
Machine Vision and Applications (2023) 34:53
https://doi.org/10.1007/s00138-023-01403-4

ORIG INAL PAPER

The general framework for few-shot learning by kernel HyperNetworks

Marcin Sendera1,4 ·Marcin Przewiȩźlikowski1,4,5 · Jan Miksa1 ·Mateusz Rajski1 · Konrad Karanowski2 ·
Maciej Ziȩba2,3 · Jacek Tabor1 · Przemysław Spurek1

Received: 17 March 2023 / Revised: 17 April 2023 / Accepted: 18 April 2023
© The Author(s) 2023

Abstract
Few-shotmodels aim atmaking predictions using aminimal number of labeled examples froma given task. Themain challenge
in this area is the one-shot setting, where only one element represents each class. We propose the general framework for few-
shot learning via kernel HyperNetworks—the fusion of kernels and hypernetwork paradigm. Firstly, we introduce the classical
realization of this framework, dubbed HyperShot. Compared to reference approaches that apply a gradient-based adjustment
of the parameters, our models aim to switch the classification module parameters depending on the task’s embedding. In
practice, we utilize a hypernetwork, which takes the aggregated information from support data and returns the classifier’s
parameters handcrafted for the considered problem. Moreover, we introduce the kernel-based representation of the support
examples delivered to hypernetwork to create the parameters of the classification module. Consequently, we rely on relations
between the support examples’ embeddings instead of the backbone models’ direct feature values. Thanks to this approach,
our model can adapt to highly different tasks. While such a method obtains very good results, it is limited by typical problems
such as poorly quantified uncertainty due to limited data size. We further show that incorporating Bayesian neural networks
into our general framework, an approach we call BayesHyperShot, solves this issue.

Keywords Few-shot learning · Meta-learning · HyperNetworks · Kernel methods · Bayesian neural networks

Marcin Sendera andMarcin Przewiȩźlikowski have contributed equally
to this work.

B Marcin Sendera
marcin.sendera@doctoral.uj.edu.pl

Marcin Przewiȩźlikowski
marcin.przewiezlikowski@doctoral.uj.edu.pl

Jan Miksa
jan.miksa@student.uj.edu.pl

Mateusz Rajski
mateusz.rajski@student.uj.edu.pl

Konrad Karanowski
254533@student.pwr.edu.pl

Maciej Ziȩba
maciej.zieba@pwr.edu.pl

Jacek Tabor
jacek.tabor@uj.edu.pl

Przemysław Spurek
przemyslaw.spurek@uj.edu.pl

1 Faculty of Mathematics and Computer Science, Jagiellonian
University, Lojasiewicza 6, Kraków, Poland

1 Introduction

Current artificial intelligence techniques cannot rapidly gen-
eralize from a few examples. This common inability stems
from the fact that most deep neural networks must be trained
on large-scale data. In contrast, humans can learn new tasks
quickly by utilizing what they learned in the past. Few-shot
learning models try to fill this gap by learning how to learn
from a limited number of examples. Few-shot learning is
the problem of making predictions based on a few labeled
examples. The goal of few-shot learning is not to recognize
a fixed set of labels but to quickly adapt to new tasks with a
small amount of training data. After training, the model can
classify new data using only a few training examples.

2 Department of Artificial Intelligence, Wroclaw University of
Science and Technology, Wyb. Wyspianskiego 27, Wrocław,
Poland

3 Tooploox, Wrocław, Poland

4 Doctoral School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza 11, Kraków, Poland

5 IDEAS NCBR, Chmielna 69, Warsaw, Poland

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00138-023-01403-4&domain=pdf
http://orcid.org/0000-0002-8741-6919

 53 Page 2 of 16 M. Sendera et al.

Two novel few-shot learning techniques have recently
emerged. The first is based on the kernel methods and Gaus-
sian processes [1–3]. The universal deep kernel has enough
data to generalize well to unseen tasks without overfitting.
The second technique makes use of the Hypernetworks [4–
9], which allow to aggregate information from the support
set and produce dedicated network weights for new tasks.

The above approaches give promising results but also
have some limitations. Kernel-based methods are not flex-
ible enough, since they use Gaussian processes on top of the
models. Moreover, it is not trivial to use Gaussian processes
for classification tasks. On the other hand, Hypernetworks
must aggregate information from the support set, and it is
hard to model the relation between classes as opposed to
classical feature extraction.

This paper introduces a general framework that combines
the Hypernetworks paradigm with kernel methods to realize
a new strategy that mimics the human way of learning. First,
we examine the entire support set and extract the information
in order to distinguish objects of each class. Then, based on
the relations between their features, we create the decision
rules.

Kernel methods realize the first part of the process. For
each of the few-shot tasks, we extract the features from the
support set through the backbone architecture and calculate
kernel values between them. Then we use a Hypernetwork
architecture [3, 4]—a neural network that takes kernel rep-
resentation and produces decision rules in the form of a
classifier. In our framework, the Hypernetwork aggregates
the information from the support set and produces weights
or adaptation parameters of the target model dedicated to the
specific task, classifying the query set.

The models we propose inherit the flexibility fromHyper-
networks and the ability to learn the relation between objects
from kernel-based methods.

We consider two alternative approaches to the realiza-
tion of our framework—the classical one, which we dubbed
HyperShot, and the Bayesian version called BayesHyper-
Shot. Firstly, we started with the classical approach.

We perform an extensive experimental study of Hyper-
Shot by benchmarking it on various one-shot and few-shot
image classification tasks. We find that HyperShot demon-
strates high accuracy in all tasks, performing comparably or
better than the other recently proposed methods. Moreover,
HyperShot shows a strong ability to generalize, as evidenced
by its performance on cross-domain classification tasks.

Unfortunately HyperShot, similar to other few-shot algo-
rithms, suffers from limited data size, which may result
in drawbacks such as poorly quantified uncertainty. To
solve this problem, we extend our method by incorporat-
ing Bayesian neural network and Hypernetwork paradigms,
which results in a Bayesian version of our general framework
—BayesHyperShot. In practice, hypernetwork produces

parameters of probability distribution on weights. In this
paper, we consider Gaussian prior, but our framework can
be used for modeling even more complex priors.

The contributions of this work are fourfold:

• In this paper, we propose a general framework that
realizes the learn how to learn paradigm by modeling
learning rules which are not based on gradient opti-
mization and can produce completely different decision
strategies.

• Wepropose a newapproach to solve the few-shot learning
problem by aggregating information from the support set
by kernel methods and directly producing weights from
the neural network dedicated to the query set.

• We propose HyperShot model, which combines the
Hypernetworks paradigm with kernel methods classi-
cally, to produce the weights dedicated for each task.

• We show that our model can be generalized to Bayesian
version BayesHyperShot, which allows for solving prob-
lems with poorly quantified uncertainty.

2 Hypernetworks for few-shot learning–a
general framework

In this section,we present our general framework for utilizing
the Hypernetworks and kernel-based methods for few-shot
learning. In the beginning, we give a quick recap of the nec-
essary background. Then, we introduce our framework by
presenting the HyperShot. Finally, we show how to incor-
porate the Bayesian approach in this general framework and
present the BayesHyperShot.

2.1 Background

Few-shot learning The terminology describing the few-shot
learning setup is dispersive due to the colliding definitions
used in the literature. For a unified taxonomy, we refer the
reader to [10, 11]. Here, we use the nomenclature derived
from themeta-learning literature, which is themost prevalent
at the time of writing. Let:

S = {(xl , yl)}Ll=1 (1)

be a support set containing input–output pairs, with L
examples with the equal class distribution. In the one-shot
scenario, each class is represented by a single example, and
L = K , where K is the number of the considered classes in
the given task. For few-shot scenarios, each class usually has
from 2 to 5 representatives in the support set S. Let:

Q = {(xm, ym)}Mm=1 (2)

123

The general framework for few-shot learning... Page 3 of 16 53

Fig. 1 General architecture of our framework. First, the examples from
a support set are sorted according to the corresponding class labels and
transformed by encoding network E(·) to obtain the matrix of ordered
embeddings of the support examples, ZS . The low-dimensional repre-
sentations stored in ZS are further used to compute kernel matrixKS,S .
The values of the kernelmatrix are passed to the hypernetwork H(·) that
creates the parameters θ τ for the target classification module T (·). We
identify two options for generating θ τ : (i) HyperShot—hypernetwork

H generates θ τ straightforwardly; (ii) BayesHyperShot—H generates
parameters μτ and στ of a Gaussian distribution, from which θ τ can
then be sampled. The query image x is processed by encoder E(·), and
the vector of kernel values kx,S is calculated between query embedding
zx and the corresponding representations of support examples, ZS . The
kernel vector kx,S is further passed to target model T (·) to obtain the
probability distribution for the considered classes

be a query set (sometimes referred to in the literature as a
target set), with M examples, where M is typically one order
ofmagnitude greater than K . For ease of notation, the support
and query sets are grouped in a task T = {S,Q}. During the
training stage, themodels for few-shot applications are fed by
randomly selected examples from training setD = {Tn}Nn=1,
defined as a collection of such tasks.

