponding pair of values.

For each pair, the first component is the message received, and the second component is the

value derived from the first component. The simulator needs to simulate these messages and

the information derived from them. Algorithm 12 provides the key steps for Simulator-ΠS
Pa
.

Claim 3. ΠS
Pa

generated from Simulator-ΠS
Pa

is computationally indistinguishable from ΠPa .

Proof. Suppose the claim is not true, then ΠS
Pa

is computationally distinguishable from ΠPa .

This implies three possibilities: X ′ is computationally distinguishable from X, Y ′ is compu-

tationally distinguishable from Y , or Z ′ is computationally distinguishable from Z. If X ′ is

computationally distinguishable from X, then 〈Epu(αj), αj〉 is computationally distinguish-

able from 〈Epu(xj + rj1), xj + rj1〉. This implies that either Epu(αj) is distinguishable from

Epu(xj +rj1) or αj is distinguishable from xj +rj1 . Since both αj and xj +rj1 are uniformly

random in ZN and indistinguishable, it must be that case that Epu(αj) is computationally

distinguishable from Epu(xj + rj1). However, this contradicts the fact that the Paillier en-

cryption scheme is semantically secure or computationally indistinguishable [70]. Therefore,

X ′ must be computationally indistinguishable from X. Adopting the same argument, we

can prove that Y ′ must be computationally indistinguishable from Y . Regarding Z and Z ′,

since sj = xjyj , in order for both to be distinguishable, it must be that case that Epu(sj)

is distinguishable from Epu(xjyj). Again, this contradicts the security guarantee of Paillier.

In conclusion, ΠS
Pa

is computationally indistinguishable from ΠPa .

The above claim demonstrates that fact that any information that Pa learned during

the execution of the SCC protocol can be derived by its private input and output. Thus,

from Pb’s perspective, the protocol is computationally secure. Next we need to prove the

protocol is secure from Pa’s perspective by building a simulator to simulate Pb’s execution

image.
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Simulator-ΠS
Pb

Algorithm 13 Simulator-ΠS
Pb

(D, pu)

Require: D is the document collection and pu is the public key of Paillier
1: Randomly generate Q1, . . . , Qm from ZN2

2: For 1 ≤ j ≤ n, randomly generate Rj from ZN2

3: Return the following (1 ≤ j ≤ n)

• X ′ ∼ Q1, . . . , Qm

• Y ′ ∼ Rj

Party Pb receives messages from Pa at steps 2(3) and 4 of the SCC protocol. The step

4 further translates into the step 2(2) of the MP protocol. Thus, the real execution image

ΠPb
consists of the following information (1 ≤ j ≤ n):

• X ∼ Epu(~q[1]), . . . , Epu(~q[m])

• Y ∼ Epu(xjyj + xjrj2 + yjrj1 + rj1rj2)

where X and Y denote the random variables related to the corresponding encrypted values.

There is a main difference of the real execution images of Pa and Pb where ΠPa additionally

includes the information derived from its received messages since decryptions are performed

on the message. On the other hand, Pb never decrypts any values, so there is no explicit

information derived from its received messages. Algorithm 13 provides the key steps for

Simulator-ΠS
Pb
.

Claim 4. ΠS
Pb

generated from Simulator-ΠS
Pb

is computationally indistinguishable from ΠPb
.

Proof. Suppose the claim is not true, then this implies two possibilities: X ′ is computa-

tionally distinguishable from X, or Y ′ is computationally distinguishable from Y . If X ′ is

computationally distinguishable from X, then Qi is computationally distinguishable from

Epu(~q[i]). However, this contradicts the fact that the Paillier encryption scheme is semanti-

cally secure or computationally indistinguishable [70]. Therefore, X ′ must be computation-

ally indistinguishable from X. Applying the same argument, we can prove that Y ′ must

be computationally indistinguishable from Y . As a consequence, ΠS
Pb

is computationally

indistinguishable from ΠPb
.
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The above claim demonstrates that fact that any information that Pb learned during

the execution of the SCC protocol can be derived by its private input. Thus, from Pa’s

perspective, the protocol is computationally secure. Combining both claims, we can conclude

that the SCC protocol is computationally secure as long as the parties follow the prescribed

steps of the protocol.

6.3.4 Complexity Analysis

To analyze the computational cost of an SMC protocol, it is common to use the number

of encryptions as a basis since the encryption/decryption operation is generally the most

expensive basic operation. We will also include exponentiation of a ciphertext as a basic

operation. Since the computations are asymmetric between Pa and Pb, we estimate the costs

according to each individual party.

For the MP protocol, the cost at step 1(2) is equivalent to two encryptions. Because

the encryption and decryption costs are close for the Paillier encryption scheme adopted in

this work, we treat the cost of a decryption operation the same as that of an encryption

operation. Therefore, the cost at step 2 or step 3 is about three encryptions, and the cost at

step 4 is about one encryption. Overall, the computational cost of MP for Pb is 5 encryption

operations, and the computational cost for Pa is 4 encryption operations. Let t denote the

number of bits needed to represent each encrypted value. Then for the MP protocol, Pb

needs to send 3t bits and Pa needs to send t bits.

At step 2 of the SCC protocol, Pa needs to perform m encryption operations. Based on

the previous analysis, at step 4, Pa needs to perform 4n encryption operations. Thus, the

computational cost for Pa is about m+4n encryptions, and the computational cost for Pb is

about 5n encryptions and mn encryption exponentiations. The communication complexity

is bounded by (m + n)t bits and 3nt bits for Pa and Pb respectively. We count a pair of

send and receive as one round of communication. The SCC protocol requires two rounds of

communication between Pa and Pb.
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6.4 The SCC Protocol with LSI

As our empirical results illustrate in Section 6.5, the proposed SCC protocol may not be

sufficiently efficient for a real-time application. Thus, in this section, we investigate strategies

to improve the computational efficiency with an acceptable level of privacy guarantee. Since

the global vector space G can be very large, one potential opportunity to improve the

computational efficiency of SCC is to reduce the number of dimensions in G without affecting

the accuracy of the retrieved results. In this section, we discuss a commonly used dimension

reduction technique and how it can be securely adopted by SCC.

