
AUGMENTING BIOLOGICAL PATHWAY EXTRACTION

WITH SYNTHETIC DATA AND ACTIVE LEARNING

A Thesis presented to

the Faculty of the Graduate School

at the University of Missouri

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

JOSHUA LEE THOMPSON

Thesis Supervisor: Dr. Dong Xu

May 2022

The undersigned, appointed by the Dean of the Graduate School,

have examined the thesis entitled:

AUGMENTING BIOLOGICAL PATHWAY EXTRACTION WITH SYNTHETIC

DATA AND ACTIVE LEARNING

presented by Joshua Lee Thompson, a candidate for the degree of

Master of Science and hereby certify that, in their opinion, it is worthy

of acceptance.

__

Dr. Dong Xu

__

Dr. Mihail Popescu

__

Dr. Ye Duan

ii

ACKNOWLEDGEMENTS

 I would like to sincerely thank Dr. Dong Xu for his support over

the last 4 years. Dr. Xu provided me the space and resources to grow

more academically, professionally, and personally than I ever thought

possible. I also want to thank Dr. Fei He for being an amazing mentor

and role model to me over the past 4 years. His guidance and help

have been instrumental for the success of this thesis. My work would

also not have been as well developed without the valuable insights

from Dr. Mihail Popescu. I also want to thank Dr. Ye Duan for his

interest in my studies and being a part of my thesis committee.

Most importantly, I want to thank all of my friends and family for

their unwavering support over the past challenging two years. I

especially want to thank Karlye Thompson, Edgar Arroyo, Gavin

Phillips, and Joshua Love. They were always there for me when I

needed them the most and provided a safe, secure foundation that I

was able to build from. Without these four, I would not have been able

to complete this thesis. I truly love and appreciate them all.

Joshua Thompson

iii

Table of Contents

ACKNOWLEDGEMENTS ...

LIST OF TABLES ...

LIST OF FIGURES ..

ABSTRACT ..

1 Introduction ...

 1.1 Motivations ..

 1.2 Problem Statement ...

 1.3 Contributions ...

 1.4 Thesis Organization ..

2 Literature Review ...

 2.1 Gene Relationship Extraction

 2.2 Object Detection ...

 2.3 Data Augmentation ..

 2.4 Active Learning ..

 2.5 Summary ..

3 Gene-Interaction Extraction ..

 3.1 Mixing Modalities ..

 3.2 Object Detection ...

 3.2.1 Backbone Network ...

 3.2.2 Feature Pyramid Network

ii

vii

viii

xi

1

1

4

4

5

6

6

8

10

12

14

16

17

18

20

20

iv

 3.2.3 Detection Subnets ..

 3.2.4 Model Training ...

 3.2.5 Model Inference ...

 3.3 Gene Name Recognition ..

 3.3.1 OCR Tool ..

 3.3.2 PubTator Central-based OCR Correction

 3.4 Gene Interaction Prediction ..

 3.5 Data Preparation ..

 3.6 Results and Discussion ..

 3.6.1 Gene Identification Results

 3.6.2 Object Detection Results

 3.6.3 Interaction Extraction Results

 3.7 Summary ..

4 Synthetic Data Generation ...

 4.1 Overview ...

 4.2 Implementation Details ...

 4.2.1 Checking Background ...

 4.2.2 Entity/Cluster Generation

 4.2.3 Entity Placement ...

 4.2.4 Drawing Spline ..

 4.2.5 Drawing Indicator ..

 4.2.6 Parameter Configuration

21

21

23

24

24

25

26

28

29

29

31

32

34

35

35

39

39

40

42

42

43

44

v

 4.3 Experimental Setting..

 4.3.1 Model ...

 4.3.2 Data ..

 4.4 Results ...

 4.4.1 Synthetic Data for Mixed-Batches

 4.4.2 When to Use Synthetic Data

 4.4.3 Generalizing to New Tasks

 4.5 Introducing Noise ..

 4.5.1 Structured Noise ...

 4.5.2 Unstructured Noise ...

 4.5.3 Mixing Noise ...

 4.5.4 How Much Noise? ..

 4.6 Summary ...

5 Active Learning ..

 5.1 Overview ..

 5.2 Pool-less Active Learning ..

 5.3 Experiments ...

 5.3.1 Validating PAL ...

 5.3.2 Extending PAL ...

 5.3 Summary ..

6 Future Work & Conclusions ...

 6.1 Future Work ...

45

45

46

47

47

48

49

52

53

56

58

59

60

61

61

62

65

65

71

76

77

77

vi

 6.1.1 Gene-Extraction ...

 6.1.2 Synthetic Data ...

 6.1.3 Active Learning ..

 6.2 Conclusions ...

 BIBLIOGRAPHY ...

77

78

78

79

81

vii

List of Tables

Table Page

 3.1 Pipeline Performance on gene identification 30

 3.2 Object Detection models performances on detecting

arrows and T-bars ..

31

 3.3 Pipeline performance on full gene-interaction

recognition ..

32

 4.1 Testing mAP for increasing amounts of synthetic data

used ...

47

 4.2 Testing mAP for increasing amounts of synthetic data

used from each method, starting with the base
augmented dataset ..

49

 4.3 Testing mAP for RetinaNet trained on Synthetic

Clusters ..

51

 4.4 Testing performance of purely synthetically trained

models using different types of structured noise

54

 4.5 Testing performance of purely synthetically trained

models using different types of unstructured noise

56

 4.6 Testing performance of purely synthetically trained

models using mixtures of structured and unstructured
noise ..

58

 5.1 Testing Performance of PAL trained models in terms of
precision, recall, and average number of iterations to

model convergence ...

67

 5.2 Testing performance of PAL trained models with

momentum in terms of precision, recall, and average
number of iterations to model convergence

75

viii

List of Figures

Figure

Page

 1.1 Example of a signaling pathway pulled from [1]

detailing the role of TGF-β in iTreg and Th17 cell
development. Text entities in these figures are genes or

other biological components. Arrows represent gene
activations and t-bars indicate gene inhibitions

2

 3.1 Overview of our gene interaction extraction pipeline .. 16

 3.2 Over of the RetinaNet-101 architecture. This model has

3 main modules: a feature extractor backbone, a
feature pyramid network, and 2 detection heads

19

 3.3 Visualization of an example of forming gene interactions
with OCR and object detection results

27

 3.4 (a) shows an example of a fully annotated pathway
figure. (b) shows an example of an augmented sample

from our training set ..

28

 4.1 Filtering candidate regions for high-frequency

components. (a) a sample slice of a pathway image; (b)
radial profile of the slice in the spectral domain

35

 4.2 Radial profile for the candidate region in the spectral

domain from Figure 4.1. The x-axis shows the pixel
radius from the center as our frequency analog. The y-

axis represents the number of white pixels at each
radius ...

37

 4.3 To generate a relationship, with two placed entities (a),
we denote their relationship by drawing a spline

between them (b) and placing an identifying indicator at
one end (c) ..

39

 4.4 To generate a cluster of entities, we started from the
shape masks of two entities and iteratively moved one

shape’s center until the IoU between the shapes was 0

40

ix

 4.5 Histograms showing the distribution of relationship
sizes in real pathways (a) and our synthetic pathways

(b) ...

41

 4.6 Histogram showing the distribution of pathway image

dimensions ...

44

 4.7 Synthetic samples with annotation. (a) shows the

indicator head annotations used in Experiments 4.4.1 &
4.4.2. (b) shows the indicator body annotations used in

Experiment 4.4.3 ...

46

 4.8 Comparing combinations of real and synthetic data at

different stages of training

48

 4.9 An example of a synthetic cluster sample with

annotation ...

50

 4.10 Structured noise examples for lines (a), arches (b), and

shapes (c) ...

53

 4.11 Testing performance of synthetically trained models
with different types of structured noise (lines, arches,

and shapes) ...

55

 4.12 Unstructured noise examples for gaussian noise (a) vs.

salt and pepper noise (b) ..

56

 4.13 Bar-plot showing the effect of halving the amount of

different noises in training samples

59

 5.1 PAL 1 implementation for obtaining updated class

probabilities from classification losses.

63

 5.2 PAL 2 implementation for obtaining updated class

probabilities from classification losses

64

 5.3 PAL Mix design which combines methods 1 & 2 for

obtaining updated class probabilities from classification
losses . ..

65

 5.4 Visualization of class probabilities for 300 iterations

during PAL 1 training ..

68

x

 5.5 Visualization of class probabilities for 300 iterations
during PAL 2 training ..

69

 5.6 Visualization of class probabilities for 300 iterations
during PAL Mix training ...

69

 5.7 Plot of the ‘activation’ class probability for 300
iterations during PAL Mix training

71

 5.8 Plot of the ‘activation’ class probability for 300
iterations during PAL Mix training with a momentum

factor of 0.1 ...

73

 5.9 Plot of the ‘activation’ class probability for 300

iterations during PAL Mix training with a momentum
factor of 0.5 ...

73

 5.10 Plot of the ‘activation’ class probability for 300 iterations
during PAL Mix training with a momentum factor of 0.9

74

xi

ABSTRACT

The corpus of biomedical literature is growing rapidly as many

papers are recorded in PubMed every day. These papers often contain

high-quality biological pathways in their figures/text, which are great

resources for studying biological mechanisms and precision medicine.

However, it can take a long time for many of these works to be put into

practical use as each paper’s contributions need to be curated by

experts. This, often lengthy, process causes professional practice to lag

behind research. To speed up this process, I helped develop a pipeline

that integrates NLP and object detection processing to extract gene

relationships reported in articles’ figures and text. This pipeline was able

to extract such relationships with high precision and recall on a small,

annotated set. However, extending this pipeline for improved

generalization and new settings was limited by the number of high-

quality annotations available. Such labeled data is very time consuming

to collect and traditional augmentations were observed to generate

diminishing returns. To address this shortcoming, I developed an

approach for generating purely synthetic data for object detection on

biological pathway diagrams based on a set of rules and domain

knowledge. Our method iteratively generates each pathway relationship

uniquely and is demonstrated to improve the generalization of our

object detection model significantly across a variety of settings.

xii

Additionally, with the capability to generate unique and informative

samples, we integrated our synthetic generation methodology into an

active learning setting. While traditional active learning relies on a pool

of unlabeled data to draw from with an acquisition function, our method

is pool-less and does not require any acquisition function. Instead, we

generate each batch of data uniquely based on the training losses from

the previous batch. Pool-less Active Learning (PAL) via synthetic data

generation is demonstrated to reduce the number of iterations required

for model convergence during training on pathway figures.

1

Chapter 1

Introduction

In this chapter I will discuss the motivations for my work, the

significance of my research, the specific issues I addressed, and how I

went about solving those problems. I will also outline the organization

for the rest of this thesis.

