
DECISION SUPPORT SYSTEM FOR PULL REQUESTS REVIEW USING

PATH-BASED NETWORK PORTRAIT DIVERGENCE AND VISUALIZATION

A Thesis

IN

Computer Science

Presented to the Faculty of the University
of Missouri–Kansas City in partial fulfillment of

the requirements for the degree

MASTER OF SCIENCE

by
VASIM SHAIKH

M.S., University of Missouri - Kansas City, USA, 2022

Kansas City, Missouri
2022

c© 2022

VASIM SHAIKH

ALL RIGHTS RESERVED

DECISION SUPPORT SYSTEM FOR PULL REQUESTS REVIEW USING

PATH-BASED NETWORK PORTRAIT DIVERGENCE AND VISUALIZATION

Vasim Shaikh, Candidate for the Master of Science Degree

University of Missouri–Kansas City, 2022

ABSTRACT

Pull requests are widely used in open-source and industrial environments to con-

tribute and assess contributions. Unlike the typical code review process, pull requests pro-

vide a more lightweight approach for committing, reviewing, and managing code changes.

Pull request code reviews also serve multiple objectives, including detecting problems in

code, giving a venue to discuss code contributions, and supporting the easy integration of

external contributions by project maintainers. The code changes and tests are written for a

specific work item are contained in a pull request. Previous studies have reported that pull

request review is crucial for software development and that reviewers do not spend more

time on test files than on code files. At the same time, code reviewers are concerned that

the tests that accompany the code modifications are adequate and cover all possible paths.

The purpose of this research is to determine whether the test changes that go along with

the code changes match the structural changes made in the Pull Request. The structural

iii

changes are determined using recent network comparison breakthroughs in prior work

with GraphEvo. We also determine whether or not the visual representation and software

metrics can support the software review process. We conducted a case study of 14 Java

open-source projects, analyzing thousands of lines of code quality issues in 627 pull re-

quests. We calculated the class level metrics, including network portrait divergence for

each Pull request with and without change. In addition, for each pull request, we counted

the number of existing test cases that failed due to the modification. Furthermore, correla-

tions were investigated between class-level metrics, including network portrait divergence

and tests that failed in pull requests.

iv

APPROVAL PAGE

The faculty listed below, appointed by the Dean of the School of Computing and Engi-

neering, have examined a thesis titled “Decision Support System for Pull Requests Review

Using Path-based Network Portrait Divergence and Visualization,” presented by Vasim

Shaikh, candidate for the Master of Science degree, and hereby certify that in their opin-

ion it is worthy of acceptance.

Supervisory Committee

Yugyung Lee, Ph.D., Committee Chair
Department of Computer Science Electrical Engineering, UMKC

Sejun Song, Ph.D.
Department of Computer Science Electrical Engineering, UMKC

Ye Wang, Ph.D.
Department of Communication & Journalism, UMKC

Gharib Gharibi, Ph.D.
TripleBlind, Inc., Kansas City, MO

v

CONTENTS

ABSTRACT . iii

ILLUSTRATIONS . viii

TABLES . x

ACKNOWLEDGEMENTS . xi

Chapter

1 INTRODUCTION . 1

1.1 Overview . 1

1.2 Motivation . 2

1.3 Problem Statements . 3

1.4 Summary of Contributions . 4

1.5 Structure of Thesis . 6

2 RELATED WORK . 9

2.1 Overview . 9

2.2 Pull Request and Test Coverage . 10

2.3 Pull Request Review . 18

2.4 Visualization in Software Engineering 21

2.5 Pull Request Quality and Characteristics 25

3 METHODOLOGY . 29

3.1 Motivation . 29

vi

3.2 Approach . 31

3.3 Step 1 - Pull Request Mining . 35

3.4 Step 2 - Code Extraction . 35

3.5 Step 3 - Generation of Call Graphs . 36

3.6 Step 4 - Extraction of Execution Paths 37

3.7 Step 5 - Generation of Software Metrics 37

3.8 Step 6 - Pull Request Review Decision 38

4 RESULTS AND EVALUATIONS . 42

4.1 Overview . 42

4.2 Dataset . 42

4.3 Configuration/Setup . 46

4.4 Software and Hardware . 47

4.5 Implementation . 47

4.6 Experimental Design . 48

4.7 User Study . 60

4.8 Application Demo . 66

5 CONCLUSION . 72

5.1 Overview . 72

5.2 Conclusion . 72

5.3 Future Work . 73

REFERENCE LIST . 74

VITA . 79

vii

ILLUSTRATIONS

Figure Page

1 Pull Request Process . 10

2 Relation Between Pull Request and Review Time 12

3 Code Review Process . 17

4 Pull Request Example . 20

5 Code to Graph . 22

6 GraphEVO System Overview . 24

7 Visualization of Process Flow with GraphEVOPR 32

8 Typical Pull Request Review Process . 32

9 Pull Request Review Process with GraphEVOPR 33

10 GraphEVOPR High Level Design . 33

11 NPD Vs Complexity Clustering using Weka Tool 39

12 Static Code Metric . 41

13 GraphEVOPR Tool . 49

14 Defect4j-repair Math10 DCCompiler Class 51

15 Defect4j-repair Math10 DCCompiler Class after Changes 51

16 Defect4j-repair Lang61 StrBuilder Class 52

17 Defect4j-repair Lang61 StrBuilder Class after Change 53

18 Defect4j-repair Lang61 StrBuilder Class GraphEVOPR 53

viii

19 Defect4j-repair Lang48 EqualBuilder Class 54

20 Defect4j-repair Lang48 EqualBuilder Class after Change 55

21 Defect4j-repair Lang48 EqualBuilder Class GraphEVOPR 55

22 Dagger Pull Request Number 7 . 57

23 Dagger Pull Request Number 8 . 57

24 Incubator-shenyu Pull Request Number 17 58

25 Sample of Pull Request Decisions . 59

26 Likert Scale Representation of Survey Responses 65

27 Survey Participants Industry Experience 65

28 GraphEVOPR in Pull Request Review Process 66

29 GraphEVOPR Landing Page . 67

30 GraphEVOPR Load Project Page . 68

31 GraphEVOPR Result View . 69

ix

TABLES

Tables Page

1 Pull Request Characteristics . 14

2 Code Complexity and Software Metric Classification 40

3 Projects and Pull Request . 44

4 Selected Projects: Project and Description Part I 45

5 Selected Projects: Project and Description Part II 46

6 Pull Request Experiment Details . 48

7 Software Metric Change for DSCompiler 50

8 Software Metric Change for StrBuilder 52

9 Software Metric for Dagger Pull Requests 7 and 8 58

10 Software Metric for Incubator-shenyu Pull Requests 16 and 17 59

11 Description of Tasks for User Study . 71

12 User Study Questions . 71

x

ACKNOWLEDGEMENTS

This thesis would not have been possible without the extensive support, care, and

advice provided from those around me. I would like to start by thanking my academic

advisor Dr. Yugyung Lee for introducing me to the world of Machine Learning, and

welcoming me into their research group with open arms. Through them, I have learned

an immense amount, and have been able to build my skill set practically from the ground

up. Thank you for your patience, knowledge, and direction. For answering every question

I have thrown your way, and pushing me to be a better researcher. Through you, I have

found a passion for Deep Learning, and look forward to becoming more and more well-

versed in it as my career progresses.

Next, I would like to thank my support system: my wife and daughter. I would

be utterly lost without all of your encouragement, kindness, and care for my well being.

Your support has held me up through thick and thin, and I deeply appreciate how each

and every one of you has opened yourselves to me for advice, assistance, and emotional

support. Last, I want to thank Vijay Walunj for allowing me to be part of this research

and guiding me on every single step.

CHAPTER 1

INTRODUCTION

1.1 Overview

A variety of code review methodologies have been put forth in the past and are

frequently used by open-source and for-profit enterprises. Code reviews, which involve

manual code inspection by various developers, assist businesses in lowering the amount

of errors and raising the caliber of their software. When developers used to plan review

sessions to examine the code line by line, code reviews were frequently conducted in that

manner. Today, both the business community and academics concur that code inspection

helps to lower the amount of flaws. The time and effort needed to carry out code inspec-

tions, however, occasionally prevents their widespread use. Companies have been able

to adopt more lenient code review practices thanks to the blessing of new tools and pro-

cedures. Several companies, including Facebook, Google, and Microsoft, perform code

reviews employing tools such as Gerrit1 or the pull request mechanism provided by Git.

We concentrate on pull requests in the framework of this thesis. Pull recommen-

dations give developers a straightforward way to contribute to projects, and many well-

known projects, both open-source and for-profit, use them to evaluate the efforts of var-

ious developers. Researchers have concentrated on mechanisms for pull requests [1, 2],

examining several areas, such as the review procedure, the impact of code reviews on

1https://www.gerritcodereview.com/

1

continuous integration builds, the assignment of pull requests to different reviewers, and

the circumstances under which they are accepted. Few studies have looked into whether

developers accept pull requests based on quality considerations. The reputation of the

developer who submitted the pull request is reportedly one of the most crucial acceptance

factors, according to many studies. To our knowledge, however, no studies have looked

into whether the caliber of the code sent in a pull request affects whether this pull request

is accepted [3]. As a crucial component of pull requests, code reviews, we firmly believe

that pull requests containing subpar code should typically not be allowed.

This research aims to determine whether the test changes that go along with the

code changes match the structural changes made in the Pull Request. The structural

changes are determined using recent network comparison breakthroughs in prior work

with GraphEvo [4]. We conducted a case study of 14 Java open-source projects, ana-

lyzing thousands of lines of code quality issues in 627 pull requests. We calculated the

class-level metrics, including network portrait divergence for each Pull request with and

without change. In addition, for each pull request, we counted the number of existing

test cases that failed due to the modification. Furthermore, correlations were investigated

between class-level metrics, including network portrait divergence and tests that failed in

pull requests [5].

