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ABSTRACT 

The main objective of this study is to develop a mathematical modeling framework 

for a deeper understanding of dynamics of math anxiety as a contagious process. Borrowing 

from theories of the spread of infectious disease, we develop two classes of mathematical 

models representing the spread of math anxiety in math gateway classes. The first 

mathematical model does not entirely fit with our collected data of math anxiety (n=53, 

Calculus II & III summer of 2020). However, the second mathematical model, which is a 

generalization of the first model, can exhibit periodic solutions as observed in the collected 

data. In addition to the mathematical modeling framework, we have applied a variety of 

statistical methods and models to analyze the survey data. This includes descriptive analysis 

of the data, correlation and hypothesis testing, and a machine learning approach, which 

utilizes the classification and regression tree models to identify key factors associated with 

math anxiety. These regression tree models include factors such as gender, academic level, 

number of hours studied, motivation, and confidence.  In conclusion, the present work lays 

the foundation for applying mathematical models to measure the spread of math anxiety in 

gateway STEM courses. 
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CHAPTER 1 

INTRODUCTION TO MATH ANXIETY 

 

1.1 Overview  

Math Anxiety and negative attitudes towards math are significant challenges for 

students at all stages of their academic careers (Geist, 2010). Researchers have conducted 

multiple studies to investigate math anxiety and related topics for decades. Chapter 1 

provides a definition of math anxiety and literature review of variables (such as confidence, 

motivation, gender, academic levels, and COVID-19 pandemic) associated with math 

anxiety. Since we began this study during the COVID-19 pandemic, we examine COVID-19 

as another potential factor contributing to student math anxiety. Interestingly, the review of 

literature revealed that math anxiety can spread among students or transfer from teacher to 

student or parent to student. This chapter covers a detailed literature review of the above-

mentioned factors associated with math anxiety, explains the study’s research questions, and 

provides a statement of significance. 

A substantial part of this chapter has been published in the International Electronic 

Journal of Mathematics Education and in the journal Pedagogical Research (Soysal et al., 

2022). 

 

1.2 Definition of Math Anxiety  

Students who pursue degrees in Science, Technology, Engineering, and Mathematics 

(STEM) are continually presented with very hard and rigorous degree programs, which may 
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cause them to become overconfident in their ability to achieve their academic goals (Hsu & 

Goldsmith, 2021). Students may be motivated to make decisions or focus on their learning 

and achievement based on emotions associated with STEM courses. Because math anxiety is 

such a relevant factor for student success, it has become an important topic of inquiry for 

researchers and teachers, as well (Warwick, 2008; Williams,1988; Greenwood, 1984; 

Ramirez et al., 2018). The earliest study of math anxiety began in the 1950s (Ashcraft & 

Moore, 2009), and since then, math anxiety is defined as “a feeling of tension and anxiety 

that interferes with the manipulation of numbers and the solving of mathematical problems in 

a wide variety of ordinary life and academic situations” (Richardson & Suinn, 1972). Also, 

Tobias and Weissbrod (1980) expressed math anxiety as “the panic, helplessness, paralysis, 

and mental disorganization that arises among some people when they are required to solve a 

mathematical problem” and claimed that this affects a large percentage of the population 

(p.65).  

Based on my experience as a math instructor, I have observed firsthand math anxiety 

in higher education. The following excerpt from an email sent by a former student 

demonstrates his experience with math anxiety: 

Well I managed to do it again... I have never had this happen to me before, but for 
some reason I am getting extremely nervous and anxiety overwhelms me instantly... 
I do not have this same experience while taking tests in chemistry this semester so it 
if very odd...for some reason I get so anxious and nervous that I cant think clearly. 
 

In this email, my student describes his course-related anxiety and how he chose to seek help. 

I understand and am aware of how worried my students are. They also have talked about how 

confident they were in math classes. This is math anxiety, not an anxiety towards their 
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physical study or availability. This feeling appears inside of the individual student and affects 

their success, confidence, and ability to solve problems.  

 

1.3 Spread of Math Anxiety 

Notably, there was a reduction in anxiety symptoms and an improvement in learning 

achievement among students who had teachers with better math abilities and confidence 

(Geist, 2015). Geist (2015) investigated how teachers deliver a lesson in the classroom and 

found that teacher math anxiety affects their teaching techniques and tactics. Teacher 

practices, then, can impact student math anxiety through a teacher's lack of lesson 

preparation for class, as well as a lack of presentation skills, misrepresentation, and an 

inability to link content to the real world (Beilock et al., 2010; White, 1997). Students may 

have math anxiety as a result of the teacher's in-class behavior, which may include gender 

stereotypes and bias (Jackson & Leffingwell, 1999). Teachers are thus more likely to pass 

math anxiety on to their students (Beilock et al., 2010; Rubinsten, 2017; R. Martinez, 1987). 

Teachers are not the only ones who might cause math anxiety, though; parents can 

also pass on their negative attitudes toward math to their children (Maloney et al., 2015; Soni 

& Kumari, 2015; Foley et al., 2017). When parents have poor math skills or fears about 

math, they often spread it to their children. Because of parent math anxiety, their children’s 

ability to learn math during the school year is often affected. When parents empathize with 

their children’s math troubles, they reinforce this anxiety. Instead, parents should think of 

learning mathematics as similar to teaching their children to ride a bicycle or read, rather than 

showing their children their own mathematical weaknesses (Sisto, 2014). 
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Besides teacher and parent behaviors, peer pressure (Buckley & Ribordy, 1982; 

Beilock & Carr, 2005) and insufficient mathematical backgrounds (Betz, 1978; Ashcraft & 

Moore, 2009) are some possible causes of math anxiety (Beilock & DeCaro, 2007; Ashcraft 

& Moore, 2009). Negative school experiences, family pressure, insensitive and inadequate 

field teachers, and a passive classroom setting are all environmental influences (Naderi 

Dehsheykh et al., 2021; Chang & Beilock, 2016; Ashcraft & Moore, 2009). Ashcraft and 

Moore (2009) found that all math anxiety had an effective reduction in student performance.  

In terms of its impact on student confidence and engagement, however, anxiety is 

seen as an engaging emotion (Hsu & Goldsmith, 2021). As a result, math anxiety is 

determined by the motivation and interests of individual students. Institutions and instructors 

have devised a variety of learning platforms and ways to manage students' anxiety in courses 

while also limiting the spread of the math anxiety. These techniques are intended to inspire 

students and parents, as well as foster confidence in them (Snelling & Fingal, 2020).  

In some ways, math anxiety is contagious (Gurin et al., 2017; Morris, 1981; Beilock 

et al., 2010). Teachers and parents who suffer from math anxiety might pass it on to their 

students and children. Some research suggests there might be a genetic link between parents 

and their children related to math performance and anxiety (Wang et al., 2014). Maloney et 

al., (2015) showed how poor math success and high math anxiety may have intergenerational 

effects, including impacts on children's arithmetic achievement and anxiety. Math anxiety in 

parents predicts math self-efficacy, GPA, behavior, math attitudes, and math devaluation in 

children (Casad et al., 2015).  
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1.4 Factors Associated with Math Anxiety 

To model math anxiety’s relationship to confidence, previous researchers have 

utilized traditional statistical methods for decades. For example, math anxiety has been 

inversely correlated to high school students’ self-confidence (i.e., self-esteem, self-efficacy) 

(Akin and Kurbanoglu, 2011; Naderi Dehsheykh et al., 2021). Likewise, Tapia and Marsh 

(2004) found that students with lower math anxiety had significantly more confidence than 

students with high math anxiety. Rozgonjuk et al. (2020) concluded that reducing students’ 

math anxiety could be helpful in boosting their mathematics confidence. Broadly speaking, 

the literature indicates that confidence in mathematics has a significant impact on math 

anxiety. 

Confidence is not the only factor, though; motivation can also impact math anxiety. 

Having a positive attitude might help to minimize anxiety about learning and increase 

motivation to succeed (Chen et al., 2018). The relationship between math anxiety and 

motivation has been frequently studied, and a negative correlation between the two has been 

observed (Zakaria & Nordin, 2008; Wang et al., 2015; Chang & Beilock, 2016; Gunderson et 

al., 2018). However, in some cases, the relationship between math anxiety and motivation 

remains ambiguous (Wang et al., 2018). Wang et al. (2018) discovered eight unique profiles 

in a sample of 927 high school students (13–21 years old) defined by varying combinations 

of math anxiety and motivation. Simply put, they found some math-anxious students are 

highly motivated, while the current understanding in the literature is anxious students often 

have low motivation. 
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Researchers have also found a connection between gender and math anxiety. The 

relationship between math anxiety and gender has sparked debate and controversy 

(Rubinsten et al., 2012). Studies have found distinct gender disparities in certain populations. 

Hembree's (1990) meta-analysis analyzed 151 studies, including 49 journal articles, 23 ERIC 

documents, 75 Ph.D. dissertations, and 4 reports from additional investigations. According to 

the author's results, females had higher levels of math anxiety than males at the collegiate 

level. Other researchers have found similar results (Betz, 1978; Woodard, 2002). Xie et al. 

(2019) revealed women showed a higher level of math anxiety compared to men at a high 

school level, as well. On the other hand, Tapia and Marsh’s (2004) study shows math anxiety 

is unrelated to gender in their sample of university students, though the other literature shows 

a significant relationship between the two. 

Several other factors may contribute to math anxiety including a fear of making 

mistakes, insufficient mathematical background, teacher and parent comments, attitudes, 

behaviors, and parental education levels (Sevindir et al., 2014). As the world continues to 

come to terms with the COVID-19 pandemic, the main challenge many schools are facing is 

teaching advanced subjects such as calculus online. 

 

1.5 Math Anxiety During the COVID-19 Pandemic 

The COVID-19 pandemic has had a huge impact on people across the world, 

requiring people to change their habits to safer ones to avoid the disease from spreading. 

Education is one of the most affected industries, with millions of students dependent on new 

health measures. Even though the curriculum remained unchanged during the pandemic, 



 

7 
 

several components of the curriculum’s delivery changed, and these changes helped students 

greatly, making studying easier and allowing them to maintain good academic performance. 

One of the key lessons learned from the pandemic is that we live in a modern society defined 

by numerous questions and a scarcity of solid answers (Paraskeva, 2022). Most individuals in 

schools and many professions have been unable to propose credible answers that would 

allow life to resume normally without the limits imposed by the pandemic.  

Similarly, cultural, and technological inquiries can have a big influence on how 

individuals cope with some of the problems that have arisen as a result of the crisis. An e-

learning-based culture has altered educational provisions, with most learners throughout the 

world relying on digital resources for their studies and communication (Brunelli & Macirella, 

2021). The practice reflects a cultural movement away from traditional learning to a new one 

in which learners and instructors are not expected to be in the same place at the same time. 

STEM students whose curriculum includes cultural inquiry are more likely to be comfortable 

with change in this scenario. The reason for this is that, in contrast to students whose 

education does not focus on cultural inquiry, the education and abilities obtained from the 

cultural inquiry make it simple for learners to adjust to different cultural situations and 

practices. 

Technological inquiry in STEM education has been critical throughout the pandemic 

since the knowledge supports the learning processes of students. However, policies such as 

remote working and learning assume that all students have reliable internet connections and 

computers, making it impossible for all citizens to have equal opportunity in fulfilling their 

tasks (Paraskeva, 2022). The policies have created hierarchies in which those who have the 
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knowledge, skills, and resources to support the use of technology in their educational and 

professional activities have an advantage over others. Students’ lives have been disrupted 

because of the pandemic, and some students, particularly those with expertise, have been able 

to employ current technology to increase their opportunities. During the pandemic, some 

students are negatively affected by technology use in their courses, while others are 

positively influenced. Students' anxiety levels have also risen, as a result of this. However, 

the positive side of technology is that it increases students’ confidence and motivation.  

The disruption of accessible education caused by COVID-19's emphasis on 

technological inquiry has impacted university students, including STEM students. School 

closures, together with the associated public health and economic crisis, present great 

challenges for students (García & Weiss, 2020). With the increase in the number of COVID-

19 infections, most university lessons take place virtually, which is especially challenging for 

STEM (science, technology, engineering, and math) students who are used to hands-on, 

interactive learning (Hensley et al., 2020). Students were affected because their classes were 

interrupted, and they were expected to rapidly adapt to the unique expectations of online 

learning. Forakis et al., (2020) asked their students by responding to a survey to describe the 

way this transition has affected their academic plans to provide an in-depth look into their 

intentions. The challenges of COVID-19 impacted the university students’ graduations (Saw 

et al., 2020). Saw et al. (2020) found that nearly 10% of STEM students had not decided or 

would not enroll in fall 2020 due to the pandemic, while 35.5% of doctoral STEM students, 

18% of master’s students, and 7.6% of undergraduate students delayed their graduation. 
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 The rapidly changing educational landscape caused students to experience extreme 

stress, emotional exhaustion and frustration, average absenteeism, a somatic burden, and 

laziness while learning Calculus (Casinillo & Casinillo, 2021). Mendoza et al. (2021) 

analyzed the levels of anxiety in university mathematics students studying at the Universidad 

Nacional de Chimborazo (UNACH) during the fall 2020 academic semester. The results of 

their study showed a statistically significant difference in students’ understanding of virtually 

presented content, which correlated to increased levels of math anxiety during the COVID-19 

pandemic. Therefore, the pandemic has contributed to mounting anxiety and stress among 

many STEM students (Alemany-Arrebola et al., 2020).  

Online learning has disrupted the educational environment many students are 

accustomed to. Serhan (2020) found that many students were not satisfied with their learning 

experience during the initial transition to online learning in March 2020. His results indicated 

that students negatively perceive the use of Zoom and believe it has a negative effect on their 

learning outcomes and their motivation to learn. Online learning might demotivate students 

and disincentivize them from watching lectures synchronously; however, student anxiety 

levels are likely to increase if they miss classes because it is challenging to follow up on 

difficult calculations independently. Additionally, students’ Internet connections may be 

unreliable, making it impossible to continue watching their lessons. Notably, Internet 

connectivity problems disproportionately affect rural students and negatively impact their 

learning experience (Hampton et al., 2020). Sabates et al. (2021) estimated the learning loss 

during the three-month transition period from face-to-face learning to online learning in 

Ghana was 66% of previous learning gains in foundational numeracy. According to their 
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estimates, the expanding gaps in learning losses are caused by a lack of both home learning 

support and home learning resources. 

Serhan’s (2020) finding that synchronous learning decreased student’s academic 

motivation may explain the increased incidence of math anxiety during the COVID-19 

pandemic. Mubeen and Reid (2014) explored how motivation relates to self-efficacy, self-

concept, confidence, and self-esteem in an educational setting. The researchers found that 

motivation positively correlates with strong feelings of self-efficacy and self-esteem – two 

factors that protect against academic anxiety. Thus, low motivation is associated with poor 

self-efficacy and increased academic anxiety. However, these studies do not measure the 

level of motivation and confidence as a function of time. The main objective of the present 

study is to investigate temporal variations in students’ levels of motivation, anxiety, and 

confidence during the COVID-19 pandemic. We also analyze the effects of COVID-19 on 

students throughout the semester. 

 Poignantly, student’s development of motivation, self-efficacy, and confidence 

depends on their teachers’ capacity to understand, anticipate, and deal with students’ ideas 

about mathematics and mathematical thinking within the context of the world at large (Voica 

et al., 2020). When the pandemic struck, teachers quickly adapted their teaching methods to 

be as effective as possible (Midcalf & Boatwright, 2020). In a course on differential calculus, 

Jungic (2021) found that the level of anxiety student’s experienced decreased when facts and 

statistics about the pandemic were integrated into course exercises. Therefore, to bolster 

student’s self-efficacy and decrease feelings of academic anxiety, Jungic (2021) suggested a 
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new approach that incorporates acknowledgment of the current pandemic in mathematics 

exams. 

Math anxiety can affect people of any age, especially when their situation changes 

drastically. Many students are affected by anxiety because they lack the proper channels to 

divert their stress. The pandemic has made it more difficult to redirect stress while 

simultaneously introducing a number of new challenges (Marpa, 2020). Within the scope of 

online learning, some of these challenges include communication difficulties that make it 

easier to misunderstand information and more difficult to ask questions. Reinhold et al. 

(2021) found that maintaining a positive attitude towards synchronous learning is key to 

buffering students' stress during this pandemic. A positive attitude corresponds to the more 

productive redirection of stress and less academic anxiety. 

While existing research confirms an increase in math anxiety associated with the 

current COVID-19 pandemic, a number of questions remain unanswered. This study seeks to 

understand how the motivation, anxiety, and confidence of STEM students changed during 

the summer 2020 term, how these variables defer with respect to academic level and gender, 

and how the COVID-19 pandemic has influenced STEM students’ learning environment and 

utilization of supplemental resources. 

If we draw a comparison between the COVID-19 pandemic and the Spanish flu in 

1918-1920, real-time communication tools have made it easier to continue life as normal. 

Recent technological developments have made synchronous learning accessible for many 

students, making learning mathematics online easier. There are various tools and resources 

that make it easier to teach calculus and pay special attention to the needs of students during 
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this period of isolation. Real-time communication tools such as Zoom ensure that students 

are engaged. Contact time is precious and synchronous learning ensures maximum 

participation in lessons. The pandemic has created feelings of isolation in students used to the 

collaborative approach used in higher-level math classes (Ng et al., 2020). Fortunately, real-

time learning platforms make it possible to reinforce this collaborative teaching approach. 

Additionally, online resources like YouTube and Kahn Academy offer additional instruction 

that may temporarily stand in for in-person resources, like office hours and tutoring. Amidst 

the rapid transition to online learning at the start of the pandemic, mathematics 

support/tutoring centers also moved their services online (Johns & Mills, 2021). Furthermore, 

concerning the future of online tutoring, roughly 13% of mathematics center administrators 

claimed they would not continue due to limited student utilization and a personal preference 

for face-to-face tutoring (Johns & Mills, 2021). 

 

1.6 Statement of The Problem 

Research on math anxiety (Chen, 2019; Gurin et al., 2017; Richardson & Suinn, 

1972) focused on how math anxiety develops and spreads through statistical analysis of 

relevant data. Furthermore, the Math Anxiety Rating Scale was developed to quantify the 

level of anxiety that each student experiences (Richardson & Suinn, 1972).  

There is currently no theoretical framework regarding the spread of math anxiety in a 

classroom or a learning environment. This is a crucial issue, particularly for STEM students, 

who may drop or fail their gateway courses and change their major as the result of math 

anxiety. Given that previous studies have established the contagiousness of math anxiety 
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(Amani et al., 2021; Gurin et al., 2017; Morris, 1981; Beilock et al., 2010), the main goal of 

this work is to apply the theory of infectious disease modeling to investigate the spread of my 

anxiety and its corresponding dynamics using mathematical and statistical models. 

In this study, we explore the spread of math anxiety as an epidemiological contagion. 

To deepen our understanding of math anxiety and provide a modeling framework to quantify 

the dynamics of math anxiety, we employ epidemiological and mathematical tools such as 

the force of infection (Reiner et al., 2014; Diekmann et al., 1995) and basic reproduction 

number (Bani-Yaghoub et al., 2012). This project is a qualitative and quantitative modeling 

approach rather than an explanatory modeling approach. In other words, rather of looking for 

the causes of anxiety and how it spreads among students, we will develop and study a series 

of mathematical and statistical models to deepen our understanding of anxiety dynamics. 

Using the collected data, we will also examine the correlation between math anxiety and the 

COVID-19 pandemic. COVID-19 has had an impact on college students' coursework, stress 

levels, and health perceptions (Perz et al., 2022; Sabates, 2021). Therefore, students may be 

less able to function at their peak and perform adequately in their academics during the 

COVID-19 outbreak.  

In sum, the significance of this study can be explained in two parts. Using 

mathematical modeling (1) we can identify the patterns (shift, spikes, periodicity, concavity, 

rates, monotonicity, etc.) of math anxiety and its correlations to student performance. (2) 

Borrowing from Mathematical Epidemiology (e.g., susceptibility of students, transmissibility 

of anxiety, force of anxiety, chain of anxiety, anxiety endemic status, epidemic wave 

affecting majority students, exposed level, active immunity of students, odds ratio of 
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infection, prevalence of infection, virulence of anxiety) we define and quantify dynamics of 

math anxiety, especially during the COVID-19 pandemic. Therefore, we developed a 

conceptual framework based on mathematical epidemiology, which is used to quantify and 

better understand the dynamics of math anxiety in higher education. 

 

1.7 Research Questions 

These questions were divided into two parts, modeling and developing theory and 

data collection, data analysis, and testing the models: 

1. Modeling and Developing Theory 

Building on research that finds math anxiety to be contagious, can theory of 

infectious disease transmission and control be extended to complete the following tasks? 

