
SECURING CLOUD-HOSTED APPLICATIONS

USING ACTIVE DEFENSE WITH RULE-BASED ADAPTATIONS

A Thesis presented to

the Faculty of the Graduate School

at the University of Missouri

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

VAIBHAV V AKASHE

Dr. Prasad Calyam, Thesis Supervisor

DECEMBER 2021



The undersigned, appointed by the Dean of the Graduate School, have exam-

ined the dissertation entitled:

SECURING CLOUD-HOSTED APPLICATIONS

USING ACTIVE DEFENSE WITH RULE-BASED ADAPTATIONS

presented by Vaibhav Akashe, a candidate for the degree of Master of Science and

hereby certify that, in their opinion, it is worthy of acceptance.

Dr. Prasad Calyam

Dr. Giovanna Guidoboni

Dr. Yaw Adu-Gyamfi



ACKNOWLEDGMENTS

I would like to thank Dr. Prasad Calyam for his great support throughout

my entire Master’s degree. I appreciate the outstanding opportunity given to me

by Dr. Calyam to work in Virtualization, Multimedia and Networking (VIMAN)

Lab with a talented group of individuals on a state-of-art research area and lab

facilities. He has imparted a lot of his enthusiasm and love for this field to me,

and I would like to thank him for all the guidance and direction that has proven

crucial to me as a student of computer science and as a researcher. He has been

very patient, supportive and encouraging throughout my time here, and his keen

insight and out-of-box pedagogy has taught me how to approach scientific research

with the excitement that it deserves. I would like to express my gratitude towards

Dr. Giovanna Guidoboni and Dr. Yaw Adu-Gyamfi for their interest to be a part

of my thesis committee.

I would also like to thank all the members of VIMAN Lab, especially Samaikya

Valluripally, Roland Oruche, Mauro Lemus Alarcon, Roshan Neupane, Songjie

Wang, who all have guided and helped me selflessly. Their dedication to the lab

and their research is commendable. I am grateful for the opportunity that this

department and University have offered to me at so many different levels. Next, I

would like to thank my friends for making this journey exciting and joyful for me.

And finally I would like to thank my parents for supporting and showing their

confidence in me.

Vaibhav V Akashe

ii



Contents

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Active Defense Overview . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Need for Active Defense in cloud-hosted video-based applications . . 2

1.3 Need for Active Defense in cloud-hosted data driven applications . . 3

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Intrusion Detection Systems (IDS) . . . . . . . . . . . . . . . . . . 6

2.2 Active Defense Schemes . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Applications Background . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Interactive video based learning environment case study : vSocial . 8

3.1.1 Factors Impacting VRLE Applications . . . . . . . . . . . . 9

3.1.2 Application Adaptation Frameworks . . . . . . . . . . . . . 10

3.2 Data Driven application case study : OHDSI . . . . . . . . . . . . . 10

3.2.1 Application Threat Model . . . . . . . . . . . . . . . . . . . 12

3.2.2 Risk Assessment . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Active Defense Frameworks and Solution Approaches . . . . . 14

4.1 Rule-based 3QS-adaptation Framework for vSocial . . . . . . . . . . 14

4.1.1 Anomaly Event Monitoring Tool . . . . . . . . . . . . . . . 15

4.1.2 Adaptation Decision Making . . . . . . . . . . . . . . . . . . 15

iii



4.1.3 Adaptation Control . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.4 Priority-based Queuing Model . . . . . . . . . . . . . . . . . 18

4.2 OHDSI-Dolus System Design based on Defense by Pretense Method-
ology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1 Ensemble Learning . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.2 OHDSI-Dolus Pretense Initiation and Maintenance . . . . . 23

5 Active Defense Evaluation Results . . . . . . . . . . . . . . . . . 25

5.1 Performance Evaluation of Rule-based 3QS Adaptation Framework 26

5.1.1 Adaptation Decision Making and Control Unit . . . . . . . . 27

5.1.2 Quantification of Cybersickness for 3QS Anomalies . . . . . 29

5.1.3 Risk and Cost Aware Trade-off Analysis . . . . . . . . . . . 30

5.1.4 Recommendations Based on Key Findings . . . . . . . . . . 31

5.2 Performance Evaluation of defense by pretense based OHDSI-Dolus
system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.1 Risk Assessment Results . . . . . . . . . . . . . . . . . . . . 34

5.2.2 Detection Results . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.3 Defense by Pretense Qualitative Evaluation . . . . . . . . . 38

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

iv



List of Tables

Table Page

4.1 Performance metrics of our queuing model. . . . . . . . . . . . . . . 19

5.1 Potential adaptation choices for different 3QS anomaly events. . . . 28

5.2 Cost-aware application performance analysis of adaptations chosen

for 3QS anomaly events. . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3 Recommendations based on risk level (Rl), Cost level (Cl), and

control on cybersickness (∆CS). . . . . . . . . . . . . . . . . . . . . 32

5.4 Threat events related to OHDSI application with NIST-based guide-

line [43] used for risk calculation. . . . . . . . . . . . . . . . . . . . 34

5.5 Comparison of OHDSI-Dolus performance with state-of-the-art ac-

tive defense mechanisms that have the potential to be used for pro-

tection of cloud-based healthcare data processing pipelines. . . . . . 38

v



List of Figures

Figure Page

3.1 Proposed framework for security and privacy analysis of social VRLE applica-

tions in order to adapt the system design . . . . . . . . . . . . . . . . . . 9

3.2 Overview of the data pipeline orchestration built on top of the OHDSI on AWS

infrastructure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1 Rule-based 3QS-adaption framework for a social VRLE system. . . . . . . . 15

4.2 Modeling stages of our proposed rule-based 3QS-adaptation framework as a

queue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Illustration of proposed OHDSI-Dolus system where an attacker is tricked by

redirection of malicious traffic to a quarantine VM for pretense, while the le-

gitimate users can access the OHDSI hosted data sets. . . . . . . . . . . . 21

4.4 Sequence diagram of OHDSI-Dolus defense system interactions for network

traffic analysis and attack detection, along with attacker quarantine and active

defense through initiation and maintenance of pretense. . . . . . . . . . . . 24

5.1 Experimental testbed setup for 3QS-adaptation framework evaluation using

anomaly event monitoring and rule-based decision making. . . . . . . . . . . 27

5.2 Avg. Latency measured (in ms) for QoA anomaly, QoS anomaly scenario in

different adaptation scenarios. . . . . . . . . . . . . . . . . . . . . . . . 29

5.3 Risk evaluation associated with the best (BA1, BA2), worst (WA1) and combi-

nation of adaptations in controlling cybersickness for the given QoA and QoS

anomaly event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4 AWS testbed used to evaluate OHDSI-Dolus for targeted attacks. . . . . . . . 33

vi



5.5 Heat map visualization of risk levels for different STRIDE categories A - F. . . 35

5.6 Dolus mirroring OHDSI server traffic at different stages for analysis and detec-

tion as viewed with AWS Cloud Watch. . . . . . . . . . . . . . . . . . . . 36

5.7 Quality of Detection (QoD) results of DDoS attack detection based on accuracy

and time taken by state-of-the-art detection mechanisms in comparison with

our OHDSI-Dolus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

vii



ABSTRACT

Security cloud-based applications is a dynamic problem since modern attacks are

always evolving in their sophistication and disruption impact. Active defense is a

state-of-the-art paradigm where proactive or reactive cybersecurity strategies are

used to augment passive defense policies (e.g., firewalls). It involves using knowl-

edge of the adversary to create of dynamic policy measures to secure resources and

outsmart adversaries to make cyber-attacks difficult to execute. Using intelligent

threat detection systems based on machine learning and active defense solutions

implemented via cloud resource adaptations, we can slowdown attacks and derail

attackers at an early stage so that they cannot proceed with their plots, while

also increasing the probability that they will expose their presence or reveal their

attack vectors.

In this MS Thesis, we demonstrate the concept and benefits of active defense in

securing cloud-based applications through rule-based adaptations on distributed

resources. Specifically, we propose two novel active defense strategies to mitigate

impact of security anomaly events within: (a) social virtual reality learning envi-

ronment (VRLE), and (b) healthcare data sharing environment (HDSE). Our first

strategy involves a "rule-based 3QS-adaptation framework" that performs risk and

cost aware trade-off analysis to control cybersickness due to performance/security

anomaly events during a VRLE session. VRLEs provide immersive experience to

users with increased accessibility to remote learning, thus a breach of security in

critical VRLE application domains (e.g., healthcare, military training, manufac-

turing) can disrupt functionality and induce cybersickness. Our framework imple-

mentation in a real-world social VRLE viz., vSocial monitors performance/security

anomaly events in network data. In the event of an anomaly, the framework fea-

tures rule-based adaptations that are triggered by using various decision metrics.

Based on our experimental results, we demonstrate the effectiveness of our rule-

based 3QS-adaptation framework in reducing cybersickness levels, while maintain-
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ing application functionality. Our second strategy involves a “defense by pretense

methodology” that uses real-time attack detection and creates cyber deception for

HDSE applications. Healthcare data consumers (e.g., clinicians and researchers)

require access to massive, protected datasets, thus loss of assurance/auditability

of critical data such as Electronic Health Records (EHR) can severely impact loss

of privacy of patient’s data and the reputation of the healthcare organizations.