1.2 Motivation

A well-liked method of contemporary collaborative software development that

is housed on GitHub is known as pull-based development. A distributed development

2

paradigm can review a pull request before being merged into the main branch or repos-

itory. A pull request takes into account new functionality, bug fixes, and maintenance

requests from both the integrator and the contributor.

It appears that numerous empirical research is carried out to ascertain the process

of pull request evaluation. Furthermore, little research has been done to our knowledge

to evaluate the quality and preparedness of pull requests. Numerous pull requests made

at once, according to a study, can cause software systems to include problems. Thus,

a rigorous examination of the pull requests is necessary [6]. So, the topic of whether

the code review process improves the quality of the code is consequently one that merits

further investigation.

1.3 Problem Statements

The pull request review process is impacted by a variety of factors, and open pull

requests are frequently ignored.

• Lack of Time - Study shows that one of the top 5 complaints that engineering

leaders have reported is that their developers can’t review the code because lack of

time. Developers may be busy with their own tasks and sometime needs multiple

follow ups to get the code reviewed. If it is a simple change then review can be

faster. However, if it’s a complex change them it may take minutes to few hours to

review the code change and it’s impacts.

• Lack of Skills - The experienced reviewers are the ones who are seniors on the

team. Usually, in a team, a pull request raised by a new developer will be reviewed

3

by the most experienced team member, whereas vice versa is not valid. Nowadays,

code review skill is as essential as the quality of code a developer can write.

• Lack of Context - Some developers have a propensity to automatically disqualify

anyone who shows even the slightest initial unfamiliarity with the modifications

they are presenting. Ignorance of code base or features will have a direct impact

on confidence. A developer may be reluctant to review a pull request for various

reasons, but one of them is that they are concerned about publishing or speaking

inappropriately.

1.4 Summary of Contributions

This section describes the goal of the thesis and the non-functional and functional

requirements for creating a tool that combines the information of code changes and test

coverage changes. Also, it generates the call graph visualization and software metrics to

support the pull request review process.

1.4.1 GraphEVOPR

The tool GraphEVOPR is what this thesis is made of. A pull request review aid

tool GraphEVOPR helps developers become more aware of changes to the code and

changes to test coverage simultaneously. By merging data into a single report, it may

be utilized to track the co-evolution of code modifications and test code changes.

Open-source projects should have the means to verify the pull requests submitted

for their projects in light of GitHub’s rising popularity. The best tool for use in version

4

control systems is GraphEVOPR. This thesis aims to describe the functionality of such

a tool and the structure of the generated reports. As a result, the tool will be used to

implement and analyze real-world open-source projects.

1.4.2 Non-Functional Requirements

A desired execution of the tool has a few non-functional constraints. The instru-

ment must be simple to use, first and foremost. This means running it shouldn’t require

any particular setup or additional dependencies. The program must be able to be config-

ured to run for several projects and folders; therefore, a setup should be possible. The

configuration of the two project versions that should be compared and the location of the

generated reports should be covered by these variables. The tool must support both ver-

sions to compare them. These versions must build without errors, and a test suite must be

run consistently.

1.4.3 Functional Requirement

In this section functional requirements of the tool are described, which are within

the scope of this thesis :

• We should be able to Compare source code for changes in a pull request.

• We should be able to identify the role tests play in Pull Request review.

• We should be able to check the influence of path-based visualization aid on a soft-

ware Pull request review process.

• We should be able to construct a report of software changes and respective tests.

5

1.5 Structure of Thesis

1.5.1 Chapter 2: Related Work

In dispersed software teams, the pull based development model which is made

possible by git and made popular by collaborative coding platforms is extensively uti-

lized like BitBucket2, Gitorius3, and GitHub4. Since anyone can raise a pull request to

any repository, this model lowers the entry barrier for potential contributors. Still, it also

burdens integrators, who must review and incorporate proposed changes into the main

development line while also trying to keep up with the influx of pull requests. The mod-

ern pull request visualization means that the code or software change and its impact on

the software are illustrated graphically. The pull request visualization provides additional

code information and helps a faster review process. This visualization helps reduce the

cycle time and reveals the software structure or architectural issues before merging the

code. This chapter is to elaborate more on how the software code structure is and un-

derstand more about the interaction of software code components with the help of the

GraphEVO tool.

To compare networks utilizing their portraits, portrait divergence was recently

developed. Portrait divergence is based on information theory, contrary to the prior ad hoc

comparison measures, and offers a coherent interpretation of the divergence metric. As

a result, comparing the networks based on their different topology structures is possible

rather than assuming that they are built on the same set of nodes. Portrait divergence is

2https://bitbucket.org/
3https://gitorious.org/
4https://github.com/

6

also network invariant, making it computationally more efficient than the present pricey

node matching optimization techniques. It should be listed that this method can handle

both directed and undirected networks equally.

1.5.2 Chapter 3: Methodology

We follow the study design in this chapter to determine the quality of pull requests

before merging and the potential of using the static analysis technique. First, we selected

the open-source java project repository, including multiple pull requests with code and test

changes. We then pulled the code using two different methods 1) using jar files prePR and

post PR, 2) an API to pull the source code, for further processing in the GraphEvoPR tool.

We are mainly interested in the software code change, how it is impacting the structure of

software, and respective test changes. Second, we run the source code in the GraphEvoPR

tool and generate metadata related to class paths, software metrics, and network portrait

divergence. Third, we then apply static analysis techniques to evaluate the code change

and its impact along with respective test changes. Finally, based on the evaluation, we

determine the level of pull requests. Is it reasonable to accept or reject, and what’s the

impact of the code change. And can it support the pull request review process.

1.5.3 Chapter 4: Result and Evaluation

GraphEvo examines the call graphs created in the preceding phase for each soft-

ware release to quantify and illustrate the program structure. To identify changes in the

structure, we first examine meaningful graph metrics, such as the number of nodes and

edges, the average degree of the network, the clustering coefficient, the dimension of the

7

graph, and its modularity. Second, we use the Portrait Divergence approach to compare

software versions based on their portraits. The main objective is to show that software

call graphs may be used to measure and visually portray software evolution using graph

metrics and portrait divergence.

1.5.4 Chapter 5: Conclusion

We have studied and analyzed 14 open source java projects. From these 14

projects, we deep-dived into 627 plus pull requests and compared different software met-

ric data. Primarily, we compared the network portrait divergence data from previous and

current pull requests to understand the impact of code change. We further analyzed the

behavior of tests related to the code change.In this chapter, we elaborate on the conclusion

and future work.

8

CHAPTER 2

RELATED WORK

2.1 Overview

Users with read access can review and comment on the changes proposed in a pull

request once it has been open. Additionally, developers can make precise changes to code

lines that the author can implement right from the pull request. In public repositories,

users can, by default, write reviews that accept or demand changes to a pull request.

Owners of organizations and repository administrators can restrict who can submit and

approve pull requests or make change requests. The review of a pull request can be

requested from a specific individual by repository owners and collaborators. Members of

the organization may also ask a team with read access to the repository to review a pull

request [7].

Developers can designate a portion of the team to be automatically assigned in-

stead of the entire squad. Reviews enable discussion of suggested modifications and

ensure that the changes adhere to other quality requirements and the repository’s con-

tributing guidelines. In a CODEOWNERS file, developers can specify which teams or

individuals control particular categories or sections of code. A person or team will auto-

matically be asked to evaluate code with a stated owner when a pull request alters it [8].

Fig. 1 shows the end to end process of a pull request. The code contributor creates

a copy from the source code, works on changes, commits the changes in the local branch,

9

Figure 1: Pull Request Process

and submits the pull request. If the changes are approved, those get pulled into the main

version of the code base. Further details are in Section 2.2.3.

2.2 Pull Request and Test Coverage

2.2.1 Development turnover

Fast development turnover, or the interval between the submission of a pull re-

quest and its approval in the project’s central repository, is one of the promises made

by the pull request paradigm. The time to submit 50 of the contributions to the central

project repository spans from a few hours to less than three days, according to research

10

on the patch submission process in projects like Apache and Mozilla. According to these

figures, pull-based development via pull requests might be more effective than conven-

tional email-based patches. Additionally, rather than the qualities of the pull request itself,

project-related factors influence the turnaround time [9]. This means that the project must

primarily fine-tune its methods (namely, testing transparency and coverage) for quicker

turnover1, see Fig. 2.

2.2.2 Managing pull requests

In of the study researches found out that interviewers rank managing pull requests

as the most crucial project task. According to researcher Dabbish, project managers in-

ferred information about the caliber of a code contribution based on the contribution’s

style, effectiveness, thoroughness (e.g., was testing included?), and the submitter’s prior

work. However, they do not appear to have as big of an impact on the merging selection

process as other inspection points cited by project managers (testing code in pull requests,

track record). To process pull requests quickly, the developer’s track record is crucial [10].

Furthermore, they discovered that roughly 53 percent of rejected pull requests are denied

due to the distributed nature of pull-based development.

2.2.3 How pull request work

A pull request enables developers to add new functionality or fix bugs without

changing the main project code or the user interface. They can write and test code mod-

ifications locally in this way without worrying that they’ll break the entire product. Pull

1https://smallbusinessprogramming.com/optimal-pull-request-size/

11

Figure 2: Relation Between Pull Request and Review Time

requests go via a standard five-step procedure:

• Create a local clone by forking the central repository. The developer first forks the

primary repository, which they then clone onto their local system.

• Make the necessary local changes. Whether they are trying to fix a problem or add

a new feature, the developer can add or update the code as necessary.

• Push Local Modifications into the Forked Repository. The developer pushes the

updated code to the forked repository they established in step one after finishing

and testing it.

• Publish a pull request. This is where the pull request happens! The main repository

maintainer is notified following a pull request for review. Following a review of the

12

developer’s forked repository’s work, the maintainer will submit any comments or

modification requests that require approval

• The developer is then notified of any revisions and asked to make any necessary

extra commits (code changes).

• The maintainer accepts the pull request if no changes are required.

