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Abstract: CORONA spy satellites offer high spatial resolution imagery acquired in the 1960s and
early 1970s and declassified in 1995, and they have been used in various scientific fields, such as
archaeology, geomorphology, geology, and land change research. The images are panchromatic
but contain many details of objects on the land surface due to their high spatial resolution. This
systematic review aims to study the use of CORONA imagery in land use and land cover change
(LULC) research. Based on a set of queries conducted on the SCOPUS database, we identified
and examined 54 research papers using such data in their study of LULC. Our analysis considered
case-study area distributions, LULC classes and LULC changes, as well as the methods and types of
geospatial data used alongside CORONA data. While the use of CORONA images has increased
over time, their potential has not been fully explored due to difficulties in processing CORONA
images. In most cases, study areas are small and below 5000 km2 because of the reported drawbacks
related to data acquisition frequency, data quality and analysis. While CORONA imagery allows
analyzing built-up areas, infrastructure and individual buildings due to its high spatial resolution
and initial mission design, in LULC studies, researchers use the data mostly to study forests. In
most case studies, CORONA imagery was used to extend the study period into the 1960s, with only
some examples of using CORONA alongside older historical data. Our analysis proves that in order
to detect LULC changes, CORONA can be compared with various contemporary geospatial data,
particularly high and very high-resolution satellite imagery, as well as aerial imagery.

Keywords: CORONA imagery; declassified spy satellite; high-resolution images; land use and land
cover change

1. Introduction

The government of the United States of America (U.S.) started the space-borne pho-
tography CORONA program in the 1950s, with the first successful image acquisition in
August 1960 [1,2]. Lasting until May 1972, CORONA was the first high-resolution satellite
imagery [3] dedicated to military intelligence purposes. The mission was to monitor Soviet
missile strength [4] and Chinese nuclear programs [5], but it had global spatial coverage,
particularly in Eastern Europe and Asia [6]. The CORONA program consisted of satellites
launched by Thor-Agena rockets [5,7] that were equipped with various panoramic camera
models (referred to as Keyhole, KH), providing a black and white 70 mm film [5], with
KH-4B having the best spatial resolution [8,9] (Table 1). Cameras of the satellites of the
CORONA program were calibrated by concrete targets on the ground in Arizona [10].
After 12 years of service, the mission was replaced by HEXAGON, a Central Intelligence
Agency (CIA) program [11]. While the CORONA name typically refers to satellites using
KH-1 to KH-4B cameras, two other camera systems, ARGON (KH-5) and LANYARD
(KH-6), operating in 1961–1964 and 1963, respectively, were also part of the CORONA
program [1,9].
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Table 1. CORONA satellites and cameras details [12,13].

Satellite and Camera Time Period Resolution

KH-1 1959–1960 7.5 m
KH-2 1960–1961 7.5 m
KH-3 1961–1962 7.5 m
KH-4 1962–1963 7.5 m

KH-4A 1964–1969 2.75 m
KH-4B 1967–1972 1.8 m

The CORONA images were declassified in 1995 by Executive Order 12951 because
the program was no longer considered to be crucial to national security [14]. The primary
archive of the imagery—analog photographic products containing film negatives and photo
prints that include 800,000 photographs—is stored by the National Archives and Records
Administration (NARA) at the National Archives in College Park, Maryland [14–16]. Fol-
lowing the 1995 declassification of military imagery, the dataset was converted into digital
form and made available by the United States Geological Survey (USGS), together with
imagery of the follow-up missions in 1995 (Declass 1 dataset), 2002 (Declass 2 dataset) and
2011 (Declass 3 dataset) [14,17,18].

A single CORONA image is a narrow strip, with size depending on the camera type,
and it is approximately 20 km wide and 200 km long [9,16,18,19]. Unprocessed CORONA
images have severe spatial distortions [20] and contain limited spectral information due to
8-bit panchromatic (single band) image depths [21]. As a result of a dual-angle system of
two panchromatic cameras at 15 degrees off-nadir in KH-4, KH-4A and KH-4B systems, it
allows also producing a digital elevation model [16,22].

