
DEPLOYMENT PIPELINE DEVELOPMENT AT SCALE:

AUTOMATING SOFTWARE AS A SERVICE

A Thesis presented to

the Faculty of the Graduate School

at the University of Missouri-Columbia

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

BROCK D. WEEKLEY

Dr. Dong Xu, Thesis Supervisor

MAY 2022

0

The undersigned, appointed by the dean of the Graduate School, have examined

the thesis entitled:

DEPLOYMENT PIPELINE DEVELOPMENT AT SCALE:

AUTOMATING SOFTWARE AS A SERVICE

presented by Brock Weekley,

a candidate for the Degree of Master of Science and hereby certify that, in their opinion,

it is worthy of acceptance.

Dr. Dong Xu

Dr. Prasad Calyam

Dr. Yaw Adu-Gyamfi

ACKNOWLEDGMENTS

I would like to extend my gratitude to my advisor, Dr. Dong Xu, for providing

guidance, critiques, and kind words at every part of the process as I pursued my research.

I would not have been able to accomplish this without him. I would also like to thank my

committee members, Dr. Prasad Calyam and Dr. Yaw Adu-Gyamfi, not only for finding

time to collaborate and serve as my committee members, but also for playing integral

parts in my growth as a student and Software Developer. To all of my committee

members, your support, knowledge, and drive are not lost on me, thank you for striving

to be the best at what you do.

To my family, who provided constant support, and to my parents who listened,

advised, and loved me every step of the way, thank you from the bottom of my heart. To

my friends, thank you for forcing me to have fun in between all of the hard work. You all

reveled in my success, consoled me in my failures, and taught me to be the person I am

today through this journey.

Brock Weekley

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ii

LIST OF FIGURES .. v

ABSTRACT ... vii

CHAPTERS

1. INTRODUCTION ... 1

1.1 Background …………………………………………………………….. 2

1.1.1 Cloud Computing ………………………………………………….. 2

1.1.2 Software as a Service …………………………………………….. 3

1.1.3 Deployment Pipelines …………………………………………….. 5

1.2 Motivation ………...…………………………………………………… 6

1.3 Problem Statement …………………...………………………………… 8

1.4 Literature Review …………...…………………………………………. 9

1.4.1 Existing CI/CD Pipelines ……………………………………….... 10

1.4.2 Market Needs ……….……………………………………..…….. 15

1.5 Thesis Organization …………...………………………………...…….. 21

2. APPLICATION DEVELOPMENT ... 21

2.1 Interface & Commands ….……………………………….…...……….. 23

2.2 Package Management …………...……………….……………...……. 30

2.3 GitHub …..………...…………………………………………...……… 33

2.4 Containerization ……………………..…………………………...…… 35

2.5 Golang ……...………………...………………………………...…….. 38

iii

2.6 Code & Style Injection ………………...…..………………………..... 40

2.7 Mobile Integration ………………...……….………………………..... 42

2.8 Test Driven Development …………….……………………………..... 43

2.9 Open Source License ………………...……….………………...…….. 45

3. USE CASES ………………………... 46

3.1 Individual Developer ….…………………………………………...….. 47

3.2 Startup Company …………...……………….…………………...….... 48

3.3 Enterprise Company …..………...………………………....……..…… 50

3.4 Integration With Existing Clouds ……………………..……….……… 51

3.5 Test Results and Comparisons ……………………..…………………. 52

4. FUTURE WORK ……………………….. 62

BIBLIOGRAPHY ... 65

iv

LIST OF FIGURES

Figure Page

1 An Example Deployment Pipeline Managed with Jenkins ………………… 6

2 Top 10 CI Systems Used With GitHub.com ……………………………...….. 7

3 Number of Projects Using CI Over Time ……………………………………. 11

4 Reasons Developers Gave For Not Using CI ………………………………… 12

5 A Typical Blue-Green Deployment Diagram ………………………………… 17

6 The Banquet Logo ……………………………………………………………. 23

7 Banquet Initialization Through CLI ………………………………………….. 24

8 A Diagram of Banquet Command-Line Flow ……………………………….. 27

9 Server Initialization and Endpoint Options …………………………………… 29

10 An Example of Packages Downloaded From NPM …………………………... 32

11 Banquet Provided Access to Private Repositories on GitHub ………………... 34

12 Banquet’s Go Mod File and Dependencies ………………………………….... 39

13 Example 1 of Style Injection ………………………………………………….. 41

14 Example 2 of Style Injection and Code Injection …………………………….. 42

v

15 Some Banquet Unit Tests ………………………………………………….…. 44

16 Deployment Time for Jenkins, Shared Runner, and Specific Runner ……...… 53

17 Deployment Time for Jenkins, Shared Runner, Specific Runner, and Banquet 54

18 Test Results for Deployment 1 ………………………………………………. 54

19 Test Results for Deployment 2 ………………………………………………. 54

20 Output of Banquet Init Command …………………………………………… 56

21 Prompt Answers to Banquet Dish Add Command ………………………….. 57

22 Output of Banquet Dish Add Command ……………………………………. 58

23 Deployed Application Created by Deployment 1 …………………………… 59

24 Results of Banquet Unit Tests ……………………………………………….. 60

vi

ABSTRACT

In recent years, adaptability has become the most important aspect of software.

As technology companies grow, sustainable scalability and increased security become the

main goals for developers, while the company’s goals become increased scalability and

decreased development time. In this overlap of goals, the delivery model of Software as a

Service has gained particular notoriety. This model has inspired the development of new

types of tools, such as Content Management Systems, Continuous Integration Continuous

Deployment Pipelines, and Progressive Delivery Tools. These tools, while beneficial,

offer persistent disadvantages to the development of Software as a Service applications,

such as high costs or high initial development time. Many companies, in all size

classifications, have decided to build multiple applications for multiple clients, despite a

large aggregate of code and design shared between apps. Within this market, there is a

need for tools that allow developers to automate the process of creating SaaS apps.

In this thesis, a new tool has been developed that allows for the automatic style

change and packaging of any web application for use by many companies at once. The

tool, titled Banquet, is a command-line tool and API which will allow programmers to

create CICD pipelines in a fraction of the time of normal development. This enables a

low-cost, low development time solution for building Software as a Service that is

abstract and multifaceted to fulfill as many use cases as possible. The tool utilizes some

of the most prominent technologies of pipeline development and is open for

customization to allow more technologies to be added. This makes Banquet essential for

serving elaborate apps for many companies.

vii

Chapter 1

INTRODUCTION

In 2022, the size of the public cloud services market is expected to grow 47.2%

from 2020, a size of $270.033 billion to $397.496 billion over two years. The largest

segment of this market, Software as a Service (SaaS) products, is expected to reach

$145.377 billion. In this market and the world economy that is shifting due to factors

including the global pandemic, cloud services continue to grow, providing adaptable and

innovative solutions at every level of the tech industry [1].

The SaaS model eliminates the need for companies to create, manage, or even

install software. Generally, a customer of a SaaS product subscribes to utilize the

software at their company, allowing instant access and scalability to its employees. This

reduces hardware, development, and infrastructure costs, making it an attractive option

for many big businesses and industries [2].

This market growth and the efficiency of the SaaS model attract hundreds of

thousands of new developers to the Cloud Computing industry each year. Despite this

mass entry into the market, existing cloud tools are complicated, costly, and require

extensive training [3]. As the cloud market shows no signs of stagnation, and the SaaS

model has proven to be increasingly valuable, it will also become increasingly important

for software developers to have access to efficient, cost-effective, and intuitive means of

creating SaaS applications at scale.

1

1.1 Background

1.1.1 Cloud Computing

Colloquially, the “cloud” has become slang for any operation that a user does not

see, often visualized as a physical entity of the company or brand where data goes. Data

storage, authentication, or other server-side operations are often consolidated into this one

idea for simplicity. As a newer concept in the computing industry, communicating trust in

this model to end-users has shown to be complicated, creating challenges in streamlining

development. Designing less complicated, lower barrier to entry tools for Cloud

Computing could be essential in establishing a better public definition for the model and

building increased trust.

Cloud Computing is academically defined as a “model for enabling convenient,

on-demand network access to a shared pool of configurable computing resources” [4]. It

is a revolutionary paradigm that allows for the acquisition of pay per use and seemingly

infinite on-demand resources. With agile methodologies and DevOps culture, the cloud

can help organizations innovate and quickly respond to market demand to provide

continuous delivery of services [5]. This definition is beneficial for prospective

developers in understanding the process of building a cloud for production. Public and

private clouds alike typically share key similarities that create this definition of a “cloud”.

The popular uses for the cloud model require convenience, elasticity, and adaptability. In

order to achieve these characteristics, the development of cloud services can, at the least,

take many years. Many of the most notable clouds are never complete, but continue to

2

change and grow. Signficant development time leads to a growing industry of Cloud

Computing developers as labor needs are fulfilled.

These aspects make Cloud Computing a powerful paradigm for managing

resources and providing services to end-users. This model can be further specified into

three distinct categories: Software as a Service, Platform as a Service, and Infrastructure

as a Service [4]. Defining clouds in this way seems to be more efficient in

communicating the specific use and specialization of a product. As such, the Cloud

Computing tool developed for this thesis, Banquet, was designed to lower the barrier to

entry for Software as a Service applications specifically, allowing more developers to

create better SaaS products.

1.1.2 Software as a Service

Software as a Service stands out as an industry-defining category of cloud

computing. It is a vital model for creating multi-tenant applications, meaning that an

application can be developed one time and then tooled for multiple clients. The main

characteristics of a SaaS application result in an increased need for customization,

requirements, and integration. SaaS applications must be highly customizable to be used

by many clients effectively. This flexibility can be found in design, including colors,

images, text, and layout, as well as in the subjects of security, connection types, and

more. As many clients use a SaaS application at one time, more frequent updates are

typically needed to accommodate more requirements from these multiple clients. SaaS

applications must also have the ability to integrate with many different protocols, such as

JSON, HTTP, REST, and SOAP [6].

3

Recently, more models have emerged that incorporate SaaS. Service Oriented

Architecture (SOA) and Microservice Architecture are two examples. SOA is “an

enterprise-wide approach to software development of application components that takes

advantage of reusable software components, or services” [7]. SOA is typically composed

of many different SaaS applications across an entire company or service. Microservice

Architecture is an approach that involves many loosely coupled components that work

independently of each other to form an application [7]. Microservice Architecture is often

used to create SaaS applications. These two models are great examples of how the uses of

SaaS continue to grow and how a tool such as Banquet can make developing

bleeding-edge Cloud software more intuitive. Banquet can easily manage the deployment

of multiple SaaS applications in communication with each other, allowing for a Service

Oriented Architecture [8].