6.4.1 Dimension Reduction with LSI

Latent Semantic Indexing (LSI) is based on various linear algebraic concepts such as matrix

decomposition, Singular Value Decomposition (SVD), and low-rank matrix approximations

[87]. It has been widely used in information retrieval to improve result accuracy, so it is

applicable for all text-based information retrieval applications. A document collection can

be represented using a matrix structure, where the rows correspond to the terms occurring

in the collection and the columns corresponding to the individual document. An entry at

index location (i, j) can be the tf-idf or frequency information about term i in document j.

This representation is generally called a term by document matrix.

After LSI transformation, each document can be represented by a vector with an order of

50 to 150 values/dimensions. Thus, LSI offers an economical way of representing documents.

The main step in LSI is SVD to produce a reduced term-document matrix which is used to

reduce the dimensions of the documents in D and the user query. We refer to this matrix as

the SVD matrix. According to Equation 2.2, we need two SVD matrices, C[m,k] and W[m,k],

to transform the vectors related to coord(t, d) and weight(t, d) respectively.

Based on the document collection D, Pb is responsible for producing C[m,k] and W[m,k].

In addition to ~q[i], ~d[i] and ~d′[i], we need another vector computed based on Pa’s query:

~q′[i]← weight(G[i], q)
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To reduce the dimensions of the vectors, we treat each as a 1 by m matrix. Then the binary

vectors are reduced by multiplying with the matrix C[m,k], while the term-frequency related

vectors are reduced by multiplying with the matrix W[m,k]. Let ~qC , ~q′W , ~dC and ~d′W denote

the dimensionally-reduced vectors of ~q, ~q′, ~d and ~d′ respectively. The similarity between q

and d is then calculated with the following equation:

score(q, d) =
(
~qC • ~dC

)
·
(
~q′W • ~d′W

)
(6.1)

where • denotes the dot product of two vectors. Since Pb generates C[m,k] and W[m,k], ~d′C

and ~d′W can be easily computed by Pb. Since q is Pa’s private input query, Pa cannot send

q to Pb to produce ~q′C and ~q′W . A secure way is required to reduce query vectors from Pa.

6.4.2 The SCC-LSI Protocol

The SCC-LSI protocol performs the same task as the SCC protocol: find the similarity scores

between one party’s query q and the other party’s document collection D securely. The main

steps of the SCC-LSI protocol are provided in Algorithm 14. The key difference between

SCC and SCC-LSI is that the SCC-LSI protocol requires additional steps to produce C[m,k],

W[m,k], ~dC and ~d′W , and secure steps to produce ~qC and ~q′W . It should be noted that the

way to compute the similarities also differs between the two protocols.

• Public input - In addition to G and |D|, the size of the reduced vector k is known

to both parties.

• Step 1 - For each document, Pb produces ~d and ~d′ based on G. More importantly,

Pb also needs to produce the SVD matrices C[m,k] and W[m,k] which are subsequently

used to generate the dimensionally-reduced vectors ~dC and ~d′W for each document.

• Step 2 - This step is identical to that of the SCC protocol. Briefly, Pa encrypts his

query vector component-wise, and sends the encrypted values to Pb.

• Step 3 - Since Pa has no access to ~G, C[m,k] and W[m,k], it is impossible for Pa

to produce ~q′, ~qC and ~q′W . However, the encrypted forms of these vectors can be
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generated by Pb. More specifically, the sub-steps (1), (2) and (3) produce Epu(~q′),

Epu(~qC) and Epu(~q′W ) respectively. At the last sub-step, Pb, for each document in D,

generates Epu
(
~qC • ~djC

)
and Epu

(
~q′W • ~d′jW

)
denoted by sj1 and sj2 which are the

private inputs from Pb to execute the MP protocol.

• Step 4 - For each document dj ∈ D, the two parties utilize the MP protocol to

produce
(
~qC • ~djC

)
·
(
~q′W • ~d′jW

)
which is only known to Pa.

Security Analysis

The security guarantee of the SCC-LSI protocol is almost the same as that of the SCC pro-

tocol. The only information disclosed is the global vector space G, the size of the document

collection and the size of the reduced vectors. The same analyses given in Section 6.3.3 can

be used here to prove the security of the SCC-LSI protocol.

Complexity Analysis

The complexity for the MP protocol does not change, so we directly adopt the results from

Section 6.3.4. Overall, the computational cost for Pb is about 5 encryption operations, and

the computational cost for Pa is about 4 encryption operations. In addition, Pb needs to

send 3t bits and Pa needs to send t bits.

At step 2 of the SCC protocol, Pa needs to perform 2m encryption operations. At step 4,

Pa needs to perform 4n encryption operations. Thus, the computational cost for Pa is about

2m+ 4n encryptions. At step 3, Pb needs to perform 2km and 2kn encryption exponentia-

tions at sub-steps (1) and (2). In addition, step 4 requires Pb to perform 5n encryptions. As

a result, the computational cost for Pb is about 5n encryptions and 2k(m + n) encryption

exponentiations. The communication complexity is the same as the SCC protocol, bounded

by (m+ n)t bits and 3nt bits for Pa and Pb respectively. SCC-LSI also requires two rounds

of communication between Pa and Pb.
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6.4.3 The SCC-LSI* Protocol

In theory, if n is much smaller than m, the SCC-LSI protocol should be more efficient than

the SCC protocol on Pb’s side. However, the computational cost at Pa is doubled. We may

ask if it is possible to reduce the costs for both parties. Here we present the SCC-LSI*

protocol, a simplified version of SCC-LSI, to further improve the computational efficiency.

