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ABSTRACT 

The corpus of biomedical literature is growing rapidly as many 

papers are recorded in PubMed every day. These papers often contain 

high-quality biological pathways in their figures/text, which are great 

resources for studying biological mechanisms and precision medicine. 

However, it can take a long time for many of these works to be put into 

practical use as each paper’s contributions need to be curated by 

experts. This, often lengthy, process causes professional practice to lag 

behind research. To speed up this process, I helped develop a pipeline 

that integrates NLP and object detection processing to extract gene 

relationships reported in articles’ figures and text. This pipeline was able 

to extract such relationships with high precision and recall on a small, 

annotated set. However, extending this pipeline for improved 

generalization and new settings was limited by the number of high-

quality annotations available. Such labeled data is very time consuming 

to collect and traditional augmentations were observed to generate 

diminishing returns. To address this shortcoming, I developed an 

approach for generating purely synthetic data for object detection on 

biological pathway diagrams based on a set of rules and domain 

knowledge. Our method iteratively generates each pathway relationship 

uniquely and is demonstrated to improve the generalization of our 

object detection model significantly across a variety of settings. 
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Additionally, with the capability to generate unique and informative 

samples, we integrated our synthetic generation methodology into an 

active learning setting. While traditional active learning relies on a pool 

of unlabeled data to draw from with an acquisition function, our method 

is pool-less and does not require any acquisition function. Instead, we 

generate each batch of data uniquely based on the training losses from 

the previous batch. Pool-less Active Learning (PAL) via synthetic data 

generation is demonstrated to reduce the number of iterations required 

for model convergence during training on pathway figures. 
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Chapter 1 

 

Introduction 

In this chapter I will discuss the motivations for my work, the 

significance of my research, the specific issues I addressed, and how I 

went about solving those problems. I will also outline the organization 

for the rest of this thesis. 

1.1 Motivations 

The corpus of biomedical literature is growing rapidly as many 

papers are recorded in PubMed every day. These papers often contain 

high-quality biological pathways in their figures/text, which are great 

resources for studying biological functions and precision medicine 

(Figure 1.1). However, it can take a long time for many of these works 

to be put into practical use as each paper’s contributions need to be 

curated by experts. This, often lengthy, process causes professional 

practice to lag behind research. To speed up this process, I helped 

develop a pipeline that integrates natural-language-processing (NLP) 

and object detection to extract gene relationships reported in articles’ 

figures and text. This pipeline was able to extract such relationships 
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with high precision and recall on a small, annotated set. In addition to  

speeding up curation efforts, such extraction has the potential to 

enable novel knowledge discovery by mapping previously overlooked 

gene- and drug-pathway interactions across the literature. Being able 

to extract such new and long-range connections has wide applicability 

to precision medicine practice as well.  

Figure 1.1: Example of a signaling pathway pulled from [1] 

detailing the role of TGF-β in iTreg and Th17 cell development. Text 

entities in these figures are genes or other biological components. 

Arrows represent gene activations and t-bars indicate gene 

inhibitions.  
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However, extending this pipeline to new settings was limited by 

the number of high-quality annotations available. This is a frequently 

occurring problem in the biomedical field and other data hungry areas 

where high quality labeling is time consuming to collect and traditional 

augmentations generate diminishing returns. To address this 

shortcoming, I helped develop an approach for generating purely 

synthetic data for object detection on biological pathway diagrams 

based on a set of rules and domain knowledge. This method iteratively 

generates each pathway relationship uniquely and is demonstrated to 

improve the generalization of our object detection model significantly 

across a variety of settings. Such a generative method could have 

applications in other document, figure, and diagram analysis tasks as 

well ( such as OCR [2] or Document-Analysis [3]) where labeling often 

bottlenecks development. 

With the capability to generate unique and informative samples, 

we further integrated our synthetic generation methodology into an 

active learning setting. We did this to get the most value out of each 

training iteration. While traditional active learning relies on a pool of 

unlabeled data to draw from with an acquisition function, our method 

utilizes no data pool and does not require any acquisition function. 

Instead, we generate each batch of data uniquely based on the training 

losses from the previous batch. This new approach for active learning 
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marks a step towards further integrating data augmentation with active 

learning. 

 

1.2    Problem Statement 

The goal of my thesis is to answer the following questions 

relating to biological pathway extraction: 

1. How to extract relationships from pathway figures? 

2. How to integrate different output sources to filter gene 

relationships? 

3. How to up-sample our figure dataset with unique training 

signals? 

4. What are the limits to our up-sampling approach? 

5. How to effectively leverage rule-based up-sampling during 

training? 

 

1.3    Contributions 

The main contributions of this thesis can be summarized as 

follows: 

1. A unified pipeline for extracting gene interaction triplets from 

biomedical articles that combines image and natural language 

processing. 
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2. A novel rule-based algorithm for generating annotated pathway 

diagrams. 

3. Characterizing good practice for training with synthetic and real 

data. 

4. Measuring the impact of structured and unstructured noise for 

synthetic pathways. 

5. Pool-less Active Learning (PAL) via synthetic data generation. 

 

1.4    Thesis Organization 

This thesis is organized into six Chapters. Chapter 1 introduces 

my research problem and the motivations for my work. Chapter 2 

outlines a detailed literature review of works that I took inspiration 

from. Chapter 3 highlights the development of our unified pipeline for 

gene relationship extraction. In Chapter 4, I introduce my novel rule-

based method for up-sampling annotated diagrams with a purely 

synthetic approach. Chapter 5 investigates how to best leverage our 

ability to generate fully synthetic samples that generalize, by 

integrating our augmentation method into an active learning 

framework. Chapter 6 reflects on my work and suggests future 

directions for further investigation. 
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Chapter 2 

 

Literature Review 

 In this chapter, I will review several fields related to my work 

and other methods that shaped my development. Specifically, this 

literature review will discuss related works in the areas of gene-gene 

relationship extraction, object detection, data augmentation, and 

active learning. 

 

2.1 Gene Relationship Extraction 

As previously mentioned, biomedical literature publishes 

biological pathways at a rapid pace. These pathways, presented in text 

and image formats, are great resources for studying biological 

functions and precision medicine practice. For example, the most up-

to-date knowledge about newly discovered non-canonical disease 

pathways and uncommon drug actions is vital in studying patient-

specific biomolecular phenotypes for cancer treatment [4]. However, 

to effectively use large scale pathway information, new pathways from 

literature need to be carefully curated, reconciled, and transformed 

into a computable form [5]. Manual curation and text mining are the 

two main approaches employed for this task. Kuenzi et al. manually 
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curated 2,070 cancer pathways to identify previously underappreciated 

functions and discover new genes to known cancer pathways [6]. 

However, PubMed’s library continues to grow by more than a million 

articles per year [7], which is unmanageable by manual curation 

alone. While there are advances in text mining approaches for 

extracting simple biological interactions, such as protein-protein 

interactions and biological events that include two or three such 

interactions, there are no reliable methods to extract larger, more 

complex disease pathways, such as signaling or drug action pathways 

[8]. One challenge remaining is that references between biological 

entities can be spread far across the text and cannot be easily 

reconciled [9, 10]. For instance, information extraction tools for 

biological events had error rates from 23% to 58% [11]. Additionally, 

the error rates for chemical-induced disease relation extraction 

methods ranged between 43% to 68% [12]. Coreferences and 

anaphoric expressions are also still challenging for text mining tools 

alone [8].  

To address this challenge, my team observed that nearly all 

articles on newly discovered pathways contain figures that summarize 

their findings. To best leverage these figures, we proposed an 

integrated bio-curation pipeline for mining genes and their interactions 

from pathways by jointly utilizing an article’s figures and text. We 
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hypothesized that the extraction of genes and their interactions from 

pathway figures and text will be more accurate and reliable than 

extraction from either alone.  

Information extraction from images is a new direction in 

biological curation. Recently, only a few studies have been conducted 

to extract genes from publication figures using optical-character-

recognition (OCR). Different extensions and improvements for such 

OCR have been applied for image segmentation, localization, and 

recognition tasks from biological image text in [13-15]. Additionally, in 

a large-scale analysis of pathway figures [16], gene names from 

images of were retrieved but the interactions between them were 

ignored. Even though extraction of biological relationships from images 

was previously described [17], there were no details for reproducibility 

or accessible online resources. Our early study [18] demonstrated that 

it was feasible to retrieve gene names and gene relationships from 

pathway figures.  