• investigate the spread and dynamics of math anxiety in college students  

• measure the severity of math anxiety based on factors such as the gender, academic 

level and course level 

• understand the underlying mechanisms (such as student-student, teach-student, and 

parent-student interactions, exams, assignments) governing math anxiety, and  

• measure the effectiveness of curricular and extracurricular strategies to reduce math 

anxiety 

2. Data Collection, Data Analysis and Testing the Models 

Using the collected data, we would like to answer the following questions: 

• How does COVID-19 affect student’s performance, motivation, and confidence? 
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• What are the time series patterns in students' anxiety, motivation, or confidence 

change during the semester? 

• What are the relations between student demographics, students’ efforts, and factors 

such as math anxiety, motivation, and confidence? 

• Will the developed theory and mathematical results obtained in part 1 coincide with 

the observed dynamics present in the collected data?  

 

1.8 Framework of The Chapters 

Chapter 1 includes the background and history of math anxiety as a scholarly 

conversation. This chapter also covers a definition and explanation of the problem and 

research questions which are the heart of this dissertation. Chapter 2 contains statistical 

analysis such as descriptive statistical analysis, hypothesis testing, and time series analysis 

that we utilized in this dissertation. Chapter 3 contains machine learning analysis and Pearson 

correlation analysis of math anxiety and factors (i.e., confidence, motivation, genders, and 

academic levels). Chapter 4 presents the developed extended SIR model for math anxiety. In 

the proposed model, we apply techniques using MATLAB to estimate the parameters of the 

model. We also analyze and validate the model analytically and numerically. Chapter 5 

contains Hopf bifurcation theorem which we utilized to the mathematical model. Lastly, we 

will conclude the dissertation by discussing and suggesting ideas for future study in Chapter 

6. 
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CHAPTER 2 

INFERENCE AND MATH ANXIETY DATA 

 

2.1 Overview 

The current COVID-19 pandemic has largely impacted the academic performance of 

several college students. The present study is concerned with the effects of the COVID-19 

pandemic on students pursuing a STEM (science, technology, engineering, and math) degree. 

We collected weekly survey data (w = 9) of students (n = 53) taking calculus courses during 

the COVID-19 pandemic (specifically, the summer of 2020). Using the self-reported survey 

data, we investigated the temporal variations in the levels of anxiety, motivation, and 

confidence of STEM students. Studies on temporal changes to math anxiety are scarce. The 

present work aims to fill this gap by analyzing longitudinal survey data associated with math 

anxiety. Furthermore, using descriptive and inferential statistical methods such as one-way 

ANOVA, we analyze the data with respect to gender and academic level. As a conclusion of 

this chapter, we found that the time series analysis of the data indicated that the levels of 

motivation and confidence significantly dropped toward the end of the semester, whereas the 

level of anxiety increased in all groups.  

This chapter has been published in the International Electronic Journal of 

Mathematics Education (Soysal et al., 2022). 
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2.2 Materials and Methods 

2.2.1 Participants 

Every week, we surveyed n=53 STEM students enrolled in Calculus II and Calculus 

III courses during the COVID-19 pandemic (total of 9 weeks, see Table 1). The participants 

were STEM students of the Math Department at the University of Missouri-Kansas City 

(UMKC) in the summer 2020 semester. 

Students met four times a week (total of 7 hours and 20 minutes per week) in 

Calculus II and Calculus III courses. 

 

Table 1. The demographic characteristics of Calculus II and Calculus III students. 

 

 

 

2.2.2 Course Format 

COVID-19 became a worldwide pandemic in mid-March 2020. Consequently, 

UMKC suspended in-person class sessions and resumed them in an online synchronous 

format at their regular meeting times. Due to the lack of online teaching experience among 

faculty, the school had a dedicated team of e-Learning and Information Systems personnel 

working closely with faculty to facilitate a speedy transition so that the students could finish 

the semester successfully under these unusual COVID-19 circumstances. 

Female Male Total Female Male Total Grand Total
Freshman/Sophomore 11 19 30 3 2 5 35

Junior/Senior 2 4 6 3 9 12 18
Grand Total 13 23 36 6 11 17 53

Calculus II Calculus III



 

18 
 

Students were given housing and food discounts at UMKC. Discount and refund 

policies also applied to other areas of the school, such as parking, the recreation center, 

cancellation and late penalties, and financial charges. Students with extenuating 

circumstances will be allowed to challenge the decisions of school administration through a 

formal process. Because the situation was so serious, the school advised students to wear 

masks, socially isolate, and avoid small and big groups. 

Campus and academic restrictions – campus closures and online learning, remained in 

place for the whole of Summer 2020. Thus, Calculus II and III were taught for the first time 

in the Summer of 2020 in an online synchronous style. Previously these classes had only 

been available in person at UMKC. 

Calculus II and III classes took place Monday through Thursday in two, 50-minute 

periods with a 10-minute break in between. Zoom was used for all classes and office hours. 

Each of these classes was worth four credits. The passing grade in the previous grading 

method was 60%, however due to COVID-19, it was reduced to 55%. In the drop-fail-

withdraw (DFW) rate, 17.7% of Calculus III students failed, while 0% dropped and 

withdrew. 29.4 % of Calculus II students failed, while 5.9 % dropped out and 0% withdrew.  

Many courses moved to online and were assessed online, which could have 

influenced students’ opportunities to cheat (Lancaster & Cotarlan, 2021). The exams were 

timed and designed in a way that reduced the chance of academic dishonesty. Their exam 

solutions were to be uploaded to an online education site (CANVAS) by the student. Exams 

and homework assignments were often graded within a week. The multiple-choice online 

quizzes were instantly graded by the Pearson platform My Math Lab. 



 

19 
 

In Calculus II, students studied techniques of integration, applications of the definite 

integral, improper integrals, sequences and series, power series, Taylor series and 

convergence, and analytic geometry in calculus. In Calculus III, students studied vectors, 

solid analytic geometry, vector functions and multiple variable functions, partial derivatives, 

multiple integrals, line and surface integrals with their applications. 

For the first time, these two classes were offered as online synchronous courses. 

Some students came from different States in the United States, and some were attending 

these classes from their native country. For a few students who did not live in the United 

States, the time zone was particularly problematic. 

 

2.2.3 Instruments 

We utilized a questionnaire inspired by chapter six of Creswell’s (2011) Educational 

Research and applied temporal and statistical analysis to the collected responses. The 

survey’s items were created using best practices as guided by Dillman et al. (2009) and 

DeVellis and Thorpe (2017). We designed an online survey accessible through the “Quiz” 

tab of students’ Calculus II and Calculus III canvas sites. The survey included a series of six 

questions (see Appendix A) developed by us that assessed students’ anxiety in relation to 

their assignments, exams, Zoom meetings, level of motivation and confidence, and usage of 

additional resources like supplement instruction, tutoring, etc. during COVID-19. Student 

responses were collected via Canvas once a week for the eight-week duration of the 2020 

summer semester and one week prior to the beginning of the semester. The survey results 
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were collected and complied with using Canvas each week. The results were then given to an 

expert in mathematics education for determination of the validity and clarity of the data. 

 

2.2.4 Data Preparations 

At the end of the summer semester, we prepared the data for time series analysis, 

descriptive statistics, and hypothesis testing. Due to the low number of participants, we 

combined data of both calculus classes for all statistical analyses performed in this study. 

The weekly survey asked students to rank experiences on a numerical scale. For 

example, question 5 asked “How confident are you today that you will pass this class with a 

grade B or better? (1 = not confident at all, 7 = very confident).” After compiling nine weeks 

of student responses in Qualtrics, we prepared and organized the data for statistical analysis 

by selecting and using MS Excel software. Data were cleaned (non-essential data, such as 

timestamps and duplicate information from across the nine weeks, e.g., student numbers were 

removed) and we assigned numeric codes to each response option as needed. While coding 

student responses to complex questions, we broke responses into categories. For example, for 

question 5 we created three categories - low confidence (scores 1-2), medium confidence 

(scores 3-5), and high confidence (scores 6-7). Students’ responses to yes or no questions 

were coded dichotomously such that “yes” was coded as 1 and “no” as 0.  Then we summed 

the coded data within groups and weeks and organized these values in tables. Next, we 

calculated these values as percentages and graphed them according to the time series. 

Next, we methodically entered the data into an MS Excel spreadsheet and descriptive 

statistical analyzes were performed. After statistical analysis, the results were reported as 
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figures and demographic data like gender and the academic level was plotted against 

confidence, motivation, and the effects of COVID-19 on self-reported math anxiety. Next, 

the practical meaning of these results was elucidated and discussed in further detail. 

 

2.2.5 Statistical methods 

This study used weekly survey data collected from 53 (34 male and 19 female) 

undergraduate students enrolled in Calculus II and Calculus III courses during summer 2020 

to investigate rates of math anxiety in the widths of the COVID-19 pandemic. Student 

responses were collected via weekly Canvas surveys each week of the eight-week summer 

semester and one week prior to the beginning of the semester. Thus, we had a nine-week data 

set. This data set allowed us to visually inspect temporal changes in the student’s anxiety 

levels throughout to nine-week study duration. 

The prepared data was then analyzed using Statistical MS Excel for conducting 

descriptive analysis of the data, inferential statistical methods, like one-way ANOVA, were 

further used, as well as time series analysis. 

Descriptive statistics were used to generate tables and graphs of data collected in this 

study (in Figures 1-4). The analyses were conducted using the ANOVA test for statistical 

computing; the results of which are presented in Tables 2-5. To determine whether the 

hypotheses were supported, we examined the significance of individual paths and the global 

fit of the model to the observed data. 
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2.3 Descriptive Statistics 

Descriptive statistical analysis suggested that the COVID-19 pandemic may have 

contributed to increased levels of math anxiety. Figure 1 (a) showed that male and F/Sp 

STEM students had higher levels of confidence within their groups. Figure 1 (b) showed that 

female and F/Sp STEM students had higher levels of motivation within their groups. Figure 1 

(c) showed that more male and F/Sp STEM students expressed an increase in math anxiety 

due to COVID-19. 

 
(a) 
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(b) 

 
(c) 

Figure 1. Measures of confidence, motivation, and anxiety with respect to gender and level 
of education. (a) The proportions of male and F/Sp STEM students with high levels of 
confidence are substantially higher than those with medium or low confidence. (b) The 
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proportion of female STEM students with high levels of motivation are more than males with 
low or medium levels of motivation. (c) There are higher proportions of male and F/Sp 
STEM students who expressed increased math anxiety due to COVID-19. 
 

2.4 Hypothesis Testing 

The one-way ANOVA test applied to the nine-week data set helps us understand 

temporal variations in students’ levels of motivation, anxiety, and confidence during the 

COVID-19 pandemic. Students’ questionnaire responses indicate a relationship between 

gender and self-reported anxiety levels throughout the semester, see Table 2. The inferential 

analysis based on the gender variable showed significant differences (p < 0.05) between male 

and female students. 

 

Table 2. One-way ANOVA test results indicate a significant difference in the mean level of 
math anxiety with respect to gender. 
 
 

 
SV= Source of Variation, SS= Sum of Squares, df= degrees of freedom, MS= Mean Squares, 
F= F value, FC= F critical value. 

 

Table 3 summarizes the results of one-way ANOVA with respect to the effect of 

COVID-19 on math anxiety. Specifically, the inferential analysis based on the academic level 

showed significant differences (p<0.05) between the average responses of F/Sp and J/S 

students to the question “Did COVID-19 increase your math anxiety?” 

 

SV SS df MS F P-value FC
Did you have any Between Groups 2062.96 1 2062.96 7.79 0.01 4.49
math anxiety this week? Within Groups 4238.64 16 264.915

Total 6301.61 17
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Table 3. One-way ANOVA test results indicate that the COVID-19 pandemic has 
significantly increased the mean level of math anxiety. 
 
 

SV= Source of Variation, SS= Sum of Squares, df= degrees of freedom, MS= Mean Squares, 
F= F value, FC= F critical value. 
 

Similarly, Table 4 is a summary of ANOVA results with respect to gender and 

student motivation. The inferential analysis showed significant differences (p<0.05) between 

male and female students for the average levels of motivation. This was demonstrated by 

variable responses to the question “How would you rate your desire to study this week?” by 

gender. 

 

Table 4. One-way ANOVA test results indicate a significant difference among groups with 
regard to motivation. 
 
 

SV= Source of Variation, SS= Sum of Squares, df= degrees of freedom, MS= Mean Squares, 
F= F value, FC= F critical value. 
 

Finally, Table 5 demonstrates the ANOVA results with respect to the level of 

confidence and gender. There was a significant difference between the male and female 

students and their responses to the question “How confident are you today that you will pass 

SV SS df MS F P-value FC
Did COVID-19 increase Between Groups 368.11 1 368.11 9.17 0.01 4.49

 your math anxiety? Within Groups 642.47 16 40.15
Total 1010.58 17

SV SS df MS F P-value FC
How would you rate your Between Groups 25.85 1 25.85 9.46 0.002 3.87
desire to study this week? Within Groups 1010.45 370 2.73

Total 1036.30 371
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this class with a grade B or better?”  Summary of means and standard deviations related to 

Tables 2-5 are given in the supplementary document (see Table B1). 

 
Table 5. One-way ANOVA test results indicate a significant difference among groups with 
regard to confidence. 
 

SV= Source of Variation, SS= Sum of Squares, df= degrees of freedom, MS= Mean Squares, 
F= F value, FC= F critical value. 
 

2.5 Time Series Analysis 

Based on the time series descriptive statistical analysis shown in figure 2 (a), it was 

found that the prevalence of students with low confidence increased a week before the 

midsemester exam. The prevalence of low confidence increased in all groups, reaching an 

average of 9.4% end of the semester. Serhan (2020) found that 9.68 % of participants said 

that using Zoom helped them gain confidence in the subject, which is in line with our 

findings. Freshman and sophomore students experienced the greatest loss of confidence 

during the semester, reaching 13.2%. Also, self-reported low confidence increased from 

week four onward. 

SV SS df MS F P-value FC
How confident are you today  Between Groups 15.92 1 15.92 5.71 0.02 3.87
that you will pass this class Within Groups 1034.82 371 2.79
with a grade B or better? Total 1050.74 372
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Figure 2(a). Percentage of the STEM students with low levels of confidence. The prevalence 
of students with low confidence increased a week before the exam. 
 
 

Figure 2 (b) showed that the prevalence of low motivation increased in all groups 

reaching an average of 6.6%. According to the findings of Serhan's (2020) study, students 

reported a negative influence on their learning experience and motivation. Freshman and 

sophomore students lost their motivation more than other groups, reaching 9.4%. The 

descriptive analysis of the relationship between gender and low motivation showed 

significant differences between male and female students. Male students started with lower 

motivation than their female peers. 
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Figure 2(b). Percentage of the STEM students with low levels of motivation. Students 
started and finished the semester with low motivation. 

 

As shown in Figure 3 (a), approximately 20% of students reported math anxiety 

during the semester and the prevalence of math anxiety was much higher at the beginning of 

the semester, where 25% to 50% of students reported math anxiety. The prevalence of math 

anxiety in male students flattened to around 17%. However, in female students, it decreased 

to 13% halfway through the semester, then bounced back to 24%. Freshman and sophomore 

students reported higher math anxiety than their junior and senior counterparts, averaging 

27.4% and 15.5% respectively. 
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Figure 3(a). Percentage of the STEM student’s math anxiety. Freshman and sophomore 
students had much higher math anxiety compared to junior and senior students 
 

According to Figure 3 (b), an average of 8.7% of female students reported an 

increased level of math anxiety due to the COVID-19 pandemic. Poignantly, COVID-19 

affected male students more than female students. Male students reported an increased level 

of math anxiety, 13.2%. An average of 16.7% of freshman and sophomore students reported 

increased math anxiety due to COVID-19, while an average of 5.5% of junior and senior 

students reported this. This result is consistent with Mendoza et al. (2021). Mendoza et al. 

(2021) claimed that the levels of math anxiety increased due to the COVID-19 pandemic. 

Also, Ludwig (2021) concluded that high COVID-19 despair had a negative impact on 

student performance even though they found no correlation between performance and 

general anxiety towards learning math or remote learning. 
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Figure 3(b). Percentage of the STEM student’s math anxiety due to COVID-19. F/Sp 
students were more affected than other groups. 

 

We began surveying students a week before the start of the eight-week summer 

semester. So, students had two midterm exams during weeks 4 and 7 and their final exam 

took place during week 9. Thus, there are two corresponding increases in exam anxiety in 

Figure 4 (b). The female population reported the highest overall anxiety. Though female 

students initially reported less anxiety than their male counterparts, as the semester 

progressed female students’ anxiety level surpassed that of the male students reaching 20.8%. 

After analyzing Figure 4 (a), we also observed that female and freshman/sophomore STEM 

students were more anxious about upcoming grades than other groups. 
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(a) 

 

 
(b) 

Figure 4. Percentage of the STEM students with high levels of math anxiety for the 
upcoming grades and exams. F/Sp students were more anxious for their grades than other 
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groups (a), and female students had more anxiety for their two midterm exams on weeks 4 
and 7 than other groups. 

 

Further analysis of time series data showed that the COVID-19 pandemic has 

substantially decreased the use of supplemental instruction (see Figure B1(a) in the 

supplementary document). The number of STEM students using UMKC supplemental 

instruction (SI) dropped from 14.4% to less than 8% as the semester progressed. More 

freshmen and sophomore students sought help from SI than junior and senior students, 

averaging 11.5% and 4.2% respectively. Notably, student utilization of SI surged at week 4 

because of the upcoming exam but decreased afterward perhaps because students did not find 

it useful. Similarly, Figure B1(b) in the supplementary document showed that the COVID-19 

pandemic decreased student utilization of UMKC tutoring services. About 8.2% of STEM 

students used UMKC tutoring services before the COVID-19 pandemic, but less than 3% 

used this resource during the pandemic. Only 1.9% (3.8%) of male (female) STEM students 

used UMKC tutoring during summer 2020. No junior or senior STEM students used UMKC 

tutoring services during summer 2020. Few students sought help from private tutoring, the 

highest incidence of which was in freshmen and sophomore students (about 5.7%).  

The COVID-19 pandemic decreased the use of office hours. While there is no data 

that compares both pre COVID-19 and post COVID-19 data when it comes to math anxiety, 

some researchers (Candarli & Yuksel, 2012; Serhan, 2020) found that the use of Zoom had a 

negative impact on student learning. Notably, most of the students responded that they would 

have been more comfortable in a traditional classroom setting (Roy et al., 2020; Doggett & 

Mark, 2008). Using Zoom tutoring sessions, on the other hand, dropped considerably 
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professors' workload by 25% (Sayem et al., 2017). These findings agree with the results of 

our study. Particularly, only a small percentage of students (2%-6%) used Zoom office hours 

to supplement their learning during the summer 2020 semester (see Figure B2(a) in the 

supplementary document). Other than the initial high level of anxiety in freshman/sophomore 

and male STEM students, all groups tended to have low anxiety with respect to upcoming 

assignments according to Figure B2(b) with the prevalence of high anxiety between 4% and 

7%. 

The COVID-19 pandemic may have increased cooperative learning within the student 

population. Figure B3(a) in the supplementary shows that a relatively large percentage of 

students sought help from their classmates during the pandemic. Namely, an average of 

12.1% of female students, 18.9% of male students, 24.3% of freshman/sophomore students, 

and 6.7% of junior/senior students sought help from their classmates throughout the 

semester. Serhan (2020) also found that the usage of Zoom increased students' contact with 

their classmates, with a mean response range of 1.97 out of 5 regarding classroom 

interaction. During the semester we also observed that freshman/sophomore STEM students 

spent less time studying by calculating the weekly average hours of study. Female students 

spent 14.8 hours a week studying calculus, male students spent 15.8 hours, 

freshman/sophomore students spent 13.8 hours, and junior/senior students spent 19.7 hours 

(see Figure B3(b) in the supplementary document). 
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2.6 Discussion 

The current COVID-19 pandemic has further complicated the math anxiety of many 

college students due to changes in coursework, course modality, and poor perceived health 

(Perz et al., 2022). Researchers have argued that mathematically anxious students tend to 

move away from studying STEM subjects (Warwick, 2008). The increased anxiety due to 

COVID-19 may affect their entire trajectory. While the impact of COVID-19 in the field of 

education is very diverse, less is known about the effects of this crisis on STEM students 

specifically. This paper investigated time-series changes in each variable (i.e., motivation, 

anxiety, and confidence) with respect to academic level and gender to understand the effects 

of the pandemic on STEM students. We investigated the temporal variations in the levels of 

confidence, motivation, and anxiety during the COVID-19 pandemic. Studies on temporal 

changes to math anxiety are scarce. The present work aims to fill this gap by analyzing 

longitudinal survey data associated with math anxiety. 

