Subgraph densities in K_r -free graphs

Andrzej Grzesik*

Faculty of Mathematics and Computer Science Jagiellonian University Kraków, Poland

Andrzej.Grzesik@uj.edu.pl

Nika Salia[‡]

Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences Budapest, Hungary

Extremal Combinatorics and Probability Group Institute for Basic Science Daejeon, South Korea

salianika@gmail.com

Ervin Győri[†]

Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences Budapest, Hungary

gyori.ervin@renyi.hu

Casey Tompkins[§]

Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences Budapest, Hungary

casey@renyi.hu

Submitted: Jun 14, 2022; Accepted: Jan 19, 2023; Published: Mar 24, 2023 © The authors. Released under the CC BY-ND license (International 4.0).

Abstract

A counterexample to a recent conjecture of Lidický and Murphy on the structure of K_r -free graph maximizing the number of copies of a given graph with chromatic number at most r-1 is known in the case r = 3. Here, we show that this conjecture does not hold for any r, and that the structure of extremal graphs can be richer. We also provide an alternative conjecture and, as a step towards its proof, we prove an asymptotically tight bound on the number of copies of any bipartite graph of radius at most 2 in the class of triangle-free graphs.

Mathematics Subject Classifications: 05C35

^{*}Supported by the National Science Centre grant 2021/42/E/ST1/00193.

 $^{^{\}dagger} \rm Supported$ by the National Research, Development and Innovation Office NKFIH grants K132696 and SNN-135643.

[‡]Supported by the National Research, Development and Innovation Office NKFIH grants K132696 and SNN-135643, and by the Institute for Basic Science (IBS-R029-C4).

[§]Supported by the National Research, Development and Innovation Office NKFIH grant K135800.

For graphs H and F the generalized Turán number ex(n, H, F) is defined to be the maximum number of (not necessarily induced) copies of H in an n-vertex graph G which does not contain F as a subgraph. Estimating ex(n, H, F) for various pairs H and F has been a central topic of research in extremal combinatorics. The case when H and F are both cliques was settled early on by Zykov [13] and independently by Erdős [2]. The problem of maximizing 5-cycles in a triangle-free graph was a long-standing open problem. The problem was finally settled by Grzesik [5] and independently by Hatami, Hladký, Král, Norine and Razborov [9]. In the case when the forbidden graph F is a triangle and H is any bipartite graph containing a matching on all but at most one of its vertices, ex(n, H, F) was determined exactly by Győri, Pach and Simonovits [6] in 1991. More recently there has been extensive work on the topic following the work of Alon and Shikhelman [1], who showed various properties of the extremal function ex(n, H, F) for general pairs H and F.

We now introduce some further notation that we will require in the statements and proofs of our main results. For a graph G, the vertex set of G is denoted by V(G) and the edge set of G is denoted by E(G). We also write v(G) = |V(G)| and e(G) = |E(G)|. We denote the path, cycle, and complete graph on r vertices by P_r, C_r , and K_r , respectively. The complete multipartite graph with $r \ge 2$ parts of sizes n_1, n_2, \ldots, n_r is denoted by K_{n_1,n_2,\ldots,n_r} . In the case when each n_i differs by at most one from the others the n-vertex graph is referred to as the Turán graph and is denoted by $T_r(n)$. For a graph H, the k^{th} power of H, denoted H^k , is defined to be the graph with vertex set V(H) and with an edge between vertices of distance at most k in H. For graphs G and H, the number of labeled copies of H in G is denoted by $H^*(G)$, and the number of unlabelled copies of Hin G is denoted by H(G). In particular we we have that $H^*(G)/H(G) = |\operatorname{Aut}(H)|$ where $\operatorname{Aut}(H)$ is the set of automorphisms of H.

Recently Lidický and Murphy proposed the following natural conjecture.

Conjecture 1 (Lidický, Murphy [11]). Let H be a graph and let r be an integer such that $r > \chi(H)$. Then there exist integers $n_1, n_2, \ldots, n_{r-1}$ such that $n_1 + n_2 + \cdots + n_{r-1} = n$ and

$$ex(n, H, K_r) = H(K_{n_1, n_2, \dots, n_{r-1}}).$$

Recently Morrison, Nir, Norin, Rzążewski and Wesolek [12] showed that for any graph H and large enough r, the maximum number of copies of H in a K_r -free n-vertex graph is obtained by the Turán graph $T_{r-1}(n)$, the balanced blow-up of K_{r-1} . In other words, the above conjecture works if r is enough large comparing to $\chi(H)$.