 

2.2 Object Detection 

Looking towards object detection, much of the progress in this 

field from the past decade can be attributed to improved architecture 

design. RCNN [19] was the first network to apply high-capacity 

convolutional neural networks to bottom-up region proposals in order 
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to localize and segment objects from images. They did this by 

generating region proposals from an image, extracting a fixed length 

feature vector from each region, passing that vector through a 

convolutional neural network feature extractor, and using a set of class 

specific linear support vector machines to classify each proposal. Fast-

RCNN [20] took this process one step further and used the entire 

image as input to the convolutional neural network. They did this to 

share the single feature map across proposals to save on 

computational overhead. To predict for any given proposal, they then 

used region of interest pooling to extract a fixed-length feature vector. 

This feature vector was then fed through several fully connected layers 

that branch off to localize an object and predict its class. Faster R-CNN 

[21] further unified this design by using the features generated from 

the input image to also calculate the proposals with a region proposal 

network. They did this because generating good object proposals was 

often a computational bottleneck and a trade-off between accuracy 

and good performance. Feature Pyramid Networks [22] were then 

designed to address poor recognition of objects at different scales. 

They use feature pyramids built from image pyramids to capture 

different sized objects by leveraging top-down and lateral skip 

connections. Predictions are then made at each level of the pyramid. 

RetinaNet [23] introduced another single-stage detector to leverage 
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robust feature extraction with ResNets [24], Feature Pyramid 

Networks, and fully convolutional networks for regression and 

classification. However, the main contribution of this paper [23] was 

their introduction of the focal loss, a modified cross entropy function 

designed to address imbalance between classes and hard training 

samples. Additionally, many more object detection architectures have 

been proposed with a wide range complexity: YOLO [25], SpineNet 

[26], DETR [27], etc. 

 

2.3 Data Augmentation 

Training such large object detection models typically requires 

large amounts of data as well. However, in many areas high quality 

ground truth labels can be expensive to collect. As such, many 

practitioners and researchers alike often turn towards data 

augmentation methods to increase their training pool size. Traditional 

data augmentations, especially for images, usually focus on positional 

modifications such as random flips, scaling, cropping, rotations, 

translations, etc. [28]. This kind of augmentation is helpful for making 

models capture similar signals, but from different viewpoints. Other 

types of augmentation will focus on changing color characteristics such 

as lighting, contrast, hue, and saturation [29]. This class of 

augmentation is helpful to make models more color agnostic and focus 
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on shape features. Involved modifications have also been shown to be 

helpful such as kernel filters, random erasing (CutOut [30]), injecting 

random noise, and mixing samples (MixUp [31] and CutMix [32]). 

These methods can promote a model to use more contextual 

information and leverage larger-scale features. An overview of these 

methods is provided in [33]. The unifying goal of these methods is to 

create new training samples by manipulating pre-collected data. 

However, it has been observed that this can lead to diminishing 

returns as the same or similar signals are repeatedly seen during 

training. 

Another approach to up-sampling does not just modify existing 

images but instead creates entirely new ones. This approach often 

leverages deep learning methods such as conditional GANs [34,35], 

Variational Autoencoders [36], Spatial Transform Networks [37] or 

neural style transfer [38]. Synthetic data generation has also been 

previously applied for generating 3D point clouds for training in 

[39,40]. Our work is complementary to other synthetic data 

generation methods and targets the object detection task specifically 

based on a set of rules. Our method is less expensive and more 

biology-aware than related deep learning approaches. 
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2.4 Active Learning 

With an abundance of unlabeled samples in big data analysis, 

active learning has become a growing area of research in recent years. 

Active learning not only focuses on learning from data, but also 

learning what data to learn from. Active learning primarily focuses on 

prioritizing learning from data that will have the most impact during 

training. This is done by first labeling a very small subset of a large 

dataset manually and then training on that subset. The goal of this 

initial training is to better understand which areas of the parameter 

space need to be labeled. After training, the model is used to predict 

each un-labelled sample and a priority score is calculated for it. Based 

on this priority score, a new subset is selected for labeling and is 

added to the growing training set for the next round of training. This 

process is repeated several times to continuously update the training 

set with the goal of improving generalization without having to 

annotate the entire dataset. This technique can be very useful when 

you have large amounts of unlabeled data to train with. However, 

selecting the best priority score metric is often problem specific. A 

least confidence priority score takes the highest probability for each 

sample’s prediction and sorts samples from smallest to largest 

[41,42]. Samples with the lowest-confidence predictions are selected 

to be trained on. Margin sampling takes into account the difference 
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between the highest predicted probability and the second highest 

probability [43]. The intuition is that we want to effectively 

discriminate between the two most likely classes. Then, to do that, we 

prioritize points that have the hardest time choosing between their top 

two classes. Another option is to use entropy, which is similar to 

margin sampling, but more holistic [44]. Using entropy promotes 

discrimination between all classes by prioritizing points that have 

trouble ruling out many classes and those that are not very confident 

at all. Other approaches include Query by committee [45], Monte Carlo 

Dropout [46], BALD [47], and Learning to predict the loss [48].  

One of the challenges in selecting an acquisition function 

involves balancing uncertainty and diversity sampling. Uncertainty 

sampling aims to use estimates of what the model is uncertain about 

as analogs for what the model would be wrong about. Diversity 

sampling tries to get a balanced training set from samples that are not 

yet annotated. Some other methods try to balance the two [49-51]. 

Overviews of active learning and applications thereof are provided in 

[52,53]. 

Another area of interest combines data augmentation with active 

learning. Intuitively, both are trying to get the most use from each 

sample during training. However, how to best combine the two 

methods is an open research topic. GAN Data Augmentation Through 
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Active Learning Inspired Sample Acquisition [54] used a MNIST trained 

GAN to up-sample the MNIST dataset as their data pool for active 

learning. Deep Active Learning with Augmentation-based Consistency 

Estimation [55] illustrated how CutOut and CutMix augmentation can 

be used as uncertainty measures, how these uncertainty measures can 

be used as priority metrics, and how these measures can be used as 

general regularization terms. Bayesian generative active deep learning 

[56] showed the benefit of augmenting samples selected from the 

acquisition function. Look-Ahead Data Acquisition via Augmentation for 

Deep Active Learning [57] took this approach one step further by 

jointly considering unlabeled samples and their augmentations in the 

acquisition stage. My contributions in active learning are 

complementary to this line of research that combines data 

augmentation with active learning. Specifically, I introduce Pool-less 

Active Learning (PAL) via synthetic data generation that does not need 

any previously collected data or an acquisition function. 

 

2.5 Literature Review Summary 

 In this chapter, I presented an overview of previous attempts to 

extract biological relationships from text and figures. I also described 

the improvements made to recent object detection methods that I 
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leverage in later chapters. I also outline several drawbacks of many 

traditional data augmentation methods and a new line of research that 

tries to overcome these disadvantages. Additionally, I introduced the 

active learning training procedure and how new methods try to 

incorporate data augmentation with active learning. In the next 

chapter, I will detail the pipeline I developed to extract gene-gene 

relationships. 
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Chapter 3 

 

Gene-Interaction Extraction 

 

 

Figure 3.1: Overview of our gene interaction extraction pipeline. 

 

 In this chapter I outline the motivations for our relationship 

extraction pipeline design, detail our implementation, and report our 

experimental results. 
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3.1 Mixing Modalities 

To visualize biological functions, article diagrams often use 

simple shapes and indicators to make the relationships between 

entities clear. To extract gene names from these figures, one may 

intuitively think to just apply optical character recognition (OCR) to 

extract entity text. However, in practice these results may not always 

be correct due to various artifacts in the images. Fortunately, article 

text offers detailed information to correctly identify entity names. This 

information can then be used to filter out or correct mislabeled entity 

names from figures. While very useful for extracting gene names, it 

remains difficult to precisely extract the relationships between objects 

from the text alone. We hypothesize an integrated approach between 

text and image processing can overcome the limitations each 

extraction method may face alone. 

In this study, we designed a deep learning-based pipeline to 

detect genes and their interactions from pathway figures and utilize 

text information from articles to filter the results. As a preliminary 

attempt in pathway curation, we only focused on extracting genes and 

two key types of gene interactions (activation and inhibition). These 

indicators are usually plotted near textboxes with simple arrows and T-

bar lines. Other types of interactions are explored in the next chapter. 
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To the best of our knowledge, there was no previous work done to 

systematically extract biological mechanisms from figures.  

Figure 3.1 illustrates an overview of our pipeline, which includes 

four main components: (1) two object detection models to locate the 

genes and the indicators defining gene interactions from pathway 

figures; (2) an OCR module to convert text regions into computable 

gene names, (3) a gene name filtering module to only keep valid gene 

names from all results, and (4) a gene-interaction prediction module 

to connect pairs of genes in a recognizable interaction. 