• Join the main project. New modifications made by the developer in the forked

repository are merged with the primary project repository when the repository main-

tainer has accepted a pull request. After the new feature or bug remedy is added,

the product is updated and made available for end-users to examine.

Table 1 lists the characteristics of a pull request [11]. It is established from our

research on pull requests that these factors alone might not be sufficient when evaluating

a pull request. Additionally, the review process will move more quickly if we give visual

representations of software structural modifications and software metrics.

2.2.4 Test Coverage

To improve the dependability and quality of their products, many modern software

development teams test their code. We can demonstrate the existence of bugs in the

program by testing, but never their absence. Bezier2 asserts that testing is straightforward

and only requires that developers “identify a graph and cover it.” To do this, a test criterion

that will be used to evaluate the program must be specified. But what exactly are the test

2https://dl.acm.org/doi/10.5555/79060

13

Table 1: Pull Request Characteristics

Metric Description
lifetime minutes Minutes between opening and closing

merge time minutes
Minutes between opening and merging (only for
merged pull requests)

num commits Number of commits
src churn Number of lines changed (added plus deleted)
test churn Number of test lines changed
files added Number of files added
files deleted Number of files deleted
files modified Number of files modified
files changed Number of files touched (sum of the above)

num commit comments
The total number of comments included in a com-
mit

num issue comments
The total number of comments included in an is-
sue (of a commit)

num comments
The total number of comments included in a com-
mit (sum of the above)

num participants Number of participants in the discussion

criteria? What qualifies as an adequate test is determined by a test criterion. Or, to put it

another way, a test adequacy criterion specifies the characteristics of a program that must

be put to the test for it to be considered thorough, which means that the tested program

has no errors.

A formal definition of test adequacy is the function C:

Formula : C : P × S × T → [0, 1] (2.1)

If C(p,s,t) = r, then the testing program p’s suitability as measured by the test

set’s adequacy concerning the specification s is of the degree r as determined by criterion

14

C3. To put it another way, when a program is evaluated using a specific test set, a result

between 0 and 1 is generated, indicating how successfully the program was tested about

a specific criterion. This is typically reported as a percentage.

Different test sufficiency standards have been developed throughout many years

of research. The criteria employed in this thesis are program-based structural criteria that

depend on a program’s control flow. A unit test typically uses a program-based criterion

to assess relatively tiny program components. The test cases for structural testing, also

known as white-box testing, are derived from the program’s internal structure, includ-

ing its branches and specific circumstances. The most significant structural criteria are

described in the sections that follow.

2.2.4.1 Statement Coverage

Statement coverage is the most fundamental control-flow requirement to consider.

It is the most basic and ineffective type of testing. It states that at least one test case

must cover each statement in the program [12]. Full statement coverage is unfortunately

not always achievable owing to unreachable code, which is undetected because it is not

always feasible to determine whether a piece of code is inaccessible.

2.2.4.2 Branch or Decision Coverage

Branch coverage, also called decision coverage, is a more stringent condition for

an appropriate test. Every control transfer, according to this, needs to be verified. In

other words, every option should be tested at least once for each decision in the program.

3https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.4370020204

15

Statement coverage is less than branch coverage because all statements will be tested if all

branches are tested. The subsumes relation is the name given to this relationship. How-

ever, branch coverage is still somewhat shaky in the end, mainly when decisions involve

multiple conditions. There are exponentially more possible input variable combinations

in this situation, but only the decision’s outcome is considered [13].

2.2.4.3 Condition Coverage

Condition coverage is a factor that occasionally has more weight. For this require-

ment, a test case must allow each condition in every choice to experience every potential

result at least once. We claim that it is sometimes more substantial because even if we

get 100% condition coverage, that does not guarantee 100% decision coverage. This is so

because condition 5 coverage does not account for the result of choice.

2.2.5 Code Review Process

Many large projects, both open-source and commercial, employ pull requests be-

cause they make it simple for developers to contribute to projects, and they do so to eval-

uate the efforts of other developers. Contributors fork and clone projects to their private

repositories, edit the code and tests, and then submit their edits as pull requests. Review-

ers are in charge of assessing pull requests after submission and deciding whether or not

to accept or reject the modifications, see Fig. 3.

16

Figure 3: Code Review Process

17

2.3 Pull Request Review

A well-liked method of contemporary collaborative software development that

is housed on GitHub is known as pull-based development. A distributed development

paradigm can review a pull request before being merged into the main branch or repos-

itory. A pull request takes into account new functionality, bug fixes, and maintenance

requests from both the integrator and the contributor.

It appears that numerous empirical research is carried out to ascertain the process

of pull request evaluation. Furthermore, little research has been done to our knowledge

to evaluate the quality and preparedness of pull requests. Numerous pull requests made

at once, according to a study, can cause software systems to include problems. Thus,

a rigorous examination of the pull requests is necessary [6]. So, the topic of whether

the code review process improves the quality of the code is consequently one that merits

further investigation.

2.3.1 Good Pull Request

One of the many things to consider when making a pull request is writing clean

code. Large pull requests significantly slow down the code review process and make it

easier for defects to enter the source. The developer should therefore give the pull request

itself some consideration. It should only accomplish one task, be succinct, and have a

strong title and description.

• A good pull request is one which can be reviewed quickly. It means that it should

contain minimum changes as much as possible.

18

• A newly, added member in a team should be able to contribute in a pull request

review process. It should ease an ob-boarding of new member.

• It is important to note that, a pull request should not introduce new bugs in an

existing code base.

• Multiple developers or team members should not spend time on a single pull request

for longer.

• It should expedites evaluation and, ultimately, product development.

2.3.2 Pull Request Structure Review

Pull Request (PR) reviews can be challenging. If someone claims that going

through a pull request is simple, likely, they haven’t done it. The size of the pull re-

quest is important while evaluating them. The size of the pull request should be kept to

a minimum. No more than 250 lines of alteration should be used. The features should

be divided into smaller pull requests wherever possible. A single item of work should be

the focus of each pull request. The pull request’s title should make clear what it does and

should be self-explanatory. What, why, and how it was changed should be mentioned in

the pull request’s description. According to our research, very few reviewers concentrate

on the pull request’s software structure review.

PR shows the changes the author made to the files. A reviewer comments on a par-

ticular line of code when they find a potential issue or wish to suggest a better approach.

Typically while reviewing the PR developers or peers looks for - What does a particular

19

Figure 4: Pull Request Example

PR do, does PR do what it suppose to do, does PR do what it suppose to do it correctly,

are there any Logical errors, is the code readable, is the function is too long, are there

to many nested conditions, can code be optimised, what are the return condition, are the

changes covered by tests, are the changes covered by enough tests, is code clean, etc.

2.3.3 Pull Request Examples

Fig. 4 shows few things about a pull request. It is in blocked status because it is

pending with review. Also, there is no visual representation or software metrics of the

changes being submitted. This pull request may remain open because of unavailability of

reviewer or no one wants to review it because it’s time consuming, or lack of skills etc.

20

2.4 Visualization in Software Engineering

For software development tasks like reuse, testing, maintenance, and evolution,

understanding the program structure and its organization is a crucial and essential pre-

requisite [14]. A software system’s capabilities and internal interconnections grow larger

and more sophisticated as it develops over time. The processes of adding or modifying a

feature raise the dangers of making errors or altering the behavior pattern of the software

program without a thorough understanding of the software program and the connections

between its components [15]. Investigating the system’s evolution, or contrasting the

changes between several software system versions over time, makes this challenge con-

siderably more difficult. It is common knowledge that the most expensive activities in

software creation are maintenance duties, particularly those brought on by changing soft-

ware. The cost of software growth and maintenance might range from 40% to 80% of the

total cost of development [16, 17].

In order to comprehend and illustrate the feature changes over the releases, soft-

ware developers and testers frequently need to look into numerous software system ver-

sions. In order to create new test scenarios, for instance, software testers must concentrate

their testing efforts on the new features and execution routes that were added in a new ver-

sion of the software. The analysis and modeling of complex systems in many areas has

been transformed by recent developments in information theory, such as call graph rep-

resentation of software systems and network structure [18]. A call graph [19] is a visual

representation that shows the structure of a software system with each node standing for

a function and each directed edge also representing a function relationship

21

Figure 5: Code to Graph

22

Fig.5 illustrates the static call graph of GraphEvo Java library. The node main

represents an entry point to the system, which is the head of the execution path and is not

called by any other function in the system. It is represented as a node without incoming

edges in the call graph. The leaf nodes represents an exit points, and it does not call any

other function in the system. It is represented as a node without outgoing edges in the call

graph. An execution path is an ordered sequence of function calls from an entry point to

an exit point; it does not visit the same function or function call twice. Note that the cycles

within the call graphs can be eliminated or restricted to a specific number of iterations to

reduce the length of the execution paths.

Static call graphs have been proven to assist software developers in understanding

the overall system interactions and structure. For example, the tool in [20] can detect

and visualize the static interactions between the classes of software systems written in

Java. Code2graph [21] is a tool that automates the construction and visualization of static

call graphs for programs written in Python. The work in [22] utilized machine learning

algorithms to cluster the execution paths in large call graphs to facilitate system compre-

hension. The authors [23] of studied the call graphs of 223 releases of the Linux kernel to

identify similar graph structures. Bhattacharya et al. [18] analyzed the releases of well-

known projects to evaluate the use of call graphs in understanding software evolution.

Similar to the existing methods and tools, our tool aims at constructing and visualizing

call graphs. However, unlike existing tools, our tool uses static call graphs to visual-

ize software evolution in a monolithic color-coded graph and graph metrics to quantify

software change.

23

Figure 6: GraphEVO System Overview

2.4.1 GraphEVO Overview

The approach behind our tool is to use the graph theory of call graphs to facilitate

and improve the characterization and visualization of software evolution. We introduce

an open-source tool that can automatically visualize and characterize the software evolu-

tion for a given number of software releases with features to highlight the differences in

execution paths to assist stakeholders in making better decisions. For example, assisting

software testers in developing new test scenarios and answering a wide range of questions,

such as “What execution paths have been added that were not tested before?”

