EXPERIMENTAL INVESTIGATION OF THE HORIZONTAL-TO-VERTICAL SPECTRAL RATIO (HVSR) METHOD FOR ESTIMATING DEPTH OF BEDROCK IN CENTRAL MISSOURI

A Thesis

Presented to the Faculty of the Graduate School at the University of Missouri-Columbia

In Partial Fulfillment of the Requirement for the Degree Master of Science in Civil Engineering

by

Chang Chi Dr. Brent Rosenblad P.E., Thesis Supervisor May 2022 The undersigned, appointed by the dean of the Graduate School, have examined the thesis entitled

EXPERIMENTAL INVESTIGATION OF THE HORIZONTAL-TO-VERTICAL SPECTRAL RATIO (HVSR) METHOD FOR ESTIMATING DEPTH OF BEDROCK IN CENTRAL MISSOURI

presented by Chang Chi

a candidate for the degree of Master of Science of Civil Engineering,

and hereby certify that, in their opinion, it is worthy of acceptance.

Professor Brent L. Rosenblad, P.E.

Professor John J. Bowders, P.E.

Professor J. Erik Loehr, P.E.

ACKNOWLEDGEMENTS

The very first person I want to thank for my educational experience is Dr. Rosenblad for being my advisor. He has been a great mentor, teaching me the skills and critical thinking process as an engineer. Dr. Rosenblad is the first person who sparked my interest in geotechnical engineering when I was an undergraduate. His enthusiasm and patience guided me to pursue the Master's degree program and completing it.

I must thank Dr. Bowders for the practical engineering experience and delivering aspects of engineering judgement in class. I also thank Dr. Loehr for the actual engineering experience on site and showed me the various challenges one could encounter during a project. I also thank both Dr. Bowders and Dr, Loehr for taking the time to participate on my thesis committee and providing needed advice on my research.

I must thank Dr. Mohammed Khan, my colleague, for helping me to familiarize with the Horizontal to Vertical Spectral Ratio (HVSR) technique and for providing the guidance I needed when I started my thesis. I need to thank Dr. Downer for providing insights on the graduate school and the support along the way. I also want to thank the Engineering Surveys and Services, Crockett Engineering Consultants, Terracon Consultants, and Woodward-Clyde Consultants for the boring plans and boring log information. This thesis could not have been completed without them.

Lastly, I want to thank my parents and my sister, who supported me in my life and school career. They have always been supportive and respected my life choices, I am very grateful for being the first-generation college student in my family. Finally, I would like to thank all my friends for helping me and supporting me in my life. I am sincerely grateful for every source of support.

ACKNOWLEDGEMENTS	ii
TABLE OF CONTENT	iii
LIST OF FIGURES	vi
LIST OF TABLES	x
ABSTRACT	xi
1. INTRODUCTION	1
1.1 Background	1
1.2 Objective	3
1.3 Scope of Work	4
1.4 Layout of the Thesis	4
2. BACKGROUND	5
2.1 Introduction	5
2.2 General Geology of the University of Missouri Campus	5
2.3 Expected Shear Wave Velocities	6
2.3.1 Soil/Fill	7
2.3.2 Shale	7
2.3.3 Limestone	8
2.4 Overview of HVSR Method	9
2.5 Past Studies of HVSR	13
2.5.1 Microzonation Studies	13
2.5.2 Average Shear Wave Velocity Determination	14
2.5.3 Depth to Bedrock Estimation	15
2.5.4 Factors Influencing HVSR Values	19
2.6: Summary	
3. SITE DESCRIPTIONS	
3.1 Introduction	
3.2: Site Descriptions and Subsurface Conditions	
3.2.1: Ellis Library Addition	
3.2.2: Gateway Residence Hall	
3.2.3: Donald W. Reynolds Journalism Building	
3.2.4: Lee's Hall	

TABLE OF CONTENT

	3.2.5: The State Historical Society of Missouri Center for Missouri Studies	
	(SHSMO)	32
	3.2.6: Stewart Hall	34
	3.2.7: MUHC East Pavilion	35
	3.2.8: Roy Blunt NextGen Precision Health Building (NextGen)	38
	3.2.9: Virginia Housing and Dining	40
	3.3: Rocheport Bridge Approach Site – Field Verification Study	42
	3.4: Summary	43
4.1	METHODS	45
4	4.1 Introduction	45
2	4.2 HVSR Data Collection Procedures	45
4	4.3 HVSR Data Processing Procedures	50
2	4.4 Data Interpretation Procedures	53
	4.4.1 Interpretation of HVSR data	53
	4.4.2 Interpretation of Borehole Data	55
2	4.5 Summary	56
5. I	RESULTS	57
4	5.1 Introduction	57
4	5.2 Depth to Bedrock Relationship - All HVSR Measurements	57
	5.2.1 Depth to Bedrock Relationship - Soil over Limestone Profile	63
	5.2.2 Depth to Bedrock Relationship - Soil/Shale Interface	64
	5.2.3 Depth to Limestone Relationship - Soil/Shale/Limestone Case	66
4	5.3 Identifying Shale from HVSR Attributes	69
4	5.4 Example Application of the HVSR Method	73
4	5.5 Summary	74
6. I	DISCUSSION	76
(5.1 Introduction	
(5.2 Depth to Bedrock Relationships	76
(6.3 Impact of Shale on the HVSR Relationship	78
(5.4 Variability of the HVSR Peak Frequency	80
	6.4.1 Directionality	80
	6.4.2 Repeat Measurement	81
(6.5 Application of the HVSR Method	83

6.6 Summary	
7. CONCLUSION	
7.1 Summary	
7.2 Conclusions	
7.3 Recommendations	
REFERENCES	
APPENDIX A-1	
APPENDIX A-2	
APPENDIX A-3	
APPENDIX A-4	
APPENDIX A-5	
APPENDIX A-6	
APPENDIX A-7	
APPENDIX A-8	
APPENDIX A-9	
APPENDIX B	
APPENDIX C	
APPENDIX D	

LIST OF FIGURES

Figure 2. 1 Depth to Bedrock in Missouri (MoDNR 2012), with red square indicated the area of this study
Figure 2. 2 Representative <i>Vs</i> profile of the study area
Figure 2. 3 The HVSR ambient noise record showing the auto selected number of windows (23 windows) for Ellis Library BH 1
Figure 2. 4 Spectral HVSR ratio for 600 s (10 min) time window of ambient records at Ellis Library BH 1 (color lines). The mean (black continuous line) and standard deviation are indicated (black dashed line). Each color curve represents the HVSR plot for a single window. In addition, the standard deviation of peak frequency (f_0) is indicated (grey bar)
Figure 2. 5 Two interpretations of the HVSR method in terms of body waves (a) and surface waves (b) showing to the transfer function for 1D SH wave propagation (c) and the HVSR ratio for Rayleigh wave propagation (d) (Goetz & Rosenblad 2009), indicating that both wave types produce a peak at the same frequency
Figure 2. 6 Vs from HVSR measurements and simulated tests as a function of sediment thickness for 11 sites in upper Mississippi embayment, compare to V_S values from Bodin et al. (2001) and Chen et al. (1996) (Goetz & Rosenblad 2009)
Figure 2. 7 Intrepreted bedrock surface profile at Cape Cod, Massachusetts. (Lane et al, 2008)
Figure 2. 8 Normalised HVSR data cross-section for one of the survey lines in the western Wilga Basin. The black dash line highlighting the modeled base of the sedimentary basin, and the interpreted normal fault in red. A possible coal seams is indicated in white (Dronfield et al. 2019)
Figure 2. 9 Contours of $(fp)/(fr)$ as a function of v_1 and $\beta 1/\beta 2$. The region with red continuous lines indicates a clear single peak in the HVSR curve. The red square indicates the high Poisson ratio values typical of soil and small impedance ratio (large contrast between soil and rock)
Figure 2. 10 Contours of $(fp)/(fr)$ as a function of trough/peak and $\beta 1/\beta 2$. The red continuous lines are the region with a clear single peak in the HVSR curve 22
Figure 3. 1 Test areas around the University of Missouri campus where HVSR measurements were performed and ground-truth borehole data was available (Google Earth, 2022)
Figure 3. 2 Ellis Library boring plan from 1983 (Aerial View), prepared by Woodward- Clyde Consultants. Red square indicates location of HVSR measurements for this study.

Figure 3. 3 Gateway Residence Hall boring plan (Aerial View), prepared by Terracon Consulting Engineers & Scientists. Red square indicates location of HVSR measurements for this study
Figure 3. 4 Donald W. Reynolds Journalism Building boring plan (Aerial View), prepared by Engineering Surveys and Services. Red square indicates location of HVSR measurements for this study
Figure 3. 5 Lee's Hall boring plan (Aerial View), prepared by Engineering Surveys and Services. Red square indicates location of HVSR measurements for this study
Figure 3. 6 The State Historical Society of Missouri Center for Missouri Studies (SHSMO) boring plan (Aerial View), prepared by Engineering Surveys and Services. Red square indicates location of HVSR measurements for this study
Figure 3. 7 Stewart Hall boring plan (Aerial View), prepared by Crockett. Red square indicates location of HVSR measurements for this study
Figure 3. 8 MUHC East Pavilion boring plan (Aerial View), prepared by Crockett. Red square indicates location of HVSR measurements for this study
Figure 3. 9 Roy Blunt NextGen Precision Health Building (NextGen) boring plan (Aerial View), prepared by Crockett. Red square indicates location of HVSR measurements for this study
Figure 3. 10 Virginia Housing and Dining boring plan (Aerial View), prepared by Terracon (Red square indicates location of HVSR measurements)
Figure 3. 11 The approximate location where six HVSR measurements were performed (star) and the refraction measurement (red solid-line)

Figure 4. 1 The three-component seismometer (a), HVSR measurements collected on the top of soil (b) and pavement (c), the four-channel Data Physics "Quattro" dynamic signal analyzer (d)
Figure 4. 2 A completed test set-up for HVSR measurement
Figure 4. 3 The SignalCalc Ace 2.4 interface set-up window for ambient noise collection. All important parameters are squared
Figure 4. 4 An example of recorded ambient time record from the Vertical (Z), North (N) and East (E) directions at Ellis Library BH 1 location
Figure 4. 5 The HVSR ambient noise record showing the auto selected number of windows (12 windows) for Roy Blunt NextGen Precision Health Building BH 14 51
Figure 4. 6 Spectral HVSR ratio developed from the squared average method using 600 s (10 min) time window of ambient noise recorded at the Ellis Library BH1 location. The mean (black continuous line) and standard deviation are indicated (black dashed line).

Each colored curve is the HVSR curve for an individual window. In addition, the Figure 4. 7 The HVSR plot with a narrow standard deviation from Lee's Hall BH 8, where two peak frequencies were observed (a). The HVSR plot with a wide standard deviation from Journalism Building BH 6, where three peak frequencies were observed Figure 4. 8: The HVSR plot from The Ellis Library BH1. The trough (fz), the standard deviation of the amplitude of the trough (STD, Az), the standard deviation of the amplitude of the peak(STD, Ap), the standard deviation of frequency of the peak(STD, fp), the amplitude ratio between peak and trough(Ap/Az), and the frequency Figure 5.1 The frequency versus depth to first bedrock encountered for 65 HVSR measurements. The standard deviations of peak frequencies are indicated with error bars. Figure 5. 2 The frequency versus depth to first bedrock encountered for 65 HVSR measurements. The power function fit is indicated with red solid-line. The 90% Figure 5. 3 The frequency versus depth to refusal for 54 HVSR measurements. The power function fit is indicated with red solid-line. The 90% prediction bounds were Figure 5. 4 The frequency versus depth to limestone bedrock for 20 HVSR measurements where no shale was present in profile. The power function fit is indicated with red solidline. The standard deviations of peak frequencies are indicated with error bars. The 90% Figure 5. 5 The frequency versus depth to shale bedrock for 45 HVSR measurements. The power function fit is indicated with red solid-line. The standard deviations of peak frequencies are indicated with error bars. The 90% prediction bounds are labeled in black Figure 5. 6The power function fits of soil over limestone (red solid line) and soil over Figure 5. 7 The frequency versus depth to limestone bedrock for 38 HVSR measurements. The power function fit is indicated with red solid-line. The standard Figure 5. 8 The frequency versus depth to limestone bedrock for 58 HVSR measurements. The red solid line indicates the control group of no shale and three different dash-lines indicated different groups of shale thickness ranges. The standard Figure 5. 9 Frequency ratio of trough/peak vs. standard deviation of the peak frequency (top) and frequency ratio of trough/peak vs. amplitude ratio of peak/trough (bottom)....71

Figure 6. 1 Directionality plot for Lee's Hall BH 15 (left) and Journalism BH 6 (rig	ht),
color indicated the amplitude of H/V ratio from different directions. 90 degrees are	in the
North direction, the 0 degree is in the East direction	81
Figure 6. 2 The peak frequency used in this study (black dash line) and the percent	82

LIST OF TABLES

Table 2. 1 HVSR	Resonance Frequency-	Power-Law-Function Fitting	g Parameters 16
	1 7		

Table 3. 1 Depth to rock summary for Ellis Library boreholes 27
Table 3. 2 Depth to rock summary for Gateway Residence Hall boreholes 28
Table 3. 3 Depth to rock summary for Donald W. Reynold Journalism Building boreholes
Table 3. 4 Depth to rock summary for Lee's Hall boreholes
Table 3. 5 Depth to rock summary for The State Historical Society of Missouri Center forMissouri Studies (SHSMO) boreholes
Table 3. 6 Depth to rock summary for Stewart Hall boreholes 35
Table 3. 7 Depth to rock summary for MUHC East Pavilion boreholes 38
Table 3. 8 Depth to rock summary for Roy Blunt NextGen Precision Health Building(NextGen) boreholes
Table 3. 9 Depth to rock summary for Virginia Housing and Dining boreholes
Table 4. 1 Summary of the location conditions for all HVSR measurements
Table 4. 2 Default Values for Processing Parameters 52
Table 5. 1: Frequency of HVSR peak and standard deviation for each measurement 58
Table 5. 2 The a and b coefficient of power function equation for each group

ABSTRACT

Determining the depth to bedrock is important in geotechnical site investigations, especially for foundation, slope stability, and settlement problems. Although methods such as drilling can be used to determine the depth to bedrock, geophysical methods are excellent supplemental tools to fill in the space between borings. However, many geophysical methods require extensive equipment to deploy and expertise to interpret the data. A recent, simple method to estimate the depth to bedrock is the Horizontal-to-Vertical Spectral Ratio (HVSR) method, which is a single-station measurement that only requires ambient noise and can be easily deployed and completed by a single person within 15 minutes. The objective of this study is to determine if a reliable relationship of depth to bedrock could be developed for the University of Missouri (MU) campus using the HVSR method alone without shear wave velocity measurements.

In total, 65 HVSR measurements were performed around the MU campus over an approximate area of 1,200,000 m². Measurements were performed with a threecomponent geophone, hand-held data acquisition system, and laptop computer. Relationships were developed between HVSR frequency versus depth to bedrock for all data and subsets of data based on the bedrock conditions. The results showed a reliable relationship can be developed for soil over limestone profiles, where the average errors were within 12%, which is consistent with similar past studies. However, when shale was present, the bedrock depth predictions were unreliable with errors as large 58%. Therefore, in practice, the HVSR relationship developed in this study should only be used at sites where shale is known to be absent, based on supplemental information. The HVSR relationship developed in this study was applied at a major construction project near the University of Missouri campus and showed good agreement between the prediction from HVSR and refraction results performed by another contractor. The errors in the depth predictions were within the range of 0.5 to 3.2 ft.

1. INTRODUCTION

1.1 Background

Geotechnical site characterization is a systematic study of subsurface conditions with the goal of developing a representative profile of subsurface strata over the depth range of interest. The main purpose of site characterization is to determine relevant soil and rock properties that can be used to predict the behavior of the subsurface for various engineering problems. Investigations performed for site characterization may include insitu measurements like the Standard Penetration Test (SPT) and Cone Penetration Test (CPT); drilling and sampling; and numerous laboratory tests and techniques. One important parameter determined as part of a site investigation program is the depth to bedrock. Knowledge of the bedrock depth is important, for example, when constructing major structures which will be supported on deep foundations that extend into rock. Also, for many slope stability investigations, the soil/rock interface is of interest because it may be the plane of sliding or the limit of the depth of the slide. In settlement problems, defining the thickness of compressible layers above rock is important to accurately predict the settlement. In many cases inaccurate or assumed values of the depth to rock yields an over costly design. Thus, characterization of the depth to bedrock is needed in many geotechnical engineering applications.

The most common and straightforward method to determine the depth to rock at a specific location is to drill a borehole. However, in some cases, desired drilling locations may be difficult for the equipment to access, budget may limit extensive drilling to characterize borehole depth, or the locations of the foundation elements may change to locations where the depth to rock is unknown. Thus, often it is not possible to accurately

1

characterize the spatial variability of bedrock depth from drilling alone. Therefore, geophysical methods are often a good supplement to the drilling program. For example, methods like electrical resistivity and seismic refraction can be used to determine the depth to rock. However, these methods require extensive equipment deployment and user expertise to reliably interpret the data. Therefore, these methods can be time-consuming to utilize. There is a need for an easily deployed, simple, economical, and non-destructive technique to determine depth to bedrock in modern geotechnical site characterization.

Recently, a single-station geophysical method, called the Horizontal-to-Vertical Spectral Ratio (HVSR) method, has found widespread use in seismological and geotechnical applications. It is performed by using a three-component seismometer to measure ambient energy in the horizontal and vertical directions at the desired location to estimate the fundamental frequency at a site. This fundamental frequency is directly related to bedrock depth and soil shear wave velocity. The primary advantage of the HVSR method is its quick and economical implementation, as it only requires a single station and no active source. Also, data processing requires little expertise and can be automated such that the results can be quickly interpreted by novice users.

Most of the early studies focused on seismic microzonation applications, where the spatial variability of site frequency is mapped over large regions (e.g., Martorana et al. 2018; Konno & Omachi, 1998; Gosar. 2017; Chen et. al. 2009). In addition, the HVSR method has found application for estimating the average shear wave velocity in deep basin studies, where borehole control of bedrock depth is available (e.g., Bodin et al. 2011; Rosenblad and Goetz. 2009). Lastly, the HVSR method has been used to develop relationships between the fundamental frequency and bedrock depth for regions over

2

large spatial scale (i.e. tens of kilometers) and bedrock depths (i.e. thousand-meter deep) (e.g., Ibs-von Seht and Wohlenberg. 1999; Lane et. al. 2008; Dronfield et al. 2019). In this study, the focus is on investigating the application of the HVSR method for developing relationships to estimate shallow bedrock depths (i.e. 3 to 20 meters) over smaller spatial scales (i.e. hundreds of meters) in the geology of Central Missouri.

1.2 Objective

The primary objective of this study is to develop a local relationship between bedrock depth and site frequency determined from HVSR measurements for the University of Missouri campus. This relationship could be used in site investigation planning or as a supplement to conventional drilling and sampling. The hypothesis of this study is that a reliable relationship can be developed between the measured frequency from HVSR measurements and the depth to bedrock without the need for independent shear wave velocity profile measurements.

Additionally, secondary objectives of this study are to understand and quantify the reliability and accuracy of the bedrock depth estimates from the HVSR measurements. Specifically, these objectives are:

1. Quantify the uncertainty in depth estimates for different bedrock conditions.

2. Understand the effect of bedrock geology on the reliability of depth to bedrock estimations, specifically the effect of shale layer when it is present.

3. Develop best practices for data collection and analyses to obtain reliable and consistent results.

4. Investigate the possibility of using other attributes of the HVSR plots to infer site characteristics (i.e. shale versus limestone).

1.3 Scope of Work

The scope of work to satisfy the research objectives involved: (1) compiling existing borehole information from past construction projects around the University of Missouri campus (65 boreholes), (2) interpreting the depth to bedrock at each site from the borehole data, (3) collecting ambient noise data at each accessible borehole location, (4) processing the ambient noise records using the HVSR approach, (5) determining the HVSR peak frequency from HVSR graphs, and (6) developing relationships between depth to bedrock and the peak frequency.

Furthermore, the scope of this work also involved categorizing the data based on different bedrock conditions, studying the impact of site geology on the accuracy of the HVSR method, investigating the relationship between bedrock geology (i.e. presence of shale) and features of the HVSR plots, and examining factors affecting the consistency of the HVSR measurements.

1.4 Layout of the Thesis

This thesis consists of seven chapters. In Chapter 2, the general geology around the University of Missouri campus (i.e. study area) is described, the HVSR method is presented, and selected relevant past HVSR studies from the literature are presented. The site description of each location where measurements were performed are described in Chapter 3. Then, the details of the methods used for data collection, processing, and interpretation are presented in Chapter 4. The HVSR results and additional analyses are presented in Chapter 5. A discussion of the results as related to the objectives of the study are presented in Chapter 6. Lastly, Chapter 7 presents a summary of the findings, important conclusions from this work, and potential areas of future study.

2. BACKGROUND

2.1 Introduction

This chapter presents a brief overview of the geology of Central Missouri and the University of Missouri campus. This is followed by a discussion of the expected shear wave velocities (V_s) of the soil and rock in the study area. Lastly, an overview of the HVSR method is presented and relevant literature on the HVSR method are reviewed.

2.2 General Geology of the University of Missouri Campus

The geology of Boone County is described by A.G. Unklesbay in his book, *Geology of Boone County, Missouri* (1952). The following summary is largely based on the information from this book and is used to describe the general geology around the University of Missouri campus. The University of Missouri sits on top of glacial drift deposits and loess from the Pleistocene age. These deposits typically consist of lean or fat clay that are sometimes mixed with sand, silt, and gravel. Beneath these deposits is the bedrock from the Mississippian and early Pennsylvanian age, composed of shale and limestone. The shale is found inconsistently with various thickness around campus while limestone is common.

The general subsurface profile around campus consists of possible fill over clay over shale and/or limestone. Detailed profiles and descriptions for each measurement location used in this study are presented in Chapter 3. The limestone bedrock beneath the University of Missouri campus is the Burlington formation. The Burlington limestone is colored white to gray, with some chert inclusions, with an upper surface that is often eroded and irregular. Multiple geotechnical reports of campus projects show the Burlington limestone is found in the depth range of 10 to 55 ft, with the rock surface

5

often being weathered and fractured. In addition, the shale bedrock of the Cherokee group is found around campus atop the limestone. Based on boring data, the shale thickness ranges from 0 ft to 29 ft and it is often in a weathered condition. For context, the depth to bedrock around Missouri is shown in Figure 2.1 with the study area indicated by the red square.

Figure 2. 1 Depth to Bedrock in Missouri (MoDNR 2012), with red square indicating the area of this study

2.3 Expected Shear Wave Velocities

The subsurface profile in the study area can be generally described as consisting of two or three major layers. The first layer is the fill and soil layer, the second layer is the inconsistent shale layer that may or may not be present, and the third layer is the limestone layer. Each layer may have additional layering on top or below them (i.e. silt and sand), however, these are the three main layers of interest for this study. As part of this study, only limited V_s measurements were performed of the soil/fill and limestone, and no velocity measurement of the shale were performed. However, based on past literature, as well as the general knowledge about these materials, a range of expected V_s of these materials can be estimated, as presented below. Based on the information described below, a simplified, general V_s profile is presented in Figure 2.2. It is important to note that the shale layer is absent at many sites or very thin, and the depths of all interfaces vary considerably across campus.

2.3.1 Soil/Fill

The V_s of the fill and soil depend on soil structure, soil type, void ratio, and the effective stress. A general relationship can be expressed as:

$$V_s = A(\sigma'_v)^m \tag{Eq. 2.1}$$

where A = parameter that depends on the soil structure, type, and void ratio and *m* is an exponent with a value that is typically around 0.25.

Based on Eq. 2.1 and using representative values for A, the average shear wave velocity ($V_{s,AVG}$) of the soil/fill is expected to be in the range 400 ft/s to 800 ft/s for the depths of interest in this study. In addition, based on a few Spectral Analysis of Surface Waves (SASW) measurements performed at some of the study sites, the average V_s of 400 to 800 ft/s was found to be reasonable.

2.3.2 Shale

The V_s of shale is highly dependent on the degree of weathering and fracturing. No measurements were performed on the shale in this study. However, based on other measurements of V_s of shale in Missouri and the variable degree of weathering and fracturing in the rock, it is expected that V_s of shale will likely fall in a broad range of 1200 ft/s to 2500 ft/s in most cases.

2.3.3 Limestone

The V_s of limestone is also highly dependent on the degree of weathering and fracturing. Based on a few laboratory measurements of intact limestones from one of the campus projects, the V_s is expected to exceed 5000 ft/s in many cases. Lower values are possible when severe weathering is present. In addition, crosshole measurements performed at a nearby Central Missouri location, showed V_s of limestone of around 5000 ft/s or greater.

Figure 2. 2 Representative V_s profile of the study area with expected range of V_s values

2.4 Overview of HVSR Method

The HVSR method is a single-station geophysical method used to estimate the resonant frequency of a site from ambient noise measurements. This technique was originally proposed by Nogoshi and Igarashi (1971) and popularized by Nakamura (1989). The HVSR method involves recording ambient vibrations for several minutes using a three-component, portable seismometer. Ambient vibrations below 1 Hz are typically from natural sources (ocean waves and wind), while ambient vibrations above 1 Hz are mostly due to human activity. The collected ambient noise records are divided into individual time windows and the Fast Fourier Transform (FFT) is applied to convert from the time domain to the frequency domain. The horizontal spectrums are merged and divided by the vertical spectrum and a HVSR plot is created for each window. The HVSR curves are then combined into an average HVSR curve. An example of selected number of windows is presented in Figure 2.3 and the HVSR plot is presented in Figure 2.4.

Figure 2.3 The HVSR ambient noise record showing the auto selected number of windows (23 windows) for Ellis Library BH 1

Figure 2. 4 Spectral HVSR ratio for 600 s (10 min) time window of ambient records at Ellis Library BH 1 (color lines). The mean (black continuous line) and standard deviation are indicated (black dashed lines). Each color curve represents the HVSR plot for a single window. In addition, the standard deviation of peak frequency (f_0) is indicated (grey bar)

The Nakamura technique assumed that when the horizontal spectrum (H) is divided by the vertical spectrum (V), the influence of the source effect is eliminated and the fundamental resonant frequency of the sublayer soil can be determined (Lermo and Chávez-García 1993). Thus, the HVSR peak frequency has a strong correlation with the resonant frequency of the site. For cases of a uniform layer over a rigid bedrock, the site frequency can be directly related to the sediment thickness and V_s , as:

$$f_r = V_s/4H \tag{Eq. 2.2}$$

where the f_r is the resonant frequency of vertically propagating shear waves, V_s is the shear wave velocity and the H is sediment thickness.

Therefore, with some knowledge of the V_s and the measured frequency it is possible to infer the depth to bedrock from the HVSR measurements. If the V_s of the soil

changes with depth (as is usually the case), then the following approximate relationship can be used:

$$f_r = V_{s,AVG}/4H \tag{Eq. 2.3}$$

where f_r is the resonant frequency, $V_{s,AVG}$ is the average shear wave velocity of the layers and the *H* is sediment thickness.

Two averaging methods to estimate the $V_{s,AVG}$ of the materials have been used in the literature. The first one is the simple weighted average:

$$V_{s,AVG} = \frac{\sum V_i Z_i}{H}$$
(Eq. 2.4)

where $V_{s,AVG}$ is the average V_s ; *H* is the total sediment thickness; V_i is the V_s at depth *z*; and Z_i is the sediment thickness of individual layers.

Another way to average the V_s is through the slowness average equation, as presented below:

$$V_{s,AVG} = \frac{H}{\sum_{v_i}^{Z_i}}$$
(Eq. 2.5)

where $V_{s,AVG}$ = average shear velocity; H = total sediment thickness; V_i = shear velocity at depth z; and Z_i = sediment thickness.

There are two interpretations on the origin of the HVSR frequency peak, namely, surface wave ellipticity and vertically propagating shear waves. Surface waves have both horizontal and vertical components and travel in the shallow zone near the free surface, with particle motions decreasing exponentially with depth. If an impedance contrast (e.g. soil over limestone) is encountered at depth, the amplitude of the vertical component will decrease to near zero at a frequency that is close to the fundamental frequency of shear wave resonance (Goetz and Rosenblad 2009). Therefore, the H/V plot will show a peak close to the fundamental mode of shear wave resonance.

The body wave explanation attributes the peak directly to ambient vertically propagating, horizontally polarized shear waves. Ambient body waves consist of compression waves and shear waves which may propagate vertically through the ground and can reflect the through different material interfaces. When the body waves arrive at a HVSR recording station, the horizontal components of the body waves are dominated by the horizontal shear (SH) wave and the vertical component of the body waves is mainly the compressional (P) waves. Therefore, when the HVSR is calculated, a peak is observed at the frequency of shear wave resonance. (Goetz and Rosenblad 2009). Figure 2.5 demonstrates the HVSR for the body wave interpretation and for the surface wave interpretation (Goetz and Rosenblad 2009). In most cases, the HVSR frequency peak is likely composed of both body wave and surface wave energy. For the shallow depth study performed in this work, it is likely that the origin of the peak is primarily due to surface wave energy from nearby traffic and other man-made sources.

Figure 2.5 Two interpretations of the HVSR method in terms of body waves (a) and surface waves (b) showing the transfer function for 1D SH wave propagation (c) and the HVSR ratio for Rayleigh wave propagation (d) (Goetz and Rosenblad 2009), indicating that both wave types produce a peak at the same frequency

2.5 Past Studies of HVSR

2.5.1 Microzonation Studies

The HVSR method has been used extensively in earthquake microzonation studies. Microzonation is the process of evaluating the seismic hazard response from local site effects and site characterization for a specific area. In HVSR applications to microzonation studies, the focus is on quantifying the spatial variability of the site frequency to better understand expected earthquake response. Numerous microzonation studies using HVSR have been performed and a few examples are discussed in this section.