3.2 Object Detection 

For this study, we used the RetinaNet [23] architecture to detect 

all text regions and interaction indicators from the pathway figures 

pulled from articles. RetinaNet was chosen since it can achieve a good 

computational complexity-accuracy trade-off. This model is composed 

of three modules: a backbone network, a FPN (Feature Pyramid 

Network), and detection heads. The architecture of RetinaNet is shown 

in Figure 3.2. 
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Figure 3.2: Over of the RetinaNet-101 architecture. This model has 3 

main modules: a feature extractor backbone, a feature pyramid 

network, and 2 detection heads 
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3.2.1 Backbone Network  

We employed ResNet101 [24] as the backbone network to 

provide rich visual features for following object detection. ResNet 

stacks 1 convolutional layer with 7×7 convolution (Conv) and 33 

residual blocks. Each residual block consists of 3 convolutional layers 

with different kernels (in 1×1, 3×3, and 1×1 sizes) and different 

numbers of filters (64, 128, 256, or 512) to generate multi-scale 

feature maps. All of the generated feature maps are followed by a 

non-linear ReLu activation [58]. Additionally, each block adds a skip 

connection from the input signal to output feature maps to combat 

vanishing gradients.  

3.2.2 Feature Pyramid Network 

As previously mentioned, a major challenge in object detection is 

dealing with targets of different size. Fortunately, the residual blocks 

in ResNet101 naturally provide feature maps at multiple scales and 

can be used to form a feature pyramid for building semantic feature 

maps at multiple scales. In RetinaNet, the feature maps from the 2nd, 

5th, 27th, and 33rd residual blocks are aligned with their dimensions by 

up-sampling layers and stacked to build an FPN with lateral 

connections, as shown in Figure 3.2. To locate objects of different 

sizes, RetinaNet pre-defines a set of anchors with various heights and 
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widths. With these anchors, object detection tasks are reduced to 

predicting probabilities and refinements on these anchors. To do this, 

the feature maps of the anchors were cropped from FPN and sent to 

detection heads for prediction. 

3.2.3 Detection Subnets 

The two subnets are designed to separately predict the class and 

target coordinates from the feature maps of each anchor. The class 

subnet maps the feature maps of each anchor to a score via four 

convolution layers with a 3×3 kernel and softmax function. The 

regression subnet reduces the same feature maps to 4-dimensional 

coordinates via four separate convolution layers with a 3×3 kernel. 

3.2.4 Model Training 

To train RetinaNet, we first set the sizes and ratios of 

height/width of anchors to 0.5, 1, and 2. The pre-trained weights of 

ResNet101 from ImageNet were loaded into RetinaNet as the 

initialization for the backbone network. All of the training images were 

resized to 800*800 before being fed into RetinaNet. IOU (Intersection 

Over Union) was used to calculate the ratio of intersection and union 

between annotated objects and anchors. The anchors with an IOU 

greater than 0.6 over a text region/arrow/T-bar region were labeled as 
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true anchors and were labeled with the corresponding categories. 

Anchors with an IOU less than 0.4 over any object were considered 

negative. The anchors with IOUs between 0.4 and 0.6 were ignored to 

reduce computational overhead.  

For the classification subnet, considering the highly unbalanced 

distribution between easy cases and hard cases, the focal loss [23] 

was utilized as follows: 

 

p is the predictive probability and γ (2 as the default) denotes a 

regulatory factor used to control the weight of easy samples. For easy 

cases (i.e. when pt approaches 1) γ has the effect of scaling the loss 

toward 0. Conversely, when pt is near zero (as for uncertain 

predictions) the scaling factor is closer to 1. By applying γ, we 

effectively put more weight to ambiguous/hard cases. Alpha simply 

balances positive and negative samples and was set to 0.1 following 

the recommendation from [23]. 

For the regression subnet, we employed a Smooth L1 Loss 

function [20] as follows: 

 

(3.1) 
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yi denotes the ground truths and f(xi) represents the predicted 

coordinates. This function smooths the gradients when the distance 

between the predicted coordinates and the ground truth is less than 1. 

In the other cases, it stabilizes the gradients to avoid gradient 

explosion. The two subnets were optimized by Nadam [19], with 

learning rates starting from 5e-4 and decaying to 1e-5. Because the 

arrow and t-bar bodies denote activation and inhibit interactions and 

their heads indicate the direction of the interaction, we trained two 

RetinaNets to detect arrows/T-bar bodies and their heads separately. 

3.2.5 Model Inference 

Once the models have completed training, we can predict the 

arrow/T-bar bodies and arrow/T-bar heads from any input pathway 

figures. Typically, the top 1000 bounding boxes with the highest 

scores from the classification subnet are returned by default with their 

predicted coordinates. We also set a minimum classification confidence 

threshold of 0.7 to remove low confidence predictions. Among these 

remaining bounding boxes, some redundant boxes around the same 

object still remained. We used a non-maximum suppression operation 

to filter out duplicate boxes for same object. The IOUs for all of the 

 

(3.2) 
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remaining bounding boxes were calculated and the overlapping boxes 

with higher IOUs than 0.5 were also treated as duplicates. Among 

these duplicates, only the bounding box with the highest score was 

retained. Through such post-processing, we detected all of the 

arrow/T-bar bodies and arrow/T-bar heads associated with the gene 

interactions for further processing. 

3.3 Gene Name Recognition 

3.3.1 OCR Tool 

To extract gene name candidates, we leverage Google’s Could 

Vision API. We chose this tool to simplify our pipeline as it can process 

entire images directly without the need for additional preprocessing 

(e.g., de-skewing, resizing, etc.). The API response includes all the 

words found in the figures and a hierarchical breakdown specifying 

pages, blocks, paragraphs, words, and symbols from the text. By 

extracting the words in each paragraph, we can build phrases that 

appear frequently in our figures. The OCR also returns the 

corresponding bounding boxes and are used to build subsequent gene 

interactions. 
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3.3.2 PubTator Central-based OCR Correction 

Since misrecognition frequently occurs in the OCR output, 

corrections from other methods are necessary to improve the OCR 

results. For this purpose, we used Named Entity Recognition (NER) to 

improve the gene extraction accuracy. NER identifies and categorizes 

certain types of entities in text. For our study, we used PubTator 

Central [8][6][59] to obtain gene annotations from the articles 

containing pathway figures. PubTator Central is a state-of-the-art NER 

model that features multiple biological concept annotations and a web 

API. PubTator Central uses GNormPlus to annotate genes with high 

accuracy. It achieved an F-score of 86.7% for gene identification on a 

set of PMC full-text articles and PubMed abstracts. Additionally, 

PubTator saves the processed data from each abstract and full-text 

article in a database. In this way, we are able to retrieve gene 

annotations programmatically through its RESTful API just using an 

article’s PMC ID. To correct gene outputs from the OCR, we match our 

results with PubTator Central gene annotations for a given article. To 

avoid the impact of character cases, we unified all OCR results and 

PubTator annotations to upper case during matching but left their 

original symbols for downstream analysis. If no direct match was 

found, we attempted a fuzzy match using the Levenshtein distance 

[60] to score unmatched OCR text with all of the gene annotations 
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from PubTator Central. The Levenshtein distance between two words is 

the minimum number of single-character edits (insertions, deletions, 

or substitutions) required to change one word into the other. If the 

score of an OCR recognized gene name was over a certain threshold, 

set at 90, with 100 being a perfect match, we selected the 

corresponding gene annotation as the final gene name. 

3.4 Gene Interaction Prediction 

To extract the gene interactions, we combined several 

postprocessing methods on the filtered genes, detected indicator 

heads, and detected indicator bodies. First, we found the 

corresponding head for each indicator body. This was done by 

selecting the head bounding box with the largest IOU for each body 

and calculating its center point marked by the purple dot in Figure 

3.3b. We used the body bounding box (seen in Figure 3.3a) to reduce 

our search space and limit possible noise from intersecting 

relationships. The head then served as a reference point to find each 

corresponding tail (i.e., the starting point of each indicator). This was 

done by finding the detected corner furthest away from each head that  
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was still inside the corresponding body bounding box as marked by the  

 

yellow dot in Figure 3.3d. We used the Shi-Tomasi method for corner 

detection [61]. An example of the detected corners is shown in Figure 

3.3c. Next, using the detected head and tail for each indicator body, 

we can then find each indicator’s corresponding genes. We did this by 

exclusively selecting the closest entities to the tail and head as our 

starter and receptor marked by the green boxes in Figure 3.3e. This 

post-processing schema is demonstrated in our experiments to be an 

effective way to extract gene interactions from simple pathway figures. 

Figure 3.3: Visualization of an example of forming gene interactions with 

OCR and object detection results. 
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 3.5 Data Preparation 

       
   a.)                                                         b.) 

