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Abstract

A counterexample to a recent conjecture of Lidický and Murphy on the structure
of Kr-free graph maximizing the number of copies of a given graph with chromatic
number at most r−1 is known in the case r = 3. Here, we show that this conjecture
does not hold for any r, and that the structure of extremal graphs can be richer.
We also provide an alternative conjecture and, as a step towards its proof, we prove
an asymptotically tight bound on the number of copies of any bipartite graph of
radius at most 2 in the class of triangle-free graphs.
Mathematics Subject Classifications: 05C35
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For graphs H and F the generalized Turán number ex(n,H, F ) is defined to be the
maximum number of (not necessarily induced) copies of H in an n-vertex graph G which
does not contain F as a subgraph. Estimating ex(n,H, F ) for various pairs H and F
has been a central topic of research in extremal combinatorics. The case when H and
F are both cliques was settled early on by Zykov [13] and independently by Erdős [2].
The problem of maximizing 5-cycles in a triangle-free graph was a long-standing open
problem. The problem was finally settled by Grzesik [5] and independently by Hatami,
Hladký, Král, Norine and Razborov [9]. In the case when the forbidden graph F is a
triangle and H is any bipartite graph containing a matching on all but at most one of its
vertices, ex(n,H, F ) was determined exactly by Győri, Pach and Simonovits [6] in 1991.
More recently there has been extensive work on the topic following the work of Alon and
Shikhelman [1], who showed various properties of the extremal function ex(n,H, F ) for
general pairs H and F .

We now introduce some further notation that we will require in the statements and
proofs of our main results. For a graph G, the vertex set of G is denoted by V (G) and the
edge set of G is denoted by E(G). We also write v(G) = |V (G)| and e(G) = |E(G)|. We
denote the path, cycle, and complete graph on r vertices by Pr, Cr, and Kr, respectively.
The complete multipartite graph with r ⩾ 2 parts of sizes n1, n2, . . . , nr is denoted by
Kn1,n2,...,nr . In the case when each ni differs by at most one from the others the n-vertex
graph is referred to as the Turán graph and is denoted by Tr(n). For a graph H, the
kth power of H, denoted Hk, is defined to be the graph with vertex set V (H) and with
an edge between vertices of distance at most k in H. For graphs G and H, the number of
labeled copies of H in G is denoted by H∗(G), and the number of unlabelled copies of H
in G is denoted by H(G). In particular we we have that H∗(G)/H(G) = |Aut(H)| where
Aut(H) is the set of automorphisms of H.

Recently Lidický and Murphy proposed the following natural conjecture.

Conjecture 1 (Lidický, Murphy [11]). Let H be a graph and let r be an integer such that
r > χ(H). Then there exist integers n1, n2, . . . , nr−1 such that n1 + n2 + · · · + nr−1 = n
and

ex(n,H,Kr) = H(Kn1,n2,...,nr−1).

Recently Morrison, Nir, Norin, Rzążewski and Wesolek [12] showed that for any
graph H and large enough r, the maximum number of copies of H in a Kr-free n-vertex
graph is obtained by the Turán graph Tr−1(n), the balanced blow-up of Kr−1. In other
words, the above conjecture works if r is enough large comparing to χ(H).

Using the graph removal lemma one can easily show that for any graphs H and F
with χ(F ) = r we have ex(n,H, F ) ⩽ ex(n,H,Kr) + o(nv(H)) (see [4]). Therefore, the
above conjecture asymptotically determines ex(n,H, F ) in the case χ(F ) > χ(H), which
shows its importance. Unfortunately, the conjecture is not true in general. Indeed a
counterexample when r = 3 already appeared in [6]. Here we give a counterexample for
arbitrary r.

Theorem 2. For every r ⩾ 3 there is a counterexample to Conjecture 1.
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Proof. First, we fix some constants later used for constructing a counterexample. Let ε
be a positive real number such that ε < 1

4r
. Take a positive integer a for which

2ε2r−2(1− (2r − 2)ε)2a >
1

22a
.

Figure 1: Graph H for r = 3 and r = 4.

Let H be the graph, depicted in Figure 1, obtained from P r−2
2r by replacing each

of the two vertices of degree r − 2 with independent sets of size a each with the same
neighborhood as the original vertex. We refer to these a vertices as copies of the terminal
vertex. Note that there is a unique (r − 1)-coloring of H, and the copies of different
terminal vertices are in different color classes. For integers n, n1, n2, . . . , nr−1 such that
n = n1 + n2 + · · ·+ nr−1, we have

H(Kn1,n2,...,nr−1) =
1

|Aut(H)|
·H∗(Kn1,n2,...,nr−1) ⩽ n2r−2

(n
2

)2a
.