Our cyber deception utilizes elastic capacity provisioning via use of rule-based

adaptation to provision Quarantine Virtual Machines (QVMs) that handle redi-

rected attacker’s traffic and increase threat intelligence collection. We evaluate

our defense by pretense design by creating an experimental Amazon Web Ser-

vices (AWS) testbed hosting a real-world OHDSI setup for protected health data

analytics/sharing with electronic health record data (SynPUF) and publications

data (CORD-19) related to COVID-19. Our experiment results show how we can

successfully detect targeted attacks such as e.g., DDoS and create redirection of

attack sources to QVMs.
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Chapter 1

Introduction

1.1 Active Defense Overview

Active defense [1] is a proactive cybersecurity strategy that involves creation of

dynamic management or even offensive measures to outsmart adversaries in order

to make cyber-attacks difficult to execute. Using intelligent detection systems and

defense solutions such as honeypots [2] and machine learning algorithms, active

defense can be performed to slow down attacks and derail attackers at an early

stage so that they cannot proceed with their plan, increasing the probability that

they will expose their presence or reveal their attack vector. Thus, active defense

schemes gain threat intelligence on targeted attacks and enable organizations to

understand the nature of attacks, create robust defenses and also prevent recur-

rence of attacks.
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1.2 Need for Active Defense in cloud-hosted video-
based applications

Active defense mechanisms in cloud platforms need to be robust against targeted

attacks (such as DDoS, malware and SQL injection) whose impact can be am-

plified due to the elastic resource nature of cloud platforms. Particularly, there

are critical challenges in securing interactive video based learning environments.

Studies such as [3] outlines interactive video based learning environments i.e.,

E-learning, a novel way in the learning process that involves more interaction

between the learners and teachers to some extent network environment and is a

honey pot to attract many attackers and it may have some potential security risks

such as: malicious attacks, hackers and so on. Another such example is Virtual

Reality based Learning Environments (VRLEs) such as vSocial [4] for youth with

learning disabilities. With the dynamic user-system interactions for content ren-

dering, VRLEs are a target for an attacker to trigger security attacks [5], [7]. In

addition, the work in [8] details about the performance issues that can disrupt

the social VRLE user experience. However, prior works lack in the knowledge to

address both performance and security issues that can impact the user experience

and user safety in VRLE sessions. Failure to address such impediments can lead

to deface attacks on the VR content with offensive images [9] that can hamper

user experience. They can also lead to application latency issues that degrade

performance. Based on prior works in VRLE and other IoT applications [10], [11]

we adopt the following definitions of various performance (3Q) factors: Quality of

Application (QoA) – a measure of the application performance; Quality of Service

(QoS) – a measure of network resources such as bandwidth and jitter; Quality

of Experience (QoE) – a measure of the perceived satisfaction or annoyance of a

user’s experience. Similarly, we adopt the definition of security – as a condition

that ensures a VR system is able to perform critical application functions with

the establishment of confidentiality, integrity, and availability [7]. Together, such

performance and security issues can induce “cybersickness” (e.g., eyestrain, nau-
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sea, headache, disorientation of user movement) [12, 13]. Hence, there is a need

to study methods to mitigate impact of performance and security anomaly events

that induce cybersickness.

1.3 Need for Active Defense in cloud-hosted data
driven applications

As outlined above, there are critical challenges in securing data driven appli-

cations such as healthcare applications to avoid issues with availability or data

breaches/loss, while also providing solutions that are cost effective, efficient, and

timely [14]. Healthcare applications with data processing pipelines handle criti-

cal data such as Electronic Health Records (EHR), and sensitive personal health

related data generated through medical devices. There have been prior works on

securing EHR data in cloud-based platforms using Blockchain-based solutions [15]

or through access control mechanisms based on the lattice model [16]. There

have been proposals for attribute-based encryption access control, homomorphic

encryption, and storage path encryption to improve privacy and security in health-

care applications [17]. However, to the best of our knowledge, none of the prior

works have focused on active defense involving making use of dynamic manage-

ment or offensive strategies, particularly relating to healthcare data processing

pipelines orchestrated in cloud platforms.

In this work, we demonstrate the concept and benefits of active defense in securing

cloud-based applications through rule-based adaptations on distributed resources.

Specifically, we propose two novel active defense strategies to mitigate impact of

security anomaly events within: (a) social virtual reality learning environment

(VRLE), and (b) healthcare data sharing environment (HDSE). Our first strat-

egy involves a "rule-based 3QS-adaptation framework" that performs risk and

cost aware trade-off analysis to control cybersickness due to performance/security

anomaly events during a VRLE session. VRLEs provide immersive experience to

3



users with increased accessibility to remote learning, thus a breach of security in

critical VRLE application domains (e.g., healthcare, military training, manufac-

turing) can disrupt functionality and induce cybersickness. Our framework imple-

mentation in a real-world social VRLE viz., vSocial monitors performance/security

anomaly events in network data. In the event of an anomaly, the framework fea-

tures rule-based adaptations that are triggered by using various decision metrics.

Based on our experimental results, we demonstrate the effectiveness of our rule-

based 3QS-adaptation framework in reducing cybersickness levels, while maintain-

ing application functionality. Our second strategy involves a “defense by pretense

methodology” that uses real-time attack detection and creates cyber deception for

HDSE applications. Healthcare data consumers (e.g., clinicians and researchers)

require access to massive, protected datasets, thus loss of assurance/auditability

of critical data such as Electronic Health Records (EHR) can severely impact loss

of privacy of patient’s data and the reputation of the healthcare organizations.

Our cyber deception utilizes elastic capacity provisioning via use of rule-based

adaptation to provision Quarantine Virtual Machines (QVMs) that handle redi-

rected attacker’s traffic and increase threat intelligence collection. We evaluate

our defense by pretense design by creating an experimental Amazon Web Ser-

vices (AWS) testbed hosting a real-world OHDSI setup for protected health data

analytics/sharing with electronic health record data (SynPUF) and publications

data (CORD-19) related to COVID-19. Our experiment results show how we can

successfully detect targeted attacks such as e.g., DDoS and create redirection of

attack sources to QVMs.

1.4 Thesis Outline

The remainder of this thesis is organized as follows: In Chapter 2, we describe the

thesis related work on Intrusion Detection Sysytems (IDE) and active defense. In

Chapter 3, we describe background that provide context to the solution approach.

4



Chapter 4 we elaborate on our solutions and provide a detailed description of our

approaches with reference architectures. Chapter 5 evaluates the effectiveness of

our frameworks. Finally, Chapter 6 concludes the thesis.
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Chapter 2

Related Work

2.1 Intrusion Detection Systems (IDS)

Many prior works have addressed detecting security threats in cloud environ-

ments by using a variety of IDS techniques that utilize pattern recognition and

machine learning concepts. The study presented in [18] provides an extensive

review on cloud computing focusing on security gaps, and proposes a proactive

machine learning based threat detection model. Similarly, authors in [20] propose

a learning-based IDS to detect network-based intrusion in cloud platforms. Par-

ticularly, DDoS attacks pose serious threats to cloud-hosted services. Studies pre-

sented in [21, 22, 23] detail detection of DDoS attacks, and studies in [24, 25, 26, 27]

present techniques for detection of APTs, including attacks such as malware, bot-

nets, data breach and data scraping.

Coupled with these emerging techniques, IDSes tend to be effective against de-

tecting targeted attack threats. The work in [19] presents a comprehensive review

about IDS and a study in [28] outlines current need for an advanced novel IDS

approach additionally studies in [29] detail many host-based and network-based

IDS techniques that are widely used by enterprises in both their data centers, as

well as in their cloud-hosted application environments.
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2.2 Active Defense Schemes

There are many prior works involving different kinds of cyber deception to trick

the attacker and defend against threats. For example, the work presented in [29]

proposes the use of system agents to launch on-demand honeypot VMs with en-

hanced VM introspection techniques. Another study in [32] uses the concept of a

‘honey patch’ to make a patched server reply to an adversary in a similar fashion

to the way a non-patched server would. It then produces a container that appears

to be a vulnerable system – but with redacted information hidden from the ad-

versary, which helps to avoid leaking of sensitive information.

Studies such as those in [30] propose prevention strategies against DDoS attacks

targeting eHealth clouds. Their approach involves detection of malicious activ-

ity to alert system administrator and subsequently blacklist the attacker’s source

address to block communications from the adversary. Similarly, the study in [31]

proposed an active defense mechanism against data ex-filtration attacks in SaaS

clouds by using a technique that matches the default identifier i.e., MAC address

with the embedded identifier within the file. If the MAC address does not match,

a corresponding decoy document (i.e., a honey file) is returned. Additionally,

the framework in [33] involves an active defense strategy that uses decoys of real

system components to obfuscate the network and in turn make it harder for a

potential adversary to identify the real components.

7



Chapter 3

Applications Background

3.1 Interactive video based learning environment
case study : vSocial

Social Virtual Reality Learning Environments (VRLEs) are a convergence of vir-

tual reality (VR), Internet-of-Things (IoT) and cloud computing technologies [38].

As shown in Figure 3.1, they integrate real-world smart things (i.e., VR head-

sets/glasses) with virtual objects/avatars for a real-time immersive interaction

of geographically distributed users [53]. Social VR applications in education or

collaborative tasks adopt virtual worlds as learning environments [54], where par-

ticipants can interact effectively with higher engagement and performance [55]. To

facilitate continuous interaction between the users (e.g., instructors and students),

the networked VRLE components collect data from distributed user locations, and

seamlessly integrate web-based tools to render VRLE content. However, such ca-

pabilities in these socio-technical systems demand for high-performance and robust

VRLE application features.
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Figure 3.1: Proposed framework for security and privacy analysis of social VRLE applications
in order to adapt the system design

3.1.1 Factors Impacting VRLE Applications

Prior works [5, 7, 8] addressed performance and security issues in social VRLE ap-

plications. The work in [5] described potential security, privacy and safety issues

that can trigger disruption in the VRLE application functionality. In addition, the

work in [7] also detailed vulnerable components in VRLE that can lead to sophis-

ticated cyber-attacks such as Loss of Integrity and privacy leakage. Authors in [8]

model performance issues via a 3Q-model to determine the causes of disruption of

VRLE user experience.

The impact of such effects can specifically induce cybersickness, thus compromis-

ing user safety in a VRLE session [45, 46]. On the other hand, works related

to other applications such as remote instrumentation [56] and video-based cloud

applications [57] analyze performance factors that disrupt user experience and pro-

pose a 3Q factors interplay model for determining suitable adaptations. Using the

outlined security and performance issues of VRLE in the above state-of-the-art, we

propose a continuous 3QS anomaly event monitoring approach to guide adaptation

control decisions to minimize cybersickness levels during a VRLE session.