The time series analysis and the inferential statistics of the survey data showed that: 

(i) levels of motivation and confidence dropped towards the end of the semester (see Figure 

2) which is consistent with Ashcraft (2019). In the mentioned study, Ashcraft (2019) found 

that the math anxiety correlates negatively with enjoyment of math, self-confidence in 

math and motivation to learn math (Desender & Sasanguie, 2022; Grežo & Sarmány-

Schuller, 2018). Additionally, female and F/Sp student was slightly more motivated than 

their peers (see Figure 1); (ii) freshman/sophomore and female students had lower confidence 

compared to male and junior/senior students (see Figure 2) which is consistent with 

Bhowmick et al. (2017); (iii) COVID-19 significantly increased the level of math anxiety in 
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all groups of students surveyed (see Figure 3); (iv) level of math anxiety is highly influenced 

by upcoming exams and upcoming grades (see Figure 4) which is consistent with Ashcraft’s 

(2002) study. Ashcraft (2002) found strong interrelation with math anxiety and test anxiety; 

(v) freshman/sophomore and female students exhibited more anxiety due to an upcoming 

grade (see Figure 4). These findings were not directly similar but agree with the findings in 

some studies that female students tend to be more anxious than males in mathematics 

(Ashcraft, 2002; Bhowmick et al. 2017; Delage et al., 2022; Rahe & Quaiser-Pohl, 2021).  

There are many questionnaires that claim to measure motivation, self-efficacy, and 

anxiety. We chose to model our questionnaire after chapter six of Creswell’s (2011) 

Educational Research and applied time series descriptive statistical analysis to our survey 

data. The key to establishing causality is to analyze each variable on its own and compare the 

pattern of one population of respondents to that of another. This is illustrated here in relation 

to gender and academic level. 

Our research results indicate that the utilization of math resources, such as tutoring 

and supplemental instruction, significantly fell due to the COVID-19 pandemic which is 

consistent with Serhan (2020). Further, the pandemic decreased the use of office hours, but it 

may have increased cooperative learning between calculus students. 

With respect to the general trends, STEM students’ math anxiety was highest the 

week before exams. The prevalence of students who reported low motivation increased from 

week four onward in freshman and sophomore students and female students. Notably, the 

prevalence of students with low confidence increased a week before exams. According to the 
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findings of Xie et al. (2019), students' math anxiety might be alleviated by boosting 

confidence (i.e., self-esteem) and lowering test and general anxiety. 

 

2.7 Limitations of Study 

Although this study followed a small population (n = 53), it presents apparently 

consistent data from two different groups of calculus students. That being said, this study has 

some limitations that should be taken into account when drawing conclusions or generalizing 

results. One limitation is that we did not collect survey responses before the pandemic, so we 

could not compare values before and after. The second limitation is that for a small number 

of students who did not live in the United States, the time zone might become a significant 

issue that affected their academic performance. We had no control over that aspect of their 

participation, whether it was due to their time zone, (possibly being in their native country) 

or the fact that they were residing in a different State within the United States. But this study 

provides some insights for further research and practice. Moving forward, further research 

should be conducted on the effect of parameters like ethnicity and age on motivation, self-

efficacy, and anxiety. Further study of such parameters would allow educators to better serve 

students as online learning continues to be a fixture of university education. 
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CHAPTER 3 

MODELLING MATH ANXIETY USING MACHINE LEARNING 

 

3.1 Overview 

The relationships between math anxiety and other variables such as students’ 

motivation and confidence have been extensively studied. The main purpose of the present 

study was to employ a machine learning approach to provide a deeper understanding of 

variables associated with math anxiety. Specifically, we applied classification and regression 

tree models to weekly survey data of science, technology, engineering, and mathematics 

(STEM) students enrolled in calculus. The tree models accurately identified that the level of 

confidence is the primary predictor of math anxiety. Students with low levels of confidence 

expressed high levels of math anxiety. The academic level of students and the number of 

weekly hours studied were the next two predictors of math anxiety. The junior and senior 

students had lower math anxiety. Also, those with a higher number of hours studied were 

generally less anxious. Weekly tree diagrams provided a detailed analysis of the 

interrelations between math anxiety and variables including academic level, number of hours 

studied, gender, motivation, and confidence. We noticed that the nature of such interrelations 

can change during the semester. For instance, in the first week of the semester, confidence 

was the primary factor, followed by academic level and then motivation. However, in the 

third week, the order of the interrelation changed to confidence, academic level, and course 

level, respectively. In summary, decision tree models can be used to predict math anxiety and 

to provide a more detailed analysis of data associated with math anxiety. 



 

38 
 

This chapter has been published in the journal Pedagogical Research (Soysal et al., 

2022). 

 

3.2 Introduction to Machine Learning Methods 

Machine learning is an approach to data analysis that involves the use and 

development of computer systems that can learn and adapt without being given explicit 

instructions by evaluating and deriving conclusions from patterns in data using algorithms 

and statistical models. A fundamental scientific goal of machine learning is the exploration of 

alternative learning processes, such as the scientific breakthrough of various intervention 

points, the research framework of certain methods, the knowledge that must be accessible to 

the learner, the concern of dealing with unsatisfactory datasets, and the development of 

general methods applicable in many task domains (Carbonell et al., 1983). Thus, machine 

learning assists researchers and educators to interpret outcomes of data, especially for large 

dataset.  

Machine learning involves two types of techniques: supervised learning and 

unsupervised learning. In this study, we used supervised learning, which includes training a 

model on known input and output data in order to predict future outcomes. Thus, machine 

learning is utilized for large amounts of complex data or tasks with multiple variables. For 

example, healthcare researchers use machine learning to analyze enormous amounts of 

deidentified patient data. This enables easy evaluation of patient compliance as well as early 

detection of heart and lung problems (Sharmila et al., 2017). Identifying patients with 

COVID-19 who are at risk of deterioration during hospitalization is critical for appropriate 
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resource allocation and disease management. When compared to other prediction methods, 

machine-learning models have been particularly successful in predicting critical COVID-19 

cases (Assaf et al., 2020). 

Every day, medical practitioners deal with vast amounts of data. Users' outcomes will 

suffer if they manage data in the traditional manner (Reddy, 2021). Likewise, the educational 

field is particularly hampered by using traditional strategies. For example, big-scale 

educational exams capture massive volumes of incredibly rich cognitive and contextual 

information from large populations of students (Bentayeb & Darmont, 2007). Machine 

learning applications for educational projects (also known as academic data mining) are a 

relatively new field that attempts to create ways to analyze data from computerized 

educational environments and identify significant trends (Kotsiantis, 2012).  

There is an increasing prevalence of online learning and digital course materials in 

collegiate settings, especially during the COVID-19 crisis. This has enabled researchers to 

gather data, analyze, and predict student’s unique learning preferences using machine 

learning algorithms. Researchers have used machine learning techniques to investigate how 

sensor data and online learning methods influence student attitudes toward mathematics 

(Roberts-Mahoney et al., 2016). Machine learning techniques have recently demonstrated 

impressive advances in data analysis and prediction. They have, however, been far less 

commonly applied in the assessment of learning quality. Ciolacu et al. (2017) conducted an 

analysis based on neural networks, support vector machines, decision trees, and cluster 

analyses to estimate students’ performance on examinations and foster Industry 4.0 

proficiency in the next generation. 
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3.3 Machine Learning in the Field of Education 

Statistical models have been traditionally used for data analysis and forecasting 

different outcomes. In the past two decades, a significant increase in computational power 

has cleared the way for automated analytical model building techniques, which are known as 

machine learning methods. A major goal of machine learning is to use the ever-growing 

computational power to extract information, make predictions, and ultimately make informed 

decisions applicable to a variety of task domains (Carbonell et al., 1983). Reddy (2021) 

provided a concise survey of various machine learning methods including support vector 

machines, decision trees, Bayes classifiers, and K-Nearest Neighbors techniques. These 

machine learning methods have been used in healthcare, science, engineering, and education. 

In recent years machine learning has been increasingly used in the field of education. 

Machine learning approaches for evaluating large amounts of educational data can provide 

vital information, potentially with large impacts on future education (Bienkowski et al., 

2012). For example, highly accurate machine learning models have been constructed to 

predict the time students are required to generate a response and to estimate the likelihood 

that the student’s response was correct (Inaba et al., 2000). Saarela et al. (2016) used a 

combination of unsupervised and supervised learning algorithms to predict student 

performance on math scores, which is a unique way of learning directly from large-scale 

educational assessment studies’ (LSAs) data. In another research, Lezhnina and Kismihók 

(2022) employed random forest algorithm applications to provide a more complete view of 

the connections between attitudes toward information and communication technology (ICT) 
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and mathematical and scientific literacy, with an emphasis on the multilayered structure of 

the data. 

In addition, machine learning techniques have lately made significant progress in data 

analysis and prediction, as well as in evaluating learning quality. Assessing students' 

academic progress is challenging, but machine learning techniques can aid both students and 

instructors in this process. Wang and Zhang (2020) investigated the application of machine 

learning algorithms in an educational quality evaluation model. In their investigation, the 

machine learning technique was successful in tackling tough challenges such as 

classification, fitting, and pattern identification. This technique may be used to evaluate 

university instructors' classroom teaching performance in a more thorough, reasonable, and 

efficient way. The goal of developing a teaching quality assessment index is to establish a 

link between the learning quality evaluation index and the teaching effect.   

Predictive student performance statistical models have been created with the goal of 

forecasting mathematics performance. Because a single tool cannot be easily scaled from one 

circumstance to another, a variety of learning approaches have been investigated and 

compared to determine the best prediction model (Sokkhey & Okazaki, 2019). In this 

chapter, we utilize the CRT machine learning method known as decision tree models to 

provide a deeper analysis of factors (gender, confidence, motivation, academic level, etc.) 

associated with math anxiety. We chose decision tree models because they have a tree-like 

structure and are easy to grasp, handle predictions, classification, and factor importance (Al-

batah, 2014).  
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3.4 Materials and Methods 

This section describes the study’s participants, data sources, and analyses. The 

classification and regression tree (CRT) is a decision tree machine learning algorithm that is 

used to classify students into subgroups to better understand the modulating effects of 

independent variables influencing whether students become anxious about mathematics. 

 

3.4.1 Participants 

This study’s data were automatically collected by Canvas, a learning management 

system used at the University of Missouri-Kansas City (UMKC). The sample for the study 

included students’ participating in fully online semester-length mathematics courses offered 

in the summer of 2020. Course topics included “Calculus II” and “Calculus III”. The final 

sample included all 45 students who participated in both classes. Among the two courses 

included in the analysis, Calculus II contained 30 (66.7%) total participants—12 (40.0%) 

females and 18 (60.0%) males, 25 (83.3%) F/S and 5 (16.7%) J/S. Calculus III contained 15 

(33.3%) total participants—6 (40.0%) females and 9 (60.0%) males, 5 (33.3%) F/S and 10 

(66.7%) J/S. All analyses were conducted using SPSS (Version 27.0). 45 students 

participated in the nine-week study and contributed to 405 individual observations. 

 

3.4.2 Context 

Due to COVID-19, the University of Missouri-Kansas City (UMKC) suspended in-

person classes and continued them in an online synchronous format at their normal hours 

beginning in March 2020. For the whole summer of 2020, campus closures and online 
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learning were in place. Thus, in the summer of 2020, Calculus II and III were taught for the 

first time in an online synchronous format—previously, these programs were exclusively 

offered in person at UMKC. Some students were enrolled from various states in the United 

States, while others were participating in similar programs as part of their home country.  

Monday through Thursday, Calculus II and III sessions were split into two 50-minute 

sections with a 10-minute break in between. All classes and office hours were conducted 

through Zoom. These classes were worth four credits each. In the former grading process, a 

passing grade of 60% was required; however, due to COVID-19, it was cut to 55%. 

During the summer semester, students learned about integration techniques, definite 

integral applications, improper integrals, sequences and series, power series, Taylor series 

and convergence, and analytic geometry in Calculus II class. Additionally, students learned 

about vectors, solid analytic geometry, vector functions, and multiple variable functions, 

partial derivatives, multiple integrals, line and surface integrals, and their applications in 

Calculus III class. 

 

3.4.3 Measures 

We developed an instrument to measure students’ self-reported math anxiety across a 

number of factors including their math assignments, upcoming exams, course meetings, 

grades, etc. (see Appendix A). The instrument further asked students to report usage of math 

and emotional supports (e.g., supplemental instruction, math tutoring, and the counseling 

center, among other options, and no options). Finally, it inquired about students’ math 

confidence, their desire to study, and their weekly experience with COVID-19 as related to 



 

44 
 

their math anxiety or ability to succeed in class. The six-question instrument was created 

based on the researchers’ experience with prior survey creation and guidance from Fowler’s 

principles for good survey practice (2013).  

This instrument was created as an online survey in the Canvas learning module that 

students could access via the “Quiz” tab on their Calculus II and Calculus III Canvas course 

sites. During the COVID-19 pandemic, students answered the same survey questions one 

week prior to the beginning of the semester and during each of the eight weeks of the 

semester. Thus, survey data was used to extract levels of students' anxiety as it related to 

examinations, motivation, confidence, and weekly hours studied. For the eight-week summer 

semester of 2020, students’ answers were gathered once a week through Canvas and one 

week prior to the start of the semester. The results were then presented to a mathematical 

education specialist who evaluated the data for validity and intelligibility. 

3.4.4 Data Preparation 

We pooled data from both calculus classes for all statistical analyses performed in 

this study due to the small number of participants. To minimize unintended effects (such as 

students not taking the survey or providing inaccurate self-assessments), the surveys were 

given in the form of a weekly quiz with bonus points. During the semester, we randomly 

monitored the survey data to identify human error and asked some participants to provide 

answers within the given range of values (e.g., level of anxiety should be between 1 and 7). 

Weekly reminders were sent to students which encouraged them to take the survey. 

Consequently, we had a high participation rate of 84.9% (45 out of 53 students).   
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Students were asked to rate their experiences on a numerical scale in a weekly survey. 

For example, question 4 stated, “How would you rate your desire to study this week?” (1 = 

no desire to study, 7 = very motivated to study).” We selected and used MS Excel software to 

compile and organize the data for statistical analysis after gathering nine weeks of student 

answers in Canvas. We cleaned the data (removing non-essential information such as 

timestamps and duplicate information from across the nine-week study duration, such as 

student identification numbers) and gave numeric codes to each response choice as 

appropriate. 

We divided student replies to complicated questions into groups when coding them. 

For example, we defined three categories for question 4: low motivation (scores 1-2), 

medium motivation (scores 3-5), and high motivation (scores 6-7). Students' replies to yes or 

no questions were categorized in a dichotomous manner, with "yes" equaling 1 and "no" 

equaling 0. The data was then totaled by groups and weeks, and the results were organized. 

Following that, we carefully put the data into SPSS (Version 27.0) and ran 

classification statistical analyses. Demographic variables including gender and academic 

level were plotted against weekly hours studied, confidence, motivation, and the effects of 

COVID-19 on self-reported math anxiety. The practical implications of these findings were 

then clarified and addressed in further depth. 

 

3.4.5 Classification and Regression Tree 

Decision tree models, which have an easy to grasp tree-like structure, perform 

prediction and classification, and evaluate factor importance (Alkhasawneh et al., 2014). 
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Decision tree analysis, a non-parametric approach for expressing how examples from a 

sample are categorized into increasingly smaller subgroups until reaching the final or 

terminal child nodes in a tree diagram, was used to perform this study. Because of data 

sparsity among collected responses, this technique was chosen. 

The regularity in which participants modify their predictions to match those of the 

model, as well as their self-reported levels of trust in the model, show that claimed accuracy 

has a substantial influence on people's trust in a model (Yin et al., 2019). 

In this study, we used the IBM SPSS (Version 27.0) software as one of a variety of 

machine learning techniques. This tool assisted us in creating decision tree models that will 

present data in an easy-to-understand format. We imported all of the cleaned data from MS 

Excel into the SPSS software to perform the analysis. Data cleaning entails determining the 

optimal method for dealing with missing information. SPSS gave us a few algorithmic 

choices to model the decision trees. A classification and regression tree were used (CRT) in 

this study. The CRT divides instances into forecast-dependent variable values based on 

independent variable values. We applied this method for each individual week of data in 

addition to all the data collected over the entire nine-week study. 

Regarding the dependent variables, the CRT divides the data into segments that are as 

homogenous as possible (IBM, 2012). The independent variables can be continuous, ordinal, 

nominal, or scale. For example, we identified the dependent variables of interest as “yes” 

(anxious) and “no” (non-anxious). Also, we used this category for the classification of 

independent variables. This approach was used for each week of study as well as the entirety 

of the nine-week period. 
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Each parent node divides into just two child nodes as the tree grows. We used one 

case for parent nodes and one case for child nodes in the default value category. 

Occasionally, CRT produced trees without any nodes below the root node. This helped us to 

produce more useful results. 

Once a model has been adapted to a specific set of data, it might have a worse 

predictive value when applied to other data sets. This concern addresses a model’s specificity 

and correctness. The capacity of a model to anticipate a positive result and be right in its 

forecast is known as correctness. To assess the models' correctness, we used a 10-fold cross-

validation technique. Our model's overall percentage accuracy indicates how effectively it 

predicted if there would be a yes (anxious) or a no (non-anxious) in Table 8. 

 

3.4.6 Pearson Correlation Analysis 

During the summer semester of 2020, the surveyed data were collected from 45 

students enrolled in calculus II and calculus III courses. The classification and regression tree 

techniques were performed during preliminary statistical analysis to better understand the 

anxiety levels of students as they related to the studied independent variables. Participants 

were split into groups based on gender and academic level in the second portion of the 

analysis. The relationship between the dependent and independent variables was determined 

using a Pearson correlation. Only the strength of the linear relationship between the two 

variables is measured by correlations and the Pearson correlation implies that both variables 

have normal distributions (DeCoster & Claypool, 2004). 
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Table 7 displays the correlation coefficients and their related significance levels. 

SPSS software was used to conduct this analysis. The main goal of this study is to see if there 

is a relationship between math anxiety as a dependent variable and independent variables 

such as exam anxiety, confidence, motivation, and weekly hours studied. 

 

3.5 Outcomes of Machine Learning Approach 

We began surveying students one week prior to the start of the eight-week summer 

semester in 2020. Table 6 shows average values in reported hours studied (varying between 0 

and 96 hours), confidence, motivation, and exam anxiety. Students were asked to rate their 

confidence, motivation, and exam anxiety on a scale of 1 to 7, where 1 represented low 

confidence/motivation/exam anxiety and 7 represented high confidence/motivation/exam 

anxiety. The first column demonstrates that on average male students tended to study more 

hours than female students surveyed. 

Data in Table 6 are formatted as follows. For each entry, the first two numbers are the 

average values reported by male and female students, respectively, and the numbers within 

parenthesis correspond to average values among freshman, sophomore, junior, and senior 

students. Observe that in most cases, the junior and senior students studied longer hours 

compared to freshman and sophomore students. Also, in most cases, male students had 

slightly more confidence than female students. Furthermore, junior and senior students 

exhibited mainly higher levels of confidence than freshman and sophomore students. In all 

groups, the average exam anxiety went up during exam weeks 4, 7, and 9. 
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Table 6. Average values of data for each variable based on gender (Male, Female) and 
academic level (Freshman, Sophomore, Junior, and Senior). 
 