End-users in this model can range from enterprise companies to single developers,

depending on the type of software. This range makes multi-tenancy and its corresponding

models a core problem in Cloud Computing. Effective multi-tenancy can improve the

viability, efficiency, and stability of products. In contrast, poor development of

multi-tenant software will result in wasted resources and inefficiency [9]. Currently, the

most popular way to develop and deploy multi-tenant software is with deployment

pipelines. Without a proper pipeline, there is excessive manual labor required to create a

new app instance in the SaaS model, and developing these proper pipelines can take

many years. The SaaS model would benefit significantly from increased velocity in the

development of deployment pipelines.

4

1.1.3 Deployment Pipelines

Continuous Integration Continuous Deployment, or CICD, is a popular workflow

for application development. The process of CICD is as follows: developers begin by

planning a design or implementation, then create that implementation through code,

followed by building, testing, and releasing. It aims to automate the build process, with

goals of early bug discovery, quality assessment, short release cycles, and increased

productivity [10]. It is also likely the most beneficial concept to understand in this thesis,

as Banquet excels at building CICD pipelines.

A pipeline is a term for any group of software that facilitates the design principles

of CICD. In enterprise software specifically, it can often be difficult to maintain code

quality and development speed simultaneously. In maintaining much-needed

development speed, technical debt often builds quickly. CICD pipelines let developers

meet both needs contemporaneously [10]. Tools such as Jenkins Ansible and GitHub

Actions are standard pipeline services used for deploying applications. These tools are

well documented and suitable for building basic pipelines, but face several disadvantages

when building pipelines for SaaS applications.

Pipeline development faces many challenges, including bad practices resulting in

restructuring or inefficiencies, difficulty in maintaining and documenting, unnecessary

additions, performance bottlenecks, and the inability to adapt to application changes [10].

Developing proper pipelines can take many years at minimum. As time moves forward,

developers leave, projects change, and technology evolves, which will make most

pipelines obsolete. This degradation is unsustainable due to the high development time

5

and cost. Thus, a crucial challenge to software development involves determining if there

is a better way to build pipelines.

Fig 1. An Example Deployment Pipeline Managed with Jenkins [5]

1.2 Motivation

Cloud Computing as an industry is growing by billions of dollars every year,

including the category of Software as a Service. At every size category of tech

development, there is an increasing need for specialized tools to aid in the development

of deployment pipelines. Due to this surge in need, more developers are entering the

Cloud Computing industry every year, seeking to build new models and efficiencies

surrounding SaaS. As new developers enter the industry, it becomes painfully clear that

the current process for creating deployment pipelines is outdated in a world that requires

6

increasing flexibility and fast development. The solution to this is to automate the way

developers do CICD.

Currently, automation for CICD does exist. According to GitHub, in 2017, the top

5 most used CI systems in order were: Travis CI, Circle CI, Jenkins, AppVeyor, and

CodeShip. GitHub also stated that many projects utilized more than one of these

automation tools in their project. However, academic surveys of users of these services

have found that most are dissatisfied with the current tools [11].

Fig 2. Top 10 CI Systems Used With GitHub.com [12]

The issue with current implementations is summarized in three categories:

flexibility, complexity, and cost. CICD pipelines are typically built with a YAML file,

which specifies a build process for a specific application. YAML, or “YAML Ain’t

7

Markup Language”, is a Unicode-based data serialization language that is often used in

configuration files [13]. YAML is the most popular form of configuration file for pipeline

services, but there are other options, such as the Jenkins software’s solution, “Jenkinsfile”

[14]. YAML is a fantastic language for building a single build process, but it is not

dynamic. One build process cannot build many different types of apps. In terms of

complexity, building pipelines with these tools is not easy. “It can be a repetitive,

time-consuming, manual, and complex process. Additionally, enterprise applications are

so diverse and composed of so many technologies, open-source tools, and commercial

tools, that it is becoming difficult to manage application delivery lifecycle for

organizations while dealing with these complexities” [5]. Finally, the current services that

exist for pipeline automation are expensive and not one size fits all solutions as “finding a

cloud service provider (CSP) has become an intricate judgment. Nowadays it's not a

question of which option we should work with, but rather, how to achieve the right

performance and dispense risk across multiple vendors - while optimizing cost.” [2].

1.3 Problem Statement

Banquet as a tool is designed to drastically reduce the development time of

deployment pipelines and increase the scalability and customization of SaaS products. As

an open-source project, it is open to tooling for specific needs by a wide range of

developers, including mobile developers. In the current market, there are many services

that facilitate the creation of a deployment pipeline, but few, if any, that easily allow

Software as a Service customization or ample flexibility in pipeline use cases. Banquet

8

focuses on multi-tenancy and content management that has the potential to change the

way developers do SaaS.

Banquet achieves a better solution to the three core problems of existing pipeline

development services. In flexibility, Banquet’s CLI or REST API allow for automation

and dynamic configuration that a singly configured YAML process does not offer. As a

CLI, the initial complexity of utilizing Banquet is low, but the tool remains powerful in

its ability to automate and integrate with other tools. As an open-source tool, hardware is

the only limiting cost as Banquet is free to use. This tool seeks to lower the barrier to

entry that developers entering the Cloud Computing and SaaS market face, decreasing

development costs and increasing usability.

1.4 Literature Review

The cloud market is developing a new need for an elegant, low-cost solution to

automating Software as a Service development. Most of the modern Internet uses cloud

computing services in search of elastic and cost-effective needs [15]. The cloud market

and software development, in general, are developing new requirements to meet these

needs. Changes are coming at a rapid pace to deliver new services and products because

the application delivery lifecycle is pertinent to the success of a business [5]. A huge gap

exists between the requirements of software and the application delivery provided by the

traditional approach to development, resulting in business loss [5]. In this literature

review, papers from the most recent ten years studying the current needs of the cloud

market, existing CICD tools, and the growing need for innovation in this area are

summarized.

9

1.4.1 Existing CI/CD Pipelines

Due to a broad range of benefits, CICD is becoming a widely adopted practice in

both industry and open-source. In a qualitative study of 8,000 GitHub pipeline projects,

the findings show two main reasons that pipelines are changed. The first reason is to add

functionality that did not previously exist within the pipeline. The second is to modify the

pipeline to cope with a system or technology’s change. Out of a studied 615 commits,

nearly half of these changes had the purpose of increasing flexibility within a pipeline.

The projects utilize the most popular existing pipeline services including: AppVeyor,

Bamboo, Circle-CI, GitLab-CI, Jenkins, Semaphore, Travis-CI, CloudBees, and Wrecker

[10].

In a similar study of 34,544 open-source projects on GitHub, the findings show

that, out of projects that utilized some form of pipeline technology, 90.1% used Travis-CI

for their pipeline services. The next most popular in order are Circle-CI, AppVeyor, and

CloudBees. Of the surveyed projects, only 40.27% were utilizing any form of a pipeline,

which shows that there are still many projects that perform deployments manually [16].

From developers surveyed from these projects, the findings show that 94% of developers

were ‘Definitely’ or ‘Most Likely’ going to use a pipeline in their next project. This

tentative interest means that it is safe to predict that pipeline adoption rates will continue

to increase [16]. However, the limitations of existing tools and technologies are inhibitors

to the goals of continuous practices [3].

10

Fig 3. Number of Projects Using CI Over Time [16]

Of the 59.73% of surveyed projects that were found not to be utilizing a pipeline

for automated deployments, the developers of these projects were asked why they were

not utilizing some form of Continuous Integration. With 47% of respondents, the number

one reason was that the other developers on the project were not familiar enough with

Continous Integration. This response showcases that the barrier to entry is incredibly high

for new developers looking to create some form of a pipeline. With 20.59% of

respondents, the fifth-highest reason cited high maintenance costs (e.g., time, effort, etc.)

[16]. These responses are in line with the motivations for developing Banquet, which

seeks to reduce entry barriers and maintenance costs.

11

Fig 4. Reasons Developers Gave For Not Using CI [16]

The most studied pipeline tools in industry studies are GitHub, Subversion, and

Jenkins. In a study of 3,952 industry research papers from IEEE, ACM, ScienceDirect,

Wiley, Scopus, and Springer, filtered to 69 of the most relevant papers, the findings show

that 11 used or discussed Jenkins, six used or discussed GitHub, and six used or discussed

Subversion. Subversion and GitHub are version control systems which allow for projects

to be stored and versioned for use by multiple developers or a company [3]. Jenkins is an

open-source pipeline service that promotes Continuous Integration.

Jenkins, the “leading open source automation server”[14] released in 2011, is one

of the most popular CI services on GitHub with 18.7k stars at the time of this writing. It

is built with Java and offers more than 1,700 community plugins to support the

automation of a multitude of software [14]. Jenkins is often used in academics, being free

and open-source, and has the highest number of questions asked on StackOverflow of

Continuous Integration tools [17]. From the Jenkins Documentation, Jenkins allows users

to create a “Jenkins Pipeline” which is a “suite of plugins which supports implementing

and integrating continuous delivery pipelines into Jenkins” [18]. Jenkins utilizes what is

known as a “Jenkinsfile” which is a text configuration file that lays the foundation of a

12

Jenkins Pipeline [18]. Thanks to the numerous community plugins, Jenkins currently

integrates with Blue Ocean, Amazon AWS, GitHub, and many other services. Jenkins

requires the creation of scripts for individual steps throughout the process of creating a

pipeline, and doing so can be a complicated process [19]. Jenkins is often used in tandem

with another tool, Ansible, to offer Continuous Delivery.

Ansible is an automation tool developed by RedHat, used to deploy applications

and other types of software. Ansible deployments are described using YAML files, which

are static configuration files that describe the build process much like a Jenkinsfile.

Jenkins alone does offer CD as well as CI, but scalability and versioning are a concern

when using this service alone [19].