Gallipoli et al. (2010) used the HVSR technique to support emergency seismic microzonation in Italy after the 2009 Abruzzo earthquake, where heavy damage occurred in towns like Navelli. Over 200 HVSR measurements were performed in the Abruzzo region. In this study, the HVSR curve was compared to the Standard Spectral Ratio (SSR) curve obtained from earthquake recordings. The HVSR results showed the peak frequency was in good agreement with the peak frequency of the SSR curve. Thus, the study showed the microtremor investigation is an effective tool for assessment of local site response, especially when the available geological maps are unable to correlate with observed presence of amplification from the seismic measurements.

Stanko et al. (2019) used the HVSR method to assess the seismic site amplification in the City of Invanec. A total of 68 HVSR measurements were performed in the 12 km² area and interpolation was used in between the measurement locations to develop the respective frequency map. The frequency map of the City of Invanec showed a strong correlation with the local geologic conditions. Fäh (1997) studied and developed a qualitative micronation map for the city of Basel, where the city has suffered multiple earthquakes in the past centuries. Fäh performed 232 HVSR measurements to obtain the HVSR peak frequency and the site amplification. One and two-dimensional numerical modelling were used to estimate the expected seismic ground motion during earthquakes. The developed qualitative microzonation map showed an acceptable agreement with the distribution of past earthquakes in the regions.

2.5.2 Average Shear Wave Velocity Determination

Based on Eq. 2.3, the site frequency and known bedrock depth can be used to estimate the $V_{s,AVG}$ for deep profiles where velocity profiles cannot be measured. Bodin et al. (2001) performed more than 100 HVSR measurements at sites around Memphis, Tennessee to infer the $V_{s,AVG}$ using this approach. The results show a strong correlation between peak periods (inverse of frequency) and sediment thickness at these sites. In addition, this study also concluded the $V_{s,AVG}$ was clearly a function of sediment thickness.

Goetz and Rosenblad (2009) performed HVSR measurements to explain different estimates of $V_{s,AVG}$ from Bodin (2001) and Chen (1996). A total of 11 HVSR measurements were collected in the upper Mississippi Embayment. The results, as presented in Figure 2.6, showed good agreement with values from Chen (1996) with the $V_{s,AVG}$ estimation from Bodin (2001) about 25% higher. These results showed the limitations of the $f_r = V_s/4h$ approach for estimating $V_{s,AVG}$ of more complex profiles.

Figure 2. 6 V_s from HVSR measurements and simulated tests as a function of sediment thickness for 11 sites in upper Mississippi embayment, compare to V_s values from Bodin et al. (2001) and Chen et al. (1996) (Goetz & Rosenblad 2009)

2.5.3 Depth to Bedrock Estimation

Another application of the HVSR method is to develop a direct relationship between the frequency and sediment thickness for a specific region. The studies discussed below are the most relevant to this research.

Ibs-von Seht and Wohlenberg (1999) examined both the classic spectral ratio technique and the HVSR method. They collected 102 microtremor measurements in the western Lower Rhine Embayment, where the subsurface consists of soil over hard rock. The results showed that the classical spectral ratio approach tends to be influenced by the noise level and is less reliable in determining the resonant frequency of the sublayer soil. The HVSR method showed a strong correlation with the sediment thickness over depth ranges from tens of meters to thousands of meters. Thus, Ibs-von Seht & Wohlenberg (1999) developed a nonlinear relationship between the fundamental resonant frequency (f_r) of soil and sedimental thickness (h) of the following form:

$$h = a f_r^{\ b} \tag{Eq. 2.6}$$

where *a* and *b* are unknown regression coefficients.

The basis for this relationship comes from the simple formulation between the f_r of a flat-lying sediment layer with an average shear velocity of $V_{s,AVG}$ and thickness h overlying a hard-rock basement, as expressed in equation 2.3 (Lachetl & Bard 1994; Ibs-von Seht & Wohlenberg 1999).

One advantage of developing relationships of the form of Eq. 2.6 is that explicit measurement of V_s is not required. Ibs-von Seht and Wohlenberg (1999), Parolai et al. (2002) and Hinzen et al. (2004) have published equations relating sediment thickness to resonance frequency based on correlations to borings in Germany, as shown in Table 2.1.

Table 2. 1 HVSR Resonance Frequency- Power-Law-Function Fitting Parameters

Fitting Parameters		ers	Deference
a (meters)	b	R^2	Kelerence
96	-1.388	0.981	Ibs-von Seht and Wohlenberg, 1999
108	-1.551	-	Parolai et al., 2002
137	-1.190	-	Hinzen et al.,2004

Delgado (2000) investigated Eq. 2.6 in the Bajo Segura basin to evaluate its usage for a more complicated geotechnical area. The Bajo Segura basin was approximated as a two-layer soil profile by Delgado, where the upper layer is soft deposits like clay, silt and sand, the lower layer is either hardrock (limestone) or softrock (marl and conglomerate). A total of 33 microtremor measurements were performed at locations where the depth to bedrock is known. In addition, the V_s of the clayey soil was estimated through the relationship of Hardin (1978). The results showed a strong correlation between the HVSR frequency and the sediment thickness. Delgado (2000) claimed the average errors in the depth estimates were about 15 %. In addition, the data were also fit to Eq. 2.6 to obtain the a and b parameters, where the a parameter is in meter, this equation can be expressed as:

$$h = 55.54 f^{-1.268}$$
 (Eq. 2.7)

In addition to Eq 2.7, this relationship may relate to shear velocity in the following form:

$$V_{\rm s} = 222.57 \, f^{-0.268}$$
 (Eq. 2.8)

The work by Delgado (2000) showed Eq. 2.6 is suitable for estimating sediment thickness using HVSR measurements. Degaldo (2000) claimed that the errors were likely due to the lateral subsurface variation from the assumed V_s profile.

Bignardi (2017) investigated the Ibs-von Seht and Wohlenberg's approach with focus on local subsurface variations from the modeling. First, Bignardi evaluated the errors with the simple relationship of Eq. 2.2. He simulated a 50 ft, two-layer soil profile (soil/hardrock), where the soil has various V_s while the rock has a fixed V_s . Both normally dispersive and inversely dispersive models were used in the simulation. The results showed the normally dispersive model has errors between 15 to 25% and the inversely dispersive model has errors exceeding 20%. Second, Bignardi computed the *a* and *b* parameters in Eq. 2.6 for both body wave propagation and surface wave propagation. The results showed the obtained *a* and *b* parameters from both wave propagations were very similar to the values obtained by Ibs-von Seht and Wohlenberg. Bignardi also verified that changing $V_{s,AVG}$ up to 10% at most introduces errors of 20% or less in the depth to bedrock estimation.

17

In addition, Lane et. al (2008) collected 11 HVSR measurements in Cape Cod, Massachusetts, and 13 measurements in eastern Nebraska. He used the power-lawfunction fitting parameter (Table 2.1) from Ibs-von Seht and Wohlenberg (1999) and Parolai et. al (2002) to estimate the depth to bedrock. The estimated rock depths were compared to the measured seismic refraction and/or the recorded depth to bedrock. Figure 2.7 displays the bedrock estimation from all three methods and the reference borehole depth at Cape Cod, Massachusetts. Lane et al (2008) shown the HVSR method can be an effective tool to estimated depth to bedrock.

Figure 2. 7 Intrepreted bedrock surface profile at Cape Cod, Massachusetts. (Lane et al, 2008)

Other studies like Pazzi et. al (2016) examined the use of HVSR measurements as a tool for characterizing the landslide geometry in La Spezia, Italy and Grosseto, Italy. They collected roughly 100 HVSR measurements and gathered punctual depth measurements as referenced from boring logs. They interpolated the depth measured from HVSR and reconstructed the landslide slip surface curve. Pazzi concluded the HVSR measurements can serve as an effective tool to characterize the interface between soil and rock. Dronfield et al. (2019) collected 65 HVSR measurements in the north-west part of the Wilga Basin in Western Australia, which is difficult to access and has limited subsurface information. The basin has approximately 250 meters of shallow sediment. The HVSR data were normalized based on the maximum and minimum of the HVSR amplitude, the data were then gridded along the survey transverse in cross-section view, as shown in Figure 2.8. The results showed the effectiveness of the HVSR method in the shallow basin, where little subsurface information is available. Dronfield showed that the HVSR method is suitable for infer depth to rock when boring log information is limited.

Figure 2. 8 Normalised HVSR data cross-section for one of the survey lines in the western Wilga Basin. The black dash line highlighting the modeled base of the sedimentary basin, and the interpreted normal fault in red. A possible coal seams is indicated in white (Dronfield et al. 2019)

2.5.4 Factors Influencing HVSR Values

As mentioned in the earlier sections, the peak in the HVSR measurements, termed f_p , for a two-layer model, is only an approximation to the natural resonant frequency of the site (f_r) . Thus, Eq 2.2 provides only an approximation of the depth and is only truly

valid in a two-layer system with a uniform V_s over rigid rock. Therefore, investigators such as Tuan (2009) have looked at the factors influencing the validity of this approximation.

Tuan showed the impedance ratio between the soil and the rock (β 1/ β 2) and Poisson's Ratio (υ 1) have major effects on the validity of the approximation. For small impedance ratios (i.e. large impedance contrasts), such as for soil over limestone, and Poisson's Ratio of 0.25 or higher (which are expected for soil), the error from using Eq 2.2 falls between 5 and 10 %, as shown in Figure 2.9. For larger impedance ratios (i.e. small impedance contrasts) the error can be as high as 40%.

Figure 2. 9 Contours of $(f_p)/(f_r)$ as a function of v_1 and $\beta 1/\beta 2$. The region with red continuous lines indicates a clear single peak in the HVSR curve. The red square indicates the high Poisson ratio values typical of soil and small impedance ratio (large contrast between soil and rock)

Tuan also investigated how these site factors influenced different attributes of the HVSR plot, including the frequency of the trough and the frequency of the peak. An example is shown in Figure 2.10, which showed a ratio of the frequency of the trough to peak can vary significantly with impedance contrast. Tuan suggested a low impedance contrast will have a closer spacing between the peak and trough and a high impedance contrast will have a wider spacing.

In this thesis, the use of these attributes to identify subsurface conditions from the real HVSR measurements was studied.

Figure 2. 10 Contours of $(f_p)/(f_r)$ as a function of trough/peak and $\beta 1/\beta 2$. The red continuous lines are the region with a clear single peak in the HVSR curve

2.6: Summary

This chapter presented a brief description of the geology around the University of Missouri campus as well as the expected V_s of the soil/fill, shale, and limestone. The HVSR method was described along with selected relevant literature to illustrate the wide usage of the HVSR method in seismological and geotechnical engineering applications.
3. SITE DESCRIPTIONS

3.1 Introduction

This chapter presents site descriptions and subsurface conditions at each of the measurement locations around campus. A total of nine test areas were selected around the University of Missouri campus, as shown in Figure 3.1. The sites were widely distributed around the campus and sampled a range of subsurface conditions. A total of 134 boreholes were identified at these nine areas, 81 borehole locations were accessible such that HVSR measurements could be performed (the others were under existing buildings), and 65 measurements were used to develop the relationships presented later in this thesis because 16 locations did not have bedrock identified from borehole investigations. The information at these locations were compiled and used to develop ground-truth data to examine the accuracy of bedrock depth predictions from the HVSR measurements.

The depth to limestone, shale (if present) and SPT refusal were identified from the borehole data and are presented later in this chapter for each study area. Unfortunately, the boring data from the older buildings did not include coordinates of the borehole locations. Therefore, the coordinates shown for each borehole location were determined from visual inspection of the borehole map and identifying the same points on Google Earth imagery using obvious landmarks (e.g. buildings, trees, sidewalks). In most cases, the estimated coordinates are expected to be within about 3 ft of the true borehole locations. For two sites (MUHC and Roy Blunt NextGen Precision Health Building), the HVSR measurements were performed shortly after the drilling was completed, so the actual boring location could be easily identified for the two sites. The HVSR measurements were performed within 1 foot of the boring.

23

No surveys of ground elevations were performed as part of this study. Ground elevations were supplied on each boring log with an accuracy of about 0.5 ft. For the MUHC and NextGen sites, these elevations were unchanged at the time of the HVSR measurements. For older boring data, the boring log elevations were compared to a Digital Elevation Model (DEM) developed from LiDAR measurements performed in 2015. Any changes in elevations were used to correct the depth to bedrock determined from the borings, as shown in the tables below. Additionally, Google Earth images were used to confirm that no major topographic changes had occurred since the time of the LiDAR measurements. For one site (State Historical Society of Missouri Center for Missouri), the boring data were collected after the LiDAR data. In this case, visual evidence from Google Earth was used and found no obvious changes in ground elevations so no corrections to the boring log elevations were applied. In general, the study area has depth to shale ranging from 6.5 ft to 44.2 ft and the depth to limestone ranging from 8.2 ft to 53.6 ft.

Figure 3. 1 Test areas around the University of Missouri campus where HVSR measurements were performed and ground-truth borehole data was available (Google Earth, 2022).

3.2: Site Descriptions and Subsurface Conditions

3.2.1: Ellis Library Addition

The site investigation of the Ellis Library Addition project was completed in 1983, and included six borehole locations, as shown in Figure 3.2. Four of these borehole locations were accessible for the HVSR measurements, as indicated with red boxes in Figure 3.2. The general subsurface profile at the Ellis Library site consists of fill over stiff clay over rock. The depth to rock is generally uniform across the site, with the thickness of fill and clay above the rock ranging from 36.5 ft. to 41.5 ft. The rock is fractured limestone and there is no indication of shale from the borehole logs at this location. A summary of the rock depth identifications are provided in Table 3.1 and the detailed boring logs can be found in Appendix A-1.

Figure 3. 2 Ellis Library boring plan from 1983 (Aerial View), prepared by Woodward-Clyde Consultants. Red square indicates location of HVSR measurements for this study.

Borehole	Approximate	Elevation	Elevation	Change in	Depth	Depth to	Depth to
Name	Coordinate	(Boring)	(LiDAR)	Elevation	to	Limestone	Refusal
		(1983)(ft)	(2015)(ft)	(ft)	Shale	(ft)	(ft)
					*(ft)		
B-1	38°56'38.01"N	765	764.8	0.2	NP	41.3	41.3
	92°19'35.52''W						
B-2	38°56'37.99"N	765	763.6	1.4	NP	39.6	39.6
	92°19'37.47"W						
B-3	38°56'37.62"N	764	764.9	-0.9	NP	37.4	37.4
	2°19'33.15"W						
B-4	38°56'39.22"N	761	759	2	NP	41.5	41.5
	92°19'37.20''W						

Table 3. 1 Depth to rock summary for Ellis Library boreholes

3.2.2: Gateway Residence Hall

The site investigation of the Gateway Residence Hall was completed in 2012. A total of eleven boreholes were drilled and five of them were accessible to perform the HVSR measurements, as indicated in Figure 3.3. The general subsurface profile at the Gateway Residence Hall is fill over stiff clay over shale and/or over limestone. The thickness of fill and clay ranges from 23.5 ft to 33ft. The depth to rock varies considerably at the Gateway Residence Hall site, with the depth to shale ranging from 23.5 ft to 39.5 ft and the depth to limestone ranging from 36.5 ft to 41.5 ft. Both shale and limestone are moderately weathered at this site. A summary of the depth to limestone, shale and refusal is presented in Table 3.2 and the detailed boring logs for this site can be found in Appendix A-2.

Figure 3. 3 Gateway Residence Hall boring plan (Aerial View), prepared by Terracon Consulting Engineers & Scientists. Red square indicates location of HVSR measurements for this study

	Table 3. 2	Depth to	rock summary	for Gateway	Residence Ha	all boreholes
--	------------	----------	--------------	-------------	--------------	---------------

Borehole	Approximate	Elevation	Elevation	Change in	Depth	Depth to	Depth to
Name	Coordinate	(Boring)	(LiDAR)	Elevation	to	Limestone	Refusal
		(2012)(ft)	(2015)(ft)	(ft)	Shale	(ft)	(ft)
					*(ft)		
B-1	38°56'19.70"N	750	749	1	NP	25	25.3
	92°19'24.21"W						
B-2	38°56'18.67"N	750	746.9	3.1	20.4	29.7	39.7
	92°19'24.55"W						
B-6	38°56'18.58"N	760.5	756.8	3.7	NP	28.8	38.8
	92°19'20.57"W						
B-7	38°56'19.55"N	761	757.7	3.4	36.1	41.6	44.6
	92°19'20.82"W						
B-11	38°56'18.37"N	762	760.7	1.3	NP	31.7	32
	92°19'21.64"W						

*NP indicates not present

3.2.3: Donald W. Reynolds Journalism Building

The site investigation of the Donald W. Reynolds Journalism Building was

completed in 2004. A total of nine boreholes were drilled and the HVSR measurements

were performed on four accessible borehole locations, as indicated with red boxes in Figure 3.4. The general subsurface profile at the Journalism Building is fill over silty clay over shale and/or over limestone. The thickness of fill and clay layers ranges from 21 ft to 27 ft. The depth to shale when present ranges from 25 to 27 ft and the depth to limestone varies considerably from 21 ft to 44 ft. A summary of the depth to limestone, shale and refusal is presented in Table 3.3 and the detailed boring logs for this site can be found in Appendix A-3.

Figure 3. 4 Donald W. Reynolds Journalism Building boring plan (Aerial View), prepared by Engineering Surveys and Services. Red square indicates location of HVSR measurements for this study

Borehole	Approximate	Elevation	Elevation	Change	Depth	Depth to	Depth
Name	Coordinate	(Boring)	(LiDAR)	in	to Shale	Limestone	to
		(2004)(ft)	(2015)(ft)	Elevation	*(ft)	(ft)	Refusal
				(ft)			(ft)
B-2	38°56'50.38"N,	740.6	744	-3.4	NP	24.4	24.5
	92°19'39.90"W						
B-5	38°56'49.96"N,	743.3	743.3	-0.1	25.0	26.1	26.2
	92°19'39.90"W						
B-6	38°56'48.83"N,	741.3	741.7	-0.4	27.0	43.9	43.9
	92°19'41.48"W						
B-7	38°56'48.82"N,	742.1	742.6	-0.5	26.0	38	38.1
	92°19'40.51"W						

Table 3. 3 Depth to rock summary for Donald W. Reynold Journalism Building boreholes

3.2.4: Lee's Hall

The site investigation of Lee's Hall was completed in 1992. A total of 18 boreholes were drilled and the HVSR measurements for this study were performed at 12 accessible borehole locations, as indicated with red boxes in Figure 3.5. The general subsurface profile at the Lee's Hall is fill over silty clay over shale and/or over limestone. The thickness of fill and silty clay ranges from 8 ft to 20 ft and the depth to rock varies considerably from 8 ft to 20 ft. The rocks are weathered shale and moderately weathered limestone. A summary of the depth to limestone, shale and refusal is presented in Table 3.4 and the detailed boring logs for this site can be found in Appendix A-4.

Figure 3. 5 Lee's Hall boring plan (Aerial View), prepared by Engineering Surveys and Services. Red square indicates location of HVSR measurements for this study

Borehole Name	Approximate Coordinate	Elevation (Boring) (1992)(ft)	Elevation (LiDAR) (2015)(ft)	Change in Elevation (ft)	Depth to Shale *(ft)	Depth to Limestone (ft)	Depth to Refusal *(ft)
B-1	38°56'55.96"N, 92°19'43.89"W	729.9	729.2	0.7	14.3	15.3	18.5
B-2	38°56'54.97"N, 92°19'46.51"W	N/A	720.7	N/A	9	13	18.2
B-3	38°56'54.91"N, 92°19'44.74"W	725.6	724.5	1.1	13.9	18.9	21.8
B-5	38°56'55.90"N, 92°19'45.32"W	727	724.7	2.3	10.7	13.7	NP
B-6	38°56'54.94"N, 92°19'45.47"W	724.5	723	1.5	NP	12.5	NP
B-8	38°56'55.45"N, 92°19'46.76"W	N/A	718.7	N/A	8	16.5	16.7
B-11	38°56'55.48"N, 92°19'43.89"W	729.3	727.9	1.4	18.1	19.6	NP
B-13	38°56'56.03"N, 92°19'44.55"W	728.9	730.2	-1.3	15.3	24.8	NP
B-14	38°56'55.72"N, 92°19'46.68"W	720.4	718.4	2	6.5	8.2	NP
B-15	38°56'55.92"N, 92°19'45.73"W	726.4	720.3	6.1	7.9	13.4	NP
B-18	38°56'55.99"N, 92°19'46.52"W	719.6	N/A	N/A	8.5	10.2	15

Table 3. 4 Depth to rock summary for Lee's Hall boreholes

3.2.5: The State Historical Society of Missouri Center for Missouri Studies (SHSMO)

The site investigation of SHSMO was completed in 2016. A total of 17 boreholes were drilled and the HVSR measurements were performed at 9 accessible borehole locations, as indicated in Figure 3.6. The Google Earth Imagery showed no significant change in landscape from 2016 to 2022 so the ground elevation given in the borings were used without correction. The general subsurface profile at the SHSMO is fill over silty clay over shale and/or over limestone. The thickness of fill and silty clay ranges from 9 to 24 ft and the depth to rock ranges from 9 to 24 ft as well. The rocks are weathered shale and weathered limestone at this site. A summary of the depth to limestone, shale and refusal is presented in Table 3.5 and the detailed boring logs for this site can be found in Appendix A-5.

Figure 3. 6 The State Historical Society of Missouri Center for Missouri Studies (SHSMO) boring plan (Aerial View), prepared by Engineering Surveys and Services. Red square indicates location of HVSR measurements for this study

Borehole Name	Approximate Coordinate	Elevation (Boring) (2016)(ft)	Depth to Shale *(ft)	Depth to Limestone *(ft)	Depth to Refusal *(ft)
B-1	38°56'57.73"N, 92°19'50.01"W	715.3	11.5	16.0	18.0
В-2	38°56'56.53"N, 92°19'49.93"W	710.5	NP	11.0	19.5
B-5	38°56'55.17"N, 92°19'47.70"W	718.7	24.0	NP	NP
B-7	38°56'57.86"N, 92°19'49.67"W	715.5	9.5	17.5	18.0
B-8	38°56'57.19"N, 92°19'50.24"W	713.4	NP	10.5	11.0
B-9	38°56'56.68"N, 92°19'50.61"W	709.9	NP	11.5	12.2
B-10	38°56'56.68"N, 92°19'49.41"W	711.7	NP	11.0	11.5
B-13	38°56'56.15"N, 92°19'47.70"W	716.2	10.0	9.0	12.5
B-16	38 [°] 56'55.63"N, 92°19'47.66"W	717.5	10.0	16.0	16.0

Table 3. 5 Depth to rock summary for The State Historical Society of Missouri Center for Missouri Studies (SHSMO) boreholes**

**No LiDAR data were available; Google Earth imagery showed no significance change in landscape from 2017 to 2022

3.2.6: Stewart Hall

The site investigation for Stewart Hall was completed in 2015. A total of five boreholes were drilled and three were accessible to perform the HVSR measurements, as marked with red squares in Figure 3.7. The general subsurface profile at Stewart Hall is fill over clay over shale and/or over limestone. The thickness of fill and clay ranges from 36 to 39 ft, while the depth to rock varies considerably from 36 to 51 ft. The rocks are shale and weathered limestone at this site. A summary of the depth to limestone, shale and refusal is presented in Table 3.6 and the detailed boring logs for this site can be found in Appendix A-6.

Figure 3. 7 Stewart Hall boring plan (Aerial View), prepared by Crockett. Red square indicates location of HVSR measurements for this study

Borehole Name	Approximate Coordinate	Elevation (Boring) (2015)(ft)	Elevation (LiDAR) (2015)(ft)	Change in Elevation (ft)	Depth to Shale (ft)	Depth to Limestone *(ft)	Depth to Refusal *(ft)
B-1	38°56'43.05"N, 92°19'27.70"W	764	762.8	1.2	36.8	50.3	50.8
B-2	38°56'42.08"N, 92°19'27.60"W	762	762.9	-0.9	39.9	40.9	41.4
B-2*	38°56'42.87"N, 92°19'28.82"W	761	761	0	36.0	NP	NP

Table 3. 6 Depth to rock summary for Stewart Hall boreholes

3.2.7: MUHC East Pavilion

The site investigation of MUHC East Pavilion was completed in 2020. A total of 22 boreholes were drilled and HVSR measurements were performed at thirteen accessible locations, as indicated in Figure 3.8. The HVSR measurements were performed within \pm 1 foot of borehole locations right after the site investigation where borehole locations

were obvious. Therefore, no corrections to the ground elevations from the borings were necessary. The general subsurface profile at MUHC is fill over stiff clay over shale and/or over limestone with the thickness of fill and clay ranging from 27 to 38 ft and the depth to rock varying drastically from 27 ft to 54 ft. The rocks are severely weathered shale and fractured limestone. A summary of the depth to limestone, shale and refusal is presented in Table 3.7 and the detailed boring logs for this site can be found in Appendix A-7.

Figure 3. 8 MUHC East Pavilion boring plan (Aerial View), prepared by Crockett. Red square indicates location of HVSR measurements for this study

Borehole Name	Approximate Coordinate	Depth to Shale (ft)	Depth to Limestone (ft)	Depth to Refusal (ft)
B-1	38°56'20.68"N, 92°19'34.64"W	33.0	39.0	39.0
B-2	38°56'20.58"N, 92°19'33.60"W	33.0	50.0	53.6
B-3	38°56'20.71"N, 92°19'32.23"W	27.0	53.6	53.6
B-4	38°56'20.12"N, 92°19'34.21"W	25.0	33.0	33.0
B-5	38°56'20.17"N, 92°19'33.13"W	24.0	47.5	47.5
B-6	38°56'19.77"N, 92°19'34.66"W	24.0	33.0	33.0
B-7	38°56'19.47"N, 92°19'33.62"W 33.0		39.0	39.0
B-8	38°56'19.53"N, 92°19'32.41"W	25.0	28.5	28.5
B-9	38°56'19.13"N, 92°19'35.19"W	25.5	49.6	48.6
B-10	38°56'19.32"N, 92°19'32.61"W	38.8	33.7	33.7
B-11	38°56'19.07"N, 92°19'32.24"W	28.0	35.0	40.0
B-12	38°56'19.01"N, 92°19'31.75"W	NP**	27.5	27.5
B-13	38°56'17.73"N, 92°19'26.65"W	NP**	18.5	18.8

Table 3. 7 Depth to rock summary for MUHC East Pavilion boreholes**

* No LiDAR data, HVSR measurements were performed right after drilling when borehole locations could be observed and ground elevations were unchanged

3.2.8: Roy Blunt NextGen Precision Health Building (NextGen)

The geotechnical investigation at NextGen was completed in 2018. A total of 22 boreholes were drilled and HVSR measurements were performed at thirteen accessible locations, as marked in Figure 3.9. The HVSR measurements were performed within ± 1 foot of borehole locations soon after the site investigation, where borehole location could be observed. Therefore, no corrections to the elevations in the boring logs were necessary. The general subsurface profile at the NextGen site is fill over stiff clay over shale and/or over limestone. The thickness of fill and clay ranges from 16 to 24 ft and the

depth to rock varies drastically from 16 to 52 ft. The rocks are weathered shale and intact limestone at this site. A summary of the depth to limestone, shale and refusal is presented in Table 3.9 and the detailed boring logs for this site can be found in Appendix A-9.

Figure 3. 9 Roy Blunt NextGen Precision Health Building (NextGen) boring plan (Aerial View), prepared by Crockett. Red square indicates location of HVSR measurements for this study

Borehole Name	Approximate Coordinate	Depth to Shale *(ft)	Depth to Limestone *(ft)	Depth to Refusal *(ft)
B-5	38°93'86.33"N, 92°32'38.72°W	23.5	NP	NP
B-6	38°93'84.94"N, 92°32'42.70"W	23	25.5	26.0
B-8	38°93'81.23"N, 92°32'44.30"W	NP	16.5	17.0
B-9	38°93'83.04"N, 92°32'38.75"W	25	NP	NP
B-11	38°93'78.02"N, 92°32'38.78"W	26	NP	NP
B-14	38°93'84.04"N, 92°32'47.92"W	16	20.5	21.0
B-15	38°93'84.01"N, 92°32'44.00"W	18.0	22.5	23.0
B-16	38°93'83.57"N, 92°32'42.03"W	21.0	32.5	33.0
B-17	38°93'80.58"N, 92°32'46.46"W	NP	17.0	18.6
B-18	38°93'79.43"N, 92°32'45.56"W	NP	17.5	18.7
B-19	38°93'79.34"N, 92°32'40.79"W	NP	24	24.5
B-21	38°93'85.06"N, 92°32'39.73"W	23.0	52.0	52.5
B-22	38°93'85.06"N, 92°32'39.73"W	23.0	52.0	52.5

Table 3. 8 Depth to rock summary for Roy Blunt NextGen Precision Health Building (NextGen) boreholes**

**No LiDAR data were available, HVSR measurements were performed right after drilling when borehole locations could be observed and ground elevations were unchanged

3.2.9: Virginia Housing and Dining

The geotechnical survey at Virginia Housing and Dining was completed in 2001.