9



3.1.2 Application Adaptation Frameworks

There have been works [58, 59] that address either performance or security issues

in the context of a control-feedback scheme to adapt cloud-based IoT applications.

For instance, the works in [58, 59, 60] present solutions that feature adaptive con-

trol mechanisms to address scalability and latency issues based on user’s service

level objective (SLO) and cost constraints. Adaptive control mechanisms [61] re-

lated to addressing security issues at the application layer have been studied at

an on-demand resource management level involving e.g., DoS attacks [62]. In

contrast, our 3QS-adaptation framework considers the interplay of security and

performance factors potentially inducing cybersickness. Our adaptations consider

time-sensitive response of the system by using performance metrics such as: re-

sponse time, resource usage for an adaptation and risk of performing that adap-

tation along with the cost constraint for a given performance/security issue.

3.2 Data Driven application case study : OHDSI

Healthcare data consumers (e.g., clinicians and researchers) require access to mas-

sive datasets which are usually residing in multiple and disparate data sources.

This creates many challenges for the data consumers to access and compile the

data required to conduct research and make timely decisions. Data processing

pipelines are increasingly being used to combine data from multiple sources, allow

access to multiple users, and include multiple data analytic tools to orchestrate

data aggregation, processing and visualization processes. To facilitate the orches-

tration of such data pipelines, exemplar technologies, such as OHDSI [51] have

been adopted for use in cloud environments by healthcare organizations.

To develop our network-based active defense solution, we deployed the open-

source OHDSI on the AWS platform as illustrated in Figure 3.2. The OHDSI on

AWS deployment provides an enterprise class, multi-user, and scalable healthcare

data sharing and analytics functionality [37]. Its main components include a Com-

10



Figure 3.2: Overview of the data pipeline orchestration built on top of the OHDSI on AWS
infrastructure.

mon Data Model (CDM) based on the OMOP-CDM schema, which is deployed

on an AWS Redshift data warehouse. The CDM schema allows the integration of

disparate data-sources into a common format (model) and common representation

(terminology, vocabulary, coding), allowing the definition and execution of stan-

dard analytic processes. Other OHDSI components include out-of-the-box open-

source analytic tools such as: (i) ATLAS, a web-based application for researchers

to conduct analyses on data loaded to the OMOP-CDM through creation of co-

horts based on drug exposure or diagnosis of a particular condition. The cohort

results are visualized in the tool’s user interface, or stored in a relational repos-

itory to be used by other analytic tools; (ii) ACHILLES, an application used to

analyze the database hosting the CDM and evaluate data quality; (iii) ATHENA,

a tool that is used to generate and load standardized data vocabularies into the

CDM repository. Once data is available in the CDM, evidence knowledge can be

generated using the included analytic tools and models available in the workspace

available via Jupyter Notebooks or R-Studio.

11



3.2.1 Application Threat Model

To better understand the threats and their imposed risks to the OHDSI application

use cases, we use the Microsoft STRIDE methodology [52] to create an application-

level threat risk model. We organised the attacks against the OHDSI application

into Loss of users’ trust, Loss of confidentiality, Loss of availability and Loss of

integrity.

• Spoofing: IP spoofing Example - An attacker can alter the IP packet to gain

access to the OHDSI application server as an authorized user. Successful IP

spoofing attack can cause loss of trust for users and loss of confidentiality in

the OHDSI system.

• Tampering: Data Alteration Example - Malicious user can spoof queries

to retrieve and modify data and can cause loss of integrity in the OHDSI

system.

• Repudiation: Example - Attacker can impersonate a user to retrieve and

modify data that can lead to loss of confidentiality and integrity for OHDSI

system users.

• Information Disclosure: SQL injection/Malware infection Example - At-

tacker can perform a SQL injection attack to affect the database or gain

access to unauthorized data. Also presence of malware on system can lead

to leakage of users’ data. Such attacks can cause loss of confidentiality and

integrity for OHDSI application users.

• Denial of Service: Example - Attacker can perform multiple SQL queries

to overwhelm the database system, which can lead to loss of availability for

OHDSI users.

• Elevation of Privilege: Data Tampering Example - An attacker can tamper

data or even delete data on the network, which can then lead to loss of

integrity for data, and loss of availability for the OHDSI users.

12



Exploitation of potential vulnerabilities such as DDoS, Malware/SQL injection

identified by our threat model pose major threats to healthcare data processing

pipelines. These vulnerabilities may result in possible risks to patient safety and

theft or loss of health related information, which have serious consequences in the

healthcare organization operations.

3.2.2 Risk Assessment

Following the threat modeling study performed using the STRIDE methodology,

we use the methodology in the NIST risk assessment guideline [43] to calculate the

potential risk levels for various threats impacting the OHDSI in AWS application.

The NIST methodology populates the impact values and likelihood values for

specific threats being considered. The impact values are derived from assessed

potential impact resulting from a compromise of the confidentiality, integrity, or

availability for any information type due to security threats. The likelihood values

are a weighted factor based on a subjective analysis of the probability that a given

threat is capable of exploiting a given vulnerability of the threats. Following this,

the overall risk values are calculated by factoring the likelihood and impact scores,

which are finally normalized into a quantitative scale of 0-10. These ranges for

scales are: 9-10 indicating very high risk, 7-8 indicating high risk, 4-6 indicating

moderate risk, 1-3 indicating low risk, and 0 indicating very low level of risk. We

evaluate the risk levels for different threat events in the STRIDE model based

on the NIST methodology and present the details of the results in Section V

(Performance Evaluation) of this paper. Our risk assessment guides the design

principles for our Dolus-OHDSI active defense system design.

13



Chapter 4

Active Defense Frameworks and
Solution Approaches

In this chapter, we present the overview of our two novel active defense strategies

to mitigate impact of security anomaly events within: (a) social virtual real-

ity learning environment (VRLE), and (b) healthcare data sharing environment

(HDSE). Our first strategy involves a "rule-based 3QS-adaptation framework" that

performs risk and cost aware trade-off analysis to control cybersickness due to per-

formance/security anomaly events during a VRLE session. Our second strategy

involves a “defense by pretense methodology” that uses real-time attack detection

and creates cyber deception for HDSE applications.

4.1 Rule-based 3QS-adaptation Framework for vSo-
cial

In this section, we present the overview of our novel rule-based 3QS-adaptation

framework as described in [63], to control the impact of cybersickness levels in

VRLE as shown in Figure 4.1.
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Figure 4.1: Rule-based 3QS-adaption framework for a social VRLE system.

4.1.1 Anomaly Event Monitoring Tool

To identify any potential 3QS issues in a social VRLE, we developed an anomaly

event monitoring tool [34] to observe the network behavior changes, and user

activity trends during the VRLE session. We create alarms to trigger when an

anomalous behavior pattern is identified in the vSocial application. The anomaly

event types include: QoA issues (e.g., visualization delay due to network lag),

QoS issues (e.g., packet loss), and security issues (e.g., DoS attack, unauthorized

access). Next, we collect this anomaly event data as shown in Figure 4.1 in order

to calculate the corresponding impact on the cybersickness level for the session

user(s). Following this, we classify the collected anomaly event data into specific

3QS categories.

4.1.2 Adaptation Decision Making

The anomaly event data is classified based on 3QS issue categories. Given anomaly

event, our 3QS-adaptation framework activates a decision module that has knowl-

edge of potential adaptations for the specific event as shown in Figure 4.1. Each of
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Algorithm 1: Build Decision Units
Input: Anomaly type list
Output: Relevant Decision units
begin

Function BuildAdaptation ():
for each AnomalyType ∈ AnomalyTypeList do

Function BuildDecisionUnits ():
Let TupleList = [ ]
for each Adaptation ∈ TupleList do

Let Tuple = (An, Ct, I) TupleList.append(Tuple)
end
return DecisionUnit{AnomalyTypei, TupleList}

end Function
end
return Adaptation{DecisionUnit0, ..., DecisionUnitsk}

end Function
end

the detected anomaly event categories are sent as input to the Algorithm 1 which

details the functionality of the decision module. The decision module allows it to

compare an anomaly event in a particular category with a set of relevant decision

units as described in Algorithm1. Each decision unit has the knowledge on how to

deal with a specific type of anomaly event i.e., decision units contain a list of po-

tential candidate adaptations that are retrieved from the knowledge base module.

The function BuildDecisionUnits() in Algorithm 1 describes how decision units

are developed where, each decision unit contains a list of defined tuples. These

tuples are of the form {An, Ct, I}, where An represents the adaptation name,

Ct represents the history of adaptation in terms of number of times that specific

choice was implemented, and I represents the impact on cybersickness level after

the adaptation was implemented for a given anomaly event. As and when such

decision units are created, our decision module retrieves the decision units using

the BuildAdaptation() function in Algorithm 1.

Next, the decision module traverses through the list of candidate adaptations in

each of these retrieved decision units to determine the most suitable adaptation.

Each of the listed decision units will be sorted using the order of attributes I, Ct

in tuples which are termed as “decision metrics” along with the reduced response
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time taken by a specific adaptation. The head of the sorted list of candidate adap-

tations represent the most suitable adaptation for a given anomaly event. With

every iteration of handling anomaly events, the Ct value related to the consid-

ered adaptation gets updated into the knowledge base. Thus, using the decision

module, our 3QS-adaptation framework facilitates dynamic decision making for a

suitable adaptation to reduce the induced cybersickness level for a given anomaly

event.

Our proposed 3QS-adaptation framework stores the baseline data of benign ap-

plication behavior into the knowledge base for handling future anomaly events in

a social VRLE. The knowledge base actively stores VRLE session information,

detected anomaly event patterns along with the potential adaptations and associ-

ated user data. The anomaly event traces in the knowledge base can be helpful to

a network/system administrator to determine the causes of the detected anoma-

lies, and improve the effectiveness of the adaptations. Moreover, the knowledge

base can be used as a medium for threat intelligence collection to train our deci-

sion module for mitigation of zero-day 3QS anomaly events that can arise in an

individual scenario and/or in combination scenarios.