Figure 3.4: (a) shows an example of a fully annotated pathway figure. 

(b) shows an example of an augmented sample from our training set. 

Due to the lack of a pathway curation benchmark dataset, we 

constructed a dataset for training our object detection models. 403 

pathway figures were directly retrieved from PubMed using pathway-

related keywords. Non-pathway figures were manually removed from 

returned images. These randomly collected pathway figures from 

different journals and authors were plotted in various styles, which 

offers sufficient diversity for modeling. To annotate the locations of all 

arrow/T-bar bodies and arrow/T-bar heads used in the training, we 

labeled their bounding boxes and categories using the ‘labelme’ tool 

[62]. To enlarge our data size, we augmented the collected images by 

applying several transformations to the images. We set random 
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brightness factors from 0.6 to 1 and randomly applied salt & pepper 

augmentation to quadruple the number of training samples. Upon 

analyzing our initial dataset, we found inhibit indicators (T-bars) were 

far less common than activations (arrows). Specifically, in our 403 

training images, we found 4,681 arrows but only 931 T-bar lines. To 

balance the class distribution, we replaced a number of arrows with 

simulated T-bar lines on the original images after data augmentation. 

This was done by first randomly erasing a certain proportion of the 

arrows based on their annotations. Then we plotted a replica T-bar, 

which followed the original arrowhead position and orientation. In the 

end, we obtained 4,040 training samples in total, which included 

89,740 text regions, 34,127 arrows, and 30,245 T-bar lines. 

To evaluate our pipeline, we built a validation set by holding out 

45 pathway figures from our training set. In total, this validation set 

contained 561 genes and 367 gene interactions. 

 

3.6 Results and Discussion 

3.6.1 Gene Identification Results  

In this section, we report an evaluation of our gene identification 

using the OCR in terms of recall, precision, and F1. To identify the 
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value of post-processing, we compared the results from the raw OCR 

output with the post-processed output as well. 

 

Table 3.1: Pipeline performance on gene identification. 

Method Precision/% Recall/% F1/% 

OCR 53.9 86.7 66.5 

OCR with post-processing 75.8 71.4 73.5 

  

As previously described, we can see in Table 3.1 that the 

Google-OCR output can include non-gene text from the images, typos, 

and false words caused by artifacts surrounding the target genes. With 

the gene annotations from PubTator, we can see that our post-

processing successfully filtered out many non-gene text results. This 

greatly increased our precision since we only included real gene names 

for filtering. However, this filtering seemed to exclude some potential 

genes as well due to imperfect PubTator annotations. Looking at the 

F1 score, we find that using our post-processing can achieve a 
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satisfactory trade-off between precision and recall for identifying gene 

names from pathway figures.  

3.6.2 Object Detection Results  

We evaluated our trained object detection models on the 

validation set and determined a correct detection by measuring the 

overlap between the predicted bounding boxes with the ground truth 

using 0.5 IOU as the threshold. Based on this criterion, the precision 

and recall per category are reported in Table 3.2. 

Table 3.2: Object Detection models performances on detecting arrows 

and T-bars 

Model Category Precision[%] Recall[%] F1[%] 

Model1 Arrowhead 94.1 77.4 84.9 

T-bar head 92.0 84.0 87.8 

Model2 Arrow body 95.3 81.3 87.75 

T-bar body 91.1 88.9 89.99 

  

The first model that detected arrowheads and T-bar heads 

achieved 77.4% and 81.3% recall, and both more than 90 percent 
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precision on the independent set. Regarding the indicator bodies, the 

second model performed similarly excellent in recall and precision. 

Comparing the two types of indicators, the arrows had slightly better 

performance on both the head detection and shape detection. We 

observed that some of this error can be attributed to the similarity of 

T-bars and the letter ‘T’ causing misrecognized T-bars.  

3.6.3 Interaction Extraction Results 

Table 3.3. Pipeline performance on full gene-interaction recognition 

Interaction Shape Precision[%] Recall[%] F[/%] 

Activation arrow 57.0 75.3 64.88 

Inhibit T-bar 37.4 63.9 47.18 

All N/A 53.7 72.5 61.7 

 

These object detection results laid a solid foundation for 

subsequent gene-interaction extraction. By combining the indicator 

locations with the localized text regions, we connect the relationships 

as previously described in section 3.4. Since the relation results were 

defined as <starter: relation_type: receptor> semantic triplets, we 

assigned a true positive when all three components were correct. A 
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prediction with incorrect components or roles was marked a false 

positive. All missing gene interactions from curations were treated as 

false negatives. 

Under such evaluation we record the recall and precision for the 

two types of extracted gene interactions on our validation set in Table 

3.3. 72.5% of all gene interactions were successfully retrieved from 

the pathways figures. Among the relationships returned, 53.7% of the 

gene interactions were entirely correct triplets. Expectedly, some of 

the incorrectly recognized gene names from previous steps accounted 

for some of the error. Another source of error could be from our 

relation prediction depending on just the relative locations between all 

genes and relation indicators. This could cause mistakes when pairing 

given several genes clustered around the same relationship indicator. 

Between the two types of gene interactions, the activation relationship 

again was extracted more accurately than the inhibiting interaction. 

Since activations are the prominent type of gene interaction in 

pathway figures, our pipeline still shows use as an automatic curation 

approach by supplementing rich gene interactions for downstream 

analysis. 
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3.7 Summary 

 In this section I introduced a framework that integrates two 

different modes for extracting relationship triplets. We demonstrated 

that the pipeline is able to extract genes and their relationships 

successfully on a held-out portion of the training data. However, we 

observed that our object detection models struggled to generalize to 

new data. In the next chapter, I introduce a rule-based augmentation 

method for document and diagram data to bridge this gap. 
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Chapter 4 

 

Synthetic Data Generation 

 In this chapter, I introduce a novel data augmentation method 

for up-sampling figure/diagram data. While the use-case explored was 

for pathway figures, it can be applied to different domains as well. 

 

4.1 Overview 

 

In the previous chapter, I introduced a unified pipeline for 

extracting gene interactions from articles. While this pipeline 

performed very well on a validation set with samples from a similar 

distribution as the training set, we observed that it failed to generalize 

Figure 4.1: Filtering candidate regions for high-frequency 

components. (a) a sample slice of a pathway image; (b) radial 

profile of the slice in the spectral domain. 
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well to new data during testing. This was likely because of too little 

training data leading to a model with high variance. While we did apply 

several forms of data augmentation, it was observed that these 

traditional forms of augmentation provided diminishing returns after 

enough samples. This is likely because simple augmentations can 

increase the total number of training images several times over but did 

not increase the number of unique relationships seen during training. 

To address this shortcoming, I introduced an approach that generates 

fully synthetic samples. Since many relationships in pathway diagrams 

follow a simple structure, they are easy to reproduce. To review, there 

are just a few components that make up a relationship in a pathway 

figure: two entities and a connecting identifier. These identifiers can be 

represented as arrows, objects, or by proximity. Here we will again 

first target the two types of indicators that are most frequently 

encountered in our pathway figures: arrows (activate) and t-bars 

(inhibit). We generate our fully synthetic relationships by first 

identifying an empty region on a template image. As we generate new 

images, we cannot place the slices randomly on the templates, as 

there is a large potential for overlap that does not exist in the ground 

truth figures. So, we first sample a random candidate region on a 
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template (Figure 4.1a) where our relationship could be placed. Then, 

we convert that destination region to the spectral domain (Figure 

4.1b) via a fast-Fourier transform [63] and calculate the radial profile 

of that slice in the spectral domain (Figure 4.2). The radial profile is 

the sum over pixel values the same radius away from the center of the 

slice. We do this to see how many high-frequency components exist in 

that destination region since the increased radius corresponds to 

higher frequencies in the source image. In images, high-frequency 

components correspond to edges, contrast, and complex shapes. Our 

Figure 4.2: Radial profile for the candidate region in the spectral 

domain from Figure 4.1. The x-axis shows the pixel radius from the 

center as our frequency analog. The y-axis represents the number 

of white pixels at each radius. 
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intuition is that pre-placed slices on the image will then be represented 

in the high-frequency regions. By setting a threshold on those high-

frequency components, we can effectively search for good placements 

on the templates. 

With a region selected, we then determine our entity placement 

given the area’s dimensions (see Figure 4.3a). Next, we draw a spline 

between the two textboxes (Figure 4.3b) and add an indicator head at 

one of the spline ends (Figure 4.3c). This class identifier can be an 

arrowhead or a t-bar (for activate or inhibit relationships). This approach 

effectively mimics the structure of many pathway relationships. Using 

such fully synthetic data generation has several advantages over 

traditional augmentations for this task. For instance, the model can train 

on a more diverse set of training data since there are no repeated 

relationships. This enables us to target specific types of exotic 

relationships that were previously more difficult to categorize due to 

little data: (e.g., curvy arrows, splines with corners, or dashed splines). 