During the inference stage, we consider task T∗ =
{S∗,X∗}, where S∗ is a support set with the known class
values for a given task, and X∗ is a set of query (unlabeled)
inputs. The goal is to predict the class labels for query inputs
x ∈ X∗, assuming support set S∗ and using the model trained
on D.
Hypernetwork In the canonical work [4], hypernetworks are
defined as neural models that generate weights for a sepa-
rate target network solving a specific task. The authors aim
to reduce the number of trainable parameters by design-
ing a hypernetwork with a smaller number of parameters
than the target network. Making an analogy between hyper-
networks and generative models, the authors of [12] use
this mechanism to generate a diverse set of target networks
approximating the same function.

2.2 HyperShot overview

We introduce HyperShot—a model that utilizes hypernet-
works for few-shot problems. The main idea of the proposed
approach is to predict the values of the parameters for a classi-
fication network that makes predictions on the query images
given the information extracted from support examples for a
given task. Thanks to this approach, we can switch the clas-
sifier’s parameters between completely different tasks based
on the support set. The information about the current task
is extracted from the support set using a parameterized ker-
nel function that operates on embedding space. Thanks to
this approach, we use relations among the support examples
instead of taking the direct values of the embedding values
as an input to the hypernetwork. Consequently, this approach
is robust to the embedding values for new tasks far from the
feature regions observed during training. The classification
of the query image is also performed using the kernel values
calculated with respect to the support set.

The architecture of HyperShot is provided in Fig. 1. We
aim to predict the class distribution p(y | S, x), given a
query image x and set of support examples S = {(xl , yl)}Kl=1.

123

 53 Page 4 of 16 M. Sendera et al.

First, all images from the support set are grouped by their
corresponding class values. Next, each of the images xl
from the support set is transformed using encoding net-
work E(·), which creates low-dimensional representations
of the images, E(xl) = zl . The constructed embeddings
are sorted according to class labels and stored in the matrix
ZS = [zπ(1), . . . , zπ(K)]T, where π(·) is the bijective func-
tion, that satisfies yπ(l) ≤ yπ(k) for l ≤ k.

In the next step, we calculate the kernel matrix KS,S , for
vector pairs stored in rows of ZS . To achieve this, we use
the parametrized kernel function k(·, ·), and calculate ki, j
element of matrix KS,S in the following way:

ki, j = k(zπ(i), zπ(j)). (3)

The kernel matrix KS,S represents the extracted informa-
tion about the relations between support examples for a given
task. The matrix KS,S is further reshaped to the vector for-
mat and delivered to the input of the hypernetwork H(·).
The role of the hypernetwork is to provide the parameters
θT of target model T (·) responsible for the classification of
the query object. Thanks to that approach, we can switch
between the parameters for entirely different tasks without
moving via the gradient-controlled trajectory, like in some
reference approaches like MAML.

We base the architecture of the Hypernetwork on a multi-
layer perceptron (MLP). Specifically, theHyperNetwork first
processes the kernel matrix KS,S through an MLP (dubbed
the “neck”), whose output is then processed by “heads”—
separate MLPs dedicated to producing the weights of each
target network layer—see Fig. 4 for a visualization. We sum-
marize the parameters of Hypernetworks and target networks
used in our experiments in Table 8.

The query image x is classified in the following manner.
First, the input image is transformed to low-dimensional fea-
ture representation zx by encoder E(x). Further, the kernel
vector kx,S between the query embedding and sorted support
vectors ZS is calculated in the following way:

kx,S = [k(zx, zπ(1)), . . . , k(zx, zπ(K))]T. (4)

The vector kx,S is further provided on the input of tar-
get model T (·) that is using the parameters θT returned by
hypernetwork H(·). The target model returns the probability
distribution p(y | S, x) for each class considered in the task.

The function π(·) enforces some ordering of the input
delivered to T (·). Practically, any other permutation of the
classes for the input vector kx,S . In such a case, the same per-
mutation should be applied to rows and columns ofKS,S . As
a consequence, the hypernetwork is able to produce the dedi-
cated target parameters for each of the possible permutations.
Although this approach does not guarantee the permutation
invariance for real-life scenarios, thanks to dedicated param-

Fig. 2 Simple 2D example illustrating the application of cosine kernel
for HyperShot. We consider the two support examples from different
classes represented by vectors f1 and f2. For this simple scenario, the
input of hypernetwork is represented simply by the cosine of α, which
is an angle between vectors f1 and f2. We aim at classifying the query
example x represented by a vector fx. Considering our approach, we
deliver to the target network T (·) the cosine values of angles between
first (αx,1) and second (αx,2) support vectors and classify the query
example using theweights θT created by hypernetwork H(·) from cosα

(remaining components on the diagonal ofKS,S are constant for cosine
kernel)

eters for any ordering of the input, it should be satisfied for
major cases.

2.3 Kernel function

One of the key components of our approach is a kernel func-
tion k(·, ·). In this work, we consider the dot product of the
transformed vectors given by:

k(z1, z2) = f(z1)Tf(z2), (5)

where f(·) can be a parametrized transformation function,
represented by MLP model, or simply an identity operation,
f(z) = z. In Euclidean space, this criterion can be expressed
as k(z1, z2) = ||f(z1)|| · ||f(z2)|| cosα, where α is an angle
between vectors f(z1) and f(z2). The main feature of this
function is that it considers the vectors’ norms, which can
be problematic for some tasks that are outliers regarding the
representations created by f(·). Therefore, we consider in our
experiments also the cosine kernel function given by:

kc(z1, z2) = f(z1)Tf(z2)
f(z1) · f(z2) , (6)

that represents the normalized version dot product. Con-
sidering the geometrical representation, kc(z1, z2) can be
expressed as cosα (see the example given by Fig. 2). The
support set is represented by two examples from different
classes, f1 and f2. The target model parameters θT are cre-

123

The general framework for few-shot learning... Page 5 of 16 53

Algorithm 1 HyperShot - training and prediction functions

Require: Training set D = {Tn}Nn=1, and T∗ = {S∗,X∗} test task.
Parameters: θH - parameters , θk - kernel parameters, and θ E - encoder
parameters
Hyperparameters: Ntrain - number of training iterations, Ntune num-
ber of tuning iterations, α- step size.

1: function Train(D, α, Ntrain , θH , θk , θ E)
2: while n ≤ Ntrain do
3: Sample task T = {S,Q} ∼ D
4: Assign support S = {(xm , ym)}Mm=1

5: L = − ∑M
m=1

∑K
k=1 y

k
m log p(ykm | Si , xm , θH , θk , θ E)

6: Update: θ E ← θ E − α∇θEL,
7: θH ← θH − α∇θHL,
8: θk ← θk − α∇θkL
9: n = n + 1
10: end while
11: return θH , θk , θ E
12: end function

13: function Predict(T∗, α, Ntune, θH , θk , θ E)
14: Create tuning task: Tt = {S∗,S∗}
15: Adapt θ̂H , θ̂k , θ̂ E = Train(Tt , α, Ntune, θH , θk , θ E)
16: for each x ∈ X∗ do
17: return argmaxy p(y | S∗, x, θ̂H , θ̂k , θ̂ E)

18: end for
19: end function

ated based only on the cosine value of the angle between
vectors f1 and f2. During the classification stage, the query
example is represented by fx, and the classification is applied
on the cosine values of angles between fx and f1, and fx and
f2, respectively.

2.4 Training and prediction

The training procedure assumes the following parametriza-
tion of the model components. The encoder E := Eθ E is
parametrized by θE , the hypernetwork H = HθH by θH and
the kernel function k by θk . We assume that training set D
is represented by tasks Ti composed of support Si and query
Qi examples. The training is performed by optimizing the
cross-entropy criterion:

L =
∑

Ti∈D
lTi =

∑

Ti∈D

M∑

m=1

K∑

k=1

yki,m − log p(yki,m | Si , xi,m),

(7)

where (xi,n, yi,n) are examples from query set Qi , where
Qi = {(xi,m, yi,m)}Mm=1. The distribution for currently con-
sidered classes p(y | S, x) is returned by target network T
of HyperShot. During the training, we jointly optimize the
parameters θH , θk and θ E , minimizing the L loss.