Due to the availability of CORONA imagery since 1995, many researchers used
the data to study various environmental processes [23], for instance, past land cover
in the Caucasus Mountains [24], forest habitat fragmentation in the Bucegi Mountains,
Romania [25], and post-agricultural forest succession in the Carpathian mountains [26].
In many studies, CORONA images were used jointly with other geospatial data to assess
changes in land use and land cover (LULC) since the 1960s [27,28], with several studies
reporting substantial difficulties when processing the data [6,29,30]. Although CORONA
images were widely used in many research fields and the number of studies is increasing, a
comprehensive assessment of CORONA imagery applications in studying LULC changes
is still missing. However, previous studies that reviewed CORONA imagery were mainly
related to technical issues, such as camera construction, imaging and algorithms [16,31].
In this review paper, we therefore aimed to find out how CORONA imagery was used so
far in LULC change studies, particularly looking at how they compare to other historical
or contemporary geospatial data and how they were analyzed to assess the LULC change.
This is important as a broad spectrum of current spatial datasets differs substantially in
nature from old spatial data that may offer high potential for LULC studies.

2. Methods

In our research, we followed a typical research design of the systematic review [32,33],
starting first with querying a database of scientific papers, defining criteria of research paper
selection, selecting research papers for analyses and examining the content of research
papers according to a structured set of questions [34].

For our analysis, we used the SCOPUS database (www.scopus.com, accessed on 1
April 2023), a general database of research publications that has been used in various review
papers [34,35]. To select papers in which CORONA data could possibly be analyzed, we
searched article titles, abstracts and keywords by using the following set of expressions
connected by logical OR:

• declassified corona data
• “corona image”
• corona spy satellite

www.scopus.com
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• declassified spy satellite
• “corona images”
• “corona imagery”

To build the query, we used quotation marks in case Corona was used jointly with
image, imagery or images, as our initial trials showed that a simple phrase such as corona
image (or corona imagery or corona images) provided a high number of papers related, e.g., to
astronomy or medical sciences (for instance, COVID-19-related papers). The search was
carried out by the end of 2022, and we set no restrictions for the publication year.

The final set of selected publications was initially screened first to remove papers
that did not use CORONA imagery and that were accidentally selected from the SCOPUS
database. Next, we examined the remaining papers using CORONA data and identi-
fied papers with a focus on LULC studies. For the LULC studies, we used a set of re-
search questions to analyze the content of publications in the context of LULC and LULC
changes. These questions were grouped into spatial, temporal and thematic aspects of the
selected studies:

1. Spatial aspects

1.1. In which regions and countries CORONA images were used?
1.2. What was the size of the study area?
1.3. How did CORONA images cover the study area (entire study area–wall-to-

wall mapping or a part of the study area using pre-defined sampling)?

2. Thematic aspects

2.1. What LULC categories were studied using CORONA images?
2.2. Which methods of LULC identification, interpretation and analysis were ap-

plied for CORONA images?

3. Temporal aspects

3.1. Was the LULC analysis a single moment (related to the 1960s-1970s, using only
CORONA images and other geospatial data for this time period) or was it
multitemporal?

3.2. If it is multitemporal, what time period was analyzed in the study?
3.3. If it is multitemporal, what geospatial data were analyzed alongside CORONA

images?

For question 2.1, we used 7 basic LULC categories from global land cover map-
pings [36] (forest, grassland, cropland, built-up, bare land and sparse vegetation; wetland
and water; and snow and ice). For question 2.2, referring to methods used for CORONA
imagery analyses, we were interested primarily in the division of manual versus automated
image interpretation, specifying classification approaches for the latter. For question 3.3,
regarding geospatial data, we grouped the data used in various studies into 7 classes:
topographic maps; low and medium spatial resolution satellite images (pixel size > 100 m;
LR images); high-resolution satellite images (pixel size 10–100 m, HR images); very high-
resolution satellite and aerial images (pixel size < 10 m; VHR images); LULC thematic
maps; field measurements; and others.

3. Results
3.1. Database Query

The query expression returned 154 items in total: 147 were research articles, 3 were
review papers and 4 were book chapters published since 1995. From the initial set of
154 research publications, we rejected 53 publications: 38 were not relevant to CORONA
imagery (e.g., related to research domains such as nanotechnology or astronomy), 8 papers
were in languages other than English (two Korean, five Chinese and one Italian), 4 were
book chapters, and 3 were review papers. Book chapters and review papers presented
overviews or technical aspects of the CORONA program mostly in the context of archaeo-
logical applications. In the remaining set of 101 research articles, we identified 54 papers
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dealing with LULC for further analyses (full list see Appendix A). The other 47 papers dealt
with digital elevation modeling and geomorphology (22), archaeological applications (19)
or technical aspects of the CORONA program (6) (Figure 1). Further on, we only analyze
and discuss the set of 54 LULC papers.
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Figure 1. SCOPUS query results and selection of the subset of LULC-related papers.