The SVD matrices C[m,k] and W[m,k] have reduced ranks comparing to the original term

document matrices, and the SVD method is not reversible. In other words, given C[m,k] and

W[m,k] there does not exist a method to derive the original matrices. However, we cannot

formally quantify the amount of information leaked from the SVD matrices which is still

an open problem. Here, we assume that the information disclosed from C[m,k] and W[m,k]

regarding Pb’s document collection is negligible. The SCC-LSI* protocol is constructed

based on this assumption. The key steps are given in Algorithm 15. The differences between

SCC-LSI and SCC-LSI* are highlighted in the following steps:

• Step 1 - Pb shares C[m,k] and W[m,k] with Pa.

• Step 2 - Since Pa has ~G, C[m,k] and W[m,k], Pa can produce ~qC and ~q′W locally, encrypt

them component-wise, and send the encrypted values to Pb.

• Step 3 - Unlike the SCC-LSI protocol, Pb only needs to compute Epu
(
~qC • ~djC

)
and

Epu

(
~q′W • ~d′jW

)
.

Security Analysis

For the SCC-LSI* protocol, we cannot adopt the same security proof strategies as the

previous two protocols due to the fact that the SVD matrices are disclosed to Pa. However,

in the following, we analyze if any information is disclosed from these matrices and point

out a randomization technique to fully secure the shared matrix.

Our LSI implementation is based on the LSI theory proposed in [89,90]. Lucene similarity

score consists of products of two dot products - tf-idf vectors (~qC , ~dj) and binary vectors (~q′W ,

~d′j). Here, we concentrate on one of the pairs as similar argument applies to the other pair.

Pa obtains a truncated vector ~qC from m dimensions to k, k << m with at least a difference
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of 2 to 3 orders depending on the size of G from the shared C[m,k] (see Equation 18.21

in [90] or Section 4.2.4 in [89]). Equation (6.2) represents the query truncation operation,

‘′’ indicates the transpose operation, ~q[m,1] is the query before truncation.

~qC =
[
~q[m,1]

]′ · C[m,k] (6.2)

On the server Pb side, who performs the critical Singular Value Decomposition (SVD)

before the above computation takes place, the computation looks like [89,90]:

A[m,n] = C[m,r]Σ[r,r]

[
E[n,r]

]′
=
[
C[m,r]Σ

1/2
[r,r]

] [
E[n,r]Σ

1/2
[r,r]

]′
(6.3)

where m and n are the number of terms and documents respectively, A is term-by-document

matrix (tf-idf or binary values) and C indicates term-term fuzzy relatedness with respect to

number of documents. The product of rows i and j of
[
C[m,r]Σ

1/2
[r,r]

]
gives this relatedness

in terms of document counts for terms indexed by i and j. It is important to note that Σ

is never shared in our protocol. Similarly, E indicates document-document incidence with

respect to terms. Σ is a diagonal matrix consisting of eigenvalues of A, and r ≤ min(m,n)

is the rank of A.

Â[m,n] = C[m,k]Σ[k,k]

[
E[n,k]

]′
=
[
C[m,k]Σ

1/2
[k,k]

] [
E[n,k]Σ

1/2
[k,k]

]′
(6.4)

The above equation shows the truncation part for k approximation where k � r. Here

the eigenvalues in the diagonal matrix Σ are ordered in descending order, and likewise,

columns of C and E are shifted around to keep up with the new ordering. (r − k) smallest

eigenvalues are omitted from Σ, and similarly, (r − k) right-most columns of C and E are

removed. The party or user Pa is not aware of the newly shifted columns and how the

mapping between terms and columns has changed. Pa is also not aware of which terms were

deemed unimportant towards the truncated approximation of A (i.e., Â derived in Equation

(6.4)), and hence dropped. Thus, when C[m,k] is received by Pa, it cannot make a deduction

regarding any value since it does not understand which terms are being considered. Also
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transforming from low-dimensional representation C[m,k] to its accurate and high-dimension

representation C[m,r], without any parametric information, is not possible according to the

solvability of linear systems.

In summary, the actual data, i.e., Pb’s term-document collection matrix A[m,n] is pro-

tected since it is a product of three matrices - C[m,r], Σ[r,r] and [E[n,r]]
′ out of which just

a truncated form of C[m,r], i.e., C[m,k] is revealed to Pa. Σ[r,r] and [E[n,r]] are not revealed.

Thus, reconstruction of A[m,n] is not possible since two out of three constituent factors are

not available to Pa. Also, as per linear algebraic concepts or method for solving system of

linear equations, there can be exponentially many solutions for Σ[r,r] and E[n,r].

If the above analysis is still not sufficient to justify the security of sharing C[m,k], we can

adopt the randomization approach proposed in [91, 92]. Instead of sharing C[m,k] directly,

a randomized version of C[m,k], e.g., Ĉ[m,k], can be shared with Pa. Ĉ[m,k] preserves the

key characteristics of C[m,k] for data analytics without revealing any specific information

about C[m,k]. This technique has proven to be both information theoretically secure and

effective [82,92].

Complexity Analysis

At step 2 of the SCC protocol, Pa needs to perform 2k encryption operations. At step 4, Pa

needs to perform 4n encryption operations. Thus, the computational cost for Pa is about

2k + 4n encryptions. At step 3, Pb needs to perform 2kn encryption exponentiations. In

addition, step 4 requires Pb to perform 5n encryptions. As a result, the computational cost

for Pb is about 5n encryptions and 2kn encryption exponentiations. The communication

complexity is bounded by (2k + n)t bits and 3nt bits for Pa and Pb respectively. SCC-LSI*

also requires two rounds of communication between Pa and Pb.