4.1.3 Adaptation Control

The control module in our 3QS-adaptation framework enacts suitable adaptations

for a given anomaly event category. Once the decision outcome (i.e., suitable adap-

tation) is obtained, the control module first calculates the risk level associated to a

choice of adaptation, along with the cost incurred to control the induced cybersick-

ness anomaly event. Next, the control module invokes an action using an alarm

(using e.g., AWS CloudWatch) for the relevant functionality of the determined

adaptation. In addition, the risk and cost aware decision outcome implementation

is evaluated for the feedback (e.g., control on cybersickness level, user satisfaction).

If the anomaly event is successfully handled, then this session information along

with the control module data is updated into the knowledge base for handling
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similar future anomaly events. Thus, the anomalies are monitored continuously,

and we perform dynamic decision making to invoke the suitable control actions

iteratively for on-demand resource provisioning that delivers satisfactory user ex-

perience and controls cybersickness levels in a social VRLE.

4.1.4 Priority-based Queuing Model

In our 3QS-adaptation framework, the entire timeline of anomaly event process-

ing can be divided into three parts each considered at VRLE application plant,

anomaly monitoring tool and decision module as shown in Figure 4.1. This be-

havior of anomaly event data processing represents a queue, and thus we model

our framework into a M/M/1/K finite queuing system to capture the pattern of

VRLE application performance. This analytical model is based on an embedded

Markov Chain, featured by states, events, transitions. The requests that enter

into the queue are the anomaly events caused by 3QS issues, which are processed

mainly on a priority basis i.e., in the order of events that have the ability to cause

higher cybersickness levels. We focus especially on the response time in addressing

the anomaly events inducing cybersickness.

Figure 4.2: Modeling stages of our proposed rule-based 3QS-adaptation framework as a queue.

The processing of an incoming request includes three stages: stage 1 (collecting

anomaly event data), stage 2 (categorization into anomalies caused by 3QS issues),

and stage 3 (anomaly event data pushed into the decision module) as shown in

Figure 4.2. After stage 3, the processed event record leaves the queue, where the

anomaly data is sent to the decision module to determine the suitable action on

the corresponding VRLE component. Each stage described in Figure 4.2, has a

different average service rate, represented as µ1, µ2, and µ3. Thus, the overall
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Table 4.1: Performance metrics of our queuing model.
No. of events

in queue
Wq

(in sec)
X̄

(in sec)
Rs

(in sec)
No. of processed
severe anomalies

10 2400.48 0.146 3300 4
20 5700 0.204 6303.98 5
30 8700 0.28 9304.15 7
40 11700 0.36 12304.32 11

response time of the system in processing one data record can be computed by

solving the markov chain transition model. In this process, the execution of the

three stages is mutually exclusive, which means that the second record will not be

processed until the previous one is completed. We assume the processing times at

each stage is exponentially distributed, and the data retrieval at stage 1 follow a

Poisson arrival with an expected rate of λ.

The mean response time (RT q) to process an anomaly event in the queue can be

obtained by using the Little’s formula [8].

The wait time of the queue Wq is derived based on the number of events in the

queue Lq and arrival rate (λ)

Wq =
Lq

λ
(2)

X̄ is the sum of the mean service time for all three stages, and can be written as -

X̄ =
3∑

n=1

1/µn (4)

We use the above analytical model in the performance evaluation experiments

to determine the waiting delays that might occur in processing the anomaly events

inducing cybersickness. To elucidate, a low cybersickness inducing anomaly trigger

can be delayed, while a severe threat posing anomaly trigger can be urgently
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handled by allowing it to experience lower wait times in the triggers handling

queue. To achieve such a handling, we use our priority queue model as a Binary-

Heap [50] to perform reheapficiation of the events in the queue once an anomaly

event is deleted from the queue.

Using the above formulation, Table 4.1 lists the calculation of the overall system

response time (Rs) as Sum (RT q, Rat), where RT q is the response time in queue

and Rat is the time taken for an adaptation to implement. In addition, we also

enlist the number of processed severe anomaly events (i.e., with high cybersickness

level) for a given number of anomaly events in the queue in Table 4.1.

4.2 OHDSI-Dolus System Design based on Defense
by Pretense Methodology

Our work builds upon prior work on the Dolus ‘defense by pretense’ system [35]

which sits on a cloud network to perform tasks to intelligently detect and mitigate

targeted attacks such as DDoS and Advanced Persistent Threats (APTs) in cloud

platforms. Dolus uses a ‘defense by pretense’ active defense strategy that creates

cyber deception by leading attackers into experiencing a false sense of success

while a robust co-operative defense solution is being designed to mitigate attack

impact or even dis-incentivize the attacker to continue a targeted attack. The

cyber deception utilizes elastic capacity provisioning via use of Quarantine Virtual

Machines (QVMs) that handle redirected attacker’s traffic and increase threat

intelligence collection.

Figure 4.3 shows the OHDSI-Dolus system as described in [64], with physical

architecture components for initiation and maintenance of pretense in the event of

a targeted attack. The OHDSI-Dolus takes advantage of elastic compute services

provided by cloud service providers, particularly the application load balancer

and on-demand provisioning of virtual instances. We place the application load
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Figure 4.3: Illustration of proposed OHDSI-Dolus system where an attacker is tricked by
redirection of malicious traffic to a quarantine VM for pretense, while the legitimate users can
access the OHDSI hosted data sets.

balancer in between user and the cloud resources that are deployed in a virtual

private cloud (VPC).

When the IDS suspects a network intrusion or cyber-attack event, then a Quality

of Detection (QoD) protocol gets triggered in the OHDSI-Dolus system. If QoD

value is above a certain threshold which validates that an intrusion or cyber-attack

event has indeed been detected accurately, then the Dolus pretense is initiated and

maintained.

4.2.1 Ensemble Learning

We use the ensemble learning methodology to determine the accuracy of our at-

tack detection. Network traffic is collected through the network-based IDS in

OHDSI-Dolus when legitimate users and attackers try to access the cloud-hosted

OHDSI services. Users interact with the OHDSI application server by requesting
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different healthcare related data resources. We monitor the attack traffic targeted

to the data processing pipeline server and capture e.g., bytes transmitted, number

of packets, source, and destination IP address. Subsequently, the QoD is calcu-

lated by taking attack-related factors into consideration as well as the based on

the complexity/effectiveness of the detection mechanisms evidenced by e.g., data

sanity, and detection time/accuracy. The formula to calculate the QoD value is

as follows:

QoD =
1

n

n∑
i=1

ai
td

(4.1)

In the QoD formula, the (ai ∈ [0, 1]) refers to the accuracy of the ensemble learn-

ing model (dependent also on data sanity) used to identify the cyber-attacks. td is

the time taken (in seconds) for the machine learning model to detect the attacks

and n represents number of test iterations in the evaluation. These QoD values

ranges from 0 to 100, hence we normalize these values into [0,10] range by dividing

the values by 10. If QoD values are above non-zero, the pretense initiation and

maintenance is invoked, however the administrator may set a higher threshold as

suited in accordance with the active defense policies of the healthcare organiza-

tion.

We use Frenetic (an open-source software-defined network controller platform [35])

to execute Python scripts that identify suspicious packets, gather attack patterns

in order to redirect packets to pertinent QVMs. IP addresses of the attackers

are then blacklisted by updating a corresponding network policy. We character-

ize the attack data for DDoS by measuring e.g., the total bytes transferred, rate

of transfer, connections made, and attack duration. This allows us to get dy-

namic “suspiciousness scores” of attackers and their domain nodes for targeted

attacks. To emulate a DDoS attack, we exhaust the targeted application using a

SlowHTTPTest [36] and thereby cause random changes in e.g., number of pack-

ets, and attack times. We also perform event-based simulations to get different

suspiciousness scores for attacks as follows:
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Destination suspiciousness for trace t:

dsti = wdst ×
numDsti − numDstMini

numDstMaxi − numDstMini

(4.2)

Flow suspiciousness for trace t:

flowsi = wflows ×
numFlowsi − numFlowsMini

numFlowsMaxi − numFlowsMini

(4.3)

Bytes suspiciousness for trace t:

bytesi = wbytes ×
numBytesi − numBytesMini

numBytesMaxi − numBytesMini

;

wdst ∈ [0.0, 1.0];wflows ∈ [0.0, 1.0];wbytes ∈ [0.0, 1.0]

(4.4)

Device suspiciousness for trace t:

ssi =

√
dst2i + flows2i + bytes2i

3
(4.5)

We calculate the ss values based on the captured network traces using three main

features: destinations, flows, and bytes. For each attacker node i on the network,

and for trace t, we assume the weight parameters i.e., wdst, wflows, wbytes to be

equal to 1 in a general case of suspiciousness score calculations. Also, the Min

and Max values are assumptions made per attack nodes based on the expected

behavior of the network flows corresponding to user hosts’ traffic.

4.2.2 OHDSI-Dolus Pretense Initiation and Maintenance

The entire procedure of our OHDSI-Dolus interactions involving sequential steps

are shown in Figure 4.4 for classification of user traffic and attacker traffic as well

as creation of the attacker quarantine with active defense through initiation and

maintenance of pretense.
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Figure 4.4: Sequence diagram of OHDSI-Dolus defense system interactions for network traffic
analysis and attack detection, along with attacker quarantine and active defense through initia-
tion and maintenance of pretense.

Firstly, a user from internet accessing the cloud-based healthcare data applications

makes requests to the listener based on rules configured in OHDSI. The listener

then redirects the user’s traffic to the target application server. An IDS placed

inside the VPC is used detect network intrusions by sniffing network traffic flows

in real-time to the OHDSI application server. If network intrusion or malicious

activity is detected, the IDS will alert the system administrator, and then the

adversary’s IP address will be blocked at the application server. After blocking

attackers IP address, the listener on the load balancer automatically redirect the

traffic from the attacker to a Quarantine Virtual Machine (QVM) by using config-

ured rules. Finally, by initiating pretense, the attacker will be deceived by being

presented with decoy files of protected data to give a false sense of success.
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Chapter 5

Active Defense Evaluation Results

In this section, we demonstrate the effectiveness of our two noval active defense

frameworks. First, a rule-based 3QS-adaptation framework using tesbed setup

that involves a virtual reality based interactive video learning platform viz. vSo-

cial and defense by pretense framework data driven healthcare application viz.