With respect to the papers examined in this study, 54 LULC-relevant papers were
published in 37 journals, with only 2 journals publishing more than 2 papers: Remote
Sensing (11 papers) and the International Journal of Remote Sensing (4). Publication years
varied, starting in 2000 (Figure 2). Recent years (2020, 9 papers; 2021, 10 papers; 2022,
6 papers; Figure 2) show increasing interest in using CORONA imagery to study LULC
compared to the first two decades after declassifying CORONA data in 1995.
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3.2. LULC Studies with CORONA Imagery
3.2.1. Spatial Aspects

The case studies were located in 36 countries (Figure 3, Appendix A). Most studies
were carried out in Russia, China, Central and Eastern Europe, the Middle East and Western
Africa. However, there are substantial gaps with respect to country-level geographical
coverage, for instance, in Western Europe.
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The size of the study area varied from a small area of around 2 km2 [37] to a large
area of approximately 484,000 km2 [30], and in one case, the size was even more than
1 million km2 [38]. In 34 case studies, CORONA imagery covered the entire study area
(wall-to-wall mapping) while 19 studies used CORONA to investigate a part of the study
area using a pre-defined sampling strategy. In one paper, a combined approach of a wall-
to-wall timberline mapping and analysis of forest cover based on 43 sample small plots
was used [39]. For 22 papers, the area of case study sites was not explicitly given, and we
estimated the areas based on maps published in the papers.

A wall-to-wall mapping of an entire study area using CORONA imagery was almost
three times more common than carrying out sampling when the size of the case study area
was less than 5000 km2. On the contrary, for study areas exceeding 5000 km2, a typical
approach was to sample part of the study area for analysis (Figure 4).
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3.2.2. Thematic Aspects

Most studies considered several LULC categories simultaneously, while 24 out of
54 papers focused solely on one single LULC category. Forests were the most frequently
studied LULC category, followed by wetlands and water bodies, bare land and sparse
vegetation land cover classes (Figure 5, Appendix A).
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With respect to the studies reviewed here, 35 studies used manual interpretation
(on-screen vectorization) and 13 studies used automated classification, while 6 studies
combined manual interpretation and automated classification to extract LULC information
from CORONA imagery (Appendix A). With automated approaches, forest and cropland
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were preferred over other LULC categories. We identified nine studies that used automated
classification to map the entire study area (wall-to-wall mapping). The study area sizes
in this subset of studies ranged from 8 km2 [40] to 44,957 km2 [41]. Among automated
approaches, object-based image analysis (OBIA) or various classification approaches using
the textural features of CORONA imagery were applied (11 out of 13 studies).

3.2.3. Temporal Aspects

Five studies were confined to single-moment analysis of LULC at the moment of
CORONA imagery acquisition (Appendix A). These studies were highly varied and in-
cluded forest cover mappings carried out in the 1960s–1970s [42], the use of panchromatic
images to generate enhanced multi-layer products [43], and testing land cover classification
methods [42,44,45].

In total, 49 papers represented a multitemporal approach (Appendix A), with CORONA
imagery being one of the datasets used in the time series spanning the entire study period.
In 42 studies, the beginning of the study period took place in the 1960s or 1970s, with
CORONA imagery being the oldest dataset used to assess LULC at the beginning of the
study period. Seven studies analyzed LULC changes before the launch of the CORONA
program using older data than CORONA, for instance, archival maps, historical or archival
records and older aerial photographs, with CORONA imagery being an intermediate
dataset of the entire time series. The study period extended in most cases into the 21st
century (46 studies), with only three studies considering LULC changes solely in the 20th
century (Figure 6).
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Multitemporal studies used various geospatial data to detect LULC and its changes
by comparing them with CORONA imagery (Figure 7). The dominant type of data used in
multitemporal studies were very high-resolution images of various observation programs,
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platforms and data archives. However, among various types of imagery, Landsat was the
most frequently used dataset that was analyzed jointly with CORONA (25 studies).
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Multitemporal studies focused on forest cover changes (deforestation, forest expan-
sion and degradation of dryland forests), urban expansion, changes in water bodies and
glacier extents. To study and detect forest cover changes, high-resolution imagery, such as
Sentinel-2, and Landsat as well as LULC thematic maps were mainly used [28,46]. Only
a small number of studies employed low-resolution satellite imagery; e.g., a moderate-
resolution imaging spectrometer (MODIS) was used to analyze changes in snow cover
and ice extent [47]. One interesting feature of using CORONA imagery is that the very
high-resolution imagery of HEXAGON and GAMBIT (the follow-ups of the CORONA
mission) was jointly used with CORONA to study changes in urban areas [5].