The underlying approach of GraphEvo consists of two main steps. First, it con-

structs a call graph for each release of the software system under investigation. While the

call graph can be used to understand the functionality and behavior of a single software

24

system at a time, the goal here is to utilize the call graphs in characterizing the software

evolution over time. Second, it calculates a set of graph metrics across several system re-

leases to quantify evolution. In addition, the tool provides comparison and visual analysis

features to help software testers better understand the code and execution-level changes,

see Fig. 6.

2.5 Pull Request Quality and Characteristics

2.5.1 Software Quality of Pull Request

Research on pull requests has been done from several angles, including accep-

tance, reviewer assignment, and pull-based development. Latency is another issue with

pull requests that have been looked into. Pull requests are accepted based on the size

of the change, comments, perceived quality, and context. Integrators evaluate contribu-

tions according to quality, style, documentation, granularity, and compliance with project

standards. Additionally, testing is vital to the decision to accept a pull request, favorably

affecting the majority of authorized contributions (85%) [1]. Pull request rejection may

rise if technical problems are not sufficiently fixed and the number of forks rises. Other

grounds for rejection include lack of experience with pull requests, the complexity of

contributions, the location of altered artifacts, and policy contribution. Investigated free

static analysis software like PMD (Static Code Analyzer). Defect density was used as a

proxy to assess how PMD rules affected the caliber of software. The defect density varied

statistically significantly between the data with and without PMD. However, they did not

remark on the quality of the tested code in accepted pull requests [24, 25].

25

Evaluated the pull request acceptance procedure for a commercial project [1] with

an emphasis on developers’ perceptions of review quality. They carefully examined the

pull requests after data mining on the project’s GitHub repository to comprehend the

merge. They investigated many issues, such as the size of the pull request and the 108

people interested in the conversation. These studies looked at the software quality of pull

requests according to the affiliation and experience of the developers. Our study advances

this by quantifying code quality in pull requests submitted to well-known open-source

projects, accounting for structural changes to the code and their impact on tests as quality

criteria. These modifications are also apparent in the tool and other class-level metrics.

2.5.2 Call graph and Network portrait divergence for comparisons

The use of call graphs to represent the internal operations of a software system

through function calls [26, 27] has been extensively studied. While other studies focus

on collaborative software graphs, several existing studies concentrate on creating and

analyzing call graphs for a single system. Code2Vec [28] studied the software components

as software networks. It used Abstract Syntax Tree to extract all software pathways as

vectors, aggregating them to create the Code2Vec neural model. It was evaluated using

design quality criteria.

An innovative method for comparing networks based on their portraits is called

portrait divergence. Network Portrait Divergence is based on information theory, in con-

trast to earlier ad hoc comparison measures, allowing for consistent interpretation of the

divergence measure [29, 30]. As a result, rather than assuming that networks are defined

26

on the same nodes, it may compare them based on their different topology structures.

GraphEvo employed the metric to compare software versions and pinpoint pivotal mo-

ments in the development of programs.

2.5.3 Factors Affecting the Decision to Reject a Pull Request

We explaining here the main characteristics which are affecting the decision of a

pull request. And they are mainly Project, Developer and Pull Request characteristics.

2.5.3.1 Project Characteristics

The studies on project characteristics typically discuss the fundamental details of

target projects that are sent through pull requests, which may be distilled into the follow-

ing elements: programming language, project adequacy as determined by the number of

forks, stars, and viewers, and the age of the project the quantity of open pull requests is

a measure of workload. The difference in time in seconds between the two most recent

pull requests opening times is used to assess activity, while the number of open problems

is used to indicate openness [31, 32]

2.5.3.2 Developer Characteristics

The contributor and integrator traits are connected to developer characteristics.

This group of factors includes things that have to do with people and how two contribu-

tors or a contributor and a project interact. Basic information about developers, such as

their gender, affiliation, and country of residence, is included in this category. While some

studies examined the relationship between the developer and the target project, including

27

the developer’s experience, others focused on personal characteristics, including the per-

sonality and emotion of developers, which is defined as the number of prior pull requests,

accepted commits, days since the creation of the account, whether this is the contributor’s

first pull request, the integrators prior reviews, the contributors coreness, the contributor’s

social distance and social strength from the integrator, and the integrators response time

to the pull request.

2.5.3.3 Pull Request Characteristics

The related works concentrate on the essential details of pull requests, such as the

size of the change measured at the file, commit, and code levels; the complexity of a pull

request measured by the length of the description; the nature of pull requests measured by

bug fixes; the inclusion of tests in pull requests; and the hotness or relevance of a PR. A

few studies also concentrate on the process details of pull requests created during the code

review process, such as the citation of a contributor, issue, or pull request; the conflict of

a pull request; the complexity of discussion; the emotion in discussion; and the use of CI

(Continuous Integration) tools during the review process.

28

CHAPTER 3

METHODOLOGY

3.1 Motivation

Many tools are available to display differences in source code and many more to

compute code coverage, but very few solutions attempt to support the pull request review

process. GitHub, SonerQube and Coveralls.io are few available online resources.

3.1.1 GitHub

GitHub is used by 83+ million developers, 4+ million organizations and has over

200+ million repositories.However, when developers submit a pull request, the review

process typically takes a long time and demands a lot of work. Though GitHub offers a

number of features to facilitate software development, it lacks a visual depiction of the

program structure and analytics that might speed up the review process for pull requests1.

3.1.2 SonarQube

A project’s manual inspection can be supported by SonarQube, an open-source

software. Multiple languages are supported by SonarQube, which can also examine code

duplication, coverage, complexity, and other factors. Only the coverage feature and its

interaction with SonarQube’s source changes are worth exploring in this study. You can

1https://github.com/

29

see a demo site where you can see the many reports SonarQube generates using the web-

based application. SonarQube does not view the files that have changed between versions

as Coveralls.io does; instead, after selecting a file, it just displays the class’s current cov-

erage statistics. The modifications can be filtered in a variety of ways. It is possible to

display the uncovered lines, uncovered branches, and lines that need to be covered. Al-

though a timeline can be chosen, the default display is the file’s present state. We can

choose a time period of 90 days, 30 days, or since the previous analysis2.

3.1.3 Coveralls.io

Coverall.io displays an overview with detailed coverage data. It displays the vari-

ance in coverage percentage and a view that displays the number of lines in each class, the

number covered or missed, and the average number of hits on each line. Which classes

were modified or had different coverage may be seen. The overview is cluttered because

classes that only slightly alter the number of hits per line are also labeled as altered.We

can see the current coverage status in a class’s code. By manually comparing the source

files and the changes in coverage, the previous version button must be clicked from the

top of the page to see what truly changed.

Many developers would prefer not to utilize coveralls because manually verifying

these changes is frequently problematic. The overview table on which the altered files are

presented, along with occasionally shown files unrelated to the pull request or commit, is

a feature of coveralls that can be utilized in a review process3.

2https://www.sonarqube.org/
3https://coveralls.io/

30

3.2 Approach

The suggested effort in this thesis entails creating a tool called GraphEVOPR that

will compile changes to test coverage and code changes into visualization and software

metrics that will support the pull request review process. The software review process will

be aided by this tool, which will shorten the review cycle duration and improve accuracy,

see Fig. 7.

GraphEvoPR’s objective is to use recent advancements in network comparison to

discover structural changes that occurred to code within pull requests and to support the

pull request review process. To assist decision-makers, we offer an open-source tool that

computes metrics at the class level, quantifies structural changes, and identifies variations

in execution paths. A software project’s two versions can be compared using the tool.

Both the code modifications and the changes in test coverage will be computed. Based

on these adjustments, a report is produced that developers and reviewers can use to look

through the changes in the new version.

Along with building such a tool, the tool will also be assessed by looking at re-

ports based on actual alterations in open-source projects. To conduct the evaluation,

GraphEVOPR has been enhanced to interact with Github and gather data on pull requests,

which stand for project changes that need to be examined before approval. Following

several intriguing report instances, a brief analysis of the effect of pull requests on test

coverage is given. With this research, we hope to ascertain whether GraphEVOPR is a

beneficial complement to the software review process.

Fig. 7 shows a high level process overview of pull request review process with

31

Figure 7: Visualization of Process Flow with GraphEVOPR

Figure 8: Typical Pull Request Review Process

32

Figure 9: Pull Request Review Process with GraphEVOPR

Figure 10: GraphEVOPR High Level Design

33

GraphEVOPR. It includes the details of code and test changes before and after, which

are treating as prePR and postPR in our case. This changes will be pushed through

GraphEVOPR for comparison and produce software metrics along with graph visualiza-

tion. The output of this tool is used in review process of pull request and take a decision

to accept or reject it.

Fig. 8 shows the typical pull request review process which involves manual review

of the code and test changes in a pull request. In which developer creates a copy of central

repository and add the changes to local copy. After that a pull request is raised and it will

go through the review process. This process is time consuming and requires effort. Where

as in Fig. 9 shows pictorial representation of GraphEVOPRs introduction in pull request

review process. We mainly adding a mechanism to generate software metircs and visual

represenation of the code. It is then used as part of pull request review process. The

details steps invloved in GraphEVOPR are shown in Fig. 10. It has 6 different steps - pull

request mining, code extraction, generation of call graphs, extraction of execution paths,

generation of software metrics and last decision making.

Our approach starts with mining PRs from a list of open source Java-based reposi-

tories. We extract the source code before and after the PRs are merged. We pair prePR and

postPR files, where each pair serves as an example of a meaningful change. Classes are

then extracted, filtered, and organized in the dataset for each prePR and postPR version.

We compute software metrics for each class, including test classes, and create a dataset.

Finally, we analyze the dataset from a path changes perspective and perform a user story

about the usability of this tooling.