OHDSI-Dolus system on Amazon Web Services (AWS) resources. Our validation

results show that our rule-based 3QS-adaptation framework’s adaptation choices

are effective in reducing the cybersickness levels and in maintaining the applica-

tion functionality at a usable level. Further We evaluate our second active defense

based OHDSI-Dolus system design by creating an experimental AWS testbed

hosting a realistic OHDSI setup for protected health data analytics with elec-

tronic health record data (SynPUF) and publications data (CORD-19) related to

COVID-19 [37]. Our experiment results show how we are able to successfully de-

tect targeted attacks such as e.g., DDoS and create redirection of attack sources

to QVMs. As a response from QVM, we successfully initiate a defense by pretense

by sending fake HTTP responses and honey files from the decoy application to

attackers mimicking the OHDSI application, which creates a false sense of success

for the attackers.
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5.1 Performance Evaluation of Rule-based 3QS Adap-
tation Framework

We setup our experimental testbed in a public cloud i.e., Amazon Web Services

(AWS) [39] as shown in Figure 5.1. In this testbed, we host the open-source vSo-

cial application [38] on an Amazon Elastic Compute Cloud (EC2) instance [39] to

render the VRLE content to the users. We also host a controller node on another

EC2 instance to: (i) capture network data using Amazon CloudWatch [39], and

(ii) monitor the network data using our anomaly monitoring tool alongside a de-

cision module hosted on a separate Jupyter notebook instance [39]. In addition,

we store the captured and processed network data in the controller node into a

DynamoDB [39] service. This DynamoDB service serves as a knowledge base for

future anomaly events. We also connect our knowledge base to Amazon S3 [39]

service using the Amazon Lambda [39] service in order to provide seamless in-

teraction between the decision module and the anomaly monitoring tool. Before

illustrating our experimental scenarios, we first detail the tools used for anomaly

data collection required for our framework.

As part of anomaly data collection, we simulate a QoS issue (packet drop), QoA

issue (packet drop + network lag), Security issue (DoS, packet duplication +

packet tampering) in our vSocial application setup. We calculate the packet rate

by capturing the raw data associated to the timestamp of each packet for each

of the simulated 3QS issues along with the baseline data (of benign behavior) of

the vSocial application. To simulate a DoS attack on vSocial, we used Clumsy

0.2 [40], a windows based tool to control networking conditions such as lag, drop,

throttle, or tamper of live packets. To see the impact on our VRLE application

performance, we specifically drop a certain percentage of live network packets.

Using the Wireshark [41] tool, we capture packets being sent to-and-from our

VRLE server in order to demonstrate possible data loss resulting from the packet

capture. With the above specified tools and the experimental testbed setup, we
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Figure 5.1: Experimental testbed setup for 3QS-adaptation framework evaluation using
anomaly event monitoring and rule-based decision making.

collect the anomaly data relevant to 3QS issues in VRLE sessions.

To identify traces of 3QS anomaly events in the collected network data during

a VRLE session, we developed a web-based anomaly monitoring tool using the

Flask micro framework with Python3 [42]. Our anomaly monitoring tool uses

AWS CloudWatch alarms to create triggers based on a threshold condition for ev-

ery 3QS anomaly. For instance, a QoS alarm is triggered if the threshold condition

if ([No. of packets out] < 7280 packets/second) fails. Similarly, for a QoA alarm,

we use a threshold condition if the (CPU Utilization %) > 8%. Next, the anomaly

monitoring tool will pass the collected anomaly data to the decision module of our

3QS-adaptation framework. We store this detected anomaly data into a AWS S3

bucket [39], which is further interfaced with DynamoDB [39], the knowledge base.

5.1.1 Adaptation Decision Making and Control Unit

With the captured anomaly data, the decision module will look up for the relevant

adaptation and control module makes a decision to implement relevant adaption.
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Table 5.1: Potential adaptation choices for different 3QS anomaly events.
Anomaly Issue Specific Category Adaptation Name

QoA High CPU Utilization
Upgrading Instance Type (A1)

Higher Resources (A2)
Modifying Instance Volume (A3)

QoS Low Network Bandwidth Enabling Enhanced Networking (A4)
Higher Network Bandwidth (A5)

Security Denial of Service Amazon Route 53 (A6)
AWS GuardDuty (A7)

Intrusion Unauthorized Access Blacklist IP via third-party app (A8)

A sample list of potential adaptations for a specific decision unit are shown in the

Table 5.1. For example, a QoA issue arising due to {packet drop + lag} can be

mitigated using the adaptations in Table 5.1. Using the decision outcome, next the

control module implements the adaptation based on the risk and cost aware anal-

ysis. For instance, for a security issue, we utilize the adaptation Blacklist IP (A8)

to block unauthorized access based on the threshold condition (number of login

attempts > 5). when an AWS alarm relevant to a security anomaly is triggered,

the control module invokes an action for the suitable adaptation A8 keeping in

mind the decision outcome, risk and cost factors. Similarly Based on such imple-

mentations for anomaly events in VRLE, we show the results of our adaptations

using the “performance metrics" {response time, Threshold measures}, cost in-

curred in Table 5.2.

Once the decision related to an anomaly event is incorporated, its relevant infor-

mation is updated into the knowledge base to train for future anomaly events.

In our 3QS-adaptation framework, a knowledge base has been created using a

DynamoDB service. To facilitate periodic updates from each of the modules in

our framework into DynamoDB, we use the Amazon S3 service along with AWS

Lambda functions. We use these both storage systems as our decision module

that is hosted on a Jupyter notebook instance that takes only CSV data as input.

The full capability of our knowledge base can be extended to other applications

and can be utilized for employing additional adaptations in VRLE systems.
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5.1.2 Quantification of Cybersickness for 3QS Anomalies

In this section, we objectively measure the induced cybersickness level for a given

set of anomaly events i.e., visualization delay due to network lag (QoA issue),

packet loss (QoS issue), and DoS attack (security attack). The works in [47]

study that the quantifying effects of latency as the objective parameter to assess

cybersickness. Based on the findings of the study, we measure the latency as

the primary objective metric of cybersickness for several 3QS anomaly events in

VRLE. Each of these attack anomaly events are simulated in different network

conditions as detailed in our prior work [5]. We also found that 23.5 ms is the

baseline latency for a normal functioning VRLE session, beyond which a user

experiences cybersickness.

Figure 5.2: Avg. Latency measured (in ms) for QoA anomaly, QoS anomaly scenario in
different adaptation scenarios.

The graphical results in Figure 5.2 detail the control of cybersickness level

using latency metric for the adaptations (i.e., upgrading instance (A1), scaling

of higher Resources (A2)) listed in Table 5.1. We also consider a no-adaptation

(NA) scenario to study the adverse impact on cybersickness if no action is taken

to control the raised anomaly event. Moreover, in real-world applications such as

vSocial, there is a possibility that one adaptation action might not be enough to

mitigate the anomaly impact, and an adaptation should consider the possibility

of a combination of performance and security issues inducing cybersickness [7].
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To address such an case, from the results in Figure 5.2, we observe that for a QoA

anomaly, adaptations A1, A2 reduce the cybersickness by 26.43% and 13.46% re-

spectively. In case of a QoS anomaly, the adaptation A4 reduces the cybersickness

significantly by 30.28%. In addition, A1 and A2 reduce cybersickness by 17.28%

making them the next suitable choice for a QoS anomaly as shown in Figure 5.2.

We also note that the combination of best adaptations i.e., A1 and A4 reduces

cybersickness by 29.39% for a QoA anomaly and 20.48% for a QoS anomaly event

as shown in Figure 5.2. However the choice of combination can vary based on

the considered list of potential candidates that can further impact the control of

cybersickness levels in a VRLE session.

5.1.3 Risk and Cost Aware Trade-off Analysis

We term risk as “failure risk" which is a likelihood value of an adaptation that

can fail in controlling the cybersickness for a given anomaly event. We adopt the

NIST SP800-30 [43] based risk assessment method [48] where we use L(D)– the

likelihood of decision of a specific adaptation and I represents the Impact of an

adaptation in controlling the cybersickness level. We estimate the L(D) based on

the order of decision metrics. Using these both L(D) and I, we calculate the failure

risk as Rf = 1−f(L(D), I) where, f(L(D), I) is the average function adopted from

existing works [48]. We use a pre-defined semi-quantitative scale of 0-1 as guided

by NIST for the impact/likelihood event assessments, with 1 indicating very high,

and 0 indicating very low levels of impact. Using the latency measurement results

in Figure 5.2, we consider the best/worst combination of adaptation choices for

each anomaly event as illustrated in Figure 5.3.

We measure the performance metrics and system response time due to these

adaptations using CloudWatch as shown in Table 5.2. With this, we highlight

the functionality of our framework that takes dynamic decisions to control the

cybersickness and maintain satisfactory application functionality. Based on our

experimental results (i.e., cost-performance and risk evaluation), we enlist suitable
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Figure 5.3: Risk evaluation associated with the best (BA1, BA2), worst (WA1) and combina-
tion of adaptations in controlling cybersickness for the given QoA and QoS anomaly event.

Table 5.2: Cost-aware application performance analysis of adaptations chosen for
3QS anomaly events.

Anomaly
Event

Adaptation
name

Cost
(in $/hr) Threshold Metric Rat

(in seconds)

QoA A1 0.23 CPU utilization rate
is decreased to 4%

0.54
A2 2.4 300

QoS A4 0.10 Packet rate at 7280
packets/second

1
A5 0.10 300

DoS A7 0.33 Packet data measure 0.51
Unauthorized

access A8 0.02 Number of login
attempts <5

Varies based on
number of users

rules (i.e., best practices) to adopt for future anomaly events.