Additionally, this process can be multi-threaded to generate many 

diagrams at once. 
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Figure 4.3: To generate a relationship, with two placed entities (a), we 

denote their relationship by drawing a spline between them (b) and 

placing an identifying indicator at one end (c). 

 

4.2 Implementation Details 

4.2.1 Checking Background 

While simple to outline, implementing each step of this process 

is more involved. In the case that all pixels in the destination region 

are the same, we do not have to run the full spectral check and can 

immediately stitch a relationship. However, when this is not the case, 

we convert the destination region to the spectral domain and generate 

its radial profile as previously mentioned. Notably, when calculating 

the radial profile on this output, we must normalize by distance to the 

center of the region since as the radius grows so does the number of 

pixels at that radius. To filter out regions with too many high-

frequency components, we look at the binned statistics over the radial 

profile. Specifically, we bin the radial profile into 4 sections and look at 

 a)                                      b)     

      c) 
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the 2 later bins corresponding to the higher frequencies. If the binned 

mean for either of those regions is too large, then we can rule out this 

placement. We used a threshold of 50 to filter out slices with too many 

high-frequency components to determine our placement. This specific 

threshold balances allowing color gradients while still removing any 

slices with harsh edges. We found this method to be more effective 

than simply looking at the pixel statistics of the destination slice and 

setting a threshold for the standard deviation. This approach failed on 

edges of similar pixel values. Using our method produced more 

realistic figures that better resembled the source dataset.  

 

     

Figure 4.4: To generate a cluster of entities, we started from the 

shape masks of two entities and iteratively moved one shape’s center 

until the IoU between the shapes was 0. 

4.2.2 Entity/Cluster Generation 

The textboxes of pathway entities come in a variety of shapes. 

To mimic this variety, we pulled from a folder containing images of 

arbitrary shapes. These shapes are extracted from the source images 

and transformed to fit the dimensions of our text. To further generate 

      a)                                 b)       c) 
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clusters of entities, we start from one shape and its mask (Figure 

4.4a). To add another shape to the arrangement, we select a random 

direction from the first entity’s center and set the center of the new 

shape as some distance along this path. The initial distance is a factor 

of the first shape’s dimensions. We then calculate the intersection-

over-union between the two shape’s masks (Figure 4.4b). If there is 

any overlap, we then increase the push factor along our selected 

direction and repeat until they are non-overlapping. This process can 

be repeated to add any number of entities to each cluster. 

 

 

Figure 4.5: Histograms showing the distribution of relationship sizes in 

real pathways (a) and our synthetic pathways (b). 

 

 

 

 

                          a)                                     b)  
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4.2.3 Entity Placement 

To effectively replicate the entity positions seen in real pathway 

diagrams, we look at the histogram of relationship dimensions seen in 

those figures. Figure 4.5a shows a 2D-histogram of 1000 diagrams 

which highlights that those relationships are most concentrated in the 

low dimensional regimes. We use this distribution to guide the region 

selection of our algorithm and fix the position of our two entities to 

opposite corners. We do this to let the real relationship’s dimensional 

distribution fully guide our entity placement. However, we do maintain 

that the region selected for placement must be large enough to 

contain both entities. This explains the gap in Fig 4.5b that is not seen 

in the real data. In the case of extreme dimensions (e.g., much larger 

x than y and vice versa), we fix the placement to be top-down or left-

right. We do this since most relationships follow this orientation. 

4.2.4 Drawing Spline 

Once the entities have been placed, we can use their centers as 

reference points for the connecting spline. We use three different types 

of splines: lines, arches, and corners. For direct lines, we must first 

find the start and endpoints for the spline by interpolating a direct line 

between the centers of the two textboxes. We then select the n-th 

point along the line outside the textboxes as the respective start and 

end points. We set n dynamically based on the distance between the 
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two textboxes. With the start and end points, we then draw a line 

between these two anchor points as our spline. If we are drawing an 

arch, we start with the same method for obtaining the start and end 

points. Then, we calculate the slope perpendicular to the line between 

them. With this, we can calculate a third anchor point which will mark 

the apex of the arch. We set a parameter to determine how far from 

the baseline the third reference point should be. This allows us to 

control how ‘curvy’ each arch is. Using all three anchor points, we can 

then interpolate a spline between them. When drawing a cornered 

spline, we use a different method for obtaining the start and end 

points. For each square configuration, we can have two different 

placements for the start and end points. They can be placed outside 

the textboxes at some pre-set distance towards the same empty 

corner. Then we use their max or min dimensions to determine a 

corner point for the third anchor and connect these three points. To 

draw dashed splines instead, we simply omit placing intervals of the 

spline. These intervals are drawn from random bounds and are 

dependent on the thickness of the spline. 

4.2.5 Drawing Indicator 

With the spline drawn, we now place an indicator head at one of 

the ends. Since there are different styles of indicator as well, we follow 

the same approach as with entity shapes and pull from a set of 
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indicator shape images. Again, we extract and transform the indicators 

as needed for the given spline style. We also rotate these indicators to 

follow the slope of the spline near the end point and place that 

transformed indicator onto the end of the spline. 

 

 

Figure 4.6: Histogram showing the distribution of pathway image 

dimensions. 

4.2.6 Parameter Configuration 

The above methods detail how to generate a new relationship, 

but we can control many of the parameters for this process to ensure 

that each one is sufficiently unique. For each label, we can control the 

font color, style, size, and thickness. For each textbox, we can control 

the textbox margin, background color, textbox shape, and border 

thickness. For each spline, we can control the indicator placement, 
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type, length, width, color, and thickness. We dynamically change these 

parameters during generation. This enables us to generate a more 

robust dataset that mimics the wide variety of relationships that are 

seen in the real data. For instance, we use the image dimension 

distribution from real pathways (Figure 4.6) to set the bounds for our 

templates. 

4.3 Experimental Setting 

4.3.1 Model 

For our relationship localization experiments, we again evaluated 

our method on the widely used RetinaNet [23] architecture with a 

ResNet-50 [24] backbone pre-trained on the ImageNet [64] dataset. 

In all of our experiments, we finetuned this model for 50 epochs with a 

learning rate of 0.01. We are limited to 1 image per batch due to 

memory constraints. For loss, we used a combination of the sigmoid 

focal loss [24] for classification (for imbalanced class distributions) and 

dense box regression for localization.   
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Figure 4.7: Synthetic samples with annotation. (a) shows the indicator 

head annotations used in Experiments 4.4.1 & 4.4.2. (b) shows the 

indicator body annotations used in Experiment 4.4.3. 

4.3.2 Data 

For the base augmented dataset, we use the same dataset 

described in Chapter 3. This dataset uses salt & pepper, color correction, 

and random noise to generate 4,000 training images. We treated 

training with the augmented data alone as our benchmark. For the 

synthetic data, we generated three sets of increasing size with 1,000, 

3,000, and 6,000 images (Figure 4.7a as an example). We then looked 

at how different amounts of synthetic data coupled with the augmented 

dataset can improve the generalization of our model. We evaluated with 

new 45 images collected from PubMed as our validation set and report 

the mean-average-precision (mAP) over the three classes: inhibit 

indicators, activate indicators, and gene text. The mAP measurement 

captures how well all objects are detected and classified. Results 

      a)                                          b)    
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displayed in the tables are averages and standard deviations over three 

runs. 

4.4 Results 

4.4.1 Synthetic Data for Mixed-Batches 

Table 4.1: Testing mAP for increasing amounts of synthetic data used. 

Training Data Aug Aug + 1k Syn Aug + 3k Syn Aug + 6k Syn 

mAP 26.9 +/- 2.9 26.5 +/- 0.4 28.8 +/ - 2.4 29.1 +/ - 2.1 

 

In this set of experiments, we look at how our method can affect 

the generalization of the model (shown in Table 4.1). With the 4000 

augmented samples as our baseline, we see how increasing the amount 

of synthetic data used in mixed batches affects validation. We find that 

our method used in conjunction with the augmented data improves the 

generalization of RetinaNet. This is likely because we can introduce 

unique relationships/features that simple augmentations cannot. This 

notion is supported by the fact that increasing the amount of synthetic 

data generated by our method continues to improve the performance of 

the model. 
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4.4.2 When to Use Synthetic Data 

 

Figure 4.8: Comparing combinations of real and synthetic data at 

different stages of training. 