A total of 26 boreholes were drilled and the HVSR measurements were performed at 13

locations, only three locations encountered rock and they are indicated with red square in

Figure 3.10. The Google Earth imagery showed no significance change in landscape from

2001 to 2022. The general subsurface profile is fill over clay over shale or limestone at

the Virginia Housing and Dining. The depth to rock shows only small variations at the

three locations with a range from 39 to 44 ft. The rocks are weathered shale or weathered limestone at this site. A depth to rock summary is presented in Table 3.9 and the detailed boring log can be found in the Appendix A-9.

Figure 3. 10 Virginia Housing and Dining boring plan (Aerial View), prepared by Terracon (Red square indicates location of HVSR measurements)

Borehole Name	Approximate Coordinate	Elevation (boring) (2001)(ft)	Elevation (LiDAR) (2015)(ft)	Change in Elevation (ft)	Depth to Shale (ft)	Depth to Limestone (ft)*	Depth to Refusal (ft)
B-3	38°56'26.60"N, 92°19'23.56"W	766	768	0	39	NP	42.2
B-5	38°56'26.63"N, 38°56'26.63"N	769	770	1	44.2	NP	44.2
B-6	38°56'26.95"N, 92°19'24.17"W	763	763	0	N/A	38.5	38.5

Table 3. 9 Depth to rock summary for Virginia Housing and Dining boreholes

3.3: Rocheport Bridge Approach Site – Field Verification Study

The project is located about 10 miles west of the University of Missouri campus. There was a need to estimate the depth to rock for a region located north-west of the existing I-70 route. Settlement calculations of the soil over the rock will be performed and the thickness of the soil is an important input. Limestone outcrops were evident and nearby borings showed shallow limestone with no shale. However, it was not clear how deep the limestone interface plunged below the surface at the locations off the I-70 alignment. Rough estimates of a few feet to several tens of feet were equally likely.

Drill rigs could not easily access the site due to the difficult terrain, so refraction measurements were performed by another contractor. The refraction measurements required cutting line through vegetation, deployment of numerous sensors and use of an active source. The HVSR measurements were performed in an afternoon to supplement the drilling and refraction information. No information was provided prior to the HVSR interpretation. A total of 6 HVSR measurements were performed along the line where the refraction measurements were performed. Figure 3.11 shows the approximate location where the HVSR measurements and refraction measurements were performed. The results of the HVSR measurements are discussed in Chapter 5.

Figure 3. 11 The approximate location where six HVSR measurements were performed (star) and the refraction measurement (red solid-line).

3.4: Summary

In this chapter, the general subsurface profile at each site was described briefly. The sites selected sample a variety of subsurface conditions and a wide range of depth to bedrock. A total of 81 HVSR measurements were performed at the accessible borehole locations, 65 measurements are used to develop the relationships for the University of Missouri campus that are presented in Chapter 5, The other six measurements were a verification study. In addition, a summary table of approximate borehole location, ground elevation, the depth to shale, limestone and refusal was presented for each site.

4. METHODS

4.1 Introduction

HVSR measurements were performed at the locations described in Chapter 3. In this chapter, the procedures used for the HVSR data collection, processing and interpretation are described. A summary of the data collection procedures, including equipment, location, measurement date, surface condition, and ambient noise environment are presented, followed by descriptions of the HVSR data processing procedures. Lastly, the procedures used to interpret the HVSR data, as well as the borehole data are described.

4.2 HVSR Data Collection Procedures

HVSR measurements were recorded using a three-component seismometer (Geospace Model type HS-1 3C Array), as shown in Figure 4.1a. This device consists of three geophones, each with a resonant frequency of 2 Hz (one vertical and two horizontal). To perform the measurement, the three-component seismometer was placed on the ground near each borehole location. For cases where the borehole location was still visible, the sensor was placed within 1 ft of the borehole location. For cases where the location was identified from a boring map, the sensor was placed as close as possible to the estimated borehole location, which is likely to be within about 3 ft in most cases. The sensor was either placed directly on asphalt pavement or on soil, as shown in Figure 4.1b and 4.1c, respectively. After placement, the device was carefully leveled by adjusting the feet of the sensor and monitoring a bubble level on the sensor. The two horizontal geophones were oriented in the north/south and east/west directions for all measurements. All measurements were recorded using a four-channel Data Physics "Quattro" dynamic signal analyzer (Figure 4.1d) and SignalCalc Ace 2.4 software. The "Quattro" is powered directly from a laptop computer and the software was set-up to record ambient noise over a 10-minute period of time. The data collection set-up window used in the SignalCalc software is presented in Figure 4.2. In the figure, channels 1, 2, and 3 are marked, indicating the recordings from the Vertical, North, and East oriented geophones, respectively. The voltage (V) range for the ambient noise was set to the lowest setting of 0.1 Volts. The frequency range was set to 50 Hz, the sampling frequency was set to 128 Hz, and the measurement duration was set to 600 sec (10 mins) for all measurements. An example of an ambient noise record is presented in Figure 4.3. Table 4.1 summarizes the location name, date, surface condition, and ambient noise environment for each measurement.

It is important to note that the seismometer has a dimension of 6 in. by 6 in. by 3.5 in. and only weighs about 3.5 kg. Thus, it is very portable and can be carried by a single person and deployed rapidly with measurements collected within 15 mins. Also, it does not require an active source, which also contributes to the portability and efficiency of the technique.

Figure 4.1 The three-component seismometer (a), HVSR measurements collected on the top of soil (b) and pavement (c), the four-channel Data Physics "Quattro" dynamic signal analyzer (d).

Figure 4.2 The testing equipment for HVSR measurement

SignalCalc ACE - Transfer Function [] Intitled Nevt-Ri	un00001 Next-Save11	0			
Test View Control Display Report Window	Help			0 0	ata Physics
	Transfer Func (Run)	Frequency			
Mode: Record Dptions	Start AutoR Opt	Span: 50 Hz			
Playback Auto	o End at: 60 Records 👻				
File: Frames	is:0 Time: 00:00:00	1.00 H1, 2 X=0			Þ
Repeat File Ipfo Disp Chan Mag		500m Y=0			
r gpart	100	₽ €			
Lines:	3200	hase			
- Recording F Span:	50.00 Hz dF: 15.63m 64.00 Sec dT: 7.813m	₫ -500m			<u>#</u>
Format: DSFIime: 600.00 Sec	T 7 5. 10000 0et	-1.00			
File:			10.0	20.0 30.0 Hz	
Overjap: (0 % Window: Rect 💌				
Avg 1	Live 💌 Trig: Free Run 💌	ф H1, 2			
Duration : 600 See	giew Average 🔲 Session Trig	-359			
Pacing	Off 🔹	-360			
		> -362			
	Volt	tage			
Channel #	Ran	ge: 0.1 V			
		.342			
Tachometer					
Ch# Active Coupling ARF Range (V) Rai	inge (EU) mV/EU EU	Class Serial #	Label	Vertical	^
2 X Cliff UP 0.1 00	0.0m 1.000k V	Manual N/A -		No	rth
3 🔀 Diff UP 0.1 00	0.0m 1.000k V	Manual N/A			
4 SE UP 1 .00	00 1.000k V	Manual N/A		East	-
Front End & Measurement & Info & Trigger & Com	nment /				
View Active Inputs Import					
		0			

Figure 4. 3 The SignalCalc Ace 2.4 interface set-up window for ambient noise collection. All important parameters are squared.

Figure 4. 4 An example of recorded ambient time record from the Vertical (Z), North (N) and East (E) directions at Ellis Library BH 1 location.

Location	Measurement	Surface	Noise		Location	Measuremen	Surface	Noise
Name	Date	Condition	Environment		Name	t Date	Condition	Environment
Ellis BH-	11/20/2020	Soil	No traffic		SHSMO	11/23/2022	Pavement	Light traffic
1					BH-1			
Ellis BH-	11/20/2020	Pavement	No traffic		SHSMO	11/23/2022	Pavement	Light traffic
2					BH-2			_
Ellis BH-	11/20/2020	Soil	No traffic		SHSMO	11/23/2022	Pavement	Light traffic
3					BH-5			_
Ellis BH-	11/20/2020	Brick	No traffic		SHSMO	11/23/2022	Pavement	Light traffic
4					BH-7			_
Gateway	11/21/2020	Pavement	Light traffic		SHSMO	11/23/2022	Pavement	Light traffic
BH-1					BH-8			-
Gateway	11/21/2020	Soil	Light traffic		SHSMO	11/23/2022	Pavement	Light traffic
BH-2			0		BH-9			U
Gateway	11/21/2020	Pavement	Light traffic		SHSMO	11/23/2022	Pavement	Light traffic
BH-6			0		BH-10			U
Gateway	11/21/2020	Pavement	No traffic		SHSMO	11/23/2022	Pavement	Light traffic
BH-7					BH-13			0
Gateway	11/21/2020	Soil	No traffic		SHSMO	11/23/2022	Pavement	Light traffic
BH-11					BH-16			8
Journalis	11/21/2020	Pavement	Light traffic		Stewart	11/20/2020	Pavement	No traffic
m BH-2			8		BH1			
Journalis	11/21/2020	Pavement	Light traffic		Stewart	11/20/2020	Pavement	No traffic
m BH-5	11/21/2020	i uveniene	Eight duille		BH2	11/20/2020	T u v e intent	i to duille
Iournalis	11/21/2020	Pavement	Light traffic	1	Stewart	11/20/2020	Brick	No traffic
m BH-6	11/21/2020	Tuvenient	Light duffe		BH2'	11/20/2020	Dilek	i to duille
Iournalis	11/21/2020	Soil	Light traffic	1	MUHC	3/10/2021	Soil	Light traffic
m BH-7	11/21/2020	boli	Eight duille		BH-1	5/10/2021	Son	Light duffe
Lee's Hall	11/22/2022	Pavement	High traffic		MUHC	3/10/2021	Soil	Light traffic
BH-1	11,22,2022	i uveniene	ingh duine		BH-2	5/10/2021	Son	Light duffe
Lee's Hall	11/22/2022	Soil	Light traffic	1	MUHC	3/10/2021	Soil	Light traffic
BH-2	11/22/2022	bon	Light duffe		BH-3	5/10/2021	Son	Light duffe
Lee's Hall	11/22/2022	Pavement	High traffic		MUHC	3/10/2021	Pavement	Light traffic
BH-3	11/22/2022	Tuvenient	ingii dunie		BH-4	5/10/2021	1 uvenient	Light duffe
Lee's Hall	11/22/2022	Pavement	No traffic		MUHC	3/10/2021	Pavement	Light traffic
BH-5	11/22/2022	1 avenient	No traine		BH-5	5/10/2021	1 avenient	Light dame
Lee's Hall	11/22/2022	Pavement	Light traffic		MUHC	3/10/2021	Pavement	Light traffic
BH_6	11/22/2022	1 avenient	Light traffic		BH-6	5/10/2021	1 avenient	Light traffic
Lee's Hall	11/22/2022	Soil	Light traffic		MUHC	3/10/2021	Pavement	Light traffic
BH_8	11/22/2022	5011	Light traffic		BH_7	5/10/2021	1 avenient	Light dame
Loo's Hall	11/22/2022	Dovomont	Light traffic	-		3/10/2021	Devemont	Light traffic
	11/22/2022	ravement	Light traffic			5/10/2021	ravement	Light traffic
Loo's Hall	11/22/2022	Devement	No troffic	-	MUUC	2/10/2021	Devement	Light traffic
	11/22/2022	ravement	ino uallic			3/10/2021	ravement	Light traffic
	11/22/2022	Devemant	No troffic		оп-у МШС	2/10/2021	Dovomant	Light traffic
DU 14	11/22/2022	Pavement	ino traffic	1		3/10/2021	ravement	Light traffic
	11/00/0000	Descent	No tro CC :	-		2/10/2021	Descent	Light to CC
Lee's Hall	11/22/2022	Pavement	ino traffic		MUHC	3/10/2021	Pavement	Light traffic
BH-15	11/00/2022	Dest	NL the CC	-	BH-11	2/10/2021	Dense	T 1.1.4 CC
Lee's Hall	11/22/2022	Pavement	No traffic	1	MUHC	3/10/2021	Pavement	Light traffic
BH-18					BH-12			

Table 4. 1 Summary of the date and conditions for all HVSR measurement locations.

Location	Measurement	Surface	Noise	Location	Measurement	Surface	Noise
Name	Date	Condition	Environment	Name	Date	Condition	Environment
MUHC	3/10/2021	Pavement	Light traffic	Nextgen	5/10/2019	Pavement	No traffic
BH-13				BH18			
Nextgen	5/10/2019	Pavement	No traffic	Nextgen	5/10/2019	Pavement	No traffic
BH-5				BH19			
Nextgen	5/10/2019	Pavement	No traffic	Nextgen	5/10/2019	Pavement	No traffic
BH-6				BH21			
Nextgen	5/10/2019	Pavement	No traffic	Nextgen	5/10/2019	Pavement	No traffic
BH-8				BH22			
Nextgen	5/10/2019	Pavement	No traffic	Virginia	11/23/2022	Pavement	No traffic
BH-9				BH-3			
Nextgen	5/10/2019	Pavement	No traffic	Virginia	11/23/2022	Pavement	No traffic
BH11				BH-5			
Nextgen	5/10/2019	Pavement	No traffic	Virginia	11/23/2022	Pavement	No traffic
BH14				BH-6			
Nextgen	5/10/2019	Pavement	No traffic				
BH15							
Nextgen	5/10/2019	Pavement	No traffic				
BH16							
Nextgen	5/10/2019	Pavement	No traffic				
BH17							

Table 4.1 Continued.

4.3 HVSR Data Processing Procedures

The HVSR data processing procedures involve dividing the ambient noise record into many short individual time windows (Fig. 4.5) and applying the Fast Fourier Transform (FFT) to each windowed time record. The FFT transforms the ambient noise record from the time domain into the frequency domain. For each window, two horizontal spectra are merged using the squared-average method, which is taken as the square root of the sum of the squared values from the horizontal spectra. This resulting squared-average horizontal spectrum is divided by the vertical spectrum, to produce the HVSR spectrum for each window. The multiple HVSR spectra from individual windows are then plotted together and an average HVSR value is calculated for each frequency, resulting in a single average HVSR plot, as shown in Fig 4.6.

Figure 4. 5 The HVSR ambient noise record showing the auto selected number of windows (12 windows) for Roy Blunt NextGen Precision Health Building BH 14.

In this study, HVSR plot generation and data interpretation for all ambient noise records were performed using the Geopsy software v3.2.1, which was developed by the SESAME (Site EffectS assessment using AMbient Excitation) Project. The Geopsy H/V toolbox (i.e. HVSR) has automated and manual windows selections, various parameters to process the ambient noise data, and a display of the processed results. All processing parameters were selected and used in accordance with the recommended values from the Geopsy User Guideline (2005). The parameters used in this study are presented in Table 4.2 and the explanations for choosing these parameters are provided below.

The window length in Table 4.2 refers to the time duration in seconds used to calculate individual HVSR curves. Geopsy guidelines recommend a window length of at least 5 seconds for recordings performed with a 2-Hz geophone. In Table 4.2, the terms STA (short term average) and LTA (long term average) refer to time durations used to calculate the average level of signal amplitude over a brief period of time and a long period of time, respectively. The ratio of STA/LTA is used in an anti-triggering algorithm

to filter out transient noise such as pedestrian footsteps or close traffic, as shown in Figure 4.5. Geopsy guidelines recommend using STA values of around 0.5 to 2 s and LTA of several tens of seconds. Additionally, the Konno & Omachi smoothing algorithm was used to remove rapid fluctuations with a smoothing bandwidth constant of 40, as recommended in the Geopsy guidelines. Also, a cosine taper was used to overcome any unexpected discontinuities that may affect the Fourier spectrum. A frequency range of 3 to 30 Hz was selected for display, because 3 Hz is above the operating range of a 2 Hz geophone and 30 Hz is the upper bound of the expected site resonance frequencies. Once all the desired parameters were loaded into the H/V toolbox, the average, smoothed HVSR plot was calculated. An example of the smoothed HVSR spectrum is presented in Figure 4.6.

Chosen processing parameters					
Window Length	25 seconds				
STA	1 second				
LTA	30 seconds				
Min STA/LTA	0.2				
Max STA/LTA	2.5				
Anti-triggering on Raw Signal	Yes				
Smoothing	Konno & Omachi				
Smoothing Bandwidth Constant	40				
Tapering	Cosine				
Horizontal Component Merge	Square Average				
Display Frequency Range	3 to 30 Hz				

 Table 4. 2 Default Values for Processing Parameters.

Figure 4. 6 Spectral HVSR ratio developed from the squared average method using 600 s (10 min) time window of ambient noise recorded at the Ellis Library BH1 location. The mean (black continuous line) and standard deviation are indicated (black dashed line). Each colored curve is the HVSR curve for an individual window. In addition, the standard deviation of peak frequency (f_p) is indicated (grey bar).

4.4 Data Interpretation Procedures

4.4.1 Interpretation of HVSR data

To meet the primary objective of this study, the data interpretation involved identifying the frequency of the peak value in all HVSR plots. These values were used to develop a local relationship between the measured frequency and depth to bedrock for the campus of the University of Missouri. These relationships are presented in Chapter 5.

In many cases, a clear, single peak is evident from HVSR measurements, as

shown in Figure 4.6. For cases, where multiple peaks are observed the primary peak is chosen to be the highest value of the peaks, as shown in Figure 4.7. The uncertainly of

this peak is indicated by the standard deviation of the frequency of this peak, as indicated by the grey bands in Figure 4.7.

Figure 4. 7 The HVSR plot with a narrow standard deviation from Lee's Hall BH 8, where two peak frequencies were observed (a). The HVSR plot with a wide standard deviation from Journalism Building BH 6, where three peak frequencies were observed (b).

A secondary interpretation of the data involved identifying various features of the HVSR plots apart from the peak, as shown in Figure 4.8. These attributes including the frequency of trough (f_z) , the standard deviation of the amplitude of the trough (STD, A_z) , the standard deviation of the amplitude of the peak (STD, A_p) , the standard deviation of frequency of the peak (STD, f_p) , the amplitude ratio between peak and trough (A_p/A_z) , and the frequency ratio between peak and trough (f_p/f_z) . These attributes were used to investigate if certain subsurface profile conditions could be identified from HVSR attributes, as shown for simple profiles in the work of Tuan (2009).

Figure 4. 8: The HVSR plot from The Ellis Library BH1. The trough (f_z) , the standard deviation of the amplitude of the trough (STD, A_z) , the standard deviation of the amplitude of the peak (STD, A_p) , the standard deviation of frequency of the peak (STD, f_p) , the amplitude ratio between peak and trough (A_p/A_z) , and the frequency ratio between peak and trough (f_p/f_z) are labeled

4.4.2 Interpretation of Borehole Data

The depth to rock was determined from the ground elevation to the soil/rock interface, as identified from boring logs. It was not possible to perform elevation surveys

at the HVSR locations at the time of measurement. Therefore, the ground elevation recorded in the boring log at the time of the boring was noted. The elevation from older logs were compared to a Digital Elevation Model (DEM) of the campus from 2015 LiDAR data to determine any changes in the ground elevation. The changes that were identified were applied to the elevation data and corrected. In addition, Google Earth imagery was used to visually confirm that no major changes in elevation occurred from 2015 to the date of the HVSR measurements. The depth to bedrock values are estimated to be within ± 1 ft of true value. For locations where the HVSR measurements were performed immediately after the borings (such that the boring location was still evident), the ground elevation was used directly from the boring log without correction.

4.5 Summary

This chapter covered the methods used to perform the HVSR data collection, processing, and interpretation. A summary of the HVSR equipment, deployment procedures, location name, measurement date, surface condition, and ambient noise environment were presented. In addition, interpretations of the HVSR peak value and additional attributes were discussed. Lastly, the interpretations of the borehole data were described in this chapter.

5. RESULTS

5.1 Introduction

This chapter presents the relationships that were developed between the HVSR frequency values and depth to bedrock. First, a relationship was developed using all 65 HVSR measurements plotted versus the depth to where rock was first encountered (as identified from boring logs). Then, the data from this plot were separated based on subsurface conditions, namely: soil over limestone and soil over shale over limestone. Lastly, the soil over shale over limestone subsurface profile data were divided into categories based on the thickness of shale. Finally, results are presented to investigate if other attributes of HVSR plots can be used to identify subsurface conditions. In addition, a practical, real-world application of the HVSR relation developed in this study is presented.

5.2 Depth to Bedrock Relationship - All HVSR Measurements

A total of 65 HVSR plots were generated in this study, as presented in Appendix B. The frequency of the highest peak of each HVSR plot, as well as the standard deviation of the frequency of the peak value, were identified for each plot and are summarized in Table 5.1. A plot of the frequency versus the depth to first bedrock encountered was developed using the values in Table 5.1 and Tables 3.1 to 3.9 in Chapter 3 , as presented in Figure 5.1. The depth to first bedrock is defined as the depth at the first soil/rock interface, as identified by the descriptions in the boring log.

Location Name	Frequency of	iency of Standard		Location Name	Frequency	Standard
	HVSR peak	Deviation			of HVSR	Deviatio
Filis BH-1	(HZ) 5.03	(HZ) 0.17		STEWART BH2'	peak (Hz)	n (Hz)
Ellis BH-2	5.03	0.17		Stewart BH1	5.95	0.91
Ellis BH 3	6.58	1.87		Stewart BH2	6.20	0.44
Ellis BH 4	5.30	0.32		MUHC BH 1	8.13	2.11
Gateway BH-1	7.48	1.18		MUHC BH-2	6.13	0.22
Gateway BH-6	6.41	1.10		MUHC BH-3	6.67	0.22
Gateway BH-11	6.93	1.20		MUHC BH-5	6.42	0.64
Gateway BH-2	8.05	1.96		MUHC BH-6	7.21	2.03
Gateway BH-7	5.58	1.80		MUHC BH-7	6.54	0.27
Journalism BH-2	6.23	1.52		MUHC BH-8	6.58	0.42
Journalism BH-5	6.11	1.38		MUHC BH-9	6.97	2.27
Journalism BH-6	6.08	1.65		MUHC BH-10	6.61	0.77
Journalism BH-7	8.33	2.05		MUHC BH-11	6.56	3.77
Lee's Hall BH-1	7.98	0.55		MUHC BH-13	8.98	3.05
Lee's Hall BH-2	14.15	3.14		MUHC BH-4	6.33	0.70
Lee's Hall BH-3	7.73	0.31		MUHC BH-12	8.05	0.68
Lee's Hall BH-5	7.92	0.68		NextGen BH6	8.97	1.44
Lee's Hall BH-8	13.06	2.39		NextGen BH14	11.66	0.90
Lee's Hall BH-11	7.91	1.00		NextGen BH15	10.77	1.49
Lee's Hall BH-13	7.63	0.47	11	NextGen BH16	8.63	0.78
Lee's Hall BH-14	13.24	2.38		NextGen BH21	7.25	0.37
Lee's Hall BH-15	13.57	0.75		NextGen BH8	10.05	1.30
Lee's Hall BH-18	14.47	0.85		NextGen BH22	8.29	1.41
Lee's Hall BH-6	11.12	1.90		NextGen BH17	11.52	1.10
SHSMO BH-1	12.60	0.51		NextGen BH18	9.65	0.88
SHSMO BH-7	12.44	1.11		NextGen BH19	7.70	1.87
SHSMO BH-16	12.14	1.94		NextGen BH5	6.81	0.73
SHSMO BH-13	16.97	3.46		NextGen BH11	7.50	0.69
SHSMO BH-2	13.66	1.78		NextGen BH9	8.89	1.31
SHSMO BH-8	12.60	0.72		Virginia BH-6	5.70	0.25
SHSMO BH-10	13.61	3.93		Virginia BH-3	5.82	0.88
SHSMO BH-9	18.34	4.51		Virginia BH-5	4.82	0.84
SHSMO BH-5	9.14	1.65				

 Table 5. 1: Frequency of HVSR peak and standard deviation for each measurement

Figure 5. 1 HVSR frequency versus depth to first bedrock encountered from 65 HVSR measurements. The standard deviations of peak frequencies are indicated with error bars.

Equation 2.1 expresses the relationship between the resonant frequency of the site, the depth to rock, and shear wave velocity (V_s) for an ideal two-layer profile, consisting of uniform soil with constant velocity over rigid bedrock:

$$f_r = V_s / 4H \tag{Eq. 2.1}$$

Where the f_r is the resonant frequency, V_s is the shear wave velocity and the H is sediment thickness.

This relationship can be rearranged into the power function form:

$$H = 0.25V_s * f_r^{-1}$$
 (Eq. 5.1)

where the *H* is sediment thickness, V_s is shear wave velocity and f_r is the resonant frequency.

Equation 5.1 is only truly valid when the subsurface profile is a uniform soil over rigid bedrock. However, because the shear wave velocity of the top layer usually varies with the depth, the V_s is not a constant. In addition, in real cases, there is a finite impedance contrast between the soil and rock, so 0.25 is not always an accurate value. Therefore, the relationship of Eq. 5.1 can be expressed more generally, as:

$$H = a * f_r^{\ b} \tag{Eq. 5.2}$$

where the *H* is sediment thickness, and *a* and *b* are unknown regression coefficients. This relationship between the frequency and the sediment thickness was first used by Ibs-Von Seht and Wohlenberg (1999), as described in Chapter 2. This form of the equation was used to fit a relationship to all 65 data points, as shown in Figure 5.2.

As shown in the Figure 5.1, a clear trend can be observed, where deep bedrock has lower frequency values relative to shallow bedrock. The power function fit, which is shown as a red line in Figure 5.2, has an *a* coefficient of 391 and exponent *b* of -1.379. In addition, the residual values, which is the difference between measured data points and the power function fit, were clearly a function of depth, as shown at the top of Figure 5.2. Much larger residuals were observed in the low frequency range of 5 to 10 Hz, while lesser residuals were observed at higher frequencies (i.e. above 10 Hz). The average error in the frequency range of 5 to 10 Hz is 18 % and above 10 Hz is 21%. Therefore, two 90% prediction bounds were calculated to capture this variability in the fit with frequency (and depth). The prediction bounds represent the expected range where the true bedrock depth will fall for an individual measurement with a certain probability. For example, if a HVSR measurement was performed with a measured peak frequency of 6 Hz, the predicted bedrock depth is 33 ft, with a 90% probability the true value falls in the range

of 24 ft and 42 ft. At higher frequencies and shallower depths, the 90% prediction bounds showed a narrower range of about ± 5 ft. For example, for a measured

Figure 5. 2 The frequency versus depth to first bedrock encountered for 65 HVSR measurements. The power function fit is indicated with red solid-line. The 90% prediction bounds were labeled in black dash line.

peak frequency of 12 Hz, the predicted bedrock depth is 13 ft, with a 90% probability the true value falls in the range of 8 ft to 18 ft (i.e. + 5 ft).

Another way to develop the relationship of frequency and depth to first bedrock relationship is to use the depth to refusal instead of the depth to rock identified in the borings. The depth to refusal is defined as the depth at which Standard Penetration Tests cannot penetrate 6 inches in 50 blows, as recorded on the boring logs. Of the 65 measured locations, 54 had a known refusal depth, as presented in Tables 3.1 to 3.9. The relationship of HVSR frequency versus depth to refusal is presented in Figure 5.3.

Figure 5. 3 The frequency versus depth to refusal for 54 HVSR measurements. The power function fit is indicated with red solid-line. The 90% prediction bounds were labeled in black dash line.

As shown in Figure 5.3, the power function fit has an *a* coefficient of 238 and an exponent *b* of -0.99. The residual values again showed a strong dependance with depth. The average error in the frequency range of 5 to 10 Hz is 21 % and above 10 Hz is 15%. The 90% prediction bounds were calculated independently for the low frequency (i.e. 5-10 Hz) and high frequency (above 10 Hz) regions. The relationship has 90% prediction bounds of \pm 15 ft for the low frequency region and \pm 7 ft for the high frequency region.

These large prediction errors at low frequencies in Figure 5.2 and 5.3 were unexpected and inconsistent with the errors published in other studies, as discussed in Chapter 2. To investigate this relationship further, the 65 data points were separated into (1) soil over limestone and(2) soil over limestone, as presented in the following sections.

5.2.1 Depth to Bedrock Relationship - Soil over Limestone Profile

The relationship presented in this section was developed using only cases where soil was directly over limestone, with no shale present. A total of 20 of 65 measurements fit this category. The relationship developed using the power function fit is presented in Figure 5.3.

As shown in the Figure 5.3, the fit to this subset of the data yields an *a* coefficient of 339 and exponent *b* of -1.288. The 90% prediction bounds showed a narrower range than in Figure 5.2, indicating a better depth to bedrock prediction for this subsurface condition. For example, the 90% prediction bounds at frequencies below 10 Hz are \pm 7 ft, where the 90% prediction bounds in Figure 5.2 are \pm 10 ft. In other words, if this relationship was used to predict the bedrock depth with prior knowledge that no shale was present, there is a 90% chance that the depth of prediction will be within \pm 7 ft for HVSR measured frequency of 5 to 10 Hz and \pm 5 ft for above 10 Hz. The average error in the frequency range of 5 to 10 Hz is 10 % and above 10 Hz is 16%.

Therefore, if one wants to estimate the depth to bedrock on the University of Missouri campus, and the subsurface profile is known to be soil over limestone, this HVSR technique will provide a useful estimate of the depth to rock. A practical application of using the HVSR method to estimate depth to bedrock at a site near the University of Missouri campus is provided later in this chapter. In addition, more discussion regarding the depth to bedrock relationships will be provided in Chapter 6.

Figure 5. 4 The frequency versus depth to limestone bedrock for 20 HVSR measurements where no shale was present in the profile. The power function fit is indicated with the red solid-line. The standard deviations of peak frequencies are indicated with error bars. The 90% prediction bounds are indicated by the black dashed line.