34

3.3 Step 1 - Pull Request Mining

We built a graphEvoPR utility to collect the PR data needed to perform the path-

based analysis. Given a list of Github projects, the utility extracts the list of PRs in

respective repositories having “merged” as the final status project-wise. Then, for each

project, the crawler retrieves the list of all PRs and then processes each merged PR P

using the following steps. First, let us define the set of Java files submitted in P as

FS = F1, F2, ..., Fn (3.1)

We ignore the PRs having only non Java files since our utility only supports Java. For each

PR, we use the Github API to retrieve their version before the changes are implemented

in the PR. The two (before/after) file sets might not be exactly the same due to files

created/deleted during the review process. The output of the utility is, for each PR, the

version of the code-base files before (prePR) and after (postPR, merged) the PR. At the

end of the mining process, we obtain the datasets of code-base for all PRs.

3.4 Step 2 - Code Extraction

Each mined PR is represented as

PR = (f1, ..., fn), (ff1, ..., ffm) (3.2)

Where f1,...,fn are the source code files before the PR, and ff1,...,ffm are code files after

the PR.

As previously explained, the two sets may or may not be the same size since files

35

could have been added or removed during the PR process. Next, the dataset is organized in

pairs of each subsequent PRs {(pr1,pr2),(pr2,pr3)...,(prn-1,prn)}. Each pair of PRs (pri-

1, pri) is again processed using the utility, which identifies AST operations performed

between methods and then establishes class-level mapping for post-PR code-base within

the pr. Then, software metrics are . for each class {(c1,....,ck),(c1,....,cl)} of pair (pri-1,pri)

where post-PR code-base of pri-1 contains k classes while pri contains l classes.

3.5 Step 3 - Generation of Call Graphs

Extraction of the caller-callee relationships from the codebase is the first step in

creating the call graph. The function calls for a certain Java codebase or Jar files were

extracted using an open-source program that was used. The utility creates a list of caller

and callee pairs for each function call made by the software system. We utilize this list

to create a generic call graph by adding each caller-callee relationship as a directed edge,

(u, v), to the graph, where the caller, u, and the callee, v, represent nodes in the graph and

a call from u to v. At the level of function calls, this produces a valid call graph for the

entire system. Every pull request goes through the same procedure. The next of our study

uses the call graphs as an input to extract the execution paths. For the feature branch,

GraphEVOPR creates a call graph that displays the changes both before and after. Even

while the call graph may also be used to comprehend the functionality and behavior of a

particular software system at a time, the objective in this instance is to utilize it to specify

the pull request.

36

3.6 Step 4 - Extraction of Execution Paths

The same module or set of functions is not visited more than once in an execution

path, which is an orderly arrangement of functional calls from an entry point to an exit

point. GraphEVOPR (1) collects all basic execution pathways from each pull request; (2)

builds a set of network portraits for each pull request based on their execution paths in

order to determine the portrait divergence between the portraits of various releases of a

software system.

3.7 Step 5 - Generation of Software Metrics

Information theory, on which Network Portrait Divergence is based, offers a trust-

worthy interpretation of the divergence measure. So, rather than assuming that they are

defined on the same nodes, it may compare the networks based on their different topol-

ogy structures. Moreover, Network Portrait Divergence is a graph invariant, making it

more computationally efficient than the current expensive node matching optimization

techniques. It should be listed that this method can handle both directed and undirected

networks equally. In order to determine the Network Portrait Divergence between the

PrePR and PostPR pictures -

• Using the call graphs for each pull request, extract all potential execution pathways.

• Create a set of network pictures depending on the execution pathways of each pull

request.

37

• Utilizing the portraits of the investigated pull requests, calculate the portrait diver-

gences.

3.8 Step 6 - Pull Request Review Decision

We made a few assumptions for this study and came up with the decision criteria.

The pull requests are primarily divided into two classes: Accept and Reject. If the soft-

ware structure modifications and the software code changes are in sync, which is shown

by the software metric network portrait divergence together with LOC and AMC. We

studied variety of with statement, expression, parameter, conditions, class definition and

multiple level changes to decide either accept or reject the pull request.

Type of code changes -

• Statement change(s) - Such as variable declaration, method modifications etc.

• Condition change(s) - Such as if else, while , try catch blocks etc.

• Class files add or remove - This is addition or removal of entire class file

• Expression change(s) - This is change in an expression

• Class definition change(s) - This is entirely changing the definition of the class, like

interface to abstract

• Multiple changes - Includes 2 or more changes of above type

Complexity - Using the Weka tool, we grouped the NPD values from the GraphEvo

dataset. Simple EM was the clustering method employed (expectation maximization).

38

Figure 11: NPD Vs Complexity Clustering using Weka Tool

Each instance is given a probability distribution by EM, reflecting the likelihood that it

belongs to each cluster. We can tell EM how many clusters to generate a priori, or it can

select how many clusters to generate based on cross-validation. In the range of 0 to 0.02,

0.03 to 0.1, and more than 0.1, we found 3 clusters, as shown in Fig. 11.

Using such data, we reasoned that we could categorize the clusters as small,

medium, and large. We also employ this clustering for individual Java projects and dis-

covered that the NPD range varies depending on the software’s size and domain, Fig. 12.

We discovered that certain minor program displayed a variety of alterations. It is obvious

that any modification will have a greater significance if the software has fewer classes

and functions. The Java program under examination, which must change depending on

project size, will start with this kind of range.

39

Table 2 below shows the level of complexity and the range of values for the respec-

tive software metrics network portrait divergence. To determine the pull request criteria,

this was categorized.

Table 2: Code Complexity and Software Metric Classification

Complexity Network Portrait Divergence Range Assumption
Low 0.0000 - 0.0200 Small degree of change

Medium 0.0200 - 0.1000 Considerable degree of change
High 0.1000 - 0.3000 Significant degree of change

Very High 0.3000 - 1.0000 Severe change

Decisions -

• Accept - If software structure change depicts the degree of change and its in an

acceptable range with respect to code and test

• Reject - If software structure change is not in an acceptable range with respect to

code and test change

40

Figure 12: Static Code Metric

41

CHAPTER 4

RESULTS AND EVALUATIONS

4.1 Overview

To determine whether or not the GraphEVOPR tool is valuable, we examine pull

requests on GitHub. First, some intriguing pull requests are chosen, and the GraphEVOPR

tool’s visual capabilities are examined to see whether they can provide relevant data. The

next step is to gather analytics on pull requests using GraphEVOPR to ascertain the po-

tential utility of the tool. How often pull requests, for instance, do we see freshly added

code and tests that aren’t covered? In this chapter we will discuss on dataset, configura-

tion/setup, software and hardware details , experimental design and user study survey.

4.2 Dataset

Table 3 shows the total number of pull request from each project that we mined.

We collected data from variety of software project hosted on GitHub, see Tables 4 and

Table 5 shows the description of the open source projects that we shortlisted.

4.2.1 Selected Projects

There are 14 projects chosen for this review. The choices of projects are limited by

GraphEVOPR’s capabilities. GraphEVOPR currently only supports Java-based applica-

tions with Maven-based test suites. The chosen projects are Defect4j-repair (Math, Chart,

Closure, Lang, Mockito, and Time), any23, dagger, grafika, incubator-shenyu, MOE, and

42

rejoiner, and they are all accessible on Github. For these projects, the GraphEVOPR re-

ceives the pull requests for analysis. Since not every pull request was approved and some

branches or forked repositories no longer exist, not every pull request could be investi-

gated. It is impossible to decide which versions should be compared because of deleted

branches.

There has been a big code change, to be exact. fix the test because it directly

affects the code structure, demonstrating that the link for modified classes are rewired

with related courses. Divergence in Network Portraits has resonance with the modifica-

tions made to the fixed broken test. Additionally, RFC and LOC denote suitable metrics

changes.

4.2.2 Defect4j-repair

This repository contains the unprocessed experimental data from tests on the auto-

matic correction of Defects4J dataset issues conducted at INRIA Lille. In 2016, Matthias

Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan, and Martin Monperrus

published Automatic Repair of Real Bugs in Java: A Large-Scale Experiment on the De-

fects4J Dataset. Defects4J is a huge, systematic dataset of actual Java defects that have

undergone peer review. Each flaw in Defects4J 1 has a test suite and at least one flaw-

triggering test case that fails, see Table 4.

1http://program-repair.org/defects4j-dissection/

43

4.2.3 Projects and Pull requests

Here are the total number of pull request which we have planned to evaluate from

14 open source java projects, see Table 3.

Table 3: Projects and Pull Request

Project Number of Pull Requests
android-classyshark 81

any23 120
caliper 99
curator 4
dagger 62
grafika 3

incubator-shenyu 28
lang 65
math 10
moe 9

open-location-code 32
rejoiner 42
xquery 42

walt 49
Total 627

4.2.4 Selected Pull Requests

Our initial strategy entails gathering pull requests that demonstrate intriguing sce-

narios. The objective of this evaluation is to assess GraphEVOPR’s utility from the per-

spective of the code reviewer. Pull requests from the projects are carefully examined,

and interesting situations are chosen to ascertain their usefulness. To demonstrate how

GraphEVOPR is helpful in the review process of these pull requests, we looked for pull

requests that demonstrate good examples of testing and a handful that demonstrate less

44

Table 4: Selected Projects: Project and Description Part I

Project Description
Defect4j-
repair:Chart

This module provides all project-specific configurations and subrou-
tine for the JFreeChart project

Defect4j-
repair:Closure

This module provides all project-specific configurations and subrou-
tines for the Closure compiler project

Defect4j-
repair:Lang

This module provides all project-specific configurations and subrou-
tines for the Commons-lang project

Defect4j-
repair:Math

This module provides all project-specific configurations and subrou-
tines for the Commons-math project

Defect4j-
repair:Mackito

This module provides all project-specific configurations and meth-
ods for the mockito project