1.1 Motivations

The corpus of biomedical literature is growing rapidly as many

papers are recorded in PubMed every day. These papers often contain

high-quality biological pathways in their figures/text, which are great

resources for studying biological functions and precision medicine

(Figure 1.1). However, it can take a long time for many of these works

to be put into practical use as each paper’s contributions need to be

curated by experts. This, often lengthy, process causes professional

practice to lag behind research. To speed up this process, I helped

develop a pipeline that integrates natural-language-processing (NLP)

and object detection to extract gene relationships reported in articles’

figures and text. This pipeline was able to extract such relationships

2

with high precision and recall on a small, annotated set. In addition to

speeding up curation efforts, such extraction has the potential to

enable novel knowledge discovery by mapping previously overlooked

gene- and drug-pathway interactions across the literature. Being able

to extract such new and long-range connections has wide applicability

to precision medicine practice as well.

Figure 1.1: Example of a signaling pathway pulled from [1]

detailing the role of TGF-β in iTreg and Th17 cell development. Text

entities in these figures are genes or other biological components.

Arrows represent gene activations and t-bars indicate gene

inhibitions.

3

However, extending this pipeline to new settings was limited by

the number of high-quality annotations available. This is a frequently

occurring problem in the biomedical field and other data hungry areas

where high quality labeling is time consuming to collect and traditional

augmentations generate diminishing returns. To address this

shortcoming, I helped develop an approach for generating purely

synthetic data for object detection on biological pathway diagrams

based on a set of rules and domain knowledge. This method iteratively

generates each pathway relationship uniquely and is demonstrated to

improve the generalization of our object detection model significantly

across a variety of settings. Such a generative method could have

applications in other document, figure, and diagram analysis tasks as

well (such as OCR [2] or Document-Analysis [3]) where labeling often

bottlenecks development.

With the capability to generate unique and informative samples,

we further integrated our synthetic generation methodology into an

active learning setting. We did this to get the most value out of each

training iteration. While traditional active learning relies on a pool of

unlabeled data to draw from with an acquisition function, our method

utilizes no data pool and does not require any acquisition function.

Instead, we generate each batch of data uniquely based on the training

losses from the previous batch. This new approach for active learning

4

marks a step towards further integrating data augmentation with active

learning.

1.2 Problem Statement

The goal of my thesis is to answer the following questions

relating to biological pathway extraction:

1. How to extract relationships from pathway figures?

2. How to integrate different output sources to filter gene

relationships?

3. How to up-sample our figure dataset with unique training

signals?

4. What are the limits to our up-sampling approach?

5. How to effectively leverage rule-based up-sampling during

training?

1.3 Contributions

The main contributions of this thesis can be summarized as

follows:

1. A unified pipeline for extracting gene interaction triplets from

biomedical articles that combines image and natural language

processing.

5

2. A novel rule-based algorithm for generating annotated pathway

diagrams.

3. Characterizing good practice for training with synthetic and real

data.

4. Measuring the impact of structured and unstructured noise for

synthetic pathways.

5. Pool-less Active Learning (PAL) via synthetic data generation.

1.4 Thesis Organization

This thesis is organized into six Chapters. Chapter 1 introduces

my research problem and the motivations for my work. Chapter 2

outlines a detailed literature review of works that I took inspiration

from. Chapter 3 highlights the development of our unified pipeline for

gene relationship extraction. In Chapter 4, I introduce my novel rule-

based method for up-sampling annotated diagrams with a purely

synthetic approach. Chapter 5 investigates how to best leverage our

ability to generate fully synthetic samples that generalize, by

integrating our augmentation method into an active learning

framework. Chapter 6 reflects on my work and suggests future

directions for further investigation.

6

Chapter 2

Literature Review

 In this chapter, I will review several fields related to my work

and other methods that shaped my development. Specifically, this

literature review will discuss related works in the areas of gene-gene

relationship extraction, object detection, data augmentation, and

active learning.

2.1 Gene Relationship Extraction

As previously mentioned, biomedical literature publishes

biological pathways at a rapid pace. These pathways, presented in text

and image formats, are great resources for studying biological

functions and precision medicine practice. For example, the most up-

to-date knowledge about newly discovered non-canonical disease

pathways and uncommon drug actions is vital in studying patient-

specific biomolecular phenotypes for cancer treatment [4]. However,

to effectively use large scale pathway information, new pathways from

literature need to be carefully curated, reconciled, and transformed

into a computable form [5]. Manual curation and text mining are the

two main approaches employed for this task. Kuenzi et al. manually

7

curated 2,070 cancer pathways to identify previously underappreciated

functions and discover new genes to known cancer pathways [6].

However, PubMed’s library continues to grow by more than a million

articles per year [7], which is unmanageable by manual curation

alone. While there are advances in text mining approaches for

extracting simple biological interactions, such as protein-protein

interactions and biological events that include two or three such

interactions, there are no reliable methods to extract larger, more

complex disease pathways, such as signaling or drug action pathways

[8]. One challenge remaining is that references between biological

entities can be spread far across the text and cannot be easily

reconciled [9, 10]. For instance, information extraction tools for

biological events had error rates from 23% to 58% [11]. Additionally,

the error rates for chemical-induced disease relation extraction

methods ranged between 43% to 68% [12]. Coreferences and

anaphoric expressions are also still challenging for text mining tools

alone [8].

To address this challenge, my team observed that nearly all

articles on newly discovered pathways contain figures that summarize

their findings. To best leverage these figures, we proposed an

integrated bio-curation pipeline for mining genes and their interactions

from pathways by jointly utilizing an article’s figures and text. We

8

hypothesized that the extraction of genes and their interactions from

pathway figures and text will be more accurate and reliable than

extraction from either alone.

Information extraction from images is a new direction in

biological curation. Recently, only a few studies have been conducted

to extract genes from publication figures using optical-character-

recognition (OCR). Different extensions and improvements for such

OCR have been applied for image segmentation, localization, and

recognition tasks from biological image text in [13-15]. Additionally, in

a large-scale analysis of pathway figures [16], gene names from

images of were retrieved but the interactions between them were

ignored. Even though extraction of biological relationships from images

was previously described [17], there were no details for reproducibility

or accessible online resources. Our early study [18] demonstrated that

it was feasible to retrieve gene names and gene relationships from

pathway figures.

2.2 Object Detection

Looking towards object detection, much of the progress in this

field from the past decade can be attributed to improved architecture

design. RCNN [19] was the first network to apply high-capacity

convolutional neural networks to bottom-up region proposals in order

9

to localize and segment objects from images. They did this by

generating region proposals from an image, extracting a fixed length

feature vector from each region, passing that vector through a

convolutional neural network feature extractor, and using a set of class

specific linear support vector machines to classify each proposal. Fast-

RCNN [20] took this process one step further and used the entire

image as input to the convolutional neural network. They did this to

share the single feature map across proposals to save on

computational overhead. To predict for any given proposal, they then

used region of interest pooling to extract a fixed-length feature vector.

This feature vector was then fed through several fully connected layers

that branch off to localize an object and predict its class. Faster R-CNN

[21] further unified this design by using the features generated from

the input image to also calculate the proposals with a region proposal

network. They did this because generating good object proposals was

often a computational bottleneck and a trade-off between accuracy

and good performance. Feature Pyramid Networks [22] were then

designed to address poor recognition of objects at different scales.

They use feature pyramids built from image pyramids to capture

different sized objects by leveraging top-down and lateral skip

connections. Predictions are then made at each level of the pyramid.

RetinaNet [23] introduced another single-stage detector to leverage

10

robust feature extraction with ResNets [24], Feature Pyramid

Networks, and fully convolutional networks for regression and

classification. However, the main contribution of this paper [23] was

their introduction of the focal loss, a modified cross entropy function

designed to address imbalance between classes and hard training

samples. Additionally, many more object detection architectures have

been proposed with a wide range complexity: YOLO [25], SpineNet

[26], DETR [27], etc.

2.3 Data Augmentation

Training such large object detection models typically requires

large amounts of data as well. However, in many areas high quality

ground truth labels can be expensive to collect. As such, many

practitioners and researchers alike often turn towards data

augmentation methods to increase their training pool size. Traditional

data augmentations, especially for images, usually focus on positional

modifications such as random flips, scaling, cropping, rotations,

translations, etc. [28]. This kind of augmentation is helpful for making

models capture similar signals, but from different viewpoints. Other

types of augmentation will focus on changing color characteristics such

as lighting, contrast, hue, and saturation [29]. This class of

augmentation is helpful to make models more color agnostic and focus

11

on shape features. Involved modifications have also been shown to be

helpful such as kernel filters, random erasing (CutOut [30]), injecting

random noise, and mixing samples (MixUp [31] and CutMix [32]).

These methods can promote a model to use more contextual

information and leverage larger-scale features. An overview of these

methods is provided in [33]. The unifying goal of these methods is to

create new training samples by manipulating pre-collected data.

However, it has been observed that this can lead to diminishing

returns as the same or similar signals are repeatedly seen during

training.

Another approach to up-sampling does not just modify existing

images but instead creates entirely new ones. This approach often

leverages deep learning methods such as conditional GANs [34,35],

Variational Autoencoders [36], Spatial Transform Networks [37] or

neural style transfer [38]. Synthetic data generation has also been

previously applied for generating 3D point clouds for training in

[39,40]. Our work is complementary to other synthetic data

generation methods and targets the object detection task specifically

based on a set of rules. Our method is less expensive and more

biology-aware than related deep learning approaches.

12

2.4 Active Learning

With an abundance of unlabeled samples in big data analysis,

active learning has become a growing area of research in recent years.

Active learning not only focuses on learning from data, but also

learning what data to learn from. Active learning primarily focuses on

prioritizing learning from data that will have the most impact during

training. This is done by first labeling a very small subset of a large

dataset manually and then training on that subset. The goal of this

initial training is to better understand which areas of the parameter

space need to be labeled. After training, the model is used to predict

each un-labelled sample and a priority score is calculated for it. Based

on this priority score, a new subset is selected for labeling and is

added to the growing training set for the next round of training. This

process is repeated several times to continuously update the training

set with the goal of improving generalization without having to

annotate the entire dataset. This technique can be very useful when

you have large amounts of unlabeled data to train with. However,

selecting the best priority score metric is often problem specific. A

least confidence priority score takes the highest probability for each

sample’s prediction and sorts samples from smallest to largest

[41,42]. Samples with the lowest-confidence predictions are selected

to be trained on. Margin sampling takes into account the difference

13

between the highest predicted probability and the second highest

probability [43]. The intuition is that we want to effectively

discriminate between the two most likely classes. Then, to do that, we

prioritize points that have the hardest time choosing between their top

two classes. Another option is to use entropy, which is similar to

margin sampling, but more holistic [44]. Using entropy promotes

discrimination between all classes by prioritizing points that have

trouble ruling out many classes and those that are not very confident

at all. Other approaches include Query by committee [45], Monte Carlo

Dropout [46], BALD [47], and Learning to predict the loss [48].