4. Discussion

Following the declassification of imagery acquired during the CORONA and subse-
quent missions in 1995, LULC studies using spy satellite image data started to increase
in numbers, reaching a total of 54 papers by the end of 2022, with case studies located in
different countries and covering all continents except for Australia and Antarctica; however,
one of the early research papers published in 1998 used CORONA imagery in a glacio-
logical study of the Ross Ice Shelf [48]. Quite interestingly, some studies that had been
included in the preliminary set relevant to the LULC analysis had to be removed after a
detailed inspection of the papers, as it revealed that they were using imagery acquired
in the CORONA program’s follow-up missions (HEXAGON) and not the imagery of the
CORONA program [49,50].

As the mission of CORONA was to provide images, especially of the Soviet Union and
China [51], these two countries were featured in most LULC studies in which CORONA
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data were used. Our results showed that except for present-day Russia and China,
CORONA imagery was also commonly used in India and Nepal; the Middle East (Iraq,
Iran and Syria); Northern and Western Africa (Egypt, Mali and Senegal); and Central and
Eastern Europe (Poland and Romania) [26,28,30,42–44,52–58]. Some of these countries (e.g.,
Poland and Romania) have good coverage of CORONA imagery due to the goals of the
program and the importance of the countries during the Cold War era [59–61]. One of the
reasons that probably pushed researchers to use CORONA in several countries listed here
is the poor availability of comparable aerial data that are not easily accessible via online
archives, although they exist [5]: for instance, aerial data for Poland acquired in the 1950s or
the 1960s. At the end of 2022, we could not find any LULC studies using CORONA imagery
in various countries that potentially provide good coverage of these data (post-Soviet
countries, such as, e.g., Ukraine or Belarus), suggesting that CORONA data have not been
fully explored within the LULC context yet. This is changing, however, with new studies
published for various post-Soviet areas, such as the Caucasus Mountains [24].

We noted two strategies for using CORONA imagery to study LULC and its changes
in the selected case study areas. In approximately two-thirds of the studies, with a case
study area that is typically less than 5000 km2, researchers attempted to find and later
analyze full CORONA coverage for the entire study area. The other papers, typically with
case study areas exceeding 5000 km2, used CORONA data only for selected fragments
of their study area. The reason for the focus on small case study areas or fragments
of large study areas is related to the size of a single CORONA strip (depending on the
camera, approximately 4000 km2) and its width (approximately 20 km), which pose various
difficulties related to geo-rectifying the strips in larger study areas [22]. Spatial distortions
in CORONA images are difficult to reduce and may result in significant errors when
overlaying and comparing them with contemporary very high-resolution satellite and aerial
images [44,62,63]. Our findings confirm that spatial distortions are a major problem when
using CORONA imagery, as the case studies mostly use the manual or semi-automated
rectification and georeferencing of CORONA data. While no fully automated approach
for this processing step was provided, Nita et al. [42] developed a CORONA imagery
orthorectification method by relying on the structure from motion technology and were
able to efficiently process more than 200 CORONA strips for a study area exceeding
200,000 km2. Mean absolute errors were less than 4 m in flat areas but increased to 10 m in
hilly areas and over 20 m in mountainous areas [42]. Song et al. [6] used the scale-invariant
feature transform to match CORONA imagery to Landsat data and received errors close to
one Landsat MSS pixel. In other studies, the reported root mean square errors were around
10 m [26,29,62].

Spatial distortions of CORONA images also contribute to difficulties in image mo-
saicking. In addition, receiving a seamless coverage of CORONA imagery for large areas is
extremely demanding due to radiometric differences, acquisition frequency and cloud-free
image availability, forcing researchers to analyze CORONA imagery rather than on a one-
to-one basis [64]. Leempoel et al. [65] and Gurjar and Tare [66] in their research mentioned
that these specific problems in using and processing declassified CORONA images are
quite challenging. A frequent approach, therefore, is to use CORONA imagery as a sample
that covers only a part of the larger area, focusing, e.g., on specific objects or locations of
interest. For instance, Marzolff et al. [67] used a sampling strategy to study changes in
dryland woodlands in Morocco at the tree level, while Song et al. [30] employed sampling
to assess forest cover change rates in Sichuan Province, China, over an area of 484,000 km2.