Following the improvement shown by leveraging synthetic data in 

mixed batches, we also sought to understand how different 

combinations of real and synthetic data affect training. To that end, we 

first measured the performance of the augmented data and different 

amounts of synthetic data on the independent set of 45 images using 

mAP:.50. As seen in Figure 4.8, increasing the amount of synthetic data, 

as expected, showed improvement in generalization from 3k at 30.2 to 

20k at 32.4 mAP. However, both were unable to fully close the gap to 

the augmented data 41.3 mAP. Interestingly, if we first pretrain on the 

augmented data with a learning rate of 0.01 and finetune with synthetic 

data at 0.005, we also see improvement over augmented training alone 
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at 44.6 mAP. This improvement is even more pronounced if we include 

the augmented data in our finetune stage and use mixed batches 

(reaching 49.3). We flipped this experiment to pretrain with synthetic 

and finetune with mixed batches and can see another boost in 

performance (50.7 mAP for 3K synthetic). Although, as previously 

validated, the augmented and synthetic data seem to capture different 

features and when used in combination improve over either standalone 

performance. In the case that we trained with mixed batches from the 

start (our setting from experiment 1), we reached 57.2 and 57.4 mAP 

for 20k and 3k synthetic samples. However, our best setting came from 

pretraining on synthetic and finetuning on real data reaching 62.1 mAP. 

 

4.4.3 Generalizing to New Tasks 

Table 4.2: Testing mAP for increasing amounts of synthetic data used 

from each method, starting with the base augmented dataset. 

Training 

Data 

Syn Aug 10k Syn + 

Aug 

10k Syn -> Aug 

mAP:.50 29.1 +/- 2.8 52.9 +/- 1.8  63.3 +/- 3.0 66.3 +/- 3.9 

 

For our third experiment, we look to test how well our up-

sampling approach improves generalization for additional and more 

complex classes. To that end, we tried to localize the entire 
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relationship indicator bodies and specify two additional gene-gene 

relationship markers (indirect activate and indirect inhibit). These 

classes are differentiated from their bases with dashed bodies as seen 

in Fig 4.7b. 

 We annotated the same 250 real diagrams used for the 

relationship heads, but instead augmented their bodies to 3000 

samples. As shown in Table 4.2, training with mixed batches again 

shows considerable improvement over either alone. We also leveraged 

the insights from experiment 2 and we pretrained on 10,000 synthetic 

samples with annotated bodies and finetune on the augmented real 

samples. This approach led to a 25% improvement over the model 

that was just trained with augmented samples. 

 

Figure 4.9: An example of a synthetic cluster sample with annotation. 
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Table 4.3: Testing mAP for RetinaNet trained on Synthetic Clusters. 

Dataset # Genes # Clusters mAP:50 mAR:50 

Real Testing 616 64 49.3 79 

Syn Validation 7259 2303 83.4 92.7 

 

To further test how well our method can generalize to new target 

classes, I extend training to a different type of identifier. In these 

experiments, I target localizing clusters. These clusters are identifiable 

by proximity between entities instead of by any specific shape. For this 

experiment, I generated 12,000 samples using the previously 

described methodology (Figure 4.9), where 2000 are held out for 

validation. A small manually annotated set of 25 images is also used 

for testing on real data. Following the previous experiments, I trained 

for 50 epochs and saved the checkpoint with the best validation 

performance. Looking at the validation performance from Table 4.3, 

one can see that synthetic clusters are learnable training signals for 

the model. This generalization extends to real data as well and reaches 

decent average recall and average precision on our testing set. This 

further validates our method’s generalizability to new and more 

complex target classes. 
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4.5 Introducing Noise 

       

Following the success of jointly training with synthetic data, we 

looked to see if we could improve upon the baseline performance of 

the models trained on solely synthetic data. To that end, I 

experimented with incorporating different amounts and combinations 

of structured and unstructured noise during generation. My motivation 

was that many real pathway diagrams contained artifacts and 

background geometries that were not robustly represented in the 

synthetic data. Additionally, learning to become noise agnostic can 

promote focus on underlying target signals and make our model be 

more context aware. Fortunately, measuring noise is a previously 

studied subject across signal and image processing. For my 

experiments, I used the average pixel difference (4.1) to measure 

noise, since the conventional signal-to-noise ratio measurement 

assumes uniformity from the noise distribution. I also recorded the 

average precision and recall for each noise-type.  

 

 

 

(4.1) 
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4.5.1 Structured Noise 

 

 

 

Figure 4.10 Structured noise examples for lines (a), arches (b), and 

shapes (c). 

 

 

 

 

 

 

 

 

 

 

      a)                               b)        c)   
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Table 4.4. Testing performance of purely synthetically trained models 

using different types of structured noise. 

 
mAP:50 mAR:50 SNR 

Baseline 29.4 75.7 - 

Lines (0-10) 38.9 85.6 0.002 +/- 0.001 

Lines (0-20) 43.7 82.6 0.004 +/- 0.003 

Lines (0-40) 38 83 0.008 +/- 0.005 

Arches (0-10) 44.8 78.5 0.002 +/- 0.002 

Arches (0-20) 45.8 83.5 0.005 +/- 0.003 

Arches (0-40) 46.1 80.8 0.01 +/- 0.08 

Shapes (0-10) 33.6 69.5 0.007 +/- 0.006 

Shapes (0-20) 42.9 69.7 0.015 +/- 0.01 

Shapes (0-40) 31.1 67.2 0.03 +/- 0.02 
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Figure 4.11: Testing performance of synthetically trained models with 

different types of structured noise (lines, arches, and shapes). 

First, I experimented with different types of structured noise. To 

do this, I introduced varying amounts of lines, arches, and shapes 

randomly in the generated synthetic images (Figure 4.10). Specifically, 

I incorporated 0 to 10, 20, and 40 artifacts for each image. To place 

the lines and arches, I random selected endpoints on the images and 

connected them. For the shapes, I placed them using the same region 

selection procedure outlined in section 4.2. As seen in Figure 4.11 and 

Table 4.4, I found that increasing the number of artifacts and relative 

noise levels increased the mean average precision for all structured 

noise types up to a certain degree. However, at 40 maximum artifacts, 

the performance began to degrade. We can also see that increasing 
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the number of artifacts also increased the relative amount of noise as 

intended. This highlights the importance of targeted structural noise 

being represented in the synthetic samples. 

4.5.2 Unstructured Noise 

    

 

Figure 4.12: Unstructured noise examples for gaussian noise (a) vs. 

salt and pepper noise (b). 

Table 4.5: Testing performance of purely synthetically trained models 

using different types of unstructured noise. 

 
mAP:50 mAR:50 SNR 

Baseline 29.4 75.7 - 

Gaussian (0-150) 28.4 77.7 0.026 +/- 0.008 

Gaussian (0-300) 34.7 79.8 0.036 +/- 0.013 

S&P (0.004) 31.7 65.6 0.006 +/- 0 

S&P (0.008) 35.3 70.3 0.012 +/- 0 

      a)                                            b)     
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Complimentary, I also looked at how incorporating traditional 

unstructured noise could affect generalization. For these experiments, 

I included varying amounts of gaussian noise as a 0-150 and 0-300 

pixel value change per pixel (Figure 4.12a). For salt and pepper, I set 

salt and pepper’s base probabilities as 0.004 and 0.008 (Figure 4.12b).  

In Table 4.5 I observed that introducing lots of gaussian noise 

improved over the baseline mean average precision and mean average 

recall. Adding salt and pepper improved precision, but surprisingly hurt 

recall compared to the baseline. This may be because too much 

occlusion over the target signals.  
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4.5.3 Mixing Noise 

Table 4.6: Testing performance of purely synthetically trained models 

using mixtures of structured and unstructured noise. 

 
mAP:50 mAR:50 SNR 

Baseline 29.4 75.7  

Lines (0-20) 43.7 82.6 0.004 +/- 0.003 

Lines (0-20) + Gauss (0-300) 45.2 81.2 0.04 +/- 0.01 

Arches (0-20) 45.8 83.5 0.01 +/- 0.003 

Arches (0-20) + Gauss (0-300) 46.7 80.1 0.04 +/- 0.01 

Shapes (0-20) 42.9 69.7 0.02 +/- 0.01 

Shapes (0-20) + Gauss (0-300) 35.3 67.3 0.05 +/- 0.02 

 

Finally, we looked at mixing noise modalities. We combine the 0 

to 20 artifacts from structured noise and gaussian noise for every 

sample. From Table 4.6, we find that mixing the two reduces recall 

slightly across the board but does boost precision for all cases except 

the shapes. Mixing the shapes and gaussian noise may introduce too 

much noise for the model to discern the target signal. 
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4.5.4 How Much Noise? 