 Hours Studied Confidence Motivation Exam anxiety 

W1 10.4, 4.4, (7.8, 7.2, 3.4, 13) 4.7, 5.2, (4.8, 4.6, 5.7, 5.1) 4.2, 5.6, (4.9, 4.4, 5, 4.7) 3.9, 3.8, (3.9, 4.9, 2.4, 4.3) 

W2 14, 12.3, (10.6, 14.9, 16.3, 15) 5.3, 5.3, (4.9, 5.1, 6.2, 5.6) 4.3, 5.4, (4.8, 5, 4.3, 4.6) 3.7, 4.2, (4.3, 5.1, 1.8, 3.7) 

W3 17.6 ,15.7, (12.3, 19.6, 25.2, 18.3) 5, 4.7, (4.8, 4.6, 6, 4.7) 4.4, 5, (4.6, 5.1, 4.5, 4.4) 4.1, 4.6, (4.5, 4.4, 3.4, 4.5) 

W4 16.9, 15.2, (10.9, 20.2, 25.7, 16.4) 5, 4.8, (4.6, 5.1, 5.5, 5) 4.5, 4.9, (4.2, 5.6, 4.3, 4.9) 5.1, 5.1, (5.2, 5.8, 4.7, 5) 

W5 15.4, 17.6, (12, 19.2, 21, 18.4) 5, 4.9, (4.8, 5.1, 5.4, 4.6) 4.4, 5, (4.5, 5, 4, 4.7) 3.9, 4.6, (4, 4.8, 3.6, 4.3) 

W6 16.8, 16.6, (11.9, 19.4, 24.2, 18.7) 4.8, 4.6, (4.5, 4.7, 5.4, 4.9) 4.5, 4.8, (4.3, 5.7, 3.6, 4.7) 4.3, 5, (4.2, 4.5, 4.4, 5.5) 

W7 16.2, 16.3, (11, 19.3, 20.4, 23.4) 4.6, 4.2, (4.3, 4.9, 4.8, 4.1) 4.4, 4.7, (4.3, 5, 4.4, 4.7) 4.8, 5.5, (5.1, 4.5, 4.6, 5.8) 

W8 18.6, 17.1, (12.7, 16.6, 25, 26.9) 4.6, 3.8, (4.1, 3.9, 5, 4.7) 4.6, 4.3, (4.1, 4.9, 4.2, 5) 5.1, 5.7, (5.4, 5, 4.8, 6.1) 

W9 16.9, 17.4, (11.9, 16.8, 22.3, 26.1) 4.8, 3.6, (4.3, 4, 4.3, 4.7) 4.7, 4.6, (4.3, 5, 4.2, 5.6) 5, 6, (5.1, 5.5, 5.2, 6.3) 

 

The correlation analysis of the survey data has been summarized in Table 7. As 

expected, math anxiety is directly correlated with exam anxiety in most subpopulations. We 

also noted that the number of hours studied and being a junior is negatively correlated with 

math anxiety. In other words, the higher number of hours studied, the lower the level of math 

anxiety. Surprisingly the correlation between the number of hours studied and math anxiety 

in the sophomore population was positively correlated. This suggests that the more hours 

sophomore students studied the more confused and anxious they became. We also noticed a 

positive correlation between motivation and anxiety in the sophomore students. Whereas in 

senior students, lower motivation was correlated with higher levels of anxiety. In all 

subpopulations, confidence and anxiety were negatively correlated. The COVID-19 

pandemic disproportionately affected female, junior, and senior students. In both 

subpopulations (senior and junior), COVID-19 was positively correlated with math anxiety. 
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Table 7. Person Correlation between model variables and math anxiety within each 
subpopulation during the summer semester of 2020. 
 
 
  Exam Anxiety Hour Studied Motivation Confidence COVID-19 

Female 0.337** 0.142 0.1 -0.277** 0.246** 

Male 0.291** -0.085 -0.059 -0.172* -0.076 

Freshman 0.378** -0.083 -0.114 -0.304** -0.082 

Sophomore 0.609** 0.289** 0.262* -0.097 0.075 

Junior 0.336* -0.384** -0.031 -0.069 0.318* 

Senior -0.017 -0.021 -0.204 -0.342** 0.198 

F/SP 0.451** 0.109 0.02 -0.214** -0.034 

J/S 0.174 -0.142 -0.108 -0.215* 0.246** 

All Students 0.322** -0.012 -0.021 -0.219** 0.053 

F/S: Freshman &Sophomore, J/S: Junior &Senior.   
**: Correlation is significant at the 0.01 level(2-tailed).   
*: Correlation is significant at the 0.05 level(2-tailed).   

 

Next, we applied the CRT method to further analyze the survey data. We constructed 

decision tree models for each week of survey data as well as the entire data. For each 

decision tree model, the dependent variable was math anxiety, and the independent variables 

were confidence, motivation, weekly hours studied, gender (F/M), academic level (F/SP/J/S), 

the relative effects of COVID-19, and course level. Table 8 provides a summary of the model 

accuracies and main predictors of decision tree models for weeks 1-9 and all weeks. As it can 

be seen all CRT models have high levels of overall accuracies. Observe that confidence is the 
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main predictor for most cases (i.e., weeks 1, 3, 6, 7, 9, and all weeks). Whereas academic 

level and the number of hours studied are the second most important predictors of math 

anxiety (see the columns primary and secondary nodes). Table 9 is a summary of the 

importance of variables to each CRT model. Again, note that confidence, number of hours 

studied, and academic level are the top three variables in the prediction of math anxiety.   

 

Table 8. Model accuracy and main predictors of math anxiety for each week 1-9, as well as 
the entire semester. Model accuracy is summarized by percentage correct for overall (O), no 
anxiety (N), those with anxiety (Y). 

  

Week Model Accuracy Primary Nodes Secondary Nodes 

W#1 93.3%(O), 88.9% (N), 94.4% (Y) Confidence (4) Academic Level (F/SP/J/S) 

W#2 86.7% (O), 62.5% (N), 100% (Y) Motivation (3) Academic Level (F/SP/J/S) &Hours Studied (22) 

W#3 93.3% (O), 75% (N), 100% (Y) Confidence (6) Academic Level (F/SP/J/S) &Hours Studied (28.5) 

W#4 93% (O), 66.7% (N), 100% (Y) Hours Studied (47) Academic Level (F/SP/J/S) &COVID 

W#5 97.8% (O), 92.9% (N), 100% (Y) Calculus 2 or 3 Confidence (6) &COVID 

W#6 95.6% (O), 91.7% (N), 97% (Y) Confidence (4) Hours Studied (10) &Gender (F/M) 

W#7 88.9% (O), 50% (N), 100% (Y) Confidence (3) Motivation (2) 

W#8 97.8% (O), 87.5% (N), 100% (Y) Motivation (4) Academic Level (F/SP/J/S) &Hours Studied (11) 

W#9 95.6% (O), 75% (N), 100% (Y) Confidence (4) Hours Studied (37) &Hours Studied (4.5) 

W#1-
9 

86.2% (O), 49% (N), 98% (Y) Confidence (4) Calculus 2 or 3 

F: Freshman, SP: Sophomore, J: Junior, S: Senior, F: Female, and M: Male. 
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Table 9. Weekly Importance of Factors (I.F.) associated with math anxiety determined by the 
decision tree models. The number of hours studied (HS), confidence (C), and motivation (M) 
were the top three predictors of math anxiety throughout the semester. 
 

Week # 1st I.F.  2nd I.F.  3rd I.F.  4th I.F.  5th I.F.  6th I.F.  7th I.F.  
W#1 HS C M AL C2/3 G C-19 
W#2 HS M C AL G C2/3 C-19 
W#3 M HS C-19 C2/3 C AL G 
W#4 HS C AL C2/3 C-19 M G 
W#5 HS C AL M C-19 C2/3 G 
W#6 HS M C C-19 G AL C2/3 
W#7 HS C M G AL C-19 C2/3 
W#8 HS C C2/3 M AL G C-19 
W#9 HS C M AL G C-19 C2/3 
W#1-9 HS M C AL C-19 G C2/3 

I.F: Important Factor, HS: Hours Studied, M: Motivation, C: Confidence, C2/3: Calculus 
2or3, AL: Academic Level, G: Gender, C-19: COVID. 
 

The tree diagram of each CRT model has been included in the supplementary 

document. In the following paragraphs, we will summarize the results of tree diagrams for 

weeks 1-9 and the diagram modeled the entire semester. See Table 8 for the accuracy and 

key outputs of each decision tree model. 

In the first week, all students who reported confidence levels with less than 4 also 

reported anxiety. Whereas students with confidence greater than 4 had different results based 

on the academic level. Namely 50% of J/S students were anxious as compared to 83% of 

F/SP students (See Figure B4 in the supplementary document). 

During the second week, 22% of students who reported a level of motivation less than 

3 were anxious. Within this group, F/SP students reported they were not anxious, while 50% 

of J/S students reported they were. Among those students with a level of motivation of more 
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than 3, 75% of students reported they were anxious. Under the same category, 72% of 

students who studied less than 22 hours were anxious, while 100% of students who studied 

more than 22 hours were anxious (See Figure B5 in the supplementary document). 

In week 3, 78% of students with a level of confidence less than 6 reported that they 

were anxious. By contrast, 40% of students who reported with a level of confidence more 

than 6 were anxious. Among those students with a level of confidence less than 6, all S 

students were anxious compared to 73% of F/SP/J students. All students who reported a level 

of confidence with more than 6 and who studied less than 28.5 hours were not anxious, while 

all students who studied more than 28.5 hours were anxious (see Figure B6 in the 

supplementary document). 

In week 4, the students’ exam week, 83% of students have reported anxiety if they 

studied less than 47 hours that week. By contrast, 33% of students who studied for more than 

47 hours were anxious. Among those students who studied less than 47 hours, all S students 

were anxious versus 80% of F/SP/J students. Of those who studied more than 47 hours, all 

students who reported experiencing adverse effects due to the COVID-19 pandemic were 

anxious. By contrast, all students who reported no adverse effects of the COVID-19 

pandemic reported no anxiety (see Figure B7 in the supplementary document). 

In week 5, 80% of calculus 2 students reported feeling anxious, as compared to 47% 

of calculus 3 students. Among those calculus 2 students, 88% of students who reported with 

a level of confidence less than 6 were anxious. By contrast, 40% of students who reported 

with a level of confidence of more than 6 were anxious. 42% of calculus 3 students reported 

feeling anxious if they reported no adverse effects due to the COVID-19 pandemic, while 
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67% of students who experienced effects were anxious (see Figure B8 in the supplementary 

document). 

In week 6, 90% of students who reported with a level of confidence less than 4 were 

anxious, while only 60% of students who reported with a level of confidence more than 4 

were anxious. Among those students with a level of confidence of less than 4, 71% were 

anxious if they reported less than 10 weekly hours studied. By contrast, all students who 

studied for more than 10 hours were anxious. Among those with a level of confidence greater 

than 4, 73% of M students were anxious as compared to 40% of F students (see Figure B9 in 

the supplementary document). 

During the second exam week, week 7, all students who reported with a level of 

confidence less than 3 were anxious while only 70% of students who reported with a level of 

confidence more than 3 were anxious. Within the level of confidence with more than 3, all 

students who reported a level of motivation less than 2 were not anxious as compared to the 

72% of students who were anxious (see Figure B10 in the supplementary document). 

Throughout week 8, 95% of students who reported with a level of motivation less 

than 4 were anxious, while only 73% of students who reported with a level of motivation 

more than 4 were anxious. 50% of J students who reported a level of motivation with less 

than 4 were anxious as compared to 100% of F/SP/S students. Among those students who 

reported a level of motivation of more than 4, 50% of students who studied less than 11 hours 

were anxious. By contrast, 88% of students who studied for more than 11 hours were anxious 

in the level of motivation with more than 4 (see Figure B11 in the supplementary document). 
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During finals week, week 9, 95% of students who reported with a level of confidence 

less than 4 were anxious. By contrast, 72% of students who reported with a level of 

confidence more than 4 were anxious. Within the level of confidence less than 4, all students 

who reported were anxious if they reported less than 37 weekly hours studied. By contrast, 

50% of students who studied for more than 37 hours were anxious. Among those students 

who reported a level of confidence of more than 4, all students who studied less than 4.5 

hours were not anxious. By contrast, 78% of students who studied for more than 4.5 hours 

were anxious (see Figure B12 in the supplementary document). 

Throughout the semester, 88% of students who reported with a level of confidence 

less than 4 were anxious (see Figure B13(a) in the supplementary document). Within this 

group, 90% of F/SP/S students reported they were anxious, while 64% of J students reported 

they were anxious. By contrast, 70% of students who reported with a level of confidence 

more than 4 were anxious (see Figure B13(b) in the supplementary document). Among those 

students who reported with a level of confidence more than 4, 75% of calculus 2 students 

reported feeling anxious, versus 58% of calculus 3 students (see Figure B13(b) in the 

supplementary document). 

 

3.6 Discussion 

The purpose of the present study was to utilize the power of machine learning to have 

a deeper understanding of the factors associated with math anxiety in college students. 

Applying the CRT method to the survey data of summer 2020 calculus students, we 

identified the interrelationships between math anxiety and factors including students’ 
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motivation, confidence, weekly hours studied, academic level, and gender. The tree diagrams 

of the CRT method revealed temporal variations of these factors over the course of the 

semester. Specifically, from weeks 1-9, there was an interchange between the level of 

confidence and motivation (less than 3 or 4) as the significant predictors of math anxiety 

which is consistent with the results of previous research (Akin & Kurbanoglu, 2011; 

Rozgonjuk et al., 2020; Tapia & Marsh, 2004; Zakaria & Nordin, 2008). There was an 

exception for weeks 4 and 5, where the number of hours studied, and course level became the 

primary predictors of math anxiety. This could be due to the fact that the students had a 

midterm exam on the fourth week. This study distinguishes itself from other studies on math 

anxiety in two important aspects. First, we collected longitudinal survey data to analyze the 

temporal changes to math anxiety affected by the abovementioned variables. Secondly, it 

illustrates the capabilities of machine learning methods over the traditional statistical models 

to extract crucial information about education and the level of math anxiety in college 

students. 

The list of primary and secondary nodes and the accuracies of weekly CRT models 

are summarized in Table 8. Note that all CRT models have reasonably good accuracies that 

suggest that confidence is the first primary factor involved in the mediation of math anxiety. 

Students who report a confidence level of less than a 4 out of 7 were significantly more 

anxious than those with higher levels of confidence in the proposed model. Another finding 

of the present study showed the academic level and the number of hours studied were the top 

factors involved in the production or negation of math anxiety in half of our CRT models. In 

addition, our study indicates that J/S students tend to study more hours than F/SP students 
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and therefore are more confident and less anxious (Table 6). Interestingly, the first column of 

Table 6 demonstrates that on average, male students tend to study more hours than female 

students surveyed, which is inconsistent with the results obtained by Smail (2016). Smail 

(2016) mentioned that female students are more likely to have math anxiety and study math 

more than male students.  

Furthermore, the adverse effects of the COVID-19 pandemic had the least impact 

among other factors on math anxiety in calculus students. The effects of the COVID-19 

pandemic as a secondary factor causing math anxiety only occurred in two of the ten CRT 

models which is consistent with the results of previous research (Derling et al., 2021; 

Ludwig, 2021; Soysal et al., 2022). For example, Derling et al., 2021 claims that the level of 

math anxiety increased due to COVID- 19. However, one study measuring the magnitude of 

math anxiety in students found relatively low levels during COVID-19 (Ariapooran & 

Karimi 2021). Ariapooran and Karimi (2021) found that 67.21 % of students showed 

minimal mathematics anxiety in the COVID-19 pandemic. 

In addition to machine learning methods, and for the purpose of drawing connections 

to earlier studies on math anxiety, we performed a correlation analysis of the survey data. 

There was significant correlation between math anxiety and the factors mentioned on 

Pearson’s correlation analysis in Table 7. We also observed that confidence was negatively 

correlated with math anxiety based on Pearson’s correlation analysis in Table 7, which is 

consistent with the results obtained from previous research (Akin & Kurbanoglu, 2011; 

Hembree, 1990; Samuel & Warner, 2021; Ashcraft & Ridley, 2005; Naderi Dehsheykh et al., 

2021). 
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In this study, the population of interest was a random population of UMKC students 

who were taking a calculus course in a given semester. In particular, the population (n = 45) 

consisted of those who were STEM majors and enrolled in an online synchronous Calculus II 

(or Calculus III) course during the summer of 2020. Our findings are generalizable to public 

institutions and to students who are taking online calculus classes. However, there could be 

some limitations to generalizability perhaps due to the effects of the COVID-19 pandemic on 

the circumstances at the time, although we did control for the effects of participants’ 

COVID-19 anxiety in our analysis.  

The limitations of the present work are as follows: first, it should be noted that the 

collected data related to the number of hours studied and levels of anxiety, motivation and 

confidence are self-reported data. Although we eliminated incorrect data, we could not 

validate the full accuracy of self-reported data. Secondly, the participants in this study were 

students enrolled in a summer course rather than fall or spring courses. This may create a 

slight selection bias in the collected data. For example, some students may not have enrolled 

because of the COVID-19 pandemic or perhaps did not enroll because it was an online 

summer course. Thirdly, there may have also been other unexplained biases in the data 

related to this particular institution, and thus there is some sampling/selection bias present. 

Lastly, a limitation of this study is that environmental factors (such as parents, teachers, 

ethics, etc.) may enhance the association between math anxiety and the factors which we 

used in this study. However, we believe that these findings offer considerable insight into 

strengthening academic achievement in higher education. Moving forward, the results of this 

study should be validated using larger samples of STEM students across different college-
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level math courses. It is our profound hope that the results of this study will serve as a 

foundation to build upon as other researchers continue to develop the field. In addition, the 

present work shows that researchers in the field of education can use machine learning 

methods to provide a deeper analysis of data associated with math anxiety and attitudes 

toward math education. In conclusion, the present study underlines the importance of 

machine learning methods to extract detailed and accurate information from survey data in 

the field of mathematics education. 
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CHAPTER 4 

MATHEMATICAL MODELLING OF MATH ANXIETY 

 

4.1 Overview 

Mathematical models enable the study of infectious disease dynamics over time and 

may benefit research design. In science, medicine, and infectious disease progression, 

mathematical models have been widely used to predict the future behavior of diseases. 

Mathematical modeling is covered in Chapter 4 to better understand the dynamics of math 

anxiety. In this chapter, we start from the assumption that math anxiety may be transmitted 

among students; then we build a model that is an extension of the SIR infectious disease 

model that makes use of ordinary differential equations. We discuss the nonnegative and 

bounded of the system (4.1) of the model mathematically. We also demonstrate the existence 

and stability of equilibria such as anxiety-free and endemic equilibrium. We further find a 

fundamental reproduction number, which describes the rate math anxiety spreads or 

dissipates within the student population. Finally, we use MATLAB ODE45 to do a numerical 

simulation of the system in this study. Interestingly, we could not observe any periodic or 

oscillatory behaviors of the system (4.1) of the first model. Lastly, we discuss about the 

nonexistence of limit cycles in this chapter. 

 

4.2 Mathematical Models of Infectious Diseases  

The study of epidemiology has evolved as a topic of significant importance to modern 

society. In epidemiology, mathematical models have a long history as a valuable resource for 
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understanding how infectious illnesses spread. Beginning in 1760, Bernoulli (1760) was the 

first to use mathematical methods to study the effects of smallpox vaccination (Bernoulli, 

1760). In recent years, the mathematical foundations of epidemiology have garnered 

attention. The use of mathematical modeling as a research tool in the study of the progression 

of illnesses can benefit both mathematicians and epidemiologists (Kermack & McKendrick, 

1932). The spread of an illness through a population over time can be described in a 

simplified form using mathematical models. Most epidemic models begin by segmenting the 

population into a small number of distinct areas. Each of these groups has people who are 

similar in terms of how they are impacted by the disease under investigation. The SIR model, 

which was established in the early twentieth century by Kermack and McKendrick is based 

on a set of three connected nonlinear ordinary differential equations (Kermack & 

McKendrick, 1932; Kermack & McKendrick, 1933; Kermack & McKendrick, 1991). 

Disease transmission models are useful tools for understanding epidemics and guiding public 

health planning. 

Traditional models of disease transmission among populations, such as the SIR 

model, generally, take the form of nonlinear ordinary differential equations such as:       

Ṡ =
dS
dt (t) = −βS(t)I(t) 

İ =
dI
dt (t) = βS(t)I(t) − γI(t) 

Ṙ =
dR
dt
(t) = γI(t), 
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 where S represents the number of susceptible, I represent the number of infectious, and R 

represents the number of recovered. Negative values reflect flows out whereas positive 

values reflect flows into the compartments.  

The SIR model considers a variety of important aspects of population dynamics, such 

as death rate, immigration or birth rate, recovery, and immunity, which makes is easy to 

modify. Even the most basic model has significant implications for public health. Kermack 

and McKendrick (1991) made the following assumptions: the disease's rate of spread is 

proportionate to population size; infection occurs instantly; no one is immune to the disease 

at the outset; immunity, once attained, is permanent; and the illness does not result in death. 

To make the SIR model work, each member of the population is allocated to one of three 

compartments at any given time: those who are susceptible to illness, those who are already 

infected, and those who have been removed. The eliminated compartment includes those who 

are not diseased and are not susceptible to infection; in other words, those who are immune, 

in quarantine, or have died. The class is significant because it may account for permanent or 

transient immunity gained from vaccination or disease experience in other forms of the SIR 

model. Individuals can transfer from one compartment to another. For example, a person who 

recovers from an infection may transfer from the infected class to the recovered compartment 

(see Figure 5). Thus, the model considers the interdependence that occurs among the various 

compartments within the population.  
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Figure 5. The flow of individuals between compartments in the SIR model from left to right. 
The compartments of the SIR disease model include a susceptible individual (S) who 
contacts disease becomes infectious (I) and then recovers (R) to become recovered. The 
parameters of the SIR model are the rate at which susceptible hosts become infected (β) and 
the rate at which Infectious individuals recover (γ).  