During the inference stage, we consider the task T∗, com-
posed of a set of labeled support examples S∗ and a set of
unlabeled query examples represented by input values X∗
that the model should classify. We can simply take the prob-

ability values p(y | S∗, x) assuming the given support set S∗
and single query observation x fromX∗, using themodelwith
trained parameters θH , θk , and θ E . However, we observe
that slightly better results are obtained while adapting the
model’s parameters on the considered task. We do not have
access to labels for query examples. Therefore, we imitate the
query set for this task simply by taking support examples and
creating the adaptation task Ti = {S∗,S∗} and updating the
parameters of themodel using several gradient iterations. The
detailed presentation o training and prediction procedures is
provided by Algorithm 1.

2.5 Adaptation to few-shot scenarios

The proposed approach uses the ordering function π(·) that
keeps the consistency between support kernel matrix KS,S

and the vector of kernel values kx,S for query example x.
For few-shot scenarios, each class has more than one rep-
resentative in the support set. As a consequence, there are
various possibilities to order the feature vectors in the sup-
port set inside the considered class. To eliminate this issue,
we follow [8] and propose to apply the aggregation function
to the embeddings z considering the support examples from
the same class. Thanks to this approach, the kernel matrix
is calculated based on the aggregated values of the latent
space of encoding network E , making our approach inde-
pendent of the ordering among the embeddings from the
same class. In experimental studies, we examine the qual-
ity of mean aggregation operation (averaged) against simple
class-wise concatenation of the embeddings (fine-grained) in
ablation studies.

2.6 Extension to Bayesian setting—BayesHyperShot

Finally, we introduce the Bayesian extension of HyperShot,
where the distribution over the parameters is represented by
Gaussian prior:

p(θT) = N (θT | 0, I).

Thanks to that assumption, the target model T serves
probabilistic and can be used as a Bayesian network during
inference.

In order to achieve that, we postulate to use of variational
amortized posterior:

q(θT | Si , θH) = N (θT | μθH (Si), σθH (Si)),

where the Gaussian parametersμ(Si) and σ(Si) are returned
by hypernetwork HθH for a given support set Si , i.e.,
(μ(Si), σ (Si)) = HθH (Si , θH). Compared to the basic
HyperShot model (option 1 Fig. 1) that predicts deterministic

123

 53 Page 6 of 16 M. Sendera et al.

target weight, the proposed extension delivers the distribu-
tion over parameters for a given support set option 2 Fig. 1
).

We train the BayesHyperShot using the procedure given
by Algorithm 1 with the modified training objective, given
by:

LB =
∑

Ti∈D

⎡

⎣ 1

P

P∑

p=1

[
lTi (θ

p
Ti

) − γ K L(q(θ
p
Ti

| Si , θH) | N (0, I))
]
⎤

⎦ ,

where θ1Ti , . . . , θ
P
Ti ∼ q(θT | Si , θH) are the target param-

eters sampled by variational posterior modeled using the
hypernetwork, lTi (θ

p
Ti) is cross-entropy loss function calcu-

lated using target model with weights θ
p
Ti and K L(·, ·) is

Kullback–Leibler divergence between the posterior and stan-
dard Gaussian. In order to stabilize the training procedure,
we use hyperparameter γ that controls the trade-off between
cross-entropy loss and a regularization term. During training,
we apply an annealing scheme [13], for which γ grows from
zero to a fixed constant during training. The final value γmax

is a hyperparameter of the model.
During the inference stage, we sample the set of target

parameters θ1Ti , . . . , θ
P
Ti ∼ q(θT | Si , θH). The final pre-

diction is made simply by averaging among sampled target
models, 1P

∑P
p=1 p(y | S∗, x, θ̂H , θ̂k, θ̂ E , θ

p
Ti).

3 Related work

In recent years, various meta-learning methods [14–16] have
been proposed to tackle the problem of few-shot learning.
Thevariousmeta-learning architectures for few-shot learning
can be roughly categorized into several groups, which we
below divide into non-Bayesian and Bayesian families of
approaches.

3.1 Non-Bayesian approaches

In non-Bayesian few-shot learning, the goal is typically to
learn a set of parameters that can be used to classify new
examples based on a limited amount of training data.

Transfer learning [17] is a simple yet effective base-
line procedure for few-shot learning which consists of
pre-training the neural network and a classifier on all of
the classes available during meta-training. During meta-
validation, the classifier is then fine-tuned to the novel tasks.
In [10], the authors proposed Baseline++, an extension of
this idea that uses cosine distance between the examples.

Metric-based methods meta-learn a deep representation
with a metric in feature space, such that distance between
examples from the support and query set with the same class
have a small distance in such space. Some of the earliest

works exploring this notion are matching networks [18] and
prototypical networks [19], which form prototypes based
on embeddings of the examples from the support set in the
learned feature space and classify the query set based on the
distance to those prototypes. Numerous subsequent works
aim to improve the expressiveness of the prototypes through
various techniques.Oreshkin et al. [20] achieve this by condi-
tioning the network on specific tasks, thusmaking the learned
space task-dependent.Hu [21] transformembeddings of sup-
port and query examples in the feature space to make their
distributions closer to Gaussian. Sung et al. [22] propose
Relation Nets, which learn the metric function instead of
using a fixed one, such as Euclidean or cosine distance.

Optimization-based methods follow the idea of an opti-
mization process over support set within the meta-learning
framework like MetaOptNet [23], Meta-SGD [24] or model-
agnostic meta-learning (MAML) [25] and its extensions
[26–31].Those techniques aim to train generalmodels,which
can adapt their parameters to the support set at hand in a small
number of gradient steps. Similar to such techniques, Hyper-
Shot (the classical realization of our framework) also aims
to produce task-specific models but utilizes a hypernetwork
instead of optimization to achieve that goal.

Hypernetworks-based methods [4] have been proposed as
a solution to few-shot learningproblems in a number ofworks
but have not been researched as widely as the approaches
mentioned above. Multiple works proposed various varia-
tions of hypernetworks that predict a shallow classifier’s
parameters given the support examples [5, 32, 33]. More
recently, [7–9] explored generating all of the parameters of
the target network with a transformer-based hypernetwork,
but found that for larger target networks, it is sufficient to
generate only the parameters of the final classification layer.
A particularly effective approach is to use transformer-based
hypernetworks as set-to-set functions which make the gener-
ated classifiermore discriminative [6].Akey characteristic of
the above approaches is that during inference, the hypernet-
work predicts weights responsible for classifying each class
independently, based solely on the examples of that class
from the support set. This property makes such solutions
agnostic to the number of classes in a task, useful in practical
applications. However, it also means that the hypernetwork
does not take advantage of the inter-class differences in the
task at hand.

In contrast, models in our framework (in particular Hyper-
Shot) exploit those differences by utilizing kernels, which
helps improve its performance.

3.2 Bayesian approaches

There are many few-shot learning methods that utilizes
Bayesian approach to estimate the parameters of a model.
We grouped them in three categories:

123

The general framework for few-shot learning... Page 7 of 16 53

Bayesianoptimization-basedmethods reformulateMAML
as a hierarchical Bayesian model [34–39]. Contrary to this
group of methods, the BayesHyperShot does not utilize a bi-
level optimization scheme, such as MAML. Moreover, we
look at the adaptation of the target network’s weights not at
the optimization process itself.

Probabilistic weight generation methods focus on pre-
dicting a distribution over the parameters suitable for the
given task [40]. Similarly, our BayesHyperShot also predicts
the probability over the parameters of the target network per-
forming the few-shot classification. The key difference is
that in BayesHyperShot, the target network combines such
an approach with a kernel mechanism.

Gaussian processes-based methods [41] possess many
properties useful in few-shot learning, such as natural robust-
ness to the limited amounts of data and the ability to estimate
uncertainty.When combinedwithmeta-learneddeepkernels,
In [1], Gaussian processes were demonstrated to be a suit-
able tool for few-shot regression and classification, dubbed
deep kernel transfer (DKT). The assumption that such a uni-
versal deep kernel has enough data to generalize well to
unseen tasks has been challenged in subsequent works. [3]
introduced a technique of learning dense Gaussian processes
by inducing variables. This approach achieves substantial
performance improvement over the alternative methods.
Similarly, Bayesian version of our model (BayesHyperShot)
also depends on learning a model that estimates task-specific
functions’ parameters. However, BayesHyperShot employs
a hypernetwork instead of a Gaussian process to achieve that
goal.

