
A CUBIC SPLINE PROJECTION METHOD FOR COMPUTING

STATIONARY DENSITY FUNCTIONS OF FROBENIUS

-PERRON OPERATOR

A DISSERTATION IN
Mathematics

and
Physics

Presented to the Faculty of the University
of Missouri-Kansas City in partial fulfillment of

the requirements for the degree

DOCTOR OF PHILOSOPHY

by
Azzah Ahmed Alshekhi

B.S., King Abdul-Aziz University, 2012
M.S., University of Missouri-Kansas City, 2017

Kansas City, Missouri
2022



© 2022

Azzah Alshekhi

ALL RIGHTS RESERVED



A CUBIC SPLINE PROJECTION METHOD FOR COMPUTING

STATIONARY DENSITY FUNCTIONS OF FROBENIUS

-PERRON OPERATOR

Azzah Alshekhi, Candidate for the Doctor of Philosophy Degree

University of Missouri-Kansas City, 2022

ABSTRACT

Stationary density functions of Frobenius-Perron operators have critical applica-

tions in many fields of science and engineering. Accordingly, approximating stationary

density functions f ∗ is important and the focus of this dissertation.

Among the computational methods of approximating the smooth f ∗ , the linear

spline and quadratic spline projection methods have been proven effective. However,

we intend to improve the convergence rate of the previous methods. We will fulfill this

goal by using cubic spline functions since cubic spline functions are twice continuously

differentiable on the whole domain.

Theoretically, we prove the existence of a nonzero sequence of cubic spline func-

tions {fn} that converges to the stationary density function f ∗ of the Frobenius-

Perron operator in L1 -norm. The numerical experimental results assure that the

cubic spline projection method gives the fastest convergence rate so far. In addition,

when the stationary density function f ∗ lies in the cubic spline space, the cubic spline

projection method computes f ∗ exactly no matter what n may be.
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CHAPTER 1

INTRODUCTION

The initiative behind this dissertation is to approximate a stationary density

function of Frobenius-Perron operator, which can be seen in the following example.

Let S : [0, 1]→ [0, 1] be a transformation that is given by

S(x) =


2x

1−x 0 ≤ x < 1
3

1−x
2x

1
3
≤ x < 1

Figure 1: Transformation S(x)

whose its graph is shown in Figure 1.

Let x0 ∈ [0, 1] be an initial point, and {Sk(x0)}∞k=0 be the orbit of S corresponding

to the initial point x0 , where Sk(x0) = (S ◦ S ◦ . . . ◦ S)(x0), k−times. To study

the behavior of the orbit, we use MATLAB to graph the initial part of the orbit

{Sk(x0)}99
k=0 for the initial point x0 = π

4
, where S0

(
π
4

)
= 0.785, S

(
π
4

)
= 0.137,

S2
(
π
4

)
= S

(
S
(
π
4

))
= 0.316, and so on. As Lasota and Mackey, in their book [44],

“A Cubic Spline Projection Method for Computing Stationary Densities of Dy-
namical Systems” paper, [1], is a summarized version of this dissertation. The paper
was published by the International Journal of Bifurcation and Chaos in 2022.
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(a) n = 100 (b) n = 100

Figure 2: The initial part of orbit
{
Sk
(
π
4

)}99

k=0

mentioned and as shown in Figure 2, we can see that the behavior of the orbit is

chaotic (the right-hand picture is obtained from the left-hand picture after connecting

the points together). So, studying the points in the orbit {S(x0)}∞k=0 does not tell

us any meaningful information. However, when we plot more points of the orbit, as

Figure 3, we begin to see a pattern in a distribution sense. We observe that more

points of the orbit are near 0, and the number of points decrease as we move to 1.

To analyze this situation better, we give the following example.

EXAMPLE 1.1. We divide the domain [0, 1] into ten subintervals of equal length,

and we experiment the probability of belonging to each subinterval using n = 106 . We

compute the probability distributions for four different initial values, x0 = π
4
, π

8
, π

16
,

and π
32

, using the following formula

1

106

106−1∑
k=0

1[ i−1
10
, i
10)(Sk(x0)) (1.1)

2



(a) n = 100 (b) n = 1000

(c) n = 10000

Figure 3: The initial part of orbit
{
Sk
(
π
4

)}n−1

k=0
, when n=100, 1000, and 10000,

respectively
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for i = 1, 2, . . . , 10, where 1[ i−1
10
, i
10) denotes the indicator for the subinterval

[
i−1
10
, i

10

)
.

We display the results in Table 1, which shows the probability distribution of the

orbits in each subinterval with four different initial values.

Table 1: Probability Distributions

Probability

x0
π
4

π
8

π
16

π
32

[0, 0.1] 0.1821 0.1826 0.1824 0.1819

[0.1, 0.2] 0.1516 0.1515 0.1515 0.1510

[0.2, 0.3] 0.1277 0.1277 0.1283 0.1281

[0.3, 0.4] 0.1099 0.1104 0.1100 0.1098

[0.4, 0.5] 0.0956 0.0948 0.0947 0.0956

[0.5, 0.6] 0.0833 0.0834 0.0829 0.0839

[0.6, 0.7] 0.0733 0.0730 0.0736 0.0735

[0.7, 0.8] 0.0655 0.0653 0.0654 0.0650

[0.8, 0.9] 0.0585 0.0583 0.0582 0.0583

[0.9, 1] 0.0524 0.0529 0.0528 0.0528

Our observation from Figure 3, which was the probability distribution de-

creases as we go to 1, is confirmed by Table 1. We also observe that the distribution

is about the same for any initial point x0 ; that is, the probability is independent of

4



the initial point x0 . This suggests that there may be a probability measure µ such

that

µ(A) = lim
n→∞

1

n

n−1∑
k=0

1A(Sk(x0)) (1.2)

for any A ∈ B and for almost any x0 ∈ [0, 1]. From now on, through out this

dissertation, when we say for any x0 ∈ [0, 1], we mean for almost all x0 ∈ [0, 1]. The

class B is called a Borel σ -field on [0, 1], which is defined as follows [28]. First, we

need to define a σ -field on R .

A class C ∈ R is called a σ -field on R if:

(1) R ∈ C .

(2) A ∈ C implies Ac ∈ C .

(3) {Ak}∞k=1 ∈ C implies that
⋃∞
k=1Ak ∈ C .

Let O be the collection of all open intervals in R , and let σ(O) be the smallest

σ -field containing O . Then BR = σ(O) is called a Borel σ -field on R , and B is

defined by B = {A ∩ [0, 1] : A ∈ BR} .

In fact, the probability measure µ in equation (1.2) is constructed as fol-

lows. Suppose that f ∗ is a density function of PS such that PSf
∗ = f ∗ (such

density function of PS is called a stationary density function of PS ), where PS is the

Frobenius-Perron operator associated with transformation S . We will define PS , the

Frobenius-Perron operator associated with S later in Section 2.2. Let the probability

measure µ be defined by

µ(A) =

∫
A

f ∗(x) dx

for all A ∈ B . Then we have

5



µ(A) = lim
n→∞

1

n

n−1∑
k=0

1A(Sk(x0)) (1.3)

for all x0 ∈ [0, 1]. The justification for (1.3) will be given in chapter 2.

This application shows the importance of computing (or approximating) the

stationary density function f ∗ of the Frobenius-Perron operator PS associated with

S , which is the theme of this dissertation.

The era of computational ergodic theory begun when the first attempt at

computing the stationary density was proposed in the book by Ulam [69]. Later, Li

in his paper [47] showed the convergence of Ulam’s method. But Bose & Murray [8]

showed that it only has O (lnn/n) convergence rate under the L1 -norm. Ulam’s

method can be understood as a Markov method using piecewise constant functions.

Then the paper by Ding and Li [22] has extended Ulam’s method to a Markov method

using piecewise linear functions, and later in the paper by Ding and Rhee [23] it was

proved that it has O (1/n) convergence under the BV-norm.

In addition, Ulam’s method can be understood as the projection method using

piecewise constant functions, which is illustrated in Section 4.2. A projection method

using linear spline functions was proposed and analyzed in the papers by Ding and

Rhee [24, 25], where the numerical results show that it has a higher convergence rate

than the piecewise linear Markov method. Moreover, the quadratic spline projection

method in the paper by Zhou et al. [78], shows a faster convergence rate than the

piecewise linear projection method. Even though the results from [24, 78] showed that

both the linear spline and quadratic spline projection methods are good options to

use to approximate the stationary density function of the Frobenius-Perron operator

6



associated with S , we aim to improve the convergence rate further. Therefore, we

will study the cubic spline projection method in this dissertation since cubic spline

functions are twice continuously differentiable on the whole domain. So, we expect to

obtain the highest convergence rate so far for the computation of stationary density

functions of the Frobenius-Perron operators associated with S .

In Chapter 2, we construct the Frobenius-Perron operator, and we cover pre-

liminaries that justify equation (1.3). Then Chapter 3 covers the definition and some

properties of cubic spline functions. Chapter 4 explains the general idea of the pro-

jection method and then specifies the cubic spline projection method. After that, in

chapter 5, we prove the convergence of a sequence of cubic spline functions {fn} to

the stationary density function f ∗ . Then in Chapter 6, we provide numerical experi-

mental results and explain how to get efficient and accurate computations in order to

get more accurate results. Finally, we conclude and provide future work in Chapter

7.

7



CHAPTER 2

PRELIMINARIES

In this chapter, we justify the fact in (1.3) mentioned at the end of Chapter

1. However, we first need to cover some preliminaries, which are crucial to drive the

fact. In Section 2.1, we define a Markov operator and present some of its properties.

In Section 2.2, we construct a Frobenius-Perron operator. Then in Section 2.3, we

define a new operator called a Koopman operator, which is an adjoint operator of a

Frobenius-Perron operator. In Section 2.4, we introduce the concept of an invariant

measure under a measurable and nonsingular transformation S and show the con-

nection between invariant measure and stationary densities f ∗ of a Frobenius-Perron

operator. Lastly in Section 2.5 we define Ergodic transformation and finally derive

the fact in (1.3). (Most of the results in this chapter are known and can be found in

the book by Lasota and Mackey [44]).

2.1 Markov Operator

This section defines a Markov operator and states some of its properties. Be-

fore we define Markov operators, we provide the definition of Borel Measurable func-

tions.

DEFINITION 2.1. A measurable function f : [0, 1]→ R is called a Borel measur-

able function if A ∈ BR implies f−1(A) ∈ B [49].

DEFINITION 2.2. Consider the measure space (L1[0, 1],B, λ), where L1[0, 1] de-

8



notes the collection of all Borel measurable functions such that
∫ 1

0
|f | dλ <∞ [4] and

λ is the Lebesgue measure [32]. A Markov operator P : L1[0, 1]→ L1[0, 1] is a linear

operator that satisfies the following:

(M1) If f ≥ 0, then Pf ≥ 0 for f ∈ L1[0, 1].

(M2) ‖Pf‖1 = ‖f‖1 for f ≥ 0 and f ∈ L1[0, 1], where ‖f‖1=
∫ 1

0
|f | dλ [56].

In the following we introduce some crucial properties of a Markov operator.

DEFINITION 2.3. Let f ∈ L1[0, 1]. The positive part of f [66] is denoted by f+

and is defined by

f+ = max{f(x), 0}.

While f− is the negative part of f and is defined by

f− = max{−f(x), 0} = −min{f(x), 0}.

Note that the functions f and |f | can be expressed in terms of the positive and

negative parts of f as f = f+ − f− and |f |= f+ + f− .

LEMMA 2.4. Let P be a Markov operator on L1[0, 1]. Then for every f ∈ L1[0, 1]:

(1) (Pf)+ ≤ Pf+ .

(2) (Pf)− ≤ Pf− .

(3) |Pf |≤ P |f | .

(4) ‖Pf‖1≤ ‖f‖1 .

PROOF.

9



(1) Let f ∈ L1[0, 1]. Since f+ ≥ 0 and f− ≥ 0, Pf+ ≥ 0 and Pf− ≥ 0. Then by

the linearity of P , we have

(Pf)+ = (P (f+ − f−))+ = (Pf+ − Pf−)+

= max{Pf+ − Pf−, 0} ≤ max{Pf+, 0} = Pf+.

Thus

(Pf)+ ≤ Pf+.

(2) Let f ∈ L1[0, 1]. Since Pf+ ≥ 0 and Pf− ≥ 0 as above, we have

(Pf)− = (P (f+ − f−))− = (Pf+ − Pf−)−

= max{−(Pf+ − Pf−), 0} = max{Pf− − Pf+, 0}

≤ max{Pf−, 0} = Pf−.

Hence

(Pf)− ≤ Pf−.

(3) Let f ∈ L1[0, 1]. By writing |Pf |= (Pf)+ + (Pf)− and using (1) and (2) as well

as the linearity of P , we get

|Pf | = (Pf)+ + (Pf)− ≤ Pf+ + Pf−

= P (f+ + f−) = P |f |.

Therefore,

10



|Pf | ≤ P |f |.

(4) Let f ∈ L1[0, 1]. Using (3) and (M2) of definition 2.2, we have

‖Pf‖1 =

∫ 1

0

|Pf | dλ ≤
∫ 1

0

P |f | dλ

=

∫ 1

0

|f | dλ = ‖f‖1.

Therefore,

‖Pf‖1 ≤ ‖f‖1. �

DEFINITION 2.5. The support of a function f is the set of x ∈ [a, b] such that

f(x) 6= 0 [76]; that is,

supp f = {x ∈ [a, b] : f(x) 6= 0}.

The concept of a fixed point is essential, and we are going to use it frequently

in this dissertation, where a function f is called a fixed point if the income and

outcome of f are the same; that is, f(x) = x [71]. So here is the definition and some

properties of a fixed point of a Markov operator.

DEFINITION 2.6. For f ∈ L1[0, 1], we say that f is a fixed point of a Markov

operator P if Pf = f .

THEOREM 2.7. If P is a Markov operator and Pf = f , then Pf+ = f+ and

Pf− = f− .

PROOF. Let Pf = f for some f ∈ L1[0, 1]. By the assumption, and by (1) and

11



(2) of Lemma 2.4, we have

f+ = (Pf)+ ≤ Pf+ =⇒ 0 ≤ Pf+ − f+ (2.1)

and

f− = (Pf)− ≤ Pf− =⇒ 0 ≤ Pf− − f−. (2.2)

Using (2.1), (2.2) and (4) of Lemma 2.4, we get

0 =

∫ 1

0

0 dλ ≤
∫ 1

0

(Pf+ − f+) dλ +

∫ 1

0

(Pf− − f−) dλ

=

∫ 1

0

(Pf+ + Pf−) dλ −
∫ 1

0

(f+ + f−) dλ

=

∫ 1

0

P (f+ + f−) dλ −
∫ 1

0

(f+ + f−) dλ

=

∫ 1

0

P |f | dλ −
∫ 1

0

|f | dλ

= ‖P |f | ‖1 − ‖ |f | ‖1 ≤ 0.

Therefore we have,

0 ≤
∫ 1

0

(Pf+ − f+) dλ +

∫ 1

0

(Pf− − f−) dλ ≤ 0,

Hence ∫ 1

0

(Pf+ − f+) dλ +

∫ 1

0

(Pf− − f−) dλ = 0.

Note that the nonnegativity of Pf+ − f+ and Pf− − f− from (2.1) and (2.2) gives∫ 1

0

(Pf+ − f+) dλ = 0 and

∫ 1

0

(Pf− − f−) dλ = 0,

12



which implies

Pf+ = f+ and Pf− = f−. �

2.2 Construction of Frobenius-Perron Operator

Frobenius-Perron operators form a special class of Markov operators. To define

a Frobenius-Perron operator, it is necessary to state the following definitions and

theorems.

DEFINITION 2.8. Consider the measure space (L1[0, 1],B, λ). Then f ∈ L1[0, 1]

is called a density function [77] if f ≥ 0 and ‖f‖1=
∫ 1

0
|f | dλ =

∫ 1

0
f dλ = 1.

DEFINITION 2.9. A real-valued function µ on B is a measure [15] if it satisfies

the following:

(1) µ(φ) = 0.

(2) µ(A) ≥ 0 for all A ∈ B .

(3) Let {Ak}∞k=1 be disjoint subsets of B . Then

µ

(
∞⋃
k=1

Ak

)
=

∞∑
k=1

µ(Ak).

LEMMA 2.10. Let f ∈ L1[0, 1] and f ≥ 0. If

ν(A) =

∫
A

f dλ

for all A ∈ B , then ν is a measure on B .

PROOF.

(1) Let f ∈ L1[0, 1]. Because the Lebesgue integral value over empty set is 0, we
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have

ν(φ) =

∫
φ

f dλ = 0.

(2) Since by assumption f ≥ 0, we have
∫
A
f dλ ≥ 0. Hence ν(A) ≥ 0.

(3) Let {A}∞i=1 be disjoint sets. Then

ν

(
∞⋃
i=1

Ai

)
=

∫
∪∞i=1Ai

f dλ =

∫ 1

0

f1∪∞i=1Ai
dλ

=

∫ 1

0

f

∞∑
i=1

1Ai dλ =
∞∑
i=1

∫ 1

0

f1Ai dλ

=
∞∑
i=1

∫
Ai

f dλ =
∞∑
i=1

ν(Ai).

Hence,

ν

(
∞⋃
i=1

Ai

)
=

∞∑
i=1

ν(Ai).

Therefore, by (1), (2), and (3), ν is a measure on B . �

DEFINITION 2.11. Let ν be a measure on (L1[0, 1],B, λ). We say that ν is an

absolutely continuous measure with respect to λ [21] if

λ(A) = 0 =⇒ ν(A) = 0,

where A ∈ B . In this case we write ν << λ .

Radon-Nikodym Theorem. Suppose that ν is a finite measure such that ν <<

λ . Then for every A ∈ B , there exists a unique nonnegative h ∈ (L1[0, 1],B, λ) such

that
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ν(A) =

∫
A

h dλ

for any A ∈ B [72].

PROOF. First we define a functional Φ : L2(λ+ ν)→ R by

Φ(f) =

∫ 1

0

f dν

for all f ∈ L2(λ+ ν), where f ∈ L2(λ+ ν) ⇐⇒ f : [0, 1]→ R such that

‖f‖2
L2(λ+ν) ≡

∫ 1

0

|f |2 d(λ+ ν) < ∞

and ∫ 1

0

|f |2 d(λ+ ν) =

∫
|f |2 (dλ+ dν) =

∫ 1

0

|f |2 dλ+

∫ 1

0

|f |2 dν < ∞.

We establish that Φ(f) is a real number in Claim 1.

Claim 1. For f ∈ L2(λ+ ν), we have |Φ(f)|<∞ .

Proof. Suppose that f ∈ L2(λ+ ν). By Hölder’s Inequality [72], we have

|Φ(f)| =

∣∣∣∣∫ 1

0

f dν

∣∣∣∣ ≤ ∫ 1

0

|f | dν

≤
∫ 1

0

|f | d(λ+ ν) =

∫ 1

0

|f · 1| d(λ+ ν)

= ‖f · 1‖L1(λ+ν) ≤ ‖f‖L2(λ+ν)·‖1‖L2(λ+ν)

= ‖f‖L2(λ+ν)·
[∫ 1

0

|1|2 d(λ+ ν)

] 1
2

= ‖f‖L2(λ+ν)·
[∫

1[0,1] d(λ+ ν)

] 1
2

= ‖f‖L2(λ+ν)· [(λ+ ν) ([0, 1])]
1
2 = ‖f‖L2(λ+ν)· [λ[0, 1] + ν[0, 1]]

1
2
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< ∞. tu

In the next claim, we check if Φ is well-defined.

Claim 2. Suppose that both f and g ∈ L2(λ + ν) such that f = g almost

everywhere on [0, 1] with respect to λ+ ν . Then Φ(f) = Φ(g).

Proof. Suppose that f = g almost everywhere on [0, 1] with respect to λ + ν .

Let A = {x ∈ [0, 1] : f(x) 6= g(x)} . Then 0 = (λ + ν)(A) = λ(A) + ν(A). Hence,

ν(A) = 0. Therefore, f = g almost everywhere on [0, 1] with respect to ν . So,∫ 1

0

f dν =

∫ 1

0

g dν.

Hence, Φ(f) = Φ(g). Therefore, Φ is well-defined. tu

Claim 1 and Claim 2 establish the fact that Φ : L2(λ + ν) → R is a well-defined

functional. Clearly Φ is a linear functional on L2(λ+ ν). Next, we show that Φ is a

bounded linear functional on L2(λ+ ν).

Claim 3. Φ is a bounded linear functional on L2(λ+ ν).

Proof. Note that, since ν is a finite measure, we have

‖Φ‖ = sup{|Φ(f)|: ‖f‖L2(λ+ν)≤ 1}

≤ sup{‖f‖L2(λ+ν)[λ[0, 1] + ν[0, 1]]
1
2 : ‖f‖L2(λ+ν)≤ 1}

≤ sup{[λ[0, 1] + ν[0, 1]]
1
2}

= [λ[0, 1] + ν[0, 1]]
1
2 <∞. tu
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Since Φ is a bounded linear functional on L2(λ + ν), by Riesz’s representation the-

orem [54], there exists a unique g ∈ L2(λ + ν) such that Φ(f) = 〈f, g〉 for all

f ∈ L2(λ + ν); that is, there exists a unique g ∈ L2(λ + ν) such that for all

f ∈ L2(λ+ ν)

Φ(f) =

∫ 1

0

fg d(λ+ ν). (2.3)

Since Φ(f) =
∫ 1

0
f dν , for all f ∈ L2(λ+ ν), (2.3) becomes∫ 1

0

f dν =

∫ 1

0

fg d(λ+ ν) =

∫ 1

0

fg dλ+

∫ 1

0

fg dν.

So ∫ 1

0

f(1− g) dν =

∫ 1

0

fg dλ for all f ∈ L2(λ+ ν). (2.4)

Claim 4. Let g ∈ L2(λ + ν). Then 0 ≤ g < 1 almost everywhere on [0, 1] with

respect to λ+ ν .

Proof. Let A1 = {x ∈ [0, 1] : g(x) ≥ 1} . Let f = 1A1 in (2.4). Then we have

0 ≤
∫ 1

0

1A1g dλ =

∫ 1

0

1A1(1− g) dν ≤ 0.

Thus, 1A1g = 0 with respect to λ on [0, 1]. Since g ≥ 1 on A1 , λ(A1) = 0.

Then, let A2 = {x ∈ [0, 1] : g(x) < 0} and f = 1A2 . Similarly, we can show

that λ(A2) = 0. Since ν << λ , we have ν(A1) = 0 and ν(A2) = 0. Therefore,

(λ + ν)(A1) = 0 and (λ + ν)(A2) = 0. So we may assume that 0 ≤ g < 1 almost

everywhere on [0, 1] with respect to λ+ ν . tu

Next, for x ∈ [0, 1], we define h : [0, 1]→ R by
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h(x) =
g(x)

1− g(x)
. (2.5)

Note that h ≥ 0 on [0, 1] since 0 ≤ g < 1 on [0, 1]. Let A ∈ B and let f = 1A
1−g .

Suppose f ∈ L2(λ+ ν). Then (2.4) can be written as∫ 1

0

1A
1− g

(1− g) dν =

∫ 1

0

1A
1− g

g dλ

or ∫ 1

0

1A dν =

∫ 1

0

1A
1− g

g dλ.

So

ν(A) =

∫ 1

0

1A dν =

∫ 1

0

1A
1− g

g dλ =

∫
A

g

1− g
dλ =

∫
A

h dλ,

hence

ν(A) =

∫
A

h dλ. (2.6)

However, we do not know whether f = 1A
1−g ∈ L

2(λ + ν). Thus, we justify (2.6) as

follows. Let A ∈ B and k ∈ N . We define

fk(x) =


1A(x)

1−g(x)
if 1A(x)

1−g(x)
≤ k

0 if 1A(x)
1−g(x)

> k.

Note that for any k ∈ N , we have 0 ≤ fk ≤ f , 0 ≤ fk ≤ k and {fk}∞k=1 is an

increasing sequence. Also note that, fk ∈ L2(λ + ν) for all k ∈ N . Then, let f = fk

in (2.4), we have ∫ 1

0

fk(1− g) dν =

∫ 1

0

fkg dλ (2.7)
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for all k ∈ N . Observe that {fk(1− g)}∞k=1 and {fkg}∞k=1 are increasing sequences of

nonnegative functions. Also note that

fk(x)(1− g(x)) =


1A(x) 1A(x)

1−g(x)
≤ k

0 1A(x)
1−g(x)

> k.

We have 2 cases for 1A(x)
1−g(x)

.

Case 1. x ∈ [0, 1]−A . Then fk(x) = 0 for all k ∈ N . Thus, fk(x)(1− g(x)) = 0 for

all k ∈ N . Hence, fk(x)(1− g(x))→ 1A(x)→ 0.