Defect4j-
repair:Time

Time - This module provides all project-specific configurations and
subroutines for the Joda-Time project

any23
Anything To Triples (any23) is a library, a web service, and a
command-line tool that extracts structured data in RDF format from
various Web documents

dagger

A fast dependency injector for Java and Android. Dagger is a
compile-time framework for dependency injection. It uses no reflec-
tion or runtime bytecode generation, does all its analysis at compile
time, and generates plain Java source code

grafika

Grafika is: A collection of hacks exercising graphics features. An
SDK app developed for API 18 (Android 4.3). While some of the
code may work with older versions of Android, some sporadic work
is done to support them. Open-source (Apache 2 license), copyright
by Google. So you can use the code according to the terms of the li-
cense (see ”LICENSE”). A perpetual work-in-progress. It’s updated
whenever the need arises

incubator-
shenyu

Apache ShenYu is a native Java API Gateway for service proxy, pro-
tocol conversion, and API governance. Scalable, High Performance,
Responsive API Gateway Solution for all MicroServices

MOE

MOE (Metric Optimization Engine) is an efficient way to optimize a
system’s parameters when evaluating parameters is time-consuming
or expensive. A global, black-box optimization engine for real-
world metric optimization

rejoiner
Generates a unified GraphQL schema from gRPC microservices and
other Protobuf sources

xquery
Extract data or evaluate value from HTML/XML documents using
XPath

walt
A device for measuring the latency of physical sensors and outputs
on phones and computers45

Table 5: Selected Projects: Project and Description Part II

Project Description
google-java-
format

Reformats Java source code to comply with Google Java Style

caliper Caliper is an instrumentation and performance profiling library

OLC
OLC(Open Location Code) is a library to generate shortcodes,
called ”plus codes”, that can be used as digital addresses where
street addresses don’t exist

android-
classyshark

Android and Java bytecode viewer

curator

Apache Curator includes a high-level API framework and utilities
to make using Apache ZooKeeper much more reliable. It also in-
cludes recipes for common use cases and extensions such as service
discovery and a Java 8 asynchronous DSL

tested components.

4.3 Configuration/Setup

To explore a range of pull requests, we chose 14 open-source Java projects of

various sizes. In the beginning, we used a method that involved creating the jar files for

prePR and postPR in order to compare and produce call graphs and software metrics.

Later, when we realized how time-consuming this method was, we switched to using

GitAPI to pull the source code directly from GitHub.

• Method 1 - Use of jar files to compare the version of pull request before and after

fix. This worked well with smaller projects.

• Method 2 - Use of GitAPI to pull the source code directly from the GitHub to

compare the code changes and generate software metrics. This method worked

46

well for projects with bigger size.

4.4 Software and Hardware

• Editor:Intellij - We used Intellij2 to analyze the open-source java projects and pull

request.

• Editor:PyCharm - We used pycharm3 to enhance the GraphEVO and converted it

to GraphEVOPR for this study

• GraphEVOPR - Python and Java de-compiler libraries

• Data retrival from server - Using JavaScript

• Graph Visualization - Using HTML and CSS

4.5 Implementation

Three steps made up the implementation tasks. Initially, we enhanced and inte-

grated GraphEvo, an already-existing tool that extracts a list of the caller-callee functions

for a particular Java project. Second, the GraphEvo tool uses the caller-callee relation-

ships in two graph data structures to compute class-level metrics and net-work portrait

divergence. Third, we may view class-level metrics, spot structural software changes, and

display the pull request as a color-coded call graph.

A web-based user interface is used to operate GraphEvoPR locally in its entirety.

2https://www.jetbrains.com/idea/
3https://www.jetbrains.com/pycharm/

47

We used HTML and CSS for the graphics, and Javascript was used for client-side re-

quests to get data from the server. We used Flask, a well-known open-source micro web

framework, to construct the backend server. Using various open-source tools, the tool

also computes 21 class-level metrics, such as network portrait divergence. Currently, the

number of failed tests is manually added to the system; however, in future development,

we intend to automate this process.

Fig. 13 shows the landing page for GraphEvoPR. Users can initially set up the

project by entering the project name, Github URL, default master branch, and authoriza-

tion key. The user can then choose the project and input the URL for the pull request.

4.6 Experimental Design

Out of 627 pull request that we mined, we are discussing 5 different variety of pull

request in details in this section. Table 6 below shows the experiment with type of change

and degree of change we are going to discuss further.

Table 6: Pull Request Experiment Details

Experiment Type of change Degree of
change

1 Statement(assignment addition) Low
2 Statement (assignment expression modification) Low
3 Conditional and method call addition Medium
4 Statement(assignment addition) Low
5 Statement(assignment addition) Medium

48

Figure 13: GraphEVOPR Tool

49

4.6.1 Experiment 1 - Defect4j-repair:Branch-Math 10, Class-DSCompiler - Accept

One method update in the class DSCompiler adds two repair actions and patterns

to correct the flawed test, see Fig. 14. The modifications show that they affect 43 execu-

tion routes, both directly and indirectly, see Fig. 15. The methods of execution that utilize

or call this class. The right modifications are reflected in every metric. Specifically, the

shift in values for Network Portrait Divergence from 0 to 0.0203 illustrates the change in

the code’s structure and how it captures the impacted execution routes, see Table 7. The

one test also fails, which is usual for such a slight structural change.

Table 7: Software Metric Change for DSCompiler

Description Before Fix After Fix
Version 1.1 1.2

Total Test 4625 4625
Failed Test 1 0

AMC 74.0265 74.2708
PORTRAIT 0.0000 0.0203

If we open the class and check, their is the new addition of code to fix the failing

test. With the GraphEVOPR tool, we can easily identify that before fixing the test, the

software metric values, and after the fix. Specifically, the network portrait divergence

value is changed, which signifies a code change.

4.6.2 Experiment 2 - Defect4j-repair:Branch-Lang 61, Class-StrBuilder Accept

Compared to all execution pathways, class StrBuilder Fig. 16, had a 14.66 percent

influence on the execution path (absolute execution paths for before the change after the

change are 709, respectively, and StrBuilder class appeared in 104 execution paths for

50

Figure 14: Defect4j-repair Math10 DCCompiler Class

Figure 15: Defect4j-repair Math10 DCCompiler Class after Changes

51

Figure 16: Defect4j-repair Lang61 StrBuilder Class

each version). This suggests that it significantly affects the quality and coverage of the

code. The Network Portrait Divergence accurately detected these changes along with

RFC and LOC. Additionally, we observe that both tests fail, indicating that DSCompiler

has undergone a more significant modification, see Fig. 17 and Table 8.

Table 8: Software Metric Change for StrBuilder

Description Before Fix After Fix
Version 1.1 1.2

Total Test 4985 4985
Failed Test 2 0

AMC 25.8727 25.8909
PORTRAIT 0.0000 0.0693

The impact of the code modification on related classes and associated tests is

shown in the Fig. 18. The second test was impacted and failed before installing the

52

Figure 17: Defect4j-repair Lang61 StrBuilder Class after Change

Figure 18: Defect4j-repair Lang61 StrBuilder Class GraphEVOPR

53

Figure 19: Defect4j-repair Lang48 EqualBuilder Class

update. Both of these tests pass following the fix. The amount of change is shown by the

portrait value of 0.0693. It was accessing the incorrect variable and needed the arithmetic

expression to be modified.

4.6.3 Experiment -3 Defect4j-repair:Branch-Lang 48, Class-EqualBuilder Accept

Entities, FastDateFormat, and Class EqualsBuilder Fig. 19,are notably large classes

with various execution paths. There were a large number of affected execution pathways.

These classes’ Network Portrait Divergence values are within a narrow range, indicating

that the code changes in these classes had a similar effect on the execution paths. The one

test that failed also shows a slight structural alteration, see Fig. 20 and Fig. 21.

The impact of the code modification on related classes and associated tests is

54

Figure 20: Defect4j-repair Lang48 EqualBuilder Class after Change

Figure 21: Defect4j-repair Lang48 EqualBuilder Class GraphEVOPR

55

shown in the figure. The test “testBigDecimal” was impacted because of this change. The

amount of change is shown by the portrait value of 0.0025, which is very minimal in this

case. The fix of conditional branch addition has been added here. The minimal value of

portrait divergence can be considered safe to accept the pull request.

4.6.4 Experiment 4 - Pull Request number 7 and 8 from dagger Reject

The class is declared as an interface in pull request number 7, as shown in Fig.

22, and no related test cases are provided to verify the coverage. In contrast, the class

declaration in pull request number 8 is changed from an interface to an abstract class,

see Fig. 23. With this modification, three new test classes have been introduced for test

coverage.

Here, the code change, its influence, and the test coverage can be identified using

the GraphEVOPR tool. When pull request 7 is run via the tool with this being the first

version, the network portrait divergence result is 0.0005 compared to the code change in

pull request 8. For pull request 8, the network portrait value has been slightly adjusted

to 0.0004. This shows that the influence of a code change on the software architecture

is relatively minimal, only one class path from the call graph flow. However there is

significant code changes in this pull request. The degree of change is not in alignment

with code changes. So, we are inclined toward rejecting this change.

We also observed that other software metrics are changing along with network

portrait, like LOC, modifier, cobModified, fanin, fanout, totalMethodQty, abstractMeth-

odsQty, etc, see Table 9.

56

Figure 22: Dagger Pull Request Number 7

Figure 23: Dagger Pull Request Number 8

57

Figure 24: Incubator-shenyu Pull Request Number 17

4.6.5 Experiment-5 Pull Requests number 16 and 17 from incubator-shenyu Accept

There is one modified line of code in pull request number 17, see Fig. 24. In

essence, references to methods are switched from one to the other. In this instance, the

portrait value changed from 0 to 0.0913, see Table 10. However, other software metric

values remained unchanged. Additionally, no relevant tests have been modified, added,

or withdrawn. Furthermore, this adjustment does not influence any pathways. We can

conclude from this data that it is safe to accept this pull request.