4 Experiments

In the typical few-shot learning setting, making a valuable
and fair comparison between proposed models is often com-
plicated because of the existence of significant differences
in architectures and implementations of known methods. In
order to limit the influence of the deeper backbone (feature
extractor) architectures, we follow the unified procedure pro-
posed by [10].

In this section, we describe the experimental analysis
and performance of the proposed methods—HyperShot and
BayesHyperShot—in a large variety of few-shot bench-
marks. Specifically, we consider both classification (see
Sect. 4.1) and cross-domain adaptation (see Sect. 4.2) tasks.
Whereas the classification problems are focused on the
most typical few-shot applications, the latter cross-domain
benchmarks check the ability of the models to adapt to out-
of-distribution tasks. We compare the classical realization
of our framework (HyperShot) against the non-Bayesian
approaches and the Bayesian version (BayesHyperShot)
against Bayesian approaches only. We limit our compari-

son to models designed for the standard inductive few-shot
setting. Notably, we exclude models which utilize anything
besides the support set for fitting to the task at hand, such as
methods that are transductive [42] or which utilize additional
unlabeled data [43]. Additionally, in Sect. 4.3 we conduct an
experiment showing the uncertainty estimation viaBayesHy-
perShot. Finally, we perform an ablation study of the possible
adaptation procedures of HyperShot to few-shot scenarios,
as well as architectural choices—presented in Sect. 4.4.

In all of the reported experiments, the tasks consist of
5 classes (5 ways) and 1 or 5 support examples (1 or 5
shots). Unless indicated otherwise, all compared models use
a known and widely utilized backbone consisting of four
convolutional layers (each consisting of a 2D convolution, a
batch-norm layer, and a ReLU nonlinearity; each layer con-
sists of 64 channels) [10] and have been trained from scratch.

We report the performance of two versions of our general
framework—classical (HyperShot) and Bayesian (BayesHy-
perShot). Note that each of them has two variants:

• HyperShot/BayesHyperShot–models generated by the
hypernetworks for each task.

• HyperShot/BayesHyperShot + adaptation–models gen-
erated by hypernetworks adapted to the support examples
of each task for 10 training steps.1

In all cases, we observe a modest performance boost
thanks to adapting the hypernetwork. Comprehensive details
and hyperparameters for each training procedure are reported
in Appendices B and C.

4.1 Classification

Firstly, we consider a classical few-shot learning scenario,
where all the classification tasks (both training and inference)
come from the same dataset. The main aim of the proposed
classification experiments is to find the ability of the few-
shot models to adapt to never-seen tasks from the same data
distribution.

We benchmark the performance of our models and other
methods on two challenging and widely considered datasets:
Caltech-USCD Birds (CUB) [44] and mini-ImageNet [45].
The following experiments are in the most popular setting, 5
ways, consisting of 5 random classes. In all experiments, the
query set of each task consists of 16 samples for each class
(80 in total).
HyperShot We start with a non-Bayesian perspective and
compare HyperShot to a vast pool of state-of-the-art algo-

1 In the case of the adapted hypernetworks, we tune a copy of the
hypernetwork on the support set separately for each validation task.
This way, we ensure that our model does not take unfair advantage of
the validation tasks.

123

 53 Page 8 of 16 M. Sendera et al.

Table 1 Classification accuracy
results for the non-Bayesian
approaches

CUB Mini-ImageNet
Method One-shot Five-shot One-shot Five-shot

Feature transfer [17] 46.19 ± 0.64 68.40 ± 0.79 39.51 ± 0.23 60.51 ± 0.55

Baseline++ [10] 61.75 ± 0.95 78.51 ± 0.59 47.15 ± 0.49 66.18 ± 0.18

ProtoNet [19] 52.52 ± 1.90 75.93 ± 0.46 44.19 ± 1.30 64.07 ± 0.65

RelationNet [22] 62.52 ± 0.34 78.22 ± 0.07 48.76 ± 0.17 64.20 ± 0.28

FO-MAML [26] – – 48.70 ± 1.84 63.11 ± 0.92

Reptile [26] – – 49.97 ± 0.32 65.99 ± 0.58

FEAT [6] 68.87 ± 0.22 82.90 ± 0.15 55.15 ± 0.20 71.61 ± 0.16

MAML [25] 56.11 ± 0.69 74.84 ± 0.62 45.39 ± 0.49 61.58 ± 0.53

MAML++ [27] – – 52.15 ± 0.26 68.32 ± 0.44

iMAML-HF [30] – – 49.30 ± 1.88 –

SignMAML [28] – – 42.90 ± 1.50 60.70 ± 0.70

Unicorn-MAML [29] – – 54.89 –

Meta-SGD [24] – – 50.47 ± 1.87 64.03 ± 0.94

PAMELA [46] – – 53.50 ± 0.89 70.51 ± 0.67

HyperMAML [31] 66.11 ± 0.28 78.89 ± 0.19 51.84 ± 0.57 66.29 ± 0.43

HyperShot [47] 65.27 ± 0.24 79.80 ± 0.16 52.42 ± 0.46 68.78 ± 0.29

HyperShot + adaptation [47] 66.13 ± 0.26 80.07 ± 0.22 53.18 ± 0.45 69.62 ± 0.20

We consider the inference tasks on CUB and mini-ImageNet datasets in the one-shot and five-shot settings.
The highest results are in bold and the second-highest in italic (the larger, the better)

rithms, including the canonical methods (like matching
networks [18], prototypical networks [19], MAML [25], and
its extensions) as well as the recently popular: Unicorn-
MAML [29] PAMELA [46].

We consider the more challenging one-shot classification
task, as well as the five-shot setting and report the results in
Table 1.

In the one-shot scenario, HyperShot achieves the second-
best accuracy in the CUB dataset with adapting procedure
(66.13% with adapting, 65.27% without) and performs bet-
ter than any other model, except for FEAT [6] (68.87%).
In the mini-ImageNet dataset, our approach is among the
top approaches (53.18%), slightly losing with FEAT [6]
(55.15%). Considering the five-shot scenario, HyperShot is
the second-best model achieving 80.07% in the CUB dataset
and 69.62% in the mini-ImageNet, whereas the best model,
FEAT [6], achieves 82.90% and 71.61% on the mentioned
datasets, respectively.

The obtained results clearly show thatHyperShot achieves
results comparable to state-of-the-art non-Bayesian models
on the standard set of few-shot classification settings.
BayesHyperShot Then, we compare the Bayesian version of
our general framework—BayesHyperShot against the state-
of-the-art Bayesian methods. These Bayesian models are
mostly built upon the Gaussian Processes framework (like
DKT [1]). We consider the more challenging one-shot clas-
sification task, as well as the five-shot setting and report the
results in Table 2. In the one-shot scenario, BayesHyperShot
achieves the third-best accuracy in the CUB dataset despite

the adapting procedure (66.30% in both cases) and performs
similarly to the best model—BayesHMAML [36] (respec-
tively, 66.92% with adaptation and 66.57% without). In the
mini-ImageNet dataset, our Bayesian approach is among the
topmethods (51.11%), slightly losingwith BayesianMAML
[34] (53.80%) and BayesHMAML (52.69%).

Considering the five-shot scenario, BayesHyperShot is the
bestmodel achieving 80.60% in theCUBdataset and 67.21%
in the mini-ImageNet, whereas the most significant competi-
tor, BayesHMAML [36] achieves 80.47% and 68.24% on
the mentioned datasets, respectively.

According to the results, the performance of BayesHy-
perShot is comparable to or better than other state-of-the-art
Bayesian models on the standard set of few-shot classifica-
tion settings.

