Subgraph densities in \boldsymbol{K}_{r}-free graphs

Andrzej Grzesik*
Faculty of Mathematics and Computer Science Jagiellonian University
Kraków, Poland
Andrzej.Grzesik@uj.edu.pl
Nika Salia ${ }^{\ddagger}$
Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences
Budapest, Hungary
Extremal Combinatorics and Probability Group
Institute for Basic Science
Daejeon, South Korea
salianika@gmail.com

Submitted: Jun 14, 2022; Accepted: Jan 19, 2023; Published: Mar 24, 2023 © The authors. Released under the CC BY-ND license (International 4.0).

Abstract

A counterexample to a recent conjecture of Lidický and Murphy on the structure of K_{r}-free graph maximizing the number of copies of a given graph with chromatic number at most $r-1$ is known in the case $r=3$. Here, we show that this conjecture does not hold for any r, and that the structure of extremal graphs can be richer. We also provide an alternative conjecture and, as a step towards its proof, we prove an asymptotically tight bound on the number of copies of any bipartite graph of radius at most 2 in the class of triangle-free graphs.

Mathematics Subject Classifications: 05C35

[^0]For graphs H and F the generalized Turán number ex (n, H, F) is defined to be the maximum number of (not necessarily induced) copies of H in an n-vertex graph G which does not contain F as a subgraph. Estimating $\operatorname{ex}(n, H, F)$ for various pairs H and F has been a central topic of research in extremal combinatorics. The case when H and F are both cliques was settled early on by Zykov [13] and independently by Erdős [2]. The problem of maximizing 5 -cycles in a triangle-free graph was a long-standing open problem. The problem was finally settled by Grzesik [5] and independently by Hatami, Hladký, Král, Norine and Razborov [9]. In the case when the forbidden graph F is a triangle and H is any bipartite graph containing a matching on all but at most one of its vertices, ex (n, H, F) was determined exactly by Győri, Pach and Simonovits [6] in 1991. More recently there has been extensive work on the topic following the work of Alon and Shikhelman [1], who showed various properties of the extremal function ex (n, H, F) for general pairs H and F.

We now introduce some further notation that we will require in the statements and proofs of our main results. For a graph G, the vertex set of G is denoted by $V(G)$ and the edge set of G is denoted by $E(G)$. We also write $v(G)=|V(G)|$ and $e(G)=|E(G)|$. We denote the path, cycle, and complete graph on r vertices by P_{r}, C_{r}, and K_{r}, respectively. The complete multipartite graph with $r \geqslant 2$ parts of sizes $n_{1}, n_{2}, \ldots, n_{r}$ is denoted by $K_{n_{1}, n_{2}, \ldots, n_{r}}$. In the case when each n_{i} differs by at most one from the others the n-vertex graph is referred to as the Turán graph and is denoted by $T_{r}(n)$. For a graph H, the $k^{\text {th }}$ power of H, denoted H^{k}, is defined to be the graph with vertex set $V(H)$ and with an edge between vertices of distance at most k in H. For graphs G and H, the number of labeled copies of H in G is denoted by $H^{*}(G)$, and the number of unlabelled copies of H in G is denoted by $H(G)$. In particular we we have that $H^{*}(G) / H(G)=|\operatorname{Aut}(H)|$ where $\operatorname{Aut}(H)$ is the set of automorphisms of H.

Recently Lidický and Murphy proposed the following natural conjecture.
Conjecture 1 (Lidický, Murphy [11]). Let H be a graph and let r be an integer such that $r>\chi(H)$. Then there exist integers $n_{1}, n_{2}, \ldots, n_{r-1}$ such that $n_{1}+n_{2}+\cdots+n_{r-1}=n$ and

$$
\operatorname{ex}\left(n, H, K_{r}\right)=H\left(K_{n_{1}, n_{2}, \ldots, n_{r-1}}\right)
$$

Recently Morrison, Nir, Norin, Rzążewski and Wesolek [12] showed that for any graph H and large enough r, the maximum number of copies of H in a K_{r}-free n-vertex graph is obtained by the Turán graph $T_{r-1}(n)$, the balanced blow-up of K_{r-1}. In other words, the above conjecture works if r is enough large comparing to $\chi(H)$.