5.2.2 Depth to Bedrock Relationship - Soil/Shale Interface

The remaining 45 profiles included a soil/shale interface. In this section, the relationship of soil over shale over limestone is examined using the depth of the soil/shale interface. This relationship is presented in Figure 5.5, where the depth to the soil/shale interface is plotted. The *a* coefficient is significantly higher with a value of 424 and the *b* exponent has a value of -1.427. There is significant scatter about the fit as indicated by the residual plots in Figure 5.5. The wide prediction bounds were influenced from the large variations observed in the frequency range of 5 to 10 Hz specifically. The 90% prediction bounds at frequencies below of 10 Hz are about ± 10 ft while the bounds above 10 Hz are about ± 5 ft.

A comparison of the power function fits of the relationship of soil over limestone and soil over shale interface is presented in Figure 5.6. As shown in Figure 5.6, the fits to these two relationships are similar. However, greater scatter of the data was observed for the case of the soil over shale. This would indicate that the V_S of the soil over shale is more variable than the V_S of the soil over limestone. This would seem to be an unlikely explanation as there is no reason that the soil should be more variable over the shale than over the limestone. Another possible explanation for the low frequency variability is that the impedance contrast between the soil and shale is not sufficient to generate a peak due to this soil/shale interface. Therefore, it is possible that the HVSR peak from soil over shale over limestone case was generated from the limestone interface. This explanation is investigated in the next section.

Figure 5. 5 The frequency versus depth to shale bedrock for 45 HVSR measurements. The power function fit is indicated with red solid-line. The standard deviations of peak frequencies are indicated with error bars. The 90% prediction bounds are labeled in black dash line.

Figure 5.6 Power function fits of soil over limestone (red solid line) and soil over shale over limestone using depth to soil/shale interface (black dash line)

5.2.3 Depth to Limestone Relationship - Soil/Shale/Limestone Case

In this section, the frequency values are plotted versus the depth to limestone, as shown in Figure 5.7. Of the 45 data points shown in the previous section, 7 of the borings did not extend deep enough to identify limestone. Therefore, only 38 data points were used to develop the relationship presented in this section.

The power fit shown in Figure 5.7 has a very high "a" coefficient of 471 and an exponent 'b' of -1.334. The prediction bounds were the widest of all relationships developed so far. For example, in the frequency of 5 to 10 Hz, the depth prediction ranged from 12 to 52 ft with the 90% prediction bounds of \pm 15 ft. However, for frequencies above 10 Hz, the prediction bounds showed a value of \pm 5 ft, which is similar to the other relationships.

The shale thickness in these cases varied significantly from 0.5 ft for BH1 at Lee's Hall BH1 to 29 ft for BH21 at the NextGen site. The shale layer could have a large effect on the depth estimation due to large variations in its thickness. Therefore, the effect of the shale layer thickness was investigated by categorizing the data in Figure 5.7 based on shale layer thickness.

The 38 data points from Figure 5.7 were categorized into three different groups of shale thickness ranges: 0.5-5 ft, 5 to 10 ft, and greater than 10 ft of shale thickness. In addition, the 20 data points from Figure 5.3 were plotted as the "control group" with no shale layer (i.e. shale thickness is 0 ft.). All four power function fits are plotted in Figure 5.8.

Figure 5. 7 The frequency versus depth to limestone bedrock for 38 HVSR measurements. The power function fit is indicated with red solid-line. The standard deviations of peak frequencies are indicated with error bars.

Figure 5. 8 The frequency versus depth to limestone bedrock for 58 HVSR measurements. The red solid line indicates the control group of no shale and three different dash-lines indicated different groups of shale thickness ranges. The standard deviations of peak frequencies are indicated with error bars for all measurements.

The curve fits presented in Figure 5.8 showed a trend of a shift to higher frequencies for thicker shale layers. When the shale layer is only 0.5 ft to 5 ft thick (grey dash-line), the fit is nearly the same as the soil over limestone relationship (red solidline). However, as the shale thickness increases, the relationships deviate from the "control" group with the fit shifting to higher frequencies for thicker shale layers. This is consistent with what would be expected if the peak is due to the limestone interface, as the average shear velocity of the material above the limestone will increase due to the higher velocity shale layer. The thicker the shale layer, the larger the expected shift. This issue is discussed in greater detail in Chapter 6. The a and b coefficients of the power function equations for all four relationships are presented in Table 5.2. More discussion regarding the a and b coefficient, with comparisons to other studies is provided in in Chapter 6.

Group Name	"a" coefficient of the	"b" coefficient of		
	Power Function	the Power Function		
Soil over limestone	339	-1.288		
(0 ft of shale) (Control)				
Soil over shale over limestone	216	-1.081		
(Shale thickness: 0.5-5 ft)				
Soil over shale over limestone	291	-1.143		
(Shale thickness: 5.5-10 ft)				
Soil over shale over limestone	542	-1.302		
(Shale thickness: beyond 10 ft)				

Table 5. 2 The a and b coefficient of power function equation for each group.

Based on all the developed relationships, the relationship of soil over limestone provided a reliable and useful depth to rock estimations. Although, the prediction bounds are large, this relationship will still be of use in many practical situations. An example is presented at the end of this chapter. However, when shale is present, specifically when the thickness of the shale is 5 ft and greater, the predicted depth to rock relationship is different and has much larger uncertainties, such that it may be of little to no practical use. Therefore, it is important to identify if shale is present either from prior knowledge of the site, or possibly from attributes of the HVSR plot. The next section investigates whether other attributes of the HVSR plot may indicate the presence of a thick shale layer (i.e. lower impedance bedrock).

5.3 Identifying Shale from HVSR Attributes

The work by Tuan (2009) described in Chapter 2 showed that the impedance contrast between soil and rock affects attributes of the HVSR plot. Because the

impedance contrast of soil/shale is lower than soil/limestone, it was hypothesized that it may be possible to detect the presence of shale from attributes of the HVSR plot. The attributes that were studied are: frequency ratio of the peak and trough, the standard deviation of the frequency of peak and trough, the amplitude ratio of the peak and trough, and the standard deviation of the amplitude of peak and trough. These attributes are described and illustrated in Chapter 2, Figure 2.10 and 2.11. The plots of these relationship are shown in Figures 5.9 to 5.11.

It was hypothesized that the soil/limestone and soil/thick shale data points would be clustered into distinct regions such that by measuring these features of the HVSR plots the presence or absence of a thick shale layer could be determined. However, as shown in Figure 5.9 to 5.11, no clear separation between groups was observed and it was concluded that subsurface conditions could not be inferred from the attribute plots.

Figure 5. 9 Frequency ratio of trough/peak vs. standard deviation of the peak frequency (top) and frequency ratio of trough/peak vs. amplitude ratio of peak/trough (bottom)

Figure 5. 10 Standard deviation of the peak frequency vs. amplitude of peak/trough (top) and frequency ratio of trough/peak vs. amplitude of the trough (bottom)

Frequency ratio of trough/peak (Hz/Hz)

Figure 5. 11 Frequency ratio of trough/peak vs. standard deviation of the amplitude of the peak frequency

5.4 Example Application of the HVSR Method

HVSR measurements were performed at a site near the University of Missouri campus as described in Chapter 3, where nearby borings showed no shale was present. The objective was to estimate the depth of soil over rock for settlement predictions. Although the limestone outcrops were visible, it was not known if rock was a few feet below the surface or many tens of feet. In addition, it was not possible to mobilize a drilling rig due to irregular terrain. Refraction tests was performed by another company to estimate the depth to rock. A total of six HVSR measurements were performed as part of this work over a period of a few hours, and the relationship of soil over limestone developed in this study (Fig. 5.4) was used to predict the depth to rock. The depth to limestone estimates from the HVSR method are compared to the estimated rock depth based on the velocities obtained from the refraction results, as shown in Figure 5.12. It should be noted that the HVSR measurements were performed blind with no information from the refraction results used in the analysis. As shown in Figure 5.12, the depth estimation from the HVSR method agreed well with the refraction method, with differences of only a few feet in most cases. All of the rock depth estimates from the refraction tests fell within the 90% prediction range of the HVSR measurements.

Figure 5. 12 The ground surface elevation (red solid line), the estimated depth to limestone using HVSR relationship for soil over limestone (red x marker), error bars indicating 90% prediction range, and the estimated depth to limestone refraction measurements (black dash line).

5.5 Summary

This chapter presented the frequency and depth to bedrock relationships developed from 65 HVSR data points. A regression using a power function fit was performed and prediction bounds of the fitted curve were determined. The data points were next categorized into separate plots based on the subsurface profiles and used to investigate the factors influencing the prediction bounds. It was determined that the shale layer has a large effect on scatter and uncertainty in the predicted depths. It was also observed in all cases that the scatter and uncertainty increased at lower frequencies (i.e larger depths). Other attributes of the HVSR plots were used to investigate if the existence of a thick shale layer could be identified. Lastly, the result of a practical application of the HVSR method was presented.

It was determined that a reliable relationship for the soil over limestone condition could be developed, with 90% prediction bounds of \pm 7 ft over the frequency range of 5 to 10 Hz and \pm 5 ft at frequencies above 10 Hz, the average error between the fit and measured data was 12%. A poor prediction was observed when thick shale was present in the subsurface profile, with prediction bounds of as much as \pm 15 ft. The attempt to identify shale from attributes of the HVSR plots was not successful. Finally, a practical example of the successful application of the soil over limestone relationship was presented.

6. DISCUSSION

6.1 Introduction

The main objective of this thesis is to develop a relationship for the University of Missouri campus to predict the depth to rock from HVSR frequency measurements. In this chapter, the results presented from Chapter 5 are discussed and the findings are compared to similar past studies. Moreover, the consistency and reliability of HVSR measurements are discussed and evaluated based on limited repeat measurements performed in this study. Finally, results from the application of the HVSR soil limestone relationship presented in Chapter 5 are discussed.

6.2 Depth to Bedrock Relationships

As mentioned in Chapter 5, the relationship between the resonant frequency of the site (f_r) , the depth to bedrock (H), and shear wave velocity (V_s) for a two-layer system can be expressed as:

$$H = 0.25V_s * f_r^{-1}$$
 (Eq. 5.1)

This equation can be rewritten into a more general term as:

$$H = a * f_r^{\ b} \tag{Eq. 5.2}$$

where a and b are unknown regression coefficients.

In addition, the V_s profile for soil can also be modeled with a power function relationship that depends on the soil structure and composition (A) and effective stress (σ'_v):

$$V_s = A(\sigma'_v)^m \tag{Eq. 2.1}$$

The exponent, m, can often be assumed to be about 0.25.

If the effective stress in Eq. 2.1 is replaced with the product of unit weight and depth, and the average shear wave velocity is calculated using the methods described in Chapter 2, the following relationship can be derived:

$$H = a * f_r^{-1.33}$$
(Eq. 6.1)

This shows that the expected exponent should be around -1.33 for a soil with a velocity profile that follows Equation 2.1. Stokoe et al. (2014) present A values for reference profiles of stiff silt/clay and dense sand. Using these A values and the simple weighted averaging of Equation 2.3, it can be shown that the *a* coefficient in Equation 6.1 will be around 340 for clay and around 490 for dense sand, using units of ft/s for velocity. These values are presented to illustrate the expected range of values for typical soil profiles. The derivations of these relationships are presented in Appendix C.

When all data were plotted versus the depth to first bedrock encountered, as shown in Figure 5.2, the power fit had parameters of 391 for *a* and -1.379 for *b*. These values are consistent with the expected values derived above. However, very large prediction bounds at the low frequency range of 5 to 10 Hz were calculated with slightly narrower prediction bounds for frequencies above 10 Hz. The prediction errors at low frequencies were large enough that the relationship would be of limited use for many practical applications. The relationship developed using depth to refusal produced fitting parameters that were not as consistent with theoretical expectations and showed much more scatter (Fig. 5.3).

The data presented in Figure 5.2 were then divided into two categories based on bedrock conditions. The relationship developed for soil over limestone (Figure 5.4)

produced a relationship with less scatter and *a* and *b* parameters (339 and -1.29 respectively) that were consistent with expected values. Although the prediction bounds were still relatively large, this relationship could certainly be used for many practical problems as a quick means to estimate the depth to bedrock, as shown for the practical example presented in Chapter 5. The values of the power function fit are compared to the values from other measurements in past studies in Table 6.1. The average percent error between the measured data and the fit was around 12 %, which is consistent with other studies.

Fitting Parameters			Polationship names & Potoronco		
<i>a</i> (ft)	a (meters)	b	Relationship names & Reference		
382	116	-1.367	Depth to first rock encountered relationship		
339	103	-1.288	Depth to limestone relationship-soil/limestone		
424	123	-1.404	Depth to shale-soil/shale/limestone profile		
471	144	-1.334	Depth to limestone-soil/shale/limestone profile		
-	96	-1.388	Ibs-von Seht and Wohlenberg,1999		
-	108	-1.551	Parolai et al., 2002		
-	137	-1.190	Hinzen et al.,2004		
-	56	-1.268	Delgado et al.,2000		

Table 6. 1 Measured parameters "a" and "b" from this study and past studies

6.3 Influence of Shale on the HVSR Relationship

The presence of shale in the subsurface profile generally correlated with greater scatter in the HVSR relationships, as shown by comparing Figure 5.4 to Figure 5.5 and 5.7. When the data are plotted versus the soil/shale interface (Figure 5.5), a reasonable relationship is obtained, as shown in Table 6.1. However, large scatter was observed, specifically in the low frequency region of 5 to 10 Hz, where errors were as large as 58%. The greater scatter for the shale rock case as compared to the limestone case would

indicate the shear velocity (V_s) of soil above shale is more variable than the V_s of soil above limestone, which is not a likely explanation. However, another explanation is that the impedance contrast at the soil/shale interface is not large enough to produce a reliable peak in the HVSR plot from the soil/shale interface. Instead, the measured peak is possibly due to the soil/limestone interface. Thus, the data were re-plotted versus depth to limestone, as shown in Figure 5.7.

Large scatter was also observed in Figure 5.7. However, in this case the scatter could be explained by the effect of the shale on the average shear wave velocity ($V_{s,AVG}$) above the limestone due to shale layer, where the higher-velocity shale layer will shift the $V_{s,AVG}$ to values that are greater than expected for a typical soil profile. The higher $V_{s,AVG}$ would tend to shift the curves to higher frequency, which was observed in Figure 5.8. It is expected that this effect would be most pronounced for thicker shale layers, which is what was observed in Figure 5.8 where the data were subdivided into shale thickness classes. Therefore, the more likely explanation of the poor performance of the HVSR results in soil/shale/limestone profiles is the large change in $V_{s,AVG}$ above the soil/rock interface due to shale layer. This change in $V_{s,AVG}$ can be observed in the fitting parameters presented in Table 5.2, where the "A" values generally increase with the shale thickness.

Due to the existence of two unknown variables: the V_S of shale and the thickness of shale, it is not possible to develop a useful and reliable relationship for the soil over shale over limestone condition. In addition, the HVSR technique does not measure either of these two variables. Therefore, unless one has performed velocity measurements to calibrate the "A" parameter to produce a more reliable relationship, this relationship of soil over shale over limestone cannot be effectively used without large prediction errors.

6.4 Variability of the HVSR Peak Frequency

In this section a few sources of additional uncertainty in the HVSR results are discussed. These factors were investigated to a limited degree in this work, but not incorporated into the relationships that were developed.

6.4.1 Directionality

As mentioned in Chapter 4, the HVSR technique measures one vertical channel and two horizontal channels. The approach taken in this study was to use the common method of taking the squared average of the two horizontal components to calculate the HVSR plot. However, one could also just use the north-south component, or the east-west component, or combine them to obtain any direction. Therefore, another way to present the HVSR frequency data is using a directionality plot, which shows the frequency peak as a function of wave direction. Directionality plots were generated for all 65 measurements and can be found in the Appendix D. Most directionality plots showed consistent peak frequency values with direction, as illustrated in Figure 6.1a. However, for a few measured locations, the deviations were as much as 40%. An example is shown in Figure 6.1b where the highest peak at an azimuth of 90 degrees is about 5.5 Hz, but at 20 degrees the highest peak is near 8 Hz. Therefore, this is a source of uncertainty that was not quantified in this study and should be included in future studies. However, this factor is expected to have a minor influence on the relationships because it was only observed at a few sites.

Figure 6. 1 Directionality plot for Lee's Hall BH 15 (left) and Journalism BH 6 (right), color indicated the amplitude of H/V ratio from different directions. 90 degrees are in the North direction, the 0 degree is in the East direction.

6.4.2 Repeat Measurement

In addition to investigating the consistency of HVSR peak frequency values for a single measurement from different directions, the HVSR measurements were repeated at a few sites to observe the variability in the peak frequency value for different dates and times of days. As can be seen Figure 6.2, some sites showed variations in the peak frequencies of as much as 18%. One explanation for this variability may have to do with different dominant propagation directions at different times of days (i.e. the dominant ambient noise source changes) producing different peaks due to the directionality effect presented above. It is also possible that the noise from a nearby building may dominate and affect the results at certain times of days. This variability was greater than expected and should be further investigated and quantified in future work.

Figure 6. 2 The peak frequency used in this study (black dash line) and the percent difference in peak frequency from repeated measurements (black circle)

6.5 Application of the HVSR Method

Based on the findings from this study, a useful relationship was developed for cases where the profile is known to consist of soil over limestone. The results presented from a project in Central Missouri where that was the case showed errors in bedrock estimates were in the range of ± 0.5 ft to ± 3.2 ft. and demonstrated the applicability of this simple method when more robust methods are either too expensive or too difficult to deploy.

When shale is present, the uncertainties in the relationships were too large to be of practical use. Therefore, it would be helpful if the presence of shale could be identified from the HVSR data so it would be known that the relationship for that point is unreliable. In Chapter 5, several attributes of HVSR plots were identified and investigated as a means to detect the presence of shale. The study was conducted based on observations presented in Tuan (2009) for simple two-layer models (Figures 2.9 and 2.10). Unfortunately, the results from the study herein did not show any attributes of the HVSR plot for the soil/shale/limestone cases that differed consistently from the soil/limestone case. It is unclear why no trends were observed, but other unknown site factors likely dominated the expected effect.

In summary, the depth to bedrock can be found with great accuracy from various methods such as drilling and seismic refraction. However, the advantage of the HVSR method is that it is a single-station, economical, portable, non-intrusive and easily deployed technique that does not require an active source. It only takes approximately 15 minutes to collect a measurement and it does not require expertise to analyze the data or interpret the results. Although the relationship developed for soil over limestone provided

a useful depth estimate from the findings of this study, the HVSR method is a crude tool that should not be used blindly. Because the existence of a shale layer in the profile cannot be detected by the HVSR measurements, this method cannot be applied broadly in Central Missouri unless the site is known to consist of soil over limestone. The measurement predictions could certainly be improved by performing surface wave measurements to obtain the V_S velocity profile. The combined use of surface waves and HVSR is now often done but suffers from the same drawbacks of extensive equipment deployment and expertise to perform the measurements. The study herein specifically focused on the use of the HVSR method alone as a site investigation method.

6.6 Summary

Discussions of the relationships developed between HVSR frequency and depth to bedrock were presented in this chapter. The relationships were separated into different plots based on the bedrock conditions to investigate the large scatter observed in the relationships. The relationship of soil over limestone produced a reliable depth to rock estimation while the other relationships developed for profiles containing a shale layer did not. The degree of scatter is likely influenced by the thickness and shear wave velocity of the shale, values that are not known without other supplemental measurements. The consistency and reliability of the HVSR peak frequency was also discussed in this chapter. In addition, a discussion on the practical application of the HVSR method in Central Missouri was presented. The results from this application showed that the HVSR method can be used to reliably estimate the depth to rock when shale is not present. However, the HVSR method should not be used blindly when the

bedrock conditions are not known as a large error in the depth to rock prediction is possible.

7. CONCLUSION

7.1 Summary

Depth to bedrock determination is an important parameter in geotechnical site investigation. Numerous methods such as drilling, resistivity and seismic refraction can be used to determine the depth to bedrock. However, these methods can be expensive, labor intensive, time-consuming, and require expertise to perform. A more recent, simple geophysical method to determine the depth to rock is the Horizontal-to-Vertical Spectral Ratio (HVSR) method, which is a single-station method that requires only passive ambient noise, can be easily deployed by a single person quickly, and requires only minutes to collect data.

The central objective of this study was to use the HVSR method to develop a relationship for the depth to rock around the University of Missouri campus from the frequency measured from HVSR. Importantly, this approach can be performed without an independent shear wave velocity measurement. A total of 65 HVSR measurements were performed around the campus, where ground-truth data on bedrock depth were available from borings log. The ambient noise records were processed, analyzed, and interpreted using the open source Geopsy software. The relationship of depth to bedrock and frequency was developed using a power function fit for all data and the subsets of data that were developed based on the bedrock conditions.

Large 90% confidence bounds (\pm 10 ft) in depth estimates were observed when all the data were considered. However, when the data were separated into subsets based on the geology, the relationship of soil over limestone provided a useful estimate of the bedrock depth, where the 90% confidence bounds were \pm 6 to 7 ft. The average error in

measured versus predicted values was 12%, with a range of 0.5 to 7.7 ft. This error is consistent with the errors reported from work of Delgado (2000), which is 15%. In addition, the values of the power function fit of this relationship agreed with measurements from past studies and expected values from theoretical considerations.

However, when shale was present in the subsurface profile, the relationship of depth to limestone showed very large confidence bounds (\pm 15 ft), which limit the usefulness for rock depth prediction applications. This poor performance in soil/shale/limestone profiles is likely due to the large change in the average shear wave velocity ($V_{s,AVG}$) above the soil/limestone interface due to the shale layer. Other attributes of HVSR measurements were investigated as a means to detect the presence of shale, and therefore identify measurements that were not reliable. However, these relationships did not provide enough evidence to support their use as a means of identifying shale in the subsurface.

The HVSR method was also performed at a major ongoing construction project near the University of Missouri. The results from this application showed that the HVSR method can be used to reliably estimate the depth to limestone when it is known beforehand that shale is not present. The HVSR results were in very good agreement with refraction measurements performed by another contractor, the average errors of depth prediction were within 12%.

7.2 Conclusions

Based on the results of this study, it was concluded that the HVSR method can be used to reliably estimate the depth to limestone around the University of Missouri campus when the subsurface profile is soil over limestone. The 90% confidence bounds

were around 6 to 7 ft over a bedrock depth range of 10 to 50 ft. The average error in bedrock depth prediction was 12% for the 20 data points. However, when the subsurface profile included a shale layer the scatter was large with errors of as much as 58%. The large uncertainty is likely due to the variable thickness and higher shear wave velocity of the shale than soil, which will tend to shift the data points to higher frequencies for thicker shale layers. Neither the thickness nor shale velocity can be measured from HVSR alone. Also, the results showed the presence of shale was not indicated by other attributes of the HVSR plot. Therefore, it was concluded that the HVSR method can only be used reliably to estimate the depth to limestone when supplemental information (i.e. nearby borings) indicates that shale is not present or very thin. Bedrock depths predicted from HVSR measurements at a nearby construction site presented in this thesis support these conclusions.

7.3 Recommendations

It is recommended that the relationship of depth to limestone versus frequency developed in this study can be used on future site investigations for construction projects at the University of Missouri when the subsurface profile is known to not include shale layers. This may be beneficial, for example, when the contractor needs to relocate foundation locations to sites without boring information. In addition, the HVSR method could be performed prior to drilling operations to examine the variability of bedrock depth around the site and develop a more efficient and economical plan for the number and location of borings.

Based on the conclusions presented in this thesis, one recommendation for future work is to perform more HVSR measurements around Central Missouri to refine and

improve the relationships and investigate and characterize the errors in depth to rock prediction when considering other factors. Also, there is a need to develop simple procedures to measure and incorporate shear wave velocity measurements to improve the accuracy of the predictions. In addition, more work should focus on the repeatability of the measurements and the impact of temporal and directional factors on measurement variability.

REFERENCES

Bignardi, S., 2017. The uncertainty of estimating the thickness of soft sediments with the HVSR method: A computational point of view on weak lateral variations. *Journal of Applied Geophysics*, *145*, pp.28-38.

Bonnefoy-Claudet, S, Cotton, F, Bard, P., 2006. The nature of noise wavefield and its applications for site effects studies. A literature review. Earth-Science Reviews. 79. 205-227. 10.1016/j.earscirev.2006.07.004.

Bodin P, Smith K, Horton S and Hwang H., 2001. "Microtremor observations of deep sediment resonance in metropolitan Memphis, Tennessee," Engineering Geology, vol. 62, no. 1–3, pp. 159–168.

Chen, Q., Liu, L., Wang, W., and Rohrbach, E., 2009. "Site Effects on Earthquake Ground Motion based on Microtremor Measurements for Metropolitan Beijing." *Chinese Science Bulletin*, 54(2), 280-287.

Delgado, J., Lopez Casado, C., Giner, J., Estevez, A., Cuenca, A. and Molina, S., 2000. Microtremors as a geophysical exploration tool: applications and limitations. *Pure and applied geophysics*, *157*(9), pp.1445-1462.

Fäh, D., Rüttener, E., Noack, T. and Kruspan, P., 1997. Microzonation of the city of Basel. *Journal of Seismology*, *1*(1), pp.87-102

Gallipoli, M.R., Albarello, D., Mucciarelli, M. and Bianca, M., 2011. Ambient noise measurements to support emergency seismic microzonation: the Abruzzo 2009 earthquake experience. *Boll. Geof. Teor. Appl*, *52*, pp.539-559.

Gosar, A.: Study on the applicability of the microtremor HVSR method to support seismic microzonation in the town of Idrija (W Slovenia), Nat. Hazards Earth Syst. Sci., 17, 925–937, https://doi.org/10.5194/nhess-17-925-2017, 2017.

Geopsy Project. 2009. Geopsy Project. Accessed 4 Aug. 2009, at http://www.geopsy.org/ (accessed 20 February 2022).

Hinzen, K.G., Weber, B. and Scherbaum, F., 2004. On the resolution of H/V measurements to determine sediment thickness, a case study across a normal fault in the Lower Rhine Embayment, Germany. *Journal of Earthquake Engineering*, 8(06), pp.909-926.

Ibs-von Seht, M., and Wohlenberg, J., 1999. "Microtremor measurements used to map thickness of soft sediments." *Bulletin of the Seismological Society of America*, 89(1), 250-259.

Konno K, Ohmachi T., 1998. "Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor". Bull Seism Soc am 88(1):228-41.

Lane, J & White, E & Steele, G & Cannia, J., 2008. Estimation of Bedrock Depth Using the Horizontal-to-Vertical (H/V) Ambient-Noise Seismic Method. 490-502. 10.4133/1.2963289.

Lermo, J. and Chavez-Garcia F.J., 1993. Site effect evaluation using spectral ratios with only one station. Bull. Seism.Soc. Am., 83, 1574-1794.

Martorana, R, Capizzi, P, D'Alessando, A, Luzio, D, Di Stefano, P, Renda, P & Zarcone, G., 2018. Contribution of HVSR measures for seismic microzonation studies. Annals of Geophysics. 61. 10.4401/ag-7786.

Nakamura, Y.,1989. "A Method for Dynamic Characteristics Estimation of Subsurface using Microtremor on the Ground Surface", Quarterly Report of Railway Technical Research Institute (RTRI), Vol. 30, No.1.

Nogoshi, M. and Igarashi, T., 1971. "On the Amplitude Characteristics of Microtremor (Part 2) (in Japanese with English abstract)", Jour. Seism. Soc. Japan, 24, 26-40.

Pazzi V, Tanteri L, Bicocchi G, D'Ambrosio M, Caselli A, and Fanti R., 2017."H/V measurements as an effective tool for the reliable detection of landslide slip surfaces: Case studies of Castagnola (La Spezia, Italy) and Roccalbegna (Grosseto, Italy)," Physics and Chemistry of the Earth, Parts A/B/C, vol. 98, pp. 136–153, Apr. 2017.

Parolai, S., Bormann, P., and Milkereit, C., 2002. "New Relationships between Vs, Thickness of Sediments, and Resonance Frequency Calculated by the H/V Ratio of Seismic Noise for the Cologne Area (Germany)." *Bulletin of the Seismological Society of America*, 92(6), 2521-2527.

Rosenblad, B & Goetz, R., 2010.Study of the H/V spectral ratio method for determining average shear wave velocities in the Mississippi embayment. Engineering Geology - ENG GEOL. 112. 13-20. 10.1016/j.enggeo.2010.01.006.

SESAME, 2004. Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations. Measurements, processing and interpretation. SESAME European Research Project, WP12 eDeliverable D23.12, European Commissioned Research General Directorate. Project No. EVG1-CT-2000e00026 SESAME.

Stanko, D., Markušić, S., Gazdek, M., Sanković, V., Slukan, I. and Ivančić, I., 2019. Assessment of the seismic site amplification in the city of Ivanec (NW Part of Croatia) using the microtremor HVSR method and equivalent-linear site response analysis. *Geosciences*, 9(7), p.312.

Dronfields T., Stannard D., & Meyers J., 2019. Passive seismic horizontal to vertical spectral ratio (HVSR) surveying to help define bedrock depth, structure and layering in shallow coal basins, ASEG Extended Abstracts, 2019:1, 1-5, DOI: 10.1080/22020586.2019.12073175

Tuan T., Scherbaum F., Malischewsky P., 2011. "On the relationship of peaks and troughs of the ellipticity (H/V) of Rayleigh waves and the transmission response of single layer over half-space models". Geophysical Journal International, Vol 184, p793-800, DOI: 10.1111/j.1365-246.2010. 04863

Unklesbay, A. G., 1952. "Geology of Boone County, Missouri," State of Missouri,Jefferson City, Mo., 169 pp.