A summary of the computation and communication complexities of the three SCC pro-

tocols is given in Table 6.1. The costs column indicates the cost unit. HEnc represents

the homomorphic encryption operation, and Exp represents encryption exponentiation. As

shown in the table, when k � m, the SCC-LSI protocol can be more efficient for Pb in com-

parison to the SCC protocol. The SCC-LSI* protocol is the most efficient for both parties.
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Table 6.1: SCC Complexity

Protocols Costs Pa Pb

SCC HEnc m+ 4n 5n
Exp 0 mn
Bit (m+ n)t 3nt
Round 2 2

SCC-LSI HEnc 2m+ 4n 5n
Exp 0 2k(m+ n)
Bit (m+ n)t 3nt
Round 2 2

SCC-LSI* HEnc 2k + 4n 5n
Exp 0 2kn
Bit (2k + n)t 3nt
Round 2 2

On the other hand, Both SCC and SCC-LSI have provable security guarantees.
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Algorithm 14 SCC-LSI(〈Pa, q〉, 〈Pb, D〉)→ s1, . . . , sn

Require: The global vector space G, the size of the reduced vector, and the size of
D are known to both parties; q is Pa’s private input, and D is Pb’s private input

1: Pb

1. For 1 ≤ j ≤ n: compute ~dj and ~d′j based on G, where n = |D|, m = |G|

2. Using the SVD algorithm to generate C[m,k] and W[m,k] based on ~djs and ~d′js
respectively

3. For 1 ≤ j ≤ n: compute ~djC and ~d′jW for every ~dj and ~d′j respectively

2: Pa

1. Generate a private-public key pair (pr, pu) of an HEnc scheme and send pu to
Pb

2. Generate ~q and ~q′ based on G

3. Encrypt ~q and ~q′ component-wise:

4. Epu(~q[1]), . . . , Epu(~q[m])

5. Epu(~q′[1]), . . . , Epu(~q
′[m])

6. Send them to Pb
3: Pb

1. For 1 ≤ j ≤ k:

2. Epu(~qC [j])←
∏m

i=1Epu(~q[i])
C[m,k][i,j]

3. Epu(~q′W [j])←
∏m

i=1Epu(~q
′[i])W[m,k][i,j]

4. For 1 ≤ j ≤ n:

5. sj1 ←
∏k

i=1Epu(~qC [i])
~djC [i]

6. sj2 ←
∏k

i=1Epu(~q
′
W [i])

~d′jW [i]

4: Pa and Pb (j = 1 to n)

〈Pa, sj〉 ← MP(〈Pa, pr〉, 〈Pb, pu, sj1 , sj2〉), where sj = Dpr(sj1) ·Dpr(sj2)

5: Pa

Send s1, . . . , sn to Pb
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Algorithm 15 SCC-LSI*(〈Pa, q〉, 〈Pb, D〉)→ s1, . . . , sn

Require: The global vector space G, the size of the reduced vector, and the size of
the document collection D are known to both parties; q is Pa’s private input, and
D is Pb’s private input

1: Pb

1. For 1 ≤ j ≤ n: compute ~dj and ~d′j based on G, where n = |D|, m = |G|

2. Adopting SVD algorithm, generate C[m,k] and W[m,k] based on ~djs and ~d′js
respectively; Send C[m,k] and W[m,k] to Pa

3. For 1 ≤ j ≤ n: compute ~djC and ~d′jW for every ~dj and ~d′j respectively

2: Pa

1. Generate a private-public key pair (pr, pu) of an HEnc scheme and send pu to
Pb

2. Generate ~qC and ~q′W based on C[m,k] and W[m,k]

3. Encrypt ~qC and ~q′W component-wise:

4. Epu(~qC [1]), . . . , Epu(~qC [k])

5. Epu(~q′W [1]), . . . , Epu(~q
′
W [k])

6. Send them to Pb
3: Pb

For 1 ≤ j ≤ n:

1. sj1 ←
∏k

i=1Epu(~qC [i])
~dj [i]

2. sj2 ←
∏k

i=1Epu(~q
′
W [i])

~d′j [i]

4: Pa and Pb (j = 1 to n)

〈Pa, sj〉 ← MP(〈Pa, pr〉, 〈Pb, pu, sj1 , sj2〉), where sj = Dpr(sj1) ·Dpr(sj2)

5: Pa

Send s1, . . . , sn to Pb
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6.5 Experimental Results

In this section, we empirically show the running time of the proposed protocols with a real

dataset. As stated in Section 6.1, there does not exist a secure protocol that has the same

functionality as the proposed protocols. Therefore, the main goal of this section is to show

how efficient the SCC-LSI* protocol by comparison with the baseline, the SCC protocol.

Since SCC-LSI* is proved to be theoretically faster than SCC-LSI (see Table 2 for SCC

complexities), in order to ease use of notation and consequently readability, further references

to LSI indicate the reference to SCC-LSI* (i.e., Algorithm 15), unless otherwise explicitly

noted.

6.5.1 The Experiment Setup

The proposed protocols are implemented in a local area network. We use two separate

machines to emulate the tasks performed by Pa and Pb. Additional information regarding

the dataset and implementation details is given below:

• Dataset - We tested our system on a real data set [93]. The dataset consists of 889

unannotated, de-identified discharge summaries. This dataset was created as part of

the Natural Language Processing (NLP) contest organized by the authors as part of

the Informatics for Integrating Biology to the Bedside (i2b2) project.

• Data extraction - The dataset consists of a single file with multiple records in the

form of discharge summaries. We split these records into their individual files. Using

the Lucene analyzing package, we applied the lower case filter, stop word filter and

the Porter stemming filter. The lower case filter converts all the tokens generated

during the analysis phase to lowercase tokens. The stop word filter removes stop

words or common terms such as “a“ and “the”. which act as noise and contribute little

semantically. The Porter stemmer implements the Porter stemming algorithm [88].