Case 2. x ∈ A . We choose k ≥ 1
1−g(x)

. Then

1A(x)

1− g(x)
=

1

1− g(x)
≤ k =⇒ fk(x)(1− g(x)) = 1A(x) = 1,

which implies fk(x)(1− g(x))→ 1. This establishes that

fk(1− g) increases to 1A on [0, 1]. (2.8)

Similarly,

fkg increases to
1A

1− g
g on [0, 1]. (2.9)

Note that (2.7) gives

lim
k→∞

∫ 1

0

fk(1− g) dν = lim
k→∞

∫ 1

0

fkg dλ,

which implies by Monotone Convergence Theorem [73],∫ 1

0

lim
k→∞

fk(1− g) dν =

∫ 1

0

lim
k→∞

fkg dλ.

Using (2.8) and (2.9), we get
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ν(A) =

∫
A

dν =

∫ 1

0

1A dν =

∫ 1

0

1A
1− g

g dλ =

∫
A

g

1− g
dλ,

where by using (2.5), for all A ∈ B we get

ν(A) =

∫
A

h dλ. (2.10)

Finally, we need to show that h ∈ (L1[0, 1],B, λ). Let A = [0, 1] in (2.10). Since ν is

a finite measure, we have

ν([0, 1]) =

∫ 1

0

h dλ < ∞.

Also, since h ≥ 0, we have

‖h‖1 =

∫ 1

0

|h| dλ =

∫ 1

0

h dλ < ∞

Therefore, h ∈ (L1[0, 1],B, λ). �

THEOREM 2.12. If f ∈ L1[0, 1] and f ≥ 0, then the measure ν defined by

ν(A) =

∫
A

f dλ

for all A ∈ B is an absolutely continuous measure with respect to λ .

PROOF. By Lemma 2.10, we know that ν is a measure. So all we need to show is

that ν is an absolutely continuous measure with respect to λ . Let λ(A) = 0. Since

the integral over a zero measure set equals zero, we have

ν(A) =

∫
A

f dλ = 0.

Hence, λ(A) = 0 =⇒ ν(A) = 0. Thus ν is an absolutely continuous measure with

respect to λ . �
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DEFINITION 2.13. A transformation S : [0, 1]→ [0, 1] is measurable [45] if for all

A ∈ B

S−1(A) ∈ B.

DEFINITION 2.14. A measurable transformation S : [0, 1] → [0, 1] is nonsingu-

lar [45] if for all A ∈ B

λ(A) = 0 =⇒ λ(S−1(A)) = 0.

To construct the Frobenius-Perron operator, we need the following theorem.

THEOREM 2.15. Assume that S : [0, 1]→ [0, 1] be a measurable and nonsingular

transformation. Let f ∈ L1[0, 1] to be a nonnegative function. Then

ν(A) =

∫
S−1(A)

f dλ.

is a finite measure such that ν << λ .

PROOF. We will start the proof with the following claims.

Claim 1. Let An be disjoint sets in B . Then

S−1

(
∞⋃
n=1

(An)

)
=

∞⋃
n=1

S−1(An).

Proof. Let

x ∈ S−1

(
∞⋃
n=1

(An)

)
⇐⇒ S(x) ∈

∞⋃
n=1

An ⇐⇒ S(x) ∈ An, for some n

⇐⇒ x ∈ S−1(An) for some n ⇐⇒ x ∈
∞⋃
n=1

S−1(An).
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Therefore,

S−1

(
∞⋃
n=1

(An)

)
=

∞⋃
n=1

S−1(An).

tu

Claim 2. ν is a finite measure.

Proof. Let f ∈ L1[0, 1].

(1) Note that

ν(φ) =

∫
S−1(φ)

f dλ =

∫
φ

f dλ = 0.

Hence, ν(φ) = 0.

(2) Since by assumption f ≥ 0, we have∫
S−1(A)

f dλ ≥ 0.

Therefore, ν(A) ≥ 0.

(3) Let {Ai}∞i=1 be disjoint sets. Using Claim 1, we have

ν

(
∞⋃
i=1

Ai

)
=

∫
S−1(∪∞i=1Ai)

f dλ =

∫
∪∞i=1S

−1(Ai)

f dλ

=

∫ 1

0

f1∪∞i=1S
−1(Ai) dλ =

∫ 1

0

f

∞∑
i=1

1S−1(Ai) dλ

=
∞∑
i=1

∫
S−1(Ai)

f dλ =
∞∑
i=1

ν(Ai).

Hence,

ν(∪∞i=1Ai) =
∞∑
i=1

ν(Ai).
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Therefore, by (1), (2), and (3) ν is a measure. In addition, since f is integrable [61],

ν is a finite measure. tu

Next we prove that ν is an absolutely continuous measure with respect to

λ . Assume that λ(A) = 0 for all A ∈ B . Since S is a nonsingular transformation,

λ(S−1(A)) = 0. So,

ν(A) =

∫
S−1(A)

f dλ = 0.

Thus, ν(A) = 0 whenever λ(A) = 0 for all A ∈ B . Therefore, ν is an absolutely

continuous measure with respect to λ . �

Since the assumption of ν << µ in Theorem 2.15 is fulfilled, by Radon-

Nikodym Theorem, there exists a unique nonnegative function h ∈ L1[0, 1] such that

ν(A) =

∫
A

h dλ

for any A ∈ B . So we have ∫
A

h dλ =

∫
S−1(A)

f dλ.

Since h depends on f , denoting h by PSf , we have∫
A

PSf dλ =

∫
S−1(A)

f dλ, (2.11)

when f ∈ L1[0, 1] and f ≥ 0.

Note that equation (2.11) can be generalize to any f ∈ L1[0, 1] as follows.

Suppose f ∈ L1[0, 1]. We write f = f+ − f− , and we define PSf = PSf
+ − PSf−

for any f ∈ L1[0, 1]. Then by the linearity of the integral, the fact that f+ ≥ 0 and

f− ≥ 0, and equation (2.11), we get
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∫
A

PSf dλ =

∫
A

PSf
+ dλ −

∫
A

PSf
− dλ

=

∫
S−1(A)

f+ dλ −
∫
S−1(A)

f− dλ

=

∫
S−1(A)

(f+ − f−) dλ =

∫
S−1(A)

f dλ.

Hence for any f ∈ L1[0, 1], ∫
A

PSf dλ =

∫
S−1(A)

f dλ.

Using the above discussion, we make a formal definition of the Frobenius-

Perron operator.

DEFINITION 2.16. Let S : [0, 1]→ [0, 1] be a measurable and nonsingular trans-

formation. Then the operator PS : L1[0, 1]→ L1[0, 1] defined (implicitly) by∫
A

PSf dλ =

∫
S−1(A)

f dλ (2.12)

for any A ∈ B is the Frobenius-Perron operator associated with transformation S .

If A is a subinterval of [0, 1], Frobenius-Perron operator can be defined ex-

plicitly as the following remark shows.

REMARK 2.17. If A = [0, x] ⊆ [0, 1], then (2.12) becomes∫
[0,x]

PSf dλ =

∫
S−1([0,x])

f dλ.

By differentiating both sides with respect to x , we get

d

dx

∫
[0,x]

PSf dλ =
d

dx

∫
S−1([0,x])

f dλ.
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Then by using the Fundamental Theorem of Calculus [67], PSf(x) can be written

explicitly as

PSf(x) =
d

dx

∫
S−1([0,x])

f(t) dt, x ∈ [0, 1]. (2.13)

We summarize some properties of the Frobenius-Perron operator in the next

lemma.

LEMMA 2.18. Let PS be a Frobenius-Perron operator. Then we have the following

statements:

(a) PS is a linear operator; that is,

PS(α1f1 + α2f2) = α1PSf1 + α2PSf2

for all f1, f2 ∈ L1[0, 1] and α1, α2 ∈ R .

(b) PS is a positive operator; that is, if f ≥ 0, then PSf ≥ 0.

(c) PS preserves the integral; that is,
∫ 1

0
PSf dλ =

∫ 1

0
f dλ for any f ∈ L1[0, 1].

PROOF.

(a) Let f1, f2 ∈ L1[0, 1] and α1, α2 ∈ R . Then by the linearity of the integral and the

definiton of PS , we have∫
A

PS(α1f1 + α2f2) dλ =

∫
S−1(A)

(α1f1 + α2f2) dλ

=

∫
S−1(A)

α1f1 dλ +

∫
S−1(A)

α2f2 dλ

= α1

∫
S−1(A)

f1 dλ + α2

∫
S−1(A)

f2 dλ
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= α1

∫
A

PSf1 dλ + α2

∫
A

PSf2 dλ

=

∫
A

(α1PSf1 + α2PSf2) dλ.

Hence, for all f1, f2 ∈ L1[0, 1] and α1, α2 ∈ R ,

PS(α1f1 + α2f2) = α1PSf1 + α2PSf2.

(b) Let f ∈ L1[0, 1] and f ≥ 0. Then∫
A

PSf dλ =

∫
S−1(A)

f dλ ≥ 0

for any A ∈ B . It follows that f ≥ 0 implies PSf ≥ 0.

(c) For any f ∈ L1[0, 1]. Since S−1([0, 1]) = [0, 1], because [0, 1] is the whole set, we

have ∫ 1

0

PSf dλ =

∫
S−1([0,1])

f dλ =

∫ 1

0

f dλ.
�

REMARK 2.19. Note that Lemma 2.18 tells us that Frobenius-Perron operator

is a Markov operator. Therefore, all the properties of Markov operators apply to

Frobenius-Perron operators.

DEFINITION 2.20. Consider the measure space (L1[0, 1],B, λ). Let PS be the

Frobenius-Perron operator associated with a measurable and nonsingular transfor-

mation S : [0, 1] → [0, 1]. The function f is a stationary density function if f is a

density function which is also a fixed point of PS ; that is, f is a density function

that satisfies PSf = f .
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DEFINITION 2.21. Let T be a linear operator from L1[0, 1] to L1[0, 1]. Then

1-norm of T [57] is defined by

‖T‖1 = sup

{
‖Tf‖1

‖f‖1

: f ∈ L1[0, 1] and f 6= 0

}
.

LEMMA 2.22. If PS is a Frobenius-Perron operator, then ‖PS‖1= 1.

PROOF. Note that PS is a Markov operator. Then by (4) of Lemma 2.4, we have

‖PSf‖1 ≤ ‖f‖1

for any f ∈ L1[0, 1]. In particular, if f ≥ 0, then by (M2) of Definition 2.2, we have

‖PSf‖1= ‖f‖1 . Thus, for any f ∈ L1[0, 1]

‖PS‖1 = sup

{
‖PSf‖1

‖f‖1

: f ∈ L1[0, 1] and f 6= 0

}
= 1.

�

2.3 Koopman Operator

To justify (1.3), we utilize another operator that is called a Koopman operator

defined as follows:

DEFINITION 2.23. Let (L1[0, 1],B, λ) be a measure space, S : [0, 1]→ [0, 1] be a

measurable and nonsingular transformation, and f ∈ L∞([0, 1]), where L∞[0, 1] is the

space of bounded continuous functions [12]. The operator KS : L∞[0, 1] → L∞[0, 1]

defined by

KSf(x) = f(S(x)) (2.14)

for any x ∈ [0, 1] is called a Koopman operator associated with S .
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Note that the nonsingularity of transformation S assures that Koopman op-

erator is well-defined. To see this, we let f1 = f2 almost everywhere with respect to

λ . If we define a set A = {x : f1(S(x)) 6= f2(S(x))} , then S(A) = {S(x) : f1(S(x)) 6=

f2(S(x))} . By letting y = S(x), we get S(A) = {y : f1(y) 6= f2(y)} . Since by

assumption we have f1 = f2 , then λ(S(A)) = 0. By the nonsingularity of S , we have

λ(A) = λ(S−1(S(A))) = 0. Therefore, f1(S(x)) = f2(S(x)) almost everywhere with

respect to λ . That is, KSf1(x) = KSf2(x). Thus, Koopman operator is well-defined.

LEMMA 2.24. Let KS be a Koopman operator associated with S , and PS be

the Frobenius-Perron operator associated with S . Then for all f ∈ L1[0, 1] and g ∈

L∞[0, 1], Koopman operator is the adjoint of the the Frobenius-Perron operator; that

is,

〈PSf, g〉 = 〈f,KSg〉.

PROOF. First let g = 1A , where A ∈ B . Note that

1A(S(x)) =

 1 if S(x) ∈ A

0 if S(x) /∈ A

=

 1 if x ∈ S−1(A)

0 if x /∈ S−1(A)

=1S−1(A)(x).

Thus

1A(S(x)) = 1S−1(A)(x). (2.15)
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So, using the definition of Frobenius-Perron operator (2.12), the definition of Koop-

man operator (2.14), and (2.15), we have

〈PSf, 1A〉 =

∫ 1

0

1APSf dλ =

∫
A

PSf dλ

=

∫
S−1(A)

f dλ =

∫ 1

0

1S−1(A)f dλ

=

∫ 1

0

1A(S)f dλ =

∫ 1

0

KS1Af dλ

= 〈f,KS1A〉.

It follows that by the linearity of the Lebesgue integral, the statement is true for any

simple function, g =
∑n

k=1 akIAk , and hence for all g ∈ L∞[0, 1] [59]. �

2.4 Invariant Measure

Another concept we need is an invariant measure under a measurable and

nonsingular transformation S .

DEFINITION 2.25. Consider the measure space (L1[0, 1],B, µ). Let S : [0, 1] →

[0, 1] be a measurable and nonsingular transformation. Then S is µ-measure pre-

serving if for all A ∈ B

µ(S−1(A)) = µ(A). (2.16)

If S is µ-measure preserving, then we also say µ is an invariant measure under

S [11].

The following theorem gives the connection between an invariant measure and
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a stationary density function of PS .

THEOREM 2.26. Consider the measure space (L1[0, 1],B, λ). Let S : [0, 1] →

[0, 1] be a measurable and nonsingluar transformation, and PS be the Frobenius-

Perron operator associated with S . Then the probability measure defined by

µ(A) =

∫
A

f ∗ dλ (2.17)

is an invariant probability measure under S if and only if f ∗ ∈ L1[0, 1] is a stationary

density function of PS .

PROOF. Let f ∗ ∈ L1[0, 1] be a density function and PS be the Frobenius-Perron

operator associated S . First, we assume that µ is an invariant measure under S ;

that is by (2.16) for all A ∈ B , µ(A) = µ(S−1(A)). So by using (2.17) and (2.12), we

have ∫
A

f ∗ dλ =

∫
S−1(A)

f ∗dλ =

∫
A

PSf
∗ dλ.

Hence,

PSf
∗ = f ∗

for all f ∗ ∈ L1[0, 1], which means f ∗ is a stationary density function of PS .

For the other direction, we assume that f ∗ is a stationary density function of

PS ; that is, PSf
∗ = f ∗ . Note that by (2.17) and the definition of Frobenius-Perron

operator (2.12), we have for any A ∈ B

µ(A) =

∫
A

f ∗ dλ =

∫
A

PSf
∗ dλ
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=

∫
S−1(A)

f ∗ dλ = µ(S−1(A))

Hence, for any A ∈ B

µ(A) = µ(S−1(A)).

Therefore, µ is an invariant measure under S . �

REMARK 2.27. The importance of computing the stationary density function f ∗

of PS is shown in Theorem 2.26 because by using f ∗ , we can generate the invariant

measure under S .

In the following three examples, we illustrate Theorem 2.26. We will show that

f ∗ is a stationary density of PS , and hence if we define measure µ by µ(A) =
∫
A
f ∗ dλ ,

then µ is an invariant measure under S for all A ∈ B .

EXAMPLE 2.28. Let

S(x) =


2x

1−x2 0 ≤ x ≤
√

2− 1

1−x2
2x

√
2− 1 ≤ x ≤ 1.

and

f ∗(x) =
4

π(1 + x2)
.

PROOF. Let

S1(x) =
2x

1− x2
for 0 ≤ x ≤

√
2− 1 and S2(x) =

1− x2

2x
for
√

2− 1 ≤ x ≤ 1.

Then
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S−1
1 (x) =

x√
x2 + 1 + 1

for 0 ≤ x ≤ 1;

S−1
2 (x) = − x+

√
x2 + 1 for 0 ≤ x ≤ 1.

Then by the explicit definition of PS in (2.13) and the Fundamental Theorem of

Calculus, we have

PSf
∗(x) =

d

dx

∫
S−1[0,x]

f ∗(t) dt

=

∫ x√
x2+1+1

0

f ∗(t) dt+

∫ 1

−x+
√
x2+1

f ∗(t) dt

= f ∗
(

x√
x2 + 1 + 1

)
d

dx

(
x√

x2 + 1 + 1

)

− f ∗
(
−x+

√
x2 + 1

) d

dx

(
−x+

√
x2 + 1

)

=
4

π

(
1 +

(
x√

x2+1+1

)2
)√x2 + 1 + 1− x

(
x√
x2+1

)
(
√
x2 + 1 + 1)2

− 4

π(1 + (−x+
√
x2 + 1)2)

(
−1 +

x√
x2 + 1

)

=
4

π
(

(
√
x2+1+1)2+x2

(
√
x2+1+1)2

) · x2+1+
√
x2+1−x2√
x2+1

(
√
x2 + 1 + 1)2

− 4

π(1 + x2 − 2x
√
x2 + 1 + x2 + 1)

· −
√
x2 + 1 + x√
x2 + 1

=
4(
√
x2 + 1 + 1)

π
(
(
√
x2 + 1 + 1)2 + x2

)√
x2 + 1

32



+
2

π(x2 − x
√
x2 + 1 + 1)

·
√
x2 + 1− x√
x2 + 1

=
4(
√
x2 + 1 + 1)

π
(
(x2 + 1 + 2

√
x2 + 1 + 1 + x2)

√
x2 + 1

)
+

2(
√
x2 + 1− x)

π(x2
√
x2 + 1− x3 − x+

√
x2 + 1)

=
2(
√
x2 + 1 + 1)

π
(
(x2 + 1)

√
x2 + 1 + (x2 + 1)

) +
2(
√
x2 + 1− x)

π((x2 + 1)
√
x2 + 1− x(x2 + 1))

=
2(
√
x2 + 1 + 1)

π(x2 + 1)(
√
x2 + 1 + 1)

+
2(
√
x2 + 1− x)

π(x2 + 1)(
√
x2 + 1− x)

=
2

π (x2 + 1))
+

2

π(x2 + 1)
=

4

π (x2 + 1))
= f ∗(x).

Therefore, PSf
∗ = f ∗ . So f ∗ is a stationary density function of PS . Thus µ(A) =∫

A
f ∗ dλ is an invariant measure under S for all A ∈ B . �

EXAMPLE 2.29. Let

S(x) =


2x

1−x 0 ≤ x ≤ 1
3

1−x
2x

1
3
≤ x ≤ 1,

and let

f ∗(x) =
2

(1 + x)2
.

PROOF. Let

S1(x) =
2x

1− x
for 0 ≤ x ≤ 1

3
and S2(x) =

1− x
2x

for
1

3
≤ x ≤ 1.

Then the inverse images of S1 and S2 are

33



S−1
1 (x) =

x

2 + x
for 0 ≤ x ≤ 1;

S−1
2 (x) =

1

2x+ 1
for 0 ≤ x ≤ 1.

By (2.13), we have

PSf
∗(x) =

d

dx

∫
S−1[0,x]

f ∗(t) dt

=

∫ x
2+x

0

f ∗(t) dt +

∫ 1

1
2x+1

f ∗(t) dt

= f ∗
(

x

2 + x

)
d

dx

(
x

2 + x

)
− f ∗

(
1

2x+ 1

)
d

dx

(
1

2x+ 1

)

=
2(

1 + x
2+x

)2

2 + x− x
(2 + x)2

− 2(
1 + 1

2x+1

)2

−2

(2x+ 1)2

=
2

4
(

1+x
2+x

)2

2

(2 + x)2
+

2

4
(
x+1
2x+1

)2

2

(2x+ 1)2

=
1

(1 + x)2 +
1

(x+ 1)2 =
2

(1 + x)2 = f ∗(x).

Hence, f ∗ is a stationary density function of PS . Therefore, µ(A) =
∫
A
f ∗ dλ is an

invariant measure under S for all A ∈ B . �

EXAMPLE 2.30. Let

S(x) =

(
1

8
− 2

∣∣∣∣x− 1

2

∣∣∣∣3
)1/3

+
1

2

and let

f ∗(x) = 12

(
x− 1

2

)2

.
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PROOF. The inverse images of S is

S−1
1 (x) =

1

2
−

(
1
8
−
(
x− 1

2

)3

2

)1/3

for 0 ≤ x ≤ 1

2

and

S−1
2 (x) =

1

2
+

(
1
8
−
(
x− 1

2

)3

2

)1/3

for
1

2
≤ x ≤ 1.

By (2.13), we have

PSf
∗(x) =

d

dx

∫
S−1[0,x]

f ∗(t) dt

=

∫ 1
2
−

 1
8−(x− 1

2)
3

2

1/3

0

f ∗(t) dt +

∫ 1

1
2

+

 1
8−(x− 1

2)
3

2

1/3 f ∗(t) dt

= f ∗

1

2
−

(
1
8
−
(
x− 1

2

)3

2

)1/3
 d

dx

1

2
−

(
1
8
−
(
x− 1

2

)3

2

)1/3


− f ∗
1

2
+

(
1
8
−
(
x− 1

2

)3

2

)1/3
 d

dx

1

2
+

(
1
8
−
(
x− 1

2

)3

2

)1/3


= 12

1

2
−

(
1
8
−
(
x− 1

2

)3

2

)1/3

− 1

2

2

(x− 1
2
)2(

2
(

1
8
−
(
x− 1

2

)3
)2
)1/3

− 12

1

2
+

(
1
8
−
(
x− 1

2

)3

2

)1/3

− 1

2

2

−(x− 1
2
)2(

2
(

1
8
−
(
x− 1

2

)3
)2
)1/3

= 6

(
x− 1

2

)2

+ 6

(
x− 1

2

)2
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= 12

(
x− 1

2

)2

= f ∗(x).

Hence, f ∗ is a stationary density function of PS . Therefore, µ(A) =
∫
A
f ∗ dλ is an

invariant measure under S for all A ∈ B . �

2.5 Ergodic Transformation

To use Ergodic theory, which is important in the existence and uniqueness of

the stationary density function of PS , we utilize ergodic transformation. However,

before we give the definition of an ergodic transformation, we will start with the

definition of an invariant set.

DEFINITION 2.31. Consider the measure space (L1[0, 1],B, λ). A set A ∈ B is

called an invariant set under S [11] if it satisfies

S−1(A) = A.

DEFINITION 2.32. Consider the measure space (L1[0, 1],B, λ). The measurable

and nonsingular transformation S : [0, 1]→ [0, 1] is ergodic [68] if for every invariant

set under S , for instance A ∈ B , we have

λ(A) = 0 or λ(Ac) = 0.

In other words, S is ergodic if all the invariant sets A are trivial elements of B .

The following result can be helpful to check whether the transformation S is

ergodic.

LEMMA 2.33. Consider the measure space (L1[0, 1],B, λ). Assume that S : [0, 1]→
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[0, 1] is a measurable and nonsingluar transformation. Then S is ergodic if and only

if for every f ∈ L1[0, 1] that satisfies

f(S(x)) = f(x) (2.18)

for all x ∈ [0, 1] implies that f is a constant function.

PROOF. First we will prove the forward direction, which is if S is ergodic, then f

that satisfies f(S(x)) = f(x) is constant, by the way of contradiction. So, we assume

that S is ergodic, and f that satisfies f(S(x)) = f(x) is not constant. Then there

exists some r ∈ R such that both

A = {x : f(x) ≥ r} and Ac = {x : f(x) < r}

have positive measures. Therefore, A and Ac are nontrivial sets; that is, λ(A) > 0

and λ(Ac) > 0. However, A and Ac are invariant sets under S . This can be seen,

using the equation (2.18), as follows:

S−1(A) = {x : S(x) ∈ A} = {x : f(S(x)) ≥ r}

= {x : f(x) ≥ r} = A.

Similarly, S−1(Ac) = Ac . Thus, S is not ergodic, and this contradicts the assump-

tion. Therefore, f is a constant function.

For the other direction, suppose that f that satisfies f(S(x)) = f(x) is con-

stant, and S is not ergodic. Then, there exists an invariant set A ∈ B such that

λ(A) and λ(Ac) are both positive. Let f = 1A . Since A is invariant under S, using

(2.15) we have
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f(S(x)) = 1A(S(x)) = 1S−1(A)(x) = 1A(x) = f(x).

Since λ(A) and λ(Ac) are both positive, f that satisfies f(S(x)) = f(x) is not

constant, which is a contradiction. It follows that S is ergodic. �

In Theorem 2.35, which will be stated later, we will prove that the ergodicity

of S assures that if there is a stationary density f ∗ of PS , then f ∗ is unique. This

result will be used in Section 6.4 to show the uniqueness of the given f ∗ . In order to

prove this, we need first to prove the following lemma.