5.1.4 Recommendations Based on Key Findings

Based on our experimental evaluation of our framework to control cybersick-

ness level using the listed adaptations in Table 5.1, we recommend rule-based

practices as shown in Table 5.3. These practices are expressed in a semantic

form i.e., we enlist Event-Condition-Action (ECA) rules with a typical form of

IF − THEN − (ELSE) [49] to adopt for future VRLE systems. From the re-

sults shown in Table 5.3, for a QoA anomaly with the given scenario in VRLE,

we recommend adaptation A1 due to the low cost incurred and high impact on

cybersickness control when compared to adaptation A2. Similarly, for an Unau-

thorized Access (UA), we recommend adaptation A8 over A7 due to the incurred

cost and also the lack of control with the GuardDuty service in A7 as shown in
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Table 5.3.

Table 5.3: Recommendations based on risk level (Rl), Cost level (Cl), and control
on cybersickness (∆CS).

IF THEN ELSE
Anomaly Scenario in VRLE session Ai Rl Cl ∆CS% Ai Rl Cl ∆CS%

QoA Increasing number of users;
To improve application run time A1 L L 26.43% A2 M M 13.46%

QoS Lower latency in VRLE content A4 L L 30.28% A1+A4 L M 20.48%
UA Only valid users in VRLE session A8 L L 20.7% A7 M H -
DoS Avoid loss of content availability A1+A6 M M 36.1% A1+A7 M H -

In addition, our recommendations can range from ideas of checking for malware

and updating security groups to extreme actions such as terminating the appli-

cation instance altogether. Using such rule-based adaptations, we showcase the

benefit of our proposed framework that controls the cybersickness level induced

by the 3QS related anomalies.

5.2 Performance Evaluation of defense by pretense
based OHDSI-Dolus system

Our OHDSI on AWS testbed set up is shown in Figure 5.4. There are three

servers, including the application (OHDSI Server), the network-based IDS, and

the QVM. All of these servers are set up using EC2 virtual instances, and are

configured within the same virtual private cloud as private nodes, i.e., only acces-

sible from other nodes within the testbed. While the data from the application

and the QVM can be accessed by the users (benign or malicious) depending on

their request type, the network-based IDS server is used solely for network traffic

mirroring and for analysis involving attack detection. Our testbed also includes

an Application Load Balancer (ALB), the only public-facing component in the

testbed. The ALB works as a wrapper component which performs both the logic

check and acts as a distributor depending on the load it receives, through which

users can access the private servers by using their public IP addresses.
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Figure 5.4: AWS testbed used to evaluate OHDSI-Dolus for targeted attacks.

The ALB has three listener rules, each pointing to a target server or AWS service

and has a different priority. The first listener rule points to a Lambda function as a

target which has the highest priority of all the rules. This Lambda function receives

all the HTTP requests when users try to access the OHDSI application server, and

will obtain the source IP of the user trying to access the server. Lambda function

also fetches the blacklisted IP list from the AWS S3 bucket to match with the pre-

viously blacklisted attacker’s IP addresses. The Lambda function then maps the

source IP of the user with this list to conclude whether or not the traffic that the

ALB is receiving is coming from an attacker IP. Once such a conclusion is made,

the Lambda function responds to the ALB with an HTTP response that provides

the re-route information which consists of the port numbers that the ALB uses to

forward the traffic to either the OHDSI application server or to the QVM.

After receiving response from the Lambda function, the ALB will re-route traffic

to the respective OHDSI application server or to the QVM. The other two listener

rules point to the application server and the QVM. There is no need to prioritize

these rules because both of them use different conditions, which will make them

both exclusive of each other. For evaluation purposes, we use different ports to

determine which server to re-route when a certain rule is matched.
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The network-based IDS server constantly monitors the traffic for the OHDSI appli-

cation server that has been mirrored to the network-based IDS using VPC traffic

mirroring. It checks to categorize if an attack has occurred based on the network

connection patterns and our attack detection logic. Upon detection of an attack,

the network-based IDS server creates a list of IPs to be blacklisted and appends

them to a database to keep track of the IPs that need to be re-directed to the

QVM whenever a request is made from related IPs.

5.2.1 Risk Assessment Results

We evaluate the risks of various threat events in the STRIDE categories based on

the NIST guidelines [43]. As shown in Table 5.4, the risk levels for different threats

against the OHDSI healthcare application varies in the STRIDE model due to their

distinct potential impact and likelihood values. The risk value of Data Alteration

event under the Tampering category is the lowest among all the threats in the

STRIDE categories. Due to the fact that the likelihood of tampering is relatively

low (score of 3), which leads to a minimal chance of occurrence. Recently many

techniques have been developed to enforce encryption of Data-at-Rest and Data-

in-Transit. In addition, file integrity monitoring systems can be placed to deal

with tampering threats, which also contributes to the low likelihood value in this

category.

Table 5.4: Threat events related to OHDSI application with NIST-based guideline
[43] used for risk calculation.
Category Threat Events Application Impact STRIDE Threat Likelihood Impact Threat Risk

A IP spoofing
An attacker can alter the IP packet to gain access to Healthcare
application server as authorised user.

Spoofing 5 21 Moderate (5)

B Data Alteration Malicious user can spoof the query to retrieve unauthorized data. Tampering 3 10 Low (3)

C Man-In-Middle attack Attacker can impersonates as a user to retrieve unauthorized data. Repudiation 5 6 Moderate (4)

D
SQL injection/Malware
infection

An attacker can perform an SQL injection attack to affect the
database or to gain access to unauthorized data. Also, the presence of
malware on the system can lead to leakage of users’ unauthorized data.

Information Disclosure 9 28 Very High (9)

E DDoS Attack
Attacker can perform multiple SQL queries to overwhelm the
database system.

Denial of Service 8 26 High (8)

F Data Tampering
An attacker can tamper data because there’s no integrity protection
for data on the network.

Elevation of Privilege 3 24 Moderate (4)

On the other hand, the SQL injection/Malware infection under the Information

Disclosure category and the DDoS attack under the Denial of Service are the two
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Figure 5.5: Heat map visualization of risk levels for different STRIDE categories A - F.

highest risk categories, with risk levels of 9 and 8, respectively. This is due to the

fact that the impact and likelihood are both high in these two categories relating to

modern healthcare data processing applications, as opposed to Data Tampering,

which also has a high impact but a very low likelihood of occurrence. The rest

of the STRIDE categories have risk values that lie in between the Tampering and

Information Disclosure categories, indicating that they represent moderate threats

in the healthcare data processing pipeline applications. The risk levels are also

visualized in the heat map in Figure 5.5, where the red color represents high risk,

green color represents low risk, and yellow color represents medium risk in the

relative STRIDE categories A - F.

5.2.2 Detection Results

We present the performance of our OHDSI-Dolus considering an exemplar attack

with a high risk level, i.e., the DDoS attack, which is one of the most prevalent at-

tacks in the STRIDE categories with regarding to OHDSI health data processing

applications. Recall that the QoD parameter determines the overall the accuracy

35



and speed of cyber-attack detection impacting the OHDSI healthcare application.

We evaluate the QoD metric based on the ensemble learning accuracy and time

taken for the models to run in OHDSI-Dolus, and compare the performance with

state-of-the-art detection schemes in [30] and [44].

To identify potential network intrusion or a cyber-attack event, we setup our

network-based IDS in our VPC on an EC2 instance. We use the ensemble learning

based detection scheme used as part of the OHDSI-Dolus related IDS implemen-

tation. We take advantage of the AWS VPC traffic mirroring service to mirror

the network traffic flowing into our VPC that is routed to the IDS. We also used

the AWS Cloud Watch service to monitor the OHDSI application server’s network

flow i.e., mirrored network traffic, as shown in Figure 5.6. We can see from the

graph, the different levels of network packets mirrored from the OHDSI server

during the EC2 instance initiation, OHDSI application server launch and during

user data query.

Figure 5.6: Dolus mirroring OHDSI server traffic at different stages for analysis and detection
as viewed with AWS Cloud Watch.

To evaluate the performance of our OHDSI-Dolus mechanism, we compare its per-

formance with other DDoS detection mechanisms presented in [30] and [44]. We

primarily choose these works for comparison since the studies presented take ad-
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vantage of ML based attack detection against cloud-based systems. The work in

[30] presents CS_DDoS, a framework for detection and prevention of DDoS attack

in cloud environments. In CS_DDoS, the incoming packets are classified using

several machine learning models to decide whether the sources are associated with

a genuine client or an attacker based on feature matching.

Authors in [44] propose to use the extreme gradient boosting (XGBoost) as the

detection method in a cloud platform with software-defined networking. The de-

tection results validate that XGBoost performs relatively better than CS_DDoS

with higher accuracy, lower false positive rate, fast-speed and has scalability in

detection of DDoS attacks.

Figure 5.7: Quality of Detection (QoD) results of DDoS attack detection based on accuracy
and time taken by state-of-the-art detection mechanisms in comparison with our OHDSI-Dolus.

Figure 5.7 shows that our healthcare data processing pipeline, the OHDSI, equipped

with OHDSI-Dolus outperforms the state-of-the-art mechanisms viz., CS_DDoS

and XGBoost in DDoS attack detection. The comparison is done using the ac-

curacy over time QoD calculation in Equation (4.1). In the results, we average

the accuracy of different machine learning models used across the average of time

they took for the calculation for QoD.
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5.2.3 Defense by Pretense Qualitative Evaluation

Upon detection of a DDoS attack, our OHDSI-Dolus system initiates attack mit-

igation by re-routing the network traffic from the attacker to the QVM. In the

QVM, we successfully deployed a decoy service that mimics a running OHDSI

application server. This server serves dummy honey files that are intended only

to be provided to attackers to maintain the pretense, and the attackers are led to

believe they have gained access to the main OHDSI application server, while in

reality they have been deceived.