• Hardware details - Machine # 1

– Processor: 64-bit Intel® Xeon® CPU E2186G @ 3.80GHz 12CPU(s)
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– Memory: 62GiB DIMM DDR4 2666MHz (0.4 ns)

– Hard disk: 1024GB PC400 NVMe SK hynix

• Hardware details - Machine # 2

– Processor: 64-bit Intel® Xeon® CPU E2186G @ 3.80GHz 12CPU(s)

– Memory: 62GiB DIMM DDR4 2666MHz (0.4 ns)

– Hard disk: 1024GB PC400 NVMe SK hynix

• Programming languages and software tools - The protocols were implemented

using Java and C. We used Java and the Apache Lucene ™ [84] Java information

retrieval library to implement the secure similarity computation protocol. All the

security related operations, such as encryption and decryption, were carried out using

C and the GMP library [75].

• Additive Homomorphic Encryption - We use the Paillier [70] for its additive

homomorphic property.

6.5.2 Empirical Analysis

To account for the difference in processors, we ran the experiment by alternating the client

and server roles for these systems and averaged out the results. After indexing 889 documents

we found the number of vector dimensions (i.e.,global terms) to be about 24,000. Such high

dimensionality will significantly affect the computation performance. After applying the

Porter stemming filter and eliminating words of size two and less, we were able to reduce

the number of dimensions to approximately half. Thus, we have n = 889 and m = 13, 098.

Figure 6.3 shows the execution time for the SCC protocol, plotted against the public

key sizes. The evaluation is based on three key sizes: 512, 1,024 and 2,048. It can be

seen that time required increases non-linearly with respect to the key sizes. It should be

recognized that this figure only reports the total execution time between the two parties.

Clearly, the execution time is very high for a key size of 2,048 which is not practical for
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Figure 6.3: Run time complexity for SCC and SCC-LSI*

real-time applications. However, the applications discussed in Section 6.1 do not require

real-time responses.

Next we show applying LSI improves the runtime efficiency of the SCC protocol. We

overcome the dimensionality problem by reducing the dimension size from m = 13, 098 to

k ∈ {100, 150, 200} using the LSI technique. More specifically, we report the results given

in Figure 6.3 for the SCC-LSI* protocol. As can be seen, the running time grows with the

key size. In addition, as k increases, the running time only increases slightly. For example,

when k varies from 100 to 200, the running time changes from 470 to 498 seconds when the

encryption key size is fixed to 2,048. The main reason the k variable does not affect the

running time not as much is that k is smaller than n and encryption exponentiation in the

proposed protocol is less costly than the encryption operation.

Overall, the SCC-LSI* protocol is much more efficient than the SCC protocol. For

example, when the key size is 2,048, the running time for SCC-LSI* is about 498 seconds

with k = 200. By contrast, the running time for SCC is about 2,186 seconds which is several

times slower.
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Figure 6.4: Pa’s local running time vs. key size

Local Computation Time for Pa and Pb

The previous results only show the total running time of the entire protocol. It is not

clear about the costs at each individual party. Figures 6.4, 6.5, and 6.6 summarize the

running time results of each party excluding the communication costs. As shown in Figures

6.4 and 6.5, both parties’ running time increases with the key size, and LSI can reduce

the running time. Figure 6.6 shows the pre-processing time with or without LSI. Clearly,

LSI adds more cost on producing the transformed vectors, but it helps on improving the

efficiency of the overall protocol. The LSI pre-processing time also includes the Singular

Value Decomposition on the Pb side. As evidenced by the empirical results, to protect data

security and personal privacy, we have to sacrifice some efficiency. Almost all existing SMC-

based privacy-preserving data analytical protocols are not suitable for real-time applications.

Three-party Secret Sharing Technique (SST)

SST is developed using secret sharing [94] based secure multi-party computation technique.

The SST version requires three parties: P0, P1 and P2. Our implementation utilizes Beaver

multiplication triplets [82, 95] for computation of dot products, which form the basis for
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Figure 6.5: Pb’s local running time vs. key size

Lucene’s similarity score computation (Equation 2.2). P0 is the party that generates the

multiplication triplets required for multiplication purposes. It can be run before the actual

SST protocol begins. Therefore, it can be considered a one-time computation as a pre-

processing step. Workload for P1 and P2 is symmetrical in nature. In our problem domain,

Pa and Pb can take on P1 and P2’s roles respectively. They simply have to secretly share

the query and the SVD matrix between each other.

Figures 6.7 and 6.8 show how SST performs against the homomorphic encryption based

SCC and SCC-LSI*. P1 and P2 have identical workload due to the symmetrical nature of the

Beaver triples-based multiplication protocol used for dot product computations. It can be

seen clearly that SST performs exceptionally well. To run the protocol for 889 documents

with 889 dimensions, P1 and P2 complete their processing part under a second, whereas

SCC-LSI* does it under 62 seconds for Pb and under 8 seconds for Pa with a public key size

of 1,024 bits. SCC-LSI* cannot be tested for dimension size k equal to 13, 098 as the rank

r of Term-Document matrix in that case would be less than or equal to min(13, 098, 889)

and k is bounded by r. Additionally, for 889 documents with 13,098 dimensions, P1 and P2

complete their processing part under 11 seconds whereas SCC does it under 246 seconds for

Pb and under 33 seconds for Pa with a public key size of 1,024 bits. From these results, it
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Figure 6.6: Pre-processing time for each party

seems that the LSI-based optimization may not be needed for SST. Nevertheless, LSI may

improve result accuracy, and if the document collection does not change often, LSI can still

provide a significant performance gain over a large amount of user queries.

For P0 to generate the multiplication triples and their shares (one triple for each product

operation in a pseudo-random manner), it took 0.54 seconds for 889 dimensions and under

8 seconds for 13, 098 dimensions. If n and m are number of documents and dimensions re-

spectively, the number of triples required would be (2m+1)n, which includes the cumulative

count of dot products of tf-idf and binary vectors, as well as the intermediate product of

those two (performed by MP protocol in SCC) for all documents in the collection. Moreover,

since the triple generation is independent in nature, P0 can pre-compute the shares and send

them to the other parties in a bulk manner, as a pre-processing step.