LEMMA 2.34. Let S : [0, 1] → [0, 1] be a measurable and nonsingular transfor-

mation, and PS be the Frobenius-Perron operator associated with S . Assume that

f ∈ L1[0, 1], f ≥ 0. Then

supp f ⊆ S−1(supp PSf).

PROOF. Note that since f ≥ 0, by using the definition of Frobenius-Perron oper-

ator (2.12), we have

PSf(x) = 0 for all x ∈ A ⇐⇒ 0 =

∫
A

PSf dλ =

∫
S−1(A)

f dλ

⇐⇒ f(x) = 0 for all x ∈ S−1(A).

So, in summary, for every A ∈ B ,

PSf = 0 on A if and only if f = 0 on S−1(A) for any A ∈ B. (2.19)

We specialize this result with
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A = (supp PSf)c.

Note that

S−1(A) = S−1((supp PSf))c = (S−1(supp PSf))c. (2.20)

Suppose x ∈ A = (supp PSf)c, then x /∈ supp PSf, and hence PSf(x) = 0. This

means that PSf = 0 on A . By (2.19), f = 0 on S−1(A). So, x ∈ S−1(A), implies

f(x) = 0, and hence x /∈ supp f which implies x ∈ (supp f)c . So we have S−1(A) ⊆

(supp f)c . Hence supp f ⊆ (S−1(A))c , which is, by using (2.20),

supp f ⊆ S−1(supp PSf). �

THEOREM 2.35. Consider the measure space (L1[0, 1],B, λ). Let S : [0, 1] →

[0, 1] be a measurable and nonsingluar transformation and PS be the Frobenius-

Perron operator associated with S . If S is ergodic, then there is at most one station-

ary density f ∗ of PS . Further, if there is a unique stationary density f ∗ of PS and

f ∗ > 0, then S is ergodic.

PROOF. Assume that S is ergodic. Suppose that there exist two different station-

ary densities f1 and f2 of PS ; that is, PSf1 = f1 , and PSf2 = f2 . Let g = f1 − f2 .

Then by the linearity of PS , we have

PSg = PS(f1 − f2) = PSf1 − PSf2 = f1 − f2 = g.

Hence, PSg = g . Then by theorem 2.7, PSg
+ = g+ and Pg− = g− . Note that the

supports of g+ and g− are disjoint by the definition of positive part and negative

part of g . Hence, if we define sets A and B by
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A = supp g+ = {x : g+(x) > 0} and B = supp g− = {x : g−(x) > 0},

then A and B are both disjoint and both have positive measures for the following

reason. Suppose that g ≥ 0 or g ≤ 0. Since g = f1 − f2 , and f1 6= f2 , then g > 0

or g < 0. Without loss of generality, we assume that g > 0. So f1 − f2 > 0, then

since f1 and f2 are both densities, 0 =
∫ 1

0
f1 −

∫ 1

0
f2 > 0, which is a contradiction.

Therefore, A and B are both disjoint and both have positive measures. By using

lemma 2.34, it follows that,

A = supp g+ ⊆ S−1(supp PSg
+) = S−1(supp g+) = S−1(A). (2.21)

Similarly, we have

B ⊆ S−1(B).

Therefore,

A ⊆ S−1(A) and B ⊆ S−1(B).

Note that S−1(A) and S−1(B) are disjoint sets as it stated and shown in the following

claim.

Claim 1. S−1(A) and S−1(B) are disjoint.

Proof. Assume that S−1(A) and S−1(B) are not disjoint. Then there exists

x ∈ S−1(A) ∩ S−1(B) =⇒ x ∈ S−1(A) and x ∈ S−1(B)

=⇒ S(x) ∈ A and S(x) ∈ B

=⇒ S(x) ∈ A ∩B.
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However, A and B were proven to be disjoint, which is a contradiction. Hence,

S−1(A) and S−1(B) are disjoint. tu

By the same process as (2.21), we have

S−1(A) = S−1(supp g+) ⊆ S−1(S−1(supp PSg
+)) = S−2(supp g+) = S−2(A),

and similarly S−1(B) ⊆ S−2(B), which follows by induction that

A ⊆ S−1(A) ⊆ S−2(A) ⊆ . . . ⊆ S−n(A)

and

B ⊆ S−1(B) ⊆ S−2(B) ⊆ . . . ⊆ S−n(B).

Note that also by induction on Claim 1, we have

S−n(A) and S−n(B) are also disjoint. (2.22)

We define

Ã =
∞⋃
n=0

S−n(A) and B̃ =
∞⋃
n=0

S−n(B).

Since A and B have positive measures, Ã and B̃ also have positive measures. More-

over, Ã and B̃ are disjoint as the following claim stated and shown.

Claim 2. Ã and B̃ are disjoint.

Proof. Assume that Ã and B̃ are not disjoint. Then there exists x such that

x ∈ Ã ∩ B̃ . Therefore,

x ∈ Ã and x ∈ B̃ =⇒ x ∈
∞⋃
n=0

S−n(A) and x ∈
∞⋃
n=0

S−n(B)
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=⇒ x ∈ S−p(A) for some p in Z+ and x ∈ S−q(B) for some q in Z+.

Let r = max{p, q} . Then x ∈ S−r(A)∩S−r(B), which contradicts (2.22). Therefore,

Ã and B̃ are disjoint. tu

Claim 3. Ã and B̃ are invariant sets under S .

Proof. Note that

S−1(Ã) = S−1

(
∞⋃
n=0

S−n(A)

)
=

∞⋃
n=0

S−n−1(A) =
∞⋃
n=1

S−n(A).

Also, note that

∞⋃
n=1

S−n(A) =
∞⋃
n=0

S−n(A) since S0(A) = A ⊆
∞⋃
n=1

S−n(A).

Hence

S−1(Ã) =
∞⋃
n=1

S−n(A) =
∞⋃
n=0

S−n(A) = Ã.

So S−1(Ã) = Ã , and similarly, S−1(B̃) = B̃ . Thus Ã and B̃ are invariant sets under

S . tu

So Ã and B̃ are disjoint, invariant sets under S , and both have positive measures,

which contradicts the assumption that S is ergodic. Therefore, there is at most one

stationary density f ∗ of PS .

For the second part, suppose that there is a unique stationary density f ∗ of

PS and f ∗(x) > 0. Assume that S is not ergodic. Then there is a nontrivial set,

for instance A , that is invariant under S , where nontrivial set means that λ(A) > 0

and λ(Ac) > 0. Let B = Ac . Then λ(B) > 0 and B is invariant under S because

S−1(B) = S−1(Ac) = (S−1(A))c = Ac = B . Note that f ∗ can be written as f ∗ =
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1Af
∗ + 1Bf

∗ . Since f ∗ is a stationary density of PS and by the linearity of PS , we

have

1Af
∗ + 1Bf

∗ = f ∗ = PSf
∗ = PS(1Af

∗ + 1Bf
∗) = PS(1Af

∗) + PS(1Bf
∗).

Hence,

1Af
∗ + 1Bf

∗ = PS(1Af
∗) + PS(1Bf

∗).

Since 1Af
∗ is nonnegative, by (2.19) we have

1Af
∗ = 0 on S−1(B) ⇐⇒ PS(1Af

∗) = 0 on B.

However, S−1(B) = B and 1Af
∗ = 0 on B , then PS(1Af

∗) = 0 on B . Thus

1Af
∗ = PS(1Af

∗) on B.

Also, by (2.19), we have

1Af
∗ = PS(1Af

∗) on A.

Therefore,

1Af
∗ = PS(1Af

∗) on [0, 1],

which means that 1Af
∗ is a stationary function of PS . Similarly, we have 1Bf

∗ is a

stationary function of PS . We normalize 1Af
∗ and 1Bf

∗ to make them densities of

PS , where normalization a function, for example g , means that we multiply g by a

constant so that ‖g‖1= 1 [7, 51]. So we let

fA =
1Af

∗

‖1Af ∗‖
and fB =

1Bf
∗

‖1Bf ∗‖
.

Wherefore, fA and fB are stationary densities of PS ; that is, fA = PSfA and fB =
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PSfB . Accordingly, there are two stationary densities of PS , which contradicts the

assumption of the unique existence of f ∗ . Therefore, S is ergodic. �

LEMMA 2.36. Suppose that (L1[0, 1],B, µ) is a measure space and S : [0, 1] →

[0, 1] is a measurable and nonsingular transformation. Assume that µ is an invariant

measure under S , and f ∈ L1[0, 1]. Then for every A ∈ B∫
S−1(A)

f(S) dµ =

∫
A

f dµ.

PROOF. We start by letting f = 1B . Note that by (2.15), we have 1B(S) =

1S−1(B) . Since µ is an invariant measure under S , we have∫
S−1(A)

1B(S) dµ =

∫ 1

0

1S−1(A)1S−1(B) dµ =

∫ 1

0

1S−1(A∩B) dµ

=

∫
S−1(A∩B)

dµ = µ(S−1(A ∩B))

= µ(A ∩B).

On the other hand, ∫
A

1B dµ =

∫ 1

0

1A1B dµ =

∫ 1

0

1A∩B dµ

=

∫
A∩B

dµ = µ(A ∩B).

Therefore, when f = 1B , the theorem is true. Clearly, the result is true for any simple

function by the linearity of the integral. Let f ∈ L1[0, 1]. Since f can be written as

f = f+ − f− , the integral of f+ and f− is given by∫ 1

0

f+ dµ = sup
0≤s1≤f+

{∫ 1

0

s1 dµ : s1 is a simple function

}
,
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and ∫ 1

0

f− dµ = sup
0≤s2 dµ≤f−

{∫ 1

0

s2 : s2 is a simple function

}
.

So again by the linearity of integral the theorem is true for any f ∈ L1[0, 1]. �

REMARK 2.37. Under the same assumption of Lemma 2.36, when the integral is

taking over the whole domain [0, 1], the result of the theorem becomes∫ 1

0

f(S) dµ =

∫ 1

0

f dµ.

DEFINITION 2.38. Let S : [0, 1]→ [0, 1] be a measurable and nonsingular trans-

formation. The set {Sk(x0)}∞k=0 is called an orbit of S with an initial point x0 [64].

The following two theorems tell the importance of S being an ergodic trans-

formation.

Birkhoff’s Pointwise Ergodic Theorem. Consider the measure space

(L1[0, 1],B, µ). Let S : [0, 1] → [0, 1] be a measurable and nonsingular transforma-

tion. Let the measure µ be an invariant measure under S . If f ∈ L1[0, 1], then there

exists f̃ ∈ L1[0, 1] such that f̃(S(x)) = f̃(x) and

f̃(x) = lim
n→∞

1

n

n−1∑
k=0

f(Sk(x)).

Furthermore, if µ is finite measure; that is, µ([0, 1]) <∞ , then∫ 1

0

f̃ dµ =

∫ 1

0

f dµ.

(Birkhoff’s Pointwise Ergodic Theorem can be found in [2].)
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PROOF. We will only prove the last statement under further assumption that f

is bounded. Let fn(x) =
1

n

n−1∑
k=0

f(Sk(x)). Remark 2.37 gives

∫ 1

0

fn dµ =

∫ 1

0

1

n

n−1∑
k=0

f(Sk) dµ

=
1

n

n−1∑
k=0

∫ 1

0

f(Sk) dµ =
1

n

n−1∑
k=0

∫ 1

0

f dµ

=
1

n
n

∫ 1

0

f dµ =

∫ 1

0

f dµ.

Hence, ∫ 1

0

fn dµ =

∫ 1

0

f dµ. (2.23)

Since f is bounded, then there exists M > 0 such that |f |≤M . Consequently,

|fn| =

∣∣∣∣∣ 1n
n−1∑
k=0

f(Sk(x))

∣∣∣∣∣
≤ 1

n

n−1∑
k=0

|f(Sk(x))| ≤ 1

n

n−1∑
k=0

M

=
1

n
n M = M

for all n . Note that since µ is finite,∫ 1

0

M dµ = Mµ([0, 1]) < ∞.

So, M is integrable. Therefore, fn is bounded by an integrable function. Then we

can apply the Dominated Convergence Theorem [53] and equation (2.23) to get,
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∫ 1

0

f̃ dµ =

∫ 1

0

lim
n→∞

1

n

n−1∑
k=0

f(Sk) dµ =

∫ 1

0

lim
n→∞

fn dµ

= lim
n→∞

∫ 1

0

fn dµ = lim
n→∞

∫ 1

0

f dµ =

∫ 1

0

f dµ.

Hence, ∫ 1

0

f̃ dµ =

∫ 1

0

f dµ. �

THEOREM 2.39. Assume that S : [0, 1] → [0, 1] is measurable, nonsingular, and

ergodic. Suppose that the corresponding Frobenius-Perron operator has a unique

stationary density f ∗ . Define the probability measure µ such that for every A ∈ B

µ(A) =

∫
A

f ∗ dλ. (2.24)

Then for any integrable f , the average of f along the orbits of S with initial point

x0 equals the average of f over the space [0, 1]. That is,

lim
n→∞

1

n

n−1∑
k=0

f(Sk(x)) =

∫ 1

0

f dµ. (2.25)

PROOF. First, since µ is defined as in (2.24), then by Theorem 2.26 µ is an invari-

ant measure under S . So it follows that, by Birkhoff’s Pointwise Ergodic Theorem,

there exists f̃ ∈ L1[0, 1] such that f̃(S(x)) = f̃(x), and

f̃(x) = lim
n→∞

1

n

n−1∑
k=0

f(Sk(x)). (2.26)

Furthermore, since µ is a probability measure, it is a finite measure, so Birkhoff’s

Pointwise Ergodic Theorem gives∫ 1

0

f̃ dµ =

∫ 1

0

f dµ. (2.27)
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Also, since S is ergodic, by lemma 2.33, f̃ is constant, and we write this constant as

α . So (2.26) can be written as

α = lim
n→∞

1

n

n−1∑
k=0

f(Sk(x))

for any x . Therefore, equation (2.27) becomes,∫ 1

0

f dµ =

∫ 1

0

f̃ dµ =

∫ 1

0

α dµ = α

∫ 1

0

dµ = αµ([0, 1]) = α.

So

α =

∫ 1

0

f dµ.

Thus, for any x ∈ [0, 1]

lim
n→∞

1

n

n−1∑
k=0

f(Sk(x)) =

∫ 1

0

f dµ.
�

The next corollary verifies equation (1.3), which was observed and mentioned

at the end of chapter 1.

COROLLARY 2.40. Assume that S : [0, 1] → [0, 1] is measurable, nonsingular

and ergodic. Suppose that µ is an invariant probability measure under S defined in

(2.24). Then for all x ∈ [0, 1], and for any set A ∈ B , the fraction of the number of

the points {Sk(x)} in A as k →∞ is given by µ(A). That is,

lim
n→∞

1

n

n−1∑
k=0

1A(Sk(x)) = µ(A).

PROOF. Let f = 1A in (2.25). Then

lim
n→∞

1

n

n−1∑
k=0

1A(Sk(x)) =

∫ 1

0

1A dµ =

∫
A

dµ = µ(A).
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�

Corollary 2.40 is a promised justification of (1.3), mentioned in Chapter 1. In

the following example, we strengthen Example 1.1 given in Chapter 1 using Corollary

2.40 by adding the true values.

EXAMPLE 2.41. Let the transformation S be from Example 2.29, Then f ∗(x) =

2
(1+x)2

is the stationary density function of PS . Let Ij = [ j−1
10
, j

10
] for j = 1, 2, . . . , 10,

and n = 106 . Then

1

n

n−1∑
k=0

1Ij(S
k(x)) ≈ µ(Ij) =

∫
Ij

f ∗ dλ =

∫
Ij

2

(1 + x)2 dλ

= − 2

1 + x

∣∣∣∣
Ij

= − 2

1 + j
10

+
2

1 + j−1
10

=
20

(j + 10)(j + 9)
.

We can see from Table 2 that the approximated probability distribution values

of Table 1 in chapter 1 are very close to the true values.

Moreover, we compute the probability distribution using the formula in equa-

tion (1.1) for the initial point x0 = π
8

when n = 103, 104, 105, and 106 . We present

the results in Table 3, which shows that as n gets bigger, the approximated proba-

bility distribution values get closer to the true values.
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Table 2: Independence of approximated probability values from initial values

Probability True Value

Ij x0 = π
4

x0 = π
8

x0 = π
16

x0 = π
32

µ(Ij)

[0,0.1] 0.1821 0.1826 0.1824 0.1819 0.1818

[0.1,0.2] 0.1516 0.1515 0.1515 0.1510 0.1515

[0.2,0.3] 0.1277 0.1277 0.1283 0.1281 0.1282

[0.3,0.4] 0.1099 0.1104 0.1100 0.1098 0.1099

[0.4,0.5] 0.0956 0.0948 0.0947 0.0956 0.0952

[0.5,0.6] 0.0833 0.0834 0.0829 0.0839 0.0833

[0.6,0.7] 0.0733 0.0730 0.0736 0.0735 0.0735

[0.7,0.8] 0.0655 0.0653 0.0654 0.0650 0.0654

[0.8,0.9] 0.0585 0.0583 0.0582 0.0583 0.0585

[0.9,1] 0.0524 0.0529 0.0528 0.0528 0.0526
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Table 3: Convergence of approximated probability values

Probability True Value

Ij n = 103 1n = 04 n = 105 n = 106 µ(Ij)

[0,0.1] 0.2150 0.1865 0.1835 0.1826 0.1818

[0.1,0.2] 0.1570 0.1487 0.1533 0.1515 0.1515

[0.2,0.3] 0.1120 0.1280 0.1259 0.1277 0.1282

[0.3,0.4] 0.1190 0.1110 0.1114 0.1104 0.1099

[0.4,0.5] 0.0830 0.0934 0.0943 0.0948 0.0952

[0.5,0.6] 0.0770 0.0830 0.0818 0.0834 0.0833

[0.6,0.7] 0.0600 0.0731 0.0722 0.0730 0.0735

[0.7,0.8] 0.0640 0.0667 0.0659 0.0653 0.0654

[0.8,0.9] 0.0510 0.0565 0.0589 0.0583 0.0585

[0.9,1] 0.0620 0.0531 0.0529 0.0529 0.0526

51



CHAPTER 3

SPLINE SPACE

Since this dissertation aims to approximate the unique stationary density func-

tion f ∗ of the Frobenius-Perron operator associated with S with faster convergence

rate than before, we are using a sequence of cubic spline functions. This method

works when f ∗ is smooth. The reason we are using the cubic spline functions is

that they are twice continuously differentiable on [0, 1], where a function g is twice

continuously differentiable if g
′

and g′′ exist and g′′ is continuous [30]. So, in this

chapter, we explain cubic spline functions, but first we explain the constant, linear,

and quadratic spline functions. More details about spline functions can be found in

the book by Kincaid and Cheney [40].

3.1 Spline Functions

A spline function of degree k [75] is a function defined on R that is a polyno-

mial of degree at most k locally and of class Ck−1(R) globally; that is, k − 1-times

continuously differentiable in the whole domain [33]. We can generate spline func-

tions recursively starting from constant spline functions, which are denoted by B0
i ,

i ∈ Z , where B0
i = 1[xi,xi+1) . The recursive relation of spline functions of degree k

from spline functions of degree k − 1 is given by

Bk
i (x) =

x− xi
xi+k − xi

Bk−1
i (x) +

xi+k+1 − x
xi+k+1 − xi+1

Bk−1
i+1 (x), k ≥ 1. (3.1)

We call Bk
i as spline function of degree k .
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Some properties of spline functions are stated in the following lemma.

LEMMA 3.1. (1) Bk
i is a nonnegative function and the support of Bk

i (x) is

(xi, xi+k+1) for k ≥ 0.

(2) On each subinterval (xi, xi+1), Bk
i is a polynomial of degree at most k for

k ≥ 0.

(3) Bk
i ∈ Ck−1(R) for k ≥ 1.

(4)
n−1∑
i=−k

Bk
i (x) = 1 for all x ∈ [0, 1].

DEFINITION 3.2. Let [0, 1] be a unit interval. A finite set P = {0 = x0 < x1 <

· · · < xn = 1} is called a partition of [0, 1] [42].

DEFINITION 3.3. A set {g1, g2, . . . , gn} is called linearly independent set if the

linear combination of {g1, g2, . . . , gn} has only a trivial solution [34]; that is,

a1g1 + a2g2 + · · ·+ angn = 0 ⇐⇒ a1 = a2 = · · · = an = 0.

For a regular partition {0 = x0 < x1 < · · · < xn = 1} of [0, 1], where a regular

partition means an equally spaced partition, we define Sk[x0, . . . , xn] to be the set of

all spline functions f of degree k whose domain is the unit interval [0, 1]. Note that,

the space Sk[x0, . . . , xn] is a subspace of L1[0, 1] and

{
Bk
i |[0,1]: i = −k,−k + 1, . . . , n− 1

}
(3.2)

is a basis for Sk[x0, . . . , xn] ; that is, Bk
i is a linearly independent subset of Sk[x0, . . . , xn]

such that each function in Sk[x0, . . . , xn] can be written as a linear combination of

elements of Bk
i [35]. Consequently, the dimension of Sk{x0, . . . , xn} is k + n .
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3.2 Linear Spline Functions

Linear spline functions B1
i , which used in [24, 25] to approximate f ∗ of PS ,

are spline functions of degree one. They are continuous piecewise linear functions. To

drive B1
i , we use the recursive formula (3.1) with B0

i = 1[xi,xi+1) and B0
i+1 = 1[xi+1,xi+2)

as follows:

B1
i (x) =

(
x− xi
xi+1 − xi

)
B0
i (x) +

(
xi+2 − x
xi+2 − xi+1

)
B0
i+1(x)

=

(
x− xi
h

)
B0
i (x) +

(
(2 + i)h− x

h

)
B0
i+1(x)

=

(
x− xi
h

)
1[xi,xi+1)(x) +

(
2−

(
x− xi
h

))
1[xi+1,xi+2)(x)

=



x−xi
h

xi ≤ x < xi+1

2− x−xi
h

xi+1 ≤ x < xi+2

0 x /∈ (xi, xi+2).

Let y =
x− xi
h

. Then

B1
i (x) =


y 0 ≤ y < 1

2− y 1 ≤ y < 2

0 y /∈ (0, 2).

So the linear spline function is represented by:

B1
i (x) = L

(
x− xi
h

)
,

where
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L(x) =


x 0 ≤ x < 1

2− x 1 ≤ x < 2

0 x /∈ (0, 2).

(3.3)

3.3 Quadratic Spline Functions

Quadratic spline functions are degree two spline functions, denoted by B2
i .

They are continuous piecewise quadratic functions. In [78], B2
i were used to ap-

proximate the stationary density f ∗ of PS . We drive B2
i by using equation (3.1) as

follows:

B2
i (x) =

(
x− xi
xi+2 − xi

)
B1
i (x) +

(
xi+3 − x
xi+3 − xi+1

)
B1
i+1(x)

=

(
x− xi

2h

)
B1
i (x) +

(
(3 + i)h− x

2h

)
B1
i+1(x)

=
1

2

(
x− xi
h

)
B1
i (x) +

1

2

(
3−

(
x− xi
h

))
B1
i+1(x).

Let y =
x− xi
h

. By using equation (3.3) for B1
i (x) and B1

i+1(x), we have

B2
i (x) =



1
2
y2 0 ≤ y < 1

1
2
y(2− y) + 1

2
(3− y)(y − 1) 1 ≤ y < 2

1
2
(3− y)(3− y) 2 ≤ y < 3

0 y /∈ (0, 3)
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=



1
2
y2 0 ≤ y < 1

3
4
−
(
y − 3

2

)2
1 ≤ y < 2

1
2

(y − 3)2 2 ≤ y < 3

0 y /∈ (0, 3).

Therefore,

B2
i (x) = Q

(
x− xi
h

)
,

where

Q(x) =



1
2
x2 0 ≤ x < 1

3
4
−
(
x− 3

2

)2
1 ≤ x < 2

1
2

(x− 3)2 2 ≤ x < 3

0 x /∈ (0, 3).

(3.4)

3.4 Cubic Spline Functions

In this section, we define the cubic spline functions that we use to approximate

f ∗ , the stationary density function of PS .

DEFINITION 3.4. A cubic spline function s for a regular partition {0 = x0 <

x1 < · · · < xn = 1} of [0, 1] is a degree three spline function [63], so it satisfies the

following:

(1) s is at most a cubic polynomial on [xi, xi+1] for i = 0, 1, . . . , n− 1.

(2) s ∈ C2[0, 1].

Recall that the collection of all cubic spline functions for the regular partition
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{0 = x0 < x1 < · · · < xn = 1} is denoted by S3[x0, x1, . . . , xn] . Among all the cubic

spline functions, B3
i , i = −3,−2, . . . , n− 1 are the important ones. In Figure 4, we

graph B3
i for i = −3, 2, 8, and 9 when n = 10 to see the reason why i starts at −3

and ends at 9, which is, in general, n− 1 .