Walling, M & Mohanty, W., 2009. "An overview on the seismic zonation and microzonation studies in India," Earth-Science Reviews, vol. 96, no. 1–2, pp. 67-91

APPENDIX A-1

BORING LOG

-

					BORING LOG		
-						SH	EETOF
	PROJ	ECT NAM	ε	E	LLIS LIBRARY - MU	PR	OJECT NO. 13070
				DA	TE		
-		8-1		PR	DJECT LOCATION Columbia, MO	RI	GCME-55
	L			w	ATER ENTERS EL. 740 ATD		
-	SURF	ACE ELE					
	DEPTI	H S TYPE	REC	RESIST	DESCRIPTION	u.s.c.	SPECIAL NOTES AND FIELD OBSERVATIONS
÷	0				Very stiff to hard, brown, highly plastic Silty CLAY with organics, blocky texture	СН	Boring advanced with 4" diameter CFA
		C	$\frac{12}{12}$	Ρ			WC≥PL
7		$\overline{\left\{ \begin{array}{c} \end{array}\right\} }$			Hard yellowish-tan with gray, low plastic Silty CLAY with small nodules of limonite	CL	PP>9.0 ksf _
÷		+ c	12	P			WC>PL -
	5-	+	12				PP = 4.5 ksf
÷		-			-		
		-			-		-
<u> </u>		-			 plastic Sandy CLAY with rock fragments 		-
4		$\frac{1}{c}$	12	P			-
	10-		12		Very stiff to hard, reddish-brown mott-	1	WC>PL
-	.	-			Sandy CLAY with rock fragments, zones		PP = 6.0 ksf
		-			gray, fine grained, Clayey SAND	SC	-
4	.	-					
			12	р			WC>PL -
-	15 -	+	12				PP>9.0 ksf
_		-					
		-			Becoming mixed with hard, grav. fine	W/	-
Ļ		4			grained poorly graded SAND with clay	SP	4
					- Very stiff, reddish-tan with gray.	СН	1 _
L		C	$\frac{12}{12}$	Р	highly plastic CLAY with lenses of	W/	WC > PL
	20-	8			- The gramed salo	J	PP>9.0 ksf
_	1	-				1	1 1
		1				- 	
_		-			grained, Silty SAND with pockets of	W/	-
		+	4/4	P	very stiff, reddish-brown, highly plas	СН	Water detected-
_	25 -	<u> </u>	Ľ	L		1	
	<u> </u>				WOODWARD-CLYDE CONSULTANTS		

Figure 2: Ellis Library Borehole 1
.

JRFACI	E ELI	EVATION	PF (0 	JECT LOCATION <u>Columbia</u> , MO GED BY <u>C. Franks</u> ORILLED BY <u>R. Herber</u> ELEVATION DATUM <u>USC & GS</u>		G CHE-55 ATER ENTERS E1. 740 A
PTH	TYPE	REC	RESIST	DESCRIPTION	us.c.	SPECIAL NOTES AND
5 -				SAME: Dense, reddish brown to yellow- ochre and gray, poorly graded, fine grained Silty SAND with pockets of very stiff, highly plastic CLAY	SM - W/ CH	
- - -₀	C	6/8	Ρ			
-						
	s	<u>16</u> 18	7 ₁₈ 21	- - 	- - -	-
					-	
+ ,, 	S	18 18	8 17 20		-	Boring continued with NX double tub core barre! with - diamond bit and water
	NX RUN ∦1	<u>35</u> 48	0 48	LIMESTONE/CHERT: Gray, maroon, cream and dark gray, moderately weathered, to unweathered with zones of severely weathered material; micro-crystalline to finely crystalline; thin-bedded, jointed, very fractured, fossiliferous with very stiff, cream, highly plastic CLAY seams -	- LS W/ - CH	NX RUN #1 Start: 41.5' Stop: 45.5' Run: 4.0' Rec: 2.9' Lost: 1.1'
	NX RUN #2	<u>60</u> 72	<u>32</u> 72	- Becoming less fractured, very fossilif- erous zone; possibly sedimentary breccia		NX RUN #2 Start: 45.5' Stop: 51.5 Run: 6.0' Rec: 5.0'

Figure 3: Ellis Library Borehole 1 (Continue)

95

-

-

						BOILING LOO				
1.1	75						SH	EET <u>1</u>	_ OF	<u> </u>
	PROJE	CT NAM	IE	EL	LIS	LIBRARY - MU	- 28	OJECT NO.	13070	
_							DA	TE	12-83	
		8-1		PR	OJEC	T LOCATION Columbia, HO	- 81	GCM	<u>2-55</u>	
r.	·			— ю	GGED	BY C. Franks DRILLED BY R. Herber	- w/	ATER ENTER	(S <u>E) /4</u> (
-	SURFA	CE ELE	EVATION	764	I	ELEVATION DATUM USC & GS				
	DEPTY	TYPE	AMPLE	RESIST		DESCRIPTION	u.s.c.	SPECIAL FIELD OB	NOTES AN	0
_	50 -	NX R	UN #2			LIMESTONE: Gray with green and some pink,	LS	NX RUN	12	
	1 .	(Co	at.)		-	lightly weathered to unweathered, micro		(Cont.)		-
		NX	4/12	0/12	1	crystalline; with thin clay partings and		NX RUN	#3	
-			332	02	r	crush zones, occasional chert layers; -	1	Start:	51-51	
		- NX	1		1-	-		Run:	1.0'	-
		RUN			1			Rec:	8-3:	
-	0	#4	53	33	F		1	NX RUN	#4	- 1
			60	60				Start:	52.5	
	55 -							Stop:	57.5	
_		4			F		1	Run:	5.0	-
								Lost:	0.6'	
_	1		882	55%	Γ			DWR	90%	
		4			-	-	4	Bottom	of boring	9 –
								,	1.5	1
-	1	1			F	-				
	60-	_					4			_
	0									
-		-			F	27 S-	4			1
	1				L	-	4			4
		7			Γ					
-		4			F		-			-
_	8	1			Γ					
	65 -	4			_		-			
				1						_
<u> </u>		-					7			
		_			F		4			3 <u></u>
								1		
-	1	-			F		1			
					L		4			-
3										
	70-			l.	F	· · · · · · · · · · · · · · · · · · ·	4			
					1200					-
-		1	1		Γ					
		-1			F		-			
			1			4]	1		_
-		1		1	Γ					
	1	-			F		-			
	75							1		
-	/>-					WOODWARD-CLYDE CONSULTANTS		FIGURE	NO	6

Figure 4: Ellis Library Borehole 1 (Continue)

-							
i					BORING LOG		
_					Boltino Eco	SH	EET OF. 3
	PROJE	CT NAM	E	EL	LIS LIBRARY - MU	PR	OJECT NO 130070
				-		DA	TE 7-13-83
		B-2		PR	DJECT LOCATION Columbia, MO	RI	GCME-55
	.				GED BY C. Franks DRILLED BY R. Herber	W/	ATER ENTERS EL. 732 ATD
	SURFA	CE ELE	VATION	765	ELEVATION DATUM USC & GS		
^	DEPTH	S TYPE	REC	RESIST	DESCRIPTION	u.s.c.	SPECIAL NOTES AND FIELD OBSERVATIONS
	0 -				ASPHALT	F	Boring advanced with
-	-				CRUSHED ROCK FILL	1	4" diameter CFA -
		1			Clay FILL with some rock fragments	<u>-</u>	
-							
i	-	1			Very stiff, reddish-brown, low plastic,		WC>PL _
					Silly CLAI		
-		С	12	Р	Becoming gray with reddish-brown, with	1	WC>PL 7
	5-		12		limonite	4	PP = 4.5 ksf
_					Very stiff, mottled gray with rust, high-	СН	
	-	4		ŧ I	ly plastic CLAY with fine sand and small	4	-
-					rock fragments		
1		1				1	1 1
	-	<u> </u>				4	4
-		U	$\frac{0}{12}$	Р	Becoming yellow-ochre and gray with		
1	10 -		24		Dlack zones	1	WC > PL
		0	12			4	
Ξ.	1						PP = 5.5 kst
		1					-
	_						-
			1				
	-	C	12	Р			WC>PL
-	15-		12		- highly plastic CLAY with thin partings	4	
					limonite, trace of fine sand and rock	1	rr=0.5 KST
	1 7	1			- fragments -	1	1
<u></u>						4	-
-	-	1			Becomes mixed and mottled reddish-brown	1	-
	-				_ and gray-olive with black increasing _	4	VC>PI -
E		C	12	P	number of and size of rock fragments		
-	20					1	PP>9.0 ksf
	_					4	4
_						1	
	-	1			 Becoming reddish-brown mottled with 	1	1
	_	2			_ gray _	4	-
			1				
		с	12	Р		1	WC>PL 1
	25		12	<u> </u>		L	PP>9.0 ksf
-	L	1			WOODWARD-CLYDE CONSULTANTS		FIGURE NO /

Figure 5: Ellis Library Borehole 2

			_		SH	EET OF
ROJECT	NAN	4E		LIS LIBRARY - MU	— PF	OJECT NO. 130070
1	B-2			ourser Loosana Columbia MD	D4	TE
				OJECT LOCATION COTOMOTEL, NO		4 LIL-33
			. 765	ALD BY PRILLED BY R. Herber	- "	ALER ENTERS CI. 134 P
JRFAÇE	ELI	EVATION	<u></u>	ELEVATION DATUM USC 6 GS		
EPTH	YPE		RESIST	DESCRIPTION	u.s.c.	SPECIAL NOTES AND
5 🕇				SAME: Very stiff to hard, reddish-brown	CH	
_				mottled with gray and yellow-ochre,	W/	
		1		highly plastic Sandy CLAY with dense,	SM	
-1				 gray, fine grained poorly graded Silty 	-	
				SAND and occasional large gravel		
4		1			-	
						WU > PL
T	C	12	P		7	
₀- -		12			1	PP = 7.0-8.0 ksf
				orained, poorly graded SAND with sile	1 24	in a second s
1				and pockets of highly plastic CLAY	1 "	
٦					1	
4	6				4	Water detected
						ATD
-+-			10		-	
.	\$	$\frac{10}{18}$	17			-
°–Ľ			16	Hard, prange, highly plastic CLAY with	Сн	
_				_ sand and rock fragments with layers of .	W/	
	20			dense, orange, medium to finely grained	SP	20
-				 poorly graded SAND with silt 	4	
		1				
٦				-	1	
	c i	18	5,,			WC < PL
) – .	3	10	28		-	Boring continued
				clay	Сн	core barrel with
٦				LIMESTONE W/CHERT: Medium grav, very	115	diamond bit and
- -		·	RQD	_ fractured; weathered to unweathered	W/	water
				micro-crystalline to finely crystalline,	CHERT	NX RUN #1
	#1	51	10	with fossils, pyrite, siliceous zones	-	Stop: 515
		114	114	with layers of dark gray to black CHERT		Run: 9.5'
٦				-	1	Rec: 4.25'
_					4	Lost: 5.25' _
4				-	-	
1						
_				-		
	ŝ			Becoming fine to medium crystalline		
-					-	1
		45%	98			
/ 		61.0 K				

Figure 5: Ellis Library Borehole 2 (Continue)

BORING LOG

					BURING LOG	12.00	
-					5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	SHE	EET OF
	PROJE	CT NAM	E	EL	LIS LIBRARY - MU	PR	
_		0.2		٦.	columbia MO	BI	CME-55
1	L_	B-4			COLOCATION COTONICS, THE		TER ENTERS EL. 732 ATD
1	SUPFA		VATION	, 765	ELEVATION DATUM USE & GS		
-						-	SPECIAL NOTES AND
ì	DEPTH	TYPE	REC	RESIST	DESCRIPTION	u.s.c.	FIELD OBSERVATIONS
	50 -	NX RU	N #1	(Cont)	SAME: LIMESTONE/CHERT: Medium gray,	LS	NX RUN #1 (Cont)
	-				unweathered, fine to medium crystalline,		
					tossiliterous, with siliceous zones, with dark gray to black, brittle CHERT		NX RUN #2 -
-		RUN	48	19			Start: 51.5'
		#2	60	60	F	-	Stop: 56.5'
						_	Rec: 4.0'
-	-	1			Ē l		Lost: 1.0'
	55	4			- · ·	-	1 -1
_			802	322	_	4	4
							NY RIIN #3
	- 1	NX			-	7	Start: 56.5'
-	1 .	RUN	꿇	35	_	4	Stop: 61.5' -
		1					Run: 5.0'
-	-				-	٦	Lost: 0.6'
	60-	4			—		
	1						<u>.</u>
	-	1	582	582			
	1 -	-			þ.	4	Bottom of boring -
_						_	-
	1	1	ļ		Г		
		4	1		F	-	
-							
	65-						
10000001	· ·	-	1		F	1	
		1		1	L	-	
-	1	1			F	7	
	1	4	1			4	
-	1/0 -	7					
		-		1	F	-	
-			1	1	L	_	-
		7			Γ		
		-			F	4	1 1
-		1			L	4	4
			1				
-	75 -				WOODWARD-CLYDE CONSULTANTS	10 TO	FIGURE NO 9

Figure 6: Ellis Library Borehole 2 (Continue)

-

1							SHEET OF
	PROJEC	T NAM	E	EL	LIS LIBRARY - MU		PROJECT NO. 13C070
r		8-3			area together Columbia NO		RIG CHE-55
					GED BY C. Franks DRILLED BY R. Herber		WATER ENTERS EL. 743 ATD
	SURFAC	E ELE		761	ELEVATION DATUM USC & GS		
<u> </u>	OCOTU					- Inc	SPECIAL NOTES AND
		TYPE	REC	RESIST	DESCRIPTION	us	FIELD OBSERVATIONS
	ľ		1		ASPHALT		LL 4" diameter CFA
	-				Stiff to very stiff, olive-tan, low	C	
					- plastic Silty CLAY	-	WC>PL _
Ц							
Т			12		 Becoming gray with dark reddish-brown, with beavy iron staining 	-	WC>PL _
		U	12	Р			PP = 4.0 ksf
	2						
-	-				-		-
					-	4	-
1					summer of the second of the se		
	1				Very stiff to hard, gray and reddish-	C	HT T
1			12		brown, highly plastic CLAY with sand and mark fragments and black staining	4	-
لم	10	C	12	P	and FOCK Tragments and Drack starning		WC > PL
	10	0					PP 6.0 ksf
_	-				-	4	-
	_				_	4	
ł	. 1						
4					-	-	1 7
				ļ	 Becoming hard and fissured 	-	WC>PL -
_		C	$\frac{12}{12}$	P		-	PP>9.0 ksf
	15-						
			1		–	-	-
-		Ì			=	_	
1							
1			1		-	٦	
			1-77-		-	·· -	-
		C	12	P		_	WC > PL
-	20-						PP29.0 ksf
T	-				F	4	
1	1			1	L	_	
		2		1			
					Becomes very sandy	-	
-			12		-	4	
	25 -	с 	$\frac{14}{12}$	Р			ATD
-	25				WOODWARG-CLYDE CONSULTANTS		FIGURE NO. 10 -

Figure 7: Ellis Library Borehole 3

Figure 8: Ellis Library Borehole 3 (Continue)

2 OF.

_

					BORING LOG	_	1
ſ						SHI	EET OF
	PROJECT	NAME		ELL	IS LIBRARY - MO	- ^{- n}	TE 7-15-83
-		B-4			Ser LOCATION Columbia, MO	RIC	s CHE-55
	L				GED BY C. Franks ORILLED BY R. Herber	W/	ATER ENTERS EL. 737 ATD
_	SURFACE	ELE	VATION	765	ELEVATION DATUM USC & GS		
	DEPTH	S.	REC I	RESIST	DESCRIPTION	usc	FIELD OBSERVATIONS
-					Stiff to very stiff, reddish-tan, low plastic Silty CLAY –	CL	Boring advanced with 4" diameter CFA —
4				ł			WC≤PL -
				t	Becoming mixed with gray with blocky texture and limonite		
-		C	$\frac{12}{12}$	Р	Very stiff, light gray with light brown, highly plastic CLAY with silt and iron —	СН	PP>9.0 ksf
-							-
T					- · ·		
4			12	Р	 Becoming hard and fissured, with - some fine sand and rock fragments 	•	WC≥PL -
	10-		12			1	PP 29.0 KST
ï							_
					Hard, gray and reddish-brown, highly plastic CLAY with silt and sand, occa-		-
-		с	$\frac{12}{12}$	Р	black stains]	WC≥ PL PP>9.0 ksf
-	- "						
•					- · ·		-
							-
T	20	С	4/4	Р	Very dense, yellow-ochre, fine grained, poorly graded Silty SAND	SM	Poorly cemented
_!	-						-
	-				Becomes medium grained, mixed with SILT	- W/ CH	-
	-		10		and CLAY stratification	- m_L	-
-	25 —	s	18	⁹ 15 28	WOODWARD-CLYDF CONSULTANTS		FIGURE NO 12
					MARRIAN AFIAT AALAATING A		

Figure 9: Ellis Library Borehole 4

Figure 10: Ellis Library Borehole 4 (Continue)

103

APPENDIX A-2

Figure 1: Gateway Residents Hall boring plan (Aerial View), prepared by Terracon Consulting Engineers & Scientists

	E	BORIN	١G	LC	G	NC	D. B-1				F	Dage	1 of 1
PF	ROJECT: Virginia Avenue South Housing				CLI	ENT	: Univers Columb	ity of Misso ia. Missouri	uri				
Sľ	TE: Virginia Avenue Columbia, Missouri												
GRAPHIC LOG	LOCATION See Exhibit A-3 Approximate Surface Elev. 7 DEPTH ELEVA	'50 (Ft.) +/- ATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	SAMPLE NUMBER	SWELL (%)	UNCONFINED COMPRESSIVE STRENGTH (psf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS
	02. \(\TOPSOIL, 2"\) FAT CLAY (CH), trace sand, brown, with reddist	<u></u>	-			10	0000 / HI	D) 1			12		
	5.0 brown and black, hard FAT CLAY (CH), with sand, gray, with brown,	747+/-	_			22	6000 (HF	-) 2	1.8		17		47-13-34
	stiff to very stiff (Glacial Drift)		5 - - -				0000 (11	, 2	1.0				11 10 01
1. All	– trace gravel		- - 10-			19	3500 (HF	P) 3		3850	18	113	
10 m			-			24	8000 (HI	2) 4			20		
112/12			15-			24	8000 (11	-) 4			20		
ST.GPJ 11	CLAYEY SAND (SC), brown, medium dense (Glacial Drift)	732+/-	20-	V		24		5			19		
	23.0	727+/-		\bigtriangledown									
e ch	brown, hard (Glacial Drift) 26.0 SHALEY FAT CLAY (CH), grave, hard	720+/-	25-		~	5	50/5" N=50/5	. 6			17		
SEPARATED FROM ORIGINAL REPORT. TERRACON SIMART LOG-NO WELL 09135.	Stratification lines are approximate. In-situ, the transition may be g Classifications and stratigraphic boundaries estimated from distu pettographic analysis may reveal other rock types and stratigraph coment Method:	gradual. trad samples ic classification	. Core s ons.	sample	es and	f field n	rovertures N	fammer Type: Autor	natic SP1	r Hammen			
Aban Ba	id-stem augers Jonment Method: ckfilled with soil cuttings after obtaining 24-hour	See Appendix procedures ar See Appendix abbreviations.	B for d addit C for e	escript ional d xplana	ion of lata, (i tion of	laborat f any). f symbo	iory bls and						
	WATER LEVEL OBSERVATIONS	plan.	.e niter	ourane(2 11 0111	a topo	Bor	ing Started: 10/29/20)12	Borin	g Comp	leted: 10	0/29/2012
	22 feet while sampling 19 feet at completion of drilling		2	٢				II Rig: CME-75		Drille	. JBW		
	15 feet at 24 hours after completion of drilling	36	601 Moj Colur	ave Co mbia, I	ourt, S Missou	uite A ıri	Pro	ject No.: 09125165		Exhib	it:	A-4	

Figure 2: Gateway Residents Hall Borehole 1

	B	BORI	NG	LO	G	NC). B-2					F	Dage	1 of 1
PR	OJECT: Virginia Avenue South Housing			(CLI	ENT	: Univer Colum	sity of bia. Mi	Misso ssouri	uri			-	
SIT	E: Virginia Avenue Columbia, Missouri													
GRAPHIC LOG	LOCATION See Exhibit A-3 Approximate Surface Elev. 75	50 (Ft.) +/-	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS		SAMPLE NUMBER	SWELL (%)	UNCONFINED COMPRESSIVE STRENGTH (psf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits
	DEPTH ELEVA 0.3 _ <u>TOPSOIL</u> , 4" 10.1 \AGGREGATE BASE COURSE (GW) 8" base	110N (Ft.) / 149.5+ // /749+//	-			45	2000 (
	3.0 rock fill					15	4000 (2		1540	14	102	
	<u>Gark gray</u> <u>FAT CLAY (CH)</u> , with sand, trace gravel, gray, with tan and brown, stiff to very stiff (Glacial Drift)	t)	5	-		10	4000 (1	,	2	s	1340	~~~	102	
	 – sandy, with gravel, reddish brown, with tan and brown 	ĺ.	- 10-			24	6000 (HP)	3			27		
2/12	– with sand, gray		- - 15-			22	6000 (HP)	4		7890	17	115	
TTEST.GPJ 11/1	with brown		- - 20- -		X	18	4-6-1 N=1 6000 (10 6 — HP)	5			16		
9125165.GPJ 0DO	235 SHALE, gray, severely weathered, medium hard	726.5+/-	25- 	∇	X	18	20-27- N=7 9000 (1	-50 7 HP)	6	<u>s</u>		9		
0-NO WELL 0	17.8	717+/-	30-		×	5	50/5 N=50	/5"	7			_7_)		
	LIMESTONE, white and gray, with chert and shale, highly fractured, moderately weathered, hard		35- -			43	RQD =	0%	R1					
	39.3 LIMESTONE, gray, slightly weathered, hard	710.5+/-	- 40-			83 71	RQD =	10%	R2 R3					
	428 Boring Terminated at 42.8 Feet	707+/-												
PARATE	Stratification lines are approximate. In-situ, the transition may be g Classifications and stratigraphic boundaries estimated from visual	radual. observation	ns of sam	I ples.			-	Hammer 1	Type: Autor	natic SP1	Hamme	r		
Advance Solid	rerorgraphic and tossil analysis may reveal other rock types and s evenent Method: S d-stem augers S priment Method: S	stratigraphic See Exhibit A See Appendi procedures a See Appendi	Classific A-15 for d ix B for d and addit ix C for e	ations. lescript escripti ional da xplanat	tion o ion of ata, (i tion of	f field p laborat f any). f symbo	rocedures ory ols and	Notes: Note 1: A n obta of di appr	neaningful ained at con rilling fluid t roximatley 3	groundwa npletion o o facilitate 32.8 feet.	ter readin f drilling o e rock cor	g was r lue to th ing at a	not able ne introd depth o	to be uction f
හ Back grou	xfilled with soil cuttings after obtaining 24-hour a ndwater readings. P	abbreviations Elevations w blan.	s. ere inter	oolated	l from	a topo	graphic site	*						
	24 feet while sampling		er	6		-	חנ	Boring Starte	ed: 10/31/20)12	Borin	g Comp	leted: 10	0/31/2012
THISB	See Note 1 13 feet at 24 hours after completion of drilling		3601 Moj Colu	ave Co nbia, N	urt, S Aissou	uite A uri		Project No.: (09125165		Exhib	it:	A-5	

Figure 3: Gateway Residents Hall Borehole 2

				BORI	NG	LO	G	NC). В-(6				F	Dage	1 of 1
	PR	OJECT	: Virginia Avenue South Housing				CLI	ENT	: Unive Colur	ersity o nbia, M	of Misso Missouri	uri				
	SIT	Е:	Virginia Avenue Columbia, Missouri													
	GRAPHIC LOG	LOCATIO	N See Exhibit A-3 Approximate Surface Elev. 7	60.5 (Ft.) +/-	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST	RESULIS	SAMPLE NUMBER	SWELL (%)	UNCONFINED COMPRESSIVE STRENGTH (psf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS LL-PL-PI
	***		HALT CONCRETE, 2" GREGATE BASE COURSE 6"	760.5+/2 760+/2	-			12	6000		-			26	00	
			CONTROLLED FILL, fat clay, dark gray and	1 757.5+/-	-			10	5000	(HP)	2			20	103	
		FAT med	CLAY (CH), trace sand, brown and gray, lium stiff to very stiff (Glacial Drift)		5					()		· · · · · ·				
	1000	tra	ace gravel		10-			16	7000	(HP)	3			16	115	
/12/12		w	ith sandy zones		- - 15- -	-	X	14	4-6- N= 8000	-11 17 (HP)	4			18		
OT TEST.GPJ 11					20-	-	X	18	2-3 N= 2500	⊢9 12 (HP)	5			21		
9125165.GPJ OD	Color Color	23.5 <u>CL4</u> and	YEY SAND (SC), fine grained, light gray tan, medium dense (Glacial Drift)	737+/-	25-		X	15	7-10 N= 7000	⊢16 26 (HP)	6			24		
NO WELL C	600	— fir	ne to medium grained		30		X	18	6-10 N=	14 24	7	8 0		15		
MART LOG		32.5 LIM mod 35.3	ESTONE, white and light gray, with chert, lerately weathered, hard	728+/-	35-		Π	73	RQD	= 0%	R1					
ORT. TERRACONS		LIM wea	ESTONE, gray, trace chert, slightly thered, hard	740.1	40	-		45	RQD	= 7%	R2					
D FROM ORIGINAL REF	<u> </u>	Bor	ing Terminated at 42.5 Feet	7104/-												
ARATEL		Stratificat Classifica	ion lines are approximate. In-situ, the transition may be tions and stratigraphic boundaries estimated from visu	e gradual. Ial observatio	ns of san	nples.				Hamme	I er Type: Autor	natic SPT	Hammer	r		
DT VALID IF SEP	Advanc Solid	Petrograp ement Meth J-stem auge	hic and fossil analysis may reveal other rock types and lood:	See Exhibit	Classific A-15 for o lix B for d and addit	ations. Jescrip escript ional d	tion of ion of ata, (i	f field p laborat f any). f symbol	rocedures ory	Notes: Note 1: 1 o o a	A meaningful btained at cor f drilling fluid t pproximatlev 3	groundwat npletion of co facilitate 32.5 feet.	ter readin f drilling o rock cor	ig was r due to th ring at a	iot able t le introdi depth o	to be uction f
OG IS N	Back	cfilled with s	oil cuttings after obtaining 24-hour dings.	abbreviation Elevations w	s. vere inter	polatec	I from	a topo	graphic site							
RINGL	∇	WAT 24 feet	ER LEVEL OBSERVATIONS							Boring Sta	arted: 10/30/20	012	Borin	g Comp	leted: 10)/30/2012
IIS BOI	-	See No	te 1		3601 Moj	ave Co	Jurt, S	uite A		Drill Rig: 0	CME-75		Drille	r: JBW		
王		21 feet	at 24 hours after completion of drilling		Colu	nbia, N	Missou	ıri		Project No	o.: 09125165		Exhib	vit:	A-9	

Figure 4: Gateway Residents Hall Borehole

)	BORI	NG	LO	G	NC). B-7	7				ſ	Dage	1 of 1
	PR	OJI	ECT: Virginia Housing	Avenue South			0	CLI	ENT:	Unive Colun	rsity c nbia, N	of Misso Aissouri	uri				
	SIT	Е:	Virginia /	Avenue a Missouri													
	GRAPHIC LOG	LOC	CATION See Exhibit A	Approximate Surface Elev.	761 (Ft.) +/-	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST	KESULIS	SAMPLE NUMBER	SWELL (%)	UNCONFINED COMPRESSIVE STRENGTH (psf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits LL-PL-PI
	***	0.2	ASPHALT CONC	<u>RETE</u> , 2" SE COURSE, 6"	760.5+	-			10	9000	(HP)	1			13		
	$\widetilde{\prime\prime}$	3.0	UNCONTROLLED sand, gravel, and c	FILL , lean to fat clay, with cobbles, gray	758+/-	-			20	9000	(HP)	2		16060	13	113	
		8.0	FAT CLAY (CH), t hard	trace sand, brown, with gray,	753+/-	5				2							
14/10/10	200		FAT CLAY (CH), t with gray, trace bla Drift)	trace sand, with gravel, browr ack, very stiff to hard (Glacial	١,	10-			20	9000	(HP)	3		7410	15	117	
/12/12			– with sand			- - 15-		X	15	6-8- N=2 9000	13 21 (HP)	4			18		
OT TEST.GPJ 11	000000		- trace sandy zone	es		20-		X	18	4-9- N=2 9000	11 20 (HP)	5			22		
9125165.GPJ OD	000000		– trace gray			25- -		X	18	4-7 N= 9000	-9 16 (HP)	6			21	,	
OG-NO WELL	000					30- 	V	X	18	6-8- N=2 9000	12 20 (HP)	7			17		
ACON SMART L	10°00					35-		X	16	9-15 N=: 9000	-24 39 (HP)	8			13		
EPORT. TERR		39.5	<u>SHALE</u> , gray, moo hard	derately weathered, moderate	721.5+/- ly	40-	-	X	12	30-40- N=50 9000	50/4")/4" (HP)	9			13		
M ORIGINAL R		45.0	LIMESTONE, mod hard	lerately to slightly weathered,	716+/-	45		×	5	50/ N=50 6000	5")/5" (HP)	10					
ED FRO		40.U	Auger Refusal at	48 Feet	/ 13+/-												
VALID IF SEPARAT	Advanc Solic	Stra Cla pet emer d-sten	atification lines are appro ssifications and stratigra rographic analysis may r ti Method: n augers	wimate. In-situ, the transition may be phic boundaries estimated from dist reveal other rock types and stratigrap	gradual. urbed sample hic classifica See Exhibit See Append procedures	es. Core : tions. A-15 for d ix B for d and addit	sample: descript lescripti	s and tion of ata, (if	field pr laborate any).	rocedures	Hamme Notes:	er Type: Autor	natic SP	T Hamme	r		
OG IS NOT	Abando Back grou	onmei cfilled ndwa	nt Method: with soil cuttings after o ter readings.	btaining 24-hour	See Append abbreviation Elevations w plan	ix C for e s. vere inter	explanat polated	tion of	symbo a topog	ls and graphic site							
DRINGL	∇	31	WATER LEVEL OF feet while drilling	BSERVATIONS			62		-	חו	Boring Sta	arted: 10/30/20	012	Borin	g Comp	leted: 10	/30/2012
THIS B(V V	31 25	feet at completion feet at 24 hours aft	of drilling ter completion of drilling		3601 Mo Colu	ave Co mbia, N	urt, S Aissou	uite A ri		Project No	09125165		Exhib	it: J	4-10	

Figure 5: Gateway Residents Hall Borehole 7

Figure 6: Gateway Residents Hall Borehole 11

APPENDIX A-3

Figure 1: Donald W. Reynolds Journalism boring plan (Aerial View), prepared by Engineering Surveys and Services

Engineering Surveys & Services Columbia, Missouri

Figure 2: Donald W. Reynolds Journalism Borehole 2

Figure 3: Donald W. Reynolds Journalism Borehole 5

Engineering Surveys & Services Columbia, Missouri

Figure 4: Donald W. Reynolds Journalism Borehole 6

Figure 5: Donald W. Reynolds Journalism Borehole 7

Figure 1: Lee Hills Hall boring plan (Aerial View), prepared by Engineering Surveys and Services

LAE PRC		C7: School of Journalism Lee Hills Hall Columbia, Missouri		2	LOG TYPE	<i>OF</i> : 4''	<i>BC</i> _{So1}	D R/N id s	IG N	<i>0.</i>	B1
DEPTH, FT.	SAMPLE TYPE	SOIL DESCRIPTION TYPE, COLOR, MOISTURE & OTHER LOCATION: See Boring Plan SURF. ELEV.: 729.9	BLOWS PER. FT.	UNIFIED CLASSIFICATION	UNIT DRY WT. LB./CU. FT.	O.: PLA LIN	СОН 2 0.4 STIC ИIT +	ESION + 0,6 CC	0.8 VATER	1/SQ. 1.0 1 1,% 50 6	FT. ,2 I, LIQU LIMI + 50 70
		SILTY CLAY: Dark brownish gray, moist stiff, some organics									
- 5-		CLAY: Gray, mottled, moist, firm, some lignite stains						•		1	
		SILTY CLAY: Brown and gray, moist, stiff -, with gravel and lignite nodules, stiff			107						
- 10-		-, very stiff		-							
- 15-		 , gradually grades to weathered shale 			104		¢	•			
	-ř	WEATHERED SHALE: Greenish gray, moist to wet, stiff	\square					-		-	$\left \right $
		WEATHERED LIMESTONE: Mixed with weathered shale seams LIMESTONE: Hard									
_ 20		drilled with difficulty									
- 25-	-							_		. 	
- 30									_		
	(Completion Depth: 19.2' Date: 30 April 1992		Depti Date	h to Wo	ater: 1 3	5.0' 0 Ap	ril l	992		

e u

. .