Using the graph removal lemma one can easily show that for any graphs H and F with $\chi(F)=r$ we have $\operatorname{ex}(n, H, F) \leqslant \operatorname{ex}\left(n, H, K_{r}\right)+o\left(n^{v(H)}\right)$ (see [4]). Therefore, the above conjecture asymptotically determines $\operatorname{ex}(n, H, F)$ in the case $\chi(F)>\chi(H)$, which shows its importance. Unfortunately, the conjecture is not true in general. Indeed a counterexample when $r=3$ already appeared in [6]. Here we give a counterexample for arbitrary r.

Theorem 2. For every $r \geqslant 3$ there is a counterexample to Conjecture 1.

Proof. First, we fix some constants later used for constructing a counterexample. Let ε be a positive real number such that $\varepsilon<\frac{1}{4 r}$. Take a positive integer a for which

$$
2 \varepsilon^{2 r-2}(1-(2 r-2) \varepsilon)^{2 a}>\frac{1}{2^{2 a}}
$$

Let H be the graph, depicted in Figure 1, obtained from $P_{2 r}^{r-2}$ by replacing each of the two vertices of degree $r-2$ with independent sets of size a each with the same neighborhood as the original vertex. We refer to these a vertices as copies of the terminal vertex. Note that there is a unique $(r-1)$-coloring of H, and the copies of different terminal vertices are in different color classes. For integers $n, n_{1}, n_{2}, \ldots, n_{r-1}$ such that $n=n_{1}+n_{2}+\cdots+n_{r-1}$, we have

$$
H\left(K_{n_{1}, n_{2}, \ldots, n_{r-1}}\right)=\frac{1}{|\operatorname{Aut}(H)|} \cdot H^{*}\left(K_{n_{1}, n_{2}, \ldots, n_{r-1}}\right) \leqslant n^{2 r-2}\left(\frac{n}{2}\right)^{2 a}
$$

Figure 2: Graph C

Let G be a graph, depicted in Figure 2, obtained from blowing up $C_{2 r-1}^{r-2}$ in the following way. We replace each vertex with a disjoint independent set of size $\lfloor\varepsilon n\rfloor$ except for one vertex which we replace by an independent set A of size $n-(2 r-2)\lfloor\varepsilon n\rfloor$. Note that G is an n-vertex graph and the number of labelled copies of H in G is at least

$$
2(\lfloor\varepsilon n\rfloor)^{2 r-2}(n-(2 r-2)\lfloor\varepsilon n\rfloor)^{2 a}+o\left(n^{2 r+2 a-2}\right) .
$$

Recall by the choice of a we have

$$
2(\lfloor\varepsilon n\rfloor)^{2 r-2}(n-(2 r-2)\lfloor\varepsilon n\rfloor)^{2 a}+o\left(n^{2 r+2 a-2}\right)>n^{2 r-2}\left(\frac{n}{2}\right)^{2 a}
$$

for large enough n. Therefore for sufficiently large n the number of labeled copies, as well as unlabelled copies of H in G, is greater than the number in any n vertex $(r-1)$-partite graph.

In the above counterexample when $r=3$ a blow-up of a pentagon contains more copies of H than any complete bipartite graph. It may be natural to expect that for $r=3$ the blow-up of a pentagon is the only obstacle, in particular, that for every bipartite graph H, $\operatorname{ex}\left(n, H, K_{3}\right)$ is asymptotically achieved by either a blow-up of an edge (that is, a complete bipartite graph) or a blow-up of a cycle of length five. Surprisingly this is not the case. Here we give an intuitive sketch of the argument.

Figure 3: The/graph H is depicted on the lefe and the structure of a graph with more copies of H han a brow-up of an edge or C_{5} is depicted on the right.