We perform qualitative comparison between our OHDSI-Dolus system with the

defense scheme presented in the works of [30] and [31]. The CS_DDoS framework

in [30] uses IP blacklisting to mitigate DDoS attacks on a cloud platform. In

contrast, [31] proposes a mechanism to mitigate data ex-filtration attacks using

deception in cloud platforms. Whenever a download or sharing request is made, if

the host MAC address does not match the embedded identifier within the file, the

corresponding decoy document (instead of the actual file) is returned to deceive

the attacker.

Table 5.5 summarizes the main features of our OHDSI-Dolus and qualitatively

Table 5.5: Comparison of OHDSI-Dolus performance with state-of-the-art active
defense mechanisms that have the potential to be used for protection of cloud-
based healthcare data processing pipelines.

CS_DDoS Detection/Defense [30] Deception based Defense [31] OHDSI-Dolus Detection/Defense

Features
ML-based detection attacks and prevention

using IP blacklisting.

Detection using detection engine and prevention

by generating decoy documents.

Detection of cyber-attacks by ML-enabled network-based IDS and

mitigation by initiating Pretense.

Advantages
Able to reduce bandwidth consumption by

early detection.

Detection without relying on cloud providers

using cyber deception.
Scalable, Cost-effective and easy to deploy.

Suitable for Early DDoS attack detection. Generation of decoy objects based on input.
The scalable and cost-effective mechanism for early

detection and mitigation.

Limitations Detection fails if attacker is using spoofed IP’s.
Detection scheme can be spoofed by spoofing

MAC addresses.

The proposed scheme is based on relevant services

provided by cloud providers.

compares it with two state-of-the-art mechanisms i.e., CS_DDoS [30] and Decep-

tion based defense [31] in terms of the features, advantages, use case spectrum,

and their limitations. We show that our OHDSI-Dolus scheme is more scalable,

cost-effective, and easier to deploy as we take advantage of low-cost and most

commonly used services provided by public cloud providers. Thereby, using our

OHDSI-Dolus, the attackers can be effectively engaged with a QVM that helps to

38



gain more threat intelligence information on the attacker and the corresponding

attack vectors.
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Chapter 6

Conclusion

Active defense is a state-of-the-art paradigm where proactive or reactive cyberse-

curity strategies are used to augment passive defense policies (e.g., firewalls). It

involves using knowledge of the adversary to create of dynamic policy measures to

secure resources and outsmart adversaries to make cyber-attacks difficult to exe-

cute. In this work, We developed two novel active defense strategies to mitigate

the impact of security anomaly events within: (a) novel Rule-Based Performance

and Security (3QS) Adaptation Framework to mitigate the impact of performance

and security anomaly events that induce cybersickness in social virtual reality

learning environment (VRLE), and (b) a novel cloud-based attack detection and

active defense mechanism viz., "OHDSI-Dolus" for a cloud-hosted healthcare data

sharing environment (HDSE). In our rule based adaptaion framework We quan-

tified the cybersickness metric objectively using a latency metric for a simulated

anomaly event scenario. We utilized a priority-based queuing model that handles

anomaly events in the order of highest cybersickness inducing levels. To determine

the suitable adaptation for handling a given anomaly event type, our approach in-

volves performing risk and cost aware analysis for each decision outcome. Once a

suitable adaptation is incorporated for a given anomaly event type,cybersickness

measurements are updated and used as feedback to determine the impact on the

anomaly event. Our validation results for rule based adaptaion framework show
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that the real-time adaptations suggested by our rule-based framework: (i) reduce

the cybersickness level by 26.43% for a QoA anomaly and the same for a QoS

anomaly event by 30.28%, and (ii) maintains the application functionality within

the threshold limit (beyond which an application is non-functional) along with low

system response times. Based on these key findings, we enlisted suitable practices

for prevention of 3QS issues based on NIST SP800-160 guidelines. Furthermore,

in our cloud-based attack detection and active defense mechanism we analyzed

unique attack surfaces in the healthcare data processing pipelines using the Mi-

crosoft STRIDE methodology and performed a related risk assessment based on

the NIST guidelines to identify the prominent threats such as DDoS attack and

APT. Based on the the risk assessment,we developed a design for an active defense

solution i.e., OHDSI-Dolus that can be integrated with healthcare data process-

ing pipelines. Moreover, we showed that through active defense strategies, our

OHDSI-Dolus system is capable of threat detection and provides threat mitiga-

tion services to effectively defend against targeted attacks in a robust manner.We

showed how our OHDSI-Dolus system actually takes advantage of “defense by pre-

tense” theory for mitigation of threats such as DDoS and APTs for cloud-based

healthcare data processing pipelines by luring the attacker to quarantine virtual

machine instances.

41



Bibliography

[1] De Gaspari, F., Jajodia, S., Mancini, L.V. and Panico, A., 2016, October.

Ahead: A new architecture for active defense. In Proceedings of the 2016 ACM

Workshop on Automated Decision Making for Active Cyber Defense (pp. 11-

16).

[2] Mairh, A., Barik, D., Verma, K. and Jena, D., 2011, February. Honeypot in

network security: a survey. In Proceedings of the 2011 international conference

on communication, computing security (pp. 600-605).

[3] Dai, N.H.P., András, K. and Zoltán, R., 2016. E-learning security risks and

counter measures. Engineering research and solutions in ICT, 1, pp.17-25.

[4] Zizza, C., Starr, A., Hudson, D., Nuguri, S.S., Calyam, P. and He, Z., 2018,

January. Towards a social virtual reality learning environment in high fidelity.

In 2018 15th IEEE Annual Consumer Communications Networking Confer-

ence (CCNC) (pp. 1-4). IEEE.

[5] Gulhane, A., Vyas, A., Mitra, R., Oruche, R., Hoefer, G., Valluripally, S.,

Calyam, P. and Hoque, K.A., 2019, January. Security, privacy and safety risk

assessment for virtual reality learning environment applications. In 2019 16th

IEEE Annual Consumer Communications Networking Conference (CCNC)

(pp. 1-9). IEEE.

[6] Jia, J. and Chen, W., 2017, July. The ethical dilemmas of virtual reality appli-

cation in entertainment. In 2017 IEEE International Conference on Computa-

42



tional Science and Engineering (CSE) and IEEE International Conference on

Embedded and Ubiquitous Computing (EUC) (Vol. 1, pp. 696-699). IEEE.

[7] Valluripally, S., Gulhane, A., Mitra, R., Hoque, K.A. and Calyam, P., 2020,

January. Attack trees for security and privacy in social virtual reality learning

environments. In 22020 IEEE 17th Annual Consumer Communications Net-

working Conference (CCNC) (pp. 1-9). IEEE.

[8] Wang, S., Valluripally, S., Mitra, R., Nuguri, S.S., Salah, K. and Calyam,

P., 2019, June. Cost-performance trade-offs in fog computing for IoT data

processing of social virtual reality. In 2019 IEEE International Conference on

Fog Computing (ICFC) (pp. 134-143). IEEE.

[9] Casey, P., Baggili, I. and Yarramreddy, A., 2019. Immersive virtual reality

attacks and the human joystick. IEEE Transactions on Dependable and Secure

Computing, 18(2), pp.550-562.

[10] Ghahramani, M.H., Zhou, M. and Hon, C.T., 2017. Toward cloud computing

QoS architecture: Analysis of cloud systems and cloud services. IEEE/CAA

Journal of Automatica Sinica, 4(1), pp.6-18.

[11] B. Mukherjee, R. L. Neupane, and P. Calyam, “End-to-end iot security mid-

dleware for cloud-fog communication,” in 2017 IEEE 4th International Con-

ference on Cyber Security and Cloud Computing (CSCloud).IEEE, 2017, pp.

151–156

[12] Rebenitsch, L. and Owen, C., 2016. Review on cybersickness in applications

and visual displays. Virtual Reality, 20(2), pp.101-125.

[13] LaViola Jr, J.J., 2000. A discussion of cybersickness in virtual environments.

ACM Sigchi Bulletin, 32(1), pp.47-56.

[14] Kuo, M.H., 2011. Opportunities and challenges of cloud computing to improve

health care services. Journal of medical Internet research, 13(3), p.e67.

43



[15] X. Yue, H. Wang, D. Jin, M. Li, and W. Jiang, “Healthcare data gate-

ways: found healthcare intelligence on blockchain with novel privacy risk con-

trol,”Journal of medical systems, vol. 40, no. 10, pp. 1–8, 2016

[16] Abaid, Z., Shaghaghi, A., Gunawardena, R., Seneviratne, S., Seneviratne,

A. and Jha, S., 2019, May. Health access broker: Secure, patient-controlled

management of personal health records in the cloud. In Computational Intelli-

gence in Security for Information Systems Conference (pp. 111-121). Springer,

Cham.

[17] Abouelmehdi, K., Beni-Hessane, A. and Khaloufi, H., 2018. Big healthcare

data: preserving security and privacy. Journal of Big Data, 5(1), pp.1-18.

[18] Khorshed, M.T., Ali, A.S. and Wasimi, S.A., 2012. A survey on gaps, threat

remediation challenges and some thoughts for proactive attack detection in

cloud computing. Future Generation computer systems, 28(6), pp.833-851.

[19] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion detection

system: A comprehensive review,”Journal of Network and Computer Applica-

tions, vol. 36, no. 1, pp. 16–24, 2013

[20] Kanimozhi, V. and Jacob, T.P., 2019, April. Artificial intelligence based net-

work intrusion detection with hyper-parameter optimization tuning on the

realistic cyber dataset CSE-CIC-IDS2018 using cloud computing. In 2019 in-

ternational conference on communication and signal processing (ICCSP) (pp.

0033-0036). IEEE.

[21] Aborujilah, A. and Musa, S., 2017. Cloud-based DDoS HTTP attack detec-

tion using covariance matrix approach. Journal of Computer Networks and

Communications, 2017.

[22] He, Z., Zhang, T. and Lee, R.B., 2017, June. Machine learning based DDoS

attack detection from source side in cloud. In 2017 IEEE 4th International

44



Conference on Cyber Security and Cloud Computing (CSCloud) (pp. 114-120).

IEEE.