Travis CI is another open-source CI service, founded in 2011, and the most

widely used on GitHub. Out of 31 million users on GitHub, 158,446 utilized Travis CI in

2019, and out of 2.1 million organizations on GitHub, 106,013 utilized it [20]. These

numbers are significant, as only approximately 40.27% of GitHub projects incorporate

some form of pipeline into their project [16]. The most prominent subsection of users of

Travis CI is corporate institutions, including Apache, Elastic Search, Mozilla Firefox, and

Microsoft [20]. The two most used features of Travis CI are testing and building

applications in a pipeline. Travis CI builds are described using YAML files and are

typically set up utilizing GitHub Actions or webhooks (similar to Jenkins) [21].

As a newcomer to the CI services market, GitHub Actions is beginning to see

some interesting usage. GitHub Actions was introduced in November 2019 by GitHub to

allow the automation of tasks based on various triggers such as commits, pull requests,

13

issues, comments, etc. [22]. GitHub Actions also use YAML files to describe the build

process, known as a “Workflow”. Developers can create Actions by writing custom code

or by gathering existing ones from the GitHub Marketplace. The most used feature of

GitHub Actions is Continuous Integration with 27.12% of usage being attributed to this

category [22]. 12.29% was attributed to “Deployment” which is much higher than the use

cases of the other tools reviewed. At 4.66% of the actions performed, “Testing” was a

much smaller portion of actions than the other tools reviewed [22]. This decrease

showcases a market movement towards CICD from the traditional use of pipelines:

testing and building applications.

In these existing tools, developers find complications in employing CI practices

such as deployment pipelines. In “Problems, causes, and solutions when adopting

continuous delivery - a systematic literature review”, 40 problems were identified with

adopting delivery pipelines. The most egregious of these problems were in the category

of “system design,” meaning the pipeline development process. The study found seven

main categories of problems with the adoption of CICD: build design, system design,

integration, testing, release, human and organizational, and resources. In build design,

build systems were often shown to be inflexible and could not be modified [23].

“Complex builds are difficult to modify and significant effort can be needed to maintain

them. Complex builds can cause builds to be broken more often” [23]. In resource

problems, “effort” was listed as the largest resource issue. This issue had two meanings.

First, a weakly developed pipeline required constant effort to be fixed. Second, the initial

effort required to set up the system and monitor the results was too high when adopting a

14

pipeline. “Continually monitoring and nursing these builds has a severe impact on

velocity early on in the process” [23].

Developers also feel that they are missing features from these existing tools. From

a survey of 691 developers from over 30 countries, it was found that 52% of respondents

felt that they needed “easier configuration of CI servers or services”, 38% needed “better

tool integration”, and 37% needed “better container/virtualization support” [11].

Developers are seeking a tool that is easier to use, configurable, and customizable. The

current needs of this market are not being met by existing tools.

1.4.2 Market Needs

As the Cloud Computing industry continues to grow into the future, the issues that

developers and organizations experience with the current CICD tools will become

magnified. Automation is becoming increasingly important to developers and

organizations alike, forcing a review of the current technologies used to build automation

for applications of all kinds. Likewise, as Software as a Service becomes more

commonplace and additional models are built on top of SaaS, specific tooling developed

for this model will become increasingly valuable. Customization and flexibility will be at

the forefront of what the market desires in automation tools such as deployment

pipelines. This need will require existing technologies to evolve substantially or new

technologies to come into the market to fill this gap. Automation will continue to advance

and developers will find or create the tools they need to succeed. In all size categories of

the tech industry, better methods for creating deployment pipelines and automating

software as a service will become more attractive over time.

15

For example, enterprise-level architecture is currently undergoing a culture shift

towards Agile production and automation, which work efficiently jointly. “Adaptation of

Agile practices enables flexibility… which is attracted by software development

companies… Implementation of CICD pipeline on agile has enabled fast delivery of

software and increase in productivity.” [24]. “Enterprise Architecture” is an established

discipline that many software development professionals and academics closely monitor.

It is defined as the “fundamental concepts or properties of a system in its environment

embodied in its elements, relationships, and in the principles of its design and evolution”

[25]. Increasing efficiency in telecommunication and aspects of globalization are forcing

large companies to adapt rapidly and increase acceleration [25]. This shift means that

social techniques such as Agile will continue to gain momentum, as well as technical

ones such as Software as a Service (and other Cloud Computing models) and deployment

pipelines.

Specifically within enterprise-level architecture, performance is more of a concern

than it may be in other organizations. To achieve a higher level of performance and to test

deployments, the typical system requires that changes roll out in two levels. The first

level is to deploy to a test-bench environment. The second is to deploy to the completed

production environment. These levels allow for performance to be monitored,

outstanding bugs to be recorded, and, most importantly: zero downtime for users. There

are many different types of this style of deployment. Three of the most common styles

utilized by enterprise-level organizations are Blue-Green Deployment, Canary

Deployment, and Rolling Deployment [26].

16

Blue-Green Deployment is a container-based deployment methodology that

involves replacing an existing environment container with a newer image [26]. This type

of deployment is notable to this thesis as the process of building Banquet included this

methodology. Banquet can quickly create many copy containers, allowing for seamless

switches between Blue-Green containers. This method is also efficient for load balancing,

as various environments can be switched out in tandem.

Fig 5. A Typical Blue-Green Deployment Diagram [26]

Likewise, Canary Deployments involve a switch between containers, but rather

than all traffic moving to the new container at once, only specific populations of users are

17

switched to new containers in phases until all users are on the new container [26].

Through this approach, there is additional time for version approval by users and for

feedback to be received by developers before all users begin using the new container.

Rolling Deployment, in contrast, involves the manual change of groups of users to the

new environment before all users switch. Rolling Deployment typically does not involve

containers [26]. In general, these zero downtime methods of deployment are highly

advantageous to the efficiency of deployment pipelines. They also fulfill the increasing

flexibility and speed requirements of enterprise Cloud Computing and Software as a

Service.

Mid-level organizations are taking on many requirements identical to those

experienced by enterprise-level organizations. However, unlike many of the larger

organizations, mid-level companies are receiving pushback from decision-makers due to

the knowledge gap created by the increasing complexity of Cloud Computing topics.

“Since for firms, SaaS is a relatively new model of sourcing information and

communication technology (ICT) services, they are struggling in their SaaS related

decision-making concerning whether they should adopt SaaS and, if so, how they can

gain from it more benefits and a positive impact on firm performance” [27]. As

researchers perform more studies in this field and large companies continue to adopt

these practices, the SaaS industry will likely grow in the mid-level organization size

category as well. However, this process can be sped up by increasing the usability of

existing cloud technologies and making Software as a Service easier to implement across

the board.

18

Successful solo developers and smaller nascent (startup) organizations are often

pioneers of innovation in software development and typically bring brand-new products

and services to the market [28]. In corroboration, findings show that most startup

organizations fail because the startup followed a traditional product development path

rather than an innovative one [28]. From, “Early-Stage Software Startups: Main

Challenges and Possible Answers,” one of the critical solutions for success in nascent

organizations is “Go Up to the Cloud”. Cloud services such as Platform as a Service and

Infrastructure as a Service are one path to success for startups, as they provide

enterprise-level Cloud Computing and scalability without the traditional costs associated

with considerable backend software [29]. Tools such as Google Cloud, Amazon AWS,

Microsoft Azure, and Digital Ocean offer the resources for developers to build impactful

backend services.

Furthermore, new tools such as Google’s Firebase, AWS Amplify, Supabase, and

more, offer complete prebuilt backends for developers to incorporate. The challenge with

these tools is that pricing can often be a concern. Cloud pricing is one of the most critical

topics in Cloud Computing, as it is impractical for Cloud Service Providers to offer

personalized pricing to suit each customer’s need [30].

Content Management Systems (CMS) are services that allow developers (and

occasionally customers) to edit the deployed content of an application. Companies often

use them to create Software as a Service applications. The issue with CMS is that they

are rigid. They require applications use the CMS at the start during development or for

significant refactoring to take place for an application to utilize the service properly. They

also do not scale and as the product evolves, it becomes hard to adapt the tool to business

19

needs. While this type of tool is efficient at creating Minimum Viable Products (MVPs),

there does not currently exist any dynamic content management tool for SaaS apps. This

content injection is the novel aspect of Banquet as a tool.

Both small and mid-level organizations are vital to the cloud market in its entirety.

They account for 95% of businesses and approximately 60% of employment in the

private sector [31]. Due to the importance of these types of companies in the market, it is

equally essential that these companies adopt Cloud Computing. The benefits of Cloud

Computing to small and mid-level organizations are numerous. Cloud Computing allows

smaller organizations to compete with enterprise architecture without significant

infrastructure investment [31]. It eliminates the need for an up-front investment in both

hardware and software. It also offers burst opportunities for software where the need for

resources will vary markedly over time [31]. These advantages make small to mid-level

organizations not only the most typical creator of SaaS applications, but also potential

customers of them as well. These types of SaaS creators will often look for the most

cost-effective and easiest to use technologies available.

Based on existing technologies and market demands, the way is paved for

innovation in pipeline development for SaaS applications. The problems of existing

pipeline tools are becoming magnified due to the increasing demand for software

automation. Developers within all levels of size category are in need of efficient,

scalable, and relatively simple tools to meet these demands. The remainder of this thesis

will detail a proposed solution in the form of the software Banquet, which offers the

ability to create elaborate apps for many companies.

20

1.5 Thesis Organization

The organization of the remaining chapters in this thesis is as follows: Chapter

two enumerates the development process of the Banquet application, describing the

process of creation, the technologies used, unique features, licensing, and included tests.

Chapter three gives example use cases for the software in every size category of software

development and gives results of tests run on the Banquet software compared to existing

CI tools. Chapter four describes the project’s predicted future, including possible

technology integrations, shortcomings of the existing software, and the conclusion of the

thesis.

Chapter 2

APPLICATION DEVELOPMENT

Banquet began as a small hobby project meant to automate the often encountered

intricate tasks involved with building and deploying a SaaS application by a solo

developer for multiple companies. It began as a collection of Bash scripts that

automatically answered prompts from a collection of existing CLI tools. Utilizing the

Docker CLI, Google Cloud CLI, and NPM, the initial version of Banquet prompted users

for information about their credentials and application. It automatically ran these existing

tools to deploy an application to Google’s Firebase. This structure was rigid,

OS-dependent, and not very user-friendly. The redesign of the application was built with

flexibility in mind to support customizable automation. Focusing on abstraction and

test-driven development, the new version of Banquet was built with Go to solve the

21

existing problems of CICD. The base process for typical CICD that Banquet performs is

as follows: An application is pulled from GitHub, custom CSS is added to the project,

custom TypeScript is added to the project, the application is built using NPM, the

application is built using Capacitor, the application is containerized using Go-Docker, and

finally the container is deployed locally on the host system. Each stage of this process is

not tightly coupled with the others, allowing the possibility for any stage to be replaced

with a different technology, method, or choice, without impacting the rest of the process.