Using the graph removal lemma one can easily show that for any graphs H and F with $\chi(F) = r$ we have $ex(n, H, F) \leq ex(n, H, K_r) + o(n^{v(H)})$ (see [4]). Therefore, the above conjecture asymptotically determines ex(n, H, F) in the case $\chi(F) > \chi(H)$, which shows its importance. Unfortunately, the conjecture is not true in general. Indeed a counterexample when r = 3 already appeared in [6]. Here we give a counterexample for arbitrary r.

Theorem 2. For every $r \ge 3$ there is a counterexample to Conjecture 1.

Proof. First, we fix some constants later used for constructing a counterexample. Let ε be a positive real number such that $\varepsilon < \frac{1}{4r}$. Take a positive integer a for which

$$2\varepsilon^{2r-2}(1-(2r-2)\varepsilon)^{2a} > \frac{1}{2^{2a}}.$$

Let H be the graph, depicted in Figure 1, obtained from P_{2r}^{r-2} by replacing each of the two vertices of degree r-2 with independent sets of size a each with the same neighborhood as the original vertex. We refer to these a vertices as copies of the terminal vertex. Note that there is a unique (r-1)-coloring of H, and the copies of different terminal vertices are in different color classes. For integers $n, n_1, n_2, \ldots, n_{r-1}$ such that $n = n_1 + n_2 + \cdots + n_{r-1}$, we have

$$H(K_{n_1,n_2,\dots,n_{r-1}}) = \frac{1}{|\operatorname{Aut}(H)|} \cdot H^*(K_{n_1,n_2,\dots,n_{r-1}}) \leqslant n^{2r-2} \left(\frac{n}{2}\right)^{2a}$$

Let G be a graph, depicted in Figure 2, obtained from blowing up C_{2r-1}^{r-2} in the following way. We replace each vertex with a disjoint independent set of size $\lfloor \varepsilon n \rfloor$ except for one vertex which we replace by an independent set A of size $n - (2r - 2) \lfloor \varepsilon n \rfloor$. Note that G is an n-vertex graph and the number of labelled copies of H in G is at least

$$2(\lfloor \varepsilon n \rfloor)^{2r-2}(n-(2r-2)\lfloor \varepsilon n \rfloor)^{2a} + o(n^{2r+2a-2}).$$

Recall by the choice of a we have

$$2(\lfloor \varepsilon n \rfloor)^{2r-2}(n - (2r-2)\lfloor \varepsilon n \rfloor)^{2a} + o(n^{2r+2a-2}) > n^{2r-2}\left(\frac{n}{2}\right)^{2a}$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 30(1) (2023), #P1.51

for large enough n. Therefore for sufficiently large n the number of labeled copies, as well as unlabelled copies of H in G, is greater than the number in any n vertex (r-1)-partite graph.

In the above counterexample when r = 3 a blow-up of a pentagon contains more copies of H than any complete bipartite graph. It may be natural to expect that for r = 3 the blow-up of a pentagon is the only obstacle, in particular, that for every bipartite graph H, $ex(n, H, K_3)$ is asymptotically achieved by either a blow-up of an edge (that is, a complete bipartite graph) or a blow-up of a cycle of length five. Surprisingly this is not the case. Here we give an intuitive sketch of the argument.

Figure 3: The graph H is depicted on the left, and the structure of a graph with more copies of H than a blow-up of an edge or C_5 is depicted on the right.

Let H be the first graph depicted in Figure 3 defined in the following way. We take a path on 10 vertices v_1, v_2, \ldots, v_{10} , let A_2 and A_9 be big sets of y independent vertices attached to v_2 and v_9 , accordingly, and let B_1 , B_4 , B_7 and B_{10} be huge sets of x independent vertices attached to the vertices v_1 , v_4 , v_7 and v_{10} , accordingly, where $x \gg y \gg 1$. If one wants to maximize the number of copies of H in a complete bipartite graph, then the huge sets B_1 , B_7 will be mapped into one color class and the huge sets B_4 and B_{10} will be mapped into the other color class. Thus, the number of copies of H will be exponentially small in terms of x. If one wants to maximize the number of copies of H in a blow-up of a pentagon, then the largest number of such copies (the dominant term as a function of x) will be obtained when the vertices of big degree v_1 , v_4 , v_7 and v_{10} are mapped to blobs neighboring to the biggest blob. But then the two big sets A_2 and A_9 need to be mapped to different blobs and not to the largest blob. On the other hand, when one counts the number of copies of H in the graph depicted on the right in Figure 3, then the dominant term as a function of x will be obtained when the vertices of big degree v_1 , v_4 , v_7 and v_{10} are mapped to blobs neighboring to the largest blob, and in such a case it is still possible to map the sets A_2 and A_9 to one big part, so the dominant term as a function of y will be bigger than for the blow-up of a pentagon. Therefore, after fixing xand y to appropriate values, the maximum number of copies of H in a triangle-free graph will be achieved neither in a complete bipartite graph nor in a blow-up of a pentagon.