[23] Choi, J., Choi, C., Ko, B. and Kim, P., 2014. A method of DDoS attack

detection using HTTP packet pattern and rule engine in cloud computing

environment. Soft Computing, 18(9), pp.1697-1703.

[24] Kim, J., Lee, T., Kim, H.G. and Park, H., 2013. Detection of advanced per-

sistent threat by analyzing the big data log. Advanced Science and Technology

Letters, 29, pp.30-36.

[25] Bhatt, P., Yano, E.T. and Gustavsson, P., 2014, April. Towards a framework

to detect multi-stage advanced persistent threats attacks. In 2014 IEEE 8th

international symposium on service oriented system engineering (pp. 390-395).

IEEE.

[26] Binde, B., McRee, R. and O’Connor, T.J., 2011. Assessing outbound traffic

to uncover advanced persistent threat. SANS Institute. Whitepaper, 16.

[27] Vukalović, J. and Delija, D., 2015, May. Advanced persistent threats-detection

and defense. In 2015 38Th international convention on information and com-

munication technology, electronics and microelectronics (MIPRO) (pp. 1324-

1330). IEEE.

[28] Stout, W., Urias, V., Loverro, C. and Anthony, B., 2017. Now You See

Me Now You Don’t: Advancing Network Defense through Network Decep-

tion (No. SAND2017-8892C). Sandia National Lab.(SNL-NM), Albuquerque,

NM (United States).

[29] Bringer, M.L., Chelmecki, C.A. and Fujinoki, H., 2012. A survey: Recent ad-

vances and future trends in honeypot research. International Journal of Com-

puter Network and Information Security, 4(10), p.63.

45



[30] A. Sahi, D. Lai, Y. Li, and M. Diykh, “An efficient ddos tcp flood attack-

detection and prevention system in a cloud environment,”IEEE Access,vol. 5,

pp. 6036–6048, 2017.

[31] Wilson, D. and Avery, J., 2016. Mitigating Data Exfiltration in Storage-as-a-

Service Clouds. arXiv preprint arXiv:1606.08378.

[32] Araujo, F., Hamlen, K.W., Biedermann, S. and Katzenbeisser, S., 2014,

November. From patches to honey-patches: Lightweight attacker misdirec-

tion, deception, and disinformation. In Proceedings of the 2014 ACM SIGSAC

conference on computer and communications security (pp. 942-953).

[33] Cifranic, N., Hallman, R.A., Romero-Mariona, J., Souza, B., Calton, T. and

Coca, G., 2020. Decepti-SCADA: A cyber deception framework for active de-

fense of networked critical infrastructures. Internet of Things, 12, p.100320.

[34] Vassell, M., Apperson, O., Calyam, P., Gillis, J. and Ahmad, S., 2016, Jan-

uary. Intelligent Dashboard for augmented reality based incident command re-

sponse co-ordination. In 2016 13th IEEE Annual Consumer Communications

Networking Conference (CCNC) (pp. 976-979). IEEE.

[35] Neupane, R.L., Neely, T., Calyam, P., Chettri, N., Vassell, M. and Duraira-

jan, R., 2019. Intelligent defense using pretense against targeted attacks in

cloud platforms. Future Generation Computer Systems, 93, pp.609-626.

[36] (2011) S. Shekyan, SlowHTTPTest. Application Layer DoS attack.[Online].

Available: https://github.com/shekyan/slowhttptest/wiki[33]

[37] Alarcon, A.M.L., Oruche, R. and Calyam, P., Cloud-based data pipeline or-

chestration platform for covid-19 evidence-based analytics. Submitted for pub-

lication.

[38] Zizza, C., Starr, A., Hudson, D., Nuguri, S.S., Calyam, P. and He, Z., 2018,

January. Towards a social virtual reality learning environment in high fidelity.

46



In 2018 15th IEEE Annual Consumer Communications Networking Confer-

ence (CCNC) (pp. 1-4). IEEE.

[39] Amazon web services. Last accessed 2021-04-02. [Online]. Avail-

able:https://aws.amazon.com/

[40] “clumsy 0.2”, 2018. Last accessed 2021-04-02. [Online]. Avail-

able:https://jagt.github.io/clumsy

[41] Wireshark tool. Last accessed 2021-04-02. [Online]. Avail-

able:https://www.wireshark.org/

[42] Flask: A web-development guide. Last accessed 2021-04-02. [Online]. Avail-

able: https://pypi.org/project/Flask/

[43] Ross, R.S., 2012. Guide for conducting risk assessments (nist sp-800-30rev1).

The National Institute of Standards and Technology (NIST), Gaithersburg.

[44] Chen, Z., Jiang, F., Cheng, Y., Gu, X., Liu, W. and Peng, J., 2018, Jan-

uary. XGBoost classifier for DDoS attack detection and analysis in SDN-based

cloud. In 2018 IEEE international conference on big data and smart computing

(bigcomp) (pp. 251-256). IEEE.

[45] Rebenitsch, L. and Owen, C., 2016. Review on cybersickness in applications

and visual displays. Virtual Reality, 20(2), pp.101-125.

[46] LaViola Jr, J.J., 2000. A discussion of cybersickness in virtual environments.

ACM Sigchi Bulletin, 32(1), pp.47-56.

[47] G. Samaraweera, R. Guo, and J. Quarles, “Latency and avatars invirtual

environments and the effects on gait for persons with mobilityimpairments,” in

2013 IEEE Symposium on 3D User Interfaces (3DUI).IEEE, 2013, pp. 23–30.

[48] Dickinson, M., Debroy, S., Calyam, P., Valluripally, S., Zhang, Y., Antequera,

R.B., Joshi, T., White, T. and Xu, D., 2018. Multi-cloud performance and

47



security driven federated workflow management. IEEE Transactions on Cloud

Computing, 9(1), pp.240-257.

[49] Müller, R., Greiner, U. and Rahm, E., 2004. Agentwork: a workflow sys-

tem supporting rule-based workflow adaptation. Data Knowledge Engineering,

51(2), pp.223-256.

[50] Bhagwan, R. and Lin, B., 2000, March. Fast and scalable priority queue ar-

chitecture for high-speed network switches. In Proceedings IEEE INFOCOM

2000. Conference on Computer Communications. Nineteenth Annual Joint

Conference of the IEEE Computer and Communications Societies (Cat. No.

00CH37064) (Vol. 2, pp. 538-547). IEEE.

[51] Hripcsak, G., Duke, J.D., Shah, N.H., Reich, C.G., Huser, V., Schuemie,

M.J., Suchard, M.A., Park, R.W., Wong, I.C.K., Rijnbeek, P.R. and Van Der

Lei, J., 2015. Observational Health Data Sciences and Informatics (OHDSI):

opportunities for observational researchers. Studies in health technology and

informatics, 216, p.574.

[52] Jiang, L., Chen, H. and Deng, F., 2010, May. A security evaluation method

based on STRIDE model for web service. In 2010 2nd International Workshop

on Intelligent Systems and Applications (pp. 1-5). IEEE.

[53] You, D., Seo, B.S., Jeong, E. and Kim, D.H., 2018. Internet of Things (IoT)

for seamless virtual reality space: Challenges and perspectives. IEEE Access,

6, pp.40439-40449.

[54] Abulrub, A.H.G., Attridge, A.N. and Williams, M.A., 2011, April. Virtual

reality in engineering education: The future of creative learning. In 2011 IEEE

global engineering education conference (EDUCON) (pp. 751-757). IEEE.

[55] Allcoat, D. and von Mühlenen, A., 2018. Learning in virtual reality: Effects

on performance, emotion and engagement. Research in Learning Technology,

26.

48



[56] Jonesi, S., Adams, J., Valluripally, S., Calyam, P., Hittle, B. and Lai, A.,

2018, July. QOE Tuning for Remote Access of Interactive Volume Visualization

Applications. In 2018 IEEE International Conference on Multimedia Expo

Workshops (ICMEW) (pp. 1-6). IEEE.

[57] Chemodanov, D., Calyam, P., Valluripally, S., Trinh, H., Patman, J. and

Palaniappan, K., 2018. On qoe-oriented cloud service orchestration for appli-

cation providers. IEEE Transactions on Services Computing.

[58] Khoshkbarforoushha, A., Khosravian, A. and Ranjan, R., 2017. Elasticity

management of streaming data analytics flows on clouds. Journal of Computer

and System Sciences, 89, pp.24-40.

[59] Simmhan, Y., Cao, B., Giakkoupis, M. and Prasanna, V.K., 2011, June.

Adaptive rate stream processing for smart grid applications on clouds. In Pro-

ceedings of the 2nd international workshop on Scientific cloud computing (pp.

33-38).

[60] Sukhov, A., Calyam, P., Daly, W. and Ilin, A., 2005. Towards an analytical

model for characterizing behavior of high-speed VVoIP applications. Compu-

tational Methods in Science and Technology, 11(2), pp.161-167.

[61] Calyam, P., Rajagopalan, S., Selvadhurai, A., Mohan, S., Venkataraman,

A., Berryman, A. and Ramnath, R., 2013, May. Leveraging OpenFlow for

resource placement of virtual desktop cloud applications. In 2013 IFIP/IEEE

International Symposium on Integrated Network Management (IM 2013) (pp.

311-319). IEEE.

[62] Hadim, S. and Mohamed, N., 2006. Middleware: Middleware challenges and

approaches for wireless sensor networks. IEEE distributed systems online, 7(3),

pp.1-1.

[63] Valluripally, S., Akashe, V., Fisher, M., Falana, D., Hoque, K.A. and Calyam,

P., 2021, August. Rule-based Adaptations to Control Cybersickness in Social

49



Virtual Reality Learning Environments. In 21 8th International Conference on

Future Internet of Things and Cloud (FiCloud) (pp. 350-358). IEEE.

[64] Akashe, V., Neupane, R.L., Alarcon, M.L., Wang, S. and Calyam, P., 2021,

July. Network-based Active Defense for Securing Cloud-based Healthcare Data

Processing Pipelines. In 2021 International Conference on Computer Commu-

nications and Networks (ICCCN) (pp. 1-9). IEEE.

50