Figure 4: B3
i for i = −3, 2, 8 and 9 when n = 10

Using the same approach as the linear spline and quadratic spline functions,

we can drive B3
i . We use equation (3.1) as follows:

B3
i (x) =

(
x− xi
xi+3 − xi

)
B2
i (x) +

(
xi+4 − x
xi+4 − xi+1

)
B2
i+1(x)

=

(
x− xi

3h

)
B2
i (x) +

(
(4 + i)h− x

3h

)
B2
i+1(x)

=
1

3

(
x− xi
h

)
B2
i (x) +

1

3

(
4−

(
x− xi
h

))
B2
i+1(x).

Let y =
x− xi
h

and use equation (3.4) for B2
i , and B2

i+1 , we have
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B3
i (x) =



1
3
y 1

2
y2 0 ≤ y < 1

1
3
y
[

3
4
−
(
y − 3

2

)2
]

+ 1
3
(4− y)

[
1
2

(y − 1)2] 1 ≤ y < 2

1
3
y
[

1
2
(y − 3)2

]
+ 1

3
(4− y)

[
3
4
−
(
y − 5

2

)2
]

2 ≤ y < 3

1
3
(4− y)

[
1
2
(y − 4)2

]
3 ≤ y < 4

0 y /∈ (0, 4)

=



1
6
y3 0 ≤ y < 1

1
6

[1 + 3(y − 1) + 3(y − 1)2 − 3(y − 1)3] 1 ≤ y < 2

1
6

[1 + 3(3− y) + 3(3− y)2 − 3(3− y)3] 2 ≤ y < 3

1
6
(4− y)3 3 ≤ y < 4

0 y /∈ (0, 4).

Hence, the cubic spline is represented by

B3
i (x) = C

(
x− xi
h

)
,

where

C(x) =



1
6
x3 0 ≤ x < 1

1
6

[1 + 3(x− 1) + 3(x− 1)2 − 3(x− 1)3] 1 ≤ x < 2

1
6

[1 + 3(3− x) + 3(3− x)2 − 3(3− x)3] 2 ≤ x < 3

1
6
(4− x)3 3 ≤ x < 4

0 x /∈ (0, 4).

(3.5)

The next lemma states some important properties about the cubic spline func-

tions that is a restating of Lemma 3.1 after being modified to the cubic spline func-

tions.
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LEMMA 3.5. (1) {B3
i }n−1

i=−3 is a basis of S3[x0, x1, . . . , xn] .

(2) B3
i is a nonnegative function and the support of B3

i (x) = (xi, xi+4).

(3)
n−1∑
i=−3

B3
i (x) = 1 for any x ∈ [0, 1] (see Figure 5 for clarification).

In Figure 5, B3
i was graphed for i = −3,−2, . . . , 9 when n = 10, and the point

x = 0.415 was chosen randomly in [0, 1]. It turns out there are only four nonzero

cubic spline functions B3
i at x = 0.415 with i = 1, 2, 3, 4, and

9∑
i=−3

B3
i (0.415) =

4∑
i=1

B3
i (0.415)

= 0.10235417 + 0.64585417 + 0.25122917 + 0.0005625

= 1.

Figure 5: Illustration of Lemma 3.5 (3)
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CHAPTER 4

PROJECTION METHOD

This chapter explains the projection method we are using to approximate

f ∗ , the unique stationary density function of Frobenius-Perron operator PS . Since

the projection method uses orthogonal property, we will start with the definition of

orthogonal function.

DEFINITION 4.1. Suppose that f ∈ L1[0, 1] and g ∈ L∞[0, 1], where L∞[0, 1] is

the space of bounded functions. Then f is orthogonal to g if 〈f, g〉 ≡
∫ 1

0
f(x)g(x) dx =

0, and it is written as f ⊥ g [27].

4.1 General Projection Method

A projection method is a numerical method that is used to approximate func-

tions using simpler functions [60]. To explain the projection method further, we let

W be a finite dimensional subspace, for example dim(W ) = m , of L1[0, 1]. Let

{φi}mi=1 be a basis of W such that each φi ∈ L∞[0, 1]. We define a linear operator

QW : L1[0, 1]→ W such that f −QWf is orthogonal to W . If f ∈ L2[0, 1], QWf is

the least squares projection of f onto W [10]. Since f−QWf satisfies the orthogonal

property, for all i = 1, 2, . . . ,m , we have

f −QWf ⊥ W ⇐⇒ f −QWf ⊥ φ1, φ2, . . . , φm

⇐⇒ 〈f −QWf, φi〉 = 0
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Figure 6: f −QWf is orthogonal to W

⇐⇒ 〈f, φi〉 − 〈QWf, φi〉 = 0

⇐⇒ 〈f, φi〉 = 〈QWf, φi〉 (4.1)

because 〈f − g, h〉 = 〈f, h〉 − 〈g, h〉 [20].

Moreover, since QWf ∈ W , QWf can be written as a linear combination of a

basis of W ; that is,

QWf =
m∑
j=1

cjφj. (4.2)

Using equation (4.1) and (4.2), we have

〈f, φi〉 =

〈
m∑
j=1

cjφj, φi

〉
=

m∑
j=1

cj〈φj, φi〉 (4.3)

for i = 1, 2, . . . ,m . Let a matrix B ∈ Rm×m and vector b ∈ Rm be such that

bij = 〈φj, φi〉 and bi = 〈f, φi〉. (4.4)

Then we have

bi =
m∑
j=1

cjbij =
m∑
j=1

bijcj
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for i = 1, 2, . . . ,m , which can be written as

Bc = b. (4.5)

So, QWf =
∑m

j=1 cjφj is determined by solving the invertible linear system (4.5).

The fact that B is invertible is justified in Claim 1 and Claim 2; nevertheless,

before stating and proving the claims, we define the following terms. We say that

a matrix A ∈ Rn×n is a symmetric matrix if AT = A [18]; that is aij = aji for

1 ≤ i, j ≤ n . Moreover, a matrix A ∈ Rn×n is called a positive definite matrix if A

is a symmetric matrix and xTAx > 0 for all x 6= 0 [41].

Claim 1. The matrix B defined in (4.4) is a positive definite matrix.

Proof. (1) Note that B is a symmetric matrix because 〈φj, φi〉 = 〈φi, φj〉 for all

1 ≤ i, j ≤ m .

(2) Let x 6= 0. Then for all x ∈ Rm , we have

xTBx = x1[Bx]1 + x2[Bx]2 + . . . xm[Bx]m

=
m∑
i=1

xi[Bx]i =
m∑
i=1

xi

(
m∑
j=1

bijxj

)

=
m∑
i=1

m∑
j=1

xixj〈φj, φi〉 =
m∑
i=1

m∑
j=1

xixj〈φi, φj〉

= 〈
m∑
i=1

xiφi,

m∑
j=1

xjφj〉 > 0.

By (1) and (2), B is a positive definite matrix. tu

Claim 2. The matrix B is invertible.
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Proof. Assume that B is not an invertible matrix. That is, B is a singular

matrix (a square matrix whose determine equals zero [70]). Accordingly, B has 0

as its eigenvalue. Therefore, there exists x 6= 0 ∈ Rm such that Bx = 0. Then

xTBx = xT0 = 0. However, this contradicts Claim 1 that B is a positive definite

matrix. Hence, B is an invertible matrix. tu

The operator QW can be used to approximate the stationary density f ∗ of

the Frobenius-Perron operator PS , where QWPS is defined from L1[0, 1] to W . If

W is chosen properly, see Lemma 4.2, then QWPS has a unique nonzero function fW

in W such that

(QWPS)fW = fW . (4.6)

By normalization, we may assume that ‖fW‖1= 1.

We expect that fW to be a good approximation to f ∗ in L1[0, 1] for the

following reason. By (4.6) we have

fW = (QWPS)fW = QW (PSfW ) ≈ PSfW

because QWPSfW is the least squares approximation of PSfW from W , providing

PSfW ∈ L2[0, 1]. Hence

PSfW ≈ fW .

This means that fW is nearly a stationary function of PS . Since f ∗ is the exact

stationary density of PS ; that is, PSf
∗ = f ∗ , we expect that

fW ≈ f ∗.
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We call this method of approximating f ∗ as a (least squares) projection

method using W . The idea is that a nonzero stationary function fW of QWPS

may approximate a stationary density of PS .

Suppose that {Wn}∞n=1 is a sequence of subspaces in L1[0, 1] such that W1 ⊂

W2 ⊂ . . . ⊂ Wn ⊂ . . . . Suppose that there is a sequence of nonzero stationary

functions of QWnPS ; that is, QWnPSfWn = fWn with ‖fWn‖1= 1 for n = 1, 2, . . . .

Then we may expect that fWn → f ∗ in L1[0, 1].

4.2 Constant Spline Projection Method

The famous Ulam’s method in the paper by Ulam [69], proposed as Markov

method, turns out to be the constant spline projection method using {S0
n[x0, . . . , xn]}∞n=1 .

Ulam considered a sequence of operators {UnPS}∞n=1 , where each Un : L1[0, 1] →

S0
n[x0, . . . , xn] is defined by

Unf =
n∑
i=1

[
1

λ(Ii)

∫
Ii

f

]
1Ii ,

where Ii =
[
i−1
n
, i
n

]
. Then Ulam showed that each UnPS has a stationary density fn .

Especially, UnPSfn = fn . Later, Li [47] showed that fn → f ∗ in L1[0, 1] as n→∞ .

Recall that from (3.2), for each n ∈ N , {B0
i }n−1

i=0 = {1Ii} is a basis of

S0
n[x0, . . . , xn] . Let Q0

n : L1[0, 1] → S0
n[x0, . . . , xn] be the projection operator onto

S0
n[x0, . . . , xn] . To show that Ulam’s method is a constant spline projection method,

it is enough to show that Un = Q0
n for each n . If we write Q0

nf =
∑n−1

j=0 cj1Ij , then

by (4.3) for each i ∈ {0, 2, . . . , n− 1} and f ∈ L1[0, 1], we have

n−1∑
j=0

cj〈1Ij , 1Ii〉 = 〈f, 1Ii〉 ⇐⇒
1

n
ci = 〈f, 1Ii〉 ⇐⇒ λ(Ii)ci = 〈f, 1Ii〉
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⇐⇒ ci =
1

λ(Ii)

∫ 1

0

f1Ii dλ ⇐⇒ ci =
1

λ(Ii)

∫
Ii

f dλ.

So for any f ∈ L1[0, 1], we have

Q0
nf =

n−1∑
i=0

ci1Ii =
n−1∑
i=0

[
1

λ(Ii)

∫
Ii

f

]
1Ii = Unf.

Consequently, Q0
nf = Unf for any f ∈ L1[0, 1]. Since this is true for any f ∈ L1[0, 1],

we conclude that Un = Q0
n , as desired.

4.3 Linear Spline Projection Method

The linear spline projection method was studied in the papers by Ding and

Rhee [24, 25] using sequence of subspaces {S1
n[x0, . . . , xn]}∞n=1 . Note that for each

n ∈ N , {B1
i }n−1

i=−1 is a basis of S1
n[x0, . . . , xn] . Let Q1

n : L1[0, 1] → S1
n[x0, . . . , xn] be

the projection operator onto S1
n[x0, . . . , xn] . It was shown in [25] that the operator

Q1
nPS has a nonzero stationary function fn (by normalization, it was assumed that

‖fn‖1= 1) such that fn → f ∗ in L1[0, 1], and the speed of convergence for linear

spline projection method is faster than the constant spline projection method.

4.4 Quadratic Spline Projection Method

In Zhou, et al. paper [78], the quadratic spline projection method was studied

using the sequence of subspaces {S2
n[x0, . . . , xn]}∞n=1 . Note that {B2

i }
n−1
i=−2 is a basis

of S2
n[x0, . . . , xn] for each n ∈ N . The operator Q2

n : L1[0, 1] → S2
n[x0, . . . , xn] was

defined to be the projection operator onto S2
n[x0, . . . , xn] . It was shown in [78] that the

operator Q2
nPS has a nonzero stationary function fn such that fn → f ∗ in L1[0, 1],

and the speed of convergence for quadratic spline projection method is faster than

the constant spline and linear spline projection methods.
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4.5 Cubic Spline Projection Method

As the tittle of this section indicates, we study the cubic spline projection

method. For simplicity we write B3
i as φi , where i = −3,−2, . . . , n − 1, so that

{φi}n−1
i=−3 is a basis for S3[x0, . . . , n] , and each φi ∈ L∞[0, 1].

We specialize the general projection method, which was mentioned in Section

4.1, to the cubic spline projection method as follows. We use S3[x0, . . . , xn] for W

in Section 4.1. Then QW becomes QS3[x0,...,xn] and fW becomes fS3[x0,...,xn] . For

simplicity of the notation, we will write QS3[x0,...,xn] as Qn and fS3[x0,...,xn] as fn .

We define Qn : L1[0, 1] → S3[x0, . . . , xn] such that f − Qnf is orthogonal to

S3[x0, . . . , xn] . Then (4.1) becomes

〈f, φi〉 = 〈Qnf, φi〉 (4.7)

for i = −3,−2, . . . , n− 1. Since Qnf ∈ S3[x0, . . . , xn] , Qnf can be written as linear

combination of a basis of S3[x0, . . . , xn] ; that is,

Qnf =
n−1∑
j=−3

cjφj. (4.8)

By combining (4.7) and (4.8) we have, for i = −3,−2, . . . , n− 1,

〈f, φi〉 =
n−1∑
j=−3

cj〈φj, φi〉. (4.9)

Let B ∈ R(n+3)×(n+3) and a vector b ∈ Rn+3 be such that

bij = 〈φj, φi〉 and bi = 〈f, φi〉. (4.10)

Then
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bi =
n−1∑
j=−3

bijcj

for i = −3, 2, . . . , n− 1, which can be written as

Bc = b. (4.11)

Therefore, Qnf =
∑n−1

j=−3 cjφj is determined by solving the invertible linear system

(4.11).

By specializing the general projection method in Section 4.1 to the Cubic

spline projection method, we have the following:

(1) Using the operator Qn : L1[0, 1]→ S3[x0, . . . , xn] , we have

QnPS

∣∣∣
S3[x0,...,xn]

: S3[x0, . . . , xn]→ S3[x0, . . . , xn].

(2) Let a nonzero function fn ∈ S3[x0, . . . , n] fulfils

QnPSfn = fn. (4.12)

The existence of such fn will be proven in Lemma 4.2.

(3) By normalization, we may assume that ‖fn‖1= 1.

(4) We expect that fn to be a good approximation to f ∗ in L1[0, 1].

After specializing the projection method to the cubic spline projection method,

we establish (2) from above in next lemma.

LEMMA 4.2. There is a nonzero function fn ∈ S3[x0, . . . , xn] such that QnPSfn =

fn .

PROOF. First note that QnPS|S3[x0,...,xn]: S
3[x0, . . . , xn]→ S3[x0, . . . , xn] . For easy
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notation we will write QnPS instead of QnPS|S3[x0,...,xn] . Let β = {φi}n−1
i=−3 be a basis

of S3[x0, . . . , xn] . Note that we can write

(QnPS)φj =
n−1∑
k=−3

mkjφk

for all j = −3, . . . , n− 1. If we let M = [mkj] , then M is the matrix representation

of QnPS with respect to β [74], so we write M = [QnPS]β . Recall that matrix B is

defined by bij = 〈φj, φi〉 . Then

〈(QnPS)φj, φi〉 =

〈
n−1∑
k=−3

mkjφk, φi

〉
=

n−1∑
k=−3

mkj 〈φk, φi〉

=
n−1∑
k=−3

mkjbik =
n−1∑
k=−3

bikmkj = [BM ]ij.

On the other hand, using (4.7), we have

〈(QnPS)φj, φi〉 = 〈Qn(PSφj), φi〉 = 〈PSφj, φi〉

If we define a matrix A ∈ R(n+3)×(n+3) by

aij = 〈PSφj, φi〉, (4.13)

then we have

〈(QnPS)φj, φi〉 = 〈PSφj, φi〉 = aij.

So BM = A , and hence M = B−1A .

Suppose that there exists a nonzero fn ∈ S3[x0, . . . , xn] such that

QnPSfn = fn . We write fn =
∑n−1

j=−3 djφj , where d = [d−3, . . . , dn−1]T . So d is the

coordinate vector of fn with respect to β [17]. Note that

(QnPS)fn = fn ⇐⇒ [(QnPS)fn]β = [fn]β ⇐⇒ [QnPS]β [fn]β = [fn]β
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⇐⇒ Md = d, where d 6= 0

⇐⇒ (B−1A)d = d ⇐⇒ Ad = Bd

⇐⇒ (A−B)d = 0.

(The equality [(QnPS)fn]β = [QnPS]β [fn]β can be found in [29]). So showing that the

existence of nonzero fn such that QnPSfn = fn is equivalent to showing (A−B)d = 0

with d 6= 0, which is again equivalent to showing that A − B has 0 as eigenvalue.

So, we need to prove that 0 is an eigenvalue of A−B .

Let eT = [1, . . . , 1] and ej = [0, . . . , 0, 1, 0, . . . , 0]T , where 1 is in the jth

position. The sum of entries of column j , for j = −3, . . . , n − 1, of A − B can be

obtained by

[eT (A−B)]ej =
n−1∑
i=−3

(aij − bij) =
n−1∑
i=−3

[〈PSφj, φi〉 − 〈φj, φi〉]

= 〈PSφj,
n−1∑
i=−3

φi〉 − 〈φj,
n−1∑
i=−3

φi〉 = 〈PSφj, 1〉 − 〈φj, 1〉

=

∫
[0,1]

PSφj · 1 dλ− 〈φj, 1〉 =

∫
[0,1]

PSφj dλ− 〈φj, 1〉

=

∫
S−1[0,1]

φj dλ− 〈φj, 1〉 =

∫
[0,1]

φj · 1 dλ− 〈φj, 1〉

= 〈φj, 1〉 − 〈φj, 1〉 = 0.

(We use the fact that
∑n−1

i=−3 φi = 1 for all x ∈ [0, 1]). So

eT (A−B) = 0T =⇒ (AT −BT )e = 0.
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Therefore, 0 is the eigenvalue of AT − BT , and hence 0 is the eigenvalue of A− B .

Thus there is a nonzero vector d ∈ Rn+3 such that (A − B)d = 0. So, using that

nonzero vector d , fn =
∑n−1

j=−3 djφj is a nonzero function in S3[x0, . . . , xn] such that

QnPSfn = fn . �

Lemma 4.2 assures that fn =
∑n−1

j=−3 djφj is a nonzero stationary function of

QnPS . However, we can not prove the nonnegativity of fn , and here is the argument

behind this assertion. If Qn is a Markov operator, then by assuming that the dimen-

sion of eigenspace of A − B associated with eigenvalue 0 is one [37], we can show

that fn ≥ 0 as follows. Suppose that f+
n and f−n are nonzero functions. Since Qn is

a Markov operator, QnPS is also a Markov operator. Moreover, since QnPSfn = fn ,

by Theorem 2.7 we have, QnPS(f+
n ) = f+

n and QnPS(f−n ) = f−n . This implies that

the dimension of the eigenspace of A−B associated with the 0 eigenvalue is at least

two. This contradicts the assumption that the dimension of the eigenspace of A−B

associated with the 0 eigenvalue is one. Therefore, f+
n = 0 or f−n = 0, which implies

that fn is nonnegative or −fn is nonnegative. So we may assume that fn is nonneg-

ative. However, Qn is not a Markov operator as the next example shows. Consider

Q4 : L1[0, 1] → S3[x0, . . . , x4] . We find Q4f with f(x) = x4 . If we solve the corre-

sponding system, Bc = b , where bij = 〈φj, φi〉 and bi = 〈f, φi〉 for −3 ≤ i, j ≤ 3, it

can be shown that

Q4f =
3∑

j=−3

cjφj,

where

c = [−0.0049, 0.0018, −0.0026, 0.0328, 0.2474, 0.8768, 2.2451]T .

70



Figure 7 shows the graph of f(x) = x4 and Q4f(x), where x ∈ [0, 0.18], and Figure

8 shows the zoomed in of Figure 7 into the interval [0, 0.02], which clearly shows

that there is a small interval near zero on which Q4f is negative. This shows that

Qn is not a Markov operator, and hence, fn can not be assured to be a nonnegative

function.

Figure 7: The graphs of f(x) = x4 and Q4f on the interval [0, 0.18]

From the above example, we note that in general, Qnf is not necessarily be

nonnegative when f is a nonnegative function. Furthermore, we note that every cj ≥

0 is a sufficient condition for Qnf to be nonnegative but not a necessary condition.

For instance, consider f(x) = x2 with n = 4. Using MATLAB, we get Q4f is

nonnegative in the whole domain [0, 1], but not all cj are nonnegative. In fact, we

have

c = [0.0417,−0.0208, 0.0417, 0.2292, 0.5417, 0.9792, 1.5417]T ,
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Figure 8: The graphs of f(x) = x4 and Q4f on the interval [0, 0.02]

where c2 < 0.

Because typically, fn ≈ f ∗ , so if f ∗ > 0, we expect that fn > 0 at least when

n is large enough. In fact, in our numerical experiments in Chapter 6, it will be

observed that every dj ≥ 0, and hence fn is nonnegative. In that case since φj ≥ 0

for all j , we can normalize fn as follows:

‖fn‖1 =

∫ 1

0

|fn(x)| dx =

∫ 1

0

∣∣∣∣∣
n−1∑
j=−3

djφj(x)

∣∣∣∣∣ dx
=

∫ 1

0

n−1∑
j=−3

djφj(x) dx =
n−1∑
j=−3

dj

∫ 1

0

φj(x) dx =
n−1∑
j=−3

dj ‖φj‖1

= d−3 ‖φ−3‖1 + d−2 ‖φ−2‖1 + · · ·+ dn−1‖φn−1‖1

=
h

24
d−3 +

h

2
d−2 +

23h

24
d−1 + hd0 + · · ·+ hdn−4 +

23h

24
dn−3

+
h

2
dn−2 +

h

24
dn−1 = hs,
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where

s =
d−3

24
+
d−2

2
+

23d−1

24
+ d0 + · · ·+ dn−4 +

23dn−3

24
+
dn−2

2
+
dn−1

24
.

Here we use the facts that

‖φ−3‖1 = ‖φn−1‖1 =
h

24
, ‖φ−2‖1 = ‖φn−2‖1 =

h

2
,

‖φ−1‖1 = ‖φn−3‖1 =
23h

24
, ‖φi‖1 = h for i = 0, 1, . . . , n− 4.

Since ‖fn‖1 = hs , we have ∥∥∥∥fnhs
∥∥∥∥

1

= 1.

By calling
fn
hs

again as fn , we have ‖fn‖1= 1.
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CHAPTER 5

CONVERGENCE ANALYSIS OF CUBIC SPLINE PROJECTION METHOD

The objective of this chapter is to show that {fn} converges to f ∗ in L1[0, 1];

that is, limn→∞ fn = f ∗ in L1[0, 1]. Recall that QnPSfn = fn , by (4.12), and f ∗ is the

unique stationary density function of the Frobenius-Perron operator PS associated

with a measurable and nonsingular transformation S .

To achieve our goal of showing {fn} → f ∗ in L1[0, 1], we organize this chapter

as follows. In Section 5.1, we find a uniform upper bound of {‖Qn‖1} for n ≥ 8. In

Section 5.2 we show that {Qnf} converges to f for any f ∈ L1[0, 1] as n → ∞ . In

Section 5.3 we find that the total variation of {Qnf} is bounded by some positive

constant times the total variation of f uniformly for n ≥ 8 and any f ∈ L1[0, 1]. In

Section 5.4 we find a uniform bound of {
∨1

0 fn} . Finally in section 5.5 we show that

{fn} converges to f ∗ in L1[0, 1].

5.1 Uniform Boundedness of {Qn}∞n=1

Our goal in this section is to find an upper bound of ‖Qn‖1 for any n ≥ 8.

Recall that for any f ∈ L1[0, 1] and for i = −3,−2, . . . , n− 1, we have

〈Qnf, φi〉 = 〈f, φi〉,

which, by (4.9), is equivalent to

n−1∑
j=−3

〈φj, φi〉cj = 〈f, φi〉
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since Qnf =
∑n−1

j=−3 cjφj . Also recall that by (4.11), the coefficients c = [c−3, . . . , cn−1]T

can be found by solving the invertible linear system Bnc = b . In (4.11) we wrote B

instead of Bn , but due to the dependence of B on n , we write Bn instead of B from

now on. For definitions of Bn and b , see (4.10). By calculating the inner products of

Bn = 〈φj, φi〉 for −3 ≤ i, j ≤ n− 1, we find matrix Bn as follows:

Bn =
h

5040



20 129 60 1 . . .

129 1208 1062 120 1 . . .

60 1062 2396 1191 120 1 . . .

1 120 1191 2416 1191 120 1 . . .

0 1 120 1191 2416 1191 120 1 . . .

. . . . . . . . . . . . . . . . . . . . .

· · · 1 120 1191 2416 1191 120 1 0

· · · 1 120 1191 2416 1191 120 1

· · · 1 120 1191 2396 1062 60

· · · 1 120 1062 1208 129

· · · 1 60 129 20



,

where h =
1

n
.