One of the challenges in selecting an acquisition function

involves balancing uncertainty and diversity sampling. Uncertainty

sampling aims to use estimates of what the model is uncertain about

as analogs for what the model would be wrong about. Diversity

sampling tries to get a balanced training set from samples that are not

yet annotated. Some other methods try to balance the two [49-51].

Overviews of active learning and applications thereof are provided in

[52,53].

Another area of interest combines data augmentation with active

learning. Intuitively, both are trying to get the most use from each

sample during training. However, how to best combine the two

methods is an open research topic. GAN Data Augmentation Through

14

Active Learning Inspired Sample Acquisition [54] used a MNIST trained

GAN to up-sample the MNIST dataset as their data pool for active

learning. Deep Active Learning with Augmentation-based Consistency

Estimation [55] illustrated how CutOut and CutMix augmentation can

be used as uncertainty measures, how these uncertainty measures can

be used as priority metrics, and how these measures can be used as

general regularization terms. Bayesian generative active deep learning

[56] showed the benefit of augmenting samples selected from the

acquisition function. Look-Ahead Data Acquisition via Augmentation for

Deep Active Learning [57] took this approach one step further by

jointly considering unlabeled samples and their augmentations in the

acquisition stage. My contributions in active learning are

complementary to this line of research that combines data

augmentation with active learning. Specifically, I introduce Pool-less

Active Learning (PAL) via synthetic data generation that does not need

any previously collected data or an acquisition function.

2.5 Literature Review Summary

 In this chapter, I presented an overview of previous attempts to

extract biological relationships from text and figures. I also described

the improvements made to recent object detection methods that I

15

leverage in later chapters. I also outline several drawbacks of many

traditional data augmentation methods and a new line of research that

tries to overcome these disadvantages. Additionally, I introduced the

active learning training procedure and how new methods try to

incorporate data augmentation with active learning. In the next

chapter, I will detail the pipeline I developed to extract gene-gene

relationships.

16

Chapter 3

Gene-Interaction Extraction

Figure 3.1: Overview of our gene interaction extraction pipeline.

 In this chapter I outline the motivations for our relationship

extraction pipeline design, detail our implementation, and report our

experimental results.

17

3.1 Mixing Modalities

To visualize biological functions, article diagrams often use

simple shapes and indicators to make the relationships between

entities clear. To extract gene names from these figures, one may

intuitively think to just apply optical character recognition (OCR) to

extract entity text. However, in practice these results may not always

be correct due to various artifacts in the images. Fortunately, article

text offers detailed information to correctly identify entity names. This

information can then be used to filter out or correct mislabeled entity

names from figures. While very useful for extracting gene names, it

remains difficult to precisely extract the relationships between objects

from the text alone. We hypothesize an integrated approach between

text and image processing can overcome the limitations each

extraction method may face alone.

In this study, we designed a deep learning-based pipeline to

detect genes and their interactions from pathway figures and utilize

text information from articles to filter the results. As a preliminary

attempt in pathway curation, we only focused on extracting genes and

two key types of gene interactions (activation and inhibition). These

indicators are usually plotted near textboxes with simple arrows and T-

bar lines. Other types of interactions are explored in the next chapter.

18

To the best of our knowledge, there was no previous work done to

systematically extract biological mechanisms from figures.

Figure 3.1 illustrates an overview of our pipeline, which includes

four main components: (1) two object detection models to locate the

genes and the indicators defining gene interactions from pathway

figures; (2) an OCR module to convert text regions into computable

gene names, (3) a gene name filtering module to only keep valid gene

names from all results, and (4) a gene-interaction prediction module

to connect pairs of genes in a recognizable interaction.

3.2 Object Detection

For this study, we used the RetinaNet [23] architecture to detect

all text regions and interaction indicators from the pathway figures

pulled from articles. RetinaNet was chosen since it can achieve a good

computational complexity-accuracy trade-off. This model is composed

of three modules: a backbone network, a FPN (Feature Pyramid

Network), and detection heads. The architecture of RetinaNet is shown

in Figure 3.2.

19

Figure 3.2: Over of the RetinaNet-101 architecture. This model has 3

main modules: a feature extractor backbone, a feature pyramid

network, and 2 detection heads

20

3.2.1 Backbone Network

We employed ResNet101 [24] as the backbone network to

provide rich visual features for following object detection. ResNet

stacks 1 convolutional layer with 7×7 convolution (Conv) and 33

residual blocks. Each residual block consists of 3 convolutional layers

with different kernels (in 1×1, 3×3, and 1×1 sizes) and different

numbers of filters (64, 128, 256, or 512) to generate multi-scale

feature maps. All of the generated feature maps are followed by a

non-linear ReLu activation [58]. Additionally, each block adds a skip

connection from the input signal to output feature maps to combat

vanishing gradients.

3.2.2 Feature Pyramid Network

As previously mentioned, a major challenge in object detection is

dealing with targets of different size. Fortunately, the residual blocks

in ResNet101 naturally provide feature maps at multiple scales and

can be used to form a feature pyramid for building semantic feature

maps at multiple scales. In RetinaNet, the feature maps from the 2nd,

5th, 27th, and 33rd residual blocks are aligned with their dimensions by

up-sampling layers and stacked to build an FPN with lateral

connections, as shown in Figure 3.2. To locate objects of different

sizes, RetinaNet pre-defines a set of anchors with various heights and

21

widths. With these anchors, object detection tasks are reduced to

predicting probabilities and refinements on these anchors. To do this,

the feature maps of the anchors were cropped from FPN and sent to

detection heads for prediction.

3.2.3 Detection Subnets

The two subnets are designed to separately predict the class and

target coordinates from the feature maps of each anchor. The class

subnet maps the feature maps of each anchor to a score via four

convolution layers with a 3×3 kernel and softmax function. The

regression subnet reduces the same feature maps to 4-dimensional

coordinates via four separate convolution layers with a 3×3 kernel.

3.2.4 Model Training

To train RetinaNet, we first set the sizes and ratios of

height/width of anchors to 0.5, 1, and 2. The pre-trained weights of

ResNet101 from ImageNet were loaded into RetinaNet as the

initialization for the backbone network. All of the training images were

resized to 800*800 before being fed into RetinaNet. IOU (Intersection

Over Union) was used to calculate the ratio of intersection and union

between annotated objects and anchors. The anchors with an IOU

greater than 0.6 over a text region/arrow/T-bar region were labeled as

22

true anchors and were labeled with the corresponding categories.

Anchors with an IOU less than 0.4 over any object were considered

negative. The anchors with IOUs between 0.4 and 0.6 were ignored to

reduce computational overhead.

For the classification subnet, considering the highly unbalanced

distribution between easy cases and hard cases, the focal loss [23]

was utilized as follows:

p is the predictive probability and γ (2 as the default) denotes a

regulatory factor used to control the weight of easy samples. For easy

cases (i.e. when pt approaches 1) γ has the effect of scaling the loss

toward 0. Conversely, when pt is near zero (as for uncertain

predictions) the scaling factor is closer to 1. By applying γ, we

effectively put more weight to ambiguous/hard cases. Alpha simply

balances positive and negative samples and was set to 0.1 following

the recommendation from [23].

For the regression subnet, we employed a Smooth L1 Loss

function [20] as follows:

(3.1)

23

yi denotes the ground truths and f(xi) represents the predicted

coordinates. This function smooths the gradients when the distance

between the predicted coordinates and the ground truth is less than 1.

In the other cases, it stabilizes the gradients to avoid gradient

explosion. The two subnets were optimized by Nadam [19], with

learning rates starting from 5e-4 and decaying to 1e-5. Because the

arrow and t-bar bodies denote activation and inhibit interactions and

their heads indicate the direction of the interaction, we trained two

RetinaNets to detect arrows/T-bar bodies and their heads separately.

3.2.5 Model Inference

Once the models have completed training, we can predict the

arrow/T-bar bodies and arrow/T-bar heads from any input pathway

figures. Typically, the top 1000 bounding boxes with the highest

scores from the classification subnet are returned by default with their

predicted coordinates. We also set a minimum classification confidence

threshold of 0.7 to remove low confidence predictions. Among these

remaining bounding boxes, some redundant boxes around the same

object still remained. We used a non-maximum suppression operation

to filter out duplicate boxes for same object. The IOUs for all of the

(3.2)

24

remaining bounding boxes were calculated and the overlapping boxes

with higher IOUs than 0.5 were also treated as duplicates. Among

these duplicates, only the bounding box with the highest score was

retained. Through such post-processing, we detected all of the

arrow/T-bar bodies and arrow/T-bar heads associated with the gene

interactions for further processing.

3.3 Gene Name Recognition

3.3.1 OCR Tool

To extract gene name candidates, we leverage Google’s Could

Vision API. We chose this tool to simplify our pipeline as it can process

entire images directly without the need for additional preprocessing

(e.g., de-skewing, resizing, etc.). The API response includes all the

words found in the figures and a hierarchical breakdown specifying

pages, blocks, paragraphs, words, and symbols from the text. By

extracting the words in each paragraph, we can build phrases that

appear frequently in our figures. The OCR also returns the

corresponding bounding boxes and are used to build subsequent gene

interactions.

25

3.3.2 PubTator Central-based OCR Correction

Since misrecognition frequently occurs in the OCR output,

corrections from other methods are necessary to improve the OCR

results. For this purpose, we used Named Entity Recognition (NER) to

improve the gene extraction accuracy. NER identifies and categorizes

certain types of entities in text. For our study, we used PubTator

Central [8][6][59] to obtain gene annotations from the articles

containing pathway figures. PubTator Central is a state-of-the-art NER

model that features multiple biological concept annotations and a web

API. PubTator Central uses GNormPlus to annotate genes with high

accuracy. It achieved an F-score of 86.7% for gene identification on a

set of PMC full-text articles and PubMed abstracts. Additionally,

PubTator saves the processed data from each abstract and full-text

article in a database. In this way, we are able to retrieve gene

annotations programmatically through its RESTful API just using an

article’s PMC ID. To correct gene outputs from the OCR, we match our

results with PubTator Central gene annotations for a given article. To

avoid the impact of character cases, we unified all OCR results and

PubTator annotations to upper case during matching but left their

original symbols for downstream analysis. If no direct match was

found, we attempted a fuzzy match using the Levenshtein distance

[60] to score unmatched OCR text with all of the gene annotations

26

from PubTator Central. The Levenshtein distance between two words is

the minimum number of single-character edits (insertions, deletions,

or substitutions) required to change one word into the other. If the

score of an OCR recognized gene name was over a certain threshold,

set at 90, with 100 being a perfect match, we selected the

corresponding gene annotation as the final gene name.