Let H be the first graph depicted in Figure 3 defined in the following way. We take a path on 10 vertices $v_{1}, v_{2}, \ldots, v_{10}$, let A_{2} and A_{9} be big sets of y independent vertices attached to v_{2} and v_{9}, accordingly, and let B_{1}, B_{4}, B_{7} and B_{10} be huge sets of x independent vertices attached to the vertices v_{1}, v_{4}, v_{7} and v_{10}, accordingly, where $x \gg y \gg 1$. If one wants to maximize the number of copies of H in a complete bipartite graph, then the huge sets B_{1}, B_{7} will be mapped into one color class and the huge sets B_{4} and B_{10} will be mapped into the other color class. Thus, the number of copies of H will be exponentially small in terms of x. If one wants to maximize the number of copies of H in a blow-up of a pentagon, then the largest number of such copies (the dominant term as a function of x) will be obtained when the vertices of big degree v_{1}, v_{4}, v_{7} and v_{10} are mapped to blobs neighboring to the biggest blob. But then the two big sets A_{2} and A_{9} need to be mapped to different blobs and not to the largest blob. On the other hand, when one counts the number of copies of H in the graph depicted on the right in Figure 3, then the dominant term as a function of x will be obtained when the vertices of big degree v_{1}, v_{4}, v_{7} and v_{10} are mapped to blobs neighboring to the largest blob, and in such a case it is still possible to map the sets A_{2} and A_{9} to one big part, so the dominant term as a function of y will be bigger than for the blow-up of a pentagon. Therefore, after fixing x and y to appropriate values, the maximum number of copies of H in a triangle-free graph will be achieved neither in a complete bipartite graph nor in a blow-up of a pentagon.

The main idea behind the counterexample we presented to Conjecture 1 is to have a graph with many vertices that cannot have the same color in any two-coloring but can be in the same part in a blow-up of a non-bipartite graph. One can avoid having
such vertices by bounding the diameter of a graph, therefore it is natural to consider the following problem instead of Conjecture 1.

Conjecture 3. If G is a bipartite graph with diameter at most 4 , then $\operatorname{ex}\left(n, G, K_{3}\right)$ is asymptotically achieved in a complete bipartite graph.

In the initial version of this paper, we proposed a more general conjecture for all graphs with the chromatic number r. In particular, our conjecture stated that for every graph G with the diameter at most $2 r-2$ and $\chi(G)<r$ the maximum number of G in a K_{r}-free graph is asymptotically achieved by a blow-up of K_{r-1}. This conjecture was subsequently disproved by Keat and Mergoni in [10].

A first step towards Conjecture 3 for $r=3$ is to prove it for all bipartite graphs of radius 2. Each such graph can be viewed as a star with additional adjacent vertices. Here we prove a slightly more general result, i.e., for bipartite graphs consisting of some complete bipartite graph and additional adjacent vertices.

Theorem 4. Let H be a bipartite graph containing a subgraph K isomorphic to $K_{s, t}$. Assume the distance of each vertex $v \in V(H)$ to $V(K)$ is at most one. Then the maximum number of copies of H in a triangle-free n-vertex graph is obtained asymptotically by a complete bipartite graph.

Proof. We start proof with a simple observation. Let us assume that the maximum number of copies of a connected graph H^{\prime} in a triangle-free n-vertex graph is obtained by a blow-up of an edge. Then for every bipartite graph H such that $H^{\prime} \subseteq H$ we have that the maximum number of copies of H in a triangle-free n-vertex graph is obtained by a blow-up of an edge. Therefore we may assume that H consists of a complete bipartite graph $K_{s, t}$ with color classes S and T and some pendant edges. The number of pendant edges attached to the vertices of S are denoted $a_{1}, a_{2}, \ldots, a_{s}$ and the number of pendant edges attached to vertices of T are denoted $b_{1}, b_{2}, \ldots, b_{t}$.