One possibility to increase the use of CORONA imagery in the research community is
to provide access to geometrically corrected imagery. The CORONA Atlas & Referencing
System, developed by the University of Arkansas’ Center for Advanced Spatial Technolo-
gies (CAST) [68], carried out the orthorectification of a subset of CORONA imagery and
provided free public access to the georeferenced dataset. The imagery covered mostly the
Middle East, and while it was primarily dedicated to archaeological studies [63], it was
also used in other domains of science. For instance, Saleem et al. [41] used the CORONA
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Atlas to map LULC in the 1960s in northern Iraq for the study area exceeding 40,000 km2,
for which they produced a wall-to-wall LULC map from images available in the CORONA
Atlas archive.

We found out that forests were the most frequently studied LULC category. Forests
were studied in different climatic zones such as central Poland [28], southern Morocco [67],
western Russia [52], Canada [69], southeastern China [30], Norway [39] or Brazil [6],
which show that CORONA, due to its appropriate high resolution, was good enough to
capture extent and properties of various forest types in diverse environmental settings.
Another frequently studied category is built-up areas in urban and peri-urban settings. For
example, Shalaby et al. [55] studied the directions of urban expansion and confirmed that
the high spatial resolution of declassified images was sufficient to accurately map initial
morphologic features. Pan et al. [70] monitored the urban expansion of Xining City in China
and confirmed the capability of CORONA and its resolution to quantify urban expansion.

In the analyzed studies, manual interpretation (on-screen vectorization) was a domi-
nant approach used to classify LULC based on CORONA images. Manual interpretation
is preferred over automated approaches due to the risk of errors in the latter because of
poor quality and the mismatching of trained samples [26]. A minority of studies attempted
to use automated classification methods. As already noted, OBIA or textural features of
CORONA imagery were the most commonly used, with random forests (RF) and sup-
port vector machine (SVM) algorithms commonly implemented in image classification.
For instance, Song et al. [30] applied various textural features of CORONA imagery and
SVM to assess forest cover in the 1960s in a large-scale study of Sichuan Province, China.
They confined the analysis using stratified random sampling based on forest cover and its
changes occurring since the 1970s, which were assessed using Landsat data. Song et al. [6]
used a similar approach to study forest cover changes in Eastern United States and Central
Brazil. Chen et al. [71] proposed supervised LULC classification using a combination of the
textural and spectral features of CORONA and SPOT images to study long-term changes
in the wetlands of Taiwan. Deshpande et al. [44] employed convolutional neural networks
and RF to receive a land cover map with five categories, and the latter approach also used
the textural features of CORONA imagery. Among studies using automated approaches,
most studies report land cover classification accuracies exceeding 90%, especially in the
case of binary classifications, such as forest–non-forest, or classifications with a low number
of land cover classes [6,26,30,52]. In specific cases, accuracies may drop below 90% for some
land cover classes. Chen et al., 2020 [71], observed low user accuracy with respect to pond
delimitation (below 60%), while Agapiou in 2021 [45] found that the accuracy for some
land cover categories, such as vegetated areas and salt lakes, was below 90%, although the
overall accuracy of land cover classification reached 94%.

Quite interestingly, while OBIA seems to be well-suited for interpreting very high-
resolution CORONA data, it was used in less than 20% of all considered studies, prevailing,
however, among studies preferring the automated approach. In addition, for approaches
using a combination of automated and manual methods, image segmentation frequently
preceded the visual interpretation of segments [72,73]. One of the reasons for not using
OBIA for processing CORONA data even more frequently is the need to maintain high
geometric accuracy with respect to the segmentation outputs that typically require working
with orthoimages, which are quite demanding in the case of CORONA. It was also relatively
rare to use additional data, e.g., field measurements or aerial imagery, during that period
to overcome the limitations of CORONA imagery interpretation [43,66,74]. For instance,
Andersen and Krzywinski [74] studied 19 sites, each containing a minimum of 30 individual
trees that were mapped and measured. They interpreted features located in the CORONA
image and compared the outputs to trees recorded in the field.

We found that most of the studies utilizing CORONA imagery are multitemporal,
providing a comparison of various geospatial data to detect spatial changes in LULC in
multitemporal analyses. The low cost and high spatial resolution of CORONA images
offer a fairly effective and straightforward solution for studying long-term LULC evolu-
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tion, especially in the case of slow and gradual forest cover expansion [64]. Only seven
studies assessed LULC and its changes before the operation of CORONA using historical
records, archival maps and older aerial imagery. For example, Jabs-Sobocińska et al. [26]
studied post-agricultural forest expansion in the Polish Eastern Carpathians in a multi-
temporal approach from 1944 to 2019 using war-time German aerial photography dated
1944, CORONA and Sentinel-2 imagery. Due to the high visibility of forest edges in images,
CORONA was used specifically to map abandoned agricultural lands that transformed
later into forests in the region of post-war resettlements and depopulation. The study of
Chen et al. [71] on wetlands and water bodies (irrigation ponds) in Taoyuan City, Taiwan,
included two periods: 1904–1960s and 1970–2000. For the first period, the authors used the
Taiwan Ancient Land Map Digital Archive (TALM) created in 1904 and CORONA imagery
acquired in 1969, while for the latter period, CORONA imagery and SPOT-5 were acquired
in 2000.