In short, at the cost of an additional party P0, SST significantly outperforms both

SCC and SCC-LSI* in terms of CPU time for processing purposes. Thus, depending on the

number of involved parties and the underlying system architecture to be deployed, either

SCC-LSI* or SST can be used.
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Figure 6.7: Pa’s Processing time comparison for full and intermediate MP computa-
tion as well as the Secret Sharing Technique (SST)

MP - Intermediate Protocol Computation

Figures 6.7 and 6.8 also provide an idea about the amount of time spent, for both the

parties, in running the intermediate secure Multiplication Protocol (MP) described in the

work. Comparison is provided for SCC (found at x = 1100 and k = 13, 098) and its

optimized version SCC-LSI*, for both the parties Pa and Pb. It is observed that the CPU

time required for executing MP protocol is very short when compared to the Secure Dot

Product computation at Step 3 of SCC and SCC-LSI*.

The Performance on the Client Side

The computation on the Pa side is actually quite small. Under the homomorphic encryption

(HEnc) approach, it performs a little over 10,000 HEnc operations without latent semantics

indexing (LSI). With LSI, it performs multiplications between a vector and a matrix. In

addition, it performs several hundred HEncs depending on the reduced dimension size.

Under the secret sharing implementation, the user only needs to generate secret shares of

his or her query vector, which is substantially more efficient than HEnc. The vector size
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Figure 6.8: Pb’s Processing time comparison for full and intermediate MP computa-
tion as well as the Secret Sharing Technique (SST)

only depends on the global vector space (G). As a result, when G becomes saturated, the

computation overhead has minimal change when new documents are added. Even if a new

document contains terms not in G, these terms may not be added due to the process of

removing stop words and word stemming. Also, when using secret sharing, user queries can

be efficiently generated from standard computing devices, such that using LSI to improve

performance may no longer be necessary.

6.6 Extensions to the SCC Protocols

Our SCC protocols are secure under the semi-honest model and return a list of similarity

scores. Here we propose ways to enhance the SCC protocols to make them secure under

the malicious model. In addition, the list of similarity scores may allow Alice to infer too

much information about Bob’s document collection. We present strategies to mitigate this

inference.
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6.6.1 SCC under the Malicious Model

To make the SCC protocols secure under the malicious model, we will adopt the threshold

based Paillier encryption scheme [96] and the innovative dual execution strategy [97] with

the following modifications.

• All encryption and decryption operations need to be based on the threshold Paillier.

• Bob (Pb) also needs to encrypt the vectors representing his document collection and

sends them to Alice (Pa).

• Dual execution: each party computes the similarity scores securely and independently.

• If the outcomes from their independent executions are not the same, the protocol

aborts.

The main steps of the proposed extension are given in Algorithm 16 and Algorithm 17.

In the following, we clarify several key points in the algorithms:

• Step 1 (b) - Pb encrypts his document collection and sends the component-wise

encrypted vectors to Pa.

• Steps 3 and 4 - These steps allow Pa to obtain the set of similarity scores and Pb to

obtain the set of corresponding encrypted similarity scores. These scores are derived

based on Pb’s local information.

• Steps 5 and 6 - These steps allow Pb to obtain the set of similarity scores and Pa to

obtain the set of corresponding encrypted similarity scores. These scores are derived

based on Pa’s local information.

• Steps 7 and 9 - Pa checks if the similarity scores computed at both sides are the

same. If not, the execution aborts.

• Steps 8 and 10 - Pb checks if the similarity scores computed at both sides are the

same. If not, the execution aborts.
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Technically speaking, the proposed extension does not lead to true secure protocol under

the malicious model because to be secure against a malicious adversary, every step of the

execution needs to be verified. Our extension verifies the computations in an aggregate

fashion, and it can still detect malicious behaviors without the costs of a theoretically secure

protocol under the malicious model. As we can see, the added cost is much higher than our

original SCC protocols. This provides a clear indication that an SCC protocol secure under

the malicious model may not have much practical value.

Figure 6.9: Garbled circuit vs. Paillier

6.6.2 Garbled Circuit, ECE, Private Keyword Search and Pri-
vate Information Retrieval

Garbled circuit [98,99] can be used to securely implement any polynomially bounded func-

tionalities. When the functionality is small, garbled circuit can provide efficient implementa-

tion. We also tried the garbled circuit approach to implement the SCC protocol. Our results

indicated that implementing SCC using garbled circuit is not as efficient as the approach

based on Paillier encryption scheme. Note that without affecting the comparison outcome,

our results were based on the key component of SCC, the dot product computation, for

103



both garbled circuit and homomorphic encryption based approaches. Performance compar-

ison results are shown in Figure 6.9. The garbled circuit based approach is implemented

using Obliv-C [98] which is more efficient than FastGC [99]. For both implementations, we

used 500 documents since the whole dataset would take a much longer time to execute. It is

clear that the garbed circuit implementation is less efficient than the Paillier based approach

even when the key size or the number of bits to represent N is fixed to 2,048 bits.

Elliptic Curve ElGamal (ECE) also has the additive homomorphic property and its

encryption operation is more efficient than Paillier. On the other hand, the decryption

operation (i.e., trying encrypting every value in the domain and compare with the encrypted

value) is not very efficient when the domain size is large. For example, in the SCC-LSI

protocol, the matrices contain real values. To preserve enough precision when converting

them into integer values in ZN , we need to use several digits at least. Assume that we

use five digits, the dot product will produce ten-digit numbers on average. Clearly, the

decryption operation of ECE will be several order of magnitude less efficient than Paillier.

While Searchable Encryption (SE) [49, 51, 100–102] may be more efficient to conduct

keyword search, it has several limitations in our problem domain. First of all, our main

motivation is to support or extend the existing Information Retrieval libraries, such as

Apache Lucene, which is widely used both independently or as part of larger projects, with

privacy-preserving mechanisms to arrive at similar conclusions or results. Lucene similarity

metrics utilize dot products, and it is not clear how SE can be used to compute a dot

product. Secondly, deciding a set of key words is not straightforward, and it requires inputs

from domain experts. Moreover, from the security perspective, SE leaks access patterns

which can leak private information regarding the document collection [103].