 

When it comes to mathematical modeling of epidemiology, like with most other types 

of mathematical modeling, there is often a trade-off between basic or strategic models, which 

ignore the majority of information and are intended mainly to emphasize qualitative behavior 

at the broadest level, and comprehensive or operational models, which are intended for more 

particular scenarios and sometimes include quantitative forecasts for the near future 

(Anastassopoulou et al., 2020; Costa et al., 2021). Detailed models are notably challenging or 

even impossible to solve analytically; as a result, their applicability to theoretical endeavors 

is restricted, despite the possibility that their relevance to strategic endeavors is significant 

(Nwankwo & Okuonghae, 2022). For instance, extremely simple models for epidemics 

predict that an epidemic would end after a certain amount of time (see Figure 6), leaving a 

portion of the population unaffected by the illness. Mathematical models used to make 

management policy suggestions must have quantitative outcomes, and the models required in 

a public health environment require a large level of information to adequately explain the 

issue (Balcan et al., 2009). For instance, if the issue at hand is to make a recommendation 

regarding which age group or groups need to be the primary focus of attention in the event of 

a global pandemic, it is vital to adopt a model that divides the population into an adequate 
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number of age categories and acknowledges the relationship between the various age 

categories. In recent years, there has been a surge in the advent of high computation, which 

has enabled the application of such models. 

 

 

Figure 6. A sample of basic dynamics of SIR (susceptible S(t), infectious I(t), and recovered 
R(t)) model. Adapted from (Abou-Ismail, 2020). 
 

 When a person recovers from illness, the SIR model implies that the person carries 

lifelong immunity to that disease; this is the case for a variety of different diseases (Brauer et 

al., 2019). An individual's immunity to a distinct category of airborne illnesses, such as 

influenza, which circulates at different times of the year, may deteriorate over time. Gai et al. 

(2020) argued that the SIRS model should be applied to let recovered people revert back to a 

vulnerable condition. The SIRS model can be used if there is sufficient inflow to the sensitive 

population; however, once equilibrium is attained, the dynamics will be in an endemic state 

with oscillations. Some SIRS models use a delayed exponential distribution to depict 

diminishing immune response on epidemiological modeling software (Keeling & Danon, 
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2009). Immunity persists in individuals for a certain amount of time, after which it begins to 

decrease according to an exponential distribution. 

 Additionally, stochastic mathematical models of infectious diseases provide a more 

realistic approach to pandemics since they allow for the detection of early patterns in an 

outbreak as well as the analysis of the geographical distribution of incidence rates in a given 

location. This improves the accuracy of stochastic mathematical models of infectious 

diseases in representing how epidemics work. According to Brauer (2017), stochastic 

mathematical models allow for predictions about the length of an epidemic by accounting for 

disparities among people in a population. The models consider not only geographical and 

socioeconomic characteristics, but also environmental factors that influence disease 

transmission. Every stochastic model assumes that there are probabilities in the shift between 

the structure's compartments, as well as that there is at least one disease-free state (Lin et al., 

2020; Huppert & Katriel, 2013; Kretzschmar & Wallinga, 2009). Because stochastic models 

allow for uncertainty, they provide a more accurate picture of disease dynamics for modeling 

infectious diseases. A wide range of parameters impacting the epidemiological behavior of 

an infectious illness can be included into stochastic models, which subsequently provide a 

range of possible outbreak scenarios.  

Finally, the SIR family of epidemiological models provides an effective and 

adaptable set of tools for understanding the spread of illness and organizing public health 

interventions at various phases even another fields. The most basic of these models, such as 

the one (SIR) examined here, can provide us with useful numerical information. Researchers 

can predict whether or not an epidemic will occur, the maximum number of infected people 
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at any given time, and consequently, the severity of the epidemic. For example, despite the 

challenging concepts and terms, there can be a considerable number of students who suffer 

significant math anxiety experience significant math anxiety as defined by Gurin et al. 

(2017). Since students can develop math anxiety at any age Gurin et al. (2017) developed a 

mathematical model to describe how peer and teacher relationships interact to transmit math 

anxiety to identify the most effective time for support. Similarly, Amani et al. (2021) 

designed an epidemiological model to predict the level of math anxiety in students to help 

educators have a better understanding of their students. According to Amani et al. (2021), a 

high percentage of students, approximately 70%, will suffer from high mathematics anxiety 

in the near future. In this chapter, we build a mathematical model to capture the dynamics of 

transmission of math anxiety between students by using a system of nonlinear ordinary 

differential equations. 

 

4.3 First Mathematical Model of Math Anxiety 

4.3.1 Mathematical Model Formulation 

We develop a model based on non-linear interactions to investigate how math anxiety 

spreads among students. To create this model, we divide the N-students total population into 

four sub-populations (i.e., compartments): susceptible S(t), anxious A(t), untreated U(t), and 

treated T(t) over time. Figure 7 illustrates the modified SIR model of math anxiety 

transmission between students. The SIR model is an epidemiological model that 

computes the number of people infected with a contagious illness over time in a closed 

population. 
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In this study, we consider math anxiety as an epidemiological disease that spreads 

through student interactions. These student interactions may have an impact on both anxious 

and non-anxious peers (Gurin et al., 2017). Therefore, the mathematical model is designed to 

study the dynamics of students’ math anxiety.  In the SATU model, the set of ordinary 

differential equations (ODEs) is given by: 

Ṡ= (1 − p)Λ − βAS + αA −m!S − σS 

Ȧ=	βAS −(α + δ +m" + γ)A + σS                                                                         (4.1) 

Ṫ= pΛ + γA −m#T		                                                                                      

U̇= δA − m$U 

where S(t) is the number of students susceptible to math anxiety, A(t) is the number of 

students who have developed math anxiety, T(t) is the number students treated for math 

anxiety (by advising, tutoring, or mentoring programs), and U(t) be the number of untreated 

students. Also, time (t) is considered via the number of days in a semester.  

Given the abovementioned set of ordinary differential equations representing the 

SATU model (4.1), a compartmental diagram of the transmission of math anxiety among 

students is seen in Figure 7, and a summary of parameters and variables is given in Table 10. 

We describe the flow chart of the model, where anxious students have a probability of 

affecting susceptible students and vice-versa daily. The parameter p is the proportion of the 

students who are not susceptible to anxiety. The parameter β is the anxiety transmission rate. 

Particularly, β is the rate at which susceptible students get anxiety from interactions with 

anxious students.   
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Figure 7. Flow chart describing the interaction between students in different compartments 
as math anxiety is transmitted for the first model. 
 

The parameter σ is the rate of students who can leave the anxious state without any 

treatment. According to the mass action law (Ross 1910; Anderson & May 1992; Diekmann 

& Heesterbeek, 2000), when an infected student makes contact, they are able to transmit 

anxiety with βA to others per unit of time. Parameter m is the rate at which the students are 

dropping the course. For example, mu is the rate of untreated students dropping the course. 

And Λ is the rate of college students who are taking gateway math courses.  
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Table 10. Parameters, units, and descriptions for the SATU model. 

Parameters Units Descriptions 
Λ Students/semester Students entering gateway math courses 
β 1/days Anxiety transmission rate (through contact) 
σ 1/days Anxiety transmission rate (Self-induced) 
α 1/days Recovery rate 
γ 1/days Treated rate 
δ 1/days Untreated rate  
m! 1/days Rate of students dropping course while susceptible 
m%  1/days Rate of students dropping course after treated 
m$ 1/days Rate of students dropping course who are untreated 
m&  1/days Rate of students dropping course while anxious 

p Proportion Proportion of students who are not susceptible to Math anxiety 
S State Susceptible 
A State Anxious 
T State Treated 
U State Untreated 

 

 

4.3.2 Model Well-Posedness Theorem 

In the first step for validating the SATU model, we prove that the model solutions 

with nonnegative initial values are always nonnegative and bounded. 

 

Theorem 4.1. If the parameter values and the initial condition of the model (4.1) are 

nonnegative, then the solutions of model (4.1) are nonnegative and bounded in Γ̇, where 

Γ = {(S, A, T, U)	ϵ	ℝ'
( |	S + A + T + U ≤ Λ/m	} 

 



 

70 
 

Proof 4.1: Here we show that for the model (4.1), all solutions with non-negative initial 

values remain non-negative and bounded in Γ̇. Let N(t) = S(t)+A(t)+T(t)+U(t). By adding 

equations (4.1), we have that N′ ≤ Λ-mN where m = min {m!	m"		m#		m$}. 

Then, lim	sup#	→+N(t) 	≤ Λ/m. Hence, the feasible region 

Γ = 	 {(S(t), A(t), T(t), U(t)	) ∈ ℝ'
( 	|S(t) + A(t) + T(t) + U(t) ≤ Λ/m} 

is positively invariant with respect to model (4.1). This completes the proof. 

 

4.4 Analysis of The Model 

4.4.1 Existence of Equilibria 

Existence of Anxiety-Free Equilibrium 

The Anxiety-Free Equilibrium (AFE) is the state where anxiety disappears. 

Therefore, all anxious compartments will be zero except susceptible and treated 

compartments. 

 

Theorem 4.2.  A unique Anxiety-Free Equilibrium (AFE) exists at the point (S*, 0, T*, 0) if 

σ = 0 and all parameters are nonnegative.  

 

Proof 4.2. We denote AFE with (S*, 0, T*, 0). The initial step is to solve ODEs of the system 

(4.1) to find equilibria. To remove anxiety from the system, we set the right side of the ODEs 

of the system (4.1), i.e., 
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Ṡ= (1 − p)Λ − βAS + αA −m!S – σS = 0 

Ȧ=	βAS −(α + δ +m" + γ)A + σS = 0   

Ṫ= pΛ + γA −m#T = 0                                                                                

U̇= δA − m$U = 0 

and	A = 0. Thus, we have Anxiety-Free Equilibrium (AFE): 

AFE = (S*, A*, T*, U*) = (
(#$%)'
(!

,  0,  
%'
("

,  0)                                                       (4.2) 

 

Basic Reproduction Number, R0 

A basic reproduction number (R,) is defined as the expected number of secondary 

infections caused by a single infection introduced into a total student population composed 

entirely of susceptible individuals (Bani-Yaghoub et al., 2012; van den Driessche & 

Watmough, 2002). Note that the R, is a threshold number which is presented for a 

compartmental model based on a system of ordinary differential equations. R, is used in 

epidemiology to determine whether diseases spread or disappear. There will be an outbreak 

when R,	> 1, whereas the infection will gradually disappear when R,	< 1.  

 Specifically, we use the Next Generation Matrix (NGM) to generate the reproduction 

number (van den Driessche & Watmough, 2002). This approach is most useful for an 

epidemiological model to calculate the reproduction number provided by Diekmann et al. 

(1990) and van den Driessche & Watmough (2002).  
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Theorem 4.3. The basic reproduction number for the system of ODEs is:  

R, = 
!(#$%)'

(!()*+*("*,)
	 

when R, > 1, the AFE is unstable, whereas R, < 1 implies that the AFE is locally 

asymptotically stable.  

Proof 4.3.  By applying the NGM to find the reproduction number, we use the following 

form:  ḟ = “entry”	− “exit” (Gurin et al., 2017). Then, we define the vector of 	X = NAUO. We 

introduce F = -.
-/!"#

 which is the derivative of f and contains the anxious term; in a similar 

way, we introduce V = -0
-/!"#

 which contains transfer terms. 

Constructing the NGM and anxiety-free equilibrium is  

X = NAUO= NβAS + σS
δA	

O − R(α + δ +m" + γ)A
m$U

S  

Then, we have  

F = -.
-/!"#

= NβS 0
δ 0

O and V = -0
-/!"#

= Rα + δ +m" + γ 0
0 m$

S 

Hence the NGM is: 

FV12 =

⎣
⎢
⎢
⎢
⎡ β(1 − p)Λ
m!(α + δ +m" + γ)

	 0

δ
α + δ +m" + γ

0⎦
⎥
⎥
⎥
⎤
 

To get the basic reproductive number R,, we select the maximum eigenvalue of the matrix 

shown in the equation     
!(#$%)'

(!()*+*("*,)
	. The second part of the theorem is a direct 

implication of theorem 2 of the work by van den Driessche and Watmough, (2002). 
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Existence of Endemic Equilibrium 

The Endemic Equilibrium (EE) is a steady state where the anxiety cannot disappear, 

which means the anxiety persist in the population. In this condition, all model compartments 

are different from zero at the endemic equilibrium point, i.e.,  

EE = (S*, A*, T*, U*)≠ (0, 0, 0, 0)                                                                      (4.3) 

 

Theorem 4.4.  A unique Endemic Equilibrium (EE) exists at the point  

EE = (S*, A*, T*, U*) = ( 
(#	$	%)	'	$*+
(!,	-	,	.+

, a ,  p',/+
	("

,  0+
	(#

  ) 

where “a” is the positive root of   

β(δ + m" + γ)A3 + ((σ(δ + m" + γ) + m!(α+ δ + m" + γ)– β(1 - p) Λ)) A −σ(1 – p) Λ=0  

 

Proof 4.4. If A ≠ 0, we set the right side of the equations (4.1) to find an endemic 

equilibrium point. By adding the first two ordinary differential equations in the system (4.1) 

we have  

S* = (#$%)'$(0,($,/)1
(!

  

Substituting S* into the first ordinary differential equation in the system (4.1), we obtain the 

quadratic equation for A: 

β(δ + m" + γ)A3 + ((σ(δ + m" + γ) + m!(α+ δ + m" + γ)– β(1 - p) Λ)) A −σ(1 – p) Λ=0. 

It is important to note that the roots are real: ∆ > 0. Therefore, we let ‘a’ represent the 

positive root of the quadratic equation. Plugging it back into the set of equations, we have an 

endemic equilibrium point satisfied at: 
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EE = (S*, A*, T*, U*) = ( 
(#	$	%)	'	$*+
(!,	-	,	.+

, a ,  p',/+
	("

,  0+
	(#

 )                                    (4.4) 

 

4.4.2 Stability of The Equilibria 

We proposed a mathematical model of real-world phenomena using nonlinear 

differential equation systems. Because these equations are difficult to solve, we employ 

linearization, a qualitative algebraic approach, to the analysis of nonlinear dynamic system 

solutions (4.1). In this section, we utilize linearization to solve the nonlinear equation 

mathematically and then we employ the stability analysis to observe the asymptotic behavior 

of the solution for nonlinear dynamic system equilibria (anxiety-free and endemic equilibria).  

 

Stability of Anxiety-Free Equilibrium 

Theorem 4.5. The Anxiety-Free Equilibrium (AFE) of system (4.1) is locally asymptoticly 

stable with monotonically converging solutions, if	β (215)7
8$

 < (α + δ +m" + γ).  

 

Proof 4.5. To determine the stability of the system at AFE, we first calculate the Jacobian 

matrix to determine the stability of the anxiety-free equilibrium. The Jacobian matrix is 

evaluated at the anxiety-free equilibrium to get the eigenvalues of the linearized system, 

which is given by: 

J9:; = 

⎣
⎢
⎢
⎢
⎢
⎡−m! α − β((215)7

8$
) 0 0

0 β((215)7
8$

)− (α+ δ + m" + γ) 0 0
0 0 −m# 0
0 0 0 −m$⎦

⎥
⎥
⎥
⎥
⎤

                                 (4.5) 
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From (4.5), we see that the eigenvalues are λ2 = −m#, λ3 = −m$, λ< = −m!, and  

λ( = β((215)7
8$

)− (α+ δ + m" + γ). Then, we find all eigenvalues are real and negative 

provided 	β (215)7
8$

 < (α + δ +m" + γ). Hence, the anxiety-free equilibrium of the system 

(4.1) is locally asymptoticly stable with monotonically converging solutions, if 

	β (215)7
8$

 < (α + δ +m" + γ). 

Stability of Endemic Equilibrium 

Theorem 4.6. If the Endemic Equilibrium (EE) of system (4.1) exists, then its stability is as 

follows: 

If ∆= 𝑏3	 − 4	c < 	0	 If ∆= 𝑏3	 − 4	c > 	0	 If ∆= 𝑏3	 − 4	c = 	0	 
• b < 0 Unstable 

oscillatory • b > 0, c > 0 Stable   
• b < 0 

Degenerate unstable 
• b > 0 Stable 

oscillatory 
• b < 0, c > 0 

Unstable   
•  b > 0 

Degenerate unstable 
• b = 0 

inconclusive • c < 0 Unstable     
 

where b= m!+	σ	+ βa+ γ+ δ + m" + α- β((2	1	5)	7	1="
8$'	>	'	?"

), 

and c = (m!+ σ + βa) (α+ δ + m" + γ- β (2	1	5)	7	1="
8$'	>	'	?"

) – (βa + σ)( α - β (2	1	5)	7	1="
8$'	>	'	?"

), 

and “a” is the positive root of the quadratic equation: 

β(δ + m" + γ)A3 + ((σ(δ + m" + γ) + m!(α+ δ + m" + γ)– β(1 - p) Λ)) A −σ(1 – p) Λ=0  

 

Proof 4.6. To determine the stability of the system at EE, we first calculate the Jacobian 

matrix to determine the stability of the endemic equilibrium. The Jacobian matrix is 
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evaluated at the endemic equilibrium to get the eigenvalues of the linearized system, which is 

given by: 

J;; = 

⎣
⎢
⎢
⎢
⎢
⎡−m! − (σ + βa) α − β (2	1	5)	7	1="

8$'	>	'	?"
0 0

σ + βa β (2	1	5)	7	1="
8$'	>	'	?"

− (α+ δ + m" + γ) 0 0
0 γ −m# 0
0 δ 0 −m$⎦

⎥
⎥
⎥
⎥
⎤

           (4.6) 

 
From (4.6), we see that the eigenvalues are λ2 = −m#, λ3 = −m$, and the other eigenvalues 

(λ<, λ() are the roots of the quadratic equation: 

λ3+ (m!+	σ	+ βa+ γ+ δ + m" + α − β 
(#	$	%)	'	$*+
(!,	-	,	.+

) λ+(m!+ σ + βa) (α+ δ + m" +

γ − 	β 
(#	$	%)	'	$*+
(!,	-	,	.+

) − (βa + σ)(α − β 
(#	$	%)	'	$*+
(!,	-	,	.+

 ) = 0.  

Hence, the stability of the Endemic Equilibrium depends on the roots of this quadratic 

equation using the linear stability theorem.  

 

4.5 Parameter Estimations 

Data collection has started by surveying students taking the gateway entry courses 

(Math-220 and 250) at UMKC. The survey was made available on Canvas and students 

completed it every Friday during the summer semester (see Appendix A). Based on the 

collected data, we estimate the number of students suffering from math anxiety and the 

number of students that drop because of it. We also use data from UMKC's gateway entry 

courses (Math 110, 120, 125, 210, 220, and 250) to estimate pre-covid parameters from two-

year sequences. For example, we assume that the majority of pre-calculus (Math 120) 
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students enroll in calculus I. We also assume that the students take the above Math series in 

the fall or spring semesters. Summer semesters were excluded due to low enrollment. The 

model’s parameter values are estimated before and during COVID-19.  

The SATU model includes a flow chart and four ODEs (see figure 7). To begin, we 

will compute m (m!, m$, m", m#) values that represent dropping rates using ordinary 

differential equations of the system (4.1). By adding equations of the system (4.1), we get 

 (S+A+T+U)′= Λ −m!S – m"A −m#T − m$U	                                                    (4.7)                             

Let m = min (m!, m$, m", m#)= m# because we assume the drop rate of treated 

students is minimal.  

The net flow is defined as N= S+A+T+U. Then (4.7) indicates that N′ ≤ Λ −mN is 

true. Hence, the system is invariant (see theorem 1), and the total student population is 

bounded by Λ/m. We also assume that m# < m! < m" < m$ and N@ = Λ − µN with µ 

representing the overall drop rate. By using an integrating factor to solve for N, we get  

N(t)=Λe1A# f2
A
eA# + cg                                                                                           (4.8)                                                                              

If t = 0, the number of students at the beginning of the semester is N (0) = N,. And  

N(t)=Λe1A# f2
A
eA# + B%

7
− 2

A
g is obtained using equation (4.8). 