For the majority of multitemporal case studies (49), CORONA imagery remained the
earliest dataset used in the time series. In the analyzed studies, CORONA imagery was
used alongside a variety of other geospatial data in various combinations. One of the
CORONA features enabling the comparison of CORONA imagery to other geospatial data
is its high spatial resolution (1.8–7.5 m), although the spatial resolution at the edges of an
image could be much lower than in its central part [43]. In various LULC studies carried
out with CORONA imagery, the researchers preferred data with a spatial resolution similar
to that of CORONA in order to obtain a comparable scale of measurement, the same sample
size and identical geometry [75]. Therefore, in LULC change studies, CORONA images
were most frequently compared with very high-resolution satellites or aerial imagery.
DeWitt et al. [76] used CORONA imagery jointly with very high-resolution remote sensing
data, including IKONOS, WorldView-1 and GeoEye-1, to analyze local-scale LULC changes.
Spiekermann et al. [77] used RapidEye imagery, offering images with spatial resolutions
similar to CORONA (5 m) that are suitable for studying bare land and sparse vegetation
and forests, while Racoviteanu et al. [47] used RapidEye and WorldView-2 to study glacier
changes in Nepal. It was also common to compare CORONA data with high-resolution
imagery, such as various Landsat satellites or Sentinel-2. For instance, Htwe et al. [46] used
Landsat 5 and 7 data from 1989 to 2009 to detect LULC changes related to the transformation
of farming systems in Myanmar. Saleem et al. [41] used Landsat Multispectral Scanner,
Thematic Mapper, Enhanced Thematic Mapper Plus and Landsat Data Continuity Mission
imagery in comparison with CORONA imagery to map and quantify long-term LULC
changes in northern Iraq.

The variety of geospatial data used in various studies confirms that CORONA is
potentially comparable to a range of recently developed datasets and may be a valuable
dataset in LULC change detection studies. Various difficulties related to the processing
chain, however, require that CORONA imagery is employed in a general framework
of qualitative, post-classification comparison methods [78,79], with independent LULC
thematic maps derived from various datasets and later compared to each other using
simple thematic map overlays.

Several factors ought to be considered when different datasets are combined to study
LULC and its changes, including the availability and quality of geospatial data, user ex-
periences and proficiency of the procedures [80]. Although CORONA imagery is widely
used by researchers due to the various advantages it offers, there are also several draw-
backs reported in the analyzed papers related to data acquisition and data quality that
affect the choices of processing methods. The lack of digital metadata is another factor
hampering the use of CORONA in effective large-area mapping [67]. It increases the diffi-
culties of georeferencing, frequently referred to as a time-consuming process that requires
available ground control points [6,8,26,28–30,44,64]. The automated approach to classify-
ing CORONA imagery likewise has many difficulties with respect to collecting training
samples, characteristics of various phenomena, spectral limitations and radiometric dis-
tortions of CORONA [6,66]. Overall, variations in the quality and temporal coverage of
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the CORONA imagery collection [64], geometric distortions [30,43,62,63,65] and resultant
difficulties in mosaicking [62] have caused researchers to reduce the use of these images.

5. Conclusions

In this overview, publications related to CORONA imagery were systematically ana-
lyzed. Although our study provides evidence of the increasing usage of CORONA imagery,
we note that several drawbacks prevent their wider application, with the most important
barriers being a lack of georeferencing and highly variable radiometric quality. These short-
comings compel researchers to either limit the size of the case study area or use various
sampling strategies to cover the study area with a sufficient amount of data, thus decreasing
the effort dedicated to georeferencing. Moreover, researchers prefer manual interpretation
methods, especially for relatively small areas, over automated classification approaches that
may result in low accuracy and misclassifications. Nowadays, the potential of CORONA
imagery is becoming increasingly known compared to the past. While our focus was
on LULC, roughly 40% of studies that used CORONA imagery were dedicated to other
fields such as terrain mapping and analysis, frequently focusing on glacier mapping and
mass balance assessment, or archaeology, which was focused upon mostly in the Middle
East. However, LULC-related studies prevail, and our analysis shows that the outputs of
the CORONA program are suitable sources for analyzing LULC globally, encompassing
various land cover categories (mostly forests, wetlands and water and built-up areas) and
offering high spatial resolution data for the 1960s and the early 1970s. The declassified
imagery has particular potential for detecting and analyzing historical forest changes, as
forest cover change is a long-term process requiring historical depth offered by data such as
CORONA [26,28,30]. From the perspective of LULC change monitoring, the combination of
various datasets with different spectral and spatial resolutions with declassified CORONA
imagery was found to be useful, providing a reasonable accuracy with respect to LULC
change detection. CORONA imagery was mostly compared to high or very high-resolution
data (aerial photographs and satellite imagery) and was used primarily to extend LULC
time series to the 1960s, especially in areas with poorly accessible aerial imagery with
comparable quality.
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Appendix A