Private Information Retrieval (PIR) [58,59,62,104,105] seems to solve a similar problem,

but its application is quite different from ours. To perform PIR, the user needs to know the

location of the information, and it cannot compute the scoring functions used in Lucene. In

addition, the complexity of an information theoretically secure PIR to retrieve a single bit

is bounded by k log2 k ·n
1

log2 k [58], where k is the number of servers and n is the size of a bit

string. For a two-server setting, the entire string has to be sent to the user. Thus, even if
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ignoring the inability of computing the similarity functions, it seems that to retrieve a single

document using PIR, the entire document collection has to be transferred to the user.

On the other hand, in our solutions, the user receives similarity scores and several doc-

uments related to the top similarity scores. Because a document can have thousands of

terms, a similarity score is generally much smaller than a single document. Under this cir-

cumstance, our solutions can be more efficient than PIR even for k = 8 or other constant

values.

6.6.3 Mitigating the Inference Problem

Similarity scores can definitely leak some information regarding both the query document

and the document collection. If both Alice and Bob are semi-honest, the similarity scores

may not leak specific information about a particular term. Note that any information

deduced from the output of an SMC protocol does not make the protocol less secure because

the same information can be deduced from the ideal model, i.e., the trusted third party

(TTP) model.

The inference problem becomes more severe when either party is malicious. For example,

Alice could modify her input such that only one entry (e.g., for term ti) in the query

vector is 1 and the rest of entries are 0s. Alice can find out how many times ti occurs in

Bob’s collection. Similarly, Bob could modify his document vectors to discover statistical

information regarding Alice’s query terms. Since input modification is not preventable even

in the TTP model, this inference problem cannot be eliminated regardless if an SCC protocol

is secure under the semi-honest or malicious model.

The inference problem can be mitigated to certain degree by restricting the output. For

instance, the formulation given in Equation 1.2 can be changed to the following:

SCC(〈Pa, q, k〉, 〈Pb, D〉)→ d̂s1 , . . . , d̂sk (6.5)

Instead returning similarity scores, the new formulation returns the snippets of the top k

most similar documents. Based on these snippets and the access control policies, Alice and
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Bob can decide if they need to share the actual documents. This modification mitigates the

inference problem which cannot be prevented completely due to the intrinsic nature of the

information retrieval problem itself. To implement the top-k based SCC, we can adopt the

Secure Minimum out of n Numbers (SMINn) protocol proposed in [106]. In addition, we can

define a threshold t such that SCC returns snippets of documents whose similarity scores are

above t. The proposed protocols can be easily modified to implement this threshold based

formulation. Instead of directly returning the similarity scores, the dot product component

of SCC can be simply modified to return secret shares of the similarity scores. Then a secure

comparison sub-protocol takes the secret shares and t as inputs and returns document IDs

to the server whose similarities are above t. After what the server can decide what to share

with the user.

Another possible solution, in malicious settings, is to utilize Differential Privacy (DP) [79]

mechanism of adding noise based on similarity score sensitivity and parameter ε to hide

accurate similarity scores from the malicious adversary. The only downside is that scores

would not be accurate and we would not have an exact and privacy-preserving solution to

the non-secure capabilities offered by Lucene.

6.6.4 The Global Vector and LSI Matrices

In the proposed SCC protocols, the global vector space G needs to be shared between Alice

and Bob. The G discloses the number of terms in Bob’s document collection to Alice. If

Bob’s document collection is sufficiently large, G could contain all possible words. When this

happens, information leakage regarding a specific document could be negligible. In general,

how much information leaks from G regarding the individual documents in Bob’s collection

is impossible to analyze. In practical situations, we do not believe that the disclosure of G

could seriously damage the security guarantee of the proposed SCC protocols. For situations

where G cannot be shared, we may adopt the following strategies:

• Alice and Bob can adopt a universal vector space which is a super set that contains

all the terms from Alice’s query and Bob’s document collection. All the terms from
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Wordnet [107] could serve as such a universal vector space. However, this universal

space could be too big to be practical.

• Alternatively, Alice and Bob could share a universal hash function that maps the

terms into a different domain. This approach was proposed in [108] which hides G

completely. On the other hand, the result accuracy could be affected a little bit but

still acceptable for certain applications as analyzed in [108].

• A more secure and precise way is to develop an SMC based protocol to convert Alice’s

query into an encrypted vector representation without sharing G. This protocol can be

implemented using an HEnc scheme, but additional computation and communication

costs will be added to cause the SCC protocols less practical.

6.6.5 Handling Collection Update

When a document collection is built, its vector space is unlikely to experience much change

as documents are added to the collection. This is because the total number of terms is fixed,

just as in a dictionary. In other words, even if the global vector space G is large, once it is

initialized and saved on the user side, the subsequent update cost is likely to be small. To

confirm our suspicion, we performed several experiments to illustrate how an update may

alter the size of G based on the i2b2 smoking discharge summaries dataset (consisting of 889

text files and 13098 terms in its global vector space). The results are summarized in Table

6.2, showing how the size of G changes when a batch of nine documents are indexed. It also

provides the relative percent increase in total term counts when an indexing operation is

performed. As can be seen, the increase in global term count percentage is quite high for the

first few documents (i.e., around 90% and 24% for second and third batches, respectively).

However, the change rate reduces drastically - to less than half of a percentage (i.e., 0.46%

for the final batch). For larger document collections of related documents, we anticipate this

will reduce even further. Therefore, when the index is sufficiently populated with related

documents, the term or index update operation required for new documents becomes trivial

in nature.
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Document Count Total Term Count Term Addition
Percent (%)

1 138 −
10 1330 89.62
19 1755 24.22
28 2090 16.03
...