Table 9: Software Metric for Dagger Pull Requests 7 and 8

Description PR7 PR8
Portrait 0.0005 0.0004

Modifiers 1 1025
LOC 5 48

cobModified 9 14
fanin 5 8

fanout 4 6
abstractMethodsQty 4 6

58

Figure 25: Sample of Pull Request Decisions

4.6.6 Pull Request Samples

We reviewed the data of various pull requests and decided whether to accept or

reject the pull request based on the outcome of our tooling GraphEVOPR. We have a

variety of types of change and degrees of change in the software structure. We observed

that more than 70% of the pull request we reviewed fall under the low or medium category.

Fig.25 shows some sample pull request from total 627 pull that we studied.

Table 10: Software Metric for Incubator-shenyu Pull Requests 16 and 17

Description PR7 PR8
Portrait 0 0.0913

Modifiers 1 1
LOC 32 32

cobModified 9 9
fanin 1 1
fanout 8 8

59

4.7 User Study

The primary goal of user studies is to gain understanding of the practical applica-

tions of a given technology. Similar to this, our user study seeks to understand the value

of our strategy and tool based on user experience input. Additionally, it can aid in deter-

mining the advantages and disadvantages of our visualization tool and direct future efforts

to enhance current methods [33].

In this part, we use a user research to assess the applicability and usability of our

methodology and tool. 24 people took part in the user study out of 100 plus invitees and

completed a series of tasks before answering questions on a questionnaire. The question-

naire consisted of 10 questions using to rate the tool’s usefulness [34].

4.7.1 Participants

Real software development managers, engineers, and testers with experience lev-

els ranging from 0 to 10 were asked to test out our solution and then complete a survey

as part of the user study. We reached out to total more than 100 software development

managers, software engineers, and testers. Only 24 opted to participate in the study. 23

out of 24 participants mentioned their industry experience. The participants belong to

more than 10 international industries worldwide, including Google, Amazon, Cummins,

Capgemini, Deloitte, Tata Consultancy Services (TCS), HARMAN International and oth-

ers. However, because our participants did not provide enough information about their

age and gender, we did not wish to use partial statistics in the study. Our participants

were experienced (69% more than 10 plus years, 25% between 3 to 10 years)

60

4.7.2 Procedure

The participants had to finish a number of quick activities before the study even

began. They first had to provide their email address as a means of consent. Second,

they were prompted to respond to a series of questions designed to elicit demographic

data, including name, experience level, and opinions regarding the study’s subject. Third,

a brief tool demo film was shown, and the attendees were instructed to observe sample

instances with software metrics and visualization.

Participants in this study were given a demo film, a set of activities, and a ques-

tionnaire to evaluate the tool. The tasks involved gathering information about the Grap-

shEVOPR tool’s usability and usefulness. The assignments are outlined in Table 11. The

questionnaire was then filled out by the participants utilizing the tool’s sample examples

and demo video. Using Google Forms, the participants’ replies were gathered.

4.7.3 Questionnaire

Our questionnaire include 2 types of questions including (1) Likert scale questions

to evaluate usability and use-fullness of the tool, (2) open ended questions to gain the

feedback on design and improvements of the tool.The list of questions and their types are

listed in Table 12.

4.7.4 Results and Discussion

We first report the results of usability & use-fullness questions, Q1 to Q8, respec-

tively, and then discuss the strengths and weaknesses of the tool from user feedback in

61

Q9 and Q10.

To evaluate the usability and use-fullness of the tool, the participant were asked to

perform the set of small tasks, watch the video clip and review the sample examples with

visualization and software metrics of different pull request from this study.

Q1: Participants are questioned about their thoughts on the tool’s user interface

in this question. 22 out of 24 participants, or more than 90%, agreed that the tool’s UI is

simple and easy to use.

Q2: We asked participants if they could speed up the time and effort spent on the

review of pull requests. More than 85% of the participants agreed with the majority of the

positive comments. And 8% of participants said that it would be helpful.

Q3: We asked participants if they would suggest this tool to other developers and

engineers for pull request review, and we received a very positive response. Participant

support for this was 91%.

Q4: The purpose of this inquiry was to determine whether seasoned developers

the majority of whom had more than three years of experience in the field would prefer

manual review of a pull request to GraphEVOPR, which shows the software metrics and

call graphs along with the code changes. The results indicate that 75% of participants

voted in favor of it, while 25% thought it may aid in the review of pull requests. After

speaking with a small number of the participants from the 25% who may have voted, we

learned that they would still prefer to directly review the code for upkeep and bug-fixing

duties. The purpose of this inquiry was to learn more about software architecture, not

debugging. The responses to Q2 confirm this.

62

Q5: To find out if it can help with the issue of detecting the test coverage while

reviewing a pull request, we asked the participant this question. More than 95% of par-

ticipants strongly agreed on this, according to the results of the poll.

Q6: In this question, we asked the participant whether or not a visual depiction

of classes, methods, and their related pathways will be helpful in the pull request review

process. One individual disagreed with this, but the other 23 participants strongly agreed.

Q7: We wanted to know if the Network Portrait Divergence value may aid pull

request reviewers in determining how a code change will affect the software’s structure.

Will this help in removing the reliance on knowledgeable resources in a group setting

while reviewing pull requests? More than 95% of participants responded positively to

this and agreed with it.

Q8: Participants were asked to vote on the GraphEVOPR tool’s general usability

and usefulness in this question. The final score demonstrates that every participant agreed

to it.

4.7.5 Survey Response

Fig. 26 shows the actual response details from the 24 participants. It indicated

that more than 95% of participants strongly agreed that GraphEVOPR is helpful in the

pull request review process and expedites the process. We got an opportunity to discuss

with a few of the participants on the call, and they shared that visual representation helps

understand the impact and can help in scoping the testing tasks.

Fig. 27 shows the coverage of industry experience participants has. 69% of the

63

participants have more than ten years of experience in the software industry. We aimed

to cover users from 0 to 10+ years of experience and understand how GraphEVOPR can

support them in the pull request review process. 50% of the participant out of 24 were

software developers; the other 50% were software development managers, data engineers,

and software development engineers in test and quality engineers.

4.7.6 Participant’s Feedback

Two open-ended questions are included in the questionnaire. The participants

were asked to rate the tool overall, provide us input that could help us improve the instru-

ment, and contribute insightful information about the challenges faced during the analysis.

We summarize and synthesize the participants’ comments as follows:

Java version and other languages: One participant specifically asked, “Will this

tool help with different versions of java?”. Yes, GraphEVOPR can support different ve-

sion of java. Hoever it needs further enhancements to support other languages like python,

C sharp etc.

Lack of Information: Along with Network Portrait Divergence we used basic

software meerics such as AMC, LOC, fanin, fanout etc. to evaluate the impact on software

structure and how it can help in a pull request review process. However, 2 participants

suggested to include more data points to support this. One participant commented “More

data to back up this analysis” and another participant asked “Can also include statement

coverage, branch coverage etc like what Testing framework like jest, jasmine,Junit etc..

do.”

64

Figure 26: Likert Scale Representation of Survey Responses

Figure 27: Survey Participants Industry Experience

65

Figure 28: GraphEVOPR in Pull Request Review Process

4.8 Application Demo

Using PyCharm, we can run the GraphEVOPR program locally. We can upload

the jar files of the relevant project versions once the program has been launched in order

to compare them and create call graphs.

Fig. 28 shows where exactly GraphEVOPR fits in the pull-based development and

review process. The software developers can be plugged in quickly in the process. When

developers submit the pull request, GraphEVOPR can run the prePR and postPR code

comparison and generate software metrics along with software structure visualization.

The reviewers can use these details and decide to accept or reject them.

66

Figure 29: GraphEVOPR Landing Page

Fig. 29 shows the landing page of the GraphEVOPR application. We ran this tool

locally on the machine. You can navigate to the upload file page from the left top icon.

The top right corner is where you can select the software version under test. We also

have legends for new, existing, defective, and existing defective changes identification

and color coding. Based on a user study, it’s an easy interface to use.

Fig. 30 shows the load of a project page. A user can navigate to this page from

the application landing page. It has an option to choose the jar files; a user can select the

prePR and postPR files to run. It also provides an opportunity to enter a project name. It

has a load button that will pull the jar files submitted from the front end to the backend in

the GraphEVOPR process.

Fig. 31 shows the zoomed-in view of a StrBuilder class from Lang61 pull request.

As you can see in the details, the function indexOf is modified as part of the pull request.

67

Figure 30: GraphEVOPR Load Project Page

68

Figure 31: GraphEVOPR Result View

69

It shows the paths are impacted due to this change. The dark blues are the functions

that interact with indexOf function; with this change, they are also potentially impacted.

We can also see the software metric data on the right-hand side. This is a very helpful

visualization in the pull request review process.

70

Table 11: Description of Tasks for User Study

Task ID Description
T1 Name two classes that has high value of network portrait divergence
T2 Name two classes where you see significant change in respective test cases

T3
Name two classes where you see no code changes however impact on the
path or network portrait value

T4 Impact of code change on test coverage
T5 Code and test change analysis using path based visualization

Table 12: User Study Questions

Question Description Type
Q1 The tools interface is intuitive and user-friendly Likert Scale
Q2 I would recommend software developers to use this tool Likert Scale

Q3
This tool is helpful in review the pull request rather than doing
it manually

Likert Scale

Q4
I believe that using this tool can save time and efforts in pull
request review process

Likert Scale

Q5 Using this tool you can identify test coverage Likert Scale

Q6
The call graph visualization is helpful to identify the overall
impact on software structure before accepting or rejecting the
pull request

Likert Scale

Q7
Network portrait value from software metric helps in pull re-
quest review to identify low, medium or high impact

Likert Scale

Q8
Overall, the tool is helpful in pull request review process before
merging the code

Likert Scale

Q9 Please list any reasons for your answer to previous questions Open Ended

Q10
Would you like to add any other suggestion? feedback? or
limitations?

Open Ended

71

CHAPTER 5

CONCLUSION

5.1 Overview

In this chapter, we are discussing on conclusion and future work. We have stud-

ied and analyzed 14 open-source java projects. From these 14 projects, we deep-dived

into 627 plus pull requests and compared different software metric data. Primarily, we

compared the network portrait divergence data from previous and current pull requests to

understand the impact of code change. We further analyzed the behavior of tests related

to the code change. We also studied how visual representation of the software structure

supports the pull request review process, reduces the cycle time of a pull request review

process, and expedite the overall process.