4.2 Cross-domain adaptation

In the cross-domain adaptation setting, the models are eval-
uated on tasks coming from a different distribution than the
one they had been trained on. Therefore, such a task is more
challenging than standard classification and is a plausible
indicator of amodel’s ability to generalize. In order to bench-
mark the performance of our framework in cross-domain
adaptation, wemerge data from two datasets so that the train-
ing fold is drawn from the first dataset and validation and
testing fold—from another one. Specifically, we test Hyper-
Shot on two cross-domain classification tasks:

123

The general framework for few-shot learning... Page 9 of 16 53

Table 2 Classification accuracy results for the Bayesian approaches

CUB Mini-ImageNet
Method One-shot Five-shot One-shot Five-shot

LLAMA [35] – – 49.40 ± 1.83 –

VERSA [40] – – 48.53 ± 1.84 67.37 ± 0.86

Amortized VI [40] – – 44.13 ± 1.78 55.68 ± 0.91

Meta-Mixture [39] – – 49.60 ± 1.50 64.60 ± 0.92

DKT + BNCosSim [1] 62.96 ± 0.62 77.76 ± 0.62 49.73 ± 0.07 64.00 ± 0.09

VAMPIRE [38] – – 51.54 ± 0.74 64.31 ± 0.74

ABML [37] 49.57 ± 0.42 68.94 ± 0.16 45.00 ± 0.60 –

Bayesian MAML [34] 55.93 ± 0.71 53.80 ± 1.46 64.23 ± 0.69

BayesHMAML [36] 66.57 ± 0.47 79.86 ± 0.31 52.54 ± 0.46 67.39 ± 0.35

BayesHMAML + adaptation [36] 66.92 ± 0.38 80.47 ± 0.38 52.69 ± 0.38 68.24 ± 0.47

BayesHyperShot 66.30 ± 0.42 80.43 ± 0.34 50.81 ± 0.33 66.51 ± 0.71

BayesHyperShot + adaptation 66.30 ± 0.42 80.60 ± 0.37 51.11 ± 0.35 67.21 ± 0.72

We consider the inference tasks on CUB and mini-ImageNet datasets in the one-shot and five-shot settings. The highest results are in bold and the
second-highest in italic (the larger, the better)

Table 3 Classification accuracy
results for the non-Bayesian
approaches

Omniglot→EMNIST mini-ImageNet→CUB
Method One-shot Five-shot One-shot Five-shot

Feature transfer [17] 64.22 ± 1.24 86.10 ± 0.84 32.77 ± 0.35 50.34 ± 0.27

Baseline++ [10] 56.84 ± 0.91 80.01 ± 0.92 39.19 ± 0.12 57.31 ± 0.11

ProtoNet [19] 72.04 ± 0.82 87.22 ± 1.01 33.27 ± 1.09 52.16 ± 0.17

RelationNet [22] 75.62 ± 1.00 87.84 ± 0.27 37.13 ± 0.20 51.76 ± 1.48

MAML [25] 74.81 ± 0.25 83.54 ± 1.79 34.01 ± 1.25 48.83 ± 0.62

HyperMAML [31] 79.07 ± 1.09 89.22 ± 0.78 36.32 ± 0.61 49.43 ± 0.14

HyperShot [47] 78.06 ± 0.24 89.04 ± 0.18 39.09 ± 0.28 57.77 ± 0.33

HyperShot + adaptation [47] 80.65 ± 0.30 90.81 ± 0.16 40.03 ± 0.41 58.86 ± 0.38

We consider the inference tasks on cross-domain tasks (Omniglot→EMNIST and mini-ImageNet→CUB)
datasets in the one-shot and five-shot setting. The highest results are bold and second-highest in italic (the
larger, the better)

mini-ImageNet → CUB (model trained on mini-ImageNet
and evaluated on CUB) and Omniglot → EMNIST in
the one-shot and five-shot settings. Similarly to the pre-
vious experiment, we treated Bayesian and non-Bayesian
approaches separately.
HyperShot We start with the non-Bayesian approaches and
report the results in Table 3. In every setting, HyperShot
achieves the highest accuracy and, as such, is much better
than any other non-Bayesian approach. We note that just
like in the case of regular classification, adapting the hyper-
network on the individual tasks consistently improves its
performance.
BayesHyperShot The results among the Bayesian methods
are reported in Table 4. We observer that in every setting
BayesHyperShot is comparable but slightly worse than the
best models. The difference is usually between 1 and 3 per-
cent points, making the BayesHyperShot among three or
four best Bayesian methods. It is worth noting that in this

setting, performing the adaptation procedure on BayesHy-
perShot could result in worse performance than not adapting
at all.

4.3 Uncertainty quantification

The most important feature of the Bayesian realization of
our general framework is that we have the full insight into
the model’s uncertainty. In fact, due to the BayesHyper-
Shot’s probabilistic construction, we can quantify the level
of model’s certainty and answer the question if the model is
sure about the specific prediction. Moreover, this property,
enable us to say if the given sample comes from the known
distribution—the distribution related to the current few-shot
task or if it is out-of-distribution example.

In the following experiment, we present the uncertainty
quantification of the BayesHyperShot model. We consider a

123

 53 Page 10 of 16 M. Sendera et al.

Table 4 Classification accuracy results for the Bayesian approaches

Omniglot→EMNIST Mini-ImageNet→CUB
Method One-shot Five-shot One-shot Five-shot

DKT [1] 75.40 ± 1.10 90.30 ± 0.49 40.14 ± 0.18 56.40 ± 1.34

OVE PG GP + Cosine (ML) [48] 68.43 ± 0.67 86.22 ± 0.20 39.66 ± 0.18 55.71 ± 0.31

OVE PG GP + Cosine (PL) [48] 77.00 ± 0.50 87.52 ± 0.19 37.49 ± 0.11 57.23 ± 0.31

Bayesian MAML [34] 63.94 ± 0.47 65.26 ± 0.30 33.52 ± 0.36 51.35 ± 0.16

BayesHMAML [36] 80.95 ± 0.46 89.21 ± 0.27 36.90 ± 0.34 49.24 ± 0.38

BayesHMAML + adaptation [36] 81.05 ± 0.47 89.76 ± 0.26 37.23 ± 0.44 50.79 ± 0.59

BayesHyperShot 79.71 ± 0.23 89.54 ± 0.25 37.85 ± 0.22 51.37 ± 0.69

BayesHyperShot + adaptation 79.65 ± 0.33 89.70 ± 0.12 37.02 ± 0.36 51.62 ± 0.72

We consider the inference tasks on cross-domain tasks (Omniglot→EMNIST and mini-ImageNet→CUB) datasets in the one-shot and five-shot
setting. The highest results are bold and second-highest in italic (the larger, the better)

Fig. 3 We visualize box plots of distributions of activations produced
by the sampled models for the four different sets of support/query/out-
of-distribution images. As we can see, BayesHyperShot always yields
similar predictions for elements from both the support and query sets.

On the other hand, we observe a high variance of activations when pro-
cessing out-of-distribution images, which indicates the high uncertainty
of the model in such cases

model trained on the specific dataset and setting (here, it was
Omniglot → EMNIST). Then, we have taken three different

types of samples to quantify the level of uncertainty of our
model’s predictions. Specifically, we test the images from:

123

The general framework for few-shot learning... Page 11 of 16 53

Table 5 Classification accuracy
results for HyperShot in the
five-shot setting with two
variants of the support
embeddings aggregation

Omni→EMNIST CUB Mini-ImageNet

HyperShot (fine-grained) 87.55 ± 0.19 78.05 ± 0.20 67.07 ± 0.47

HyperShot (averaged) 89.04 ± 0.18 79.80 ± 0.16 69.62 ± 0.28

The performance measured on Omniglot→EMNIST, CUB, and mini-ImageNet→CUB tasks. The larger,
the better

• Support set;
• Query set;
• Coming from the same dataset, but with class not present
in the support set (out of distribution).

We observe that the examples coming from the support
set or query set are classified with very high certainty. The
model classifies such images as from a given class (label 1)
or not (label 0). Note that label 1 appears for only one class,
and label 0 for the rest.

However, the most important is the result obtained for the
samples of classes not present in the support set. We observe
that themodel is uncertain about the classification—it usually
gives nonzero probabilities for each of the possible classes.
The present increase in the entropy of probabilities allows
us to classify such examples as out-of-distribution samples.
The results are presented in Fig. 3.

4.4 Ablation study

In order to investigate different architectural choices in
adapting our framework to the specific task, we provide a
comprehensive ablation study. In this ablation study, we con-
sider the HyperShot model only for better clarity and apply
our findings when selecting the parameters of BayesHyper-
Shot. We focused mostly on the four major components of
the HyperShot design, i.e., the method of processing multi-
ple support examples per class, the number of neck layers,
the number of head layers and the size of the hidden layers,
presented in Tables 5, 6 and 7. In the case of the experiments
focusing on aggregating the number of support examples in
the five-way five-shot setting, we perform the benchmarks on
CUB and mini-ImageNet, using a four-layer convolutional
backbone. In the remaining experiments, we tested Hyper-
Shot on theCUBdataset in the five-way one-shot settingwith
ResNet-10 backbone.
Aggregating support examples in the five-shot setting

In HyperShot, the hypernetwork generates the weights
of the information about the support examples, expressed
through the support–support kernel matrix. In the case of
five-way one-shot classification, each task consists of 5 sup-
port examples, and therefore, the size of the kernel matrix is
(5×5), and the input size of the hypernetwork is 25.However,
with a growing number of the support examples, increasing

the size of the kernel matrix would be impractical and could
lead to overparametrization of the hypernetwork.