The main idea behind the counterexample we presented to Conjecture 1 is to have a graph with many vertices that cannot have the same color in any two-coloring but can be in the same part in a blow-up of a non-bipartite graph. One can avoid having such vertices by bounding the diameter of a graph, therefore it is natural to consider the following problem instead of Conjecture 1.

Conjecture 3. If G is a bipartite graph with diameter at most 4, then $ex(n, G, K_3)$ is asymptotically achieved in a complete bipartite graph.

In the initial version of this paper, we proposed a more general conjecture for all graphs with the chromatic number r. In particular, our conjecture stated that for every graph G with the diameter at most 2r - 2 and $\chi(G) < r$ the maximum number of G in a K_r -free graph is asymptotically achieved by a blow-up of K_{r-1} . This conjecture was subsequently disproved by Keat and Mergoni in [10].

A first step towards Conjecture 3 for r = 3 is to prove it for all bipartite graphs of radius 2. Each such graph can be viewed as a star with additional adjacent vertices. Here we prove a slightly more general result, i.e., for bipartite graphs consisting of some complete bipartite graph and additional adjacent vertices.

Theorem 4. Let H be a bipartite graph containing a subgraph K isomorphic to $K_{s,t}$. Assume the distance of each vertex $v \in V(H)$ to V(K) is at most one. Then the maximum number of copies of H in a triangle-free n-vertex graph is obtained asymptotically by a complete bipartite graph.

Proof. We start proof with a simple observation. Let us assume that the maximum number of copies of a connected graph H' in a triangle-free *n*-vertex graph is obtained by a blow-up of an edge. Then for every bipartite graph H such that $H' \subseteq H$ we have that the maximum number of copies of H in a triangle-free *n*-vertex graph is obtained by a blow-up of an edge. Therefore we may assume that H consists of a complete bipartite graph $K_{s,t}$ with color classes S and T and some pendant edges. The number of pendant edges attached to the vertices of S are denoted a_1, a_2, \ldots, a_s and the number of pendant edges attached to vertices of T are denoted b_1, b_2, \ldots, b_t .

For a graph H, we estimate the number of labeled copies of H in a graph G. First we fix a set of size s in G say $\{x_1, x_2, \ldots, x_s\}$, onto which we will map the color class S of H. Let us denote the common neighborhood of $\{x_1, x_2, \ldots, x_s\}$ in G by $X = \bigcap_{i=1}^s N_G(x_i)$. In the estimates below the vertices x_1, x_2, \ldots, x_s are variables, and therefore the common neighborhood is another variable. After the set $\{x_1, x_2, \ldots, x_s\}$ is chosen we choose a permutation $\sigma \in S_s$ to map vertices of $\{x_1, x_2, \ldots, x_s\}$ to the vertices of S. Next we choose vertices $y_1, y_2, \ldots, y_t \in X$ as representatives of T. Finally, we choose the endpoints of the pendant edges. Note that during this process it is possible that we have chosen a vertex of G as a representative of more than one vertex of H, which does not qualify as a copy of H in G. Hence we overestimate here by $o(n^{v(H)})$. We have

$$H^{*}(G) = \sum_{\{x_{1},\dots,x_{s}\}\subset V(G)} \left(\sum_{\sigma\in S_{s}}\prod_{i=1}^{s} d(x_{\sigma(i)})^{a_{i}}\right) \left(\sum_{y_{1},\dots,y_{t}\in X}\prod_{j=1}^{t} d(y_{j})^{b_{j}}\right) + o(n^{v(H)}).$$
(1)

We use Muirhead's inequality [8, Theorem 45] to estimate both terms of the product above. For the degrees of x_1, x_2, \ldots, x_s since the sequence (a_1, a_2, \ldots, a_s) is majorized by

The electronic journal of combinatorics 30(1) (2023), #P1.51

the sequence $\left(\sum_{i=1}^{s} a_i, 0, \dots, 0\right)$ we have

$$\sum_{\sigma \in S_s} \prod_{i=1}^s d(x_{\sigma(i)})^{a_i} \leqslant (s-1)! \sum_{x \in \{x_1, \dots, x_s\}} d(x)^{\sum_{i=1}^s a_i}.$$
 (2)