3.4 Gene Interaction Prediction

To extract the gene interactions, we combined several

postprocessing methods on the filtered genes, detected indicator

heads, and detected indicator bodies. First, we found the

corresponding head for each indicator body. This was done by

selecting the head bounding box with the largest IOU for each body

and calculating its center point marked by the purple dot in Figure

3.3b. We used the body bounding box (seen in Figure 3.3a) to reduce

our search space and limit possible noise from intersecting

relationships. The head then served as a reference point to find each

corresponding tail (i.e., the starting point of each indicator). This was

done by finding the detected corner furthest away from each head that

27

was still inside the corresponding body bounding box as marked by the

yellow dot in Figure 3.3d. We used the Shi-Tomasi method for corner

detection [61]. An example of the detected corners is shown in Figure

3.3c. Next, using the detected head and tail for each indicator body,

we can then find each indicator’s corresponding genes. We did this by

exclusively selecting the closest entities to the tail and head as our

starter and receptor marked by the green boxes in Figure 3.3e. This

post-processing schema is demonstrated in our experiments to be an

effective way to extract gene interactions from simple pathway figures.

Figure 3.3: Visualization of an example of forming gene interactions with

OCR and object detection results.

28

 3.5 Data Preparation

 a.) b.)

Figure 3.4: (a) shows an example of a fully annotated pathway figure.

(b) shows an example of an augmented sample from our training set.

Due to the lack of a pathway curation benchmark dataset, we

constructed a dataset for training our object detection models. 403

pathway figures were directly retrieved from PubMed using pathway-

related keywords. Non-pathway figures were manually removed from

returned images. These randomly collected pathway figures from

different journals and authors were plotted in various styles, which

offers sufficient diversity for modeling. To annotate the locations of all

arrow/T-bar bodies and arrow/T-bar heads used in the training, we

labeled their bounding boxes and categories using the ‘labelme’ tool

[62]. To enlarge our data size, we augmented the collected images by

applying several transformations to the images. We set random

29

brightness factors from 0.6 to 1 and randomly applied salt & pepper

augmentation to quadruple the number of training samples. Upon

analyzing our initial dataset, we found inhibit indicators (T-bars) were

far less common than activations (arrows). Specifically, in our 403

training images, we found 4,681 arrows but only 931 T-bar lines. To

balance the class distribution, we replaced a number of arrows with

simulated T-bar lines on the original images after data augmentation.

This was done by first randomly erasing a certain proportion of the

arrows based on their annotations. Then we plotted a replica T-bar,

which followed the original arrowhead position and orientation. In the

end, we obtained 4,040 training samples in total, which included

89,740 text regions, 34,127 arrows, and 30,245 T-bar lines.

To evaluate our pipeline, we built a validation set by holding out

45 pathway figures from our training set. In total, this validation set

contained 561 genes and 367 gene interactions.

3.6 Results and Discussion

3.6.1 Gene Identification Results

In this section, we report an evaluation of our gene identification

using the OCR in terms of recall, precision, and F1. To identify the

30

value of post-processing, we compared the results from the raw OCR

output with the post-processed output as well.

Table 3.1: Pipeline performance on gene identification.

Method Precision/% Recall/% F1/%

OCR 53.9 86.7 66.5

OCR with post-processing 75.8 71.4 73.5

As previously described, we can see in Table 3.1 that the

Google-OCR output can include non-gene text from the images, typos,

and false words caused by artifacts surrounding the target genes. With

the gene annotations from PubTator, we can see that our post-

processing successfully filtered out many non-gene text results. This

greatly increased our precision since we only included real gene names

for filtering. However, this filtering seemed to exclude some potential

genes as well due to imperfect PubTator annotations. Looking at the

F1 score, we find that using our post-processing can achieve a

31

satisfactory trade-off between precision and recall for identifying gene

names from pathway figures.

3.6.2 Object Detection Results

We evaluated our trained object detection models on the

validation set and determined a correct detection by measuring the

overlap between the predicted bounding boxes with the ground truth

using 0.5 IOU as the threshold. Based on this criterion, the precision

and recall per category are reported in Table 3.2.

Table 3.2: Object Detection models performances on detecting arrows

and T-bars

Model Category Precision[%] Recall[%] F1[%]

Model1 Arrowhead 94.1 77.4 84.9

T-bar head 92.0 84.0 87.8

Model2 Arrow body 95.3 81.3 87.75

T-bar body 91.1 88.9 89.99

The first model that detected arrowheads and T-bar heads

achieved 77.4% and 81.3% recall, and both more than 90 percent

32

precision on the independent set. Regarding the indicator bodies, the

second model performed similarly excellent in recall and precision.

Comparing the two types of indicators, the arrows had slightly better

performance on both the head detection and shape detection. We

observed that some of this error can be attributed to the similarity of

T-bars and the letter ‘T’ causing misrecognized T-bars.

3.6.3 Interaction Extraction Results

Table 3.3. Pipeline performance on full gene-interaction recognition

Interaction Shape Precision[%] Recall[%] F[/%]

Activation arrow 57.0 75.3 64.88

Inhibit T-bar 37.4 63.9 47.18

All N/A 53.7 72.5 61.7

These object detection results laid a solid foundation for

subsequent gene-interaction extraction. By combining the indicator

locations with the localized text regions, we connect the relationships

as previously described in section 3.4. Since the relation results were

defined as <starter: relation_type: receptor> semantic triplets, we

assigned a true positive when all three components were correct. A

33

prediction with incorrect components or roles was marked a false

positive. All missing gene interactions from curations were treated as

false negatives.

Under such evaluation we record the recall and precision for the

two types of extracted gene interactions on our validation set in Table

3.3. 72.5% of all gene interactions were successfully retrieved from

the pathways figures. Among the relationships returned, 53.7% of the

gene interactions were entirely correct triplets. Expectedly, some of

the incorrectly recognized gene names from previous steps accounted

for some of the error. Another source of error could be from our

relation prediction depending on just the relative locations between all

genes and relation indicators. This could cause mistakes when pairing

given several genes clustered around the same relationship indicator.

Between the two types of gene interactions, the activation relationship

again was extracted more accurately than the inhibiting interaction.

Since activations are the prominent type of gene interaction in

pathway figures, our pipeline still shows use as an automatic curation

approach by supplementing rich gene interactions for downstream

analysis.

34

3.7 Summary

 In this section I introduced a framework that integrates two

different modes for extracting relationship triplets. We demonstrated

that the pipeline is able to extract genes and their relationships

successfully on a held-out portion of the training data. However, we

observed that our object detection models struggled to generalize to

new data. In the next chapter, I introduce a rule-based augmentation

method for document and diagram data to bridge this gap.

35

Chapter 4

Synthetic Data Generation

 In this chapter, I introduce a novel data augmentation method

for up-sampling figure/diagram data. While the use-case explored was

for pathway figures, it can be applied to different domains as well.

4.1 Overview

In the previous chapter, I introduced a unified pipeline for

extracting gene interactions from articles. While this pipeline

performed very well on a validation set with samples from a similar

distribution as the training set, we observed that it failed to generalize

Figure 4.1: Filtering candidate regions for high-frequency

components. (a) a sample slice of a pathway image; (b) radial

profile of the slice in the spectral domain.

36

well to new data during testing. This was likely because of too little

training data leading to a model with high variance. While we did apply

several forms of data augmentation, it was observed that these

traditional forms of augmentation provided diminishing returns after

enough samples. This is likely because simple augmentations can

increase the total number of training images several times over but did

not increase the number of unique relationships seen during training.

To address this shortcoming, I introduced an approach that generates

fully synthetic samples. Since many relationships in pathway diagrams

follow a simple structure, they are easy to reproduce. To review, there

are just a few components that make up a relationship in a pathway

figure: two entities and a connecting identifier. These identifiers can be

represented as arrows, objects, or by proximity. Here we will again

first target the two types of indicators that are most frequently

encountered in our pathway figures: arrows (activate) and t-bars

(inhibit). We generate our fully synthetic relationships by first

identifying an empty region on a template image. As we generate new

images, we cannot place the slices randomly on the templates, as

there is a large potential for overlap that does not exist in the ground

truth figures. So, we first sample a random candidate region on a

37

template (Figure 4.1a) where our relationship could be placed. Then,

we convert that destination region to the spectral domain (Figure

4.1b) via a fast-Fourier transform [63] and calculate the radial profile

of that slice in the spectral domain (Figure 4.2). The radial profile is

the sum over pixel values the same radius away from the center of the

slice. We do this to see how many high-frequency components exist in

that destination region since the increased radius corresponds to

higher frequencies in the source image. In images, high-frequency

components correspond to edges, contrast, and complex shapes. Our

Figure 4.2: Radial profile for the candidate region in the spectral

domain from Figure 4.1. The x-axis shows the pixel radius from the

center as our frequency analog. The y-axis represents the number

of white pixels at each radius.

38

intuition is that pre-placed slices on the image will then be represented

in the high-frequency regions. By setting a threshold on those high-

frequency components, we can effectively search for good placements

on the templates.

With a region selected, we then determine our entity placement

given the area’s dimensions (see Figure 4.3a). Next, we draw a spline

between the two textboxes (Figure 4.3b) and add an indicator head at

one of the spline ends (Figure 4.3c). This class identifier can be an

arrowhead or a t-bar (for activate or inhibit relationships). This approach

effectively mimics the structure of many pathway relationships. Using

such fully synthetic data generation has several advantages over

traditional augmentations for this task. For instance, the model can train

on a more diverse set of training data since there are no repeated

relationships. This enables us to target specific types of exotic

relationships that were previously more difficult to categorize due to

little data: (e.g., curvy arrows, splines with corners, or dashed splines).

Additionally, this process can be multi-threaded to generate many

diagrams at once.

39

Figure 4.3: To generate a relationship, with two placed entities (a), we

denote their relationship by drawing a spline between them (b) and

placing an identifying indicator at one end (c).

4.2 Implementation Details

4.2.1 Checking Background

While simple to outline, implementing each step of this process

is more involved. In the case that all pixels in the destination region

are the same, we do not have to run the full spectral check and can

immediately stitch a relationship. However, when this is not the case,

we convert the destination region to the spectral domain and generate

its radial profile as previously mentioned. Notably, when calculating

the radial profile on this output, we must normalize by distance to the

center of the region since as the radius grows so does the number of

pixels at that radius. To filter out regions with too many high-

frequency components, we look at the binned statistics over the radial

profile. Specifically, we bin the radial profile into 4 sections and look at

 a) b)

 c)

40

the 2 later bins corresponding to the higher frequencies. If the binned

mean for either of those regions is too large, then we can rule out this

placement. We used a threshold of 50 to filter out slices with too many

high-frequency components to determine our placement. This specific

threshold balances allowing color gradients while still removing any

slices with harsh edges. We found this method to be more effective

than simply looking at the pixel statistics of the destination slice and

setting a threshold for the standard deviation. This approach failed on

edges of similar pixel values. Using our method produced more

realistic figures that better resembled the source dataset.