The name “Banquet” comes from the idea of what the application provides to

end-users. A banquet is defined as an elaborate and formal meal for many people;

Likewise, this tool provides elaborate and formal applications for many companies. The

name of the tool and the themed names of internal functions and classes are meant to

simplify the idea of what the application does. For example, when a developer uses

Banquet to deploy an application, they are serving a “dish” to a client. The

containerization process is known as “plating”, to showcase that while the application

may be different, the container it runs on is the same as others, much like different foods

on similar plates. When a developer calls the REST API, they create “dishes” in the

“kitchen” before they will be served to the client. While these metaphors may be silly or

seen as indecorous, they play a part in one of the overarching goals of the application.

Banquet seeks to lower the bar to entry for pipeline development and SaaS creation,

which could be aided by providing a simple visual to users or developers as to what

actions they are performing and what outcome these actions will have.

22

Fig 6. The Banquet Logo

2.1 Interface & Commands

There are two ways to interface with the Banquet software: the CLI or the REST

API. Banquet provides an executable that can run on any Windows or Linux device. It

can also be added to the user’s system path to call the ‘banquet’ keyword from any

command line on the host machine. The Command-Line Interface allows developers to

run Banquet on their host machine and answer a series of prompts used to describe their

credentials, application, styles, and deployment settings.

23

Fig 7. Banquet Initialization Through CLI

The CLI uses a standard library explicitly created for Banquet that includes

functions such as the UserInput function, which captures user input response to a prompt

within the command line, the PrintPositve and PrintNegative functions, which display

ANSI escape code color responses, and the CheckForError function, which logs errors

that the program encounters. This library appears throughout the application, but it finds

most of its use in the main program, which runs the CLI.

Following the ‘banquet’ command, users can enter two keywords to travel down

two different operation paths. When the application is run for the first time or to change

user credentials, the ‘init’ command has two options. Banquet begins the initialization

process when no keyword follows ‘init’. This command informs the user of current

dependencies that Banquet needs to function fully, then prompts the user for their GitHub

username and preferred hosting location. This information is written locally to the

24

‘config.json’ file, also allowing users to change these credentials through a text editor or

alternative program. Banquet currently has two tight dependencies. The first is Node

Package Manager (NPM), which builds JavaScript applications through the NPM config.

For the second requirement, the host machine must be running the Docker Daemon at the

time of containerization. The daemon allows for Docker containers to be created.

Banquet downloads the required container images at runtime if they do not previously

exist.

Running the ‘kitchen’ keyword following ‘init’, will start an internal server on

port 8080 of the host machine. This server will expose the REST API endpoints on this

port. The server, known as the “kitchen”, provides access to the existing dishes that users

can serve. REST stands for Representational State Transfer and is a software architectural

style and messaging pattern commonly used across the web. The main features of REST

are that it is stateless, uniform, and cacheable [32]. API stands for Application

Programming Interface. A REST API is often used with HTTP to provide usable and

flexible endpoints for users [33].

Currently, there are four endpoints that users can access when this server is

running. The ‘/api’ GET endpoint provides basic information about the server. The

‘/api/returnMenu’ GET endpoint exposes the GetDishes function, which returns a JSON

structure of all of the stored documents on existing applications. The ‘/api/addCourse’

POST endpoint receives a JSON structured ‘dish’ object that includes all needed

information on application details, known as a courseRequest. It exposes the AddDish

function, which will build, deploy, and write the details of the proposed application to a

JSON file called ‘menu.json’. The ‘/api/removeCourse/{id}’ DELETE endpoint receives

25

the ID of an existing dish, causing Banquet to attempt to destroy any existing containers

with that ID, delete any build files associated with it, and finally remove that dish’s

information and ID from the ‘menu.json’ file. These endpoints provide the full

functionality of Banquet, other than initialization, which must be done by the command

line (as the kitchen has to be initialized first to begin).

Alternatively, providing the ‘dish’ keyword following ‘banquet’ will provide the

user with four options to choose. Users can either add, remove, see all dishes, or see a

specific dish with this command. The functions provided to the user here through the CLI

are the same functions provided through the REST API, which is a direct benefit of

test-driven development and abstraction. For these dish operations, the CLI will walk the

user through each step of the retrieval from GitHub, the build with NPM, and the

subsequent containerization and deployment. If the user is building a copy of an existing

project built with Banquet, they can specify this when adding a dish. Doing so will

drastically reduce the runtime of the ‘banquet dish add’ command, as package download

and compiling can be skipped.

26

Fig 8. A Diagram of Banquet Command-Line Flow

If the user makes a mistake in entering commands to Banquet, or if they

specifically request for it, a help menu will be provided that lists the available commands

and some information on what each command does. If any command other than the

‘banquet init’ command runs before a ‘config.json’ file exists, Banquet will display the

help menu. This action informs the user that ‘banquet init’ must run before other

commands are available.

Banquet is integrated with Ionic, allowing users to change Ionic themes from the

CLI to dynamically change an Ionic app. This was done to demonstrate a possible

technology integration and show that the versatility of this software allows it to expand to

contain hundreds of common tools. This integration is separate from the Capacitor

27

integration described below. Ionic is a framework that provides prebuilt styles and themes

for an app, while Capacitor is a tool that converts JavaScript code into native runtime

code for Android and iOS applications.

A notable aspect of the “kitchen” is that it can be used to create an alternative to

the CLI for less technically inclined users. The REST API endpoints can be called by a

web application to provide a portal for managing deployed applications by project

managers or clients. Initially, Banquet came with a prebuilt web portal that would show

the status of deployed applications and allow management. However, deciding that this

could increase confusion on what Banquet does, while also increasing development time,

it was removed from the base project. Setting up a web portal in this way allows the

automation of SaaS products on a large scale. For example, a solo developer that creates a

generic food delivery SaaS application could create one of these web portals, running

Banquet in the background. When a customer discovers the site, they could upload their

colors, brands, logos, etc, make a payment in the portal, and the Banquet REST API

would automatically deploy an instance of the app with their selected cosmetics. This

aspect is likely one of the software’s most valuable use case scenarios, along with internal

pipeline development.

28

Fig 9. Server Initialization and Endpoint Options

29

2.2 Package Management

Modern JavaScript applications have the benefit of integrating with thousands of

packages, plugins, and libraries that have developed over the many years of the web. The

number of packages used in modern JavaScript applications can be hundreds or even

thousands. Due to this large number of packages, a tool is needed to manage, download,

and compile these packages to be used by the project. The most popular tool is Node

Package Manager or NPM.

NPM is the frontend of a large repository of JavaScript-based software packages

for both server-side Node.js and client-side JavaScript applications [34]. NPM can refer

to three separate entities: the organization, the repository of packages, or the

command-line tool. The NPM CLI is often paired with JavaScript frameworks to

automatically manage packages needed for these projects and is often vital to the

usability of these frameworks. Banquet incorporates the NPM CLI to help download and

manage packages for the apps pulled from GitHub. The packages included in modern JS

applications can reach gigabytes in size, so these packages are often not stored within

version control such as GitHub. To accommodate for this, NPM uses metadata files to

store information about the packages needed, the build process, compilation needs, and

other project information [34].

To Banquet, the most essential NPM metadata file is the ‘package.json’ file,

which holds two notable fields. When Banquet pulls an application from GitHub, the first

thing it does is utilize the NPM CLI to run the ‘npm install’ command, which looks at the

‘dependencies’ field of the ‘package.json’ to download all of the needed packages for the

30

project to run successfully from the NPM repository. Banquet will then attempt to build

the project, once again using the NPM CLI to run the ‘npm run build’ command, which

builds an application for production use by reading the ‘scripts’ field of the

‘package.json’. This field describes how best to run the current application and changes

across frameworks. By utilizing the NPM CLI, Banquet can be a one-size-fits-all for

building applications, rather than having a different build process for every framework

that a user could desire to build [35].

The build time of an application built with Banquet will vary greatly depending

on the number of packages that the project has as a part of its dependencies, as package

sizes can be substantial, and wait times for downloading will depend on internet

connection - downloading and building the application with NPM accounts for

approximately 80% of the build time of an application. Fortunately, this process is

skippable for applications that have previously been built with Banquet. Banquet can

store project files and packages to be used later for copies of projects, reducing the build

time to a few seconds.

31

Fig 10. An Example of Packages Downloaded From NPM

NPM is a growing ecosystem that allows developers to build on the previous

works of others by adding dependencies. NPM was selected for Banquet as it is the most

common package management tool for JavaScript frameworks [34]. However, for

applications written without package dependencies, the build time and subsequent

pipeline efficiency could be drastically reduced if NPM was removed as the main driver

for building applications with Banquet. Overall, the value of the NPM CLI is integral to

allowing Banquet to provide enough flexibility to work across different JS platforms.

32

2.3 GitHub

GitHub is the world’s largest development platform, where millions of developers

and companies store their application code in version control. GitHub provides

collaborative coding, CICD, security monitoring, client apps, project management,

administration, community, and more. It is utilized by over 73 million developers, as well

as 84% of Fortune 100 companies [36]. GitHub integrates with git, a CLI code versioning

tool that allows developers to check-in their code and push or pull it from/to a repository

such as GitHub.

Banquet is a GitHub-approved OAuth application. This means that Banquet is

registered with GitHub as an integration, allowing Banquet to access the GitHub API and

allowing users to authorize Banquet to have access to private repositories and to integrate

with GitHub Actions or Webhooks easily. In the first initialization of Banquet, the user is

prompted for a GitHub profile username. This username is used to contact the GitHub

API to ask the user profile for access to private repositories. If the user chooses to use

Banquet with private repositories, Banquet will provide a link for the user to confirm this

interaction with GitHub. Once the user has accepted this use on GitHub, GitHub will

provide an access code to the user that they can then provide to Banquet. Banquet will

use this code to generate an access key that can be used as long as Banquet continues to

have permissions on GitHub, and is stored on the user's config.json file.