For a graph H, we estimate the number of labeled copies of H in a graph G. First we fix a set of size s in G say $\left\{x_{1}, x_{2}, \ldots, x_{s}\right\}$, onto which we will map the color class S of H. Let us denote the common neighborhood of $\left\{x_{1}, x_{2}, \ldots, x_{s}\right\}$ in G by $X=\bigcap_{i=1}^{s} N_{G}\left(x_{i}\right)$. In the estimates below the vertices $x_{1}, x_{2}, \ldots, x_{s}$ are variables, and therefore the common neighborhood is another variable. After the set $\left\{x_{1}, x_{2}, \ldots, x_{s}\right\}$ is chosen we choose a permutation $\sigma \in S_{s}$ to map vertices of $\left\{x_{1}, x_{2}, \ldots, x_{s}\right\}$ to the vertices of S. Next we choose vertices $y_{1}, y_{2}, \ldots, y_{t} \in X$ as representatives of T. Finally, we choose the endpoints of the pendant edges. Note that during this process it is possible that we have chosen a vertex of G as a representative of more than one vertex of H, which does not qualify as a copy of H in G. Hence we overestimate here by $o\left(n^{v(H)}\right)$. We have

$$
\begin{equation*}
H^{*}(G)=\sum_{\left\{x_{1}, \ldots, x_{s}\right\} \subset V(G)}\left(\sum_{\sigma \in S_{s}} \prod_{i=1}^{s} d\left(x_{\sigma(i)}\right)^{a_{i}}\right)\left(\sum_{y_{1}, \ldots, y_{t} \in X} \prod_{j=1}^{t} d\left(y_{j}\right)^{b_{j}}\right)+o\left(n^{v(H)}\right) . \tag{1}
\end{equation*}
$$

We use Muirhead's inequality [8, Theorem 45] to estimate both terms of the product above. For the degrees of $x_{1}, x_{2}, \ldots, x_{s}$ since the sequence $\left(a_{1}, a_{2}, \ldots, a_{s}\right)$ is majorized by
the sequence $\left(\sum_{i=1}^{s} a_{i}, 0, \ldots, 0\right)$ we have

$$
\begin{equation*}
\sum_{\sigma \in S_{s}} \prod_{i=1}^{s} d\left(x_{\sigma(i)}\right)^{a_{i}} \leqslant(s-1)!\sum_{x \in\left\{x_{1}, \ldots, x_{s}\right\}} d(x)^{\sum_{i=1}^{s} a_{i}} \tag{2}
\end{equation*}
$$

Moreover for the degrees of all vertices of X the sequence $\left(b_{1}, b_{2}, \ldots, b_{t}, 0,0 \ldots, 0\right)$ is majorized by the sequence $\left(\sum_{i=j}^{t} b_{j}, 0, \ldots, 0\right)$ we have

$$
\begin{equation*}
\sum_{y_{1}, \ldots, y_{t} \in X} \prod_{j=1}^{t} d\left(y_{j}\right)^{b_{j}} \leqslant \frac{(|X|-1)!}{(|X|-t)!} \sum_{y \in X} d(y)^{\sum_{j=1}^{t} b_{j}} \tag{3}
\end{equation*}
$$

Note that we have $\frac{(|X|-1)!}{(|X|-t)!} \leqslant|X|^{t-1} \leqslant d(x)^{t-1}$ for all x in $\left\{x_{1}, x_{2}, \ldots, x_{s}\right\}$. Putting together the bounds (1), (2) and (3) we obtain

$$
\begin{equation*}
H^{*}(G) \leqslant \sum_{x \in\left\{x_{1}, \ldots, x_{s}\right\} \subset V(G)}(s-1)!d(x)^{t-1+\sum_{i=1}^{s} a_{i}} \sum_{y \in X} d(y)^{\sum_{j=1}^{t} b_{j}}+o\left(n^{v(H)}\right)=F^{*}(G)+o\left(n^{v(H)}\right) \tag{4}
\end{equation*}
$$

where F is a double-star with central vertices v and u joined by an edge, $\sum_{i=1}^{s} a_{i}+t-1$ pendant edges attached to v and $\sum_{i=1}^{t} b_{i}+s-1$ pendant edges attached to u. Here we explain the last equality. Let us fix a set S^{\prime} in $V(F)$ containing the vertex v and $s-1$ leaves adjacent with u. In order to find a copy of F in G first we choose vertices $x_{1}, x_{2}, \ldots, x_{s}$ of G, then we map vertices from S^{\prime} to it and choose representatives of all vertices adjacent to v in F except u. Then we fix a vertex y representing u, and finally, we choose the remaining leaves adjacent to it.