Figure 2: Graph G for r = 3 and r = 4.

Let G be a graph, depicted in Figure 2, obtained from blowing up Cr−2
2r−1 in the following

way. We replace each vertex with a disjoint independent set of size ⌊εn⌋ except for one
vertex which we replace by an independent set A of size n− (2r − 2) ⌊εn⌋. Note that G
is an n-vertex graph and the number of labelled copies of H in G is at least

2(⌊εn⌋)2r−2(n− (2r − 2) ⌊εn⌋)2a + o(n2r+2a−2).

Recall by the choice of a we have

2(⌊εn⌋)2r−2(n− (2r − 2) ⌊εn⌋)2a + o(n2r+2a−2) > n2r−2
(n
2

)2a
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for large enough n. Therefore for sufficiently large n the number of labeled copies, as well
as unlabelled copies of H in G, is greater than the number in any n vertex (r− 1)-partite
graph.

In the above counterexample when r = 3 a blow-up of a pentagon contains more copies
of H than any complete bipartite graph. It may be natural to expect that for r = 3 the
blow-up of a pentagon is the only obstacle, in particular, that for every bipartite graph H,
ex(n,H,K3) is asymptotically achieved by either a blow-up of an edge (that is, a complete
bipartite graph) or a blow-up of a cycle of length five. Surprisingly this is not the case.
Here we give an intuitive sketch of the argument.

Figure 3: The graph H is depicted on the left, and the structure of a graph with more
copies of H than a blow-up of an edge or C5 is depicted on the right.

Let H be the first graph depicted in Figure 3 defined in the following way. We
take a path on 10 vertices v1, v2, . . . , v10, let A2 and A9 be big sets of y independent
vertices attached to v2 and v9, accordingly, and let B1, B4, B7 and B10 be huge sets
of x independent vertices attached to the vertices v1, v4, v7 and v10, accordingly, where
x ≫ y ≫ 1. If one wants to maximize the number of copies of H in a complete bipartite
graph, then the huge sets B1, B7 will be mapped into one color class and the huge sets
B4 and B10 will be mapped into the other color class. Thus, the number of copies of H
will be exponentially small in terms of x. If one wants to maximize the number of copies
of H in a blow-up of a pentagon, then the largest number of such copies (the dominant
term as a function of x) will be obtained when the vertices of big degree v1, v4, v7 and v10
are mapped to blobs neighboring to the biggest blob. But then the two big sets A2 and
A9 need to be mapped to different blobs and not to the largest blob. On the other hand,
when one counts the number of copies of H in the graph depicted on the right in Figure 3,
then the dominant term as a function of x will be obtained when the vertices of big degree
v1, v4, v7 and v10 are mapped to blobs neighboring to the largest blob, and in such a case
it is still possible to map the sets A2 and A9 to one big part, so the dominant term as a
function of y will be bigger than for the blow-up of a pentagon. Therefore, after fixing x
and y to appropriate values, the maximum number of copies of H in a triangle-free graph
will be achieved neither in a complete bipartite graph nor in a blow-up of a pentagon.

The main idea behind the counterexample we presented to Conjecture 1 is to have
a graph with many vertices that cannot have the same color in any two-coloring but
can be in the same part in a blow-up of a non-bipartite graph. One can avoid having
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such vertices by bounding the diameter of a graph, therefore it is natural to consider the
following problem instead of Conjecture 1.

Conjecture 3. If G is a bipartite graph with diameter at most 4, then ex(n,G,K3) is
asymptotically achieved in a complete bipartite graph.

In the initial version of this paper, we proposed a more general conjecture for all
graphs with the chromatic number r. In particular, our conjecture stated that for every
graph G with the diameter at most 2r − 2 and χ(G) < r the maximum number of G in
a Kr-free graph is asymptotically achieved by a blow-up of Kr−1. This conjecture was
subsequently disproved by Keat and Mergoni in [10].

A first step towards Conjecture 3 for r = 3 is to prove it for all bipartite graphs of
radius 2. Each such graph can be viewed as a star with additional adjacent vertices.
Here we prove a slightly more general result, i.e., for bipartite graphs consisting of some
complete bipartite graph and additional adjacent vertices.

Theorem 4. Let H be a bipartite graph containing a subgraph K isomorphic to Ks,t.
Assume the distance of each vertex v ∈ V (H) to V (K) is at most one. Then the maximum
number of copies of H in a triangle-free n-vertex graph is obtained asymptotically by a
complete bipartite graph.