By doing so, we can estimate the parameters and use MATLAB's Curve Fitting 

Toolbox. The main idea is to use the Curve Fitting Toolbox, which contains a function for 

fitting curves to data. To do regression analysis, we developed our own customized 

equations. We evaluate confidence intervals after establishing a fit to achieve the best 

estimates for these parameters (see Tables 11, 12, 13, and 14). We evaluate confidence 
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intervals after establishing a fit to achieve the best estimates for these parameters (see Tables 

11, 12, 13, and 14). We also used the MATLAB curve fitting toolbox to measure the 

goodness of fit (adjusted squared R and sum of the squared residuals) (see Tables 11, 12, 13, 

and 14). In the linear regression model fitting, the coefficient of determination (R-squared) 

represents the proportionate amount of variance in the response variable N (total population) 

explained by the independent variables t (weeks). 

 

Table 11. Estimated parameter values of model (4.1), confidence intervals, and the goodness 
of fit. 
 

 
µ mu ms ma mt Λ Confidence 

Interval (95%) 
Goodness of 

Fit 
 

SP 
2014 
M110 

0.077575579629
48 

0.155151159258
96 

0.077575579629
48 

0.116363369444
22 

0.038787789814
74 

 
11.375 

(0.0775755796294
80, 

0.07757557962948
1) 

(SSE:7.27e-
27) 

(RMSE:8.53e
-14) 

 
SP 

2014 
M125 

0.075231965297
41 

0.150463930594
82 

0.075231965297
41 

0.112847947946
12 

0.037615982648
71 

 
2 

(0.0752319652974
12, 

0.07523196529741
3) 

(SSE:4.56e-
27) 

(RMSE:6.75e
-14) 

 
SP 

2014 
M120 

0.085979178784
62 

0.171958357569
24 

0.085979178784
62 

0.128968768176
93 

0.042989589392
31 

 
1.625 

(0.0859791787846
16, 

0.08597917878462
2) 

(SSE:4.09e-
27) 

(RMSE:6.40e
-14) 

 
FS 

2014 
M210 

0.196112641719
30 

0.392225283438
59 

0.196112641719
30 

0.294168962578
95 

0.098056320859
65 

 
9.25 

(0.1961126417192
97, 

0.19611264171929
8) 

(SSE:2.91e-
26) 

(RMSE:1.71e
-13) 

 
SP 

2015 
M220 

0.075231965297
41 

0.150463930594
82 

0.075231965297
41 

0.112847947946
12 

0.037615982648
71 

 
4.75 

(0.0752319652974
12, 

0.07523196529741
2) 

(SSE:8.08e-
28) 

(RMSE:2.84e
-14) 

 
FS 

2015 
M250 

0.076196211253
98 

0.152392422507
96 

0.076196211253
98 

0.114294316880
97 

0.038098105626
99 

 
2.1875 

(0.0761962112539
18, 

0.07619621125404
0) 

(SSE:3.11e-
24) 

(RMSE:1.76e
-12) 

SP: Spring Semester; FS: Fall Semester; RMSE: Root Mean Square Error; SSE: Sum of Squares Error 
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Table 12. Estimated parameter values of model (4.1), confidence intervals, and the goodness 
of fit. 
 

  µ mu ms ma mt Λ Confidence Interval 
(95%) 

Goodness of Fit 

FS 
2014 
M110 

0.07531787837
3703 

0.15063575674
741 

0.07531787837
370 

0.11297681756
055 

0.037658939186
85 

11 
(0.0753178783737

03, 
0.07531787837370

3) 

(SSE:8.08e-28) 
 

(RMSE:2.84e-
14) 

FS 
2014 
M125 

0.07193092925
6964 

0.14386185851
393 

0.07193092925
696 

0.10789639388
545 

0.035965464628
48 

3.75 
(0.0719309292569

60, 
0.07193092925696

8) 

(SSE:3.41e-26) 
 

(RMSE:1.85e-
13) 

FS 
2014 
M120 

0.07852581613
2281 

0.15705163226
456 

0.07852581613
228 

0.11778872419
842 

0.039262908066
14 

2.4375 
(0.0785258159804

42, 
0.07852581628412

0) 

(SSE:2.40e-17) 
 

(RMSE:4.90e-
09) 

SP 
2015 
M210 

0.07275774494
8079 

0.14551548989
616 

0.07275774494
808 

0.10913661742
212 

0.036378872474
04 

8.25 
(0.0727577449480

75, 
0.07275774494808

4) 

(SSE:2.34e-25) 
 

(RMSE:4.83e-
13) 

FS 
2015 
M220 

0.06842008358
9926 

0.13684016717
985 

0.06842008358
993 

0.10263012538
489 

0.034210041794
96 

5.8125 
(0.0684200835899

24, 0. 
0.06842008358992

9) 

(SSE:2.91e-26) 
 

(RMSE:1.71e-
13) 

SP 
2016 
M250 

0.07153040389
5309 

0.14306080779
062 

0.07153040389
531 

0.10729560584
296 

0.035765201947
65 

2.3125 
(0.0715304038913

22, 
0.07153040389929

7) 

(SSE:1.44e-20) 
 

(RMSE:1.20e-
10) 

SP: Spring Semester; FS: Fall Semester; RMSE: Root Mean Square Error; SSE: Sum of Squares Error 

 

Table 13. Estimated parameter values of model (4.1), confidence intervals, and the goodness 
of fit. 
 

 
µ mu ms ma mt Λ Confidence Interval 

(95%) 
Goodness of Fit 

SP 
2015 
M110 

0.077827245
050336 

0.15565449010
067 

0.07782724505
034 

0.11674086757
550 

0.038913622525
17 

9.75 
(0.07782724505032

9, 
0.07782724505034

3) 

(SSE:7.27e-25) 

(RMSE:8.53e-
13) 

SP 
2015 
M125 

0.071034747
832322 

0.14206949566
464 

0.07103474783
232 

0.10655212174
848 

0.035517373916
16 

3.6875 
(0.07103474783038

6, 
0.07103474783425

9) 

(SSE:8.63e-21) 

(RMSE:9.30e-
11) 

SP 
2015 
M120 

0.083578741
492542 

0.16715748298
508 

0.08357874149
254 

0.12536811223
881 

0.041789370746
27 

1.5 
(0.08357874149253

1, 
0.08357874149255

3) 

(SSE:4.70e-26) 

(RMSE:2.17e-
13) 

FS 
2016 
M210 

0.069699414
225640 

0.13939882845
128 

0.06969941422
564 

0.10454912133
846 

0.034849707112
82 

10.625 
(0.06969941422558

7, 
0.06969941422569

4) 

(SSE:5.46e-23) 

(RMSE:7.40e-
12) 

SP 
2016 
M220 

0.073311768
296190 

0.14662353659
238 

0.07331176829
619 

0.10996765244
429 

0.036655884148
10 

4.9375 
(0.07331176829618

9, 
0.07331176829619

1) 

(SSE:3.43e-27 

(RMSE:5.86e-
14) 

FS 
2016 
M250 

0.076371388
263103 

0.15274277652
621 

0.07637138826
310 

0.11455708239
465 

0.038185694131
55 

1.4375 
(0.07637138826310

2, 
0.07637138826310

4) 

(SSE:4.54e-28) 

(RMSE:2.13e-
14) 

SP: Spring Semester; FS: Fall Semester; RMSE: Root Mean Square Error; SSE: Sum of Squares Error 
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Table 14. Estimated parameter values of model (4.1), confidence intervals, and the goodness 
of fit. 
 

 
µ mu ms ma mt Λ Confidence Interval 

(95%) 
Goodness of 

Fit 

SP 
2018 
M110 

0.071272350424
948 

0.142544700849
90 

0.071272350424
95 

0.106908525637
42 

0.03563617521
247 

7.875 
(0.0712723503873

20, 
0.07127235046257

7) 

(SSE:1.49e-
17) 

(RMSE:3.86e-
09) 

SP 
2018 
M125 

0.071675762817
314 

0.143351525634
63 

0.071675762817
31 

0.107513644225
97 

0.03583788140
866 

2.5 
(0.0716757628173

12, 
0.07167576281731

6) 

(SSE:4.14e-
27) 

(RMSE:6.43e-
14) 

SP 
2018 
M120 

0.077630037418
966 

0.155260074837
93 

0.077630037418
97 

0.116445056128
45 

0.03881501870
948 

1.5625 
(0.0776300374189

65, 
0.07763003741896

8) 

(SSE:8.07e-
28) 

(RMSE:2.841
e-14) 

FS 
2018 
M210 

0.078554730822
062 

0.157109461644
12 

0.078554730822
06 

0.117832096233
09 

0.03927736541
103 

9 
(0.0785547308220

59, 
0.07855473082206

4) 

(SSE:6.54e-
26) 

(RMSE:2.56e-
13) 

FS 
2019 
M250 

0.064288580663
932 

0.128577161327
86 

0.064288580663
93 

0.096432870995
90 

0.03214429033
197 

2.5 
(0.0642885806639

09, 
0.06428858066395

4) 

(SSE:5.36e-
25) 

(RMSE:7.32e-
13) 

SP: Spring Semester; FS: Fall Semester; RMSE: Root Mean Square Error; SSE: Sum of Squares Error 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 8. The model (4.1) fitted to DFW data a) Spring semester 2014 math 110, b) Spring 
semester 2014 math 125, c) Spring semester 2014 math 120, d) Fall semester 2014 math 210 
e) Spring semester 2015 math 220 f) Fall semester 2015 math 250. 
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(a) (b) 

(c) (d) 

(e) (f) 

 
Figure 9. The model (4.1) fitted to DFW data a) Fall semester 2014 math 110, b) Fall 
semester 2014 math 125, c) Fall semester 2014 math 120, d) Spring semester 2015 math 210 
e) Fall semester 2015 math 220 f) Spring semester 2016 math 250. 
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(a) (b) 

(c) (d) 

(e) (f) 

 
Figure 10. The model (4.1) fitted to DFW data a) Spring semester 2015 math 110, b) Spring 
semester 2015 math 125, c) Spring semester 2015 math 120, d) Fall semester 2016 math 210 
e) Spring semester 2016 math 220 f) Fall semester 2016 math 250. 
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(a) (b) 

(c) (d) 

(e) 

 

 

 
Figure 11. The model (4.1) fitted to DFW data a) Spring semester 2018 math 110, b) Spring 
semester 2018 math 125, c) Spring semester 2018 math 120, d) Fall semester 2018 math 210 
e) Spring semester 2019 math 220 f) Fall semester 2019 math 250. 
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4.6 Limitation of the model: Nonexistence of Limit Cycles 

 
Although we have estimated the parameter values of model (4.1), in this section we 

show that model is not capable of generating any limit cycles. Therefore, no matter how hard 

we try to fit the model to the collect data, the model will have a poor predictive ability and 

low goodness of fit.  

In this section, we show that the model (4.1) cannot have a limit cycle. To have a 

limit cycle, the model should have a pair of pure imaginary eigenvalues. However, in the 

following we show that the Jacobian matrix evaluated at the endemic equilibrium cannot 

have a pair of imaginary eigenvalues and therefore the existence of a limit cycle is not 

possible. 

The reason for this is that we found that the sum of a11 + a22 in the Jacobian matrix at 

endemic equilibrium will never become zero. Therefore, the quadratic characteristic 

equation: λ3− Tr (JEE) λ + det (JEE) = 0 will never give eigenvalues with zero real parts (i.e., 

pure imaginary parts). Hence, a necessary condition for the existence of the Hopf bifurcation 

is violated, and the model cannot generate periodic solutions. This is a strong limitation of 

the model because the data clearly shows existence of periodic and oscillatory solutions. 

Hence, the model cannot resemble the real-world data, and we in the next chapter we will 

modify the model to address this issue. 
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Theorem 4.7. (Nonexistence of periodic solutions) The model (4.1) does not have any limit 

cycle and therefore no periodic solutions.  

 

Proof 4.7. Here, we show that the model cannot have a pair of pure imaginary eigenvalues. 

We already showed that the endemic equilibrium is given by:  

EE = (S*, A*, T*, U*) = ( 
(#	$	%)	'	$*+
(!,	-	,	.+

, a ,  p',/+
	("

,  0+
	(#

 ). 

We also calculated the Jacobian matrix evaluated at EE:  
 
 

J;; = 

⎣
⎢
⎢
⎢
⎢
⎡−m! − (σ + βa) α − β (2	1	5)	7	1="

8$'	>	'	?"
0 0

σ + βa β (2	1	5)	7	1="
8$'	>	'	?"

− (α+ δ + m" + γ) 0 0
0 γ −m# 0
0 δ 0 −m$⎦

⎥
⎥
⎥
⎥
⎤

 

 

where, two eigenvalues are always negative: λ2 = −m# and λ3 = −m$	.  Hence, the stability 

of the Endemic Equilibrium depends upon the roots of this quadratic equation: 

λ3+ (m!+	σ	+ βa+ γ+ δ + m" + α − β 
(#	$	%)	'	$*+
(!,	-	,	.+

) λ+(m!+ σ + βa) (α+ δ + m" +

γ − 	β 
(#	$	%)	'	$*+
(!,	-	,	.+

) − (βa + σ)(α − β 
(#	$	%)	'	$*+
(!,	-	,	.+

 ) = 0.  

To have a pair of pure imaginary eigenvalues, we must have the following two conditions: 

1. (m!+	σ	+ βa+ γ+ δ + m" + α − β 
(#	$	%)	'	$*+
(!,	-	,	.+

) = 0 

2. (m!+ σ + βa) (α+ δ + m" + γ − β 
(#	$	%)	'	$*+
(!,	-	,	.+

)−(βa + σ)(α − β 
(#	$	%)	'	$*+
(!,	-	,	.+

 ) > 0. 
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where “a” is the positive root of  

β(δ + m" + γ)A3 + ((σ(δ + m" + γ) + m!(α+ δ + m" + γ)– β(1 - p) Λ)) A −σ(1 – p) Λ=0.  

We show that the first condition can never be satisfied because the first expression is always 

negative. By doing algebra in the first condition we have, 

C2+C3 − 
.	(#	$	%)	'	$*+

2%
 < 0 where                                                                                 (4.9) 

C2 = m!+	σ	+ βa > 0,  

C3 = 	γ+ δ + m" + α > 0 since all parameters and “a” are nonnegative. Divided by “	C3” 

both side of the inequality (4.9) we have 
2%
2&

 +1 < .	(#	$	%)	'	$*+
2%2&

 . 

Assume (β	(1	 − 	p)	Λ	 − αa) ≠ 0, then we will have  

2%
2&

 +1 < #

#,'%'&((*	(%	(	,)	.	(/$)(*	(%	(	,)	.	(/$)

 

• If (β	(1	 − 	p)	Λ	 − αa) > 0, then we have  

(C&
C'

 +1) (1+e) < 1, where e = (
2%2&$(.	(#	$	%)	'	$*+)

(.	(#	$	%)	'	$*+)
). Hence,  

(C&
C'

 + e C&
C'
+ e	) < 0. 

Similarly,  

• If (β	(1	 − 	p)	Λ	 − αa) < 0, then we have  

2%
2&

 +1 < #

#$'%'&0(*	(%	(	,)	.	(/$)(*	(%	(	,)	.	(/$)

 , and  

(2%
2&

 +1) (1−d) < 1, where d = 
2%2&,(.	(#	$	%)	'	$*+)

(.	(#	$	%)	'	$*+)
. Hence,  
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(C&
C'

 + d C&
C'
− d	) < 0.  

Now, we have  

{(δ + m" + γ)	(m!+	σ	+ βa) + (β	(1	 − 	p)	Λ	 − αa)+	m!	α}−{(β	(1	 − 	p)	Λ	 − αa)+	

α(m! + 	σ	 + 	βa) +	(β 
(#	$	%)	'	$*+
(!,	-	,	.+

)	m!}	≤	0	for the second condition for the Theorem 4.7	

if	{(δ + m" + γ)	(m!+	σ	+ βa) + (β	(1	 − 	p)	Λ	 − αa)+	m!	α}	≤	{(β	(1	 − 	p)	Λ	 − αa)+	

α(m! + 	σ	 + 	βa) +	(β 
(#	$	%)	'	$*+
(!,	-	,	.+

)	m!}.	 

The proof is completed for all nonnegative parameters and “a” is the positive root of  

β(δ + m" + γ)A3 + ((σ(δ + m" + γ) + m!(α+ δ + m" + γ)– β(1 - p) Λ)) A −σ(1 – p) Λ=0.  

 

 

 

 

 

 

 

 

 

 

 

 



 

89 
 

4.7 Numerical Simulations of The Model 

The goals at this point are to confirm the analytical results of chapter 4. We utilize 

computer simulations via MATLAB ODE45 to estimate the various parameters it contains. 

Also, we conduct a stability analysis for the parameters and develop intervention strategies to 

effectively reduce the anxiety among students. This work on the simulations of the dynamic 

system is developed with the help of the function ODE45 and the parameter settings shown 

in Table 10 with the initial conditions (S, A, T, U).  

 

Table 15. Estimated parameter values of the system (4.1). 

Parameters Case 1 Case 2 Case 3 
Λ 6 6 5 
β 0.03 0.015 0.001 
σ 0.005 0.05 0.001 
α 0.08 0.08 0.08 
γ 0.1 0.1 0.04 
δ 0.01 0.01 0.02 
m! 0.01 0.01 0.1 
m# 0.01 0.01 0.03 
m$ 0.06 0.06 0.05 
m" 0.9 0.9 0.7 
R, 15.0275 7.5138 0.0565 
p 0.09 0.09 0.05 
S 40 4 4 
A 2 40 50 
T 3 5 5 
U 1 1 1 
t 50 80 50 
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Figure 12. The solution of the system (4.1) with the initial conditions for case 1 (see Table 

15).                       
 
                                      

If we consider the set of the parameters for case 1 (see Table 15), we can see that the 

system (4.1) has a unique endemic equilibrium:  

EE = (S*, A*, T*, U*)≈ (35.1742, 5.0577, 104.5768, 0.8429) 

The solutions are initially oscillating; they will eventually reach constant numbers of anxious 

and susceptible students, which is not good because our data is showing otherwise. Put 

simply, the simulation explained in chapter 4 shows something different than the simulation 

from chapter 2. Indeed, the coefficient of the quadratic equation becomes b = 0.2015 > 0,  

c = 0.0013 > 0, and ∆	= −0.085 < 0 which does not satisfy the conditions of Theorem 4.6.  

 After the initial oscillations, a portion of the students will remain anxious during the 

semester (oscillation for the case 𝑅, > 1). 
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Figure 13. The solution of the system (4.1) with the initial conditions for case 2 (see Table 

15).                       
 
                            

If we consider the set of parameters for case 2 (see Table 15), we see that the system 

(4.1) has a unique endemic equilibrium  

EE = (S*, A*, T*, U*)≈ (43.5130, 4.9751, 103.7512, 0.8292) 

Figure 13 shows that the solutions are reaching to Endemic Equilibrium without oscillations 

which is not good. Indeed, the coefficient of the quadratic equation becomes b = 0.5719 > 0,  

c = 0.0685 > 0, and ∆	=	0.0532 > 0 which does not satisfy the conditions of Theorem 4.6.  

Without any oscillations, a portion of the students will remain anxious during the semester 

(Monotonicity for the case 𝑅, > 1). 

 

 

 

 

 



 

92 
 

 

Figure 14. The solution of the system (4.1) with the initial conditions for case 3 (see Table 
15).                       

 
                                      

If we consider the set of parameters for case 3 (see Table 15), we see that the system 

(4.1) has a unique Anxiety-Free Equilibrium  

AFE = (S*, A*, T*, U*)≈ (47.0491, 0.0593, 8.4124, 0.0237) 

Figure 14 shows that the red line approaches zero. Ideally, we want to reach an 

anxious-free equilibrium, but we know that this will not happen in a real-world situation. 

However, the coefficient of the quadratic equation becomes b = 0.8940 > 0, c = 0.0801 > 0, 

and ∆	=	0.4787 > 0; we also find all eigenvalues are real and negative, which does satisfy the 

conditions of Theorem 4.5. Hence, all students will eventually become anxious free when 

𝑅, < 1. 
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CHAPTER 5 

ADVANCED MATHEMATICAL MODELLING AND ANALYSIS 

 

5.1 Overview 

In this chapter, we modify the first mathematical model (4.1) to generate limit cycles 

which can be used for both epidemiologic modeling and in-host disease modeling. The 

endemic equilibrium will be stable when there are no limit cycles. However, the 

mathematical result in chapter 4 shows that we should have limit cycles. We already 

discussed and proved the nonexistence of limit cycles of the system (4.1) in Chapter 4. 

Chapter 5 provides analytical proofs and numerical simulations of the existing periodic 

solutions. We use the theorem of Hopf bifurcation to have limit cycles for the new system. In 

addition, we analyze the new model mathematically by studying the local stability of the 

anxious-free equilibrium and endemic equilibrium. Also, we derive the basic reproduction 

number (R0) using the method of the Next Generation Matrix (NGM). Moreover, we do 

numerical simulation to verify the new model meets the conditions of Hopf bifurcation to 

understand the dynamics of math anxiety among students over time. 