Since hypernetworks are known to be sensitive to large
input sizes [4], we consider a way to maintain a constant
input size of HyperShot, independent of the number of sup-
port examples of each class by using means of support
embeddings of each class for kernel calculation, instead of
individual embeddings. Prior works suggest that when there
are multiple examples of a class, the averaged embedding of
such class represents it sufficiently in the embedding space
[19].

To verify this approach, in the five-shot setting, we train
HyperShot with two variants of calculating the inputs to the
kernel matrix:

• Fine-grained—utilizing a hypernetwork that takes as an
input a kernel matrix between each of the embeddings of
the individual support examples. This kernel matrix has
a shape of (25 × 25).

• Averaged—utilizing a hypernetwork where the kernel
matrix is calculated between the means of embeddings
of each class. The kernel matrix in this approach has a
shape of (5 × 5).

We benchmark both variants of HyperShot on the five-
shot classification task on CUB and mini-ImageNet datasets,
as well as the task of cross-domain Omniglot → EMNIST
classification.We report the accuracies inTable 5. It is evident
that averaging the embeddings before calculating the kernel
matrix yields superior results.
Hidden size: Firstly, as presented in Table 6, we compare
different sizes of hidden layers. The results agree with the
intuition that the wider the layers, the better the results. How-
ever, we also observe that some hidden sizes (e.g., 8188)
could be too large to learn effectively. Because of that, we
propose to use hidden sizes of 2048 or 4096 as the standard.
Neck and head layers: Then, we compared the influence of
the number of neck layers and head layers of HyperShot for
the achieved results, as presented in Table 7. We observed
that the most critical is the number of head layers—specific
for each target network’s layers. Because of that, we propose
using the standard number of 3 head layers and using various
neck layers—tuning them to the specific task.

123

 53 Page 12 of 16 M. Sendera et al.

Table 6 Comparison between
various hidden sizes in the
HyperShot’s layers

Hidden size Accuracy

256 70.16 ± 0.45

512 71.70 ± 0.46

1024 70.89 ± 0.62

2048 72.43 ± 0.59

4096 71.99 ± 0.70

8188 72.05 ± 0.33

The classification accuracy
results on CUB task and five-
way one-shot setting. The larger,
the better

Table 7 Comparison between various HyperShot’s architectures (dif-
ferent number of neck layers and head layers)

Neck layers Head layers Accuracy

1 3 73.00 ± 0.55

2 1 71.53 ± 0.33

2 2 68.06 ± 0.59

2 3 71.99 ± 0.70

3 3 70.81 ± 0.39

The classification accuracy results on CUB task and five-way one-shot
setting. The larger, the better

5 Conclusion

In this work, we introduced a novel general framework that
uses kernel methods combined with hypernetworks. Our
method directly relies on the kernel-based representations of
the support examples and a hypernetwork paradigm to create
the query set’s classificationmodule.We concentrate on rela-
tions between embeddings of the support examples instead
of direct feature values. Thanks to this approach, models that
realize our framework can adapt to highly different tasks.

Specifically, in this paper, we propose a classical (Hyper-
Shot) and a Bayesian (BayesHyperShot) realization of our
framework. We evaluate both models on various one-shot
and few-shot image classification tasks. Both HyperShot and
BayesHyperShot demonstrate high accuracy in all tasks, per-
forming comparably or better to state-of-the-art solutions.
Moreover, both models have a strong ability to generalize,
as evidenced by their performances on cross-domain classi-
fication tasks.

Finally, we demonstrate the ability of the Bayesian ver-
sion of our framework to properly quantify the uncertainty of
the model’s prediction. As such, BayesHyperShot is able to
recognize an out-of-distribution samples and return the level
of certainty of the classification.

Acknowledgements This research was funded in part by National Sci-
ence Centre, Poland, 2022/45/N/ST6/03374. The work of M. Sendera
was supported by the National Centre of Science (Poland) Grant No.
2022/45/N/ST6/03374. The work of J. Tabor was supported by the

National Centre of Science (Poland) Grant No. 2019/33/B/ST6/00894.
The work of P. Spurek and M. Przewiȩźlikowski was supported by the
National Centre of Science (Poland) Grant No. 2021/43/B/ST6/01456.
The work of M. Ziȩba was supported by the National Centre of Science
(Poland) Grant No. 2020/37/B/ST6/03463.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A. Comparison to the original
HyperShot publication

This work is an extension of “HyperShot: Few-Shot Learn-
ing by Kernel Hypernetworks,” originally published at the
WACV 2023 Conference [47]. In this section, we address
the points raised by the reviewers of the original publication,
and outline which parts of this work are extensions of the
original publication.

A.1 Addressing theWACV 2023 reviews

Hypernetwork architecture The reviewers raised a concern
about a lack of a detailed description of our Hypernetwork
architecture. While the general architecture had been visual-
ized as a part of Fig. 4, we also expanded Sect. 2.2 to include
a more detailed description of the architecture.
Comparisons to related work The reviewers suggested sev-
eral additional works towhichwe could compareHyperShot.
While we added several of them to the tables reported in our
experiments [49, 50], we chose to omit others [42, 43, 51] as
the settings of the few-shot problems they solve differ from
the standard inductive few-shot classification.
Application to other tasks besides image classification An
important point raised by the reviewers was the lack of
experiments on different problems besides few-shot image
classification. While we acknowledge that there are various
different computer vision problems for which data-efficient
solutions would be desirable, we felt that such experiments
are out of the scope of our work, as HyperShot and BayesHy-
perShot were tailor-made for the classification problem,
which is by far the most popular few-shot benchmark. An
application of kernel Hypernetworks to other few-shot prob-
lems could be an interesting point of future work.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

The general framework for few-shot learning... Page 13 of 16 53

Fig. 4 A detailed outline of the architecture of HyperShot, with the denoted flow of parameters generated by the hypernetwork heads

A.2 Extensions compared to theWACV 2023 paper

The most important difference of this work compared to
the WACV 2023 publications is the generalization of the
previously introduced HyperShot method to a Bayesian
framework, resulting in a model which we call BayesHyper-
Shot. We conduct a series of experiments on the HyperShot
model and show that apart from learning from small amounts
of data, it is capable of modeling uncertainty of predictions.

Appendix B. Training details

In this section,we present in detail the architecture and hyper-
parameters of HyperShot.
Architecture overview

From a high-level perspective, the architecture of Hyper-
Shot consists of three parts:

• Backbone—a convolutional feature extractor.
• Neck—a sequence of zero ormore fully connected layers
with ReLU nonlinearities in between.

• Heads—for each parameter of the target network, a
sequence of one or more linear layers, which predicts
the values of that parameter. All heads of HyperShot have

identical lengths, hidden sizes and input sizes that depend
on the generated parameter’s size.

The target network generated by both HyperShot and
BayesHyperShot reuses its backbone. We outline this archi-
tecture in Fig. 4.
Backbone For each experiment described in the main body
of this work, we follow [1] in using a shallow backbone (fea-
ture extractor) for HyperShot as well as referential models.
This backbone consists of four convolutional layers, each
consisting of a convolution, batch normalization and ReLU
nonlinearity. Apart from the first convolution, which has
the input size equal to the number of image channels, each
convolution has an input and output size of 64. We apply
max-pooling between each convolution, which decreases by
half the resolution of the processed feature maps. The out-
put of the backbone is flattened so that the further layers can
process it.
DatasetsFor the purpose ofmaking a fair comparison,we fol-
low the procedure presented in, e.g., [1, 10]. In the case of the
CUB dataset [44], we split the whole amount of 200 classes
(11788 images) across train, validation and test consisting of
100, 50 and 50 classes, respectively [10]. Themini-ImageNet
dataset [45] is created as the subset of ImageNet [52], which
consists of 100 different classes represented by 600 images

123

 53 Page 14 of 16 M. Sendera et al.

Table 8 Hyperparameters

Hyperparameter CUB Mini-ImageNet Mini-ImageNet → CUB Omniglot → EMNIST

Kernel function Cosine similarity Cosine similarity Cosine similarity Cosine similarity