Figure 4.4: To generate a cluster of entities, we started from the

shape masks of two entities and iteratively moved one shape’s center

until the IoU between the shapes was 0.

4.2.2 Entity/Cluster Generation

The textboxes of pathway entities come in a variety of shapes.

To mimic this variety, we pulled from a folder containing images of

arbitrary shapes. These shapes are extracted from the source images

and transformed to fit the dimensions of our text. To further generate

 a) b) c)

41

clusters of entities, we start from one shape and its mask (Figure

4.4a). To add another shape to the arrangement, we select a random

direction from the first entity’s center and set the center of the new

shape as some distance along this path. The initial distance is a factor

of the first shape’s dimensions. We then calculate the intersection-

over-union between the two shape’s masks (Figure 4.4b). If there is

any overlap, we then increase the push factor along our selected

direction and repeat until they are non-overlapping. This process can

be repeated to add any number of entities to each cluster.

Figure 4.5: Histograms showing the distribution of relationship sizes in

real pathways (a) and our synthetic pathways (b).

 a) b)

42

4.2.3 Entity Placement

To effectively replicate the entity positions seen in real pathway

diagrams, we look at the histogram of relationship dimensions seen in

those figures. Figure 4.5a shows a 2D-histogram of 1000 diagrams

which highlights that those relationships are most concentrated in the

low dimensional regimes. We use this distribution to guide the region

selection of our algorithm and fix the position of our two entities to

opposite corners. We do this to let the real relationship’s dimensional

distribution fully guide our entity placement. However, we do maintain

that the region selected for placement must be large enough to

contain both entities. This explains the gap in Fig 4.5b that is not seen

in the real data. In the case of extreme dimensions (e.g., much larger

x than y and vice versa), we fix the placement to be top-down or left-

right. We do this since most relationships follow this orientation.

4.2.4 Drawing Spline

Once the entities have been placed, we can use their centers as

reference points for the connecting spline. We use three different types

of splines: lines, arches, and corners. For direct lines, we must first

find the start and endpoints for the spline by interpolating a direct line

between the centers of the two textboxes. We then select the n-th

point along the line outside the textboxes as the respective start and

end points. We set n dynamically based on the distance between the

43

two textboxes. With the start and end points, we then draw a line

between these two anchor points as our spline. If we are drawing an

arch, we start with the same method for obtaining the start and end

points. Then, we calculate the slope perpendicular to the line between

them. With this, we can calculate a third anchor point which will mark

the apex of the arch. We set a parameter to determine how far from

the baseline the third reference point should be. This allows us to

control how ‘curvy’ each arch is. Using all three anchor points, we can

then interpolate a spline between them. When drawing a cornered

spline, we use a different method for obtaining the start and end

points. For each square configuration, we can have two different

placements for the start and end points. They can be placed outside

the textboxes at some pre-set distance towards the same empty

corner. Then we use their max or min dimensions to determine a

corner point for the third anchor and connect these three points. To

draw dashed splines instead, we simply omit placing intervals of the

spline. These intervals are drawn from random bounds and are

dependent on the thickness of the spline.

4.2.5 Drawing Indicator

With the spline drawn, we now place an indicator head at one of

the ends. Since there are different styles of indicator as well, we follow

the same approach as with entity shapes and pull from a set of

44

indicator shape images. Again, we extract and transform the indicators

as needed for the given spline style. We also rotate these indicators to

follow the slope of the spline near the end point and place that

transformed indicator onto the end of the spline.

Figure 4.6: Histogram showing the distribution of pathway image

dimensions.

4.2.6 Parameter Configuration

The above methods detail how to generate a new relationship,

but we can control many of the parameters for this process to ensure

that each one is sufficiently unique. For each label, we can control the

font color, style, size, and thickness. For each textbox, we can control

the textbox margin, background color, textbox shape, and border

thickness. For each spline, we can control the indicator placement,

45

type, length, width, color, and thickness. We dynamically change these

parameters during generation. This enables us to generate a more

robust dataset that mimics the wide variety of relationships that are

seen in the real data. For instance, we use the image dimension

distribution from real pathways (Figure 4.6) to set the bounds for our

templates.

4.3 Experimental Setting

4.3.1 Model

For our relationship localization experiments, we again evaluated

our method on the widely used RetinaNet [23] architecture with a

ResNet-50 [24] backbone pre-trained on the ImageNet [64] dataset.

In all of our experiments, we finetuned this model for 50 epochs with a

learning rate of 0.01. We are limited to 1 image per batch due to

memory constraints. For loss, we used a combination of the sigmoid

focal loss [24] for classification (for imbalanced class distributions) and

dense box regression for localization.

46

Figure 4.7: Synthetic samples with annotation. (a) shows the indicator

head annotations used in Experiments 4.4.1 & 4.4.2. (b) shows the

indicator body annotations used in Experiment 4.4.3.

4.3.2 Data

For the base augmented dataset, we use the same dataset

described in Chapter 3. This dataset uses salt & pepper, color correction,

and random noise to generate 4,000 training images. We treated

training with the augmented data alone as our benchmark. For the

synthetic data, we generated three sets of increasing size with 1,000,

3,000, and 6,000 images (Figure 4.7a as an example). We then looked

at how different amounts of synthetic data coupled with the augmented

dataset can improve the generalization of our model. We evaluated with

new 45 images collected from PubMed as our validation set and report

the mean-average-precision (mAP) over the three classes: inhibit

indicators, activate indicators, and gene text. The mAP measurement

captures how well all objects are detected and classified. Results

 a) b)

47

displayed in the tables are averages and standard deviations over three

runs.

4.4 Results

4.4.1 Synthetic Data for Mixed-Batches

Table 4.1: Testing mAP for increasing amounts of synthetic data used.

Training Data Aug Aug + 1k Syn Aug + 3k Syn Aug + 6k Syn

mAP 26.9 +/- 2.9 26.5 +/- 0.4 28.8 +/ - 2.4 29.1 +/ - 2.1

In this set of experiments, we look at how our method can affect

the generalization of the model (shown in Table 4.1). With the 4000

augmented samples as our baseline, we see how increasing the amount

of synthetic data used in mixed batches affects validation. We find that

our method used in conjunction with the augmented data improves the

generalization of RetinaNet. This is likely because we can introduce

unique relationships/features that simple augmentations cannot. This

notion is supported by the fact that increasing the amount of synthetic

data generated by our method continues to improve the performance of

the model.

48

4.4.2 When to Use Synthetic Data

Figure 4.8: Comparing combinations of real and synthetic data at

different stages of training.

Following the improvement shown by leveraging synthetic data in

mixed batches, we also sought to understand how different

combinations of real and synthetic data affect training. To that end, we

first measured the performance of the augmented data and different

amounts of synthetic data on the independent set of 45 images using

mAP:.50. As seen in Figure 4.8, increasing the amount of synthetic data,

as expected, showed improvement in generalization from 3k at 30.2 to

20k at 32.4 mAP. However, both were unable to fully close the gap to

the augmented data 41.3 mAP. Interestingly, if we first pretrain on the

augmented data with a learning rate of 0.01 and finetune with synthetic

data at 0.005, we also see improvement over augmented training alone

49

at 44.6 mAP. This improvement is even more pronounced if we include

the augmented data in our finetune stage and use mixed batches

(reaching 49.3). We flipped this experiment to pretrain with synthetic

and finetune with mixed batches and can see another boost in

performance (50.7 mAP for 3K synthetic). Although, as previously

validated, the augmented and synthetic data seem to capture different

features and when used in combination improve over either standalone

performance. In the case that we trained with mixed batches from the

start (our setting from experiment 1), we reached 57.2 and 57.4 mAP

for 20k and 3k synthetic samples. However, our best setting came from

pretraining on synthetic and finetuning on real data reaching 62.1 mAP.

4.4.3 Generalizing to New Tasks

Table 4.2: Testing mAP for increasing amounts of synthetic data used

from each method, starting with the base augmented dataset.

Training

Data

Syn Aug 10k Syn +

Aug

10k Syn -> Aug

mAP:.50 29.1 +/- 2.8 52.9 +/- 1.8 63.3 +/- 3.0 66.3 +/- 3.9

For our third experiment, we look to test how well our up-

sampling approach improves generalization for additional and more

complex classes. To that end, we tried to localize the entire

50

relationship indicator bodies and specify two additional gene-gene

relationship markers (indirect activate and indirect inhibit). These

classes are differentiated from their bases with dashed bodies as seen

in Fig 4.7b.

 We annotated the same 250 real diagrams used for the

relationship heads, but instead augmented their bodies to 3000

samples. As shown in Table 4.2, training with mixed batches again

shows considerable improvement over either alone. We also leveraged

the insights from experiment 2 and we pretrained on 10,000 synthetic

samples with annotated bodies and finetune on the augmented real

samples. This approach led to a 25% improvement over the model

that was just trained with augmented samples.

Figure 4.9: An example of a synthetic cluster sample with annotation.

51

Table 4.3: Testing mAP for RetinaNet trained on Synthetic Clusters.

Dataset # Genes # Clusters mAP:50 mAR:50

Real Testing 616 64 49.3 79

Syn Validation 7259 2303 83.4 92.7

To further test how well our method can generalize to new target

classes, I extend training to a different type of identifier. In these

experiments, I target localizing clusters. These clusters are identifiable

by proximity between entities instead of by any specific shape. For this

experiment, I generated 12,000 samples using the previously

described methodology (Figure 4.9), where 2000 are held out for

validation. A small manually annotated set of 25 images is also used

for testing on real data. Following the previous experiments, I trained

for 50 epochs and saved the checkpoint with the best validation

performance. Looking at the validation performance from Table 4.3,

one can see that synthetic clusters are learnable training signals for

the model. This generalization extends to real data as well and reaches

decent average recall and average precision on our testing set. This

further validates our method’s generalizability to new and more

complex target classes.

52

4.5 Introducing Noise

Following the success of jointly training with synthetic data, we

looked to see if we could improve upon the baseline performance of

the models trained on solely synthetic data. To that end, I

experimented with incorporating different amounts and combinations

of structured and unstructured noise during generation. My motivation

was that many real pathway diagrams contained artifacts and

background geometries that were not robustly represented in the

synthetic data. Additionally, learning to become noise agnostic can

promote focus on underlying target signals and make our model be

more context aware. Fortunately, measuring noise is a previously

studied subject across signal and image processing. For my

experiments, I used the average pixel difference (4.1) to measure

noise, since the conventional signal-to-noise ratio measurement

assumes uniformity from the noise distribution. I also recorded the

average precision and recall for each noise-type.