33

Fig 11. Banquet Provided Access to Private Repositories on GitHub

To download a repository when a user adds a dish, Banquet begins by creating a

directory to hold all future projects, known as the ‘/menu/’ directory. Banquet then uses

the GitHub URL generated by the prompts provided to the user requesting GitHub

username, project name, and branch, to make a GET request to GitHub with the

generated token. This will return data from GitHub that can be converted into a zip file of

the repository code in that branch. This zip file is unzipped by Banquet, allowing access

to build the project. This operation relies on the user’s internet download speeds, but was

found to be a quick operation in practice, even with suboptimal speeds.

Through GitHub Actions and Webhooks, Banquet can be configured to “watch” a

specific repository for changes. When a change is made to a repository or specific branch,

Banquet can be triggered to redownload, rebuild, and redeploy an application. This is the

key feature of Banquet as a pipeline development tool. Continuing with the previous

example of a solo developer that creates a generic food delivery SaaS application, when

the developer makes a change to their generic application that they would like to deploy

34

to all existing sites that utilize their app, a hook could be placed on that repository which

automatically triggers Banquet to redownload, recustomize, and redeploy all of the apps

which utilize this generic template.

GitHub is not the only version control system that exists. Unfortunately, to

integrate with other version control systems, approval must be received for Banquet at

each one individually, as well as integration created within Banquet to deliver to these

platforms. This is not an incredibly complicated task, but due to time constraints, GitHub

was chosen as the example version control system to show potential future developers

how this can be achieved. Users could even utilize proprietary or internal version control

systems, as integration with Banquet simply requires an HTTP endpoint to access and

receive the project data.

2.4 Containerization

One of the main issues with existing CICD pipelines that Banquet seeks to solve

is flexibility. Containerization with Docker is one of the biggest ways that Banquet

achieves this goal. Lightweight virtualization technologies have recently been gaining

particular notoriety due to the performance enhancements and effective scalability that

they offer [37]. Docker is one of the most popular virtualization tools available and was

chosen for Banquet due to its well-documented integration with Go. By utilizing Docker,

Banquet is able to create standardized environments for any type of app that is built with

it, which allows for deployments of every type of app, without the subtle differences in

deployment methods [38].

35

Docker provides the ability to package and run applications in an isolated

environment called a container. This isolation is especially important for a CICD tool

such as Banquet, as it allows multiple containers to be run on a single host. Without

containerization, specific measures would have to be taken to avoid the default running

behavior of like-minded JavaScript frameworks that prefer to be run on the same ports.

Containers also provide a high level of portability, which allows Banquet to be enjoyed

on a developer’s local machine, on cloud providers such as AWS, on a physical server, or

over a virtual cluster. This provides a fast, cost-effective, and flexible alternative to

traditional hosting or other virtualization methods such as hypervisor-based machines

[38].

The containerization that Docker provides makes Banquet inherently able to scale

very highly horizontally, meaning that a near-limitless number of Software as a Service

app instances can be supported if resource requirements are met. Docker has default

memory limits that may prevent vertical scaling when using Banquet if additional tooling

is not performed. By using Banquet’s REST API and a load monitoring tool, a developer

could easily set Banquet to create and destroy additional copy containers to handle large

traffic loads. Banquet works well with AWS in this way, for example, as Banquet could

be run on an EC2 instance, deploying containers managed by Amazon ECS [38].

Docker also inherently provides a security upgrade for running applications.

Using containers reduces the attack surface that an application may face and resulting

attacks are often limited to a single container, rather than the entire system. Banquet

utilizes trusted images and avoids unnecessary privileges within these containers, which

36

overall provides an extra layer of security over running on base hardware [38]. These

containers also run with the latest NGINX image, which provides secure proxying.

To begin containerization, Banquet communicates with the Docker daemon

immediately after building the project with NPM. Banquet writes a custom Dockerfile

that describes how the container image should be created. This includes references to the

NGINX and Node Docker images, which are downloaded on the host machine if they are

not already available. This image is then used to create a container running the requested

app, which is deployed on the user-specified port.

Banquet uses NGINX within Docker images to serve the files from built

JavaScript projects. NGINX is a web server that provides the ability to host, reverse

proxy, and load balance apps. It is also open-source, highly performant, and quickly

outpacing Apache as the most popular web server [39]. Banquet writes a custom

‘nginx.conf’ file which tells NGINX how to proxy requests, deal with errors, and where

to find build files. By default, Banquet only opens ports 80 and 443 to allow HTTP and

HTTPS communications to the served application. This prevents accidental openings of

sensitive ports, meaning Banquet apps are at less risk of attacks, being accessible only

from the web.

In contrast, when an app is deleted from Banquet, the container is deleted using

the original application ID that was associated with the container. If this is the only or

original version of the application, the original image is also deleted to free up remaining

resources. Additionally, all “dangling” containers are deleted any time an image is

37

removed, which assures that all copies of the image are removed as well, keeping the

Docker daemon size low.

Docker as a tool was written in Go, similar to Banquet. This is especially

important as the Go library for Docker, GO-Docker, is a fantastic open-source library and

batch scheduling tool that provides API access to the Docker daemon. This allows for

images and containers to be downloaded from the Docker registry and created on the host

machine. Without this library, a custom one would need to be implemented or a batch file

would need to be used to interact with the Docker CLI. A library similar to this would be

incredibly beneficial to Banquet for working with NPM, as an API would offer more

error resistance and efficiency in comparison to utilizing the NPM CLI.

2.5 Golang

The Go language, often called Golang, is a relatively new language at 12 years

old, that is syntactically similar to the C language. It was released in 2009 and developed

at Google by Robert Griesemer, Ken Thompson, and Rob Pike, with the goal to “Make

programming fun again” [40]. Go itself is a compiled, concurrent, garbage-collected, and

statically typed language, that is open-source by Google [41]. It was built to address

many of the issues that developers had with older programming languages, including:

slow builds, poor readability, poor automation, and lack of concurrency. The saying goes

that Go was conceived during a 45-minute build of a C program. Go is strongly typed,

fast, and includes many memory safety features. This, along with its efficient

concurrency, is why it was chosen for Banquet.

38

Banquet runs on Go 1.16, which emphasizes a shift to Go modules, a dependency

management system much like node modules in JavaScript. In fact, Go is very similar to

the TypeScript/Node environment that Banquet focuses on. The strong typing of Go is

used throughout Banquet to define application requirements, REST API JSON bodies,

and to help manage Docker containers. The REST API that Banquet features would be a

separate application if Banquet were not written in Go, as the concurrency features allow

the kitchen server to run alongside the CLI. The Go community is growing steadily and

updates to Go are released regularly. Go has updated to 1.18 since the development of

Banquet began and continues to improve [42].

Fig 12. Banquet’s Go Mod File and Dependencies

39

To run the Banquet application, developers can run the ‘go run’ command on the

Banquet package, or they can build the application with the ‘go build’ command on the

same package. Go build creates an executable much like a GCC compiler does with C,

although it is much quicker. This executable can be run on any similar OS to the host

machine that go build was run on. For users of Banquet, the built executable for their OS

can simply be downloaded and added to the host machine’s PATH variable, allowing for

the ‘banquet’ command to be run from any command line on the machine.

2.6 Code & Style Injection

One of the most novel and important parts of Banquet is its ability to inject style

or custom code into any application. When using Banquet to serve a new app, a

developer can define the path for a style sheet to be added to the build process of the

application. The name of this style sheet will be one defined in the existing application or

if the app was built to be used with Banquet, can be defaulted to ‘banquet.css’. This

integration allows colors, images, text layout, and any other designs made with CSS to be

changed on the fly with any provided style sheet. Furthermore, the default Banquet style

sheet can be created directly from the command line, meaning users that wish to change

images and colors throughout an app do not need to have any knowledge of CSS. This

feature is very important to SaaS application development, as it allows for pipeline

automation at the very base level of what SaaS requires: customization.

40

Fig 13. Example 1 of Style Injection

On top of style changes, Banquet is able to inject TypeScript files as well, which

allows developers to replace text, functions, or other custom code throughout an

application. Users can define the path to a custom code file which will then be injected

into the application before it is built. For example, if a static site has a block of text

describing the company that is using the app, that text can be changed by a variable in the

custom code file. This allows for applications to change information about a site across

the app, as well as add custom features specific to one company out of the multiple that

employ a SaaS application.

41

Fig 14. Example 2 of Style Injection and Code Injection

2.7 Mobile Integration

Banquet allows for any application that can be built with the tool to be converted

into a mobile application as well. Developers that have built apps with responsive design

will be able to have functioning mobile applications created from their web apps. When

the application is containerized, the same build code that was created for Docker

containers is also used to create a web view of the JavaScript application that can be

displayed on either Android or iOS. This is made possible by CapacitorJS being

incorporated into the build process.

Capacitor is an open-source native runtime for building cross-platform

applications. This means that a JavaScript application built for the web can be converted

to a mobile app using this tool alone. If Capacitor is selected when building the

42

application with Banquet, Capacitor will be installed locally on the host machine and a

platform will be built for Android. iOS applications can currently only be built on MAC

OS, which Banquet does not currently support. Users must have the Android SDK

installed on the host machine to properly convert JS code into a native runtime for

Android. Capacitor also allows for interaction with Native APIs, allowing for native

functionality if the developer of the application has previously included it within the app.

The Capacitor community is growing, previously called PhoneGap and built by the same

team as Ionic [43].

2.8 Test Driven Development

Test Driven Development, also known as test-driven design, or TDD, essentially

requires that for each functionality that a programmer creates, they first write unit tests

describing and testing that functionality [44]. The code is then subsequently added to

make those unit tests pass. This typically forces programmers to think about new aspects

of the code that they may not have without TDD, before coding it. It also ensures that

developers are testing their code fully. Statistically, it has been shown to drastically

increase code quality. Industry studies have shown that programmers using TDD

produced code that passed between 18 and 50 percent more external test cases than code

created without TDD [44]. TDD was shown to initially reduce productivity among

programmers, but as developers became more experienced, productivity increased [44].

Version Two of Banquet was developed with TDD and began with four unit tests.

The unit tests that were developed described the key functionality of the tool that was

desired. This included: TestAddDish, TestGetDishes, TestGetDish, and TestRemoveDish.

43

These simple create, read, and delete operations forced the issue of what information

would be required from the user of the application in order to create an app, how

applications would be identified and stored after creation, and what the most likely use

cases for the app would be. It also created an abstraction of code functionality that

became increasingly useful for the flexibility and future use of the application.