...
...

199 6323 −
208 6460 2.12
217 6668 3.12
226 6734 0.98
...

...
...

433 9276 −
442 9359 0.89
451 9421 0.66
460 9474 0.56
...

...
...

658 11237 −
667 11322 0.75
676 11389 0.59
685 11478 0.78
...

...
...

865 12878 −
874 12959 0.63
883 13038 0.61
889 13098 0.46

Table 6.2: Growth states of the Lucene-constructed index of i2b2 dataset
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Algorithm 16 SCCm(〈Pa, q, pra〉, 〈Pb, D, prb〉)→ (〈Pa, s1, . . . , sn〉, 〈Pb, s1, . . . , sn〉)
Require: The global vector space G and the size |D| are known to both parties; q

is Pa’s private input, and D is Pb’s private input; pra and prb are the threshold
based private keys owned by Pa and Pb

1: Pb

1. Compute ~dj and ~d′j based on G, where n = |D|, m = |G|, 1 ≤ j ≤ n

2. Encrypt each ~dj and ~d′j component-wise, and send Epu(~d1), . . . , Epu(~dn) and
Epu(~d

′
1), . . . , Epu(~d

′
n) to Pa

2: Pa

1. Generate ~q based on G

2. Encrypt ~q component-wise and send Epu(~q) to Pb
3: Pb (j = 1 to n)

1. Compute sj1 ←
∏m

i=1∧ ~dj [i] 6=0Epu(~q[i])

2. Compute sj2 ←
∏m

i=1 Epu(~q[i])
~d′j [i]

4: Pa and Pb (j = 1 to n)

(〈Pa, sj〉, 〈Pb, Epu(sj)〉) ← MPm(〈Pa, pra〉, 〈Pb, prb, sj1 , sj2〉), where sj =
Epr(sj1) · Epr(sj2)

5: Pa (j = 1 to n)

1. Compute sj1 ←
∏m

i=1∧~q[i]6=0 Epu(
~dj[i])

2. Compute sj2 ←
∏m

i=1∧~q[i]6=0 Epu(
~d′j[i])

6: Pa and Pb (j = 1 to n)

(〈Pa, Epu(s′j)〉, 〈Pb, s′j〉) ← MPm(〈Pb, prb〉, 〈Pa, pra, sj1 , sj2〉), where s′j =
Epr(sj1) · Epr(sj2)

7: Pa

1. Compute τ ←
∏n

j=1 Epu(s
′
j)Epu(N − sj)

2. Send Dpra(τ r) to Pb where r ∈R ZN
8: Pb

1. Compute τ ′ ←
∏n

j=1Epu(sj)Epu(N − s′j)

2. Send Dprb(τ
′r′) to Pa where r′ ∈R ZN

9: Pa

1. Decrypt Dprb(τ
′r′) with pra to get fa

2. If fa 6= 0 abort
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10: Pb

1. Decrypt Dpra(τ r) with prb to get fb
2. If fb 6= 0 abort

Algorithm 17 MPm(〈Pa, pra〉, 〈Pb, prb, Epu(x), Epu(y)〉)→ 〈Pa, x · y〉
Require: Pa: private key pr; Pb: Epu(x) and Epu(y), pu is the public key of an HEnc
1: Pb

1. Randomly generate r1 and r2 from ZN

2. Compute Dprb(Epu(x+ r1)) and Dprb(Epu(y + r2)) and send them to Pa
2: Pa

1. Decrypt Dprb(Epu(x+ r1)) and Dprb(Epu(y + r2)) with pra to get x+ r1 and
y + r2

2. Compute Epu(xy + xr2 + yr1 + r1r2) and send it to Pb
3: Pb

1. Compute Epu(xr2), Epu(yr1) and Epu(r1r2)

2. Derive Epu(xy) and send Dprb(Epu(xy)) to Pa
4: Pa

Decrypt Dprb(Epu(xy)) with pra to get xy
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Chapter 7

Conclusion

In this work, we contribute to the privacy-preserving friend recommendation solutions in

Online Social Networks (OSNs). More specifically, our first work, see chapter 3, addresses

privacy concerns in collaborative environments involving integration partnerships among

OSNs [6]. Similarly, our second work, see chapter 6, addresses privacy concerns in dis-

tributed environments involving document similarity computation by proposing Lucene-P2,

a privacy-preserving extension module to the widely used Apache Lucene Core, an informa-

tion retrieval open-source library. This work is easily applicable for friend (or any entity)

recommendation in OSNs by simply replacing documents with OSN user profiles.

In chapter 3, we present an approach that enables online social networks to form integra-

tion partnerships to provide friend recommendation services in a privacy-preserving manner.

Our approach combines secure multiparty computation as well as differential privacy to give

a holistic privacy guarantee. We analyze the complexity of the proposed approach as well as

its security. A comprehensive experimental evaluation on real data shows the effectiveness

of the approach in terms of both computation and communication cost, as well as utility.

In chapter 6, we presented the Lucene-P2 framework which allows real/practical privacy-

preserving information retrieval tasks. Under the framework, we developed three two-party

privacy-preserving protocols that compute document similarities without disclosing the pri-

vate input documents. We also discussed possible extensions to make the homomorphic
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encryption based protocols secure against other adversary models. Also, a secret sharing

based method (SST) has been implemented into Lucene-P 2. However, SST requires an addi-

tional party as compared to SCC-LSI*, but it provides exceptionally improved performance.

7.1 Future Work

The Privacy-preserving Friend Recommendation work, presented in detail in chapters 3 and

6, can be extended any many directions. We plan to extend it in the following ways.

(a) We plan to implement the PPFR using secret sharing methods. In this work, see

chapter 2, we have used additive homomorphic encryption and Differential Privacy.

We determine that using additive secret sharing could further enhance its efficiency.

(b) We plan to investigate achievement of fault-tolerance in the malicious model for PPFR.
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