 

Figure 4.13: Bar-plot showing the effect of halving the amount of 

different noises in training samples 

With a better understanding of the effect of integrating noise 

with every image, we also looked at the effect of applying this noise on 

every other image. To test this, I set the probability of including a 

given type of noise to be 0.5 and reran our experiments for random 

lines, gaussian noise, and using both. I found a consistent fall in 

performance by reducing the number of samples with noise (Figure 

4.13). Gaussian noise even falls below the baseline. This is likely 

because only including the gaussian noise in half of the samples does 

not promote the same noise agnostic behavior that helps the model 

generalize. 
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4.6 Summary 

This chapter introduced an up-sampling method for object 

detection on pathway figures that is based on a set of rules and 

biological domain knowledge. Such biology-inspired data augmentation 

is a better alternative for up sampling pathway diagrams, since the 

relationships in these figures are highly diverse and traditional 

methods for positional or color modification cannot robustly mimic 

these features. Additionally, GAN-based approaches may not follow the 

underlying biological meanings. As demonstrated, our method’s fully 

synthetic approach was able to increase the generalization capacity of 

the transfer-learned models on several tasks. We also validate the 

value of a targeted up-sampling approach in addition to traditional 

augmentation and characterized the importance of noise 

representation in our synthetic pathway diagrams. This work motivates 

further investigation into the upper bound of this synthetic approach 

and its possible extensions. 
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Chapter 5 

 

Active Learning 

 In this chapter, I introduce a new contribution in the field of 

active learning. By combining my synthetic data generation approach 

into an active learning schema, I can train with no data pool or 

acquisition function. I show how this approach can reduce the training 

time of our models without sacrificing generalization. 

 

5.1 Overview 

With improved standalone performance, I looked more 

confidently look towards applying synthetic data generation in an 

active learning setting. This improved generalization was needed, to 

ensure that the changes made to input selection would correspond 

with improved generalization. We further explore this dynamic in this 

chapter. As mentioned previously, how to best leverage data 

augmentation in an active learning setting is an open research 

question. My contribution in this section is Pool-less Active Learning 

(PAL) via synthetic data generation. Previous augmentation methods 

do not have the fine-grain control necessary to directly leverage a 
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training sample’s uncertainty to produce new data following that 

feedback. As such, all of the methods previously described must 

estimate what the model may perform poorly on and sample from a 

data pool accordingly. Whereas PAL can directly take information on 

what the model is performing bad on to create a sample the model will 

likely learn more from. I show in my experiments, PAL can reduce the 

number of iterations needed for training. 

5.2 Combining Synthetic Data & Active Learning 

As I mentioned, there are no clear answers for how to best 

combine active learning and data augmentation. Combining active 

learning with synthetic data is equally underexplored. As mentioned, 

most previous methods utilize a large pool of unlabeled data to draw 

from. However, if we have the ability to generate each batch with 

whichever classes we need, then we don’t really need a data pool. 

Instead, to balance uncertainty and diversity sampling, we could set 

class probabilities for how often each class should occur as {p1,p2…,pn} 

and generate synthetic samples following these probabilities, such that 

class n has pn probability of being represented in our sample. Then, the 

active learning formulation just reduces to finding how to best update 

these class probabilities during training. This is our Pool-less Active 

Learning (PAL) training schema.  
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 To update these class probabilities, we need to consider how the 

model should learn from data. There are two clear options to consider. 

The first recommends that a model should see all of the classes it was 

bad at regardless of what the target class was. The second idea says 

that if the class prediction for a bounding box is bad, then the model 

should just see that box’s target class more often. 

 

 

Figure 5.1: PAL 1 implementation for obtaining updated class 

probabilities from classification losses. 

 We can implement the first way (PAL 1) as follows (Figure 5.1). 

From the binary cross entropy losses from all bounding boxes, we first 

sum across all of the samples. Then, we divide by the total number of 

boxes and just normalize this value between 0-1 to get our seed 

probabilities for the next batch. This approach encourages more 

discrimination between classes and includes uncertainty from 

background regions. Unfortunately, this approach also has some 

drawbacks. If a class doesn’t occur frequently by chance, it’s 

probability could be reinforced to be low and almost never show up to 

be learned from. 
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Figure 5.2: PAL 2 implementation for obtaining updated class 

probabilities from classification losses. 

 The second way (PAL 2) would be implemented as follows 

(Figure 5.2). From the binary cross entropy losses from all bounding 

boxes, we sum across each sample to get the classification loss for all 

of the samples. Then, we add all of those losses together by target 

class and scale the sums by how many target boxes there were 

actually for each class. For example, if 45 of the boxes were inhibit, 

then the inhibit loss would be divided by 45. We normalize scaled 

losses between 0-1 to give our seed probabilities for the next batch. 

However, this approach has several problems as well. Just training on 

the target class more frequently, may not robustly help discrimination 

between other classes. Additionally, this approach ignores the loss 

from background boxes. 
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Figure 5.3: PAL Mix design which combines methods 1 & 2 for 

obtaining updated class probabilities from classification losses. 

 To balance discrimination between classes and promote diversity 

sampling, we also experiment with combining methods 1 and 2 into 

PAL Mix. From the binary cross entropy losses from all bounding 

boxes, we can sum across all samples (similar to method 2). But 

instead of scaling by the box count, we scale by the class count 

(similar to method 1) and then normalize between 0 and 1. Figure 5.3 

shows an overview of this process. Ideally, this approach could 

balance the issues of both while still maintaining their benefits. 

5.3 Experiments 

5.3.1 Validating PAL 

For my first experiment, I want to validate Pool-less Active 

Learning as an active learning schema. To test this, I compare the 

testing performance of RetinaNets trained using PAL with standard 

training and a conventional form of active learning using lowest-

confidence predictions. For each training setting, I trained 10 



 
 

66 
 

RetinaNet models from ImageNet backbone weights. The PAL models 

were trained for 15,000 iterations where each iteration was trained on 

a batch of data that was generated from the classification losses of the 

previous iteration as previously described. At the beginning, we set the 

default probabilities to be equal. For the standard training, I learned 

for the same number of iterations, but all of the samples are 

generated with an equal probability for each class occurring. Training 

via lowest-confidence active learning is different. To follow standard 

convention, I first generated a large synthetic data pool of 50,000 

images to pull from. I then initially randomly sampled 1,000 of these 

images as the initial training set. Next, I trained on this set for 10 

epochs and evaluated on the held-out data pool at the end to extract 

the samples with the least-confident predictions. I added the 1,000 

samples with the least confident predictions to the training set and 

trained a new model from scratch. Then, I repeated this training and 

sampling cycle until the training set had 15,000 images. Finally, as a 

fair comparison to the other two methods, I trained a new model from 

scratch using this dataset for one epoch. I repeated all of these 

experiments 10 times to obtain a more accurate measure of their 

performance in relation to one another and reported the mean and 

standard deviation of their performances on the testing set of 45 

images used in chapter 4. 
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Table 5.1: Testing Performance of PAL trained models in terms of 

precision, recall, and average number of iterations to model 

convergence. 

  

 Method 
mAP mAR Avg. Iterations 

Standard Training 42.7 +/- 1.3 81.7 +/- 5.3 9860 +/- 1564 

PAL 1 0.3 +/- 0.4 0 8575 +/- 1233 

PAL 2 41.7 +/- 1.2 84.5 +/- 1.4 8580 +/- 1802 

PAL Mix 41.8 +/- 1.6 83.5 +/- 3.0 8900 +/- 1790 

Least Confidence 48 +/- 1.3 74.2 +/- 2.6 9000 +/- 1446 

 

From Table 5.1, we can see that PAL 2 achieved similar testing 

performance to standard training in terms of mAP and mAR. In fact, 

PAL 2 was able to achieve even slightly higher recall. Very notably, 

PAL 2 was also able to reduce the total number of training iterations 

required to reach this generalization by ~13% compared to standard 

training. Meanwhile, least confidence active learning was able to 

achieve the highest precision, but its recall suffered as a result. 

Notably, least confidence active learning also required much longer to 

train compared to standard training and PAL. This was because 

traditional active learning requires multiple cycles of training to 

gradually build up a diverse dataset. In this way, one can see that PAL 
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offers a more balanced approach to active learning in terms of recall, 

precision, and total runtime. 

 

Figure 5.4: Visualization of class probabilities for 300 iterations during 

PAL 1 training. 

 From Table 5.1, we also see that PAL 1 had the worst 

performance by far. When investigating the cause, I observed in 

Figure 5.4 that the class probabilities behaved similarly to what was 

hypothesized for this method. There were extended intervals during 

training where one class dominated the seed probability distribution. 