.

Figure 2: Lee Hills Hall Borehole 1

Figure 3: Lee Hills Hall Borehole 2

Figure 4: Lee Hills Hall Borehole 3

LAB N PROJI	C7: School of Journalism Lee Hills Hall Columbia, Missouri		L	.OG TYPE	<i>OF</i> : 4''	<i>BC</i> Sol	ORI. .id	NG ste	* N m a	9 uge1	B5	
DEPTH, FT. SAMPLE TYPE	SOIL DESCRIPTION TYPE, COLOR, MOISTURE & OTHER LOCATION: See Boring Plan SURF. ELEV.: 727.0	BLOWS PER. FT.	UNIFIED CLASSIFICATION	UNIT DRY WT. LB./CU. FT.		COF 2 0. STIC MIT + 2 2	1ES10 4 0. 0 3	ON, 6 C WA CON	TON 8 1.8 TER TENT •	/ SQ. .0 ;,%	.FT. 1,2 LIQ LIN +	1,4 UIC 4IT - 70
_ 5 _	ASPHALTIC CONCRETE PAVEMENT GRAVEL BASE FILL: Silty clay, cobbles and boulders -, boulder -, with wood debris -, with gravel, grades to silty clay at 6.0'						•					
_ 10 _	SILTY CLAY: Brown with gray, moist, stiff, some rust stains -, more gray			107			•					
_ 15 _	-, very stiff WEATHERED SHALE: Whitish gray, damp, very stiff, brittle at times			123		•	•					
_ 20 _	WEATHERED LIMESTONE: Fractured, soft to moderately hard WEATHERED SHALE WEATHERED LIMESTONE											
	WEATHERED SHALE					_				-		
_ 25 _												
- 30 -												

. -

....

. . .

. -

Figure 5: Lee Hills Hall Borehole 5

Figure 6: Lee Hills Hall Borehole 6

Figure 7: Lee Hills Hall Borehole 8

LAB	NO		LOG	OF BO	ORING	NO	311				
PR0.	Lee Hills Hall Columbia, Missouri	TYPE: 3" Solid stem auger									
F.	SOIL DESCRIPTION	FT.	WT. FT.	COHESION, TON/SQ.FT.							
ТΗ, F		S PER	DRY	PLASTIC							
DEP	LOCATION: See Boring Plan SURF. ELEV.: 729.3	BLOW	UNIT LB.	+	20 30 40) 0 50 6	+				
	SILTY CLAY: Dark brown, moist, firm										
- 5 -	SILTY CLAY: Brown with gray, moist, stiff, slightly sandy										
- 10											
- 15-	-, stiff to very stiff										
- 20-	WEATHERED SHALE: Dry, very stiff										
	LIMESTONE: Seamy, moderately hard										
	dry	E.									
- 25-											
		$\left \right $		+			+				
- 30-											
	Completion Depth: 28.6'	Dep	th to W	ater: Not	Encounter	red					
	Date: 29 April 1992	Dat	e:	29 A	pril 1992	2					

Figure 8: Lee Hills Hall Borehole 11

Figure 9: Lee Hills Hall Borehole 13

Figure 10: Lee Hills Hall Borehole 14

LAB PRO	NO. <u>3576</u> JECT: School of Journalism Lee Hills Hall Columbia, Missouri		Z	.OG TYPE	OF : 3''	80 So:	OR/	Ste	3 /	<i>VO.</i> aug	B: er	15
DEPTH, FT .	U SOIL DESCRIPTION UTYPE, COLOR, MOISTURE & OTHER LOCATION: See Boring Plan SURF. ELEV.: 726.4	BLOWS PER. FT.	UNIFIED CLASSIFICATION	UNIT DRY WT. LB./CU. FT.	COHESION, TON / SQ.FT. 0.2 0.4 0.6 0.8 1.0 1.2 1.4 PLASTIC WATER LIQUID LIMIT CONTENT,% LIMIT ++ 10 20 30 40 50 60 70							
_ 5_	ASPHALITIC CONCRETE PAVENENT GRAVEL BASE FILL: Silty clay, cobbles and boulders, dark brown, moist to wet											
- 10-	SILTY CLAY: Brown with gray, moist, stiff, slightly sandy											
- 15-	CLAY SHALE: Tan to grayish white, dry to damp, very stiff											
- 25-	WEATHERED LIMESTONE WEATHERED SHALE LIMESTONE: Jointed, seamy, moderately hard, some weathered shale seams											
	Completion Depth: 23.3' Date: 30 April 1992		Deptr Date:	to Wo	iter:	Trac 30 A	e @ .pril	5.2 19	92			a.

. .

11

n. D

Ì.:

...

Figure 11: Lee Hills Hall Borehole 15

Figure 12: Lee Hills Hall Borehole 16

Figure 13: Lee Hills Hall Borehole 18

APPENDIX A-5

Figure 2: Missouri Studies and State Historic Building Borehole 1

Figure 3: Missouri Studies and State Historic Building Borehole 2

Figure 4: Missouri Studies and State Historic Building Borehole 5

LAB NO PROJEC	. 3591 т: UM System — Missouri Studies Columbia, Missouri			LOC TYPI	G OF E: 4'	" BC " Soi / Fir	DRIN lid S nger	IG N Stem Bit	IO. Aug	B er	17	-
ĿĿ		PER FT.	IED CATION	kΥ WT. U.FT.	0.	CO 2 0	HESI	ON, 6 0	TON 8 .8 1.	/SQ. 0 1.	FT. 21.	4
DEPTH,	See Plan of UCATION: Boring Locations SURF. ELEV.: 715.5'	BLOWS F	CLASSIFI	UNIT DF	PLA LII -	STIC	с 0.3		TER ENT,9	7 0 6		JID IT O
	ASPHALT	\top				<u> </u>						Ŭ.
	BASEROCK: 1" minus	+					-					
- 2 -	SILTY CLAY: Brown to dark brown, moist firm (possible fill)											
- 4 -				10 Sec		. 6	8		-	•		
- 6 -	-; Gray and light brown to tan, moist, stiff, somewhat shaley		CL	110		+	·		-+			
- 8 -												
- 10 -	CLAYEY SHALE: Gray and orangish brown, moist, stiff to hard	\vdash				_		-				
- 12 -				121		•						
	-; Cobbles					~	-					
- 16 -	-; Chert cobbles and thin limestone					-						
	LIMESTONE					-	-					
- 18 -	AUGER REFUSAL	T										
- 20 -						-						
- 22 -						-	-		-			
	Completion Depth: 18' Date: 21 November 2016	Dep	th t	o Wa	ter /	ATD:	Not	Enco	ounte	red		L
₩ E	ngineering Surveys & Services Columbia, Missouri											

Figure 5: Missouri Studies and State Historic Building Borehole 7

Figure 6: Missouri Studies and State Historic Building Borehole 8

Figure 7: Missouri Studies and State Historic Building Borehole 9

Figure 8: Missouri Studies and State Historic Building Borehole 10

Figure 9: Missouri Studies and State Historic Building Borehole 13

Figure 10: Missouri Studies and State Historic Building Borehole 16

APPENDIX A-6

Figure 1: Stewart Hall boring plan (Aerial View), prepared by Crockett

Cr 50 Co Te	rock 10 E blun elep	ett Ge Big Bea nbia, N hone:	otechnic ar Boulev 10 65202 573-447	al - Testing Lab ard 2 -3981	HNICAL - 1		C NB		BO	RIN	IG N	NUN	IBE PAGI	R B E 1 0	8-1 ⊮F 1
CLI	IEN	T _Ur	iversity c	f Missouri	PROJEC	TNAME	CP15	2681 - Stev	vart Ha	II Reno	ovation	1			_
PR	OJE	ECTN	UMBER	G15059	PROJEC	TLOCAT	ION _	Columbia, N	lissour	i					
DA	TE	STAR	TED _8/	10/15 COMPLETED 8/11/15	GROUNE	ELEVA		762 ft	_	HOLE	SIZE	4"			
		ING C	ONTRAC			WATER	LEVE	LS:	0.4.15	1 74	2 00 4				
			ETHOD		⊥ AI ▼ AT			LING 19.0		lev /4	3.00 ft				
	TE	S Bo	rehole ba		T 2h			ING 17.0	0 ft/E	lev 74	5.00 ft				
													AT	ERBE	RG
DEPTH	(11)	GRAPHIC LOG		MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY LENGTH	BLOW COUNTS (N VALUE)	POCKET PEN. (psf)	UNC. COMP. (psf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIQUID	PLASTIC LIMIT	PLASTICITY INDEX
S-100			0.5_	MULCH (6-inches)	/\761.5	_									
761.7	-	\sim	2.0	UNDOCUMENTED FILL: Fat clay, dark brown and brow	n760.0	ST 1	21		5500		114	16			
- 20-	-			stiff to hard		ST	17		5000	1	108	20			
1	_			: becomes gray to dark brown		_ 2									
5102															
2 2 10						ST 3	24		9000	3030	106	21			
		ANY YY	11.0		751.0	_									
0	-	IS,		LEAN TO FAT CLAY: Brown and gray, trace sand, trace gravel, trace lignite, occasional sand pockets, very stiff to)										
9	-	18H		hard (Glacial Drift)		ST 4	15		9000		115	16			
- 12	_									1					
KON		11 de la compañía de Compañía de la compañía	Ā												
20			19.0 🕎	CLAYEY SAND TO SANDY CLAY Brown and drav trac	743.0	ST 5	23		5000		93	48			
THAT I				gravel, very stiff (Glacial Drift)						1					
- CEN	-														
- 1	-	M	24.0	LEAN TO FAT CLAY: Brown and gray trace sand trace	738.0	SPT	18	7-7-6	6500			16			
3-	-			gravel, trace lignite, occasional sand pockets, very stiff to bard (Clacial Driff)	þ			(13)		1					
	_	X													
30)	6/X)				SPT	17	6-10-11	9000	1		16			
NEX		U						(21)		1					
-2	-	H)													
- 10	-	II.		: becomes dark gray, trace sand and gravel, very stiff to	b	SPT 8	18	14-29-38	9000			14			
1/97/9	-	18 de la compañía de Compañía de la compañía		hard			1	(07)	1						
	_	<u>997 </u>	38.0		724.0										
40)			occassional cobbles and possible boulders		SPT 9	5	50/5"	5000			_17_			
		54													
L SNG		1													
-10	-	a la				SPT 10	14	10-17-22 (39)	6500			16			
	-	and and		: cobbles and possible boulders from 46.0 to 51.5 feet,		<u> </u>	1		1						
5	-	di di		possible weathered rock											
50)	the state													
ENG			51.5		710.5										
H H				Auger Refusal at 52.0 feet											
SAIV				Bottom of borehole at 52.0 feet.											

Figure 2: Stewart Hall Borehole 1

	Crock 500 E Colur Telep	kett Ge Big Bea mbia, N hone:	otechnic ar Boulev 10 6520 573-447	cal - Testing Lab /ard /2 7-3981		GEOTECH			C D AB		BO	RIN	IG N	NUN	IBE PAGI	R B E 1 0	3-2 F 1
	CLIEN	ΠT_Ur	iversity o	of Missouri		P	ROJECT	NAME	CP15	2681 - Stev	<i>i</i> art Ha	ll Reno	ovation				
	PROJ	ECT N	UMBER	G15059		P	ROJECT	LOCAT		Columbia, N	lissour	i					
	DATE	STAR	TED 8	/10/15	COMPLETED 8/11/	'15 G	GROUND	ELEVA		761 ft		HOLE	SIZE	4"			
GPJ	DRILL	ING C	ONTRA	CTOR IPES		0	GROUND	WATER	LEVE	_S:							
5059.0	DRILL	ING N	ETHOD	4" SSA			∑ AT	TIME OF	DRILL	ING 15.0	0 ft / E	lev 74	6.00 ft				
NG1	LOGG	ED B	Friedr	man	CHECKED BY Lidh	olm	▼ AT	END OF	DRILL	ING 15.00	ft/El	ev 746	.00 ft				
ATIO	NOTE	S Bo	ehole ba	ackfilled upon com	pletion		⊥ 1hr	s AFTER	R DRILI	_ ING _15.0	0 ft / E	lev 74	6.00 ft				
TEWART HALL- RENOV	, DEPTH (ft)	GRAPHIC LOG		M	ATERIAL DESCRIPTION	1		SAMPLE TYPE NUMBER	RECOVERY LENGTH	BLOW COUNTS (N VALUE)	POCKET PEN. (psf)	UNC. COMP. (psf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)			
81-S	0	741× . 1	1.0	TOPSOIL/ ROO	TZONE (12-inches)		760.0			«							_
P152(UNDOCUMENT	ED FILL: Fat clay, dark	brown and brown		ST 1	23		5000		101	22			
D-6							2	ST	14		5000		101	23			
31505			6.0				755.0	2									
2015/0				LEAN TO FAT C	LAY: Light brown and g	ray, trace sand,											
CTSV	-			Sun				ST	14		3500	3020	105	23			
E S C F	10		11.0				750.0	3									
1 D	-	114		CLAYEY SAND	TO SANDY CLAY: Brow	n and gray, trace											
=\GE				graver, suit to ha	ru (Giaciai Dhit)			ST	24		0000		110	15			
IIS III			Ţ					4	24		9000		119	15			
E E E	-1 1-	I S															
HA H		1 de la compañía de l	19.0				742.0	ST				1500		10			
1	20	H S		SAND: Brown, Ic	ose to medium dense (0	Glacial Drift)		5	24		2000	1580	116	18			
NER																	
НGЕ		H.															
Ш	-	1.							18	1-2-3				25			
NGE NGE	-	H S							1								
			~ ~				700.0										
VER	30	H H	29.0	CLAYEY SAND	TO SANDY CLAY: Brow	n and gray, trace	732.0		18	6-10-14				17			
SER		1 de la compañía de		gravel, medium o	lense to very dense (Gla	acial Drift)		1	1	((2न))							
2-C																	
5 16:3		1.							18	26-41-40				13			
/26/1		10 t						_ 0		(01)							
1-8		<u>II</u>															
TE.G	40	6/18/	39.0 40.0	SHALE: Light br	wn to whitish gray har	4	722.0		18	27-14-50				12			
APLA	10		40.5	LIMESTONE: W	eathered, hard		720.5	<u> </u>		(64)							-
G TE				Bot	Auger Refusal at 40.5 fe tom of borehole at 40.5	et. feet.											
-LON																	
- LAT																	
ORT																	
I REP																	
NGTH																	
ELEY																	
AMPL																	
κ																	

Figure 3: Stewart Hall Borehole 2

[S\G15023.GPJ	Crocl 500 I Colur Telep	kett Ge Big Bea mbia, N ohone:	otechnic ir Boulev 10 6520 573-447	al - Testing Lab rard 2 7-3981					BO	RIN	IG I	NUN	IBE PAG	R B E 1 0	3-2)F 1
MENT	CLIEN	π _Ur	iversity o	of Missouri	PROJEC	NAME	Memo	orial Union \	/ertical	Additi	on				
DOCU	Proj	ECT N	UMBER	G15023	PROJEC	LOCAT	ION _	Columbia, N	lissour	i					
ING	DATE	STAR	TED _3/	/26/15 COMPLETED _3/26/15	GROUND	ELEVA		764 ft		HOLE	SIZE	4"			
PORI	DRILL	ING C	ONTRAC	CTOR IPES	GROUND	WATER	LEVE	LS:							
NSUP	DRILL	ING N	ETHOD	4" SSA	⊥ AT	TIME O	DRIL	LING _23.0	0 ft / E	lev 74	1.00 ft				
LADC		ED B	Friedr	man CHECKED BY Lidholm	⊥ AI V AF			ING 23.00	$\frac{D\pi}{E}$	ev /41	.00 ft				
RTICA	NOTE	<u>э</u> _во	enole da	ackinied upon completion	<u>¥</u> 0.5	nrs af i		LLING 23	1.00 IL7	Elev /	41.00	1		TEDBE	PC
AEMORIAL UNION VEI	DEPTH (ft)	GRAPHIC LOG		MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY LENGTH	BLOW COUNTS (N VALUE)	POCKET PEN. (psf)	UNC. COMP. (psf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIQUID		PLASTICITY "
701-V	0		0.5	MULCH (6-inches)											
CP151	-			UNDOCUMENTD FILL: Fat clay, dark brown and brown trace gravel, trace rust stains	Ι,	ST 1	17		5000		105	22			
123-0	-					ST 2	23		4500	2940	91	32	1		
0/G150	_		65		757 5	2									
\$\2015				LEAN TO FAT CLAY: Light brown and gray, trace sand,											
ECTS	10					ST 3	24		5500		104	22			
PRO	10	XXXXX	11.0		753.0								1		
GEOT	-	J),		LEAN TO FAT CLAY: Brown and gray, trace sand and gravel, trace lignite, possible cobbles, occassional sand											
)				pockets, stiff to very stiff (Glacial Drift)		ST 4	24		7500		109	18	43	14	29
ECTS							2								-
PROJ															
T/===	20					ST 5	24		4500		110	16	33	15	18
NERA	20	M													
H GE	-	<u>II</u>	23.0 🔻		741.0	a. 65									
OTEC		Æ	-	CLAYEY SAND TO A SANDY CLAY: Brown and gray, trace gravel, possible cobbles, stiff when clayey (Glacial		ST 6	24		4000		108	18	35	14	21
SIGE				Drift)											
2 FILE		W)													
RVE	30					ST 7	15		3500	660	112	18			
C:\S			31.0	LEAN TO EAT CLAY: Dark gray and brown, trace graye	733.0		18	5-8-11 (19)	9000			15]		
7:45	-			possible cobbles, hard (Glacial Drift)	•,		1		1						
6/15 (n s <u>é</u>	1.					18	13-17-23	9000			12			
L - 8/2		AL.	36.0	WEATHERED SHALE: Light gray to gray with grayol	728.0		1	((+0)	1						
E.GD	_	///		cobbles, and possible boulders, very stiff											
PLA1	40					SPT	7	12-50/1"	9000			16			
D TEN						10	1								
TONO	a 2 .	/////													
-IAT		117	44.7	Dation of bosh in the data for the	719.3		6	27-22- 50/2"	9000			20			
SAMPLE LENGTH REPORT				bolion of boreflore at 44.7 feet.			•								

APPENDIX A-7

Figure 1: MUHC East Pavilion boring plan (Aerial View), prepared by Crockett

	Crock 1000 Colur Telep	kett G W Nif mbia, I phone:	TL fong Blvd MO 6520 573-44	1. Bldg. #1 03 7-0292	CHNICAL			B		BO	RIN	GN	IUN	IBE PAGE	R B	-1 F 1
	CLIEN	IT _U	niversity	of Missouri - Campus Facilities	PROJ	ЕСТ	NAME	CP21	0041 - MU	HC Ea	ast Pa	vilion				
	PROJ	ECT N	UMBER	G20589	PROJ	ECT	LOCAT		Columbia,	Misso	uri					
	DATE	STAR	TED 1	0/29/20 COMPLETED 10/29/20	GROU	IND	ELEVAT		752 ft MSI		HOLE	SIZE	4"			
	DRILL	ING C	ONTRA	CTOR IPES	GROL	IND	WATER	LEVE	LS:							
	DRILL	ING N	IETHOD	4" SSA & NQ2 Diamond Bit & Rotary Wash		AT	TIME OF	DRIL	LING 1	lot En	counte	red				
	LOGG	ED B	Lidho	Im CHECKED BY Grimm		AT	END OF	DRILL	JNG N	ot mea	aningfu	l due	to cori	ng		
	NOTE	S Bo	rehole b	ackfilled upon completion		AFT	ER DRII	LING	Not m	eaning	ful du	e to co	oring			
	DEPTH (ft)	RAPHIC LOG		MATERIAL DESCRIPTION			PLE TYPE JMBER	COVERY ENGTH	BLOW OUNTS VALUE)	TROMTER (psf)	C. COMP. (psf)	UNIT WT. (pcf)	IISTURE ITENT (%)			
		ß					SAM	RE	_oS	DENE	N	DRY	CON		PLA	INI
_	0	11.1	0.5	TOPSOIL (6-inches)	<u>75</u>	1.5/				-						<u>ц</u>
39.GP				UNDOCUMENTED FILL: Clay, brown and light brow	n,		ST 1	19		3400			12			
32058	-			with gravel to gravelly			ST	15		3000		116	16			
NO	<u>-</u> 9 8 <u>-</u>		7.0		74	5.0										
AVIL		0.0		LEAN TO FAT CLAY: Brown and gray, with sand to sandy trace fine gravel trace rust stains (glacial drift	.)		ST	18		4500	3385	110	20			
ASTE	10	0.0		g g g g			3	10		1000	0000	TTO	20			
E SH		0.0					ST			5500	1050	407				
141-MI		0.0					4	22		5500	4850	107	22			
2100																
89 - CF	20	0.0		: with gravel to gravelly zones				17	7-4-6	7000			20			
\G205		• • •						5	()	1						
\$\2020	-1 1	•·•						17	3-5-31	6200			19			
JECT	-	9.9							(30)	1						
PRO	30	a		: occasional gravelly zones			SPT	17	5-13-17	8000			15			
GEOT					_	ſ	7		(30)							
S==	_	À	33.0	CLAYEY SHALE: Gray	/1	9.0	SPT	18	2-14-25	12000			13			
JECT			27.0		71	E 0		10	(39)	12000			15			
PRO			37.0	SEVERELY WEATHERED SHALE: Gray, brittle, fria	ble 71	2.0										
::=:\?\	40		50.0	LIMESTONE WITH SHALE: Gray, interbedded (sha	e	5.0	SPT	_4_/	50/4"	7			_7_			
37 - 1	-	11		washes away during coring) RQD =	0%		RC	12								
20 08	<u>-</u> 10 11		44.7		70	7.3	10									
DT - 11/24/				LIMESTONE: Gray to whitish gray, occassional weathered zones, occasional shale partings RQD = 3	8%		RC 11	38								
MPLATE.G	50		52.1 52.9	RQD = 5	2%_69	9.9 9.1	RC 12	58								
IG TE			54.0	LIMESTONE: Gray to whitish gray		8.0										
-LON			L	Refusal at 39.0 feet.												
- LAT				Bottom of borehole at 54.0 feet.												
ORT																
H REF																
HDN:																
LELE																
SAMP																

Figure 2: MUHC Borehole 1

	Croc 1000 Colui Teleț	kett G W Nit mbia, I phone:	TL ong Blvc VIO 6520 573-44	d. Bidg. #1 33 7-0292		CAL - T		AB		во	RIN	GN	IUN	IBE PAGE	R B	}-2 ⊮ 1
	CLIEN	IT _Ur	niversity	of Missouri - Campus Facilities	PR	OJEC	F NAME	CP2	10041 - ML	IHC Ea	ast Pa	vilion				
1	PROJ	ECT N	UMBER	G20589	PR	OJEC	LOCAT		Columbia,	Misso	uri					
1	DATE	STAR	TED 10	0/22/20 COMPLETED 10/23/20	GR	OUND	ELEVA		750 ft MSI		HOLE	SIZE	4"			
	DRILL	ING C	ONTRA	CTOR IPES	GR	OUND	WATER	LEVE	LS:							
1	DRILL		IETHOD	4" SSA & NQ2 Diamond Bit & Rotary Wash		AT	TIME OF	DRIL	LING 1	lot En	counte	red				
1	LOGG	ED B	Lidho	Im CHECKED BY Grimm		AT	END OF	DRILL	JNG N	ot mea	aningfu	l due	to cori	ing		
1	NOTE	S Bo	rehole b	ackfilled upon completion		AF	TER DRI	LLING	Not m	eaning	ful du	e to co	oring			
Γ							ш			н.		2	()	ATT	ERBE	RG
8	т	₽		MATERIAL DESCRIPTION			ΥR	Ϋ́Ξ	JE)	MT	MP	N	T (%	-		۶
	EPT (€)	AP1-00-					MB	NG	ALI	[RO (psf)	CC (bsf)	(pcf)	STL	<u></u> ∃⊨	EE	ΞÄ
8		- GR					NUN		BOS	E S	NC	RYI	NO NO	LIN	LIN	AST
	0						S	-		비원		Ō	0	-	<u>م</u>	2
Ę.		46.4	0.7	TOPSOIL (8-inches)		749.3	ST	15		6200		114	17			
9.68		6.19		SANDY CLAY: Brown, trace gray, trace fine gravel, trace rust stains (glacial drift)		3	1	15		6200	4570	114	17	-		
1620		S. J.	6.0	(3		744.0	2	21		5000	1570	116	17			
		0 0		LEAN TO FAT CLAY: Brown and gray, trace sand an	nd											
PAN	10	0.0		line gravel, trace fust stains (glacial drift)			ST	19		7400	3850	104	25	1		
AS		0.0				1								1		
E		0.0					ST							-		
N-	×	0.0					4	18		5000	4305	107	21			
1004	5 D.	Ĵ ·]	17.0			733.0		[
-G	20			CLAYEY SAND: Brown, trace gravel (glacial drift)			ST	20		2600			11			
689	20	1.1	21.0			729.0	5									
0/62	9 3 2 8	0.0		fine gravel, trace rust stains (glacial drift)	nd											
202	s a -	0.0	20.0			724.0		18	5-8-33	12000			13	1		
EC -	6 8 .		20.0	BOULDER or DENSE COBBLES	_	723.0			(41)	1						
ож Г	20	0.0	_	LEAN TO FAT CLAY: Brown and gray, trace sand an	nd		V SPT	16	8-14-22	11000			13			
0	30	0.0		nne gravel, trace rust stains (glaciai driit)					(36)	/ 1000			15			
9-	8 R -	0.0	33.0			717.0										
-IS	6 B	44		SEVERELY WEATHERED SHALE: Gray, brittle, fria	ble	1		18	11-23-19	12000			10	1		
EC-							0		(42)	1						
÷-	-	##				-		10	36-50-18	12000			0			
	40	Hij				1		10	(68)	12000			9			
-12	-	/////														
120	-	11				1		15	4-20-15	12000			11			
11/2	-	111							(35)	1						
i-	-	////	49.0			701.0	SPT	16	11 50/4"	4000			7			
	50	1/Þ/	50.0	SHALE: Gray, hard		700.0			11-30/4	14000	1		\vdash	1		
- MPL		1/4/	53.6	gray	ĸ	696.4										
5			35.0	CHERTY LIMESTONE: Gray and dark gray, fracture	d	050.4	SPT	4	50/1"	3500			27			
ŏ-	a a 4	•		RQD =	7%		12 RC	29								
4	-	0	58.6			691.4	13									
-	60	1		ccasional chert and shaley zones (shale washes av	<i>l</i> ay		RC	25								
扑	-		63.6	during coring)	0%	686.4	14	25								
LI D			50.0	Refusal at 53.6 feet.												
E				Bottom of borehole at 63.6 feet.												
Wh																
λL																