Fig 15. Some Banquet Unit Tests

TDD was made possible for this project in part due to Go. Go has its own testing

library that is very intuitive and simple to use. Go’s testing package provides support for

automated testing of Go packages. It requires a special syntax of included functions and

is run with the ‘go test’ command. The library provides methods for passing, failing, or

erroring out of functions, as well as benchmarking the functionality of the tool [45]. The

44

syntax was simple and intuitive, leading to the incredible ease of use in developing unit

tests for Banquet.

2.9 Open Source License

The full release of Banquet will be made under the open-source MIT license

which states: “Permission is hereby granted, free of charge, to any person obtaining a

copy of this software and associated documentation files (the "Software"), to deal in the

Software without restriction, including without limitation the rights to use, copy, modify,

merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit

persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or

substantial portions of the Software” [46]. This license is an extensive use of open-source

that allows Banquet to be used by anyone with attribution to the original. This allows

Banquet to be used in other open-source projects, proprietary software, or other business

ventures.

The reason behind this decision is twofold. One reason is that making the project

open-source is the only way to guarantee trust in the program. Any developer or

otherwise can review the code to ensure there is no malicious or erroneous code

implemented. Banquet needs this increased trust to allow proprietary software to utilize

the tool, as well as apps that rely on credentials or other secrets such as API keys.

Second, and most importantly, the growth of the open-source community is

incredibly vital to both academia and industry development of software. Knowledge

sharing and building upon previous works are integral to the success of software and

45

technology advancements as a whole. Furthermore, the open-source community is

growing drastically and usage of open-source projects has skyrocketed. The largest

reason for this has been attributed to the ease of customization that is offered by

open-source projects [47]. This is central to Banquet, as the flexibility and future

integration of many technologies are vital to its success as a tool. The tools chosen for

Banquet are just some of the standard choices for pipeline development, but many more

exist. Being open-source, the way is open for developers to add more technologies,

support for other systems, or integrations to truly make the app customizable for every

use case of a company or a developer.

Chapter 3

USE CASES

As examined in previous chapters, issues exist with pipeline development in all

size categories of development. Banquet seeks to solve many of the issues faced at each

of these stages of organization. This is accomplished in many ways through Banquet, as

well as through the possible customization of the tool to fit a specific use case. However,

the examples given below are the most likely use cases based on the intentions of

developing the tool. This will hopefully serve to show that not only does Banquet solve

some of the existing issues of CICD pipelines, but that it also offers new opportunities for

SaaS application developers to automate their development and deployment in new ways.

Three example use cases are given, but many more exist, and additional work on the tool

can go a long way in providing more use cases in the future.

46

3.1 Individual Developer

Individual developers may find use in Banquet in a variety of ways. Developers

may find that Banquet helps increase productivity, build new tools to help manage

customers, or introduce them to new technologies that they may be unfamiliar with using.

Individual developers will most likely use the CLI portion of Banquet the most, as

automation may not be as important when one is not working with other individuals.

Banquet can increase an individual’s productivity by removing many of the

menial tasks that developers face when creating, building, and deploying applications. By

running the ‘banquet dish add’ command, developers have the possibility to remove the

following steps from their workflow: git cloning an existing project, adding new styles or

code to a project, writing Dockerfiles, writing NGINX files, building a project with

NPM, creating new Docker images, deploying a new container, and building an

application for mobile. A process that takes under a minute on average in Banquet would

take hours to complete without the tool. For contractors or freelance developers, this

increase in productivity directly means more business.

Individual developers may also use Banquet to help manage existing and future

customers. Banquet automatically organizes applications that are built with the tool,

allowing developers to spin up and take down containers with just a few commands. For

a developer with multiple clients, running the ‘banquet dish add’ command would allow

the addition of a new client in just a few minutes when utilizing a SaaS template. To

remove an existing client, due to contract end, lack of payment, or other reasons, the

developer need only run the ‘banquet dish remove {id}’ command to end service

47

immediately. Furthermore, the ‘banquet dish get’ command allows a developer to see the

status of all existing projects and the various information about each, putting greater

control in the developer's hands.

Finally, Banquet uses many tools that new developers may be unfamiliar with

using. Developers inexperienced with NPM, Docker, GitHub, REST, or Capacitor will

likely find value in using Banquet to become familiar with these technologies. Using

Banquet allows developers to use these technologies without fully understanding what

they do. However, the documentation of the code, along with clear console outputs of the

process, and the simplified description of each technology in the Banquet metaphor offer

valuable learning tools to introduce more advanced concepts of the tools being used.

3.2 Startup Company

A startup company will likely find great value in Banquet. The innovation that

Banquet provides on the CICD pipeline is integral for new or smaller companies that are

looking to have cost-effective, simple tools for deployments. Banquet allows startup

companies to integrate with the latest tools, build powerful pipelines, manage teams, and

acquire more clients through increased flexibility. The kitchen REST API will likely

become more valuable for this size category of developers.

Startup companies often seek an increased number of long-term clients in

comparison with individual developers. The benefits of using Banquet are similar in this

way to individual developers, allowing startups to manage existing customers and quickly

add new ones from a SaaS template. However, Banquet’s ability to redeploy copy

applications would also allow companies to update their applications regularly for

48

security, bug fixes, and code improvements, which will likely be done more often with an

efficient development team.

Startups will find high value in performant pipelines like those that can be built

with Banquet, as this will free up development time to focus on feature requests, code

improvements, and client acquisition. An example of pipeline development for a startup

using Banquet could include an instance of Banquet running on an AWS EC2 instance.

This instance would have an attached web portal for either developers or clients to

manage existing instances of applications. This web portal would interact with the

Banquet REST API to create and destroy various containers on the EC2 instance. As the

company grew, the developers may seek to add load balancing and cluster management

tools into Banquet.

Most importantly for startups, Banquet allows for cleaner code through efficient

testing pipelines. A startup may set Banquet to watch a GitHub branch for code changes

from an EC2, where it will automatically deploy updates to this branch. This branch may

be protected to only allow reviewed code to be deployed, removing any need for

developers to deploy applications manually. Banquet can also be tooled to run a test suite

through NPM very easily. A failure to pass tests may stop Banquet from containerizing

and deploying, alerting a development team of existing issues.

Small to medium-sized companies such as startups benefit disproportionately

from cloud tools, as they allow them to compete with enterprise companies without the

dedication to resources, investment in time, and advanced knowledge required to develop

powerful pipelines and cloud management tools. Banquet especially could prove vital in

49

this by decreasing the investment needed in developing a pipeline and allowing SaaS

companies to thrive.

3.3 Enterprise Company

Enterprise Architecture often requires significant investment into cloud structures,

deployment pipelines, and test automation. Many existing tools designed for building

these services have a high learning curve and are inflexible or costly. Banquet solves

these issues with intuitive-use functions, a modern build process, and low cost due to

high efficiency and scalability. Banquet can be integrated with existing CICD pipeline

services to provide an all-encompassing environment.

Previous chapters have shown that existing CICD pipelines are often considered

rigid, too hard to integrate, or too costly by developers. The simplicity of Banquet as a

tool is offered in the three main commands that perform creates, reads, and deletes of any

JavaScript application. This may convince existing enterprise companies to begin

developing a pipeline if they did not previously have one. Furthermore, the use of JSON

structures and abstracted steps in the build process allows builds to be far more dynamic

than those built with YAML build processes. In the Test Results and Comparison section,

Banquet is compared with Jenkins and GitLab in terms of performance, outperforming

both.

For an enterprise company that employs an existing cloud and pipeline, Banquet

may be used to implement some form of testing automation or zero downtime

deployments. If one of these companies has built a cloud, but has no pipeline, Banquet

50

can then be used to quickly develop a deployment system that seamlessly integrates with

the cloud resources, allowing for horizontal scaling.

3.4 Integration with Existing Clouds

In the process of creating Banquet, integrations for Google Play Store, Amazon

AWS, Google CloudRun, and Google Firebase were started. Existing libraries in Go are

lacking for all four existing cloud solutions and custom integrations would need to be

made to employ the use of these services. Google Play Store is the most likely to see a

finalized integration without community support, as the build requirements are

sufficiently met by Capacitor, and the Google Play API is a viable option to develop this

feature.

Utilizing the Amazon AWS SDK, authentication was implemented under the

‘aws’ branch of the GitHub repository. This feature establishes a connection with AWS

through the use of a service account key that is created through the AWS console. With

further work, and possibly increased features of the AWS SDK, this could prove to allow

Docker containers created with Banquet to automatically be uploaded to a user’s AWS

account under the ECS service, thereby avoiding the need for users to download and use

the AWS CLI or console.

For both Google Firebase and Google CloudRun, which are essentially treated as

the same service by Google, Banquet was successfully used to upload Docker containers

to the service through the use of the Google Cloud CLI. This batch process, which is

saved under the ‘gcloud’ branch of the GitHub repository, allows users to automatically

upload containers to their Google Cloud account by authenticating with the user’s

51

key.json, then deploying without the use of the Google dash. Implementation through an

SDK or API was unsuccessful. Furthermore, integration with Google Play was

unsuccessful initially due to time constraints. The androidpublisher package from Google

was used to establish authentication with Google Play under the ‘playStore’ GitHub

branch.

An existing proprietary cloud could be integrated with Banquet through the use of

a REST API or other means of communicating Docker container data to the cloud app. It

is also possible that the Docker container repository could be helpful in integrating with

an existing cloud, as containers could be uploaded to this repository and then downloaded

to the proprietary cloud. Further work is needed to test the viability of Banquet with other

non-public cloud tools.

3.5 Test Results and Comparisons

In Comparison of Different CICD Tools Integrated with Cloud Platform by Singh

et al., the performance of both Jenkins deployments and GitLab deployments were

measured. Ten deployments were run on an AWS EC2 VM for Jenkins, GitLab Specific

Runner, and GitLab Shared Runner [48]. The results of this are shown in Figure 14:

52

Fig 16. Deployment Time for Jenkins, Shared Runner, and Specific Runner [48]

This same test was run with Banquet to compare with existing CICD tools. An

instance of Banquet was started on an Amazon EC2 t2.micro, and ten deployments were

created of one test application. Using the Linux ‘time’ command, the runtime of the

application deployments were tested and recorded on the same Comparison Graph from

Figure 14. 30 seconds was removed from each run time in the graph view to account for

the exact time used to enter information to the CLI. This time would be negligible when

utilizing the REST API instead. The results are shown below in Figure 17:

53

Fig 17. Deployment time for Jenkins, Shared Runner, Specific Runner, and Banquet

Fig 18. Test Results for Deployment 1

Fig 19. Test Results for Deployment 2

54

After the initial deployment, which requires building and downloading packages

from NPM, Banquet outperformed Jenkins and GitLab in terms of time to deploy. The

setup of Banquet for the first time on an AWS server proved to be surprisingly simple.