 

5.2 Second Mathematical Model 

Although the first mathematical model exhibits robust dynamics including the 

existence of anxiety free and endemic steady states, it fails to capture periodic behaviors of 

math anxiety as observed in the data (see figure 4(b)). There were two semester exams in 

week 4 and 7, and the final exam was in week 9. We observed that there were two increases 
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in anxiety corresponding to two exams (see figure 4(b)). In this section, we address this issue 

and modify the first mathematical model (4.1) using the existing literature (van Gaalen & 

Wahl, 2009; Yu et al., 2016; Yu et al., 2020) on in-host disease models (HIV). 

Epidemiological models and in-host disease models (HIV) share similarities in that they 

divide a population of individuals or cells, respectively, into discrete classes and describe 

their dynamics using a system of ordinary differential equations. Therefore, we consider the 

classic SIR (Susceptible-Infectious-Recovered) model (van Gaalen & Wahl, 2009; Yu et al., 

2020) in place of the first model.  

Note that T(t) and U(t) are not present in the first two equations in the first model 

(4.1). Therefore, T(t) and U(t) will never affect the dynamics of S(t) and A(t). However, A(t) 

can affect the values of T(t) and U(t). We generalize the first model (4.1) in the same way 

that has been proposed in van Gaalen & Wahl (2009) and Yu et al. (2020). 

Ṡ	= (1 − p)Λ − AF(A, S) − m!S 

A	̇ =	AF(A, S) −(δ + m" + γ)A                                                                                 (5.1) 

Ṫ = pΛ + γA −m#T	  

U	̇ = δA − m$U 

Remark: If F (A, S) = βS + -S
1
− α then the general model (5.1) is reduced to the original 

model (4.1) in the previous section. 

 We assume that F (A, S) = S G(A), where G(A) =  β + D9()&

E'9()&
   for c > 0 and 

 p > 1. Here, we used a modified Michaelis-Menten saturation curve (i.e., G(A) =  β + D9()&

E'9()&
 

equation, which is a well-known equation in biochemistry) to model transmission of anxiety 
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from an anxious student to susceptible students (Michaelis, L., & Menten (1913); Cherayil, 

2013; van Gaalen & Wahl, 2009). This approach has also been used in other models such as 

the HIV model (van Gaalen & Wahl, 2009) and other studies (Yu et al., 2016; Yu et al., 

2020) 

Note that, F (A, 0) = 0 and ∂F/∂S > 0 does satisfy for all A.    

We let p = 2 then we have  

lim
9→,

G(A) = 	β and Ġ(A) > 0 for p > 1,  lim
9→+

G(A) = 	β + D
E
 . The system can be rewritten as: 

Ṡ	= (1 − p)Λ − AS(β + D9
E'9

	) − m!S 

A	̇ =	AS(β + D9
E'9

	)	−	(δ + m" + γ)A 

Ṫ = pΛ + γA −m#T                                                                                                  (5.2) 

U	̇ = δA − m$U  

The first two equations of model (5.2) are similar to the model proposed by Yu et al. (2016). 

Also, the flow chart of the above-mentioned model (5.2) is seen in Figure 15, and all 

parameters are positive, real values. 
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Figure 15. Flow chart describing the interaction between students in different states as math 
anxiety is transmitted for the second model. 
 
 

5.3 Analysis of The Model  

5.3.1 Existence of Equilibria  

Existence of Anxiety-Free Equilibrium 

Theorem 5.1.  A unique Anxiety-Free Equilibrium (AFE) exists at the point (S*, 0, T*, 0) if 

all parameters are nonnegative.  

Proof 5.1. We denote AFE with (S*, 0, T*, 0). To remove anxiety from the system, we set 

the right side of the ODEs (5.2) to zero, i.e., 

Ṡ	= (1 − p)Λ − AS(β + D9
E'9

	) − m!S = 0 

A	̇ =	AS(β + D9
E'9

	)	−	(δ + m" + γ)A = 0 

Ṫ = pΛ + γA −m#T = 0                                                                                                  

U	̇ = δA − m$U = 0 

and	A = 0. Thus, we have Anxiety-Free Equilibrium (AFE): 
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AFE = (S*, A*, T*, U*) = (
(#$%)'
(!

,  0,  
%'
("

,  0)                                                       (5.3) 

 

Basic Reproduction Number, R0  

Theorem 5.2. The basic reproduction number for the system of ODEs is:  

R, = 
!(#$%)'

(!(+*("*,)
	 

when R, > 1, the AFE is unstable, whereas R, < 1 implies that the AFE is locally 

asymptotically stable.  

 

Proof 5.2.  By applying the NGM to find the reproduction number, we use the following 

form:  ḟ = “entry”	− “exit” (Gurin et al., 2017). Then, we define the vector of 	X = NAUO. Now, 

we introduce F = -.
-/!"#

 which is the derivative of f and contains anxious term, in a similar 

way, we introduce V = -0
-/!"#

 which contains transfer terms. 

Constructing the NGM and anxiety-free equilibrium is  

X = NAUO= oAS(β	 +
D9
E'9

)
δA	

p − R(δ + m" + γ)A
m$U

S  

Then we have  

F = -.
-/!"#

= oSβ + (
3FDE9'FD9'

(E'9)'
) 0

δ 0
p and V = -0

-/!"#
= Rδ + m" + γ 0

0 m$
S 

Hence the NGM is: 
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FV12 =

⎣
⎢
⎢
⎢
⎡ β(1 − p)Λ
m!(δ + m" + γ)

0

δ
δ + m" + γ

0⎦
⎥
⎥
⎥
⎤
 

To get the basic reproductive number R,, we select the maximum eigenvalue of the matrix 

shown in the equation is     
!(#$%)'

(!(+*("*,)
	. The second part of the theorem is a direct 

implication of theorem 2 of the work by van den Driessche, P., & Watmough, J. (2002). 

 

Existence of Endemic Equilibrium 

Theorem 5.3. If ML −m!N > 0,	  pΛNL + γML − γm!N > 0, and δML − δmsN > 0	then 

the system (5.2) has a unique Endemic Equilibrium (EE)   

EE = (S*, A*, T*, U*) = ( B
H
, IH18$B

BH
, p7BH'JIH1J8$B

BH	8*
,  0ML−0msN

34	(#
 )                     (5.4) 

where M = (1 − p)Λ, N = (δ + m" + γ), and L = fβ + D9
E'9

g. 

 

Proof 5.3. If A ≠ 0, we set the right side of the equations (5.2) to zero to find an endemic 

equilibrium point. By adding the first two ordinary differential equations in the system (5.2) 

we have  

S*= (#$%)'$(0,($,/)1
(!

 

Substituting S* into the first ordinary differential equation in the system (5.2), we obtain the 

quadratic equation for A: 

(NL)A3 + (m!N −ML)A = 0  
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Then we have A1= 0 and A2= IH18$B
BH

 . Plugging A2 back into the set of equations, we have 

an endemic equilibrium point satisfied at: 

EE = (S*, A*, T*, U*) = ( B
H
, IH18$B

BH
, p7BH'JIH1J8$B

BH	8*
,  0ML−0msN

34	(#
 ) 

where M = (1 − p)Λ, N = (δ + m" + γ), and L = fβ + D9
E'9

g 

Now we need to show that ML −m!N > 0.  We can rewrite the inequality  

ML −m!N > 0 as: 

(1 − p)Λ fβ + D9
E'9

g − m!(δ + m" + γ) > 0.  Applying the distribution property then we 

have, 

(1 − p)Λ	β +(215)7D9
E'9

 > m!(δ + m" + γ). Dividing by “(215)7D9
E'9

> 0” both side of the 

inequality then we have, ?	
D9

 + 1 >  P
(215)7D9

, where D = m!(δ + m" + γ)(	c + A), 

(1 − p)ΛkA ≠ 0, and 0 < p <1. Then  

?	
D9

 + 1 >  2

2'	(&)()./!)00

  and  

( ?	
D9
+ 1)(1 +	 (215)7D91P

P
) > 1. Hence ( ?	

D9
 + (215)7D91P

P
 + (215)7D91P

P
 ?	
D9

 ) > 0.  

By using ML −m!N > 0, it is clearly to see pΛNL + γML − γm!N > 0 and  

δML − δmsN > 0, where M = (1 − p)Λ, N = (δ + m" + γ), and L = fβ + D9
E'9

g. 

The proof is completed for nonnegative parameters. 
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5.3.2 Stability of The Equilibria  

Stability of Anxiety-Free Equilibrium 

Note that the anxious-free equilibrium (AFE) of the new model (5.2) is the same as 

the anxious free equilibrium of the original model (4.1). In the following we see that the 

same condition as theorem 4.5 is required for stability of the AFE of system (5.2) 

 

Theorem 5.4. The Anxiety-Free Equilibrium (AFE) of system (5.2) is locally asymptoticly 

stable with monotonically converging solutions, if 	β (215)7
8$

 < (δ + m" + γ). 

 

Proof 5.4. The proof is similar with theorem 4.5 and therefore is omitted here. 

 

Stability of Endemic Equilibrium 

Theorem 5.5. If the Endemic Equilibrium (EE) of system (5.2) exists, then its stability is as 

follows: 

If ∆= b3	 − 4	c < 	0	 If ∆= b3	 − 4	c > 	0	 If ∆= b3	 − 4	c = 	0	 
• b < 0 Unstable 

oscillatory • b > 0, c > 0 Stable   
• b < 0 

Degenerate unstable 
• b > 0 Stable 

oscillatory 
• b < 0, c > 0 

Unstable   
•  b > 0 

Degenerate unstable 
• b = 0 

inconclusive • c < 0 Unstable     
 

where b= 4&536,4&5&$453(!$3&46
3&46,435$3&(!

, 

c = 31(!
&$73146(!$4&56,74&3&56$7453&(!$3&46

546,45$3(!
, 
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and M = (1 − p)Λ, N = (δ + m" + γ), and L = fβ + D9
E'9

g. 

 

Proof 5.5. To determine the stability of the system at EE, we first calculate the Jacobian 

matrix to determine the stability of the endemic equilibrium. The Jacobian matrix is 

evaluated at the endemic equilibrium to get the eigenvalues of the linearized system, which is 

given by: 

J;; = 

⎣
⎢
⎢
⎢
⎢
⎡ −

HI
B

− 3B'HE'BHI1B'8$
BHE'HI1B8$

0 0
HI18$B

B
BHE

BHE'HI1B8$
0 0

0 γ −m# 0
0 δ 0 −m$⎦

⎥
⎥
⎥
⎥
⎤

                                               (5.5) 

From (5.5), we see that the eigenvalues are λ2 = −m#, λ3 = −m$, and the other eigenvalues 

(λ<, λ() are the roots of the quadratic equation: 

λ3+ (
4&536,4&5&$453(!$3&46

3&46,435$3&(!
) λ	 

    + (
31(!

&$73146(!$4&56,74&3&56$7453&(!$3&46
546,45$3(!

) = 0.  

where M = (1 − p)Λ, N = (δ + m" + γ), and L = fβ + D9
E'9

g 

Hence, the stability of the Endemic Equilibrium depends on the roots of this quadratic 

equation using the linear stability theorem. It is straightforward to verify the conditions stated 

in the above table using the quadratic formula.  This completes the proof.   
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Hopf Bifurcation and Limit Cycles  

Hopf bifurcation occurs around an equilibrium when the Jacobian matrix has a pair of  

eigenvalues and no other eigenvalues with zero real parts. In this case, we prove the presence 

of limit cycles around the endemic equilibrium point to claim the existence of Hopf 

bifurcation. Hopf Bifurcation theorem can be considered a tool to prove the existence of limit 

cycles. We will apply Hopf bifurcation theorem as seen in Theorem 5.6.  

 

Theorem 5.6 (Hopf, Perko (2013) p. 353): Suppose that the C4-system ẋ = Af(x) with x∈

RQ and µ ∈ R has a critical point x, for µ = µ, and that Df (x,, µ,) has a simple pair of pure 

imaginary eigenvalues and no other eigenvalues with zero real part. Then there is a smooth 

curve of equilibrium points x (µ) with x (µ,) = x, and the eigenvalues, λ(µ) and 	λw (µ) of Df 

(x (µ), µ), which are pure imaginary at µ = µ,, vary smoothly with µ. Furthermore, if  

𝑑
𝑑µ [Re	λ

(µ)]ARA% ≠ 0 

then there is a unique two-dimensional center manifold passing through the point (x,, µ,) and 

a smooth transformation of coordinates such that the system ẋ = Af(x) on the center 

manifold is transformed into the normal form  

ẋ = −y + ax(x3 + y3) − by(x3 + y3) + O(|x(|) 

ẏ = x + bx(x3 + y3) + ay(x3 + y3) + O(|x(|) 

in a neighborhood of the origin which, for a ≠ 0, has a weak focus of multiplicity one at the 

origin and  
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ẋ = µx − y + ax(x3 + y3) − by(x3 + y3) 

ẏ = x + µy + bx(x3 + y3) + ay(x3 + y3) 

is a universal unfolding of this normal form in a neighborhood of the origin on the center 

manifold. 

 

Proof 5.6. The proof can be found in the book (Guckenheimer, J., & Holmes, P., 2013). 
 

 

Using the Hopf bifurcation theorem to have a limit cycle, we must have a pair of complex 

eigenvalues λ = a ± bi so that “a” changes signs from a negative to a small positive number. 

Note that, a = (− #
7
) 
4&536,4&5&$453(!$3&46

3&46,435$3&(!
 . Hence, we have the following theorem.  

 

Theorem 5.7. System (5.2) exhibits a Hopf bifurcation at the endemic equilibrium, if  

1. L3MNc + L3M3 − LMNm! − N3Lc = 0,  

2. 3
1(!

&$73146(!$4&56,74&3&56$7453&(!$3&46
546,45$3(!

 > 0 

where M = (1 − p)Λ, N = (δ + m" + γ), and L = fβ + D9
E'9

g  

 

Proof 5.7. Here, we show that the model of system (5.2) has a pair of pure imaginary 

eigenvalues to have a limit cycle. We already showed that the endemic equilibrium is given 

by:  
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EE = (S*, A*, T*, U*) = ( B
H
, IH18$B

BH
, p7BH'JIH1J8$B

BH	8*
,  0ML−0msN

34	(#
 )  

where M = (1 − p)Λ, N = (δ + m" + γ), and L = fβ + D9
E'9

g. 

We also calculated the Jacobian matrix evaluated at EE:  

J;; = 

⎣
⎢
⎢
⎢
⎢
⎡ −

HI
B

− 3B'HE'BHI1B'8$
BHE'HI1B8$

0 0
HI18$B

B
BHE

BHE'HI1B8$
0 0

0 γ −m# 0
0 δ 0 −m$⎦

⎥
⎥
⎥
⎥
⎤

    

From Jacobian matrix at EE, we see that the eigenvalues are λ2 = −m#, λ3 = −m$, and the 

other eigenvalues (λ<, λ() are the roots of the quadratic equation: 

λ3+ (
4&536,4&5&$453(!$3&46

3&46,435$3&(!
) λ	 

    + (
31(!

&$73146(!$4&56,74&3&56$7453&(!$3&46
546,45$3(!

) = 0 

where M = (1 − p)Λ, N = (δ + m" + γ), and L = fβ + D9
E'9

g. 

Clearly, two of the eigenvalues will be pure imaginary numbers, if conditions (1) and (2) are 

satisfied. Through extensive calculations, it can be algebraically shown that these two 

conditions are satisfied for a range of parameter values. This completes the proof. 

 

Remark: Although theorem 5.7 provides conditions for existence of a limit cycle, it should 

be noted that the limit cycle does not exist in all situations. The following theorem provides 

one of those situations.  
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Theorem 5.8. A sufficient condition for non-existence of limit cycle if m! = m", δ = 0, and 

γ = 0 then the system (5.2) cannot have a stable limit cycle. 

 

Proof 5.8. Suppose that the system (5.2) has a limit cycle S (t) = S (t +T), where T > 0 is the 

period the limit cycle from the first two equations of the system (5.2) we have that  

Ṡ	= (1 − p)Λ − AS(β + D9
E'9

	) − m!S 

A	̇ =	AS(β + D9
E'9

	)	−	(δ + m" + γ)A  

where m! = m". Let X = S + A and we have Ẋ = Ṡ + Ȧ	 then by adding these two equations 

we get that 

Ẋ =	(1 − p)Λ−2	m"S                                                                                               (5.6) 

Note that the system (5.6) has a globally stable equilibrium  

 X* = 
(#	$	%)'
7	($	

 

Therefore, for all X (0) we have lim
#→+

X(t) = X* or equivalently lim
#→+

S(t) = S* and 

lim
#→+

A(t) = A*, where X* = S* + A* 

This is a contradiction to existence of a stable limit cycle. 
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5.4 Numerical Simulations of Second Model 

In this section, we present the limit cycles of the system (5.2) using simulation of the 

Hopf bifurcation. We utilized computer simulations via MATLAB ODE45. There are three 

sets of parameter values with specific initial conditions (S, A, T, U) as shown in Table 16. 

  

Table 16. Estimated parameter values of the system (5.2). 

 

Parameters Case 1 Case 2 Case 3 Case 4 Case 5 
(1-p) Λ 1 1 1 1 1 

β 0.057 0.060 0.060 0.057 0.08 
(δ + m" + γ) 1 1 1 1 1 

k 0.01846287 0.364 0.364 0.1 0.42 
c 0.11969000 0.352 0.352 1.55 0.52 
m! 0.057 0.057 0.057 0.057 0.057 
m# 0.2 0.2 0.2 0.2 0.2 
m$ 0.3 0.3 0.3 0.3 0.3 
S 15 20 10 15 15 
A 0.25 0.8 0.25 0.25 0.25 
T 0 0 0 0 0 
U 0 0 0 0 0 
t 200 200 50 200 200 
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Figure 16. The solution of the system (5.2) with the initial conditions for case 1 (see Table 
16). In the Figure 16, we see the existence of a limit cycle and the dimensions of anxious and 
susceptible population. We also see that the math anxiety becomes endemic in the student’s 
population. Note that the treated and untreated population are functions of this limit cycle. 
Students will periodically become anxious due to midterm exams (existence of periodic 
solutions). 
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Figure 17. The solution of the system (5.2) with the initial conditions for case 2 (see Table 
16). In the Figure 17, we observe a homoclinic orbit connecting a steady state to itself.  The 
equilibrium has about 17 susceptible individuals. Inside the homoclinic orbit there exists a 
stable spiral. There are spikes of anxiety outbreaks possibly due to a difficult topic presented 
in a lecture (existence of a homoclinic orbit). 
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Figure 18. The solution of the system (5.2) with the initial conditions for case 3 (see Table 
16). If we consider the set of parameters for case 3, we can have a better understanding of the 
stable spiral steady state by only changing the initial condition. The students will periodically 
get anxious, but eventually the anxiety reduces over time (existence of a decaying 
oscillation). 
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Figure 19. The solution of the system (5.2) with the initial conditions for case 4 (see Table 
16). In the Figure 19, we may get a case that the limit cycle as its stability and the system will 
converge to stable equilibrium by changing the parameter values. Eventually all students will 
become anxious free (convergence to the stable AFE). 
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Figure 20. The solution of the system (5.2) with the initial conditions for case 5 (see Table 
16). Similarly, the change of parameter values can lead to other forms of steady states as 
presented in figure 20. The students will periodically get anxious, but eventually the anxiety 
reduces over time (existence of a decaying oscillation). 
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5.5 Center Manifold Theory 

A center manifold theory is crucial to mathematical modeling which is proposed to 

determine the stability of degenerate equilibria (Hamzi, 2005). The center manifold 

dynamical system is based on the system's equilibrium point. The nearby orbits that neither 

decay nor increase exponentially quickly form a central manifold of the equilibrium.  

When investigating the equilibrium points of dynamical systems mathematically, the 

first step is to linearize the system and then compute its eigenvalues and eigenvectors. 

Linearization is a typical technique to nonlinear issues, although it might be difficult to 

examine characteristics like irreversibility, which are closely linked to nonlinearity. If one or 

more of the objective functions or constraints in a mathematical model are represented by a 

nonlinear equation, the model is called a nonlinear model.  

The stable eigenspace is built on the eigenvectors, if they exist, corresponding to 

eigenvalues with negative real parts. The unstable eigenspace is corresponding to eigenvalues 

with positive real part. If the equilibrium has eigenvalues with a real fraction of zero, the 

eigenvectors form the center eigenspace. The center manifold theory is used for non-

hyperbolic dynamical system if one possibility eigenvalue becomes zero. Because linear 

stability analysis will not work, it will become a problem. 