Moreover for the degrees of all vertices of X the sequence $(b_1, b_2, \ldots, b_t, 0, 0, \ldots, 0)$ is majorized by the sequence $(\sum_{i=j}^t b_j, 0, \ldots, 0)$ we have

$$\sum_{y_1,\dots,y_t \in X} \prod_{j=1}^t d(y_j)^{b_j} \leqslant \frac{(|X|-1)!}{(|X|-t)!} \sum_{y \in X} d(y)^{\sum_{j=1}^t b_j}.$$
(3)

Note that we have $\frac{(|X|-1)!}{(|X|-t)!} \leq |X|^{t-1} \leq d(x)^{t-1}$ for all x in $\{x_1, x_2, \ldots, x_s\}$. Putting together the bounds (1), (2) and (3) we obtain

$$H^{*}(G) \leq \sum_{x \in \{x_{1}, \dots, x_{s}\} \subset V(G)} (s-1)! d(x)^{t-1+\sum_{i=1}^{s} a_{i}} \sum_{y \in X} d(y)^{\sum_{j=1}^{t} b_{j}} + o(n^{v(H)}) = F^{*}(G) + o(n^{v(H)})$$

$$(A)$$

where F is a double-star with central vertices v and u joined by an edge, $\sum_{i=1}^{s} a_i + t - 1$ pendant edges attached to v and $\sum_{i=1}^{t} b_i + s - 1$ pendant edges attached to u. Here we explain the last equality. Let us fix a set S' in V(F) containing the vertex v and s - 1 leaves adjacent with u. In order to find a copy of F in G first we choose vertices x_1, x_2, \ldots, x_s of G, then we map vertices from S' to it and choose representatives of all vertices adjacent to v in F except u. Then we fix a vertex y representing u, and finally, we choose the remaining leaves adjacent to it.

For a given n and F, Győri, Wang and Woolfson [7] proved that there exists n' such that for all triangle-free graphs G on n vertices we have $F(G) \leq F(K_{n',n-n'}) + o(n^{v(F)})$. Therefore we have $F^*(G) \leq F^*(K_{n',n-n'}) + o(n^{v(F)})$. Hence the maximum number of labeled copies of H in G is also asymptotically attained when $G = K_{n',n-n'}$, so

$$H(G) \leqslant H(K_{n',n-n'}) + o(n^{v(H)}).$$

In a follow-up work [3], Gerbner sharpened the above mentioned result of Győri, Wang and Woolfson, and as a consequence proved that Theorem 4 holds as an exact result.

Acknowledgments

We would like to thank Daniel Gerbner for some useful remarks on the manuscript.

References

 Noga Alon and Clara Shikhelman. Many T copies in H-free graphs. Journal of Combinatorial Theory, Series B, 121:146–172, 2016.

- [2] Paul Erdős. On the number of complete subgraphs contained in certain graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl, 7(3):459–464, 1962.
- [3] Dániel Gerbner. On weakly Turán-good graphs. arXiv:2207.11993, 2022.
- [4] Dániel Gerbner and Cory Palmer. Counting copies of a fixed subgraph in *F*-free graphs. *European Journal of Combinatorics*, 82:103001, 2019.
- [5] Andrzej Grzesik. On the maximum number of five-cycles in a triangle-free graph. Journal of Combinatorial Theory, Series B, 102(5):1061–1066, 2012.
- [6] Ervin Győri, János Pach, and Miklós Simonovits. On the maximal number of certain subgraphs in K_r -free graphs. Graphs and Combinatorics, 7(1):31–37, 1991.
- [7] Ervin Győri, Runze Wang, and Spencer Woolfson. Extremal problems of double stars. arXiv:2109.01536, 2021.
- [8] Godfrey Harold Hardy, John Edensor Littlewood, and George Pólya. *Inequalities*. Cambridge University Press, 1952.
- [9] Hamed Hatami, Jan Hladký, Daniel Král, Serguei Norine, and Alexander Razborov. On the number of pentagons in triangle-free graphs. *Journal of Combinatorial The*ory, Series A, 120(3):722–732, 2013.
- [10] Eng Keat Hng and Domenico Mergoni Cecchelli. Density of small diameter subgraphs in K_r -free graphs. arXiv:2207.14297, 2022.
- [11] Bernard Lidický and Kyle Murphy. Maximizing five-cycles in K_r -free graphs. European Journal of Combinatorics, 97:103367, 2021.
- [12] Natasha Morrison, JD Nir, Sergey Norin, Paweł Rzążewski, and Alexandra Wesolek. Every graph is eventually Turán-good. arXiv:2208.08499, 2022.
- [13] Alexander Aleksandrovich Zykov. On some properties of linear complexes. *Matem-aticheskii sbornik*, 66(2):163–188, 1949.