Figure 3: MUHC Borehole 2

	Croc 1000 Colu Tele	kett G W Ni mbia, phone	TL fong Blvd MO 6520 573-44	1. Bidg. #1 03 7-0292			AB		BO	RIN	IG N	IUN	IBE PAGE	R B	}-3 ⊮ 1
	CLIE	NT _U	niversity	of Missouri - Campus Facilities	PROJEC	T NAME	CP2	10041 - MU	IHC Ea	ast Pa	vilion				
	PROJ	IECT N	IUMBER	G20589	PROJEC	T LOCAT		Columbia,	Misso	uri					
	DATE	STAF	TED 1	0/30/20 COMPLETED 10/30/20	GROUN	D ELEVA		749 ft MSI	2	HOLE	SIZE	4"			
	DRILI		ONTRA	CTOR IPES	GROUN	D WATER	LEVE	LS:							
	DRILI		IETHOD	4" SSA & NQ2 Diamond Bit & Rotary Wash	AT	TIME O	FDRIL	LING 1	lot En	counte	ered				
	LOGO	GED B	Y _Lidho	Im CHECKED BY Grimm	AT	END OF	DRILL	JNG N	ot mea	aningfu	ul due	to cori	ing		
	NOTE	BC BC	rehole b	ackfilled upon completion	AF	TER DRI	LLING	Not m	eaning	gful du	e to co	oring			
	o DEPTH (ft)	GRAPHIC LOG		MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY LENGTH	BLOW COUNTS (N VALUE)	PENETROMTER (psf)	UNC. COMP. (psf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)			
G		de f	0.6	TOPSOIL (7-inches)		ST	21		0000	-	122	12			
589.0		2. 10	3.0	SANDY CLAY: Brown, trace gray, trace fine gravel, trace rust stains (glacial drift)	746.0	 	18		7500	5850	122	13			
NIG20		000		LEAN TO FAT CLAY: Brown and gray, trace sand a	nd	2	10		7300	5050	120	14			
VILIOI		0.00		nne gravel, trace rust stains (gracial unit)											
T PA	10	0.0					24		4600	4195	111	18			
10041-MUHC EAS	20 0 <u>1</u> 20 0-	0.000				ST 4	24		4000	6540	1110	21			
- CP2	20	0.0		: occasional sandy zones		ST	24		5000	4880	116	16	30	11	19
20589		0.0				5									
ECTS/2020/G	-		27.0		722.0		12	9-14-16 (30)	8400			13			
PROJ				CLAYEY SHALE: Gray			17	8-14-25	12000			11			
GEOT					710.0	7		(39)	/						
OJECTS===	_		33.0	SEVERELY WEATHERED TO WEATHERED SHAN Gray, brittle, friable	.E:		18	7-22-27 (49)	12000			12			
7 - V:\===PR	40						15	2-15-42 (57)	9600			11			
11/24/20 08:3							16	5-27-50/5"	12000			10			
PLATE.GDT - '	50						18	2-17-46 (63)	3000			12			
- LAT-LONG TEM			53.6	LIMESTONE WITH SHALE: Gray and dark gray, occasional chert and shaley zones (shale washes an during coring) RQD =	695.4 vay 0% 690.4	SPT 12 RC 13	<u>1</u> 5	50/1")			8			
SAMPLE LENGTH REPORT				NOTE: The diamond bit broke apart in the boreho during the first core run. The borehole had to be abandoned because of this. Refusal at 53.6 feet. Bottom of borehole at 58.6 feet.	le										

Figure 4: MUHC Borehole 3

Crockett GTL 1000 W Nifong Blvd. Bldg. #1 Columbia, MO 65203 Telephone: 573-447-0292					BO	RIN	GN	IUN	IBE PAGE	R B	8-4 ⊫ 1
CLIENT University of Missouri - Campus Facilities	PROJEC	T NAME	CP21	10041 - MU	HC Ea	ast Pa	vilion				
PROJECT NUMBER G20589	PROJEC	T LOCAT		Columbia,	Missou	uri					
DATE STARTED _10/25/20 COMPLETED _10/31/20	GROUN	ELEVA		746 ft MSL	<u>.</u>	HOLE	SIZE	_4"			
DRILLING CONTRACTOR IPES	GROUN	WATER	LEVE	LS:							
DRILLING METHOD 4" SSA & NQ2 Diamond Bit & Rotary Wash	AT	TIME OF	DRIL	LING 1	lot End	counte	red				
LOGGED BY Lidholm CHECKED BY Grimm	AT	END OF	DRILL	JNG N	ot Enc	ounter	ed				
NOTES Borehole backfilled upon completion	3h	s AFTER	RDRIL	LING 1	lot En	counte	ered				
		SAMPLE TYPE NUMBER	RECOVERY LENGTH	BLOW COUNTS (N VALUE)	PENETROMTER (psf)	UNC. COMP. (psf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)			
CONCRETE (8-inches)	745.3	ST.									
GRAVEL (4-inches)	/ 1/45.0	1	13		7500	00.15	118	12			
trace fine gravel, trace rust stains (glacial drift)		ST 2	24		8500	3015	120	14			
Z 7.0	739.0										
fine gravel, trace rust stains (glacial drift)	na	ST	24		5600	3935	102	23	1		
EAST									1		
¥[]		ST	24		5000	4120	100	21			
4L		4	24		5000	4150	109	21			
23100											
20: with sand to sandy zones		ST 5	24		2800	2660	107	21	41	12	29
758											
		ST	15		12000			11	-		
25.0 WEATHERED SHALE: Grav	721.0	6			12000			- 11			
30	745.0		18	16-45-49	7000			11	1		
BOULDER or DENSE COBBLES: Possible weather	ed 715.0	1		(94)	1						
23.0 rock											
36.2 washes away during coring)	709.8	RC 8	21								
RQD = 2	26% 707.8	RC									
40 RQD = 5	55% 706.6	9	51								
42.1 SHALE: Gray to light gray, limey zones		RC	22								
LIMESTONE UTH SHALE: Gray, interbedded		10	32								
RQD = 1	79%										
Bottom of borehole at 44.0 feet.											
MPLA											
19 19											
NOT											
200											
4 <u>15N</u>											
SAMPL											

Figure 5: MUHC Borehole 4

Figure 6: MUHC Borehole 5

Figure 7: MUHC Borehole 6

	Croc 1000 Colu Tele	kett G) W Ni mbia, phone	TL fong Blv MO 652 : 573-44	d. Bldg. #1 03 47-0292	ECHN	ICAL - T		AB		BO	RIN	IG N	IUN	IBE PAGE	R B	8-7 F 1
	CLIEN	NT _U	niversity	of Missouri - Campus Facilities	_ PF	ROJEC	T NAME	CP21	10041 - ML	JHC Ea	ast Pa	vilion				
	PROJ	ECT N	UMBER	G20589	_ PF	ROJEC	T LOCAT		Columbia,	Misso	uri					
	DATE	STAF	TED 1	1/15/20 COMPLETED 11/15/20	_ GI		ELEVA		746 ft MSI		HOLE	SIZE	4"			-
	DRILL			A" SSA & NO2 Diamond Bit & Potary Wash	_ G				LS:	00 ft / I		24.00	ff			
	LOGO	SED B	Y Lidho	DIm CHECKED BY Grimm	_	AT	END OF	DRILL	JNG N	lot mea	aningfu	ul due	to cor	ing		
	NOTE	S Bo	orehole b	packfilled upon completion	_	AF	ter Dri	LLING	Not m	eaning	gful du	e to co	oring	24600		
							ш			۲.		2		AT	ERBE	RG
	o DEPTH (ft)	GRAPHIC LOG		MATERIAL DESCRIPTION			SAMPLE TYP NUMBER	RECOVERY LENGTH	BLOW COUNTS (N VALUE)	PENETROMTE (psf)	UNC. COMP (psf)	DRY UNIT W (pcf)	MOISTURE CONTENT (%	LIQUID	PLASTIC	PLASTICITY INDEX
L de			0.5	TOPSOIL (6-inches)		<u>√745.5</u>	ST	9		4200			12			
589.0		0.0		UNDOCUMENTED FILL: Gravel and clay, brown LEAN TO FAT CLAY: Brown, trace gray, trace to v	/ith		1A ST	9		3000	1030	111	18	1		
N/G20	<u>-</u> 20 5-2	0.0		sand and gravel (glacial drift)			1B	14		1000	1000	100	22			
AVILIC	-1 1-	0.0		becomes sandy occasional clavey sand zones			2			4500	4005	440	10			
STP	10	0.0					3	24		4500	1695	116	13			
HC EA	<u>ba</u> t 19 <u>1</u> 7	0.0					OT	6								
11-MU		0.0		: Zones of fat clay			4	20		4000	4155	102	24			
2100		0.0														
39 - CF	20	0.0					ST 5	24		11600	8180	115	17	34	13	21
G2058	<u>-</u> , , , <u>-</u>	9.9	Σ													
120201				: trace to with sand and silt				10	1-10-11	3000			19			
ECTS	at ea	A.					6		(21)							
PRO.	30	a in		: trace to with sand and gravel				17	3-5-10	6600			17			
GEOT		×. **					7		(15)		1			1		
S===/(e e	33.0	CLAYEY SHALE to SEVERELY WEATHERED		713.0		17	15-27-	7200			10			
JECT				SHALE: Gray, softens when wet			8		50/5"	1200			10			
==PRC			39.0			707.0			50/08	15000			10			
- V:\=	40			WEATHERED CHERTY LIMESTONE: Gray and d gray fractured with mineralization occasional sha	ark le		9 9	0	50/3	<u>15000</u>			10			
08:37	-			seams from 39' - 41.5'	= 0%		10 RC	14								
24/20	_	A			0.0		DC									
T - 11/			10.0	RQD	= 0%	007.0	11	21								
LE.GD	50		49.0	LIMESTONE: Gray to whitish gray, fractured, poor		697.0	PC									
APLAT	<u>-</u>		53.0	recovery RQD	= 0%	693.0	12	26	1							
IG TEN				Refusal at 39.0 feet. Bottom of borehole at 53.0 feet												
T-LON																
T-LA																
EPOR																
STH R																
ELENK																
AMPLE																
Ś	-															

Figure 8: MUHC Borehole 7

	Crock 1000 Colur Telep	kett G W Ni mbia, phone	TL fong Blve MO 652 573-44	d. Bidg. #1 03 i7-0292		GEOTECHNI			B		BO	RIN	GN	IUN	IBE PAGE	R B	-8 F 1
	CLIEN	IT _U	niversity	of Missouri - Campus Facili	ities	PR	OJECT	NAME	CP21	0041 - MU	HC Ea	ast Pa	vilion				
	PROJ	ECT N	IUMBER	G20589		PR	OJECT	LOCAT	ION _	Columbia,	Missou	uri					
	DATE	STAF	TED 1	1/8/20 COMPL	ETED 11/15/20	GR	OUND	ELEVA		745 ft MSL		HOLE	SIZE	4"			
	DRILL	ING C		CTOR IPES		GR		WATER		LS:	0.4.1	-17(0.00	a			
	DRILL			4" SSA & NQ2 Diamond			AT			ING 25.0	$00 \pi / E$	ilev /2	20.00 1	to oori	ing		
	NOTE	S BC	rehole h	ackfilled upon completion						Not m	eaning	ful du	e to co	orina	ing		
ł				domined apon compression							~		0 10 00	, ing	ATT	ERBE	RG
	DEPTH (ft)	GRAPHIC LOG		MATERIAL D	ESCRIPTION			SAMPLE TYPE NUMBER	RECOVERY LENGTH	BLOW COUNTS (N VALUE)	PENETROMTEF (psf)	UNC. COMP. (psf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIQUID		
2	0	1. 1 M	0.5	CONCRETE (6-inches)		F	744.5	OT									
- 65		0.0	0.8.) (GRAVEL (4-inches)	up and grow trace o		\744.2		14		6200		113	18			
NG205		0.0		fine gravel, trace rust stain	wn and gray, trace s is (glacial drift)	and and		ST 2	18		5400	3190	105	22			
VILION		· · · ·															
ST PA	10								18		7400	3760	108	22			
CEAS	2	0.0															
HUM-		0.0						ST 4	19		6400	7560	110	20			
10041	-	0.0						<u> </u>									
- CP2		0.0						ST	19		6200	6445	107	17	36	13	23
0589	20							5									
)20/G		h. h	24.0	: becomes gravelly to cla	vev gravel, with san	id to _	721.0		10	0 10 50/2"				10			
CTS/20			25.0	sandy		lr	720.0		12	9-19-30/3				15			
SOLEC			28.5	SEVERELY WEATHERED	DBLES D SHALE: Gray, with	n gravel	716.5										
OT PF	30	Î		to gravelly CHERTY LIMESTONE: G	rav and dark grav fr	/		RC									
HGE	-3 R -		33.5	onerti i emeorone. o	R	RQD = 7%	711.5	8	22								
CTS=	-		00.0	LIMESTONE: Gray to whit	ish gray	20 - 90%	111.0	DC									
ROJE			00.5		RC	20 - 00 %	700 5	9	60								
			38.5	Refusal	at 28.5 feet.		706.5										
37 - V				Bottom of bore	ehole at 38.5 feet.												
0 08:																	
1/24/2																	
DT - 1																	
VTE.G																	
MPLA																	
VG TE																	
T-LOI																	
T-LA																	
EPOR																	
STH R																	
LENG																	
WPLE																	

Figure 9: MUHC Borehole 8

Figure 10: MUHC Borehole 9

Figure 11: MUHC Borehole 10

Figure 12: MUHC Borehole 11

Figure 13: MUHC Borehole 12

Figure 14: MUHC Borehole 13

Cr 10 Co Te	ocke 00 V olum eleph	ett G [*] V Nif bia, I hone:	FL ong Blv MO 652 573-44	d. Bidg. #1 03 17-0292	CHNICAL - T		NB NB	E	BOR	RINC	S NU	UME	BER Page	B- 1 0	14 0F 1
CL	IENT	Ur	iversity	of Missouri - Campus Facilities	PROJEC	F NAME	CP21	10041 - ML	JHC Ea	ast Pa	vilion				
PR	OJE	CT N	UMBER	G20589	PROJEC	LOCA1		Columbia,	Misso	uri					
DA	TE S	TAR	TED _1	0/25/20 COMPLETED 10/25/20	GROUND	ELEVA		745 ft MSI	<u></u>	HOLE	SIZE	4"			
DR	ILUI	NG C	ONTRA	CTOR IPES	GROUND	WATER	LEVE	LS:							
DR		NGN	ETHOD	_4" SSA	AT	TIME OF		LING 1	Not En	counte	red				
	GGE	DB	Lidho	CHECKED BY Grimm	AT	END OF		JNG N	lot Enc	counte	red				
NO	TES	BO	renole b	ackfilled upon completion	0.2	bnrs A⊦			Not	Encol	Intered				- DO
O DEPTH	(II)	GKAPHIC LOG		MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY LENGTH	(N VALUE) COUNTS (N VALUE)	PENETROMTER (psf)	UNC. COMP. (psf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)			
<u>a</u> L	A	4	0.8	CONCRETE (10-inches)		ST	21		4200		100	20	-		
1			3.0	light brown, trace to with sand	1 <u>742.0</u>	1 ST	20		7400	2285	113	17			
- NG20	0	×.	70	LEAN TO FAT CLAY: Brown and gray, trace sand a fine gravel trace rust stains (glacial drift)	nd 729.0	2	20		7400	2205	115	17			
	0		7.0	SANDY CLAY: Brown, trace gray, trace fine gravel,	738.0	OT									
4 10)	N		trace rust stains (glacial drift)			18		9000	8235	117	15	-		
CEA	- 2	No.	13.0		732.0										
1 - 1	1			CLAYEY SAND: Brown, trace gravel (glacial drift)		ST 4	10					12			
- CP21	-					ST	44						-		
8 20) .	1.	20.0	Bottom of borehole at 20.0 feet.	725.0	5	14					9			
AMPLE LENGTH REPORT - LAT-LONG TEMPLATE GDT - 11/24/20 08:38 - V;===FKOJECI S==KGC01 PROJECI SAULONG															

Figure 15: MUHC Borehole 14

Figure 16: MUHC Borehole 15

Figure 17: MUHC Borehole 16

Figure 18: MUHC Borehole 18

Figure 19: MUHC Borehole 19

APPENDIX A-8

Figure 1: Roy Blunt NextGen Precision Health Building (NextGen) boring plan (Aerial View), prepared by Crockett

Figure 2: NextGen Borehole 5

Figure 3: NextGen Borehole 6

	Crock 1000 Colur Telep	kett GT W Nife nbia, M hone:	L ong Blvd 10 6520 573-447	Bldg. #1 3 r-0292	HNICAL - T		B		во	RIN	IG N	NUN	I BE PAGI	R B	-8 F 1
	CLIEN	T _Un	iversity o	of Missouri - Campus Facilities	PROJECT	NAME	CP19	0721 TPM	2						
1	PROJI	ECT N	UMBER	G18363.2	PROJECT	LOCAT	ION _	Columbia, N	lissour	i					
1		STAR	TED 1	0/13/18 COMPLETED 10/13/18	GROUND	ELEVAT		739 ft MSL	-	HOLE	SIZE	4"			2
	DRILL							LS:	ft/Ele	732	00 ft				
1			Grim	n CHECKED BY Lidholm	AT			ING N	of Enco	untere	d ad				
1	NOTE	S Bor	ehole ba	ackfilled upon completion	0.2	5hrs AFT	TER DF	RILLING -	Not E	Encour	ntered				
-			<u>.</u>	· · ·		1997	Î		<u> </u>				ΑT	ERBE	RG
15.1/G18383.1.GPJ	DEPTH (ft)	GRAPHIC LOG		MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY LENGTH	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	UNC. COMP. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIQUID		PLASTICITY INDEX
IMEN	0		03A	ASPHALT (3-inches)	738.8	2									
	-		20	BASE ROCK (2-inches) UNDOCUMENTED FILL: Lean to fat clay, brown and or	av. 700.0	ST 1	15		4000			17			
- IIN	2 8 -		3.0	trace rust stains, trace sand, with gravel to gravely, stiff		ST	20		4000	2700	101	26			
HO44	5			FAT CLAY: Gray and brown, trace rust stains, trace san and gravel, stiff (possible glacial drift)	d	2	20		4000	5700	101	20			
			7.0 🗸		732.0										
	_	0.0	÷	LEAN TO FAT CLAY: Brown, trace gray, trace rust stain trace sand and gravel very stiff (glacial drift)	IS,										
190/2	10	• • • •		(glacia and gravo), voly sun (glacia ant)		ST 3	20		7500		112	19			
		• • •													
5363.	8 8 4	• · • •													
18/61		• • • •		: occasional sandy and gravelly zones		ST	17		5000			10			
15/20	15					4			5000			10			
- PEC	a 14 7		16.5	LIMESTONE: Hard	722.5										
NH IO			~	Auger Refusal at 17.0 feet.											
				Bottom of borehole at 17.0 feet.											
2															
ONEC															
Ϋ́															
12:42															
2/0/12															
- 10															
AIE.G															
LMF															
I PNI															
AI-LU															
-(_(
É L'O															
GITF															
INPLE															
5															

Figure 4: NextGen Borehole 8

Figure 5: NextGen Borehole 9

Figure 6: NextGen Borehole 11

Figure 7: NextGen Borehole 14

	Crocl 1000 Colui Telep	kett GT W Nifi mbia, N ohone:	L ong Blvd 10 6520 573-447	Bidg. #1 3 -0292	HNICAL - T		AB	E	Bof	RINC	G N	UM	BEF PAG	R B- E 1 0	15 0F 1
	CLIEN	NT _Ur	iversity o	of Missouri - Campus Facilities	PROJECT	NAME	CP19	0721 TPM0	2						
	PROJ	ECT N	UMBER	_G18363.2	PROJECT	LOCAT		Columbia, N	lissour	i					
	DATE	STAR	TED _1/	21/19 COMPLETED 1/21/19	GROUND	ELEVAT		738 ft MSL		HOLE	SIZE	4"			
	DRILL	ING C	ONTRAC	CTOR IPES	GROUND	WATER	LEVE	LS:							
	DRILL	ING M	ETHOD	4" SSA	AT	TIME OF	DRIL	LING N	lot Enc	ounter	ed				
	LOGG	SED BY	Grimr	n CHECKED BY Lidholm	AT	END OF	DRILL	.ING No	ot Enco	ountere	ed .				
	NOTE	S BO	ehole ba	ackfilled upon completion	0.2	bhrs AF	ERD		Not I	ncour	ntered		AT		
ITS.1\G18363.1.GPJ	o DEPTH (ft)	GRAPHIC LOG		MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY LENGTH	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	UNC. COMP. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)			
JMEN		17.1	0.5	TOPSOIL (6-inches)	737.5										
VG DOCL			3.0	UNDOCUMENTED FILL: Lean to fat clay, brown and lig brown, trace sand and gravel, trace to with roots and roo hairs, medium	ht ^t <u>735.0</u>	ST 1	15		1500		100	23			
ORTII			4.4	UNDOCUMENTED FILL: Sand, brown, trace to with ro	ots 733.6	2A	16		5000	2260	101	17			
PMC\SUPP				LEAN TO FAT CLAY: Brown and light brown, trace rust stains, trace sand and gravel, stiff to very stiff (possible glacial difft)		SI 2B	0		5000	2200					
- CP190721 TI	10	0.00	8.0	LEAN TO FAT CLAY: Light brown and gray, with rust stains, trace to with sand and gravel, stiff to very stiff (glacial drift)	730.0	ST 3	17		6000	3930	104	23			
8\G18363.1		0000	13.0	SHALEY LEAN CLAY: Light gray, trace brown, trace sa	725.0 nd	ST			0000	0500	447	47		10	40
PROJECTS/201			18 0	and gravel, very stiff to hard	720.0	4	14		9000	6580	117	17	36	18	18
===\GEOT	20			WEATHERED SHALE: Light gray, trace to with gravel, possible cobbles and boulders, hard		SPT 5	16	11-16-16 (32)	9000			12			
ECTS	_	111	20 5		715 5										
PROJ			22.5	LIMESTONE: Hard	715.5										
SAMPLE LENGTH REPORT (TSF) - LAT-LONG TEMPLATE.GDT - 3/8/19 12:42 - V:\===PF				Auger Refusal at 23.0 feet. Bottom of borehole at 23.0 feet.											

Figure 8: NextGen Borehole 15

Figure 9: NextGen Borehole 16

	Crock 1000 Colur Telep	kett G W Nif nbia, N hone:	TL fong Blvd MO 6520 573-44	d. Bldg. #1 03 7-0292		- TEST		B	I	BOF	RING	g N	UMI	BEF PAG	R B- E 1 0	17 F 1
	CLIEN	T _∪r	niversity	of Missouri - Campus Facilities	PROJE	CTN	AME	CP19	0721 TPM	2						
	PROJ	ECTN	UMBER	G18363.2	PROJE	CTL	OCAT	ION _	Columbia, N	lissour	i					
	DATE	STAR	TED 1	I/19/19 COMPLETED 1/19/19	GROU	ND EL	EVAT	ION _	736 ft MSL		HOLE	SIZE	4"			
	DRILL	ING C	ONTRA	CTOR IPES	GROU	ND W	ATER	LEVE	LS:							
	DRILL	ING N	IETHOD	0_4" SSA	_ /		ME OF	DRILI	LING N	lot Enc	counter	ed				
	LOGG	ED B	Y <u>Grim</u>	CHECKED BY Lidholm	- '				.ING N	ot Enco	ounter	ed				
	NOTE	S _BO	renole b	ackinied upon completion	- '					r -	r	<u> </u>	r		CEDRE	DC
TS.1\G18363.1.GPJ	DEPTH (ft)	GRAPHIC LOG		MATERIAL DESCRIPTION			SAMPLE TYPE NUMBER	RECOVERY LENGTH	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	UNC. COMP. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIQUID		
NEN		14.8. 14	0.5	TOPSOIL (6-inches)	735	5.5										
DOCI	-			LEAN TO FAT CLAY: Brown, trace rust stains, trace gravel, trace to with roots and root hairs, stiff to verv s	iff	$\mathbf{\nabla}$	SPT	13	2-3-4	4500			18	1		
TING	-15 8. 			(possible undocumented fill)		Ê			(/)	-						
POR	5					Х	2	12	(9)	2500			22			
C\SUP																
TPMC			8.0		728	3.0										
0721				LEAN TO FAT CLAY: Brown and gray, trace rust stain	IS, rift)		SPT	18	4-4-4	3500			18			
CP19	10			trace to with sand, trace graver, suit (possible gracial o	iiit)	P	3	10	(8)	3500			10	1		
3.1 -			11.5	CDAVELLY LEAN TO EAT CLAY: Brown with put of	724	.5										
31836	_	·		with sand, possible cobbles and boulders, dense (glac	ans, al											
018/0		0.0	-	drift)		∇	SPT	16	12-14-17	1			17	1		
CTS/2	15	° . '°				μ	_4_		(31)							
ONEC		o . ' o	17.0		719	9.0										
DT PR		ŰX.	18.5	WEATHERED LIMESTONE: Light gray, severely weathered, hard	717	7.5										
=\GE(20			LIMESTONE: Gray, fossiliferous, coarsely crystalline,		П	SPT 5	1	50/1"	1			3			
-=-SJ				occasional chert hodules, occasional styolites through	DUT	н	RC	54.5								
DEC		0		: shale seam from 21' to 21.1' RQD =	68%	н	6	01.0								
=PRC		0		: occasional chert nodules from 21.7' to 24'				1								
-=-\:/	25		24.5	Unc. Comp. Strength = 78	31 tst 711	.5										
-42-				POD -	6504	н	RC 7	55								
1912	- 0 8 7				0370	н	ŝ.									
- 3/8																
GDT	30					н										
LATE				: shale seam from 30.5' to 30.7'	5 tef	н	8	60								
TEMP			33.5	RQD =	80%	5										
ONG.			100.0	Split Spoon Sampler Refusal at 18.6 feet.	102					-						
AT-L				Bottom of borehole at 33.5 feet.												
SF)-1																
RT (T.																
EPOI																
STHF																
LENC																
JPLE																
SAL																