(4.1)

53

4.5.1 Structured Noise

Figure 4.10 Structured noise examples for lines (a), arches (b), and

shapes (c).

 a) b) c)

54

Table 4.4. Testing performance of purely synthetically trained models

using different types of structured noise.

mAP:50 mAR:50 SNR

Baseline 29.4 75.7 -

Lines (0-10) 38.9 85.6 0.002 +/- 0.001

Lines (0-20) 43.7 82.6 0.004 +/- 0.003

Lines (0-40) 38 83 0.008 +/- 0.005

Arches (0-10) 44.8 78.5 0.002 +/- 0.002

Arches (0-20) 45.8 83.5 0.005 +/- 0.003

Arches (0-40) 46.1 80.8 0.01 +/- 0.08

Shapes (0-10) 33.6 69.5 0.007 +/- 0.006

Shapes (0-20) 42.9 69.7 0.015 +/- 0.01

Shapes (0-40) 31.1 67.2 0.03 +/- 0.02

55

Figure 4.11: Testing performance of synthetically trained models with

different types of structured noise (lines, arches, and shapes).

First, I experimented with different types of structured noise. To

do this, I introduced varying amounts of lines, arches, and shapes

randomly in the generated synthetic images (Figure 4.10). Specifically,

I incorporated 0 to 10, 20, and 40 artifacts for each image. To place

the lines and arches, I random selected endpoints on the images and

connected them. For the shapes, I placed them using the same region

selection procedure outlined in section 4.2. As seen in Figure 4.11 and

Table 4.4, I found that increasing the number of artifacts and relative

noise levels increased the mean average precision for all structured

noise types up to a certain degree. However, at 40 maximum artifacts,

the performance began to degrade. We can also see that increasing

56

the number of artifacts also increased the relative amount of noise as

intended. This highlights the importance of targeted structural noise

being represented in the synthetic samples.

4.5.2 Unstructured Noise

Figure 4.12: Unstructured noise examples for gaussian noise (a) vs.

salt and pepper noise (b).

Table 4.5: Testing performance of purely synthetically trained models

using different types of unstructured noise.

mAP:50 mAR:50 SNR

Baseline 29.4 75.7 -

Gaussian (0-150) 28.4 77.7 0.026 +/- 0.008

Gaussian (0-300) 34.7 79.8 0.036 +/- 0.013

S&P (0.004) 31.7 65.6 0.006 +/- 0

S&P (0.008) 35.3 70.3 0.012 +/- 0

 a) b)

57

Complimentary, I also looked at how incorporating traditional

unstructured noise could affect generalization. For these experiments,

I included varying amounts of gaussian noise as a 0-150 and 0-300

pixel value change per pixel (Figure 4.12a). For salt and pepper, I set

salt and pepper’s base probabilities as 0.004 and 0.008 (Figure 4.12b).

In Table 4.5 I observed that introducing lots of gaussian noise

improved over the baseline mean average precision and mean average

recall. Adding salt and pepper improved precision, but surprisingly hurt

recall compared to the baseline. This may be because too much

occlusion over the target signals.

58

4.5.3 Mixing Noise

Table 4.6: Testing performance of purely synthetically trained models

using mixtures of structured and unstructured noise.

mAP:50 mAR:50 SNR

Baseline 29.4 75.7

Lines (0-20) 43.7 82.6 0.004 +/- 0.003

Lines (0-20) + Gauss (0-300) 45.2 81.2 0.04 +/- 0.01

Arches (0-20) 45.8 83.5 0.01 +/- 0.003

Arches (0-20) + Gauss (0-300) 46.7 80.1 0.04 +/- 0.01

Shapes (0-20) 42.9 69.7 0.02 +/- 0.01

Shapes (0-20) + Gauss (0-300) 35.3 67.3 0.05 +/- 0.02

Finally, we looked at mixing noise modalities. We combine the 0

to 20 artifacts from structured noise and gaussian noise for every

sample. From Table 4.6, we find that mixing the two reduces recall

slightly across the board but does boost precision for all cases except

the shapes. Mixing the shapes and gaussian noise may introduce too

much noise for the model to discern the target signal.

59

4.5.4 How Much Noise?

Figure 4.13: Bar-plot showing the effect of halving the amount of

different noises in training samples

With a better understanding of the effect of integrating noise

with every image, we also looked at the effect of applying this noise on

every other image. To test this, I set the probability of including a

given type of noise to be 0.5 and reran our experiments for random

lines, gaussian noise, and using both. I found a consistent fall in

performance by reducing the number of samples with noise (Figure

4.13). Gaussian noise even falls below the baseline. This is likely

because only including the gaussian noise in half of the samples does

not promote the same noise agnostic behavior that helps the model

generalize.

60

4.6 Summary

This chapter introduced an up-sampling method for object

detection on pathway figures that is based on a set of rules and

biological domain knowledge. Such biology-inspired data augmentation

is a better alternative for up sampling pathway diagrams, since the

relationships in these figures are highly diverse and traditional

methods for positional or color modification cannot robustly mimic

these features. Additionally, GAN-based approaches may not follow the

underlying biological meanings. As demonstrated, our method’s fully

synthetic approach was able to increase the generalization capacity of

the transfer-learned models on several tasks. We also validate the

value of a targeted up-sampling approach in addition to traditional

augmentation and characterized the importance of noise

representation in our synthetic pathway diagrams. This work motivates

further investigation into the upper bound of this synthetic approach

and its possible extensions.

61

Chapter 5

Active Learning

 In this chapter, I introduce a new contribution in the field of

active learning. By combining my synthetic data generation approach

into an active learning schema, I can train with no data pool or

acquisition function. I show how this approach can reduce the training

time of our models without sacrificing generalization.

5.1 Overview

With improved standalone performance, I looked more

confidently look towards applying synthetic data generation in an

active learning setting. This improved generalization was needed, to

ensure that the changes made to input selection would correspond

with improved generalization. We further explore this dynamic in this

chapter. As mentioned previously, how to best leverage data

augmentation in an active learning setting is an open research

question. My contribution in this section is Pool-less Active Learning

(PAL) via synthetic data generation. Previous augmentation methods

do not have the fine-grain control necessary to directly leverage a

62

training sample’s uncertainty to produce new data following that

feedback. As such, all of the methods previously described must

estimate what the model may perform poorly on and sample from a

data pool accordingly. Whereas PAL can directly take information on

what the model is performing bad on to create a sample the model will

likely learn more from. I show in my experiments, PAL can reduce the

number of iterations needed for training.

5.2 Combining Synthetic Data & Active Learning

As I mentioned, there are no clear answers for how to best

combine active learning and data augmentation. Combining active

learning with synthetic data is equally underexplored. As mentioned,

most previous methods utilize a large pool of unlabeled data to draw

from. However, if we have the ability to generate each batch with

whichever classes we need, then we don’t really need a data pool.

Instead, to balance uncertainty and diversity sampling, we could set

class probabilities for how often each class should occur as {p1,p2…,pn}

and generate synthetic samples following these probabilities, such that

class n has pn probability of being represented in our sample. Then, the

active learning formulation just reduces to finding how to best update

these class probabilities during training. This is our Pool-less Active

Learning (PAL) training schema.

63

 To update these class probabilities, we need to consider how the

model should learn from data. There are two clear options to consider.

The first recommends that a model should see all of the classes it was

bad at regardless of what the target class was. The second idea says

that if the class prediction for a bounding box is bad, then the model

should just see that box’s target class more often.

Figure 5.1: PAL 1 implementation for obtaining updated class

probabilities from classification losses.

 We can implement the first way (PAL 1) as follows (Figure 5.1).

From the binary cross entropy losses from all bounding boxes, we first

sum across all of the samples. Then, we divide by the total number of

boxes and just normalize this value between 0-1 to get our seed

probabilities for the next batch. This approach encourages more

discrimination between classes and includes uncertainty from

background regions. Unfortunately, this approach also has some

drawbacks. If a class doesn’t occur frequently by chance, it’s

probability could be reinforced to be low and almost never show up to

be learned from.

64

Figure 5.2: PAL 2 implementation for obtaining updated class

probabilities from classification losses.

 The second way (PAL 2) would be implemented as follows

(Figure 5.2). From the binary cross entropy losses from all bounding

boxes, we sum across each sample to get the classification loss for all

of the samples. Then, we add all of those losses together by target

class and scale the sums by how many target boxes there were

actually for each class. For example, if 45 of the boxes were inhibit,

then the inhibit loss would be divided by 45. We normalize scaled

losses between 0-1 to give our seed probabilities for the next batch.

However, this approach has several problems as well. Just training on

the target class more frequently, may not robustly help discrimination

between other classes. Additionally, this approach ignores the loss

from background boxes.

65

Figure 5.3: PAL Mix design which combines methods 1 & 2 for

obtaining updated class probabilities from classification losses.

 To balance discrimination between classes and promote diversity

sampling, we also experiment with combining methods 1 and 2 into

PAL Mix. From the binary cross entropy losses from all bounding

boxes, we can sum across all samples (similar to method 2). But

instead of scaling by the box count, we scale by the class count

(similar to method 1) and then normalize between 0 and 1. Figure 5.3

shows an overview of this process. Ideally, this approach could

balance the issues of both while still maintaining their benefits.

5.3 Experiments

5.3.1 Validating PAL

For my first experiment, I want to validate Pool-less Active

Learning as an active learning schema. To test this, I compare the

testing performance of RetinaNets trained using PAL with standard

training and a conventional form of active learning using lowest-

confidence predictions. For each training setting, I trained 10

66

RetinaNet models from ImageNet backbone weights. The PAL models

were trained for 15,000 iterations where each iteration was trained on

a batch of data that was generated from the classification losses of the

previous iteration as previously described. At the beginning, we set the

default probabilities to be equal. For the standard training, I learned

for the same number of iterations, but all of the samples are

generated with an equal probability for each class occurring. Training

via lowest-confidence active learning is different. To follow standard

convention, I first generated a large synthetic data pool of 50,000

images to pull from. I then initially randomly sampled 1,000 of these

images as the initial training set. Next, I trained on this set for 10

epochs and evaluated on the held-out data pool at the end to extract

the samples with the least-confident predictions. I added the 1,000

samples with the least confident predictions to the training set and

trained a new model from scratch. Then, I repeated this training and

sampling cycle until the training set had 15,000 images. Finally, as a

fair comparison to the other two methods, I trained a new model from

scratch using this dataset for one epoch. I repeated all of these

experiments 10 times to obtain a more accurate measure of their

performance in relation to one another and reported the mean and

standard deviation of their performances on the testing set of 45

images used in chapter 4.