For a given n and F, Győri, Wang and Woolfson [7] proved that there exists n^{\prime} such that for all triangle-free graphs G on n vertices we have $F(G) \leqslant F\left(K_{n^{\prime}, n-n^{\prime}}\right)+o\left(n^{v(F)}\right)$. Therefore we have $F^{*}(G) \leqslant F^{*}\left(K_{n^{\prime}, n-n^{\prime}}\right)+o\left(n^{v(F)}\right)$. Hence the maximum number of labeled copies of H in G is also asymptotically attained when $G=K_{n^{\prime}, n-n^{\prime}}$, so

$$
H(G) \leqslant H\left(K_{n^{\prime}, n-n^{\prime}}\right)+o\left(n^{v(H)}\right)
$$

In a follow-up work [3], Gerbner sharpened the above mentioned result of Győri, Wang and Woolfson, and as a consequence proved that Theorem 4 holds as an exact result.

Acknowledgments

We would like to thank Daniel Gerbner for some useful remarks on the manuscript.

References

[1] Noga Alon and Clara Shikhelman. Many T copies in H-free graphs. Journal of Combinatorial Theory, Series B, 121:146-172, 2016.
[2] Paul Erdős. On the number of complete subgraphs contained in certain graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl, 7(3):459-464, 1962.
[3] Dániel Gerbner. On weakly Turán-good graphs. arXiv:2207.11993, 2022.
[4] Dániel Gerbner and Cory Palmer. Counting copies of a fixed subgraph in F-free graphs. European Journal of Combinatorics, 82:103001, 2019.
[5] Andrzej Grzesik. On the maximum number of five-cycles in a triangle-free graph. Journal of Combinatorial Theory, Series B, 102(5):1061-1066, 2012.
[6] Ervin Győri, János Pach, and Miklós Simonovits. On the maximal number of certain subgraphs in K_{r}-free graphs. Graphs and Combinatorics, 7(1):31-37, 1991.
[7] Ervin Győri, Runze Wang, and Spencer Woolfson. Extremal problems of double stars. arXiv:2109.01536, 2021.
[8] Godfrey Harold Hardy, John Edensor Littlewood, and George Pólya. Inequalities. Cambridge University Press, 1952.
[9] Hamed Hatami, Jan Hladký, Daniel Král, Serguei Norine, and Alexander Razborov. On the number of pentagons in triangle-free graphs. Journal of Combinatorial Theory, Series A, 120(3):722-732, 2013.
[10] Eng Keat Hng and Domenico Mergoni Cecchelli. Density of small diameter subgraphs in K_{r}-free graphs. arXiv:2207.14297, 2022.
[11] Bernard Lidický and Kyle Murphy. Maximizing five-cycles in K_{r}-free graphs. European Journal of Combinatorics, 97:103367, 2021.
[12] Natasha Morrison, JD Nir, Sergey Norin, Paweł Rzążewski, and Alexandra Wesolek. Every graph is eventually Turán-good. arXiv:2208.08499, 2022.
[13] Alexander Aleksandrovich Zykov. On some properties of linear complexes. Matematicheskii sbornik, 66(2):163-188, 1949.

[^0]: *Supported by the National Science Centre grant 2021/42/E/ST1/00193.
 ${ }^{\dagger}$ Supported by the National Research, Development and Innovation Office NKFIH grants K132696 and SNN-135643.
 ${ }^{\ddagger}$ Supported by the National Research, Development and Innovation Office NKFIH grants K132696 and SNN-135643, and by the Institute for Basic Science (IBS-R029-C4).
 §Supported by the National Research, Development and Innovation Office NKFIH grant K135800.