This led to periods when other classes were not likely to appear in 

training at all. For our task, this long-term mode switching during 

training seemed to hurt generalization. 
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Figure 5.5: Visualization of class probabilities for 300 iterations during 

PAL 2 training. 

 

Figure 5.6: Visualization of class probabilities for 300 iterations during 

PAL Mix training. 
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Despite the disadvantages of PAL 1, combining its formulation 

with PAL 2 in PAL Mix seemed to stabilize its performance. This 

validates our hypothesis that we could combine both methods to 

leverage the benefits from each while mitigating their disadvantages. 

Surprisingly, PAL 2’s formulation for putting more emphasis on just the 

target class did not hurt its performance. This may partially be 

because we are using a mixed diversity and uncertainty sampling 

approach. That is to say, even if we put more emphasis on one class 

over another as in PAL 2, the class distributions were not skewed 

enough to prevent other classes from appearing. As observed in Figure 

5.5, the class distributions for 300 iterations during training are more 

intertwined. Even if one class was dominating for several iterations, 

the bottom floor for all other classes was not pushed all the way to 

zero as in Figure 5.4. This may allow us to learn on specific classes in 

a more targeted fashion, without completely sacrificing our sampling 

diversity. In PAL Mix, the floor and ceiling are compressed for the class 

probabilities (Figure 5.6), which may not allow targeted class specific 

training to the same extent. However, more experiments would be 

necessary to fully explore these differences in training dynamics and 

their benefits. 
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5.3.2 Extending PAL with Momentum 

 

Figure 5.7: Plot of the ‘activation’ class probability for 300 iterations 

during PAL Mix training. 

After validating the PAL training schema, I also looked to further 

extend our schema. To do that, I investigated if we should take the 

updated probabilities directly or not. As observed in Figure 5.7, taking 

the probabilities directly can cause a rapid shift in class probabilities 

from iteration to iteration. This may not always be ideal, as it may not 

give the model enough time to learn the features from prior loss and 

class information. To better understand if this was a beneficial 

property, I needed to test mixing previous values’ information and new 

information. Fortunately, this is a well explored topic in optimizers [65] 

and data fusion [66]. 
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To better understand how long a model should learn on a given 

distribution, I combined the PAL training schema with a simple 

momentum term (5.1,5.2). Specifically, I kept a momentum vector Vt 

that maintains previous update information for each class. Vt is 

initialized to a zero vector. β is a hyperparameter that decides how 

much to listen to previous updates and is fixed between 0 and 1. 

Notably, starting with all of the class probabilities to be equal and 

using a β of 1.0 reduces to our standard training schema and using a β 

of 0.0 reduces to our basic PAL setting. For my experiments, I trained 

RetinaNet with PAL Mix in the same fashion as before for 4 classes 

(activate, inhibit, indirect activate, and indirect inhibit), but with 

different values for the momentum term. Again, I train 10 models for 

each momentum value. 

(5.1) 
 

(5.2) 
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Figure 5.8: Plot of the ‘activation’ class probability for 300 iterations 

during PAL Mix training with a momentum factor of 0.1. 

 

Figure 5.9: Plot of the ‘activation’ class probability for 300 iterations 

during PAL Mix training with a momentum factor of 0.5. 
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Figure 5.10 Plot of the ‘activation’ class probability for 300 iterations 

during PAL Mix training with a momentum factor of 0.9. 
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Table 5.2: Testing performance of PAL trained models with momentum 

in terms of precision, recall, and average number of iterations to 

model convergence. 

  

  
β mAP mAR 

Avg. 

Iterations 

Standard 

Training 
1.0 42.7 +/- 1.3 81.7 +/- 5.3 9860 +/- 1564 

PAL Mix 0.0 41.8 +/- 1.6 83.5 +/- 3.0 8900 +/- 1790 

PAL Mix 0.1 42.1 +/- 1.7 81.2 +/- 1.49 8460 +/- 1111 

PAL Mix 0.5 44.0 +/- 2.7 83.5 +/- 2.8 9860 +/- 1383 

PAL Mix 0.9 42 +/- 3.7 83.2 +/- 3.3 8620 +/- 2112 

 

 As seen in Figures 5.8, 5.9, and 5.10, incorporating a 

momentum term has the intended effect of smoothing out changes in 

the probability distribution for a given class. From Table 5.2, one can 

also see that a β of 0.5 improves performance over baseline in the 

same number of iterations. Additionally, a momentum of 0.1 obtains 

almost the same performance as standard training but in even fewer 

iterations than PAL Mix or PAL 2 and with less variability in iterations. 

A momentum factor of 0.9 showed decent average performance in 

recall and precision and number of iterations required for convergence, 
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but also had the most variability. A large momentum factor works well 

in gradient descent, since the optimal value (global minima) does not 

move during training. However, in our case, the optimal sample to be 

generated from iteration to iteration does change constantly. In this 

way, having a small momentum allows us to leverage previous 

knowledge to some extent while still updating the seed distributions 

rapidly. 

5.4 Summary 

 In this chapter, I explained two schools of thought for learning 

from error when incorporating our synthetic data into active learning. I 

also demonstrated how to combine these two methods into PAL Mix. 

Additionally, I illustrated how PAL 2 and PAL Mix were able to balance 

recall, precision, and runtime compared to traditional training and 

conventional active learning. I further showed how to extend PAL by 

incorporating a momentum term and the benefit that such factor has 

to further speed up training or improve generalization. 
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Chapter 6 

 

Future Work & Conclusions 

 In this chapter I will review the key contributions of this thesis 

and explore several avenues for further research. 

6.1 Future Work 

6.1.1 Gene-Extraction 

 As our pipeline involves multi-stage processing, each of these 

modules can be improved to boost our overall extraction. For our gene 

and indicator localization, we plan to unify our head and body 

extraction into a single model. We were unable to do this previously 

with RetinaNet due to a lack of data. With access to more data, we 

now also want to experiment with other object detection models like 

DETR [27] and extend to more relationship types. Additionally, we 

plan to replace the google OCR module with an open-source OCR 

system, since we have collaborators in China who do not have access 

to this google service. We also want to improve upon our relationship 

pairing strategy, since our current method struggles to correctly 

identify the correct relationships when clusters are involved and those 
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with very small indicators. To add more confidence in our extracted 

relationships, we also want to score each of the interactions we 

extract. We could do this scoring by assigning weights to the 

conference or publication sources we pull from or by leveraging text 

information to cross-validate our image triplets with text triplets. 

6.1.2 Synthetic Data 

 We also have several ideas to further improve our synthetic 

data. While we can mimic the relationships from pathway figures, we 

also want them to be placed in more realistic settings. Measuring the 

benefits from incorporating basic structured and unstructured noise 

indicated some shortcoming in this respect. By introducing more 

realistic and diverse contexts for our relationships, we could further 

bridge this gap. Additionally, we want to generalize our generative 

algorithm so that it can be more easily applied to settings beyond 

pathway diagrams and documents. 

6.1.3 Active Learning 

 There are several directions for further improvements and 

validation for our active learning schema as well. We see immediate 

applicability of our PAL schema for OCR training, which would help 

further help validate our method as well. We also want to robustly test 
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the upper bound of our PAL training schema by looking at training 

longer, with different learning rates, and repeating our experiments to 

ensure the differences between methods are statistically significant. 

Additionally, while the extended mode switching from PAL 1 did not 

work well, it would be interesting to explore how short-term mode 

switching guided by the loss values could impact training. Such an 

approach could be implemented using PAL with an Adam [67] style 

update equation rather than a single momentum term. Exploring these 

training dynamics would be very important for better understanding 

PAL and guide further improvements. 

6.2 Conclusions 

 The goal of this thesis was to develop new methods for 

augmenting biomedical literature curation. To that end, I helped 

develop a gene relationship extraction pipeline that leverages natural 

language and image processing. While our pipeline was able to extract 

gene interactions, the lack of generalizing object detection models 

limited our extraction efforts. To improve our object detection 

localization and overcome diminishing returns from traditional 

augmentations on our pathway figures, I developed a rule-based 

generative algorithm for creating new pathway diagrams for training. 

This synthetic data generation was able to successfully improve 



 
 

80 
 

generalization in mixed batch settings with augmented data and 

showed strong standalone performance when additional noise was 

incorporated. To further explore how to best leverage our ability to 

generate synthetic samples, I investigated how to incorporate our 

synthetic data into an active learning schema. Our Pool-less Active 

Learning (PAL) training framework leverages the classification loss 

from a current training batch to generate the next batch of samples for 

training. This novel approach demonstrated good balance between 

recall, precision, and runtime compared to traditional training and 

least confidence active learning.  
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