67

Table 5.1: Testing Performance of PAL trained models in terms of

precision, recall, and average number of iterations to model

convergence.

 Method
mAP mAR Avg. Iterations

Standard Training 42.7 +/- 1.3 81.7 +/- 5.3 9860 +/- 1564

PAL 1 0.3 +/- 0.4 0 8575 +/- 1233

PAL 2 41.7 +/- 1.2 84.5 +/- 1.4 8580 +/- 1802

PAL Mix 41.8 +/- 1.6 83.5 +/- 3.0 8900 +/- 1790

Least Confidence 48 +/- 1.3 74.2 +/- 2.6 9000 +/- 1446

From Table 5.1, we can see that PAL 2 achieved similar testing

performance to standard training in terms of mAP and mAR. In fact,

PAL 2 was able to achieve even slightly higher recall. Very notably,

PAL 2 was also able to reduce the total number of training iterations

required to reach this generalization by ~13% compared to standard

training. Meanwhile, least confidence active learning was able to

achieve the highest precision, but its recall suffered as a result.

Notably, least confidence active learning also required much longer to

train compared to standard training and PAL. This was because

traditional active learning requires multiple cycles of training to

gradually build up a diverse dataset. In this way, one can see that PAL

68

offers a more balanced approach to active learning in terms of recall,

precision, and total runtime.

Figure 5.4: Visualization of class probabilities for 300 iterations during

PAL 1 training.

 From Table 5.1, we also see that PAL 1 had the worst

performance by far. When investigating the cause, I observed in

Figure 5.4 that the class probabilities behaved similarly to what was

hypothesized for this method. There were extended intervals during

training where one class dominated the seed probability distribution.

This led to periods when other classes were not likely to appear in

training at all. For our task, this long-term mode switching during

training seemed to hurt generalization.

69

Figure 5.5: Visualization of class probabilities for 300 iterations during

PAL 2 training.

Figure 5.6: Visualization of class probabilities for 300 iterations during

PAL Mix training.

70

Despite the disadvantages of PAL 1, combining its formulation

with PAL 2 in PAL Mix seemed to stabilize its performance. This

validates our hypothesis that we could combine both methods to

leverage the benefits from each while mitigating their disadvantages.

Surprisingly, PAL 2’s formulation for putting more emphasis on just the

target class did not hurt its performance. This may partially be

because we are using a mixed diversity and uncertainty sampling

approach. That is to say, even if we put more emphasis on one class

over another as in PAL 2, the class distributions were not skewed

enough to prevent other classes from appearing. As observed in Figure

5.5, the class distributions for 300 iterations during training are more

intertwined. Even if one class was dominating for several iterations,

the bottom floor for all other classes was not pushed all the way to

zero as in Figure 5.4. This may allow us to learn on specific classes in

a more targeted fashion, without completely sacrificing our sampling

diversity. In PAL Mix, the floor and ceiling are compressed for the class

probabilities (Figure 5.6), which may not allow targeted class specific

training to the same extent. However, more experiments would be

necessary to fully explore these differences in training dynamics and

their benefits.

71

5.3.2 Extending PAL with Momentum

Figure 5.7: Plot of the ‘activation’ class probability for 300 iterations

during PAL Mix training.

After validating the PAL training schema, I also looked to further

extend our schema. To do that, I investigated if we should take the

updated probabilities directly or not. As observed in Figure 5.7, taking

the probabilities directly can cause a rapid shift in class probabilities

from iteration to iteration. This may not always be ideal, as it may not

give the model enough time to learn the features from prior loss and

class information. To better understand if this was a beneficial

property, I needed to test mixing previous values’ information and new

information. Fortunately, this is a well explored topic in optimizers [65]

and data fusion [66].

72

To better understand how long a model should learn on a given

distribution, I combined the PAL training schema with a simple

momentum term (5.1,5.2). Specifically, I kept a momentum vector Vt

that maintains previous update information for each class. Vt is

initialized to a zero vector. β is a hyperparameter that decides how

much to listen to previous updates and is fixed between 0 and 1.

Notably, starting with all of the class probabilities to be equal and

using a β of 1.0 reduces to our standard training schema and using a β

of 0.0 reduces to our basic PAL setting. For my experiments, I trained

RetinaNet with PAL Mix in the same fashion as before for 4 classes

(activate, inhibit, indirect activate, and indirect inhibit), but with

different values for the momentum term. Again, I train 10 models for

each momentum value.

(5.1)

(5.2)

73

Figure 5.8: Plot of the ‘activation’ class probability for 300 iterations

during PAL Mix training with a momentum factor of 0.1.

Figure 5.9: Plot of the ‘activation’ class probability for 300 iterations

during PAL Mix training with a momentum factor of 0.5.

74

Figure 5.10 Plot of the ‘activation’ class probability for 300 iterations

during PAL Mix training with a momentum factor of 0.9.

75

Table 5.2: Testing performance of PAL trained models with momentum

in terms of precision, recall, and average number of iterations to

model convergence.

β mAP mAR

Avg.

Iterations

Standard

Training
1.0 42.7 +/- 1.3 81.7 +/- 5.3 9860 +/- 1564

PAL Mix 0.0 41.8 +/- 1.6 83.5 +/- 3.0 8900 +/- 1790

PAL Mix 0.1 42.1 +/- 1.7 81.2 +/- 1.49 8460 +/- 1111

PAL Mix 0.5 44.0 +/- 2.7 83.5 +/- 2.8 9860 +/- 1383

PAL Mix 0.9 42 +/- 3.7 83.2 +/- 3.3 8620 +/- 2112

 As seen in Figures 5.8, 5.9, and 5.10, incorporating a

momentum term has the intended effect of smoothing out changes in

the probability distribution for a given class. From Table 5.2, one can

also see that a β of 0.5 improves performance over baseline in the

same number of iterations. Additionally, a momentum of 0.1 obtains

almost the same performance as standard training but in even fewer

iterations than PAL Mix or PAL 2 and with less variability in iterations.

A momentum factor of 0.9 showed decent average performance in

recall and precision and number of iterations required for convergence,

76

but also had the most variability. A large momentum factor works well

in gradient descent, since the optimal value (global minima) does not

move during training. However, in our case, the optimal sample to be

generated from iteration to iteration does change constantly. In this

way, having a small momentum allows us to leverage previous

knowledge to some extent while still updating the seed distributions

rapidly.

5.4 Summary

 In this chapter, I explained two schools of thought for learning

from error when incorporating our synthetic data into active learning. I

also demonstrated how to combine these two methods into PAL Mix.

Additionally, I illustrated how PAL 2 and PAL Mix were able to balance

recall, precision, and runtime compared to traditional training and

conventional active learning. I further showed how to extend PAL by

incorporating a momentum term and the benefit that such factor has

to further speed up training or improve generalization.

77

Chapter 6

Future Work & Conclusions

 In this chapter I will review the key contributions of this thesis

and explore several avenues for further research.

6.1 Future Work

6.1.1 Gene-Extraction

 As our pipeline involves multi-stage processing, each of these

modules can be improved to boost our overall extraction. For our gene

and indicator localization, we plan to unify our head and body

extraction into a single model. We were unable to do this previously

with RetinaNet due to a lack of data. With access to more data, we

now also want to experiment with other object detection models like

DETR [27] and extend to more relationship types. Additionally, we

plan to replace the google OCR module with an open-source OCR

system, since we have collaborators in China who do not have access

to this google service. We also want to improve upon our relationship

pairing strategy, since our current method struggles to correctly

identify the correct relationships when clusters are involved and those

78

with very small indicators. To add more confidence in our extracted

relationships, we also want to score each of the interactions we

extract. We could do this scoring by assigning weights to the

conference or publication sources we pull from or by leveraging text

information to cross-validate our image triplets with text triplets.

6.1.2 Synthetic Data

 We also have several ideas to further improve our synthetic

data. While we can mimic the relationships from pathway figures, we

also want them to be placed in more realistic settings. Measuring the

benefits from incorporating basic structured and unstructured noise

indicated some shortcoming in this respect. By introducing more

realistic and diverse contexts for our relationships, we could further

bridge this gap. Additionally, we want to generalize our generative

algorithm so that it can be more easily applied to settings beyond

pathway diagrams and documents.

6.1.3 Active Learning

 There are several directions for further improvements and

validation for our active learning schema as well. We see immediate

applicability of our PAL schema for OCR training, which would help

further help validate our method as well. We also want to robustly test

79

the upper bound of our PAL training schema by looking at training

longer, with different learning rates, and repeating our experiments to

ensure the differences between methods are statistically significant.

Additionally, while the extended mode switching from PAL 1 did not

work well, it would be interesting to explore how short-term mode

switching guided by the loss values could impact training. Such an

approach could be implemented using PAL with an Adam [67] style

update equation rather than a single momentum term. Exploring these

training dynamics would be very important for better understanding

PAL and guide further improvements.

6.2 Conclusions

 The goal of this thesis was to develop new methods for

augmenting biomedical literature curation. To that end, I helped

develop a gene relationship extraction pipeline that leverages natural

language and image processing. While our pipeline was able to extract

gene interactions, the lack of generalizing object detection models

limited our extraction efforts. To improve our object detection

localization and overcome diminishing returns from traditional

augmentations on our pathway figures, I developed a rule-based

generative algorithm for creating new pathway diagrams for training.

This synthetic data generation was able to successfully improve

80

generalization in mixed batch settings with augmented data and

showed strong standalone performance when additional noise was

incorporated. To further explore how to best leverage our ability to

generate synthetic samples, I investigated how to incorporate our

synthetic data into an active learning schema. Our Pool-less Active

Learning (PAL) training framework leverages the classification loss

from a current training batch to generate the next batch of samples for

training. This novel approach demonstrated good balance between

recall, precision, and runtime compared to traditional training and

least confidence active learning.

81

Bibliography

[1] Lu, Ling, et al. "Role of SMAD and non-SMAD signals in the

development of Th17 and regulatory T cells." The Journal of

immunology 184.8 (2010): 4295-4306.

[2] Memon, Jamshed, et al. "Handwritten optical character

recognition (OCR): A comprehensive systematic literature

review (SLR)." IEEE Access 8 (2020): 142642-142668.

[3] Bowen, Glenn A. "Document analysis as a qualitative research

method." Qualitative research journal (2009).

[4] D. Shin, G. Arthur, M. Popescu, D. Korkin, and C. R. Shyu,

"Uncovering influence links in molecular knowledge networks

to streamline personalized medicine," Journal of Biomedical

Informatics, vol. 52, no. E95.A, pp. 394-405, 2014.

[5] I. S. f. Biocuration, "Biocuration: Distilling data into

knowledge," PLoS biology, vol. 16, no. 4, p. e2002846, 2018.