Table A1. List of 54 papers included in this review.

Papers Country(ies) Area sq km Mapping Extent Method LC Classes Temporal Aspect

[45] Agapiou, A., 2021. Cyprus 40 * Wall to wall Automated Built-up, bare land and sparse
vegetation, forest, wetland and water Single moment

[29] Andersen, G.L., 2006. Egypt 10,000 * Sampling Manual Bare land and sparse vegetation Multi-temporal

[74] Andersen, G.L.; Krzywinski, K., 2007. Egypt 10,000 * Sampling Manual Bare land and sparse vegetation Multi-temporal

[81] Ardelean, F. et al., 2020. Russia 200 Sampling Manual Wetland and water Multi-temporal

[82] Bhambri, R. et al., 2012. India 4 * Wall to wall Manual Snow and ice, bare land and sparse
vegetation Multi-temporal

[53] Bolch, T. et al., 2022. Nepal 2000 Wall to wall Manual Snow and ice, wetland and water Multi-temporal

[54] Brandt, M. et al., 2014. Mali, Senegal 5000 * Sampling Manual Bare land and sparse vegetation,
grassland, cropland, forest Multi-temporal

[72] Brinkmann, K. et al., 2012. Niger, Nigeria, Mali,
Burkina Faso 4200 * Wall to wall Both

Built-up, cropland, grassland, wetland
and water, forest, bare land and sparse
vegetation

Multi-temporal

[71] Chen, Y.-C. et al., 2020. Taiwan 900 Wall to wall Automated Wetland and water, cropland, built-up Multi-temporal

[37] Chmielewski, S. et al., 2020. Poland 2 * Wall to wall Both
Built-up, forest, grassland, wetland and
water, cropland, bare land and sparse
vegetation

Multi-temporal

[83] Conesa et al., 2014. India 20,000 * Sampling Manual Built-up Multi-temporal

[44] Deshpande, P. et al., 2021. India 43 * Sampling Automated Bare land and sparse vegetation,
cropland, wetland and water, built-up Single moment

[76] DeWitt, J.D. et al., 2017. Côte d’Ivoire 90 * Sampling Manual Bare land and sparse vegetation Multi-temporal

[8] Dittrich, A. et al., 2010. China 482 Wall to wall Manual Built-up, cropland, grassland, wetland
and water Multi-temporal

[5] Fekete, A., 2020. Peru 6 * Wall to wall Manual Built-up Multi-temporal

[69] Franklin, S.E. et al., 2005. Canada 717.9 Wall to wall Manual
bare land and sparse vegetation,
wetland and water, forest, grassland,
snow and ice

Multi-temporal



Remote Sens. 2023, 15, 2793 14 of 19

Table A1. Cont.

[84] Ganyushkin, D.A. et al., 2018. Russia, Mongolia,
China 2600 Wall to wall Manual Snow and ice Multi-temporal

[66] Gurjar, S.K.; Tare, V., 2019. India 22,400 Wall to wall Both
Wetland and water, cropland, grassland,
bare land and sparse vegetation, forest,
built-up

Multi-temporal

[85] Hamandawana, H. et al., 2005. Botswana 60,000 * Wall to wall Manual Wetland and water Multi-temporal

[86] Herrmann, S. M. et al., 2013. Senegal 26,000 Sampling Manual Forest Multi-temporal

[46] Htwe, T. et al., 2015 Myanmar 2115 Wall to wall Manual
Forest, bare land and sparse vegetation,
cropland, built-up, wetland and water,
grassland

Multi-temporal

[26] Jabs-Sobocińska, Z. et al., 2021. Poland 2212.44 Wall to wall Automated Forest, cropland Multi-temporal