Proof. We start proof with a simple observation. Let us assume that the maximum
number of copies of a connected graph H ′ in a triangle-free n-vertex graph is obtained
by a blow-up of an edge. Then for every bipartite graph H such that H ′ ⊆ H we have
that the maximum number of copies of H in a triangle-free n-vertex graph is obtained by
a blow-up of an edge. Therefore we may assume that H consists of a complete bipartite
graph Ks,t with color classes S and T and some pendant edges. The number of pendant
edges attached to the vertices of S are denoted a1, a2, . . . , as and the number of pendant
edges attached to vertices of T are denoted b1, b2, . . . , bt.

For a graph H, we estimate the number of labeled copies of H in a graph G. First we
fix a set of size s in G say {x1, x2, . . . , xs}, onto which we will map the color class S of H.
Let us denote the common neighborhood of {x1, x2, . . . , xs} in G by X =

∩s
i=1 NG(xi).

In the estimates below the vertices x1, x2, . . . , xs are variables, and therefore the common
neighborhood is another variable. After the set {x1, x2, . . . , xs} is chosen we choose a
permutation σ ∈ Ss to map vertices of {x1, x2, . . . , xs} to the vertices of S. Next we
choose vertices y1, y2, . . . , yt ∈ X as representatives of T . Finally, we choose the endpoints
of the pendant edges. Note that during this process it is possible that we have chosen a
vertex of G as a representative of more than one vertex of H, which does not qualify as
a copy of H in G. Hence we overestimate here by o(nv(H)). We have

H∗(G) =
∑

{x1,...,xs}⊂V (G)

(∑
σ∈Ss

s∏
i=1

d(xσ(i))
ai

)( ∑
y1,...,yt∈X

t∏
j=1

d(yj)
bj

)
+ o(nv(H)). (1)

We use Muirhead’s inequality [8, Theorem 45] to estimate both terms of the product
above. For the degrees of x1, x2, . . . , xs since the sequence (a1, a2, . . . , as) is majorized by
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the sequence (
∑s

i=1 ai, 0, . . . , 0) we have

∑
σ∈Ss

s∏
i=1

d(xσ(i))
ai ⩽ (s− 1)!

∑
x∈{x1,...,xs}

d(x)
∑s

i=1 ai . (2)

Moreover for the degrees of all vertices of X the sequence (b1, b2, . . . , bt, 0, 0 . . . , 0) is
majorized by the sequence (

∑t
i=j bj, 0, . . . , 0) we have

∑
y1,...,yt∈X

t∏
j=1

d(yj)
bj ⩽ (|X| − 1)!

(|X| − t)!

∑
y∈X

d(y)
∑t

j=1 bj . (3)

Note that we have (|X|−1)!
(|X|−t)!

⩽ |X|t−1 ⩽ d(x)t−1 for all x in {x1, x2, . . . , xs}. Putting together
the bounds (1), (2) and (3) we obtain

H∗(G) ⩽
∑

x∈{x1,...,xs}⊂V (G)

(s−1)!d(x)t−1+
∑s

i=1 ai
∑
y∈X

d(y)
∑t

j=1 bj+o(nv(H)) = F ∗(G)+o(nv(H))

(4)
where F is a double-star with central vertices v and u joined by an edge,

∑s
i=1 ai + t− 1

pendant edges attached to v and
∑t

i=1 bi + s − 1 pendant edges attached to u. Here
we explain the last equality. Let us fix a set S ′ in V (F ) containing the vertex v and
s − 1 leaves adjacent with u. In order to find a copy of F in G first we choose vertices
x1, x2, . . . , xs of G, then we map vertices from S ′ to it and choose representatives of all
vertices adjacent to v in F except u. Then we fix a vertex y representing u, and finally,
we choose the remaining leaves adjacent to it.

For a given n and F , Győri, Wang and Woolfson [7] proved that there exists n′ such
that for all triangle-free graphs G on n vertices we have F (G) ⩽ F (Kn′,n−n′) + o(nv(F )).
Therefore we have F ∗(G) ⩽ F ∗(Kn′,n−n′) + o(nv(F )). Hence the maximum number of
labeled copies of H in G is also asymptotically attained when G = Kn′,n−n′ , so

H(G) ⩽ H(Kn′,n−n′) + o(nv(H)).

In a follow-up work [3], Gerbner sharpened the above mentioned result of Győri, Wang
and Woolfson, and as a consequence proved that Theorem 4 holds as an exact result.
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