NPM, Docker, and Go were installed on the host instance using Yum. Typically, Go

would not be required to be installed, but as this was the first time the executable was

built for Linux, the entire project had to be built. The Docker daemon was started using

the Docker CLI. Then, Banquet was built using the ‘go build’ command. This command

produced the executable used for all of the tests on this machine. The results of the

initialization command are shown below in Figure 20, as well as the CLI usage of the

tool and resulting output in Figures 21 and 22 respectively, with the deployed application

in Figure 23:

55

Fig 20. Output of Banquet Init Command

56

Fig 21. Prompt Answers to Banquet Dish Add Command

57

Fig 22. Output of Banquet Dish Add Command

58

Fig 23. Deployed Application Created by Deployment 1

Additionally, the unit tests and integration test included with the Banquet project

were run, resulting in a pass for all four unit tests and a pass for the one integration test.

The results of these tests are shown in Figure 22:

59

Fig 24. Results of Banquet Unit Tests

These tests show that Banquet offers some specific advantages to traditional

CICD tools, while also offering some novel features. Banquet has several similarities

with existing services, but the differences are fundamental to the tool. Some of the key

differences of Banquet are: Banquet’s type of integration with GitHub, Banquet’s

abstraction, and Banquet’s SaaS focus.

60

While Banquet can use GitHub actions/webhooks much like other services, it can

also work in reverse, where Banquet calls GitHub using a developer's account. This

option makes setup quicker and less complicated for the developer as no knowledge or

skill with GitHub is required to pull and use apps. Banquet’s abstraction also offers

increased flexibility, allowing developers to add whatever integrations they need easily.

11.56% of Travis CI users were running off of a fork of Travis CI [20]. This percentage

would likely be much higher for Banquet at the same popularity level, as users tooled

Banquet for their specific needs.

These existing tools also lack a SaaS focus, with no customization options out of

the box. Banquet’s code injection, style injection, and mobile integration make it a tool

specific to SaaS that is not available anywhere else. The model that offers features closest

to this is the CMS, which offers dynamic content management of apps. However, as

requirements change in complexity or scope, CMS tools prove to be too rigid and do not

scale with a project’s lifecycle [49]. Banquet offers the same features without the

additional load times and poor scalability of a CMS. Banquet was built with both CI and

CD in mind, as opposed to other tools which typically require more tooling for

Continuous Deployment. Furthermore, Banquet can be run locally as a CLI or integrated

with other pipelines through the REST API - a feature that typically only exists as one or

the other in other tools. With all of this in mind, it is clear that Banquet offers new

solutions to old problems. Regardless of the adoption level of Banquet in the future, the

work presented in building this tool can be used to challenge existing pipeline

implementations to simplify further and increase the efficiency of future tools.

61

Chapter 4

FUTURE WORK

In terms of limitations of Banquet, there is ample room for improvements and

future work. Some examples include: increased testing methods, further technology

integrations, more methods of deployment, and better container monitoring/orchestration.

As developers are experiencing frustration with existing CICD tools and the SaaS model

continues to grow, it is hopeful that the open-source community behind Banquet can

grow to be a well-rounded and powerful tool that can be used by a much broader range of

incoming developers.

The Banquet project currently has four unit tests and one integration test, created

with the Go testing library. These tests were sufficient for the development of the initial

features of Banquet and went a long way in helping the quality of the codebase. There are

many options for expansions in testing, however. Unit tests could be created for the

REST API endpoints to ensure working functionality and to ensure that a connection is

established and viable for usage with HTTP protocol. Stress tests could evaluate any

limitations in the upper performance of Banquet, including the horizontal scalability of

the tool with cloud resources provided. End-to-end tests of the CLI could be valuable in

finding any edge case responses or poor inputs that are unlikely to be caught with manual

testing of the tool. Overall, performing more benchmark tests on the tool could also show

that the tool is powerful enough to compete with existing tools and show Banquet’s value

in other areas.

62

Further technology integrations are vital to the success of Banquet. New

JavaScript frameworks are created every year, pushing the limits of the capabilities of

JavaScript. Automation should be pushing the same limits. Integration with future

frameworks is important, as well as ensuring that all existing frameworks work with

Banquet. Currently, Banquet has been used to build the three most popular frameworks:

Angular, Vue, and React. Likewise, integration with other forms of version control is

important. Banquet only has existing integrations with GitHub for pulling projects. While

it may not be difficult to integrate other version control systems, it may be

time-consuming to add all systems that users would like to use. To push the limit on what

automation can do, the Banquet project should also seek to integrate with brand new

innovative technologies as they become available.

Currently, the only functioning form of deployment is locally on the host

machine. While this works sufficiently for most needs, it would be ideal to allow users to

deploy directly to their preferred cloud service provider. Integrations have begun for

Amazon AWS, Google Cloud, and the Google Play Store, but there are many more cloud

providers that could find a use case with Banquet - as such, providing this flexibility by

adding more hosting options fits right in with the goals of the tool overall.

Banquet could greatly benefit from container monitoring and orchestration. Future

work on the tool will certainly include container monitoring to ensure and alert

developers that applications built with Banquet are being provided correctly at the desired

location. Integration with a container orchestration tool such as Kubernetes would allow

Banquet to manage cloud resources itself, rather than relying on external tools to scale

the output of containers that Banquet creates. By providing monitoring returned in the get

63

dish commands and handling resource allocation, Banquet would essentially become a

one-stop tool for application deployments.

Adaptability is becoming increasingly important in the software industry.

Software as a Service and Cloud Computing are on the rise, and the need for better, more

performant CICD tools is rapidly developing. The current popular methods of deploying

applications for multiple clients are sloppy and inefficient. This thesis proposed a new

tool developed to allow the automatic style change, packaging, and deployment of web

applications for multiple clients. The tool, titled Banquet, is a low-cost, low development

time solution for building scalable Software as a Service pipelines and utilizes some of

the newest technologies in web development. The future of Cloud Computing will

require tools like Banquet to automate the way cloud deployments and customization are

created, and the work presented in this thesis lays the groundwork for pursuing better

automation and pipeline development.

64

Bibliography

[1] Gartner. (n.d.). Gartner Forecasts Worldwide Public Cloud End-user spending

to grow 23% in 2021. Gartner. Retrieved March 13, 2022, from

https://www.gartner.com/en/newsroom/press-releases/2021-04-21-gartner-forecasts-

worldwide-public-cloud-end-user-spending-to-grow-23-percent-in-2021

[2] Dutta, P., & Dutta, P. (2019). Comparative study of cloud services offered by

Amazon, Microsoft and Google. International Journal of Trend in Scientific

Research and Development, Volume-3(Issue-3), 981–985.

https://doi.org/10.31142/ijtsrd23170

[3] Shahin, M., Ali Babar, M., & Zhu, L. (2017). Continuous integration, delivery

and deployment: A systematic review on approaches, tools, challenges and

practices. IEEE Access, 5, 3909–3943. https://doi.org/10.1109/access.2017.2685629

[4] Dillon, T., Wu, C., & Chang, E. (2010). Cloud computing: Issues and

challenges. 2010 24th IEEE International Conference on Advanced Information

Networking and Applications. https://doi.org/10.1109/aina.2010.187

[5] Soni, M. (2015). END TO END automation on cloud with build pipeline: The

case for DevOps in insurance industry, continuous integration, continuous testing,

and continuous delivery. 2015 IEEE International Conference on Cloud Computing

in Emerging Markets (CCEM). https://doi.org/10.1109/ccem.2015.29

65

https://www.gartner.com/en/newsroom/press-releases/2021-04-21-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-grow-23-percent-in-2021
https://www.gartner.com/en/newsroom/press-releases/2021-04-21-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-grow-23-percent-in-2021
https://doi.org/10.31142/ijtsrd23170
https://doi.org/10.1109/access.2017.2685629
https://doi.org/10.1109/aina.2010.187
https://doi.org/10.1109/ccem.2015.29

[6] Chen, H. (2016). Architecture strategies and data models of software as a

service: A Review. 2016 3rd International Conference on Informative and

Cybernetics for Computational Social Systems (ICCSS).

https://doi.org/10.1109/iccss.2016.7586486

[7] IBM Cloud Team. (2021, May 14). SOA vs. microservices: What's the

difference? IBM. Retrieved March 30, 2022, from

https://www.ibm.com/cloud/blog/soa-vs-microservices

[8] Nassif, A. B., & Capretz, M. A. M. (2010, September 16). Moving from SAAS

applications towards SOA services. IEEE Xplore. Retrieved March 30, 2022, from

https://ieeexplore.ieee.org/document/5575822

[9] Ying, F., & Lei, G. (2014). Optimal scheduling simulation of software for

Multi-tenant in cloud computing environment. 2014 Fifth International Conference

on Intelligent Systems Design and Engineering Applications.

https://doi.org/10.1109/isdea.2014.158

[10] Zampetti, F., Geremia, S., Bavota, G., & Di Penta, M. (2021). CI/CD pipelines

evolution and restructuring: A qualitative and quantitative study. 2021 IEEE

International Conference on Software Maintenance and Evolution (ICSME).

https://doi.org/10.1109/icsme52107.2021.00048

66

https://doi.org/10.1109/iccss.2016.7586486
https://www.ibm.com/cloud/blog/soa-vs-microservices
https://ieeexplore.ieee.org/document/5575822
https://doi.org/10.1109/isdea.2014.158
https://doi.org/10.1109/icsme52107.2021.00048

[11] Hilton, M., Nelson, N., Tunnell, T., Marinov, D., & Dig, D. (2017). Trade-offs

in Continuous Integration: Assurance, security, and flexibility. Proceedings of the

2017 11th Joint Meeting on Foundations of Software Engineering.

https://doi.org/10.1145/3106237.3106270

[12] Nicolai, J. (2017, November 8). GitHub welcomes all CI tools. The GitHub

Blog. Retrieved April 5, 2022, from

https://github.blog/2017-11-07-github-welcomes-all-ci-tools/

[13] Evans, C. C., Ben-Kiki, O., Net, I. döt, Müller, T., Antoniou, P., Aro, E., &

Smith, T. (2021, October 1). Yaml Ain't markup language (YAML™) version 1.2.