Figure 10: NextGen Borehole 17

Figure 11: NextGen Borehole 18

Figure 12: NextGen Borehole 19

CLENT University of Messor - Composition PROJECT NUME CP100721 TFMC PROJECT NUMER G18032 OCMPLETED 1/28/19 PROJECT NUME CP100721 TFMC PROJECT NUMER G18032 OCMPLETED 1/28/19 CRIME CP100721 TFMC PROJECT NUME CMOND ELEXAND CADADE ELEXAND MALES ZEE 4' DRELING CMTRACTOR FESS CRIME OF DRELING - MALE ROCALTRACT DRELING CMTRACTOR CHECKED BY Libroin - Mathematical Electronitered - CHECKED BY Libroin NOTES Excellent backfilled upon completion - CASH AFTER DRELING - Mathematical Electronitered 0 Material DESCRIPTION Ware of the mathematical Electronitered - CHECKED BY Libroin 0 Material DESCRIPTION Ware of the mathematical Electronitered - CHECKED BY Libroin 0 Material DESCRIPTION Ware of the mathematical Electronitered - CHECKED BY Libroin - CHECKED BY Libroin 0 Material DESCRIPTION Ware of the mathematical Electronitered - CHECKED BY Libroin - CHECKED BY Libroin 0 Material DESCRIPTION Ware of the mathematical	Cr 10 Cc Te	ockett G 00 W N olumbia, lephone	GTL ifong Blvd. Bldg. #1 MO 65203 : 573-447-0292			B	I	BOF	RINC	G NI	UMI	PAG	8 B- ≣ 1 0	21 F 2
PROLECT INMERE G19302 PROLECT LOCATION Countrains, Messari DATE STARTED 1/28/19 GROUND RELYTON 7/2 MisL HOLE SZE 4' OPRUINC CONTRACTOR PESSA GROUND WATER LEVELS. AT TIME OF DRILLING	CLI	ENT _U	Iniversity of Missouri - Campus Facilities	PROJECT	NAME	CP19	0721 TPM	2						
DATE STARTED 128/19 COMPLIED 128/19 GROUND ELRATE UVELS: Hold Size 4* DRILING CATRACTOR PES GROUND ANERLUVELS: ATTRE OF DRILING	PRO	OJECT I	NUMBER _ G18363.2	PROJECT	LOCAT	ION _	Columbia, N	lissour	i					
DRELING CONTRACTOR (IPES) GROUND VALUES ::::::::::::::::::::::::::::::::::::	DA	TE STA	RTED 1/28/19 COMPLETED 1/28/19	GROUND	ELEVAT		742 ft MSL		HOLE	SIZE	4"			
UPUELING WE HAD 4 SOA AT IME OF DRULING	DR			GROUND	WATER		_S:							
Control by	DR		METHOD <u>4" SSA</u>	AI				ot Enc		ea vd				
Bit Harts Bit Harts <t< td=""><td>NO</td><td>TES B</td><td>orehole backfilled upon completion</td><td>0.2</td><td>5hrs AF</td><td>FR DF</td><td>RILLING -</td><td> Not F</td><td></td><td>ntered</td><td></td><td></td><td></td><td></td></t<>	NO	TES B	orehole backfilled upon completion	0.2	5hrs AF	FR DF	RILLING -	Not F		ntered				
B H					10.00		75					AT	ERBE	RG
2014 ASPHALT (S-inches) 741.6 201 1.0 BASE ROCK (7 inches) 741.6 000 UNCONTROLLED FILL Cravely leen to fat day, trace 112 1 10 2.6-7 3000 10 SEPT 10 2.6-7 10 UNCONTROLLED FILL Cravely leen to fat day, trace SEPT 10 10 SEPT 10 5-5-3 5000 10 SEPT 10 5-5-3 5000 10 SEPT 10 5-5-3 5000 11 10 SEPT 12 23-5 4500 10 SEPT 12 23-5 4500 24 11 10 SEPT 12 23-5 4500 24 11 Sept 15 12 23-5 4500 16 12 Sept 15 13 5 11 6-8-11 9000 12 Sept 11 6-8-11 9000 17 17 13 Sept 19 12-12-14 9000 14	DEPTH	(II) GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY LENGTH	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	UNC. COMP. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIQUID		PLASTICITY INDEX
Simple CLD ASE ROCK (7 inches) // Simple CLB // Simple C	MEN -	001	0.4 ASPHALT (5-inches)	741.6			(
10 10 <td< td=""><td>DOC</td><td>-82</td><td>BASE ROCK (7-inches) UNCONTROLLED FILL: Gravelly lean to fat cla</td><td>iy, trace</td><td></td><td>10</td><td>2-6-7</td><td>3000</td><td></td><td></td><td>12</td><td></td><td></td><td></td></td<>	DOC	-82	BASE ROCK (7-inches) UNCONTROLLED FILL: Gravelly lean to fat cla	iy, trace		10	2-6-7	3000			12			
5 2 10 (8) 5000 9 10 20	STING	\sim	rust stains, trace to with sand, stiff to very stiff	,,		10	5-5-3	5000						
10 10 <td< td=""><td>0dd</td><td>-</td><td></td><td></td><td><u>2</u></td><td>10</td><td>(8)</td><td>5000</td><td></td><td></td><td>9</td><td></td><td></td><td></td></td<>	0dd	-			<u>2</u>	10	(8)	5000			9			
10 3 21 -(6) 4500 24 15	721 TPMC/SL		7.0 LEAN TO FAT CLAY: Gray and brown, trace ru with sand to sandy, trace gravel, very stiff (glaci	st stains, al drift)	V SPT		2-3-5	4500						
15 15 15 17 16 15 11 12.2.3.4 5000 16 17 18.0 SHALEY LEAN TO FAT CLAY. Light gray, trace rust SPT 11 6-8-11 9000 17 17 11 19 9000 17 11 19 9000 17 18.0	363.1 - CP190	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			3	21	(8)	4500			24			
18.0	1512018/G18	-0 -0 0				15	2-3-4 (7)	5000			16			
20 Starts, itade sala, itad 5 11 (19) 9000 17 23.0 CLAYEY SHALE: Light gray, trace light brown, hard SPT 19 12-12-14 9000 14 25 WEATHERED SHALE: Cray, trace sand, moderately to severely weathered, hard SPT 12 27-50/4* 9000 13 30 30 SPT 12 27-50/4* 9000 13 30 SPT 6 50/3* 9000 13 30 SPT 14 50/5* 9000 13 30 SPT 14 50/5* 9000 14 40 SPT 14 50/5* 9000 9 45 Grade of the other of the			18.0	724.0 e rust	√ SPT	11	6-8-11	0000			17			
25 CLAYEY SHALE: Light gray, trace light brown, hard SPT 19 12-12-14 9000 14 25 30 WEATHERED SHALE: Gray, trace sand, moderately to severely weathered, hard SPT 12 27-50/4* 9000 13 30 WEATHERED SHALE: Gray, trace sand, moderately to severely weathered, hard SPT 6 50/3* 9000 6 35 SPT 6 50/3* 9000 6 6 6 40 SPT 14 50/5* 9000 9 9 10 10				710.0	△ 5		(19)	3000						
25 6 19 (26) 9000 14 30 WEATHERED SHALE: Gray, trace sand, moderately to severely weathered, hard 713.0 SPT 12 27-50/4" 9000 13 30 WEATHERED SHALE: Gray, trace sand, moderately to severely weathered, hard 7 9000 6 6 30 SPT 6 50/3" 9000 6 6 30 SPT 6 50/3" 9000 6 6 30 SPT 14 50/5" 9000 6 6 40 SPT 9 50/5" 9000 9 9 40 SPT 9 50/5" 9000 10 10			CLAYEY SHALE: Light gray, trace light brown,	hard	V SPT	10	12-12-14	0000			14			
30 WEATHERED SHALE: Gray, trace sand, moderately to severely weathered, hard 13 30 WEATHERED SHALE: Gray, trace sand, moderately to severely weathered, hard 7 30 SPT 6 31 SPT 6 32 SPT 6 33 SPT 6 34 SPT 9000 35 SPT 6 36 SPT 9 37 SPT 9 38 SPT 9 40 SPT 9	19 12:43 - V:1				6	10	(26)							
Y1 - </td <td>TE.GDT - 3/8/</td> <td></td> <td>29.0 WEATHERED SHALE: Gray, trace sand, mode severely weathered, hard</td> <td>713.0 rately to</td> <td>SPT 7</td> <td>12</td> <td>27-50/4"</td> <td>9000</td> <td></td> <td></td> <td>13</td> <td></td> <td></td> <td></td>	TE.GDT - 3/8/		29.0 WEATHERED SHALE: Gray, trace sand, mode severely weathered, hard	713.0 rately to	SPT 7	12	27-50/4"	9000			13			
35 8 9 40 9 9 9 9 9 9 9 50/5" 9 10	NG TEMPLA			:	SPT	6	50/3"	19000			6			
SPT 14 50/5" 9000 9 40 9 9 9 9 10 9 9 10 10	SF)- LAT-LC				8									
NJ- H H H SPT 9 50/5" 9000 10 10 10				:	≤ SPT 9		50/5"	<u>,9000</u> ,			_9_			
					≤ SPT 10	_9_/	50/5"	<u>9000</u>						

Figure 13: NextGen Borehole 21

Crockett GTL 1000 W Nifong Blvo Columbia, MO 6520 Telephone: 573-44	1. Bldg. #1 13 7-0292			B	E	BOF	RING	g Ni	UME	PAGI	8 B- 2 0	21 F 2
CLIENT University	of Missouri - Campus Facilities	PROJECT	NAME	CP19	0721 TPM0	2						
PROJECT NUMBER	G18363.2	PROJECT	LOCAT	ION _	Columbia, N	lissour	i					
45 DEPTH (11) GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY LENGTH	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	UNC. COMP. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)			
31.GPJ	WEATHERED SHALE: Gray, trace sand, moderately to severely weathered, hard (continued)											
	: trace coal		SPT 11		50/3"	<u>,9000</u> ,						
S2.0	LIMESTONE: Hard	690.0 689.5										
admPLE LENGTH REPORT (TSP) - LAT-LONG TEMPLATE GDT - 38/19 12:43 - V1===PROJECTS===KGEOT PROJECTS2018)618363 1 - CP190721 TPMCSUPPORTING DOCU	LIMESTONE: Hard Auger Refusal at 52.5 feet. Spit Spoon Sampler Refusal at 52.6 feet. Bottom of borehole at 52.6 feet.	639.51	SPT 12	19	50/1*							

Figure 14: NextGen Borehole 21 (Continue)

Figure 15: NextGen Borehole 22

APPENDIX A-9

Figure 1: Virginia Ave. Housing and Dining Complex boring plan (Aerial View), prepared by Terracon

CLIEN	NT	ARC	нт	EÇT	EN0	GINE	ER		_		ageic
	UNIVERSITY OF MISSOURI - COLUMBIA					2	12232-028				
SITE		PRC	JEC	т					1.11.200		
	COLUMBIA, MISSOURI	<u> </u>		VI	RGIN	IA F	ELDH	IOUSI	NG A	ND DIN	ING
					SAM	APLE:	5			TESTS	,
						<i></i>					
Ď	DESCRIPTION		1BO			Y, ir		%	5	E E	U
PHC		ŧ,	SYA	Ř		/ER	2/#	J.	Ę	GTE	BER
RAPI		E	CS	MB	Ж	00	128	LE N	۲ ۲	S N	ER
ÖA	pprox. Surface Elev.: 766 ft	DE	ns	NU	Σ	RE	BLO	NOS N	pcf	STF	LAND
	6 7" ASPHALT 765.5	- 1			HSA						
	8 CRUSHED LIMESTONE GRAVEL		CL	1	ST	16		22.0	105	6000*	
***	FILL, lean to fat clay, trace sand, gravel	-	CH								
XX -	and tan, very stiff	-	CL	2	ST	16		22.0	104	5000*	42, 18
₩5.t	5760.5	5		2	OT			00.0	100		
He had		1 -	UL	3	51	23		20.0	108	3700	
TA)	LEAN CLAY, trace sand and gravel, with		<u>}</u>		HSA						
HA -	sand and silt lenses, yellowish brown	1 -	CL	4	ST	14		17.0	112	4560	
	mottled gray, jointed, stiff to very stiff	Ξ.								1000	
¥2	(Glacial Drift)	10-	-		HSA						
12	754	-									
	SILTY SAND, fine to coarse, trace clay										
	yellowish brown, very dense	=	SM	5	SS	16	63	15.0			
		15-									
		=			HSA						
22	749									-	
H)	LEAN CLAY, trace sand and gravel, with	-									
	sand and silt lenses, yellowish brown		CL	6	SS	18	28	21.0		7000*	
Ĥ	mottled gray, jointed, very stim	20			HSA				-		
£	(Glacial Drift)	-									
9D		-									
HD.	: grading hard	-	CL	7	SS	18	31	16.0		+9000*	
ĦD	graung haru	25-			HEA				-		
Ú)		Ξ			ISA	6					
Ĥ											
H)		=	0:	-	0.0			10.5			
14 S	*	20	CL	8	SS	18	42	18.0		+9000*	
		30-			HSA						
19D		-				3			67		
Ú)	: grading yellowish brown to dark gray		CL	9	SS	18	38	18.0		+9000*	
\$_\$\$}.	Continued Next Para	35-				-					
Thest	continueu Next Page									<u> </u>	
betwee	auncauon mes represent the approximate boundary lines in soil and rock types: in-situ, the transition may be gradual.							•0	alibrati	ed Hand i	enetro
WATE	ER LEVEL OBSERVATIONS, ft					BOR	NG ST	ARTE	Ð		8-
WL 🖾	NONE WD 29 AB				_ h	BOR	NG CO	OMPL	ETED		8-
WLY		ar	-٢	٦r	1	RIC	MOR	IER	47 6		N /
					• J'		NOB		-1 r		u.v. (

~~**

Figure 2: Virginia Ave. Housing and Dining Complex Borehole 3

ï

Figure 3: Virginia Ave. Housing and Dining Complex Borehole 3 Continue

	ARC	HITE	ECT	ENG	SINE	ER			
SITE	PRO		т						
COLUMBIA, MISSOURI			VIF	RGIN	IA FI	ELD H	IOUSI	NG AN	
				SAM	IPLE	3			TESTS
	1								+
O DESCRIPTION		BOI			Y, in		%	5	ED ¹ , ps
	ť, fi.	SYN	æ		/ER	2/#	~ INT	LN	GTF
AP1	L L	CS	MBR	ЪЕ	CO	1-T	NTEP	N I	SCO
Approx. Surface Elev.: 769 ft	<u> </u>	ŝ	ž	λ	RE	SP	\$8	P CT	STC
1.3 9" CRUSHED LIMESTONE GRAVEL 767		<u> </u>		HSA					
FILL, lean clay, trace gravel, olive gray and		CL	1	ST	12		19.0	107	5510
dark gray mottled brown, very stiff	-	CL	2	ST	11		14.0	113	8000*
1 FAN TO FAT CLAX trace cand and	5-	C	2	eT.	17		22.0	100	0000
gravel, yellowish brown mottled gray, stiff		СН	3	51	17		23.0	103	2920
7.5 761.	<u>i</u> _	-		HSA					
LEAN CLAY, trace sand and gravel, with	-	CL	4	ST	19		18.0	115	7000*
sand and silt lenses, yellowish brown	10-]		HSA					
	=	1							
(Glacial Drift)	-								
: grading hard		CL	5	ST	23		17.0	116	+9000*
	15-			HSA					
	-								
		CL	6	SS	17	24	18.0		9000*
	20-			HSA					
	=						1		3
		-							
: with silt lenses	25	CL	7	SS	18	15	21.0		8000*
88	25			HSA					
	-	1							
		C	2	90	19	25	21.0		+0000+
	30-		0	00	10	40 	21.0		19000
	Ē			HSA					
201 201	-	4							
*	-	CL	9	SS	18	50	16.0	<u> </u>	+9000*
Continued Next Pres	35-	1	-						
The stratification lines represent the approximate boundary lines				1		22 1.10	**	Calibrata	d Hand ^r
between soil and rock types: in-situ, the transition may be gradual.								Jairorate	
					BOR	NG S	TARTE	ED	
NL ¥ 43 WD ¥ 33 AB T F F F		-			BOR	NG C	OMPL	ETED	
	CIL				RIG	MOBI	LE B-	47 FC	

.....

Figure 4: Virginia Ave. Housing and Dining Complex Borehole 5

CLIENT			ידועי	ECT			ED			Pa	age 2 o
L	INIVERSITY OF MISSOURI - COLUMBIA	ARU	-	ECT		31146	ER				
SITE		PRO	DJEC	т		5250	10.000	18 10-1			
	COLUMBIA, MISSOURI			VII	RGIN	IA F	ELD H	IOUSI	NG A		NG
					SAN	NPLE	S		1	TESTS	
~											
100	DESCRIPTION		BOI			Υ, ii		%	M	ED -	ڻ ن
읃		, Ħ	SYN	ŝ		/ER	2/#	"II	L.	GTN	BER
SAPI		PT L	CS	MB	Ы	CO	1-T	NTEF	٦ ۲	SEN	TER
5		- H	SU	R	₽	RE	BLO	₹0 S	DR	STIL	AA
W),	LEAN CLAY, yellowish brown, hard		1		HSA						
37	•	732 1	-								
$\langle \rangle \rangle$	CLAYEY SAND, trace gravel, yellowish										
	brown, extremely dense		SC	10	SS	12	89/6"	15.0			
1D		40-	-		HSA						
42_		727									
A37	<u>LEAN CLAY</u> , trace sand and gravel, $\frac{7}{7}$		1								
44.2	-**SHALE, weathered, light gray	725 -		11	SS	15	100/4"	13.0		+9000*	
	AUGER REFUSAL AT 44.2 FT.										
	BOTTOM OF BORING										
	** Rock classification estimated from disturbed samples. Core samples and petrographic analysis may reveal other rock types										
The stratif	ication lines represent the approximate boundary lines							*0	alibrat	ed Hand P	enetror
hat	oil and rock types: in-situ, the transition may be gradual.										
between s						BOR	ING ST	TARTE	ED		8-
WATER	LEVEL OBSERVATIONS, ft				P						
WATER	LEVEL OBSERVATIONS, ft 3 WD ₹ 33 AB		-			BOR	ING CO	OMPL	ETED	1	8-

Figure 5: Virginia Ave. Housing and Dining Complex Borehole 5 (Continue)

		- and		0.	0.	U			_		P	age 1
CLIENT	NIVERSITY OF MISSOURL - COLUMBIA	AR	CHIT	EC	CT / E	NG	INE	ER				
SITE		PRO	JEC	СТ	2 13							
	COLUMBIA, MISSOURI				VIRG	INI	A FI	ELD H	lousi	NG A		NG
				_		SAM	PLES	6	1		TESTS	
APHIC LOG	DESCRIPTION	TH, ft.	S SYMBOL	0.000	1BER		OVERY, in.	- N WS / ft.	ER ITENT, %	UNIT WT	ONFINED ENGTH, psf	ERBERG
Appr	ox. Surface Elev.: 763 ft	EP	JSC		Ş	4	SEC	SPT	VAT	SRY SRY	TRI	EL
0.7	_8" ASPHALT 762.	5 -			- H	SA		0.00	20			4
1.3_	8" CRUSHED LIMESTONE GRAVEL 761	5 -	-	-		-	10		0.7.0	-		
3	LEAN CLAY, trace sand, gray mottled	0 -			1 8		19		25.0	101	3790	
5	SILT, with fine sand, light brown, very stiff	8 5	ML	•	2 5	т	22		15.0	112	5000*	
7.5	LEAN CLAY, trace sarid, light yellowish brown, stiff	-	CL		3 S	Τ	24		16.0	115	3000*	
WA		익 -	-	1_	H	SA						
	LEAN CLAY, trace sand and gravel, with sand lenses, gray mottled reddish brown, very stiff	10-			4 S	Т	20		15.0	114	6500*	
	(Glacial Drift)	-			H	SA						
	with silt lenses, vellowish brown and		CL		5 S	т	22		21.0	105	3000*	
	gray, stiff	15			н	SA						
	: grading very stiff		CL	. 6	6 S	S	14	20	18.0		5000*	
	¥	20			H	SA						
	-: with sand lenses		CL		7 S	s	12	15	20.0		8000*	
27		25-			H	SA						
	SILTY SAND, medium to coarse, with gravel, light yellowish brown, extremely		SM	5	8 9	5	18	106	21.0			
	dense	30-		ļ_`					~1.0			
32		1			H:	24						
	LEAN CLAY, trace sand and gravel, dark gray, hard			L.				- 20	10.0			
ŹĊ	Continued Next Page	35-		-	9 5	3	18	30	19.0		9000*	
The stratifi	cation lines represent the approximate boundary lines	1				-			*0	alibrate	ed Hand P	enetr
WATER	Dil and rock types: in-situ, the transition may be gradual.			- 61		В	ORI	NG S1	TARTE	D		я
NL 7 28	3.5 WD ¥ 21 AB		2			в	ORI	NG CO	OMPL	ETED		8
NL I		30			Π	R	lG	MOBI	LE B-	47 F	OREMA	N
M			11111			A	PPF			AB	DP #	0004

Figure 6: Virginia Ave. Housing and Dining Complex Borehole 6

Figure 7: Virginia Ave. Housing and Dining Complex Borehole 6 (Continue)

APPENDIX B

Figure 1: HVSR plots from Ellis Library borehole 1

Figure 2: HVSR plots from Ellis Library borehole 2

Figure 3: HVSR plots from Ellis Library borehole 3

Figure 4: HVSR plots from Ellis Library borehole 4

Figure 5: HVSR plots from Gateway Residence Hall borehole 1

Figure 6: HVSR plots from Gateway Residence Hall borehole 2

Figure 7: HVSR plots from Gateway Residence Hall borehole 6

Figure 8: HVSR plots from Gateway Residence Hall borehole 7

Figure 9: HVSR plots from Gateway Residence Hall borehole 11

Figure 10: HVSR plots from Journalism Building borehole 2

Figure 11: HVSR plots from Journalism Building borehole 5

Figure 12: HVSR plots from Journalism Building borehole 6

Figure 13: HVSR plots from Journalism Building borehole 7

Figure 14: HVSR plots from Lee's Hall borehole 1

Figure 15: HVSR plots from Lee's Hall borehole 2

Figure 16: HVSR plots from Lee's Hall borehole 3

Figure 17: HVSR plots from Lee's Hall borehole 5

Figure 18: HVSR plots from Lee's Hall borehole 6

Figure 19: HVSR plots from Lee's Hall borehole 8

Figure 20: HVSR plots from Lee's Hall borehole 11

Figure 21: HVSR plots from Lee's Hall borehole 13

Figure 22: HVSR plots from Lee's Hall borehole 14

Figure 23: HVSR plots from Lee's Hall borehole 15

Figure 24: HVSR plots from Lee's Hall borehole 18

Figure 25: HVSR plots from MUHC borehole 1

Figure 26: HVSR plots from MUHC borehole 2

Figure 27: HVSR plots from MUHC borehole 3

Figure 28: HVSR plots from MUHC borehole 4

Figure 29: HVSR plots from MUHC borehole 5

Figure 30: HVSR plots from MUHC borehole 6

Figure 31: HVSR plots from MUHC borehole 7

Figure 32: HVSR plots from MUHC borehole 8

Figure 33: HVSR plots from MUHC borehole 9

Figure 34: HVSR plots from MUHC borehole 10

Figure 35: HVSR plots from MUHC borehole 11

Figure 36: HVSR plots from MUHC borehole 12

Figure 37: HVSR plots from MUHC borehole 13

Figure 38: HVSR plots from SHSMO borehole 1

Figure 39: HVSR plots from SHSMO borehole 2

Figure 40: HVSR plots from SHSMO borehole 5

Figure 41: HVSR plots from SHSMO borehole 7

Figure 42: HVSR plots from SHSMO borehole 8

Figure 43: HVSR plots from SHSMO borehole 9

Figure 44: HVSR plots from SHSMO borehole 10

Figure 45: HVSR plots from SHSMO borehole 13

Figure 46: HVSR plots from SHSMO borehole 16

Figure 47: HVSR plots from Stewart Hall borehole 1

Figure 48: HVSR plots from Stewart Hall borehole 2

Figure 49: HVSR plots from Stewart Hall borehole 2'

Figure 50: HVSR plots from NextGen borehole 5

Figure 51: HVSR plots from NextGen borehole 6

Figure 52: HVSR plots from NextGen borehole 8

Figure 53: HVSR plots from NextGen borehole 9

Figure 54: HVSR plots from NextGen borehole 11

Figure 55: HVSR plots from NextGen borehole 14

Figure 56: HVSR plots from NextGen borehole 15

Figure 57: HVSR plots from NextGen borehole 16

Figure 58: HVSR plots from NextGen borehole 17

Figure 59: HVSR plots from NextGen borehole 18

Figure 60: HVSR plots from NextGen borehole 19

Figure 61: HVSR plots from NextGen borehole 21

Figure 62: HVSR plots from NextGen borehole 22

Figure 63: HVSR plots from Virginia Ave Dining borehole 3

Figure 64: HVSR plots from Virginia Ave Dining borehole 5

Figure 65: HVSR plots from Virginia Ave Dining borehole 6

APPENDIX C

The V_s profile for soil can also be modeled with a power function relationship that depends on the soil structure and composition (A) and effective stress (σ'_v):

$$V_s = A(\sigma'_v)^m \tag{Eq. 2.1}$$

The exponent, m, can often be assumed to be about 0.25

If we assumed no water table, the unit weight of soil is ~ 120 pcf and the pressure is 2000 psf, the Eq. 2.1 can be expressed as:

$$V_s = A(120z/2000)^{0.25}$$
 (Eq. App. C-1)
 $V_s = A(0.5)z^{0.25}$ (Eq. App. C-2)

~ ~ =

Where z is the depth and V_s is shear wave velocity.

Average the V_s through the slowness average equation, as presented below:

$$V_{s,AVG} = \frac{H}{\sum_{i}^{Z_i}}$$
(Eq. 2.5)

where $V_{s,AVG}$ = average shear velocity; H = total sediment thickness; V_i = shear velocity at depth z; and Z_i = sediment thickness.

If we used both Eq. App. C-1 and Eq. 2.5, we obtained the following:

$$V_{s,AVG} = \frac{H}{\sum_{0.5} \frac{Z_i}{Az^{0.25}}}$$
$$V_{s,AVG} = \frac{H}{\frac{1}{0.5A} \int z^{0.25} dz}$$

$$V_{s,AVG} = \frac{0.5H*A}{\int_0^H z^{0.75}}$$

$$V_{s,AVG} = \frac{0.5H*A}{H^{0.75}}$$

$$V_{s,AVG,slowness} = 0.5(A)H^{0.25}$$
(Eq. App. C-3)

Where H is the depth and V_s is shear wave velocity.

Average the V_s through the simple weighted average, as presented below:

$$V_{s,AVG} = \frac{\sum V_i Z_i}{H}$$
(Eq. 2.4)

where $V_{s,AVG}$ is the average V_s ; *H* is the total sediment thickness; V_i is the V_s at depth z; and Z_i is the sediment thickness of individual layers.

If we used both Eq. App. C-1 and Eq. 2.4, we obtained the following:

$$V_{s,AVG} = \frac{\int A(0.5)z^{0.25}dz}{H}$$

$$V_{s,AVG} = \frac{A(0.5)\int z^{.025}dz}{H}$$

$$V_{s,AVG} = \frac{A(0.5)\int_{0}^{Hz^{1.25}}}{H}$$

$$V_{s,AVG} = \frac{A(0.5)H^{1.25}}{1.25H}$$

$$V_{s,AVG} = \frac{A(0.5)H^{0.25}}{1.25H}$$
(Eq. App. C-4)

The simple relationship, as expressed to be:

$$f_r = V_{s,AVG}/4H \tag{Eq. 2.3}$$

where f_r is the resonant frequency, $V_{s,AVG}$ is the average shear wave velocity of the layers and the *H* is sediment thickness.

- - -

Use the Eq. 2.3 and Eq. App. C-3, the slowness average can be expressed as:

$$f_r = \frac{0.5(A)H^{0.25}}{4H}$$

$$f_r = \frac{0.5(A)H^{-0.75}}{4}$$

$$f_r = 0.125AH^{-0.75}$$

$$H^{-0.75} = \frac{f_r}{0.125(A)}$$

$$H = \frac{f_r^{-4/3}}{0.125^{-4/3}(A^{-4/3})}$$

$$H = A^{\frac{4}{3}}(0.125^{4/3}) f_r^{-4/3} \qquad \text{(Eq. App. C-5)}$$

$$H = A^* f_r^{-1.333} \qquad \text{(Eq. App. C-5)}$$

Assuming A is ~700 ft/s based on Stokoe et al. (2014), the Eq. App. C-5 can be expressed as:

$$H = 388 f_r^{-1.333}$$
 (Eq. App. C-6)

Use the Eq. 2.3 and Eq. App. C-4, the weighted average can be expressed as:

$$f_r = \frac{0.5(A)H^{0.25}}{1.25 * 4H}$$
$$f_r = \frac{0.5(A)H^{0.25}}{6H}$$
$$f_r = \frac{0.5(A)H^{-0.75}}{6}$$
$$H^{-0.75} = \frac{f_r}{0.083(A)}$$

$$H = \frac{f_r^{-4/3}}{0.083^{-4/3}(A^{-4/3})}$$

$$H = A^{\frac{4}{3}}(0.083^{4/3}) f_r^{-4/3}$$
 (Eq. App. C-7)

$$H = A^* f_r^{-1.333}$$
 (Eq. App. C-7)

Assuming A is ~700 ft/s based on Stokoe et al. (2014), the Eq. App. C-5 can be expressed as:

$$H = 288 f_r^{-1.333}$$
 (Eq. App. C-8)

APPENDIX D

Figure 1: Ellis Library Borehole 1

Figure 2: Ellis Library Borehole 2

Figure 3: Ellis Library Borehole 3

Figure 4: Ellis Library Borehole 4

Figure 5: Gateway Borehole 1

Figure 6: Gateway Borehole 2

Figure 7: Gateway Borehole 6

Figure 8: Gateway Borehole 7

Figure 9: Gateway Borehole 11

Figure 10: Journalism Borehole 2

Figure 11: Journalism Borehole 5

Figure 12: Journalism Borehole 6

Figure 13: Journalism Borehole 7

Figure 14: Lee's Hall borehole 1

Figure 15: Lee's Hall borehole 2

Figure 16: Lee's Hall borehole 3

Figure 17: Lee's Hall borehole 5

Figure 18: Lee's Hall borehole 6

Figure 19: Lee's Hall borehole 8

Figure 20: Lee's Hall borehole 11

Figure 21: Lee's Hall borehole 13

Figure 22: Lee's Hall borehole 14

Figure 23: Lee's Hall borehole 15

Figure 24: Lee's Hall borehole 18

Figure 25: MUHC borehole 1

Figure 26: MUHC borehole 2

Figure 27: MUHC borehole 3

Figure 28: MUHC borehole 4

Figure 29: MUHC borehole 5

Figure 30: MUHC borehole 6

Figure 31: MUHC borehole 7

Figure 32: MUHC borehole 8

Figure 33: MUHC borehole 9

Figure 34: MUHC borehole 10

Figure 35: MUHC borehole 11

Figure 36: MUHC borehole 12

Figure 37: MUHC borehole 13

Figure 38: SHSMO borehole 1

Figure 39: SHSMO borehole 2

Figure 40: SHSMO borehole 5

Figure 41: SHSMO borehole 7

Figure 42: SHSMO borehole 8

Figure 43: SHSMO borehole 9

Figure 44: SHSMO borehole 10

Figure 45: SHSMO borehole 13

Figure 46: SHSMO borehole 16

Figure 47: Stewart Hall borehole 1

Figure 48: Stewart Hall borehole 2

Figure 49: Stewart Hall borehole 2'

Figure 50: Virginia Ave Dining borehole 3

Figure 51: Virginia Ave Dining borehole 5

Figure 52: Virginia Ave Dining borehole 6

Figure 53: NextGen borehole 5

Figure 54: NextGen borehole 6 Figure 53: NextGen borehole 5

Figure 55: NextGen borehole 8

Figure 56: NextGen borehole 9

Figure 57: NextGen borehole 11

Figure 58: NextGen borehole 14

Figure 59: NextGen borehole 15

Figure 60: NextGen borehole 16

Figure 61: NextGen borehole 17

Figure 62: NextGen borehole 18

Figure 63: NextGen borehole 19

Figure 64: NextGen borehole 21

Figure 65: NextGen borehole 22