[6] B. M. Kuenzi and T. Ideker, "A census of pathway maps in

cancer systems biology," Nature Reviews Cancer, vol. 20, no.

4, pp. 233-246, 2020.

[7] K. Z. Vardakas, G. Tsopanakis, A. Poulopoulou, and M. E.

Falagas, "An analysis of factors contributing to PubMed's

82

growth," Journal of Informetrics, vol. 9, no. 3, pp. 592-617,

2015.

[8] C. Li, M. Liakata, and D. Rebholzschuhmann, "Biological

network extraction from scientific literature: state of the art

and challenges," Briefings in Bioinformatics, vol. 15, no. 5, pp.

856-877, 2014.

[9] P. D. Karp, "Can we replace curation with information

extraction software?," Database, vol. 2016, 2016.

[10] J. Szostak et al., "Construction of biological networks from

unstructured information based on a semi-automated curation

workflow," Database the Journal of Biological Databases &

Curation, vol. 2015, p. bav057, 2015.

[11] S. Ananiadou, P. Thompson, R. Nawaz, J. Mcnaught, and D. B.

Kell, "Event-based text mining for biology and functional

genomics," Briefings in Functional Genomics, vol. 14, no. 3,

pp. 213-230, 2015.

[12] J. Li et al., "BioCreative V CDR task corpus: a resource for

chemical disease relation extraction," Database the Journal of

Biological Databases & Curation, vol. 2016, p. baw068, 2016.

[13] Z. Ahmed, S. Zeeshan, and T. Dandekar, "Mining biomedical

images towards valuable information retrieval in biomedical

and life sciences," Database, vol. 2016, 2016.

83

[14] D. Kim and H. Yu, "Figure text extraction in biomedical

literature," PloS one, vol. 6, no. 1, p. e15338, 2011.

[15] S. Xu and M. Krauthammer, "Boosting text extraction from

biomedical images using text region detection," in Biomedical

Sciences & Engineering Conference, 2011.

[16] A. Riutta, K. Hanspers, and A. R. Pico, "Identifying Genes in

Published Pathway Figure Images," bioRxiv, p. 379446, 2018.

[17] S. Kozhenkov and M. Baitaluk, "Mining and integration of

pathway diagrams from imaging data," Bioinformatics, vol. 28,

no. 5, pp. 739-742, 2012.

[18] D. W. Fei He, Yulia Innokenteva, Olha Kholod, Dmitriy Shin

and Dong Xu, "Extracting Molecular Entities and Their

Interactions from Pathway Figures Based on Deep Learning,"

Proceedings of ACM Conference on Bioinformatics,

Computational Biology, and Health Informatics (ACM-BCB’19).

Niagara Falls, NY, USA, 2019, doi:

https://doi.org/10.1145/3307339.3342187.

[19] Girshick, Ross, et al. "Rich feature hierarchies for accurate

object detection and semantic segmentation." Proceedings of

the IEEE conference on computer vision and pattern

recognition. 2014.

84

[20] Girshick, Ross. "Fast r-cnn." Proceedings of the IEEE

international conference on computer vision. 2015.

[21] Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object

detection with region proposal networks." Advances in neural

information processing systems 28 (2015).

[22] Lin, Tsung-Yi, et al. "Feature pyramid networks for object

detection." Proceedings of the IEEE conference on computer

vision and pattern recognition. 2017.

[23] Lin, Tsung-Yi, et al. "Focal loss for dense object detection."

Proceedings of the IEEE international conference on computer

vision. 2017.

[24] He, Kaiming, et al. "Deep residual learning for image

recognition." Proceedings of the IEEE conference on computer

vision and pattern recognition. 2016.

[25] Redmon, Joseph, et al. "You only look once: Unified, real-time

object detection." Proceedings of the IEEE conference on

computer vision and pattern recognition. 2016.

[26] Du, Xianzhi, et al. "Spinenet: Learning scale-permuted

backbone for recognition and localization." Proceedings of the

IEEE/CVF conference on computer vision and pattern

recognition. 2020.

85

[27] Carion, Nicolas, et al. "End-to-end object detection with

transformers." European conference on computer vision.

Springer, Cham, 2020.

[28] Bjerrum, Esben Jannik. "SMILES enumeration as data

augmentation for neural network modeling of molecules."

arXiv preprint arXiv:1703.07076 (2017).

[29] Duong, Huu-Thanh, and Vinh Truong Hoang. "Data

Augmentation Based on Color Features for Limited Training

Texture Classification." 2019 4th International Conference on

Information Technology (InCIT). IEEE, 2019.

[30] DeVries, Terrance, and Graham W. Taylor. "Improved

regularization of convolutional neural networks with cutout."

arXiv preprint arXiv:1708.04552 (2017).

[31] Zhang, Hongyi, et al. "mixup: Beyond empirical risk

minimization." arXiv preprint arXiv:1710.09412 (2017).

[32] Yun, Sangdoo, et al. "Cutmix: Regularization strategy to train

strong classifiers with localizable features." Proceedings of the

IEEE/CVF international conference on computer vision. 2019.

[33] Shanthamallu, Uday Shankar, et al. "A brief survey of machine

learning methods and their sensor and IoT applications." 2017

8th International Conference on Information, Intelligence,

Systems & Applications (IISA). IEEE, 2017.

86

[34] Goodfellow, Ian, et al. "Generative adversarial nets."

Advances in neural information processing systems 27 (2014).

[35] Wang, Ting-Chun, et al. "High-resolution image synthesis and

semantic manipulation with conditional gans." Proceedings of

the IEEE conference on computer vision and pattern

recognition. 2018.

[36] Kingma, Diederik P., and Max Welling. "Auto-encoding

variational bayes." arXiv preprint arXiv:1312.6114 (2013).

[37] Jaderberg, Max, Karen Simonyan, and Andrew Zisserman.

"Spatial transformer networks." Advances in neural

information processing systems 28 (2015).

[38] Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. "A

neural algorithm of artistic style." arXiv preprint

arXiv:1508.06576 (2015).

[39] F. Wang, Y. Zhuang, H. Gu and H. Hu, "Automatic Generation

of Synthetic LiDAR Point Clouds for 3-D Data Analysis," in

IEEE Transactions on Instrumentation and Measurement, vol.

68, no. 7, pp. 2671-2673, July 2019, doi:

10.1109/TIM.2019.2906416.

[40] Griffiths, David, and Jan Boehm. "SynthCity: A large scale

synthetic point cloud." arXiv preprint arXiv:1907.04758

(2019).

87

[41] Lewis, David D., and William A. Gale. "A sequential algorithm

for training text classifiers." SIGIR’94. Springer, London,

1994.

[42] Lewis, David D., and Jason Catlett. "Heterogeneous

uncertainty sampling for supervised learning." Machine

learning proceedings 1994. Morgan Kaufmann, 1994. 148-

156.

[43] Scheffer, Tobias, Christian Decomain, and Stefan Wrobel.

"Active hidden markov models for information extraction."

International Symposium on Intelligent Data Analysis.

Springer, Berlin, Heidelberg, 2001.

[44] Shannon, Claude Elwood. "A mathematical theory of

communication." The Bell system technical journal 27.3

(1948): 379-423.

[45] Freund, Yoav, et al. "Selective sampling using the query by

committee algorithm." Machine learning 28.2 (1997): 133-

168.

[46] Pop, Remus, and Patric Fulop. "Deep ensemble bayesian

active learning: Addressing the mode collapse issue in monte

carlo dropout via ensembles." arXiv preprint arXiv:1811.03897

(2018).

88

[47] Houlsby, Neil, et al. "Bayesian active learning for classification

and preference learning." arXiv preprint arXiv:1112.5745

(2011).

[48] Yoo, Donggeun, and In So Kweon. "Learning loss for active

learning." Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition. 2019.

[49] Kirsch, Andreas, Joost Van Amersfoort, and Yarin Gal.

"Batchbald: Efficient and diverse batch acquisition for deep

bayesian active learning." Advances in neural information

processing systems 32 (2019).

[50] Zhdanov, Fedor. "Diverse mini-batch active learning." arXiv

preprint arXiv:1901.05954 (2019).

[51] Ash, Jordan T., et al. "Deep batch active learning by diverse,

uncertain gradient lower bounds." arXiv preprint

arXiv:1906.03671 (2019).

[52] Settles, Burr. "Active learning literature survey." (2009).

[53] Ren, Pengzhen, et al. "A survey of deep active learning." ACM

Computing Surveys (CSUR) 54.9 (2021): 1-40.

[54] Nielsen, Christopher, and Michal M. Okoniewski. "GAN Data

Augmentation Through Active Learning Inspired Sample

Acquisition." CVPR Workshops. 2019.

89

[55] Hong, SeulGi, et al. "Deep Active Learning with Augmentation-

based Consistency Estimation." arXiv preprint

arXiv:2011.02666 (2020).

[56] Tran, Toan, et al. "Bayesian generative active deep learning."

International Conference on Machine Learning. PMLR, 2019.

[57] Kim, Yoon-Yeong, et al. "LADA: Look-Ahead Data Acquisition

via Augmentation for Deep Active Learning." Advances in

Neural Information Processing Systems 34 (2021).

[58] Agarap, Abien Fred. "Deep learning using rectified linear units

(relu)." arXiv preprint arXiv:1803.08375 (2018).

[59] C. H. Wei, A. Alexis, L. Robert, and Z. Lu, "PubTator central:

automated concept annotation for biomedical full text

articles," Nuclc Acids Research, no. W1, p. W1, 2019.

[60] V. I. Levenshtein, "Binary codes capable of correcting

deletions, insertions and reversals," Dokl. Akad. Nauk SSSR,

1965, 1966.

[61] J. Shi, "Good Features to Track," in Proc. of IEEE Conference

on Computer Vision and Pattern Recognition, 1994, 1994.

[62] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman,

"LabelMe: a database and web-based tool for image

annotation," International journal of computer vision, vol. 77,

no. 1-3, pp. 157-173, 2008.

90

[63] Cooley, James W., and John W. Tukey. "An algorithm for the

machine calculation of complex Fourier series." Mathematics of

computation 19.90 (1965): 297-301.

[64] Deng, Jia, et al. "Imagenet: A large-scale hierarchical image

database." 2009 IEEE conference on computer vision and

pattern recognition. Ieee, 2009.

[65] Ruder, Sebastian. "An overview of gradient descent

optimization algorithms." arXiv preprint arXiv:1609.04747

(2016).

[66] Bleiholder, Jens, and Felix Naumann. "Data fusion." ACM

computing surveys (CSUR) 41.1 (2009): 1-41.

[67] Kingma, Diederik P., and Jimmy Ba. "Adam: A method for

stochastic optimization." arXiv preprint arXiv:1412.6980

(2014).