Learning rate 0.001 0.001 0.001 0.001

Hypernetwork’s head layers no 3 3 3 2

Hypernetwork’s neck layers no 2 2 2 1

Hypernetwork layers’ hidden dim 4096 4096 4096 512

Support embeddings aggregation Averaged Averaged Averaged Averaged

Task set size 1 1 1 1

Target network layers no 1 1 1 2

Target network activation ReLU ReLU ReLU ReLU

Adaptation epochs (if used) 10 10 10 10

Adaptation learning rate 0.0001 0.0001 0.0001 0.0001

Optimizer Adam Adam Adam Adam

Epochs no 10000 10000 10000 2000

for each one.We followed the standard procedure and divided
the mini-ImageNet into 64 classes for the train, 16 for the
validation set and the remaining 20 classes for the test. The
well-known Omniglot dataset [53] is a collection of char-
acters from 50 different languages. The Omniglot contains
1623 white and black characters in total. We utilize the stan-
dard procedure to include the examples rotated by 90◦ and
increase the size of the dataset to 6492, fromwhich 4114were
further used in training. Finally, the EMNIST dataset [54]
collects the characters and digits coming from the English
alphabet, which we split into 31 classes for the test and 31
for validation.
Data augmentation We apply data augmentation during
model training in all experiments, except Omniglot →
EMNIST cross-domain classification. The augmentation
pipeline is identical to the one used by [1] and consists of
the random crop, horizontal flip and color jitter steps.

Appendix C. Hyperparameters

Below, we outline the hyperparameters of architecture and
training procedures used in each experiment.

We use cosine similarity as a kernel function and averaged
support embeddings aggregation in all experiments. Hyper-
Shot is trained with the learning rate of 0.001 with the Adam
optimizer [55] and no learning rate scheduler. Task-specific
adaptation is also performed with the Adam optimizer and
the learning rate of 0.0001.

For the natural image tasks (CUB, mini-ImageNet, mini-
ImageNet → CUB classification), we use a hypernetwork
with the neck length of 2, head lengths of 3 and a hidden size
of 4096, which produce a target network with a single fully
connected layer. We perform training for 10000 epochs.

For the simpler Omniglot → EMNIST character classifi-
cation task, we train a smaller hypernetwork with the neck
length of 1, head lengths of 2 and the hidden size of 512,
which produces a target network with two fully connected
layers and a hidden size of 128. We train this hypernetwork
for a shorter number of epochs, namely 2000.

We summarize all the above hyperparameters in Table 8.

Appendix D. Source code

The source code required for running the experiments is
available at https://github.com/gmum/few-shot-hypernets-
public.

References

1. Patacchiola, M., Turner, J., Crowley, E.J., O’Boyle, M., Storkey,
A.J.: Bayesian meta-learning for the few-shot setting via deep ker-
nels. Adv. Neural Inf. Process. Syst. 33, 16108–16118 (2020)

2. Sendera, M., Tabor, J., Nowak, A., Bedychaj, A., Patacchiola, M.,
Trzcinski, T., Spurek, P., Zieba, M.: Non-gaussian gaussian pro-
cesses for few-shot regression. Adv. Neural Inf. Process. Syst. 34,
10285–10298 (2021)

3. Wang, Z., Miao, Z., Zhen, X., Qiu, Q.: Learning to learn dense
gaussian processes for few-shot learning. Adv. Neural Inf. Process.
Syst. 34, 13230–13241 (2021)

4. Ha, D., Dai, A.M., Le, Q.V.: Hypernetworks. In: International Con-
ference on Learning Representations (2017). https://openreview.
net/forum?id=rkpACe1lx

5. Qiao, S., Liu, C., Shen, W., Yuille, A.L.: Few-shot image recogni-
tion by predicting parameters from activations. In: Proceedings of
the IEEEConference onComputerVision and PatternRecognition,
pp. 7229–7238 (2018)

6. Ye, H.-J., Hu, H., Zhan, D.-C., Sha, F.: Few-shot learning via
embedding adaptation with set-to-set functions. In: IEEE/CVF

123

https://github.com/gmum/few-shot-hypernets-public
https://github.com/gmum/few-shot-hypernets-public
https://openreview.net/forum?id=rkpACe1lx
https://openreview.net/forum?id=rkpACe1lx

The general framework for few-shot learning... Page 15 of 16 53

Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 8808–8817 (2020)

7. Zhmoginov, A., Sandler, M., Vladymyrov, M.: Hypertransformer:
Model generation for supervised and semi-supervised few-shot
learning. In: International Conference on Machine Learning, pp.
27075–27098. PMLR (2022)

8. Zhu, Z., Wang, L., Guo, S., Wu, G.: A Closer Look at
Few-Shot Video Classification: A New Baseline and Bench-
mark. arXiv (2021). https://doi.org/10.48550/ARXIV.2110.12358.
arXiv:2110.12358

9. Perrett, T., Masullo, A., Burghardt, T., Mirmehdi, M., Damen, D.:
Temporal-relational crosstransformers for few-shot action recog-
nition. In: 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 475–484 (2021). https://doi.org/
10.1109/CVPR46437.2021.00054

10. Chen, W.-Y., Liu, Y.-C., Kira, Z., Wang, Y.-C.F., Huang, J.-B.:
A closer look at few-shot classification. In: International Confer-
ence on Learning Representations (2019). https://openreview.net/
forum?id=HkxLXnAcFQ

11. Wang, Y., Yao, Q., Kwok, J.T., Ni, L.M.: Generalizing from a few
examples: A survey on few-shot learning. ACM Comput. Surv.
(csur) 53(3), 1–34 (2020)

12. Sheikh, A.-S., Rasul, K., Merentitis, A., Bergmann, U.: Stochas-
tic maximum likelihood optimization via hypernetworks. arXiv
preprint arXiv:1712.01141 (2017)

13. Bowman, S.R., Vilnis, L., Vinyals, O., Dai, A.M., Jozefowicz, R.,
Bengio, S.: Generating sentences from a continuous space. In:
20th SIGNLL Conference on Computational Natural Language
Learning, CoNLL 2016, pp. 10–21. Association for Computational
Linguistics (ACL) (2016)

14. Bengio, S., Bengio, Y., Cloutier, J., Gescei, J.: On the optimiza-
tion of a synaptic learning rule. In: Optimality in Biological and
Artificial Networks, pp. 281–303 (2013)

15. Hospedales, T., Antoniou, A., Micaelli, P., Storkey, A.: Meta-
learning in neural networks: A survey. IEEE Trans. Pattern Anal.
Mach. Intell. 44(9), 5149–5169 (2021)

16. Schmidhuber, J.: Learning to control fast-weight memories: an
alternative to dynamic recurrent networks. Neural Comput. 4(1),
131–139 (1992). https://doi.org/10.1162/neco.1992.4.1.131

17. Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H.,
He, Q.: A comprehensive survey on transfer learning. Proc. IEEE
(2020). https://doi.org/10.1109/JPROC.2020.3004555

18. Vinyals,O., Blundell, C., Lillicrap, T.,Wierstra,D., et al.:Matching
networks for one shot learning. Adv. Neural. Inf. Process. Syst. 29,
3630–3638 (2016)

19. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-
shot learning. Adv. Neural Inf. Process. Syst. 30 (2017)

20. Oreshkin, B., Rodríguez López, P., Lacoste, A.: Tadam: Task
dependent adaptivemetric for improved few-shot learning. In: Ben-
gio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi,
N., Garnett, R. (eds.) Advances in Neural Information Processing
Systems, vol. 31 (2018). https://proceedings.neurips.cc/paper_
files/paper/2018/file/66808e327dc79d135ba18e051673d906-
Paper.pdf

21. Hu, Y., Gripon, V., Pateux, S.: Leveraging the feature distri-
bution in transfer-based few-shot learning. In: Artificial Neural
Networks andMachine Learning–ICANN2021: 30th International
Conference on Artificial Neural Networks, Bratislava, Slovakia,
September 14–17, 2021, Proceedings, Part II 30, pp. 487–499.
Springer (2021)

22. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales,
T.M.:Learning to compare:Relation network for few-shot learning.
In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1199–1208 (2018)

23. Lee, K., Maji, S., Ravichandran, A., Soatto, S.: Meta-learning
with differentiable convex optimization. In: Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 10657–10665 (2019)

24. Li, Z., Zhou, F., Chen, F., Li, H.: Meta-sgd: Learning to learn
quickly for few-shot learning. arXiv preprint arXiv:1707.09835
(2017)

25. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for
fast adaptation of deep networks. In: International Conference on
Machine Learning, pp. 1126–1135. PMLR (2017)

26. Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning
algorithms. arXiv preprint arXiv:1803.02999 (2018)

27. Antoniou, A., Edwards, H., Storkey, A.: How to train yourMAML.
In: International Conference on Learning Representations (2019).
https://openreview.net/forum?id=HJGven05Y7

28. Fan, C., Ram, P., Liu, S.: Sign-maml: Efficient model-agnostic
meta-learning by signsgd. In: 5th Workshop on Meta-Learning at
NeurIPS 2021 (2021)

29. Ye, H.-J., Chao, W.-L.: How to train your MAML to excel in few-
shot classification. In: InternationalConference onLearningRepre-
sentations (2022). https://openreview.net/forum?id=49h_IkpJtaE

30. Rajeswaran, A., Finn, C., Kakade, S.M., Levine, S.: Meta-learning
with implicit gradients. Adv. Neural. Inf. Process. Syst. 32, 113–
124 (2019)

31. Przewięźlikowski, M., Przybysz, P., Tabor, J., Zięba, M., Spurek,
P.: Hypermaml: Few-shot adaptation of deep models with hyper-
networks. arXiv preprint arXiv:2205.15745 (2022)

32. Bauer, M., Rojas-Carulla, M., Świątkowski, J.B., Schölkopf, B.,
Turner, R.E.: Discriminative k-shot learning using probabilistic
models. arXiv preprint arXiv:1706.00326 (2017)

33. Garnelo, M., Rosenbaum, D., Maddison, C., Ramalho, T., Saxton,
D., Shanahan, M., Teh, Y.W., Rezende, D., Eslami, S.M.A.: Con-
ditional neural processes. In: Dy, J., Krause, A. (eds.) Proceedings
of the 35th International Conference on Machine Learning. Pro-
ceedings of Machine Learning Research, vol. 80, pp. 1704–1713
(2018)

34. Yoon, J., Kim, T., Dia, O., Kim, S., Bengio, Y., Ahn, S.: Bayesian
model-agnostic meta-learning. In: Proceedings of the 32nd Inter-
national Conference on Neural Information Processing Systems,
pp. 7343–7353 (2018)

35. Grant, E., Finn, C., Levine, S., Darrell, T., Griffiths, T.: Recasting
gradient-based meta-learning as hierarchical bayes. In: Interna-
tional Conference on Learning Representations (2018)

36. Borycki, P., Kubacki, P., Przewięźlikowski, M., Kuśmierczyk, T.,
Tabor, J., Spurek, P.: Hypernetwork approach to Bayesian maml.
arXiv preprint arXiv:2210.02796 (2022)

37. Ravi, S., Beatson, A.: AmortizedBayesianmeta-learning. In: Inter-
national Conference on Learning Representations (2018)

38. Nguyen, C., Do, T.-T., Carneiro, G.: Uncertainty inmodel-agnostic
meta-learning using variational inference. In: Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer
Vision, pp. 3090–3100 (2020)

39. Jerfel, G., Grant, E., Griffiths, T.L., Heller, K.: Reconciling meta-
learning and continual learning with online mixtures of tasks. In:
Proceedings of the 33rd International Conference on Neural Infor-
mation Processing Systems, pp. 9122–9133 (2019)

40. Gordon, J., Bronskill, J., Bauer, M., Nowozin, S., Turner, R.: Meta-
learning probabilistic inference for prediction. In: International
Conference on Learning Representations (2018)

41. Rasmussen, C.E.: Gaussian processes in machine learning. In:
Summer School on Machine Learning, pp. 63–71. Springer (2003)

42. Shen, X., Xiao, Y., Hu, S.X., Sbai, O., Aubry, M.: Re-ranking
for image retrieval and transductive few-shot classification. In:
Advances in Neural Information Processing Systems, vol. 34, pp.
25932–25943 (2021)

43. Gidaris, S., Bursuc, A., Komodakis, N., Pérez, P., Cord, M.: Boost-
ing few-shot visual learning with self-supervision. In: Proceedings
of the IEEE International Conference on Computer Vision (2019)

123

https://doi.org/10.48550/ARXIV.2110.12358
http://arxiv.org/abs/2110.12358
https://doi.org/10.1109/CVPR46437.2021.00054
https://doi.org/10.1109/CVPR46437.2021.00054
https://openreview.net/forum?id=HkxLXnAcFQ
https://openreview.net/forum?id=HkxLXnAcFQ
http://arxiv.org/abs/1712.01141
https://doi.org/10.1162/neco.1992.4.1.131
https://doi.org/10.1109/JPROC.2020.3004555
https://proceedings.neurips.cc/paper_files/paper/2018/file/66808e327dc79d135ba18e051673d906-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/66808e327dc79d135ba18e051673d906-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/66808e327dc79d135ba18e051673d906-Paper.pdf
http://arxiv.org/abs/1707.09835
http://arxiv.org/abs/1803.02999
https://openreview.net/forum?id=HJGven05Y7
https://openreview.net/forum?id=49h_IkpJtaE
http://arxiv.org/abs/2205.15745
http://arxiv.org/abs/1706.00326
http://arxiv.org/abs/2210.02796

 53 Page 16 of 16 M. Sendera et al.

44. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The
Caltech-UCSD Birds-200-2011 Dataset. Technical Report CNS-
TR-2011-001, California Institute of Technology (2011)

45. Ravi, S., Larochelle, H.: Optimization as a model for few-shot
learning. In: ICLR (2017)

46. Rajasegaran, J., Khan, S.H., Hayat, M., Khan, F.S., Shah, M.:
Meta-learning the learning trends shared across tasks. CoRR
abs/2010.09291 (2020)

47. Sendera, M., Przewięźlikowski, M., Karanowski, K., Zięba, M.,
Tabor, J., Spurek, P.:Hypershot: Few-shot learning bykernel hyper-
networks. In: Proceedings of the IEEE/CVFWinter Conference on
Applications of Computer Vision, pp. 2469–2478 (2023)

48. Snell, J., Zemel, R.: Bayesian few-shot classification with one-
vs-each pólya-gamma augmented gaussian processes. In: Interna-
tional Conference on Learning Representations (2020)

49. Tian, Y., Wang, Y., Krishnan, D., Tenenbaum, J.B., Isola, P.:
Rethinking few-shot image classification: a good embedding is
all you need? In: Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part
XIV 16, pp. 266–282. Springer (2020)

50. Rizve, M.N., Khan, S., Khan, F.S., Shah, M.: Exploring comple-
mentary strengths of invariant and equivariant representations for
few-shot learning. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 10836–
10846 (2021)

51. Jian, Y., Torresani, L.: Label hallucination for few-shot classi-
fication. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 36, pp. 7005–7014 (2022)

52. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,
Huang, Z., Karpathy, A., Khosla, A., Bernstein,M., et al.: Imagenet
large scale visual recognition challenge. Int. J. Comput. Vision
115(3), 211–252 (2015)

53. Lake, B., Salakhutdinov, R., Gross, J., Tenenbaum, J.: One shot
learning of simple visual concepts. In: Proceedings of the Annual
Meeting of the Cognitive Science Society, vol. 33 (2011)

54. Cohen, G., Afshar, S., Tapson, J., van Schaik, A.: Emnist: Extend-
ing mnist to handwritten letters. In: 2017 International Joint
Conference on Neural Networks (IJCNN), pp. 2921–2926 (2017).
https://doi.org/10.1109/IJCNN.2017.7966217

55. Kingma, D., Ba, J.: Adam: A method for stochastic optimization.
In: International Conference on Learning Representations (2014)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1109/IJCNN.2017.7966217

	The general framework for few-shot learning by kernel HyperNetworks
	Abstract
	1 Introduction
	2 Hypernetworks for few-shot learning–a general framework
	2.1 Background
	2.2 HyperShot overview
	2.3 Kernel function
	2.4 Training and prediction
	2.5 Adaptation to few-shot scenarios
	2.6 Extension to Bayesian setting—BayesHyperShot

	3 Related work
	3.1 Non-Bayesian approaches
	3.2 Bayesian approaches

	4 Experiments
	4.1 Classification
	4.2 Cross-domain adaptation
	4.3 Uncertainty quantification
	4.4 Ablation study

	5 Conclusion
	Acknowledgements
	Appendix A. Comparison to the original HyperShot publication
	A.1 Addressing the WACV 2023 reviews
	A.2 Extensions compared to the WACV 2023 paper

	Appendix B. Training details
	Appendix C. Hyperparameters
	Appendix D. Source code
	References