In the following, we give two examples of finding entries of Bn by showing

how to find b−3,−3 = 〈φ−3, φ−3〉 and b−3,−2 = 〈φ−3, φ−2〉 . Note that by (3.5),

φ−3(x) =
1

6

(
4− x− (−3h)

h

)3

.

So,
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b−3,−3 = 〈φ−3, φ−3〉 =

∫ 1

0

(φ−3(x))2 dx =

∫ h

0

[
1

6

(
4− x− (−3h)

h

)3
]2

dx

=

∫ h

0

1

36

(
1− x

h

)6

dx =
h

36

∫ 1

0

(1− t)6 dt =
h

252
=

h

5040
· 20.

For b−3,−2 , again by (3.5), we have

φ−2(x) =
1

6

(
1+3

(
3− x− (−2h)

h

)
+3

(
3− x− (−2h)

h

)2

−3

(
3− x− (−2h)

h

)3)
.

So,

b−3,−2 = 〈φ−3, φ−2〉 =

∫ 1

0

φ−3(x)φ−2(x) dx

=

∫ h

0

[
1

6

(
4− x− (−3h)

h

)3
][

1

6

(
1 + 3

(
3− x− (−2h)

h

)

+ 3

(
3− x− (−2h)

h

)2

− 3

(
3− x− (−2h)

h

)3)]
dx

=
1

36

∫ h

0

(
1− x

h

)3
(

1 + 3
(

1− x

h

)
+ 3

(
1− x

h

)2

− 3
(

1− x

h

)3
)
dx

=
h

36

∫ 1

0

(1− t)3 (1 + 3 (1− t) + 3 (1− t)2 − 3 (1− t)3) dt
=

43h

1680
=

h

5040
· 129.

For simplicity, we define a matrix B̂n ∈ R(n+3)×(n+3) and vector b̂ ∈ Rn+3 such that

B̂n =
5040

h
Bn and b̂ =

5040

h
b. (5.1)

Then

Bnc = b ⇐⇒ B̂nc = b̂.
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Therefore,

c = B̂−1
n b̂,

and B̂n is given by

B̂n =



20 129 60 1 . . .

129 1208 1062 120 1 . . .

60 1062 2396 1191 120 1 . . .

1 120 1191 2416 1191 120 1 . . .

0 1 120 1191 2416 1191 120 1 . . .

. . . . . . . . . . . . . . . . . . . . .

· · · 1 120 1191 2416 1191 120 1 0

· · · 1 120 1191 2416 1191 120 1

· · · 1 120 1191 2396 1062 60

· · · 1 120 1062 1208 129

· · · 1 60 129 20



.

Note that B̂n is a band-matrix with band-width three, where bandwidth is the small-

est nonnegative integer, for example k , such that bij = 0 for |i− j|> k [48].

Since our goal is to find an upper bound of ‖Qn‖1 , first we need to find an

upper bound of
∥∥∥B̂−1

n

∥∥∥
1
, where ‖·‖1 is defined as follows:

DEFINITION 5.1. The 1-norm of a matrix L ∈ Rm×m is the maximum of column

sum of |lij| for 1 ≤ j ≤ m [65]. Namely,
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‖L‖1 = max
1≤j≤m

m∑
i=1

|lij|.

We use MATLAB to find the information given in Table 4. As we can see from

Table 4: 1-norm of B̂−1
n

n = 8 ‖B̂−1
8 ‖1= 0.355436

n = 16 ‖B̂−1
16 ‖1= 0.351039

n = 32 ‖B̂−1
32 ‖1= 0.351003

n = 64 ‖B̂−1
64 ‖1= 0.351010

n = 128 ‖B̂−1
128‖1= 0.351010

Table 4, ∥∥∥B̂−1
n

∥∥∥
1
≤ 0.36 for all n ≥ 8.

In the following lemma, we prove the uniform boundedness of ‖Qn‖1 .

THEOREM 5.2. ‖Qn‖1 ≤ 1815 uniformly for any n ≥ 8.

PROOF. One can show that ‖φi‖1 ≤ h for all i = −3,−2, . . . , n− 1. Recall that

Qnf =
∑n−1

i=−3 ciφi . If n ≥ 8, and by (3) of Lemma 3.5 and properties of 1-norm [36],

we have

‖Qnf‖1 =

∥∥∥∥∥
n−1∑
i=−3

ciφi

∥∥∥∥∥
1

≤
n−1∑
i=−3

|ci| ‖φi‖1 ≤
n−1∑
i=−3

|ci|h
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= h ‖c‖1 = h
∥∥∥B̂−1

n b̂
∥∥∥

1
= h · 5040

h

∥∥∥B̂−1
n

∥∥∥
1
‖b‖1

≤ 5040(0.36)‖b‖1 = 1815‖b‖1 = 1815
n−1∑
i=−3

|〈f, φi〉|

= 1815
n−1∑
i=−3

∣∣∣∣∫ 1

0

f · φi(x) dx

∣∣∣∣ ≤ 1815
n−1∑
i=−3

∫ 1

0

|f · φi(x)| dx

= 1815
n−1∑
i=−3

∫ 1

0

|f | · |φi(x)| dx = 1815
n−1∑
i=−3

∫ 1

0

|f | · φi(x) dx

= 1815
n−1∑
i=−3

〈|f |, φi〉 = 1815

〈
|f |,

n−1∑
i=−3

φi

〉

= 1815 〈|f |, 1〉 = 1815 ‖f‖1 ,

(since |
∫ b
a
f(x) dx|≤

∫ b
a
|f(x)| dx [52]). Hence,

‖Qnf‖1 ≤ 1815 ‖f‖1 =⇒ ‖Qnf‖1

‖f‖1

≤ 1815.

Thus,

‖Qn‖1 ≤ 1815 for all n ≥ 8. �

5.2 Convergence of {Qnf}∞n=1 to f

This section shows that {Qnf} converges to f in L1[0, 1]. For this purpose,

we first need to define a clamped spline function.

DEFINITION 5.3. A clamped spline function sn in S3[x0, . . . , xn] of a given func-

tion g is a cubic spline function sn in S3[x0, . . . , xn] [13] that satisfies the following
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conditions:

(1) s(xi) = g(xi) for i = 0, 1, . . . , n .

(2) s′(x0) = g′(x0) and s′(xn) = g′(xn).

THEOREM 5.4. For any f ∈ L1[0, 1], limn→∞ ‖Qnf − f‖1 = 0.

PROOF. Let f ∈ L1[0, 1]. We need to show that for any ε > 0, we can find

N ∈ N such that ‖Qnf − f‖1 < ε whenever n > N [55]. Since C4[0, 1] is dense in

L1[0, 1] [19], then for all f ∈ L1[0, 1], there exists g ∈ C4[0, 1] such that

‖g − f‖1 ≤
1

3632
ε.

It is a well-known fact, from [9], that for each n , we have sn ∈ S3[x0, . . . , xn] of g ,

where sn is a clamped spline function, such that

max
x∈[0,1]

|g(x)− sn(x)| ≤ 5

384n4
max
x∈[0,1]

∣∣g(4)(x)
∣∣ .

We use Hölder’s inequality [72] and the fact that Qng is the least squares approxi-

mation to g from S3[x0, . . . , xn] to get

‖Qng − g‖1 ≤ ‖Qng − g‖2‖1‖2 = ‖Qng − g‖2 ≤ ‖sn − g‖2

=

[∫ 1

0

|g(x)− sn(x)|2dx
]1/2

≤

[∫ 1

0

[
max
x∈[0,1]

|g(x)− sn(x)|
]2

dx

]1/2

= max
x∈[0,1]

|g(x)− sn(x)| ≤ 5

384n4
max
x∈[0,1]

∣∣g(4)(x)
∣∣ .

So we can choose N big enough so that

‖Qng − g‖1 <
ε

2
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whenever n > N . Accordingly, if n > N we have

‖Qnf − f‖1 = ‖Qnf −Qng +Qng − g + g − f‖1

≤ ‖Qnf −Qng‖1 + ‖Qng − g‖1 + ‖g − f‖1

≤ ‖Qn‖1 ‖f − g‖1 + ‖Qng − g‖1 + ‖g − f‖1

= (‖Qn‖1 + 1) ‖f − g‖1 + ‖Qng − g‖1

≤ (1815 + 1) ‖f − g‖1 + ‖Qng − g‖1

<
1816ε

3632
+
ε

2
= ε . �

5.3 Uniform Boundedness of the Total Variation of {Qnf} by the Total

Variation of f

In this section, we find a uniform bound of the total variation of {Qnf} in

terms of the total variation of f when f ∈ BV [a, b] , where the bounded variation

space BV [a, b] is the space of functions whose total variation is bounded [31]. We

divide the process of finding a uniformly upper bound of
∨1

0Qnf in terms of
∨1

0 f

into three steps illustrated in Subsections 5.3.2, 5.3.3 and 5.3.4. Nevertheless, first,

we start with the definition of total variation of a function f , then provide some

important properties of the total variation of functions in Subsection 5.3.1.

DEFINITION 5.5. Let P : a = x0 < x1 < · · · < xn = b be a partition of [a, b] .

The total variation of a real-valued function on an interval [a, b] ⊂ R is defined by
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b∨
a

f = sup
P

{
n∑
i=0

|f(xi+1)− f(xi)|

}
, (5.2)

where the supremum is taken over all partitions P of [a, b] [16].

5.3.1 Properties of Total Variation of functions

Before we state the properties of total variation of functions, we first need to

introduce Riemann sum and an important result about Riemann integral [6].

DEFINITION 5.6. Let f : [a, b] → R be a bounded function. If P : a = x0 <

x1 < · · · < xn = b is a partition of [a, b] , and if c1, c2, . . . , cn are numbers such that

xi−1 ≤ ci ≤ xi for i = 1, 2, . . . , n , then the sum

R(P, f) =
n∑
i=1

f(ci)(xi − xi−1)

is called a Riemann sum for f corresponding to the partition P and the intermediate

points ci .

DEFINITION 5.7. Let P : a = x0 < x1 < · · · < xn = b be a partition of [a, b] .

Then the norm of partition P is the width of the largest subinterval of P [62]; that

is, for i = 1, 2, . . . , n

‖P‖ = max(xi − xi−1).

LEMMA 5.8. Let f : [a, b] → R be Riemann integrable on [a, b] . Then, if ε > 0

is given, then there is a δ > 0 such that if P is any partition of [a, b] such that

‖P‖< δ , and if R(P, f) is any Riemann sum for f corresponding to partition P and
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any intermediate points ci , then∣∣∣∣R(P, f)−
∫ b

a

f(x) dx

∣∣∣∣ < ε.

PROOF. For the proof and more details, see the book by Bartle and Sherbert [6].

�

The following lemma states some of the important properties of total variation

of functions (this lemma is found in [26]).

LEMMA 5.9. (1) If f is a monotonic function on [a, b] , then

b∨
a

f = |f(a)− f(b)|,

where f is called a monotonic function if f is an increasing or decreasing

function on [a, b] [58].

(2) Let f1, f2, . . . , fn be functions of bounded variation on [a, b] . Then the sum-

mation of fi is of bounded variation and

b∨
a

(f1 + · · ·+ fn) ≤
b∨
a

f1 + · · ·+
b∨
a

fn.

(3) Let g : [s, t]→ [a, b] be a monotonic function on [s, t] and f be a function of

bounded variation on [a, b] , then the composition function f ◦ g is a function

of bounded variation on [s, t] , and

t∨
s

f ◦ g ≤
b∨
a

f.

(4) Let f be a function of bounded variation on [a, b] and let a = a0 < a1 <

· · · < am = b . Then f is a function of bounded variation on [ai−1, ai] for
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i = 1, . . . ,m and

a1∨
a0

f + · · ·+
am∨
am−1

f =
b∨
a

f.

(5) Let f be monotonic and continuously differentiable on [a, b] . Then

b∨
a

f =

∫ b

a

|f ′(x)|dx.

(6) If f is a function of bounded variation on [a, b] , and g is continuously dif-

ferentiable on [a, b] , then the product function fg is a function of bounded

variation on [a, b] , and

b∨
a

fg ≤

(
sup
x∈[a,b]

|g(x)|

)
b∨
a

f +

∫ b

a

|f(x)g′(x)|dx.

PROOF. (1) Let f be a monotonic function, and P : a = x0 < x1 < · · · < xn = b

be a partition of [a, b] . We divide the proof into two cases.

Case 1. Let f be an increasing function, then

f(xi−1) ≤ f(xi) whenever xi−1 < xi.

By the definition of total variation of f over P in (5.2) , we have

b∨
a

f = sup
P

{
n∑
i=1

|f(xi)− f(xi−1)|

}
= sup

P

{
n∑
i=1

f(xi)− f(xi−1)

}

= sup
P
{f(b)− f(a)} = f(b)− f(b).

Case 2. If f is decreasing, similarly we have

84



b∨
a

f = f(a)− f(b).

Hence, if f is a monotonic function, we have

b∨
a

f = |f(a)− f(b)|.

(2) Suppose that f1, f2, . . . , fn are functions of bounded variation on [a, b] , and P :

a = x0 < x1 < · · · < xn = b is a partition of [a, b] . Then

b∨
a

(f1 + · · ·+ fn) = sup
P

{
n∑
i=1

|(f1 + · · ·+ fn)(xi)− (f1 + · · ·+ fn)(xi−1)|

}

= sup
P

{
n∑
i=1

|(f1(xi) + · · ·+ fn(xi))− (f1(xi−1) + · · ·+ fn(xi−1))|

}

= sup
P

{
n∑
i=1

|(f1(xi)− f1(xi−1)) + · · ·+ (fn(xi)− fn(xi−1))|

}

≤ sup
P

{
n∑
i=1

|f1(xi)− f1(xi−1)|+ · · ·+ |fn(xi)− fn(xi−1)|

}

≤ sup
P

{
n∑
i=1

|f1(xi)− f1(xi−1)|

}
+ · · ·+ sup

P

{
n∑
i=1

|fn(xi)− fn(xi−1)|

}

=
b∨
a

f1 + . . .
b∨
a

fn.

Therefore,

b∨
a

(f1 + · · ·+ fn) =
b∨
a

f1 + . . .
b∨
a

fn.

(3) Let f be a function of bounded variation on [a, b] , and g : [s, t] → [a, b] be an

increasing function on [s, t] . Let {s = x0 < x1 < · · · < xn = t} be a partition of
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[s, t] . Then {a < g(x0) < g(x1) < · · · < g(xn) < b} is a partition of [a, b] . So

n∑
i=1

|(f ◦ g)(xi)− (f ◦ g)(xi−1)| ≤
n∑
i=1

|(f ◦ g)(xi))− (f ◦ g)(xi−1))|

+ |(f ◦ g)(x0))− f(a)|+|f(b)− (f ◦ g)(xn))|

≤
b∨
a

f.

Hence,

t∨
s

f ◦ g ≤
b∨
a

f.

Similarly, we can prove the same result when g is decreasing.

(4) Let f be a function of bounded variation on [a, b] and let a = a0 < a1 < · · · <

am = b . We will prove the statement if a < c < b , which by induction the statement

will be true for any finite number of subintervals.

Let P : a = x0 < · · · < xn = b be a partition of [a, b] , and c ∈ [a, b] such

that c = xm for some 0 < m < n . Assume that the partition P
′

: a = x0 <

· · · < c = xm < · · · < xn = b . Note that, P ⊆ P
′
. Then

∑n
i=1|f(xi) − f(xi−1)|

over partition P is less than or equal
∑n

i=1|f(xi) − f(xi−1)| over partition P
′
. Let

P
′
1 : a = x0 < · · · < xm = c be a partition of [a, c] , and P

′
2 : c = xm < · · · < xn = b

be a partition of [c, b] . Then we can write

n∑
i=1

|f(xi)− f(xi−1)| =
m∑
i=1

|f(xi)− f(xi−1)|+
n∑

i=m+1

|f(xi)− f(xi−1)|.

Therefore, we have

b∨
a

f = sup
P

{
n∑
i=1

|f(xi)− f(xi−1)|

}
≤ sup

P ′

{
n∑
i=1

|f(xi)− f(xi−1)|

}
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= sup
P ′

{
m∑
i=1

|f(xi)− f(xi−1)|+
n∑

i=m+1

|f(xi)− f(xi−1)|

}

≤ sup
P
′
1

{
m∑
i=1

|f(xi)− f(xi−1)|

}
+ sup

P
′
2

{
n∑

i=m+1

|f(xi)− f(xi−1)|

}

=
c∨
a

f +
b∨
c

f.

Thus,

b∨
a

f ≤
c∨
a

f +
b∨
c

f. (5.3)

To prove the other inequality, let P1 : a = x0 < · · · < xm = c , and P2 : c =

xm < · · · < xn = b be all the partitions of [a, c] and [c, b] , respectively, such that for

some ε > 0, we have

c∨
a

f − ε

2
<

m∑
i=1

|f(xi)− f(xi−1)|

and

b∨
c

f − ε

2
<

n∑
i=m+1

|f(xi)− f(xi−1)|.

Then

c∨
a

f +
b∨
c

f − ε <

m∑
i=1

|f(xi)− f(xi−1)|+
n∑

i=m+1

|f(xi)− f(xi−1)|

=
n∑
i=1

|f(xi)− f(xi−1)| ≤ sup
p

{
n∑
i=1

|f(xi)− f(xi−1)|

}

=
b∨
a

f.
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Thus,

c∨
a

f +
b∨
c

f − ε <
b∨
a

f.

Since ε was arbitrary,

c∨
a

f +
b∨
c

f ≤
b∨
a

f. (5.4)

Therefore, by (5.3) and (5.4), we have

c∨
a

f +
b∨
c

f =
b∨
a

f,

which follows by induction

a1∨
a0

f + · · ·+
an∨
an−1

f =
b∨
a

f.

(5) Let g be a monotonic and continuously differentiable function on [a, b] , and

P : a = x0 < x1 < · · · < xn = b be a partition of [a, b] . Note that, using the

Fundamental Theorem of Calculus, we have

b∨
a

f = sup
P

{
n∑
i=1

|f(xi)− f(xi−1)|

}
= sup

P

{
n∑
i=1

∣∣∣∣∫ xi

xi−1

f ′(x) dx

∣∣∣∣
}

≤ sup
P

{
n∑
i=1

∫ xi

xi−1

|f ′(x)| dx

}
= sup

P

{∫ b

a

|f ′(x)| dx
}

=

∫ b

a

|f ′(x)| dx.

Therefore, for any partition of [a, b] , we have

b∨
a

f ≤
∫ b

a

|f ′(x)| . (5.5)

On the other hand, let ε > 0. Then by Lemma 5.8, there exists δ > 0 such
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that if a partition P : a = x0 < x1 < · · · < xn = b of [a, b] satisfies ‖P‖< δ , then∣∣∣∣∣
n∑
i=1

|f ′(c̃i)|(xi − xi−1)−
∫ b

a

|f ′(x)| dx

∣∣∣∣∣ < ε, (5.6)

where c̃i is any point in [xi−1, xi] for i = 1, 2, . . . , n . Note that since f ∈ C1[a, b] , by

the Mean Value Theorem, which for example can be found in [50], we have

|f(xi)− f(xi−1)| = |f ′(ci)|(xi − xi−1)

for some ci ∈ [xi−1, xi] . Since (5.6) is valid with c̃i = ci , we have∣∣∣∣∣
n∑
i=1

|f ′(ci)|(xi − xi−1)−
∫ b

a

|f ′(x)| dx

∣∣∣∣∣ < ε. (5.7)

Therefore, using (5.7), we have∫ b

a

|f ′(x)| dx ≤
n∑
k=1

|f ′(ck)|(xi − xi−1) + ε,

which follows from Mean Value Theorem∫ b

a

|f ′(x)| dx ≤
n∑
k=1

|f(xi)− f(xi−1)|+ε.

By taking the supremum for both side over partition P , we have,∫ b

a

|f ′(x)| dx ≤ sup
‖P‖<δ

{
n∑
k=1

|f(xi)− f(xi−1)|

}
+ ε

≤ sup
P

{
n∑
k=1

|f(xi)− f(xi−1)|

}
+ ε

=
b∨
a

f + ε.

Since ε was arbitrary,

89



∫ b

a

|f ′(x)| dx ≤
b∨
a

f. (5.8)

Thus by (5.5) and (5.8), it follows that

b∨
a

f =

∫ b

a

|f ′(x)| dx.

(6) Let f be a function of bounded variation on [a, b] , and g be a continuously

differentiable function on [a, b] . Let f and g be in C1[a, b] . Then using (5), we get

b∨
a

fg =

∫ b

a

|(fg)′| dx =

∫ b

a

|f ′g + fg′| dx

≤
∫ b

a

|f ′g| dx+

∫ b

a

|fg′| dx

≤ sup
x∈[a,b]

|g(x)|
∫ b

a

|f ′| dx+

∫ b

a

|fg′| dx

= sup
x∈[a,b]

|g(x)|
b∨
a

f dx+

∫ b

a

|fg′| dx.

Since the space of C1 -functions is dense in the space of bounded variation functions,

the result is still true when f is a function of bounded variation. �

5.3.2 Finding an Upper Bound of
1∨
0

Qnf in terms of
n−1∑
i=−2

|ci − ci−1|.

As the title of this subsection says, we will find an upper bound of
∨1

0Qnf

in terms of
∑n−1

i=−2|ci − ci−1| , which will be provided in Lemma 5.10, where Qnf =∑n−1
i=−3 ciφi(x). Before we prove Lemma 5.10, we give the idea of the proof.

Since Qnf ∈ S3[x0, . . . , n] , which is a C2 -function, Qnf is a C1 -function. So

we can compute
∨1

0Qnf by using (5) of Lemma 5.9 as follows:
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1∨
0

Qnf =

∫ 1

0

∣∣∣(Qnf)
′
(x)
∣∣∣ dx =

∫ 1

0

∣∣∣∣∣
n−1∑
i=−3

ciφ
′

i(x)

∣∣∣∣∣ dx, (5.9)

where φ
′
i is given by

φ
′

i(x) =
1

h
C
′
(
x− xi
h

)
and

C
′
(x) =



1
2
x2 0 ≤ x ≤ 1

1
6
[3 + 6(x− 1)− 9(x− 1)2] 1 ≤ x ≤ 2

1
6
[−3− 6(3− x) + 9(3− x)2] 2 ≤ x ≤ 3

−1
2
(4− x)2 3 ≤ x ≤ 4

0 x /∈ (0, 4)

=



1
2
x2 0 ≤ x ≤ 1

1
2

+ (x− 1)− 3
2
(x− 1)2] 1 ≤ x ≤ 2

−1
2

+ (x− 3) + 3
2
(x− 3)2] 2 ≤ x ≤ 3

−1
2
(x− 4)2 3 ≤ x ≤ 4

0 x /∈ (0, 4).

Using (5.9), we are going to prove Lemma 5.10 next.

LEMMA 5.10. For any f ∈ L1[0, 1],

1∨
0

Qnf ≤ 8

3

n−1∑
i=−2

|ci − ci−1| .

PROOF. Note that by (5.9), we have
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1∨
0

Qnf =

∫ 1

0

∣∣∣(Qnf)
′
(x) dx

∣∣∣ =
n−1∑
i=0

∫ xi+1

xi

∣∣∣(Qnf)
′
(x)
∣∣∣ dx

=
n−1∑
i=0

∫ xi+1

xi

∣∣∣∣∣
n−1∑
j=−3

cjφ
′

j(x)

∣∣∣∣∣ dx
=

n−1∑
i=0

∫ xi+1

xi

∣∣∣ci−3φ
′

i−3(x) + ci−2φ
′

i−2(x) + ci−1φ
′

i−1(x) + ciφ
′

i(x)
∣∣∣ dx

=
n−1∑
i=0

1

h

∫ xi+1

xi

∣∣∣∣ci−3C
′
(
x− xi−3

h

)
+ ci−2C

′
(
x− xi−2

h

)

+ ci−1C
′
(
x− xi−1

h

)
+ ciC

′
(
x− xi
h

) ∣∣∣∣ dx
=

n−1∑
i=0

1

h

∫ xi+1

xi

∣∣∣∣ci−3

(
−1

2

(
x− xi−3

h
− 4

)2
)

+ ci−2

(
−1

2
+

(
x− xi−2

h
− 3

)
+

3

2

(
x− xi−2

h
− 3

)2
)

+ ci−1

(
1

2
+

(
x− xi−1

h
− 1

)
− 3

2

(
x− xi−1

h
− 1

)2
)

+ ci

(
1

2

(
x− xi
h

)2
)∣∣∣∣ dx.