[87] Jelil Niang, A. et al., 2020. Saudi Arabia 10 * Wall to wall Manual Built-up Multi-temporal

[58] Klimetzek, D et al., 2021. Romania 20.40 Wall to wall Manual Forest Multi-temporal

[40] Lasaponara, R., et al., 2017. Egypt, Iran Egypt: 42 *
Iran: 8 * Wall to wall Automated Built-up, cropland, wetland and water,

bare land and sparse vegetation Multi-temporal

[65] Leempoel, K. et al., 2013. China 200 Wall to wall Manual Wetland and water, cropland, forest Multi-temporal

[88] Lele, N. et al., 2015. India 5.4 Wall to wall Manual Grassland Multi-temporal

[89] Łuców, D. et al., 2020. Russia 5.44 Wall to wall Both Wetland and water, built-up, forest,
cropland Multi-temporal

[90] Mal, S. et al., 2019. India 250 * Sampling Manual Snow and ice, bare land and sparse
vegetation Multi-temporal

[67] Marzolff, I. et al., 2022. Morocco 10,000 * Sampling Manual Forest Multi-temporal

[91] Mergili, M.P. et al., 2013.
Tajikistan,
Kyrgyzstan,
Afghanistan

98,300 Wall to wall Manual Wetland and water Multi-temporal

[64] Mészáros, M. et al., 2014. Serbia 230 Wall to wall Manual Forest Multi-temporal

[73] Munteanu, C. et al., 2020. Kazakhstan 60,000 Sampling Both Grassland, cropland, Multi-temporal

[57] Nistor, C. et al., 2021. Romania 228 Wall to wall Manual
Built-up, bare land and sparse
vegetation, forest, wetland and water,
grassland, cropland

Multi-temporal
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[42] Nita, M. D. et al., 2018. Romania 212,000 Wall to wall Manual Forest Single moment

[70] Pan, X. et al., 2021. China 231 * Wall to wall Automated Built-up Multi-temporal

[47] Racoviteanu, A.E. et al., 2022. Nepal 1971 Wall to wall Manual Snow and ice, wetland and water Multi-temporal

[39] Rannow, S., 2013. Norway 8000 Wall-to-wall and
sampling Manual Forest Multi-temporal

[52] Rendenieks, Z. et al., 2020. Russia, Latvia 22,209 Sampling Automated Forest Multi-temporal

[62] Rigina, O., 2003. Russia 2880 Wall to wall Automated Forest, bare land and sparse vegetation,
built-up, wetland and water Multi-temporal

[41] Saleem, A. et al., 2018. Iraq 44,957.1 Wall to wall Automated
Wetland and water, built-up, forest,
bare land and sparse vegetation,
cropland

Multi-temporal

[43] Saleem, A. et al., 2021. Iraq, Iran, Syria 2896.3 Sampling Both Built-up, cropland, forest, bare land and
sparse vegetation Single moment

[28] Shahbandeh, M. et al., 2022. Poland 451.81 Wall to wall Manual Forest, cropland, grassland Multi-temporal

[55] Shalaby, H. et al., 2022. Egypt 300 Wall to wall Manual Built-up Multi-temporal

[63] She, J. et al., 2014. China 5518 Sampling Manual Snow and ice Multi-temporal

[6] Song, D.-X. et al., 2015. USA, Brazil 2000 Sampling Automated Forest Multi-temporal

[30] Song, D.-X. et al., 2021. China 484,000 Sampling Automated Forest Multi-temporal

[77] Spiekermann, R. et al., 2015. Mali 3600 Wall to wall Automated Forest, bare land and sparse vegetation Multi-temporal

[56] Stăncioiu, P.T. et al., 2021. Romania 80,000 * Sampling Manual Forest Multi-temporal

[92] Stokes, C.R. et al., 2006. Russia, Georgia 3000 * Sampling Manual Snow and ice Multi-temporal

[61] Stratoulias & Grekousis, 2021. Bulgaria 1600 * Wall to wall Automated Built-up Single moment

[93] Tappan, G. Gray, et al., 2000 Senegal 2133.55 Wall to wall Manual
Bare land and sparse vegetation,
wetland and water, forest, grassland,
cropland

Multi-temporal

[38] Victorov, A. et al., 2022. Russia, USA, Canada >1 mln * Sampling Manual Wetland and water, bare land and
sparse vegetation Multi-temporal

[21] Zhang, Y. et al., 2020. China 6 * Wall to wall Manual Forest Multi-temporal

* denotes the study area's size approximated using maps and data published in the study.
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