5.2 Conclusion

We studied the use of changes in software class-level metrics, such as Network

portrait divergence, for evaluating and visualizing pull requests in this study. Specifi-

cally, We collected class-level metrics for code in pull requests before and after modifi-

cations.We reviewed a set of metrics and identified associated changes to test failures.We

provided tool support for our technique, GraphEvoPR.We studied the usefulness of visual

representation of software structure and how it supports the pull request review process.

We evaluated the performance of class-level metrics using 627 Pull requests from

72

14 popular Java open-source systems. The study demonstrated how network portrait di-

vergence measures identify the structural changes and how visual representation of soft-

ware supports the pull review process.

5.3 Future Work

We will concentrate on growing the amount of software and pull requests in the

near future. Furthermore, we intend to use machine learning models (Decision Trees,

Random Forest, Extremely Randomized Trees, AdaBoost, Gradient Boosting, and XG-

Boost) to estimate code quality in terms of a set of tests that may be required to pass a

pull request.

73

REFERENCE LIST

[1] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of the pull-based

software development model,” in Proceedings of The 36th International Conference

on Software Engineering, 2014, pp. 345–355.

[2] O. Kononenko, T. Rose, O. Baysal, M. Godfrey, D. Theisen, and B. De Water,

“Studying pull request merges: a case study of shopify’s active merchant,” in Pro-

ceedings of the 40th International Conference on Software Engineering: Software

Engineering in Practice, 2018, pp. 124–133.

[3] F. Calefato, F. Lanubile, and N. Novielli, “A preliminary analysis on the effects of

propensity to trust in distributed software development,” in 2017 IEEE 12th Inter-

national Conference on Global Software Engineering (ICGSE). IEEE, 2017, pp.

56–60.

[4] V. Walunj, G. Gharibi, D. H. Ho, and Y. Lee, “Graphevo: Characterizing and under-

standing software evolution using call graphs,” in 2019 IEEE International Confer-

ence on Big Data (Big Data), 2019, pp. 4799–4807.

[5] V. Sobreira, T. Durieux, F. Madeiral, M. Monperrus, and M. de Almeida Maia, “Dis-

section of a bug dataset: Anatomy of 395 patches from defects4j,” in 2018 IEEE

25th International Conference on Software Analysis, Evolution and Reengineering

(SANER). IEEE, 2018, pp. 130–140.

74

[6] D. Spadini, M. Aniche, M.-A. Storey, M. Bruntink, and A. Bacchelli, “When testing

meets code review: Why and how developers review tests,” in 2018 IEEE/ACM

40th International Conference on Software Engineering (ICSE). IEEE, 2018, pp.

677–687.

[7] Z. Li, Y. Yu, T. Wang, G. Yin, S. Li, and H. Wang, “Are you still working on this?

an empirical study on pull request abandonment,” IEEE Transactions on Software

Engineering, vol. 48, no. 6, pp. 2173–2188, 2022.

[8] G. Gousios, M.-A. Storey, and A. Bacchelli, “Work practices and challenges in pull-

based development: The contributor’s perspective,” in 2016 IEEE/ACM 38th Inter-

national Conference on Software Engineering (ICSE), 2016, pp. 285–296.

[9] V. Stray, N. B. Moe, M. Mikalsen, and E. Hagen, “An empirical investigation of

pull requests in partially distributed bizdevops teams,” in 2021 IEEE/ACM Joint

15th International Conference on Software and System Processes (ICSSP) and 16th

ACM/IEEE International Conference on Global Software Engineering (ICGSE),

2021, pp. 110–119.

[10] M. Ortu, G. Destefanis, D. Graziotin, M. Marchesi, and R. Tonelli, “How do you

propose your code changes? empirical analysis of affect metrics of pull requests on

github,” IEEE Access, vol. 8, pp. 110 897–110 907, 2020.

[11] S. M. Syed-Mohamad and N. S. Md. Akhir, “Soready: An extension of the test

and defect coverage-based analytics model for pull-based software development,” in

2019 26th Asia-Pacific Software Engineering Conference (APSEC), 2019, pp. 9–14.

75

[12] E. Sherif, A. Liu, B. Nguyen, S. Lerner, and W. G. Griswold, “Gamification to aid

the learning of test coverage concepts,” in 2020 IEEE 32nd Conference on Software

Engineering Education and Training (CSEEandT), 2020, pp. 1–5.

[13] N. Williams, “Towards exhaustive branch coverage with pathcrawler,” in 2021

IEEE/ACM International Conference on Automation of Software Test (AST), 2021,

pp. 117–120.

[14] K. H. Bennett and V. T. Rajlich, “Software maintenance and evolution: a roadmap,”

in Proceedings of the Conference on the Future of Software Engineering. ACM,

2000, pp. 73–87.

[15] J. Krüger, G. Calikli, T. Berger, T. Leich, and G. Saake, “Effects of explicit fea-

ture traceability on program comprehension,” in Joint European Software Engi-

neering Conference and Symposium on the Foundations of Software Engineering

(ESEC/FSE), 2019.

[16] R. S. Pressman, Software Engineering: A Practitioner’s Approach. Palgrave

Macmillan, 2005.

[17] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of Software Engineering.

Prentice Hall PTR, 2002.

[18] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos, “Graph-based analy-

sis and prediction for software evolution,” in Proceedings of the 34th International

76

Conference on Software Engineering, ser. ICSE ’12. Piscataway, NJ, USA: IEEE

Press, 2012, pp. 419–429.

[19] D. Grove, G. DeFouw, J. Dean, and C. Chambers, “Call graph construction in object-

oriented languages,” ACM SIGPLAN Notices, vol. 32, no. 10, pp. 108–124, 1997.

[20] R. Vasa, J.-G. Schneider, and O. Nierstrasz, “The inevitable stability of software

change,” in Software Maintenance, 2007. ICSM 2007. IEEE International Confer-

ence on. IEEE, 2007, pp. 4–13.

[21] G. Gharibi, R. Tripathi, and Y. Lee, “Code2graph: automatic generation of static call

graphs for python source code,” in Proceedings of the 33rd ACM/IEEE International

Conference on Automated Software Engineering, 2018, pp. 880–883.

[22] G. Gharibi, R. Alanazi, and Y. Lee, “Automatic hierarchical clustering of static call

graphs for program comprehension,” in 2018 IEEE International Conference on Big

Data (Big Data). IEEE, 2018, pp. 4016–4025.

[23] L. Wang, Z. Wang, C. Yang, L. Zhang, and Q. Ye, “Linux kernels as complex net-

works: A novel method to study evolution,” in Software Maintenance, 2009. ICSM

2009. IEEE International Conference on. IEEE, 2009, pp. 41–50.

[24] D. M. Soares, M. L. D. L. Junior, L. Murta, and A. Plastino, “Rejection factors of

pull requests filed by core team developers in software projects with high accep-

tance rates,” in 2015 IEEE 14th International Conference on Machine Learning and

Applications (ICMLA). IEEE, 2015, pp. 960–965.

77

[25] A. Trautsch, S. Herbold, and J. Grabowski, “A longitudinal study of static analysis

warning evolution and the effects of pmd on software quality in apache open source

projects,” Empirical Software Engineering, vol. 25, no. 6, pp. 5137–5192, 2020.

[26] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos, “Graph-based analysis

and prediction for software evolution,” in 2012 34th International Conference on

Software Engineering (ICSE). IEEE, 2012, pp. 419–429.

[27] M. Savić, M. Ivanović, and L. C. Jain, “Analysis of software networks,” in Complex

Networks in Software, Knowledge, and Social Systems. Springer, 2019, pp. 59–141.

[28] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning distributed

representations of code,” Proceedings of the ACM on Programming Languages,

vol. 3, no. POPL, pp. 1–29, 2019.

[29] J. P. Bagrow and E. M. Bollt, “An information-theoretic, all-scales approach to com-

paring networks,” Applied Network Science, vol. 4, no. 1, pp. 1–15, 2019.

[30] M. Tantardini, F. Ieva, L. Tajoli, and C. Piccardi, “Comparing methods for compar-

ing networks,” Scientific Reports, vol. 9, no. 1, pp. 1–19, 2019.

[31] M. M. Rahman and C. K. Roy, “An insight into the pull requests of github,” in

Proceedings of the 11th working conference on mining software repositories, 2014,

pp. 364–367.

78

[32] D. Chen, K. T. Stolee, and T. Menzies, “Replication can improve prior results: A

github study of pull request acceptance,” in 2019 IEEE/ACM 27th International

Conference on Program Comprehension (ICPC). IEEE, 2019, pp. 179–190.

[33] R. Kosara, C. Healey, V. Interrante, D. Laidlaw, and C. Ware, “Visualization view-

points,” IEEE Computer Graphics and Applications, vol. 23, no. 4, pp. 20–25, 2003.

[34] M. A. Kabir, M. U. Rehman, and S. I. Majumdar, “An analytical and comparative

study of software usability quality factors,” in 2016 7th IEEE International Confer-

ence on Software Engineering and Service Science (ICSESS), 2016, pp. 800–803.

VITA

Vasim Shaikh is a computer science graduate student. Under the direction of Dr.

Yugyung Lee, he is conducting research and writing a thesis. His main areas of research

interest are artificial intelligence, machine learning in software testing, defect forecast-

ing, and the software review process. Vasim has approximately 12 years of management

and quality engineering expertise in the software business. He is currently employed by

AMAZON as a Quality Engineering Leader, contributing to the development and testing

of a top-notch digital reading experience for millions of customers worldwide. He for-

merly served as CAPGEMINI AMERICA INC’s Quality Engineering Manager. Vasim is

happy to be the proud father of a lovely daughter and likes to play cricket, listen to music,

and cook.

80