Let t =
x− i
h

. Then the above integral becomes

=
n−1∑
i=0

1

h

∫ 1

0

∣∣∣∣(− 1

2
(t− 1)2 ci−3 −

1

2
ci−2 + (t− 1) ci−2 +

3

2
(t− 1)2 ci−2

+
1

2
ci−1 + tci−1 −

3

2
t2ci−1 +

1

2
t2ci

)
h dt

∣∣∣∣
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=
n−1∑
i=0

∫ 1

0

[∣∣∣∣12 (ci − 3ci−1 + 3ci−2 − ci−3) t2 + (ci−1 − 2ci−2 + ci−3) t

+
1

2
(ci−1 − ci−3)

∣∣∣∣
]
dt

≤ 1

2

n−1∑
i=0

∫ 1

0

[
|ci − 3ci−1 + 3ci−2 − ci−3| t2 + 2 |ci−1 − 2ci−2 + ci−3| t

+ |ci−1 − ci−3|
]
dt

=
1

2

n−1∑
i=0

[
1

3
|ci − 3ci−1 + 3ci−2 − ci−3|+ |ci−1 − 2ci−2 + ci−3|

+ |ci−1 − ci−3|
]

≤ 1

2

n−1∑
i=0

[
1

3

(
|ci − ci−1|+ 2 |ci−1 − ci−2|+ |ci−2 − ci−3|

)
+ |ci−1 − ci−2|

+ |ci−2 − ci−3|+ |ci−1 − ci−2|+ |ci−2 − ci−3|
]

=
n−1∑
i=0

[
1

6

∣∣∣∣ci − ci−1

∣∣∣∣+
4

3

∣∣∣∣ci−1 − ci−2

∣∣∣∣+
7

6

∣∣∣∣ci−2 − ci−3

∣∣∣∣
]

≤
n−1∑
i=−2

(
1

6
+

4

3
+

7

6

) ∣∣∣∣ci − ci−1

∣∣∣∣ =
n−1∑
i=0

16

6

∣∣∣∣ci − ci−1

∣∣∣∣
=

8

3

n−1∑
i=−2

∣∣∣∣ci − ci−1

∣∣∣∣.
Hence,
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1∨
0

Qnf ≤ 8

3

n−1∑
i=−2

∣∣∣∣ci − ci−1

∣∣∣∣.
�

The next step is to find an upper bound of
∑n−1

i=−2|ci − ci−1| . One way to do

so is by constructing a nonsingular matrix B̃n ∈ R(n+2)×(n+2) and vector b̃ ∈ Rn+2

such that

B̃nc̃ = b̃, (5.10)

where

c̃ = [c−2 − c−3, c−1 − c−2, . . . , cn−1 − cn−2]T ,

B̃n = [b̃ij]
n−1
i,j=−2 is a band-matrix with band-width three, and

b̃ =



b̃−2

b̃−1

b̃0

b̃1

...

b̃n−4

b̃n−3

b̃n−2

b̃n−1



=



β1b̂−2 + β2b̂−3

β3b̂−1 + β4b̂−2 + β5b̂−3

β6b̂0 + β7b̂−1 + β8b̂−2 + β9b̂−3

γ1b̂1 + γ0b̂0

...

γn−4b̂n−4 + γn−5b̂n−5

δ1b̂n−1 + δ2b̂n−2 + δ3b̂n−3 + δ4b̂n−4

δ5b̂n−1 + δ6b̂n−2 + δ7b̂n−3

δ8b̂n−1 + δ9b̂n−2



.

Both B̃n and b̃ are to be determined in the next subsection.

5.3.3 Finding an Upper Bound of
n−1∑
i=−2

|ci − ci−1| in terms of ‖b̃‖1
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We determine B̃n and b̃ as follows. Note that the first equation of B̃nc̃ = b̃

and the first two equations of B̂nc = b̂ give

b̃−2,−2(c−2 − c−3) + b̃−2,−1(c−1 − c−2) + b̃−2,0(c0 − c−1) + b̃−2,1(c1 − c0)

= β1b̂−2 + β2b̂−3

= β1(129c−3 + 1208c−2 + 1062c−1 + 120c0 + c1) + β2(20c−3 + 129c−2 + 60c−1 + c0)

= (129β1 + 20β2)c−3 + (1208β1 + 129β2)c−2 + (1062β1 + 60β2)c−1

+ (120β1 + β2)c0 + β1c1.

The left hand side of the above equation can be written as

−b̃−2,−2c−3 + (b̃−2,−2 − b̃−2,−1)c−2 + (b̃−2,−1 − b̃−2,0)c−1 + (b̃−2,0 − b̃−2,1)c0 + b̃−2,1c1,

so

−b̃−2,−2 = 129β1 + 20β2,

b̃−2,−2 − b̃−2,−1 = 1208β1 + 129β2,

b̃−2,−1 − b̃−2,0 = 1062β1 + 60β2,

b̃−2,0 − b̃−2,1 = 120β1 + β2,

b̃−2,1 = β1.

By setting b̃−2,1 = β1 = 1, then solving the remaining top four equations for

b̃−2,−2, b̃−2,−1, b̃−2,0 , and β2 , we obtain
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b̃−2,−2 = 111, b̃−2,−1 = 451, b̃−2,0 = 109, β2 = −12.

Continuing to use the similar technique gives us

B̃n =



111 451 109 1 . . .

178 1403 1071 119 1 . . .

435 3956 4557 1429 122 1 . . .

1 120 1191 2416 1191 120 1 . . .

0 1 120 1191 2416 1191 120 1 . . .

. . . . . . . . . . . . . . . . . . . . .

· · · 1 120 1191 2416 1191 120 1 0

· · · 1 120 1191 2416 1191 120 1

. . . 1 122 1429 4557 3956 435

. . . 1 119 1071 1403 178

. . . 1 109 451 111


and

96



b̃ =



b̂−2 − 12b̂−3

b̂−1 − 2b̂−2 + b̂−3

b̂0 + b̂−1 − 4b̂−2 + b̂−3

b̂1 − b̂0

...

b̂n−4 − b̂n−5

−b̂n−1 + 4b̂n−2 − b̂n−3 − b̂n−4

−b̂n−1 + 2b̂n−2 − b̂n−3

12b̂n−1 − b̂n−2



. (5.11)

Since our goal is to find an upper bound of
∑n−1

i=−2|ci − ci−1|=
∑n−1

i=−2|c̃i| , we

write B̃nc̃ = b̃ as c̃ = B̃−1
n b̃ . It turns out that ‖B̃−1

n ‖1 is uniformly bounded. In fact,

MATLAB gives the following results:

Table 5: 1-norm of B̃−1
n

n = 8 ‖B̃−1
8 ‖1= 0.042578

n = 16 ‖B̃−1
16 ‖1= 0.041892

n = 32 ‖B̃−1
32 ‖1= 0.041887

n = 64 ‖B̃−1
64 ‖1= 0.041869

n = 128 ‖B̃−1
128‖1= 0.041869

Hence, for n ≥ 8
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‖B̃−1
n ‖1 ≤ 0.043. (5.12)

So, for n ≥ 8,

n−1∑
i=−2

|ci − ci−1| =
n−1∑
i=−2

|c̃i| = ‖c̃‖1

= ‖B̃−1
n b̃‖1 ≤ ‖B̃−1

n ‖1‖b̃‖1

≤ 0.043‖b̃‖1.

Therefore,

n−1∑
i=−2

|ci − ci−1| = 0.043‖b̃‖1 for n ≥ 8.

5.3.4 Finding an Upper Bound of ‖b̃‖1 in terms of
1∨
0

f

In this subsection we find an upper bound of ‖b̃‖1 in terms of the total variation

of f , which is done in the following lemma, where b̃ ∈ Rn+2 is defined in (5.11) in

the previous subsection.

LEMMA 5.11. For f ∈ L1[0, 1]

‖b̃‖1 ≤ 37254
1∨
0

f.

PROOF. Note that by (5.1) and (5.11), ‖b̃‖1 is expressed as follows:

‖b̃‖1 =
∣∣∣b̂−2 − 12b̂−3

∣∣∣+
∣∣∣b̂−1 − 2b̂−2 + b̂−3

∣∣∣+
∣∣∣b̂0 + b̂−1 − 4b̂−2 + b̂−3

∣∣∣
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+
n−5∑
i=0

∣∣∣b̂i+1 − b̂i
∣∣∣+
∣∣∣b̂n−1 − 4b̂n−2 + b̂n−3 + b̂n−4

∣∣∣
+
∣∣∣b̂n−1 − 2b̂n−2 + b̂n−3

∣∣∣+
∣∣∣12b̂n−1 − b̂n−2

∣∣∣
=

5040

h

[
|b−2 − 12b−3|+ |b−1 − 2b−2 + b−3|+ |b0 + b−1 − 4b−2 + b−3|

+
n−5∑
i=0

|bi+1 − bi|+ |bn−1 − 4bn−2 + bn−3 + bn−4|

+ |bn−1 − 2bn−2 + bn−3|+ |12bn−1 − bn−2|
]
.

To find an upper bound of ‖b̃‖1 , it is sufficient to find an upper bound of each

term in the above expression. We first find an upper bound of the general term

‖bi+1−bi‖1 for i = 0, 1, . . . , n−5. Note that (xi, xi+5) is the support of φi+1(x)−φi(x).

So |bi+1 − bi| can be written as

|bi+1 − bi| =

∣∣∣∣∫ 1

0

f(x) [φi+1(x)− φi(x)] dx

∣∣∣∣
=

∣∣∣∣∣
∫ (i+5)h

ih

f(x) [φi+1(x)− φi(x)] dx

∣∣∣∣∣ .
Recall that ‖φi‖1= h for i = 0, 1, . . . , n− 4. Then for i = 0, 1, . . . , n− 5,∫ 1

0

[φi+1(x)− φi(x)] dx =

∫ 1

0

φi+1(x) dx−
∫ 1

0

φi(x) dx

= ‖φi+1‖1−‖φi‖1 = h− h = 0.

If we choose a constant, for example f(ih), in support of φi+1(x)− φi(x), then∫ (i+5)h

ih

f(ih) [φi+1(x)− φi(x)] dx = f(ih)

∫ (i+5)h

ih

[φi+1(x)− φi(x)] dx = 0.

99



Therefore,

|bi+1 − bi| =

∣∣∣∣∣
∫ (i+5)h

ih

f(x) (φi+1(x)− φi(x)) dx

−
∫ (i+5)h

ih

f(ih) (φi+1(x)− φi(x)) dx

∣∣∣∣∣
=

∣∣∣∣∣
∫ (i+5)h

ih

(f(x)− f(ih)) (φi+1(x)− φi(x)) dx

∣∣∣∣∣
≤
∫ (i+5)h

ih

|f(x)− f(ih)| · |φi+1(x)− φi(x)| dx

≤
∫ (i+5)h

ih

(i+5)h∨
ih

f

 |φi+1(x)− φi(x)| dx.

By symmetry the zero of |φi+1 − φi| that lies in [ih, (i+ 5)h] is (2i+5)h
2

, which is the

intersection point of φi+1 − φi as Figure 9 shows.

Figure 9: Intersection point between φi+1 − φi for i = 0, . . . , n− 5
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Therefore, the expressions of |φi+1(x)− φi(x)| are the following:

|φi+1(x)− φi(x)| =



φi(x) [ih, (i+ 1)h]

φi(x)− φi+1(x) [(i+ 1)h, (i+ 2)h]

φi(x)− φi+1(x) [(i+ 2)h, (i+ 5
2
)h]

φi+1(x)− φi(x) [(i+ 5
2
)h, (i+ 3)h]

φi+1(x)− φi(x) [(i+ 3)h, (i+ 4)h]

φi+1(x) [(i+ 4)h, (i+ 5)h].

By using (3.5), we calculate
∫ (i+5)h

ih
|φi+1(x)− φi(x)| dx over 6 subintervals specified

above as follows:

Over the first and last subintervals, we have∫ (i+1)h

ih

φi(x) dx =

∫ (i+1)h

ih

C

(
x− xi
h

)
dx = h

∫ 1

0

C(t) dt

= h

∫ 1

0

1

6
t3 dt =

h

24

and ∫ (i+5)h

(i+4)h

φi+1(x) dx =

∫ (i+5)h

(i+4)h

C

(
x− xi+1

h

)
dx = h

∫ 5

4

C(t− 1) dt

= h

∫ 5

4

1

6
(5− t)3 dt =

h

24
.

Over the second interval, we have∫ (i+2)h

(i+1)h

(φi(x)− φi+1(x)) dx =

∫ (i+2)h

(i+1)h

(
C

(
x− xi
h

)
− C

(
x− xi+1

h

))
dx

= h

∫ 2

1

(C(t)− C(t− 1)) dt
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= h

∫ 2

1

1

6

(
1 + 3(t− 1) + 3(t− 1)2 − 3(t− 1)3

− (t− 1)3 ) dt

= h
1

6

[
t+

3

2
(t− 1)2 + (t− 1)3 − (t− 1)4

]2

1

=
5h

12
.

Over the third subinterval, we have∫ (i+ 5
2

))h

(i+2)h

(φi(x)− φi+1(x)) dx =

∫ (i+ 5
2

))h

(i+2)h

(
C

(
x− xi
h

)
− C

(
x− xi+1

h

))
dx

= h

∫ 5
2

2

[
C(t)− C(t− 1)

]
dt

= h

∫ 5
2

2

1

6

[
1 + 3(3− t) + 3(3− t)2 − 3(3− t)3

− 1− 3(t− 2)− 3(t− 2)2 + 3(t− 2)3
]
dt

=
9h

64
.

Over the fourth subinterval, we have∫ (i+3)h

(i+ 5
2

))h

(φi+1(x)− φi(x)) dx =

∫ (i+3)h

(i+ 5
2

))h

(
C

(
x− xi+1

h

)
− C

(
x− xi
h

))
dx

= h

∫ 3

5
2

(C(t− 1)− C(t)) dt

= h

∫ 3

5
2

1

6

[
1 + 3(t− 2) + 3(t− 2)2 − 3(t− 2)3
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− 1− 3(3− t)− 3(3− t)2 + 3(3− t)3
]
dt

=
9h

64
.

Finally, over the fifth subinterval, we have∫ (i+4)h

(i+3)h

(φi+1(x)− φi(x)) dx =

∫ (i+4)h

(i+3)h

(
C

(
x− xi+1

h

)
− C

(
x− xi
h

))
dx

= h

∫ 4

3

(C(t− 1)− C(t)) dt

= h

∫ 4

3

1

6

[
1 + 3(4− t) + 3(4− t)2 − 3(4− t)3

− (4− t)3
]
dt =

5h

12
.

Therefore,

|bi+1 − bi| ≤
(i+5)h∨
ih

f

[
h

24
+

5h

12
+

9h

64
+

9h

64
+

5h

12
+

h

24

]

=
115

96
h

(i+5)h∨
ih

f for i = 0, 1, . . . , n− 5.

Using the same technique, one can show that

|b−2 − 12b−3| ≤
2h

5

2h∨
0

f and |12bn−1 − bn−2| ≤
2h

5

1∨
1−2h

|b−1 − 2b−2 + b−3| ≤
19h

20

3h∨
0

f and |bn−1 − 2bn−2 + bn−3| ≤
19h

20

1∨
1−3h

f

|b0 + b−1 − 4b−2 + b−3|≤
13h

5

4h∨
0

f and |bn−1 − 4bn−2 + bn−3 + bn−4|≤
13h

5

1∨
1−4h

f.
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Therefore,

‖b̃‖1 ≤
5040

h

[
2

5
h

2h∨
0

f +
19

20
h

3h∨
0

f +
13

5
h

4h∨
0

f

+
n−5∑
i=0

115

96
h

(i+5)h∨
ih

f +
13

5
h

1∨
1−4h

f +
19

20
h

1∨
1−3h

f +
2

5
h

1∨
1−2h


≤ 2016

x2∨
0

f + 4788

x3∨
0

f + 13104

x4∨
0

f

+
n−5∑
i=0

6037.5

(i+5)h∨
ih

f + 13104
xn∨
xn−4

f + 4788
xn∨
xn−3

f + 2016
xn∨
xn−2

f

≤ 25946

x1∨
0

f + 31983

x2∨
x1

f + 36005

x3∨
x2

f + 37254

x4∨
x3

f +
n−4∑
i=5

30188

xi∨
xi−1

f

+ 37254

xn−3∨
xn−4

f + 36005

xn−2∨
xn−3

f + 31983

xn−1∨
xn−2

f + 25946
xn∨
xn−1

≤ 37254
1∨
0

f

Hence,

‖b̃‖1 ≤ 37254
1∨
0

f.
�

Once we found that ‖b̃‖1 is bounded by 37254
∨1

0 f , we are ready to find a

uniform upper bound of the total variation of Qnf in terms of the total variation of

f .

THEOREM 5.12. Let f ∈ BV [0, 1]. Then for n ≥ 8 we have,
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1∨
0

Qnf ≤ 4272
1∨
0

f.

PROOF. Let f ∈ BV [0, 1]. By Lemma 5.10, equation (5.12), and Lemma 5.11,

we have

1∨
0

Qnf ≤ 8

3

n−1∑
i=−2

|ci − ci−1|

≤ 8

3
· 0.043 · 37254

1∨
0

f ≤ 4272
1∨
0

f.

Therefore, for n ≥ 8
1∨
0

Qnf ≤ 4272
1∨
0

f.
�

5.4 Uniform Boundedness of Total Variation of {fn}

This section is about finding a uniform upper bound of the total variation of

fn for n ≥ 8. To do that, we need Yorke’s inequality and Lasota-York inequality;

more details can be found in the book by Ding and Zhou [26] and the book by Lasota

and Yorke [46].

Yorke’s Inequality. Let f be a function of bounded variation on [a, b] , which is

contained in [0, 1]. Then we have

1∨
0

f1[a,b] ≤ 2
b∨
a

f +
2

b− a

∫ b

a

|f(x)|dx. (5.13)

PROOF. First of all we need to prove the following claim.

Claim. There exists c ∈ [a, b] such that
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|f(c)| ≤ 1

b− a

∫ b

a

|f(x)| dx.

Proof. We prove the claim by way of contradiction. Suppose that for all x ∈ [a, b] ,

we have

|f(x)| > 1

b− a

∫ b

a

|f(x)| dx.

Let v =

∫ b

a

|f(x)| dx . Then

|f(x)| > 1

b− a
v.

Integrate both side with respect to x , we get∫ b

a

|f(x)| dx >
1

b− a

∫ b

a

v dx =
1

b− a
v

∫ b

a

dx =
1

b− a
v (b− a) = v.

Thus, ∫ b

a

|f(x)| dx >

∫ b

a

|f(x)| dx,

which is a contradiction. Hence, there exists c ∈ [a, b] such that

|f(c)| ≤ 1

b− a

∫ b

a

|f(x)| dx.

tu

Note that
1∨
0

f1[a,b] =
b∨
a

f + |f(a)|+|f(b)|.

By using (1) and (4) of Lemma 5.9 and the claim, we get

1∨
0

f1[a,b] =
b∨
a

f + |f(a)|+|f(b)|
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=
b∨
a

f + |f(a)− f(c) + f(c)|+|f(b)− f(c) + f(c)|

≤
b∨
a

f + |f(a)− f(c)|+|f(b)− f(c)|+2|f(c)|

≤
b∨
a

f +
c∨
a

f +
b∨
c

f + 2
1

b− a

∫ b

a

|f(x)| dx

=
b∨
a

f +
b∨
a

f + 2
1

b− a

∫ b

a

|f(x)| dx

= 2
b∨
a

f +
2

b− a

∫ b

a

|f(x)| dx.
�

Lasota-Yorke inequality. Let f ∈ BV [0, 1] be a density function. Let S :

[0, 1]→ [0, 1] be a map that satisfies the following conditions:

(1) There is a partition 0 = a0 < a1 < · · · < ar = 1 of the interval [0, 1] such

that for i = 1, 2, . . . , r , the restriction S|(ai−1,ai) of S to the open interval

(ai−1, ai) can be extended to the closed interval [ai−1, ai] as a C2 -function.

(2) Assume that

s1 ≡ inf {|S ′(x)|: x ∈ [0, 1] /{a1, a2, . . . , ar−1}} > 0.

(3) Let s2 be defined by

s2 = sup

{
|S ′′(x)|
[S ′(x)]2

: x ∈ [0, 1] /{a1, a2, . . . , ar−1}
}
.

Then
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1∨
0

Pf ≤ α
1∨
0

f + β‖f‖1,

where

α =
2

s1

and β = max
i=1,...,n

2

[
s2 +

1

λ(Ii)

]
.

PROOF. Let Si = S|(ai−1,ai) , gi = S−1
i , and Ii = S((ai−1, ai)) for i = 1, 2, . . . , n .

Let’s denote

∆i(x) =


(ai−1, gi(x)) x ∈ Ii, g′i(x) > 0

(gi(x), ai) x ∈ Ii, g′i(x) < 0

(ai−1, ai) or φ x /∈ Ii.

Then for x ∈ [0, 1],

S−1((0, x)) =
n⋃
i=1

∆i(x).

Using the explicit definition of Frobenius-Perron operator in equation (2.13) and the

fact that ∆i is disjoint, we have

Pf =
d

dx

∫
S−1((0,x)

f(t) dt =
d

dx

∫
⋃n
i=1 ∆i(x)

f(t) dt

=
n∑
i=1

d

dx

∫
∆i(x)

f(t) dt.

The Fundamental Theorem of Calculus, where F ′(x) = f(x), gives

d

dx

∫
∆i(x)

f(t) dt =


d
dx

∫ gi(x)

ai−1
f(t)dt x ∈ Ii, g′i(x) > 0

d
dx

∫ ai
gi(x)

f(t)dt x ∈ Ii, g′i(x) < 0

d
dx

∫ ai
ai−1

f(t)dt x /∈ Ii

108



=


d
dx

[F (gi(x))− F (ai−1)] x ∈ Ii, g′i(x) > 0

d
dx

[F (ai)− F (gi(x))] x ∈ Ii, g′i(x) < 0

0 x /∈ Ii

=


g′i(x)f(gi(x)) x ∈ Ii, g′i(x) > 0

−g′i(x)f(gi(x)) x ∈ Ii, g′i(x) < 0

0 x /∈ Ii.

Then

Pf =
n∑
i=1

σi(x)f(gi(x))1Ii(x), (5.14)

where σi(x) = |g′i(x)| . Note that by (2) for all x ∈ Ii , we have

σi(x) = |g′i(x)| =
1

|S ′(gi(x))|
≤ 1

s1

. (5.15)

Case 1. If g′i(x) > 0, then σi(x) = g′i(x) =
1

S ′(gi(x))
. So

|σ′i(x)| =

∣∣∣∣[ 1

S ′(gi(x))

]′∣∣∣∣ =

∣∣∣∣−S ′′(gi(x))g′i(x)

[S ′(gi(x))]2

∣∣∣∣ .
Case 2. If g′i(x) < 0, then σi(x) = −g′i(x) = − 1

S ′(gi(x))
. So

|σ′i(x)| =

∣∣∣∣[− 1

S ′(gi(x))

]′∣∣∣∣ =

∣∣∣∣[ 1

S ′(gi(x))

]′∣∣∣∣ =

∣∣∣∣−S ′′(gi(x))g′i(x)

[S ′(gi(x))]2

∣∣∣∣ .
Thus by (3), for all x ∈ Ii ,

|σ′i(x)| =

∣∣∣∣−S ′′(gi(x))g′i(x)

[S ′(gi(x))]2

∣∣∣∣ ≤ s2σi(x). (5.16)

Let f ∈ BV [0, 1] be a density function. Then by (5.13), (5.14), (5.15), (5.16) and

(2), (3), (4), and (6) of Lemma 5.9, we have
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1∨
0

Pf =
1∨
0

n∑
i=1

σi(x)(f ◦ gi)1Ii

≤
n∑
i=1

1∨
0

σi(x)(f ◦ gi)1Ii

≤
n∑
i=1

[
2
∨
Ii

σi(f ◦ gi) +
2

λ(Ii)

∫
Ii

σi(f ◦ gi) dx

]

≤ 2
n∑
i=1

[(
sup
x∈Ii

σi

)∨
Ii

(f ◦ gi) +

∫
Ii

|σ′i|(f ◦ gi) dx

]
+

n∑
i=1

2

λ(Ii)

∫
Ii

σi(f ◦ gi) dx

≤ 2
n∑
i=1

[
1

s1

∨
Ii

(f ◦ gi) +

∫
Ii

s2σi(f ◦ gi) dx

]
+

n∑
i=1

2

λ(Ii)

∫
Ii

σi(f ◦ gi) dx

=
2

s1

n∑
i=1

∨
Ii

(f ◦ gi) + 2
n∑
i=1

∫
Ii

s2σi(f ◦ gi) dx+
n∑
i=1

2

λ(Ii)

∫
Ii

σi(f ◦ gi) dx

=
2

s1

n∑
i=1

∨
Ii

(f ◦ gi) + 2
n∑
i=1

[
s2 +

1

λ(Ii)

] ∫
Ii

σi(f ◦ gi) dx

≤ 2

s1

n∑
i=1

ai∨
ai−1

f + 2
n∑
i=1

[
s2 +

1

λ(Ii)

] ∫
Ii

σi(f ◦ gi) dx

=
2

s1

1∨
0

f + 2
n∑
i=1

[
s2 +

1

λ(Ii)

] ∫ ai

ai−1

f(y)dy

= α

1∨
0

f + β

n∑
i=1

∫ ai

ai−1

f(y) dy ≤ α

1∨
0

f + β

∫ 1

0

f(y) dy

= α

1∨
0

f + β‖f‖1 = α

1∨
0

f + β,
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where α =
2

s1

and β = maxi=1,...,n 2
[
s2 + 1

λ(Ii)

]
. �

From now on, we assume that the map S satisfies all the assumptions in the

Lasota-Yorke inequality. Then, there exist two positive constants α and β such that

for all density functions f of bounded variation we have,

1∨
0

Pf ≤ α
1∨
0

f + β. (5.17)

THEOREM 5.13. Suppose that {fn} ∈ S3[x0, . . . , xn] . Then total variation of

{fn} is uniformly bounded by 4272β
1−4272α

for n ≥ 8.