YAML Ain't Markup Language (YAML™) revision 1.2.2. Retrieved March 31,

2022, from https://yaml.org/spec/1.2.2/

[14] Jenkinsci. (n.d.). Jenkinsci/jenkins: Jenkins automation server. GitHub.

Retrieved April 5, 2022, from https://github.com/jenkinsci/jenkins

[15] Gargees, R. S. (2020). Multi-stage Cloud Framework based on agents for

dynamic, scalable, and secure distributed computing. University of

Missouri--Columbia. Graduate School. Theses and Dissertations, 112–125.

https://doi.org/10.32469/10355/86473

[16] Hilton, M., Tunnell, T., Huang, K., Marinov, D., & Dig, D. (2016). Usage,

costs, and benefits of continuous integration in open-source projects. Proceedings

of the 31st IEEE/ACM International Conference on Automated Software

Engineering. https://doi.org/10.1145/2970276.2970358

67

https://doi.org/10.1145/3106237.3106270
https://github.blog/2017-11-07-github-welcomes-all-ci-tools/
https://yaml.org/spec/1.2.2/
https://github.com/jenkinsci/jenkins
https://doi.org/10.32469/10355/86473
https://doi.org/10.1145/2970276.2970358

[17] Mysari, S., & Bejgam, V. (2020). Continuous integration and continuous

deployment pipeline automation using Jenkins Ansible. 2020 International

Conference on Emerging Trends in Information Technology and Engineering

(Ic-ETITE). https://doi.org/10.1109/ic-etite47903.2020.239

[18] Jenkins Development Team. (n.d.). Jenkins User Documentation. Jenkins user

documentation. Retrieved April 5, 2022, from https://www.jenkins.io/doc/

[19] Cepuc, A., Botez, R., Craciun, O., Ivanciu, I.-A., & Dobrota, V. (2020).

Implementation of a continuous integration and deployment pipeline for

containerized applications in Amazon Web Services using Jenkins, Ansible and

Kubernetes. 2020 19th RoEduNet Conference: Networking in Education and

Research (RoEduNet). https://doi.org/10.1109/roedunet51892.2020.9324857

[20] Durieux, T., Abreu, R., Monperrus, M., Bissyande, T. F., & Cruz, L. (2019).

An analysis of 35+ million jobs of Travis Ci. 2019 IEEE International Conference

on Software Maintenance and Evolution (ICSME).

https://doi.org/10.1109/icsme.2019.00044

[21] Travis CI Development Team. (n.d.). Travis CI documentation. Travis CI

Docs. Retrieved April 5, 2022, from https://docs.travis-ci.com/

[22] Kinsman, T., Wessel, M., Gerosa, M. A., & Treude, C. (2021). How do

software developers use github actions to automate their workflows? 2021

IEEE/ACM 18th International Conference on Mining Software Repositories (MSR).

https://doi.org/10.1109/msr52588.2021.00054

68

https://doi.org/10.1109/ic-etite47903.2020.239
https://www.jenkins.io/doc/
https://doi.org/10.1109/roedunet51892.2020.9324857
https://doi.org/10.1109/icsme.2019.00044
https://docs.travis-ci.com/
https://doi.org/10.1109/msr52588.2021.00054

[23] Laukkanen, E., Itkonen, J., & Lassenius, C. (2017). Problems, causes and

solutions when adopting continuous delivery—a systematic literature review.

Information and Software Technology, 82, 55–79.

https://doi.org/10.1016/j.infsof.2016.10.001

[24] Arachchi, S. A. I. B. S., & Perera, I. (2018). Continuous integration and

continuous delivery pipeline automation for Agile Software Project Management.

2018 Moratuwa Engineering Research Conference (MERCon).

https://doi.org/10.1109/mercon.2018.8421965

[25] Sabau, A. R., Hacks, S., & Steffens, A. (2020). Implementation of a

continuous delivery pipeline for Enterprise Architecture Model Evolution. Software

and Systems Modeling, 20(1), 117–145.

https://doi.org/10.1007/s10270-020-00828-z

[26] Rudrabhatla, C. K. (2020). Comparison of zero downtime based deployment

techniques in public cloud infrastructure. 2020 Fourth International Conference on

I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC).

https://doi.org/10.1109/i-smac49090.2020.9243605

[27] Loukis, E., Janssen, M., & Mintchev, I. (2019). Determinants of

software-as-a-service benefits and impact on firm performance. Decision Support

Systems, 117, 38–47. https://doi.org/10.1016/j.dss.2018.12.005

69

https://doi.org/10.1016/j.infsof.2016.10.001
https://doi.org/10.1109/mercon.2018.8421965
https://doi.org/10.1007/s10270-020-00828-z
https://doi.org/10.1109/i-smac49090.2020.9243605
https://doi.org/10.1016/j.dss.2018.12.005

[28] Melegati, J., Goldman, A., Kon, F., & Wang, X. (2019). A model of

requirements engineering in Software Startups. Information and Software

Technology, 109, 92–107. https://doi.org/10.1016/j.infsof.2019.02.001

[29] Melegati, J., & Kon, F. (2020). Early-stage software startups: Main challenges

and possible answers. Fundamentals of Software Startups, 129–143.

https://doi.org/10.1007/978-3-030-35983-6_8

[30] Wu, C., Buyya, R., & Ramamohanarao, K. (2018). Cloud computing market

segmentation. Proceedings of the 13th International Conference on Software

Technologies. https://doi.org/10.5220/0006928008880897

[31] Senarathna, I., Wilkin, C., Warren, M., Yeoh, W., & Salzman, S. (2018).

Factors that influence adoption of cloud computing: An empirical study of

Australian smes. Australasian Journal of Information Systems, 22.

https://doi.org/10.3127/ajis.v22i0.1603

[32] Li, L., & Chou, W. (2011). Design and describe rest API without violating rest:

A petri net based approach. 2011 IEEE International Conference on Web Services.

https://doi.org/10.1109/icws.2011.54

[33] Severance, C. (2015). Roy T. Fielding: Understanding the rest style. Computer,

48(6), 7–9. https://doi.org/10.1109/mc.2015.170

[34] Wittern, E., Suter, P., & Rajagopalan, S. (2016). A look at the dynamics of the

JavaScript package ecosystem. Proceedings of the 13th International Conference

on Mining Software Repositories. https://doi.org/10.1145/2901739.2901743

70

https://doi.org/10.1016/j.infsof.2019.02.001
https://doi.org/10.1007/978-3-030-35983-6_8
https://doi.org/10.5220/0006928008880897
https://doi.org/10.3127/ajis.v22i0.1603
https://doi.org/10.1109/icws.2011.54
https://doi.org/10.1109/mc.2015.170
https://doi.org/10.1145/2901739.2901743

[35] Thomson, E. (n.d.). NPM docs. npm Docs. Retrieved April 10, 2022, from

https://docs.npmjs.com/

[36] GitHub. (n.d.). Build software better, together. GitHub. Retrieved April 10,

2022, from https://github.com/about

[37] Sallou, O., & Monjeud, C. (2015, October 29). Go-docker: A batch scheduling

system with Docker containers. IEEE Xplore. Retrieved February 24, 2022, from

https://ieeexplore.ieee.org/document/7307636

[38] Stijn, S. van, Villele, G. de, Suda, A., Linville, M., & Cano, F. (2022, February

24). Docker Security. Docker Documentation. Retrieved February 25, 2022, from

https://docs.docker.com/engine/security/

[39] Hutchings, A. (n.d.). Welcome to NGINX Wiki! NGINX Wiki. Retrieved April

11, 2022, from https://www.nginx.com/resources/wiki/

[40] Pike, R. (2009, October 30). The Go Programming Language. Google.

Retrieved April 11, 2022, from

https://9p.io/sources/contrib/ericvh/go-plan9/doc/go_talk-20091030.pdf

[41] Pike, R. (2012, October 25). Go at Google: Language Design in the Service of

Software Engineering. Retrieved April 11, 2022, from

https://talks.golang.org/2012/splash.article

[42] Bui-Palsulich, T., & Compton, E. (2019, March 19). Build fast, reliable, and

efficient software at scale. Go. Retrieved April 11, 2022, from https://go.dev/

71

https://docs.npmjs.com/
https://github.com/about
https://ieeexplore.ieee.org/document/7307636
https://docs.docker.com/engine/security/
https://www.nginx.com/resources/wiki/
https://9p.io/sources/contrib/ericvh/go-plan9/doc/go_talk-20091030.pdf
https://talks.golang.org/2012/splash.article
https://go.dev/

[43] Capacitor. (n.d.). Cross-platform native runtime for web apps. Capacitor.

Retrieved February 25, 2022, from https://capacitorjs.com/

[44] Crispin, L. (2006). Driving software quality: How test-driven development

impacts software quality. IEEE Software, 23(6), 70–71.

https://doi.org/10.1109/ms.2006.157

[45] Go Development Team. (n.d.). Go Testing. testing package - testing. Retrieved

April 12, 2022, from https://pkg.go.dev/testing

[46] The MIT License. The MIT License | Open Source Initiative. (n.d.). Retrieved

April 12, 2022, from https://opensource.org/licenses/MIT

[47] Lenarduzzi, V., Tosi, D., Lavazza, L., & Morasca, S. (2019). Why do

developers adopt open source software? past, present and future. IFIP Advances in

Information and Communication Technology, 104–115.

https://doi.org/10.1007/978-3-030-20883-7_10

[48] Singh, C., Gaba, N. S., Kaur, M., & Kaur, B. (2019). Comparison of different

CI/CD tools integrated with cloud platform. 2019 9th International Conference on

Cloud Computing, Data Science & Engineering (Confluence).

https://doi.org/10.1109/confluence.2019.8776985

[49] Srivastav, M., & NAth, A. (2016). Web Content Management System.

International Journal of Innovative Research, 3, 51–56.

72

https://capacitorjs.com/
https://doi.org/10.1109/ms.2006.157
https://pkg.go.dev/testing
https://opensource.org/licenses/MIT
https://doi.org/10.1007/978-3-030-20883-7_10
https://doi.org/10.1109/confluence.2019.8776985