Therefore, the center manifold theorem is utilized to mathematically model the 

qualitative behavior of a non-linear system near its hyperbolic equilibrium points by 

linearizing the system at that equilibrium point (Perko, 2013). 
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A general approach to reorganize and analyze the manifolds at a non-hyperbolic 

equilibrium is by assuming that there is a dynamical system with an equilibrium point (𝑥,). 

Let ẋ = f(x) and assume that f ∈ CS(E), E ⊂ RQ, f(x,) = 0, A = Df(x,) = diag[C, P, Q] 

where A is a Jacobian matrix at x, and  

• ∁→ Re(λ) = 0 

• P → Re(λ) < 0 

• Q → Re(λ) > 0 

Thus, the non-linear system ẋ = f(x) is rewritten as  

• ẋ = Cx + F(x, y, z) 

• ẏ = Py + G(x, y, z) 

• ż = Qz + H(x, y, z) where (x, y, z) ∈ REx	R!x	R$ ≅ RQ, F(x,) = 0, 

G(x,) = 0, H(x,) = 0, D(F(x,)) = 0, D(G(x,)) = 0, D(H(x,)) = 0. 

If we assume that z=0, Q=0, and u=0, we also assume that (F, G) ∈ CS(E), 

let C = {(x, y) ∈ REx	R!, y = h(x)	for	|x| < δ}	where	δ	 > 0	and	hϵCS(NT(x,)), h(x,) =

0, D(h(x,)) = 0 is always true (Perko, 2013). 

 

Theorem 5.9. (The Local Center Manifold, Perko (2013) p. 155): Let  f ∈ CS(E), where E 

is an open subset of RQ containing the origin and r ≥ 1. Suppose that f (0) = 0 and D(f(0)) = 

0 has c eigenvalues with negative real parts, where c + s = n. The system ẋ = f(x) then can be 

written in diagonal form is: 
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• ẋ = Cx + F(x, y) 

• ẏ = Py + G(x, y) 

where (x, y) ∈ REx	R!, C is a square matrix with c eigenvalues having zero real parts, P is a 

square matrix with s eigenvalues with negative real parts, and  

F(0) = 0, G(0) = 0, D�F(0)� = 0, D�G(0)� = 0; furthermore, there exists a δ	 > 0	and a 

function h(E) ∈ CS(NT(0)), that defines the local center manifold and satisfies  

 Dh(x)�Cx + F�x, h(x)�� − Ph(x) − G�x, h(x)� = 0 for |x| < δ; and the flow on the center 

manifold W (0) is defined by the system of differential equations is ẋ = Cx + F(x, h(x)) for 

all x∈ RE  with |x| < δ.  

 

Corollary 5.10. Under the assumptions of theorem 5.9 and theorem 5.7, the system (5.2) can 

be rewritten as  

ẋ = Cx + F(x, y) 

ẏ = Py + G(x, y) 

 

Proof 5.10. 

Let x = [S A] T,  

let y = [T U] T,  

let   C = +
− 45

3
− 73&46,345$3&(!

346,45$3(!
45$(!3

3
346

346,45$3(!

,, and  
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let P = R−m# 0
0 −m$

S then it can be easily shown that  

F = �
(1	 − 	p)Λ − AS fβ	 + D9

E'9
	g − m!S +

HI
B
S + 3B'HE'BHI1B'8$

BHE'HI1B8$
A

AS fβ	 + D9
E'9

	g −	(δ + m" + γ)A −
HI18$B

B
S − BHE

BHE'HI1B8$
A
� 

and  

G = NpΛ + γA	δA	 O 

The completes the proof. 

 

5.6 Normal Form Theory 

A normal form theory is a method for analytic translating nonlinear dynamical 

systems' ordinary differential equations into standard forms. The inessential part of higher-

order nonlinearities can be removed using a coordinate transformation by preserving the 

essential features of the system.  

The main goal is to create a way for using center manifold theory that is as simple as 

possible. In the previous sub-section, we discussed center manifold theory, which has many 

difficulties and is difficult to implement into a mathematical system. The normal form theory 

for autonomous differential equations near an equilibrium point was established by Henry 

Poincare and he used it in his thesis from 1879 (Siegmund, 2003).  

Poincare developed a technique known as near identity transformation, in which he 

applied a concept known as normal quadratic forms. This technique is useful to study 

systems that are undergoing non-hyperbolic equilibrium solutions, in order to determine 

stability analysis of the system (Siegmund, 2003). 



 

116 
 

To obtain the necessary and sufficient conditions for the occurrence of a normal form 

theory around the equilibrium point, we need to do the following steps: 

1. We consider the general non-linear system (5.2) in the form of  

 ẋ = f (x*), f(x*) =0 (x* is equilibrium solution).   

2. We rewrite the system as a linearized part; it can be brought into Jordan normal form 

by applying an analytical coordinate transformation, 

Note that, 

• If Re(λi) ≠ 0, for 1 < 𝑖 < 𝑛, the stability is determined using the Hartman-Grobman 

theorem. 

• If Re(λi) = 0, for 1 < 𝑖 < 𝑛, the stability can be determined using the center 

manifold theorem. 

The center manifold theorem in the section 5.5 showed us to determine the qualitative 

behavior of   

ẋ = Jx + F(x)                                                                                                            (5.7) 

the nonlinear system on the center manifold. Since the dimension of the center manifold 

is typically less than n, this simplifies the problem of determining the qualitative behavior 

of the system (5.2) near a nonhyperbolic critical point. However, analyzing this system 

still may be a difficult task. The normal form theory allows us to simplify the nonlinear 

part, F(x), of (5.7) to make this task as easy as possible. This is accomplished by making 

a nonlinear, analytic transformation of coordinates of the form 

x = y + h(y), where h(y) = O (|y2|) as |y|→0 (Perko, 2013 pp. 164) and 
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where h (y) = �a3,y2
3 + a22y2y3 + a,3y33

b3,y23 + b22y2y3 + b,3y33
� (Perko, 2013 pp. 165). 

Although normal form theory provides guidance to transform the system and determine 

the stability of the non-hyperbolic equilibrium solution, our efforts to determine and specify 

the transformation has been unfruitful. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

 6.1 Conclusion 

In this study, we have utilized statistical and mathematical tools essential to analyzing 

math anxiety and factors associated with it. We did a good prediction by using statical 

analyses such as an ANOVA test and time series analysis. By using statical analysis, we 

observed the level of math anxiety in students during nine weeks, and we were able to 

observe gender and academic-level differences. Also, we had a chance to observe COVID-19 

effects on the level of math anxiety in students. The time series analysis discussed in Chapter 

2 helps us understand math anxiety, upcoming exam anxiety, upcoming grade anxiety, and 

the usage of math resources (e.g., supplemental instructions, tutoring, office hours, and other 

resources). 

Furthermore, we applied one of the machine learning approaches, a classification and 

regression tree model, to predict math anxiety and to provide a more detailed analysis of data 

associated with math anxiety and variables (i.e., confidence, motivation, exam anxiety, hours 

studied, genders, and academic levels). We identified the interrelationships between math 

anxiety and factors including students’ motivation, confidence, weekly hours studied, 

academic level, and gender. In addition, we performed a Pearson’s correlation analysis of the 

survey data. For example, confidence was negatively correlated with math anxiety, as seen in 

Chapter 3.  
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Significantly, the development of math anxiety in students also carries over to the 

next generations, as those students’ become teachers and parents with math anxiety. This 

creates a vicious and compounding cycle. This study also focused on peer-to-peer contagion 

rather than from teachers, parents, and other environmental factors, utilizing epidemiological 

analysis to demonstrate the vast contagion and need to broaden the scope of interventions for 

math anxiety. We have developed mathematical models to understand the possible dynamics 

of the math anxiety. We tested our model and were able to conclude that it is a good 

representation of how math anxiety is transferred among students. We have given a detailed 

dynamical study for epidemiologic modeling in Chapter 4 and for in-host disease modeling 

in Chapter 5. Chapter 5 provided Hopf bifurcation theorem to study the oscillatory behaviors 

of the system (5.2). In both models, we rigorously proved and numerically simulated the 

numerous dynamics. The main attention of this dissertation was given to analysis of the 

systems ((4.1) and (5.2), including stability analysis, Hopf bifurcations, and limit cycles 

(5.2). Using result of the stability analysis we can develop intervention strategies to 

effectively reduce the anxiety of students. One of the important steps after this would be to 

identify risk factors associated with anxiety spikes. Also, we can identify where to intervene 

throughout the semester to reduce Drop/Fail/Withdraw (DFW) rates. 

We believe that these findings offer considerable insight into strengthening academic 

achievement in higher education. It is our profound hope that the results of this study will 

serve as a foundation to build upon, as other researchers continue to develop the field. In 

addition, the present work shows that researchers in the field of education can use machine 

learning methods to provide a deeper analysis of data associated with math anxiety and 
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attitudes toward math education. However, a limitation of the present study is that 

environmental factors (such as parents, teachers, ethics, etc.) may enhance the association 

between math anxiety and the factors which we used in this study. A second limitation is that 

we used a self-reported, small data set. Moving forward, the results of this study should be 

validated using a larger sample of students across more math gateway courses. 

 

6.2 Future Work 

From this point onward, there are various important and relevant next steps to 

consider. First, we would like to apply the perturbation theory in the system (5.2) to study the 

effects of small variations to the new model, which is an approach to prove the existence of 

multiple limit cycles. Further, we would like to extend the bifurcation analysis for the system 

(5.2) to Bogdanov–Takens bifurcation, which occurs when an equilibrium point in ordinary 

differential equations has a zero eigenvalue of multiplicity two. The Bogdanov-Takens 

bifurcation provides a new mechanism for generating anxiety recurrence among the students. 

The real-world implications of the new systems are interesting and may provide explanations 

for several observed phenomena. In other words, students may feel nervous a second time, 

but less or more than the first time, or they may feel anxious without any significant 

observation. 
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 APPENDIX A 

QUESTION 1: 

Please rank the level of math anxiety you are feeling today: 1-7 (1 = the lowest level 

of anxiety, 7= the highest level of anxiety) 

a) Upcoming assignment 

b) Upcoming midterm or final exam 

c) Upcoming Zoom meeting 

d) Your anticipated grade in this course 

e) Other reasons (specify) 

f) I am not feeling anxious about math today (enter Yes if this is the case. Otherwise, 

leave blank) 

Copy this and paste it in the following box to enter your answers: 

(b) (c) (d) (e) (f)     

QUESTION 2: 

What type of help did you seek for your math anxiety this week? (Enter 1 for all that 

apply and 0 for those that don't) 

(a) Supplemental Instruction 

(b) UMKC Tutoring 

(c) Office hours 

(d) Online Tutoring (Net Tutor) 

(e) Classmates 

(f) Private Tutor 
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(g) UMKC Counseling Center (https://info.umkc.edu/counseling-services/) 

(h) Other (specify) 

(i) I did not seek any help 

(j) I did not have any math anxiety this week 

 Copy this and paste it in the following box to enter your answers:  

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)   

QUESTION 3: 

Aside from Zoom meetings and My Math Lab videos, how many hours have you 

approximately spent studying for this class this week?  

QUESTION 4: 

How would you rate your desire to study this week? (1-7) 1 = no desire to study, 7 = 

very motivated to study). 

QUESTION 5: 

How confident are you today that you will pass this class with a B or better? (1 = not 

confident at all, 7 = very confident). 

QUESTION 6: 

Are you or any of your family members currently affected by Covid-19 in a way that 

is influencing your ability to succeed in this class or increasing your math anxiety? Enter 

Yes/No, Also, include any comments if you would like to. 
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B.1 Supplementary Figures of Chapter 2 and Chapter 3 

(a) 

(b) 
 
Figures B1. Prevalence of the STEM students seek help from supplemental instruction (a) 
and UMKC tutoring (b). Students sought help mostly on week 4 (a) and one week before (b). 
J/S STEM students less interested than other groups (b). And F/Sp more sought help from 
Supplemental instruction (a) and UMKC tutoring (b). 
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(a) 

 
(b) 

Figure B2. Prevalence of the STEM students seek help from office hours (a), and percentage 
of the STEM students with high levels of math anxiety for upcoming assignment (b). All 
group interested to seek help from office hours around exam weeks (a), and male students 
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were more anxious for their upcoming assignment on the first week of the semester and F/Sp 
followed the male groups. 

 
(a) 

 
(b) 
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Figure B3. Prevalence of the STEM students seek help from classmates (a), and students 
average study hours (b) for calculus during the semester. All group preferred to study with 
their peers except J/S (a). J/S students studied on their calculus more than other groups. 
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Figure B4. The output tree diagram of the CRT model fitted to survey data of the first week. 
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Figure B5. The output tree diagram of the CRT model fitted to survey data of the second  
week.    
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Figure B6.  The output tree diagram of the CRT model fitted to survey data of the third 
week. 
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Figure B7.  The output tree diagram of the CRT model fitted to survey data of the fourth 
week. 
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Figure B8.  The output tree diagram of the CRT model fitted to survey data of the fifth week. 
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Figure B9.  The output tree diagram of the CRT model fitted to survey data of the sixth  
week. 
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Figure B10. The output tree diagram of the CRT model fitted to survey data of the seventh 
week. 
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Figure B11. The output tree diagram of the CRT model fitted to survey data of the eighth  
week. 
 
 



 

136 
 

 
Figure B12. The output tree diagram of the CRT model fitted to survey data of the ninth  
week. 
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Figure B13(a). The output tree diagram of the CRT model fitted to survey data of the one to 
ninth week. 
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Figure B13(b). The output tree diagram of the CRT model fitted to survey data of the one to 
ninth week. 
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B.2 Supplementary Tables of Chapter 2  

The following Table is the supporting result for the ANOVA testing. 

Table B1. Means and standard deviations for survey items and performance variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Means Standard Deviations
Female 56.72 15.29 for Table 2
Male 35.31 17.2 for Table 2
Freshman/Sophomore 25.9 2.78 for Table 3
Junior/Senior 16.04 8.52 for Table 3

Female 4.94 1.75 for Table 5
Male 4.4 1.59 for Table 5
Freshman/Sophomore 4.62 1.67 for Table 4
Junior/Senior 5.06 1.67 for Table 4
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B.3 Supplementary MATLAB Codes for Numerical Simulation of Chapter 4 

clear;   

clc 

 if caseN==1 

lambda=6; 

rho=.09; 

ms=.01; 

alpha=.08; 

beta=.03; 

sigma=.005; 

delta=.01; 

mu=.06; 

ma=.9; 

gamma=.1; 

mt=.01; 

 elseif caseN==2 

lambda=6; 

rho=0.701234; 

ms=.01; 

alpha=.000001; 

beta=.02; 

sigma=.000001; 
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delta=.01; 

mu=.06; 

ma=.9; 

gamma=0.601; 

mt=.01; 

 end 

CT2=beta*(1-rho) *lambda/ms -(alpha+delta+ma+gamma)  

if CT2<0  

    display ('condition of theorem 2 is satisfied') 

    CT2 

    sigma 

else 

    display ('condition of theorem 2 is NOT satisfied') 

    CT2 

    sigma 

end 

A= roots([beta*(delta+ma+gamma) sigma*(delta+ma+gamma) 

+ms*(alpha+delta+ma+gamma)-beta*(1-rho) *lambda -sigma*(1-rho) *lambda]) 

a=sort(A) 

a=a (2) 

b=ms+sigma+beta*a+gamma+delta+ma+alpha-beta*((1-rho) *lambda-

alpha*a)/(ms+sigma+beta*a) 
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c=(ms+sigma+beta*a) *((alpha+delta+ma+gamma) -(beta*((1-rho) *lambda-

alpha*a))/(ms+sigma+beta*a)) -(beta*a+sigma) *((alpha)-(beta*((1-rho) *lambda-

alpha*a))/(ms+sigma+beta*a)) 

DDelta=b^2-4*c 

syms y1 y2 y3 y4 lambda2; 

dy1=(1-rho) *lambda+alpha*y2-sigma*y1-beta*y1*y2-ms*y1; 

dy2=sigma*y1+beta*y1*y2-(alpha+delta+gamma+ma) *y2; 

dy3=gamma*y2+rho*lambda-mt*y3; 

dy4=delta*y2-mu*y4; 

eq = solve (dy1, dy2,dy3,dy4,y1,y2,y3,y4); 

equil1 = double (subs ([eq. y1(1), eq.y2(1), eq.y3(1) , eq.y4(1)])) 

equil2 = double (subs ([eq. y1(2), eq.y2(2), eq.y3(2), eq.y4(2)])) 

 if (equil1(1)<0) ||(equil1(2)<0) ||(equil1(3)<0)|| (equil1(4)<0) 

     equil1=equil2; 

     equil1 

 end 

 J=jacobian([dy1; dy2; dy3; dy4], [y1 y2 y3 y4]); % this will generate the Jacobian Matrix 

 Jeval1= subs (J, {y1, y2, y3, y4},{equil1(1), equil1(2),equil1(3),equil1(4)}); 

 JE=double (Jeval1) 

 charEQ1=det (Jeval1-lambda2*eye (4))  

eigen1=solve (charEQ1, lambda2) 

eigenvalues=double(eigen1) 
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p= [lambda rho ms alpha beta sigma delta mu ma gamma mt]; 

options=odeset ('RelTol',1e-4,'AbsTol’, [1e-4 1e-5 1e-6 2e-6]); 

[T, Y] =ode45(@mamodel, [0 50],[100 50 2 4],options, p); 

plot(T, Y(:,1),'-.b',T,Y(:,2),'--r',T,Y(:,3),'-g',T,Y(:,4),'.y','linewidth',2.5); 

xlabel('time, t','FontWeight','bold') 

ylabel('number of students','FontWeight','bold') 

grid on 

legend1=legend ('Susceptible', 'Anxious','Treated', 'Untreated'); 

figure 

plot(T,100*Y(:,2)./(Y(:,1)+Y(:,2)+Y(:,3)+Y(:,4)),'-

.b',T,100*Y(:,4)./(Y(:,1)+Y(:,2)+Y(:,3)+Y(:,4)),'--r','linewidth',2.5) 

xlabel('time, t','FontWeight','bold') 

ylabel('proportion of students (%)','FontWeight','bold') 

grid on 

legend2=legend ('Percent Anxious', 'Percent Untreated'); 
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B.4 Supplementary MATLAB Codes for Numerical Simulation of Chapter 5 

clear;   

clc 

 if caseN==1   

A=0.01846287; 

B=0.057; 

C=0.11969000; 

D=0.057; 

rho=0.5; 

L=0.1; 

gamma=0.1; 

mt=0.2; 

mu=0.3; 

delta=0.05; 

IC= [10 2 0 0]; 

TS= [0 200]; 

 elseif caseN==2   

A=0.364; 

B=0.060; 

C=0.352; 

D=0.057; 

rho=0.5; 
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L=0.1; 

gamma=0.1; 

mt=0.2; 

mu=0.3; 

delta=0.05; 

IC= [20 0.8 0 0]; 

TS= [0 200]; 

 elseif caseN==3  

A=0.364; 

B=0.060; 

C=0.352; 

D=0.057; 

rho=0.5; 

L=0.1; 

gamma=0.1; 

mt=0.2; 

mu=0.3; 

delta=0.05; 

IC= [10 0.25 0 0]; 

TS= [0 50]; 

elseif caseN==4 

A=0.1; 
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B=0.057; 

C=1.55; 

D=0.057; 

rho=0.5; 

L=0.1; 

gamma=0.1; 

mt=0.2; 

mu=0.3; 

delta=0.05; 

IC= [15 0.25 0 0]; 

TS= [0 200]; 

elseif caseN==4 

A=0.42; 

B=0.08; 

C=0.52; 

D=0.057; 

rho=0.5; 

L=0.1; 

gamma=0.1; 

mt=0.2; 

mu=0.3; 

delta=0.05; 
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IC= [15 0.25 0 0]; 

TS= [0 200]; 

end 

p= [A B C D rho L gamma mt mu delta]; 

options=odeset ('RelTol',1e-4,'AbsTol’, [1e-6 2e-6 1e-6 2e-6]); 

[T, Y] =ode45(@YuExtendedModel, TS, IC, options, p); 

plot (T, Y(:,1),'-.b',T,60*Y(:,2),'--r', T,Y(:,3),'.g',T,60*Y(:,4),'-y','linewidth',2.5); 

xlabel ('time, t','FontWeight','bold') 

ylabel ('number of students','FontWeight','bold') 

grid on 

legend1=legend ('Susceptible', 'Anxious', 'Treated', 'Untreated'); 

figure  

plot(Y(:,1),Y(:,2),'--r','linewidth',2.5); 

grid on 

xlabel('Susceptible','FontWeight','bold') 

ylabel('Anxious','FontWeight','bold') 
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