PROOF. we can find the bounded variation of fn by using (4.12), Theorem 5.12,

and the Lasota-Yorke inequality (5.17) as follows:

1∨
0

fn =
1∨
0

(QnPS)fn =
1∨
0

Qn(PSfn)

≤ 4272
1∨
0

PSfn ≤ 4272

(
α

1∨
0

fn + β

)

= 4272α
1∨
0

fn + 4272β,

which implies

(1− 4272α)
1∨
0

fn ≤ 4272β.

So, suppose α <
1

4272
. Then, for n ≥ 8

1∨
0

fn ≤
4272β

1− 4272α
,
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which is a uniform bound of the total variation of sequence of {fn} . �

5.5 Convergence of {fn} to f ∗

In this section, we gather all the results that have been established to finally

show that the sequence {fn} converges to f ∗ , the unique stationary density function

of the Frobenius-Perron operator PS associated with a measurable and nonsingu-

lar transformation S . However, to prove the convergence of {fn} to f ∗ , we need

Helly’s Lemma, whose statement and proof are found, for example, in the paper by

Kreuzer [43].

Helly’s Lemma. Let {fn} ∈ BV [0, 1] be a sequence of functions. If

(1) ‖fn‖1 ≤ M1 for any n

(2)
∨1

0 fn ≤ M2 for any n ,

then there exists g ∈ L1[0, 1] and a subsequence {fnk} of {fn} such that {fnk} → g

as k →∞ in L1[0, 1] and
∨1

0 g ≤M2 .

The following theorem proves the convergence of {fn} to f ∗ in L1[0, 1] space.

THEOREM 5.14. Let S fulfills the Lasota-Yorke conditions. If α < 1
4272

, then the

sequence {fn} converges to f ∗ , the unique stationary density of PS .

PROOF. Since ‖fn‖1= 1 and
∨1

0 fn ≤
4272β

1−4272α
for n ≥ 8, we can use Helly’s lemma.

So the sequence {fn} has a subsequence {fnk} that converges to some g ∈ L1[0, 1]

such that ‖g‖1= 1. We want to show that g = f ∗ ; namely, g is a stationary density

function of PS . Note that by (4.12), fnk = QnkPSfnk , and hence ‖fnk−QnkPSfnk‖1=

0. By using Theorem 5.2 and Theorem 5.4, we have the following:
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‖g − PSg‖1 = ‖g − fnk + fnk −QnkPSfnk +QnkPSfnk −QnkPSg +QnkPSg − PSg‖1

≤ ‖g − fnk‖1+‖fnk −QnkPSfnk‖1+‖QnkPSfnk −QnkPSg‖1

+ ‖QnkPSg − PSg‖1

≤ ‖g − fnk‖1+‖Qnk‖1‖PS‖1‖fnk − g‖1+‖QnkPSg − PSg‖1

≤ ‖g − fnk‖1+1815 ‖fnk − g‖1+‖QnkPSg − PSg‖1

= 1816 ‖g − fnk‖1+‖QnkPSg − PSg‖1.

Therefore as k →∞ , we have PSg = g , then by Theorem 2.7, PSg
+ = g+ and

PSg
− = g− , which means that g+ and g− are two stationary function of PS unless

g ≥ 0 or g ≤ 0. Since we assumed that PS has the unique stationary density f ∗ , it

follows that g ≥ 0 or g ≤ 0. If we choose {fnk} such that∫
f+
nk
dλ ≥

∫
f−nk dλ,

since {fnk} → g as k → ∞ in L1[0, 1], we have g ≥ 0. It follows that f ∗ = g and

hence {fnk} → f ∗ in L1[0, 1].

The next goal is to show that fn → f ∗ . Suppose that {fn} does not converge

to f ∗ . Then there exists ε > 0 and a subsequence {flk} of {fn} [5] such that

‖flk − f ∗‖1 ≥ ε (5.18)

for all k . Since {flk} also fulfils the conditions of Helly’s Lemma, {flk} has a sub-

sequence, for instance {flkj } , such that flkj → h in L1[0, 1] for some h ∈ L1[0, 1].

Therefore, by the same argument as above, we can show that h = f ∗ , so flkj → f ∗ .
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However, (5.18) tells us that flkj 6→ f ∗ , which is a contradiction. So we conclude

that fn → f ∗ in L1[0, 1].

�
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CHAPTER 6

NUMERICAL RESULTS

This chapter gives numerical results of the cubic spline projection method we

use in this dissertation. We compare the results with the linear spline and quadratic

spline projection methods from the papers [25, 78], respectively. In Section 6.1 we

cover Gaussian quadrature with three points that we use for numerical integrations.

For more accurate results, we use composite Gaussian quadrature with three points

iteratively. In Section 6.2 we discuss how to compute the entries of matrix A , where

aij = 〈PSφj, φi〉 defined in (4.13). In section 6.3 we show how to compute the errors

en = ‖fn − f ∗‖1 . Finally, in Section 6.4 we present numerical experimental results.

6.1 Gaussian Quadrature

For the computation of the entries of matrix A defined in (4.13) and the

errors en = ‖fn − f ∗‖1 , we need to compute the integrals of certain functions over

certain intervals, which is the core computation problem. We do this numerically

using Gaussian quadrature with three points, which is summarized in the following.

If f ∈ C6[a, b] , then∫ b

a

f(x) dx =
5

18
(b− a)f

(
a+ b

2
− b− a

2

√
3

5

)
+

8

18
(b− a)f

(
a+ b

2

)

+
5

18
(b− a)f

(
a+ b

2
+
b− a

2

√
3

5

)
+

(b− a)7

2016000
f (6)(ξ),

where a < ξ < b . More details can be found in [13, 39]. Note that the Gaussian
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quadrature with three points will be integrated exactly if the integrand is a polynomial

of degree at most 5. We denote

G(f, a, b) =
5

18
(b− a)f

(
a+ b

2
− b− a

2

√
3

5

)
+

8

18
(b− a)f

(
a+ b

2

)

+
5

18
(b− a)f

(
a+ b

2
+
b− a

2

√
3

5

)
,

so that G(f, a, b) is a basic Gaussian quadrature with three points.

For more accurate results, we consider a composite Gaussian quadrature with

three points using 2m subintervals of [a, b] , which is denoted by

G(f, a, b, 2m) =
2m∑
i=1

G

(
f, a+ (i− 1)

b− a
2m

, a+ i
b− a
2m

)
.

We use composite Gaussian quadratures iteratively with three points as follows. We

compute from m = 0, which is the basic Gaussian quadrature with three points on

[a, b] . Then we compute for m = 1, which is a composite Gaussian quadrature with

three points in two subintervals, [a, a+b
2

] and [a+b
2
, b] . We keep this process until

the difference between the current iteration value, G(f, a, b, 2m), and the previous

iteration value, G(f, a, b, 2m−1), in absolute value, is less than the given tolerance;

that is

|G(f, a, b, 2m)−G(f, a, b, 2m−1)|< tolerance.

Then we accept the current iteration value, G(f, a, b, 2m), as accurate enough ap-

proximation to
∫ b
a
f(x) dx .
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6.2 Computing the Entries of Matrix A

We need to compute the entries of matrix A , which are defined by aij =

〈PSφj, φi〉 for −3 ≤ i, j,≤ n − 1 (see (4.13)). But there are some computational

issues in computing aij , which will be illustrated in the following example. Let

S(x) =


2x

1−x 0 ≤ x ≤ 1
3

1−x
2x

1
3
≤ x ≤ 1.

We will compute a3,−2 when n = 4. Note that, by Lemma 2.24, we have

a3,−2 = 〈PSφ−2, φ3〉 = 〈φ−2, KSφ3〉 = 〈φ−2, φ3 ◦ S〉

=

∫ 1

0

φ3(S(x))φ−2(x) dx =

∫
supp(φ−2)

φ3(S(x))φ−2(x) dx

=

∫ 1
2

0

φ3(S(x))φ−2(x) dx

because support of φ−2 is (0, 1
2
).

We divide the interval (0, 1
2
) into the subintervals (0, 1

4
] and [1

4
, 1

2
) since on

each subinterval, (0, 1
4
] and [1

4
, 1

2
), φ−2 is a polynomial of degree at most three due

to the assumption that n = 4. However, there is still an issue of accuracy since the

subinterval [1
4
, 1

2
) contains the point 1

3
, which is a non-smooth point of the mapping

S . Therefore, we carry out the numerical integration by dividing the support of φ−2

into (0, 1
4
] , [1

4
, 1

3
] , and [1

3
, 1

2
).

We further improve the efficiency of the integral by looking at φ3(S(x)) closely.

First of all, we write

S1(x) =
2x

1− x
, 0 ≤ x ≤ 1

3
and S2(x) =

1− x
2x

,
1

3
≤ x ≤ 1.
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Note first,

S

([
0,

1

4

])
∩ supp(φ3) = S1

([
0,

1

4

])
∩ supp(φ3) =

[
0,

2

3

]
∩
[

3

4
, 1

]
= ∅.

Second,

S

([
1

4
,
1

3

])
∩ supp(φ3) = S1

([
1

4
,
1

3

])
∩ supp(φ3) =

[
2

3
, 1

]
∩
[

3

4
, 1

]
=

[
3

4
, 1

]
.

Third,

S

([
1

3
,
1

2

])
∩ supp(φ3) = S2

([
1

3
,
1

2

])
∩ supp(φ3) =

[
1

2
, 1

]
∩
[

3

4
, 1

]
=

[
3

4
, 1

]
.

After that we refine the subintervals [1
4
, 1

3
] and [1

3
, 1

2
] as follows:[

S−1
1

(
3

4

)
, S−1

1 (1)

]
=

[
3

11
,
1

3

]
and [

S−1
2 (1) , S−1

2

(
3

4

)]
=

[
1

3
,
2

5

]
,

See Figure 10 for more clarification, where (a), (b), (c) show the overlapping

area of support of φ3 with the intervals
[
0, 1

4

]
,
[

1
4
, 1

3

]
, and

[
1
3
, 1

2

]
. So a3,−2 can be

computed in the following way:

a3,−2 =

∫ 1
4

0

φ3(S(x))φ−2(x) dx+

∫ 1
3

1
4

φ3(S(x))φ−2(x) dx+

∫ 1
2

1
3

φ3(S(x))φ−2(x) dx

=

∫ 1
3

3
11

φ3(S(x))φ−2(x) dx+

∫ 2
5

1
3

φ3(S(x))φ−2(x) dx.

This gives not only more efficient but also more accurate numerical integration

because we avoid 1
3
, which is the non-smooth point of S . We compute aij for every

n using this idea.
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(a) (b)

(c)

Figure 10: Efficient and accurate computations of a3,−2
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6.3 Computing the errors en = ‖fn − f ∗‖1

We compute the errors en under L1 -norm using the following formula:

en = ||fn − f ∗||1 =

∫ 1

0

|fn(x)− f ∗(x)| dx

=
n∑
i=1

∫ xi

xi−1

|fn(x)− f ∗(x)| dx.

However, if the equation fn(x) = f ∗(x) has solutions in the interval (xi−1, xi), a

numerical integral
∫ xi
xi−1
|fn(x)−f ∗(x)| may not be accurate. So, if there are y1, . . . , yk ,

which are solutions of the equation fn(x) = f ∗(x) on the interval (xi−1, xi), then we

divide the integral
∫ xi
xi−1
|fn(x)− f ∗(x)| as follows:∫ xi

xi−1

|fn(x)− f ∗(x)| dx =

∫ y1

xi−1

|fn(x)− f ∗(x)| dx +
k−1∑
l=1

∫ yl+1

yl

|fn(x)− f ∗(x)| dx

+

∫ xi

yk

|fn(x)− f ∗(x)| dx,

where fn denotes the approximation to f ∗1 from S3[x0, . . . , xn] . We apply numerical

integration for each integral; nevertheless, the question is how to compute y1, . . . , yk .

We illustrate this question with two cases: Case 1. f ∗1 (x) =
4

π(1 + x2)
; Case 2.

f ∗2 (x) =
2

(1 + x)2
.

We start with f ∗1 (x) =
4

π(1 + x2)
, and we discuss how to find solutions of

fn(x) − f ∗(x) on (xi−1, xi), 1 ≤ i ≤ n . Note that, on (xi−1, xi), 1 ≤ i ≤ n , we can

write

0 = fn(x)− f ∗1 (x) = a3x
3 + a2x

2 + a1x+ a0 −
4

π(1 + x2)
.

So we have
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a3x
3 + a2x

2 + a1x+ a0 −
4

π(1 + x2)
= 0

⇐⇒ a3x
3(1 + x2) + a2x

2(1 + x2) + a1x(1 + x2) + a0(1 + x2)− 4

π
= 0

⇐⇒ a3x
5 + a2x

4 + (a3 + a1)x3 + (a2 + a0)x2 + a1x+

(
a0 −

4

π

)
= 0.

By assuming a3 6= 0, which is the generic case, we have

x5 +
a2

a3

x4 +
a3 + a1

a3

x3 +
a2 + a0

a3

x2 +
a1

a3

x+
a0 − 4

π

a3

= 0. (6.1)

Therefore, the companion matrix C1 for (6.1) is

C1 =



0 0 0 0 −a0− 4
π

a3

1 0 0 0 −a1
a3

0 1 0 0 −a2+a0
a3

0 0 1 0 −a3+a1
a3

0 0 0 1 −a2
a3


.

The definition and more details about companion matrix can be found in [14].

Note that it is well-known that the eigenvalues of C1 are the zeros of (6.1),

the associated monic polynomial, [14]. Suppose that y1, . . . , yk are the eigenvalues of

C1 that are contained in (xi−1, xi) for some k . Note that the range of k is between

0 and 5.

Next, for f ∗2 (x) =
2

(1 + x)2
, we have

fn(x)− f ∗2 (x) = b3x
3 + b2x

2 + b1x+ b0 −
2

(1 + x)2
= 0.

Therefore, we have
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b3x
3 + b2x

2 + b1x+ b0 −
2

(1 + x)2
= 0

⇐⇒ b3x
3(x2 + 2x+ 1) + b2x

2(x2 + 2x+ 1) + b1x(x2 + 2x+ 1)

+ b0(x2 + 2x+ 1)− 2 = 0.

By assuming b3 6= 0,

x5 +
2b3 + b2

b3

x4 +
b3 + 2b2 + b1

b3

x3 +
b2 + 2b1 + b0

b3

x2 +
b1 + 2b0

b3

x+
b0 − 2

b3

= 0.

(6.2)

Hence, the companion matrix C2 for (6.2) is

C2 =



0 0 0 0 − b0−2
b3

1 0 0 0 − b1+2b0
b3

0 1 0 0 − b2+2b1+b0
b3

0 0 1 0 − b3+2b2+b1
b3

0 0 0 1 −2b3+b2
b3


.

To find the companion matrices, we need to fine the expressions of a0, a1, a2

and a3 in the case of S1 and b0, b1, b2 and b3 in the case of S2 . Note that, in the

interval (xi−1, xi), i = 1, 2, . . . , n , fn can be written as

fn(x) = di−4φi−4(x) + di−3φi−3(x) + di−2φi−2(x) + di−1φi−1(x)

= di−4
1

6

(
4− x− (i− 4)h

h

)3

+ di−3
1

6

(
1 + 3

(
3− x− (i− 3)h

h

)

+ 3

(
3− x− (i− 3)h

h

)2

− 3

(
3− x− (i− 3)h

h

)3
)
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+ di−2
1

6

(
1 + 3

(
x− (i− 2)h

h
− 1

)
+ 3

(
x− (i− 2)h

h
− 1

)2

− 3

(
x− (i− 2)h

h
− 1

)3
)

+ di−1
1

6

(
x− (i− 1)h

h

)3

=
1

6
di−4

(
−x+ ih

h

)3

+
1

6
di−3

(
1− 3

(
x− ih
h

)
+ 3

(
x− ih
h

)2

+ 3

(
x− ih
h

)3
)

+
1

6
di−2

(
1 + 3

(
x− (i− 1)h

h

)
+ 3

(
x− (i− 1)h

h

)2

− 3

(
x− (i− 1)h

h

)3
)

+ di−1
1

6

(
x− (i− 1)h

h

)3

=
1

6h3
(−di−4 + 3di−3 − 3di−2 + di−1)x3

+
1

2h2
(di−4i+ di−3(1− 3i) + di−2(3i− 2)− di−1(i− 1))x2

+
1

2h
(−di−4i

2 + di−3(i− 1)(3i+ 1) + di−2(4− 3i)i+ di−1(i− 1)2)x

+
1

6
(di−4i

3 + di−3(1 + 3i+ 3i2 − 3i3) + di−2(3i3 − 6i2 + 4)− di−1(i− 1)3).

So

a3 =
1

6h3
(−di−4 + 3di−3 − 3di−2 + di−1),

a2 =
1

2h2
(di−4i+ di−3(1− 3i) + di−2(3i− 2)− di−1(i− 1)),

a1 =
1

2h
(−di−4i

2 + di−3(i− 1)(3i+ 1) + di−2(4− 3i)i+ di−1(i− 1)2),

a0 =
1

6
(di−4i

3 + di−3(1 + 3i+ 3i2 − 3i3) + di−2(3i3 − 6i2 + 4)− di−1(i− 1)3).
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Note that, b0, b1, b2 and b3 allows the same expression as a0, a1, a2 and a3 , but the

vector d = (d−3, d−2, . . . , dn−1)T for fn has been changed accordingly.

6.4 Numerical Results

In this section, we provide numerical experimental results for the cubic spline

projection method, and we compare the results with those of the linear spline projec-

tion method [25] and the quadratic spline projection method [78]. The test transfor-

mation mappings are given by:

S1(x) =


2x

1−x2 0 ≤ x ≤
√

2− 1

1−x2
2x

√
2− 1 ≤ x ≤ 1,

S2(x) =


2x

1−x 0 ≤ x ≤ 1
3

1−x
2x

1
3
≤ x ≤ 1,

S3(x) =

(
1

8
− 2

∣∣∣∣x− 1

2

∣∣∣∣3
)1/3

+
1

2
.

It is well-known that the unique stationary densities of the above transformations are

given by

f ∗1 (x) =
4

π(1 + x2)
,

f ∗2 (x) =
2

(1 + x)2
,

f ∗3 (x) = 12

(
x− 1

2

)2

,

respectively. For the numerical experiments, we use n = 2k , where k = 2, 3, . . . , 8.
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The uniqueness of the above stationary densities of Frobenius-Perron associ-

ated with transformations S can be shown using Theorem 2.35 as follows. Note that

transformations S1 , S2 , and S3 can be easily proven to be ergodic transformations by

showing that µ(A) = 0 or µ(A) = 1 for any invariant A ∈ B . Recall from Examples

2.28, 2.29, and 2.30 that f ∗1 , f ∗2 , and f ∗3 were proven to be stationary density func-

tions of Frobenius-Perron operator. This implies by Theorem 2.35 that f ∗1 , f ∗2 , and

f ∗3 are unique stationary density functions of Frobenius-Perron operator associated

with S1 , S2 , and S3 , respectively.

We use MATLAB to test the cubic spline projection method of approximating

f ∗ , and we observe the following. In the case of f ∗1 and f ∗2 , the numerical results

in Table 6 and Table 8, respectively, show that the cubic spline projection method

performed well and gave much smaller errors than the linear spline and quadratic

spline projection methods for all n-values. In addition, Table 7 and 9 show the ratios

of e4/e8, . . . , e128/e256 for f ∗1 and f ∗2 , respectively. We can see from Table 7 and Table

9 that the errors of the cubic spline projection method is of order O (1/n4).

On the other hand, in the case of f ∗3 , since f ∗3 is a polynomial of degree 2,

it is in the quadratic and cubic spline space for any n . For that reason, we have

fn = f ∗3 for any n when we use the quadratic spline and cubic spline projection

methods. However, fn is not f ∗3 when we use constant spline and linear spline

projection methods. Table 10 shows errors of f ∗3 for the constant spline and linear

spline projection methods, and Table 11 shows the ratios of two consecutive errors of

constant spline and linear spline projection methods for f ∗3 .
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Table 6: Error en comparison for f ∗1

n Constant-SPM Linear-SPM Quadratic-SPM Cubic-SPM

4 5.3× 10−2 2.7× 10−3 5.1× 10−4 4.6× 10−5

8 2.4× 10−2 6.5× 10−4 4.9× 10−5 3.1× 10−6

16 1.2× 10−2 1.7× 10−4 6.2× 10−6 1.9× 10−7

32 5.5× 10−3 4.3× 10−5 7.3× 10−7 1.1× 10−8

64 2.7× 10−3 1.1× 10−5 8.4× 10−8 7.1× 10−10

128 1.3× 10−3 2.7× 10−6 1.0× 10−8 4.5× 10−11

256 6.6× 10−4 6.4× 10−7 1.3× 10−9 2.8× 10−12

Table 7: Ratio comparison for f ∗1

Constant-SPM Linear-SPM Quadratic-SPM Cubic-SPM

e4/e8 1.26 4.15 10.41 14.83

e8/e16 3.5 3.82 7.9 16.32

e16/e32 2.18 3.95 8.49 17.27

e32/e64 2.04 3.9 8.69 15.49

e64/e128 2.08 4.07 8.4 15.78

e128/e256 1.97 4.22 7.96 16.07
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Table 8: Error en comparison for f ∗2

n Constant-SPM Linear-SPM Quadratic-SPM Cubic-SPM

4 1.0× 10−1 7.7× 10−3 9.6× 10−4 9.7× 10−5

8 5.1× 10−2 1.9× 10−3 1.3× 10−4 8.9× 10−6

16 2.6× 10−2 5.4× 10−4 1.9× 10−5 7.2× 10−7

32 1.3× 10−2 1.4× 10−4 2.2× 10−6 5.1× 10−8

64 6.6× 10−3 3.6× 10−5 3.0× 10−7 3.1× 10−9

128 3.3× 10−3 8.5× 10−6 3.8× 10−8 2.0× 10−10

256 1.6× 10−3 2.2× 10−6 4.6× 10−9 1.3× 10−11

Table 9: Ratio comparison for f ∗2

n Constant-SPM Linear-SPM Quadratic-SPM Cubic-SPM

e4/e8 1.96 4.05 7.38 10.90

e8/e16 1.96 3.52 6.84 12.36

e16/e32 2 3.86 8.63 14.12

e32/e64 1.97 3.89 7.33 16.45

e64/e128 2 4.24 7.89 15.50

e128/e256 2.06 3.86 8.26 16.67
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Table 10: Error en comparison for f ∗3

n Constant-SPM Linear-SPM

4 4.4× 10−1 5.3× 10−2

8 2.2× 10−1 1.4× 10−2

16 1.0× 10−1 3.2× 10−3

32 5.3× 10−2 8.9× 10−4

64 2.6× 10−2 2.1× 10−4

128 1.3× 10−2 5.2× 10−5

256 6.5× 10−3 1.3× 10−5

Table 11: Ratio comparison for f ∗3

n Constant-SPM Linear-SPM

e4/e8 2.00 3.79

e8/e16 2.20 4.38

e16/e32 1.89 3.60

e32/e64 2.04 4.24

e64/e128 2.00 4.04

e128/e256 2.00 4.00
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this dissertation, we used the idea of the projection method to develop a

numerical method using cubic spline functions to approximate the unique station-

ary density functions f ∗ of the Frobenius-Perron operators PS associated with a

measurable and nonsingular transformation S (when the stationary density func-

tion is smooth). We aimed to improve the convergence rate of the linear spline and

quadratic spline projection methods from the papers [24, 78], respectively. We suc-

ceed in achieving our goal to have a faster convergence rate due to the fact that

cubic spline functions are more smooth than linear spline and quadratic spline func-

tions. We proved the existence of a nonzero sequence of cubic spline functions fn

that converges to f ∗ in L1 -norm.

We also devised ways to compute the entries of matrix A and the errors

between fn and f ∗ more accurately. That was achieved by dividing the domains

of integrals into proper subintervals when we compute aij = 〈PSφj, φi〉 , entries of

matrix A , and the errors en = ‖fn − f ∗‖1 . This resulted in not only more accurate

but also more efficient results.

The numerical experiments showed that the cubic spline projection method has

a faster convergence rate compared to the linear spline and quadratic spline projection

methods. In fact, the numerical experiments indicated that the cubic spline projection

method has a convergence rate of order four compared to order two of the linear spline
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projection method and order three of the quadratic spline projection method under

the L1 -norm. If the stationary density function is a polynomial of degree at most

three, then it is in the cubic spline space for any n . So, the method can compute it

precisely no matter what n may be.

There are three possible areas for future works related to the cubic spline

projection method. First, the proposed projection method can be used for the density

computation of more general Markov operators that appear in many applied problems

such as stochastic analysis and random maps [38]. The linear spline projection method

for random maps is already done in [3]. Meanwhile, we are working on the quadratic

spline projection method for random maps and planning to apply the cubic spline

projection method to the random maps. Second, one can consider approximating the

stationary density functions using even higher-order splines such as quartic or quintic

spline functions. Third, one can justify the convergence rate that was observed from

the numerical experimental results theoretically.
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APPENDIX

A MATLAB CODE FOR f ∗2



function CSP=cubic sp(n,tol)
A=int csp A(n,tol);
B=int csp B(n);
d=vec d csp(n,A,B);
CSP=csp err(d,tol);
end
%%%% matrix B=< \phi j, \phi i > %%%%
function B=int csp B(n)
h=1/n;
B=zeros(n+3);
B(1,1)=20*h/5040; B(n+3,n+3)=20*h/5040;
B(2,2)=1208*h/5040; B(n+2,n+2)=1208*h/5040;
B(3,3)=2396*h/5040; B(n+1,n+1)=2396*h/5040;
B(1,2)=(129/5040)*h; B(2,1)=(129/5040)*h;
B(n+2,n+3)=(129/5040)*h; B(n+3,n+2)=(129/5040)*h;
B(1,3)=(60/5040)*h; B(3,1)=(60/5040)*h;
B(n+1,n+3)=(60/5040)*h; B(n+3,n+1)=(60/5040)*h;
B(2,3)=(1062/5040)*h; B(3,2)=(1062/5040)*h;
B(n+1,n+2)=(1062/5040)*h; B(n+2,n+1)=(1062/5040)*h;
for t=2:n

B(t,t+2)=120*h/5040;
B(t+2,t)=120*h/5040;

end
for t=3:n

B(t+1,t)=1191*h/5040;
B(t,t+1)=1191*h/5040;

end
for t=4:n

B(t,t)=(2416/5040)*h;
end
for t=1:n

B(t,t+3)=h/5040;
B(t+3,t)=h/5040;

end
end
%%%% matrix A=< P S\phi j, \phi i > %%%%%
function A=int csp A(n,tol)
A=zeros(n+3);
h= 1/n; p=1/3;
for i=-3:n-1

for j=-3:n-1
k=ceil(p/h);
if j<k-4

aj=(j)*h; bj=(j+1)*h;
A(i+4,j+4)=A(i+4,j+4)+int j a(aj,bj,i,j,n,tol);
aj=(j+1)*h; bj=(j+2)*h;
A(i+4,j+4)=A(i+4,j+4)+int j a(aj,bj,i,j,n,tol);
aj=(j+2)*h; bj=(j+3)*h;
A(i+4,j+4)=A(i+4,j+4)+int j a(aj,bj,i,j,n,tol);
aj=(j+3)*h; bj=(j+4)*h;
A(i+4,j+4)=A(i+4,j+4)+int j a(aj,bj,i,j,n,tol);

elseif j==k-4
aj=(j)*h; bj=(j+1)*h;
A(i+4,j+4)=A(i+4,j+4)+int j a(aj,bj,i,j,n,tol);
aj=(j+1)*h; bj=(j+2)*h;
A(i+4,j+4)=A(i+4,j+4)+int j a(aj,bj,i,j,n,tol);
aj=(j+2)*h; bj=(j+3)*h;
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A(i+4,j+4)=A(i+4,j+4)+int j a(aj,bj,i,j,n,tol);
aj=(j+3)*h; pj=p;
A(i+4,j+4)=A(i+4,j+4)+int j a(aj,pj,i,j,n,tol);
pj=p; bj=(j+4)*h;
A(i+4,j+4)=A(i+4,j+4)+int j b(pj,bj,i,j,n,tol);

elseif j==k-3
aj=(j)*h; bj=(j+1)*h;
A(i+4,j+4)=A(i+4,j+4)+int j a(aj,bj,i,j,n,tol);
aj=(j+1)*h; bj=(j+2)*h;
A(i+4,j+4)=A(i+4,j+4)+int j a(aj,bj,i,j,n,tol);
aj=(j+2)*h; pj=p;
A(i+4,j+4)=A(i+4,j+4)+int j a(aj,pj,i,j,n,tol);
pj=p; bj=(j+3)*h;
A(i+4,j+4)=A(i+4,j+4)+int j b(pj,bj,i,j,n,tol);
aj=(j+3)*h; bj=(j+4)*h;
A(i+4,j+4)=A(i+4,j+4)+int j b(aj,bj,i,j,n,tol);

elseif j==k-2
aj=(j)*h; bj=(j+1)*h;
A(i+4,j+4)=A(i+4,j+4)+int j a(aj,bj,i,j,n,tol);
aj=(j+1)*h; pj=p;
A(i+4,j+4)=A(i+4,j+4)+int j a(aj,pj,i,j,n,tol);
pj=p; bj=(j+2)*h;
A(i+4,j+4)=A(i+4,j+4)+int j b(pj,bj,i,j,n,tol);
aj=(j+2)*h; bj=(j+3)*h;
A(i+4,j+4)=A(i+4,j+4)+int j b(aj,bj,i,j,n,tol);
aj=(j+3)*h; bj=(j+4)*h;
A(i+4,j+4)=A(i+4,j+4)+int j b(aj,bj,i,j,n,tol);

elseif j==k-1
aj=(j)*h; pj=p;
A(i+4,j+4)=A(i+4,j+4)+int j a(aj,pj,i,j,n,tol);
pj=p; bj=(j+1)*h;
A(i+4,j+4)=A(i+4,j+4)+int j b(pj,bj,i,j,n,tol);
aj=(j+1)*h; bj=(j+2)*h;
A(i+4,j+4)=A(i+4,j+4)+int j b(aj,bj,i,j,n,tol);
aj=(j+2)*h; bj=(j+3)*h;
A(i+4,j+4)=A(i+4,j+4)+int j b(aj,bj,i,j,n,tol);
aj=(j+3)*h; bj=(j+4)*h;
A(i+4,j+4)=A(i+4,j+4)+int j b(aj,bj,i,j,n,tol);

else
aj=(j)*h; bj=(j+1)*h;
A(i+4,j+4)=A(i+4,j+4)+int j b(aj,bj,i,j,n,tol);
aj=(j+1)*h; bj=(j+2)*h;
A(i+4,j+4)=A(i+4,j+4)+int j b(aj,bj,i,j,n,tol);
aj=(j+2)*h; bj=(j+3)*h;
A(i+4,j+4)=A(i+4,j+4)+int j b(aj,bj,i,j,n,tol);
aj=(j+3)*h; bj=(j+4)*h;
A(i+4,j+4)=A(i+4,j+4)+int j b(aj,bj,i,j,n,tol);

end
end

end
end
%%%% increasing part of S %%%%
function iv=int j a(aj,bj,i,j,n,tol)
if aj<0

iv=0;
return
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end
r1=2*aj/(1-aj); r2=2*bj/(1-bj);
h=1/n;
if i==-3

ai=0; bi=h;
aa=max(r1,ai); bb=min(r2,bi);
if aa < bb

inv s1=aa/(aa+2); inv s2=bb/(bb+2);
iv=ite comp gq3(inv s1,inv s2,i,j,n,tol);

else
iv=0;

end
elseif i==-2

ai=0; bi=h;
aa=max(r1,ai); bb=min(r2,bi);
if aa < bb

inv s1=aa/(aa+2); inv s2=bb/(bb+2);
iv1=ite comp gq3(inv s1,inv s2,i,j,n,tol);

else
iv1=0;

end
ai=h; bi=2*h;
aa=max(r1,ai); bb=min(r2,bi);
if aa < bb

inv s1=aa/(aa+2); inv s2=bb/(bb+2);
iv2=ite comp gq3(inv s1,inv s2,i,j,n,tol);

else
iv2=0;

end
iv=iv1+iv2;

elseif i==-1
ai=0; bi=h;
aa=max(r1,ai); bb=min(r2,bi);
if aa < bb

inv s1=aa/(aa+2); inv s2=bb/(bb+2);
iv1=ite comp gq3(inv s1,inv s2,i,j,n,tol);

else
iv1=0;

end
ai=h; bi=2*h;
aa=max(r1,ai); bb=min(r2,bi);
if aa < bb

inv s1=aa/(aa+2); inv s2=bb/(bb+2);
iv2=ite comp gq3(inv s1,inv s2,i,j,n,tol);

else
iv2=0;

end
ai=2*h; bi=3*h;
aa=max(r1,ai); bb=min(r2,bi);
if aa < bb

inv s1=aa/(aa+2); inv s2=bb/(bb+2);
iv3=ite comp gq3(inv s1,inv s2,i,j,n,tol);

else
iv3=0;

end
iv=iv1+iv2+iv3;
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elseif i==n-1
ai=(n-1)*h; bi=(n)*h;
aa=max(r1,ai); bb=min(r2,bi);
if aa < bb

inv s1=aa/(aa+2); inv s2=bb/(bb+2);
iv=ite comp gq3(inv s1,inv s2,i,j,n,tol);

else
iv=0;

end
elseif i==n-2

ai=(n-2)*h; bi=(n-1)*h;
aa=max(r1,ai); bb=min(r2,bi);
if aa < bb

inv s1=aa/(aa+2); inv s2=bb/(bb+2);
iv1=ite comp gq3(inv s1,inv s2,i,j,n,tol);

else
iv1=0;

end
ai=(n-1)*h; bi=(n)*h;
aa=max(r1,ai); bb=min(r2,bi);
if aa < bb

inv s1=aa/(aa+2); inv s2=bb/(bb+2);
iv2=ite comp gq3(inv s1,inv s2,i,j,n,tol);

else
iv2=0;

end
iv=iv1+iv2;

elseif i==n-3
ai=(n-3)*h; bi=(n-2)*h;
aa=max(r1,ai); bb=min(r2,bi);
if aa < bb

inv s1=aa/(aa+2); inv s2=bb/(bb+2);
iv1=ite comp gq3(inv s1,inv s2,i,j,n,tol);

else
iv1=0;

end
ai=(n-2)*h; bi=(n-1)*h;
aa=max(r1,ai); bb=min(r2,bi);
if aa < bb

inv s1=aa/(aa+2); inv s2=bb/(bb+2);
iv2=ite comp gq3(inv s1,inv s2,i,j,n,tol);

else
iv2=0;

end
ai=(n-1)*h; bi=n*h;
aa=max(r1,ai); bb=min(r2,bi);
if aa < bb

inv s1=aa/(aa+2); inv s2=bb/(bb+2);
iv3=ite comp gq3(inv s1,inv s2,i,j,n,tol);

else
iv3=0;

end
iv=iv1+iv2+iv3;

else
ai=(i)*h; bi=(i+1)*h;
aa=max(r1,ai); bb=min(r2,bi);
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if aa < bb
inv s1=aa/(aa+2); inv s2=bb/(bb+2);
iv1=ite comp gq3(inv s1,inv s2,i,j,n,tol);

else
iv1=0;

end
ai=(i+1)*h; bi=(i+2)*h;
aa=max(r1,ai); bb=min(r2,bi);
if aa < bb

inv s1=aa/(aa+2); inv s2=bb/(bb+2);
iv2=ite comp gq3(inv s1,inv s2,i,j,n,tol);

else
iv2=0;

end
ai=(i+2)*h; bi=(i+3)*h;
aa=max(r1,ai); bb=min(r2,bi);
if aa < bb

inv s1=aa/(aa+2); inv s2=bb/(bb+2);
iv3=ite comp gq3(inv s1,inv s2,i,j,n,tol);

else
iv3=0;

end
ai=(i+3)*h; bi=(i+4)*h;
aa=max(r1,ai); bb=min(r2,bi);
if aa < bb

inv s1=aa/(aa+2); inv s2=bb/(bb+2);
iv4=ite comp gq3(inv s1,inv s2,i,j,n,tol);

else
iv4=0;

end
iv=iv1+iv2+iv3+iv4;

end
end
%%%% decreasing part of S %%%%
function iv=int j b(aj,bj,i,j,n,tol)
if bj>1

iv=0;
return

end
r1=(1-bj)/(2*bj); r2=(1-aj)/(2*aj);
h=1/n;
if i==-3

ai=0; bi=h;
aa=max(r1,ai); bb=min(r2,bi);
if aa < bb

inv s1=1/(2*bb+1); inv s2=1/(2*aa+1);
iv=ite comp gq3(inv s1,inv s2,i,j,n,tol);

else
iv=0;

end
elseif i==-2

ai=0; bi=h;
aa=max(r1,ai); bb=min(r2,bi);
if aa < bb

inv s1=1/(2*bb+1); inv s2=1/(2*aa+1);
iv1=ite comp gq3(inv s1,inv s2,i,j,n,tol);
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else
iv1=0;

end
ai=h; bi=2*h;
aa=max(r1,ai); bb=min(r2,bi);
if aa < bb

inv s1=1/(2*bb+1); inv s2=1/(2*aa+1);
iv2=ite comp gq3(inv s1,inv s2,i,j,n,tol);

else
iv2=0;

end
iv=iv1+iv2;

elseif i==-1
ai=0; bi=h;
aa=max(r1,ai); bb=min(r2,bi);
if aa < bb

inv s1=1/(2*bb+1); inv s2=1/(2*aa+1);
iv1=ite comp gq3(inv s1,inv s2,i,j,n,tol);

else
iv1=0;

end
ai=h; bi=2*h;
aa=max(r1,ai); bb=min(r2,bi);
if aa < bb

inv s1=1/(2*bb+1); inv s2=1/(2*aa+1);
iv2=ite comp gq3(inv s1,inv s2,i,j,n,tol);

else
iv2=0;

end
ai=2*h; bi=3*h;
aa=max(r1,ai); bb=min(r2,bi);
if aa < bb

inv s1=1/(2*bb+1); inv s2=1/(2*aa+1);
iv3=ite comp gq3(inv s1,inv s2,i,j,n,tol);

else
iv3=0;

end
iv=iv1+iv2+iv3;

elseif i==n-1
ai=(n-1)*h; bi=n*h;
aa=max(r1,ai); bb=min(r2,bi);
if aa < bb

inv s1=1/(2*bb+1); inv s2=1/(2*aa+1);
iv=ite comp gq3(inv s1,inv s2,i,j,n,tol);

else
iv=0;

end
elseif i==n-2

ai=(n-2)*h; bi=(n-1)*h;
aa=max(r1,ai); bb=min(r2,bi);
if aa < bb

inv s1=1/(2*bb+1); inv s2=1/(2*aa+1);
iv1=ite comp gq3(inv s1,inv s2,i,j,n,tol);

else
iv1=0;

end
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ai=(n-1)*h; bi=(n)*h;
aa=max(r1,ai); bb=min(r2,bi);
if aa < bb

inv s1=1/(2*bb+1); inv s2=1/(2*aa+1);
iv2=ite comp gq3(inv s1,inv s2,i,j,n,tol);

else
iv2=0;

end
iv=iv1+iv2;

elseif i==n-3
ai=(n-3)*h; bi=(n-2)*h;
aa=max(r1,ai); bb=min(r2,bi);
if aa < bb

inv s1=1/(2*bb+1); inv s2=1/(2*aa+1);
iv1=ite comp gq3(inv s1,inv s2,i,j,n,tol);

else
iv1=0;

end
ai=(n-2)*h; bi=(n-1)*h;
aa=max(r1,ai); bb=min(r2,bi);
if aa < bb

inv s1=1/(2*bb+1); inv s2=1/(2*aa+1);
iv2=ite comp gq3(inv s1,inv s2,i,j,n,tol);

else
iv2=0;

end
ai=(n-1)*h; bi=(n)*h;
aa=max(r1,ai); bb=min(r2,bi);
if aa < bb

inv s1=1/(2*bb+1); inv s2=1/(2*aa+1);
iv3=ite comp gq3(inv s1,inv s2,i,j,n,tol);

else
iv3=0;

end
iv=iv1+iv2+iv3;

else
ai=(i)*h; bi=(i+1)*h;
aa=max(r1,ai); bb=min(r2,bi);
if aa < bb

inv s1=1/(2*bb+1); inv s2=1/(2*aa+1);
iv1=ite comp gq3(inv s1,inv s2,i,j,n,tol);

else
iv1=0;

end
ai=(i+1)*h; bi=(i+2)*h;
aa=max(r1,ai); bb=min(r2,bi);
if aa < bb

inv s1=1/(2*bb+1); inv s2=1/(2*aa+1);
iv2=ite comp gq3(inv s1,inv s2,i,j,n,tol);

else
iv2=0;

end
ai=(i+2)*h; bi=(i+3)*h;
aa=max(r1,ai); bb=min(r2,bi);
if aa < bb

inv s1=1/(2*bb+1); inv s2=1/(2*aa+1);
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iv3=ite comp gq3(inv s1,inv s2,i,j,n,tol);
else

iv3=0;
end
ai=(i+3)*h; bi=(i+4)*h;
aa=max(r1,ai); bb=min(r2,bi);
if aa < bb

inv s1=1/(2*bb+1); inv s2=1/(2*aa+1);
iv4=ite comp gq3(inv s1,inv s2,i,j,n,tol);

else
iv4=0;

end
iv=iv1+iv2+iv3+iv4;

end
end
%%%% Gaussian quadrature with three points %%%%
function iv=ite comp gq3(a,b,i,j,n,tol)
iv=comp gq3(a,b,4,i,j,n);
niv=comp gq3(a,b,8,i,j,n);
cor=abs(niv-iv);
m=8;
while cor > tol

iv=niv;
m=2*m;
niv=comp gq3(a,b,m,i,j,n);
cor=abs(niv-iv);

end
iv=niv;
end
%%%% Composite of Gaussian quadrature with three points %%%%
function iv=comp gq3(a,b,m,i,j,n)
h=(b-a)/m;
x=a:h:b;
iv=0;
for k=1:m

iv=iv+gq3(x(k),x(k+1),i,j,n);
end
end
%%%% Find C's and X's of Gaussian quadrature with three points %%%%
function iv=gq3(a,b,i,j,n)
C=zeros(3,1); X=zeros(3,1);
C(1)=(5/18)*(b-a); X(1)=((a+b)/2)-(0.5*(b-a)*sqrt(0.6));
C(2)=(8/18)*(b-a); X(2)=(a+b)/2;
C(3)=C(1); X(3)=((a+b)/2)+(0.5*(b-a)*sqrt(0.6));
iv=C(1)*g(X(1),i,j,n)+C(2)*g(X(2),i,j,n)+C(3)*g(X(3),i,j,n);
end
%%%% phi i(sx)*phi j %%%%
function fx=g(x,i,j,n)
h=1/n;
Sx=sx(x);
fx=csp fun(Sx,i*h,h)*csp fun(x,j*h,h);
end
%%%% Transformation S %%%%
function s=sx(x)
if x<=1/3

s=(2*x)/(1-x);
else
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s=(1-x)/(2*x);
end
end
%%%% Finding vector d from (A-B)d=0 %%%%%
function d=vec d csp(n,A,B)
h=1/n;
d=ones(n+3,1);
d=(A-B)\d;
d=d/sum(d);
s=h*(d(1)/24+(d(2)/2)+(23*d(3)/24)+sum(d(4:n))+(23*d(n+1)/24)+(d(n+2)/2)

+d(n+3)/24); % | | fn | |
d=d/s;
end
%%%% Computing the error %%%%%
function err=csp err(d,tol)
n=length(d)-3; h=1/n;
e=zeros(n,1);
for i=1:n

R=int det(i,n,d,tol);
m=length(R);
if m==0

e(i)=gq3 err((i-1)*h,(i)*h,i,n,d);
elseif m==1

e1(i)=gq3 err((i-1)*h,R(1),i,n,d);
e2(i)=gq3 err(R(1),(i)*h,i,n,d);
e(i)=e1(i)+e2(i);

elseif m==2
e1(i)=gq3 err((i-1)*h,R(1),i,n,d);
e2(i)=gq3 err(R(1),R(2),i,n,d);
e3(i)=gq3 err(R(2),(i)*h,i,n,d);
e(i)=e1(i)+e2(i)+e3(i);

elseif m==3
e1(i)=gq3 err((i-1)*h,R(1),i,n,d);
e2(i)=gq3 err(R(1),R(2),i,n,d);
e3(i)=gq3 err(R(2),R(3),i,n,d);
e4(i)=gq3 err(R(3),(i)*h,i,n,d);
e(i)=e1(i)+e2(i)+e3(i)+e4(i);

elseif m==4
e1(i)=gq3 err((i-1)*h,R(1),i,n,d);
e2(i)=gq3 err(R(1),R(2),i,n,d);
e3(i)=gq3 err(R(2),R(3),i,n,d);
e4(i)=gq3 err(R(3),R(4),i,n,d);
e5(i)=gq3 err(R(4),(i)*h,i,n,d);
e(i)=e1(i)+e2(i)+e3(i)+e4(i)+e5(i);

else
e1(i)=gq3 err((i-1)*h,R(1),i,n,d);
e2(i)=gq3 err(R(1),R(2),i,n,d);
e3(i)=gq3 err(R(2),R(3),i,n,d);
e4(i)=gq3 err(R(3),R(4),i,n,d);
e5(i)=gq3 err(R(4),R(5),i,n,d);
e6(i)=gq3 err(R(5),(i)*h,i,n,d);
e(i)=e1(i)+e2(i)+e3(i)+e4(i)+e5(i)+e6(i);

end
end
err=sum(e);
end
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%%%%% Interval determination %%%%%%
function R2=int det(i,n,d,tol)
h=1/n;
a3=(1/(6*hˆ3))*(-d(i)+3*d(i+1)-3*d(i+2)+d(i+3));
a2=(1/(2*hˆ2))*(i*d(i)+(1-3*i)*d(i+1)+(3*i-2)*d(i+2)-(i-1)*d(i+3));
a1=(1/(2*h))*(-iˆ2*d(i)+(i-1)*(3*i+1)*d(i+1)+(4-3*i)*i*d(i+2)

+(i-1)ˆ2*d(i+3));
a0=(1/6)*(iˆ3*d(i)+(1+3*i+3*iˆ2-3*iˆ3)*d(i+1)+(3*iˆ3-6*iˆ2+4)*d(i+2)

-(i-1)ˆ3*d(i+3));
C=[0 0 0 0 -(a0-2)/a3;

1 0 0 0 -(a1+2*a0)/a3;
0 1 0 0 -(a2+2*a1+a0)/a3;
0 0 1 0 -(a3+2*a2+a1)/a3;
0 0 0 1 -(2*a3+a2)/a3];

ev=eig(C); %eigenvalues of the companion matrix C
R1=[];
for k=1:5

if abs(imag(ev(k)))<tol
R1=[R1;real(ev(k))];

end
end
m=length(R1);
R2=[];
for k=1:m

if R1(k)>(i-1)*h & R1(k)<i*h
R2=[R2;R1(k)];

end
R2=sort(R2);

end
end
%%%% Find C's and X's of Gaussian quadrature of error function %%%%
function ive=gq3 err(a,b,i,n,d)
D=zeros(3,1); XX=zeros(3,1);
D(1)=(5/18)*(b-a); XX(1)=((a+b)/2)-(0.5*(b-a)*sqrt(0.6));
D(2)=(8/18)*(b-a); XX(2)=(a+b)/2;
D(3)=D(1); XX(3)=((a+b)/2)+(0.5*(b-a)*sqrt(0.6));
ive=D(1)*f n(XX(1),i,n,d)+D(2)*f n(XX(2),i,n,d)+D(3)*f n(XX(3),i,n,d);
end
%%%% fn & |fn-f* | %%%%
function ex=f n(x,i,n,d)
h=1/n;
fn=d(i)*csp fun(x,(i-4)*h,h)+d(i+1)*csp fun(x,(i-3)*h,h)

+d(i+2)*csp fun(x,(i-2)*h,h)+d(i+3)*csp fun(x,(i-1)*h,h);
fx=2/(x+1)ˆ2;
ex=abs(fn-fx);
end
%%%% Cubic spline function %%%%
function fx=csp fun(x,c,h)
y=(x-c)/h;
if y > 0 & y <= 1

fx=(1/6)*(y)ˆ3;
elseif y > 1 & y <= 2

fx=(1/6)*(1+3*((y)-1)+3*((y)-1)ˆ2-3*((y)-1)ˆ3);
elseif y > 2 & y <= 3

fx=(1/6)*(1+3*(3-(y))+3*(3-(y))ˆ2-3*(3-(y))ˆ3);
elseif y > 3 & y <= 4

fx=(1/6)*(4-(y))ˆ3;
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else
fx=0;

end
end
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