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Tailoring population transfer between two hyperfine ground states of 87Rb
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In this paper, we investigate the coherent control over a complex multilevel atomic system using the stimulated
Raman adiabatic passage. Based on the example of 87Rb atoms, excited with circularly polarized light at the D1

line, we demonstrate the ability to decompose the system into three- and four-level subsystems independently
interacting with light beams. Focusing on the four-level system, we demonstrate that the presence of an additional
excited state significantly affects the dynamics of the system evolution. Specifically, it is shown that, through the
appropriate tuning of the light beams, some of the transfer channels can be blocked, which leads to better control
over the system. We also demonstrate that this effect is most significant in media free from inhomogeneous
broadening (e.g., Doppler effect) and deteriorates if such broadening is present. For instance, the motion of
atoms affects both the efficiency and selectivity of the transfer.
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I. INTRODUCTION

The preparation of a system in a desired quantum state
plays a crucial role in the advancement of quantum technolo-
gies [1], ranging from quantum computation and simulations
[2–6] to quantum cryptography and information processing
[7]. An important step in developing quantum-information
applications is the ability to transfer a quantum state be-
tween two different physical manifolds, which, among others,
may enable the implementation of quantum memory schemes
[8,9]. A particular system in which such a transfer can be
realized consists of two long-lived hyperfine ground levels of
alkali-metal atoms [10–13].

Stimulated Raman adiabatic passage (STIRAP) [14–21] is
a powerful technique that allows the adiabatic transfer of the
population between two long-lived states. Originally designed
for a three-level system, STIRAP coherently transfers the
population between two long-lived lower-energy states |i〉 and
| f 〉 by coupling them to a fast-decaying excited state |e〉 with
a counterintuitive sequence of the so-called Stokes and pump
pulses, respectively, coupling the states | f 〉 and |e〉 and the
states |i〉 and |e〉. During the pulse sequence, the population
is trapped in a dark state that is a superposition of the |i〉 and
| f 〉 states and has a vanishing overlap with the excited state
|e〉 [15]. At the same time, if the Stokes pulse precedes the
pump pulse, the dark state initially has a large overlap with
the state |i〉, but later with the state | f 〉 (the population of the
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state |e〉 is negligible at any stage of evolution). In turn, the
scheme enables a coherent transfer of the population from
the state |i〉 to the state | f 〉. Previously, STIRAP has been
investigated in many systems, including cold atoms [22,23],
molecules [24–26], and ions [27,28].

It should be noted that the presence of other excited states
may affect the coherent transfer of the population [29–32]. For
example, in room-temperature alkali-metal vapors [33–35],
for which the Doppler broadening is comparable to or larger
than the excited-state splitting, the three-level model is not
accurate [36] and calls for a more elaborate description of the
phenomenon [29–32,37].

In this paper, we investigate STIRAP for a coherent pop-
ulation transfer between two hyperfine ground-state levels of
87Rb atoms. We show that, despite the rich energy-level struc-
ture of rubidium, the system can be effectively decomposed
into three- and four-level subsystems. We also demonstrate
that appropriately polarized and tuned light provides control
over the selectivity of the transfer. The control investigated
in this paper is qualitatively different from the previous ex-
periments, which required an additional strong perturbation
(e.g., large magnetic field [38–40], which induces a strong
splitting of the Zeeman sublevels) to achieve control. Unlike
for the above-mentioned case, our technique allows for the
transfer of several sublevels simultaneously rather than a sin-
gle one and enables on-demand blocking of a single, chosen
sublevel. Also, such a strong magnetic perturbation leads to
the randomization of the coherences in the system, which is
not the case for our technique. However, it should be noted
that, despite the specific context, the discussion presented in
this paper is generic and can be used for any four-level system.

The paper is organized as follows. Section II is dedicated
to a theoretical description of STIRAP in a specific context of
87Rb atoms excited at the D1 line. In particular, the so-called
local adiabatic condition (LAC) is introduced in the four-level
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FIG. 1. (a) Energy-level diagram corresponding to the 87Rb D1

line along with the transitions induced by the σ+-polarized pump
(solid lines) and Stokes (dashed lines) beams. (b) Example of a
separated four-level system in the rotated frame (see discussion in
the main text).

system. Section III presents the results of numerical simula-
tions of population transfer between two long-lived ground
states of 87Rb. This section analyzes the STIRAP efficiency in
Doppler-free and Doppler-broadened media, comparing sim-
ilarities and differences between the two cases. Conclusions
are summarized in Sec. IV. Finally, the adiabatic conditions
for STIRAP in the four-level system are derived in the Ap-
pendix.

II. THEORY OF STIRAP IN A FOUR-LEVEL SYSTEM

Consider the energy-level structure associated with the
5 2S1/2 → 5 2P1/2 transition (D1 line) in 87Rb atoms
[Fig. 1(a)]. The system has four hyperfine levels (two ground
levels and two excited levels) of rich magnetic-sublevel
structures. To provide the ability to excite only a given pair
of states, the spectral widths of the Stokes and pump pulses
must be narrower than the splitting of long-lived hyperfine
ground states |i〉 and | f 〉, i.e.,

TS,p � h̄

�E
, (1)

where �E is the energy splitting of the ground levels and
TS (Tp) is the duration of the Stokes (pump) pulse. Under such
conditions, the Stokes pulse does not excite the atoms that
reside in the initial state |i〉 and the pump light does not excite
the atoms present in the final state | f 〉. To fulfill this condition
in the considered case of 87Rb atoms (�E/h ≈ 6.8 GHz), the
pulses must last at least 100 ps.

Assuming that the polarizations of the Stokes and the pump
beams are the same (here, we considered σ+-polarized light),
the selection rules indicate that the considered 16-level system
can be decomposed into three independent subsystems, two
of which are four-level systems [in Fig. 1(a) marked in black]
and one of which is a three-level system (marked in blue).
The remaining five gray-colored states denote the sublevels
that do not participate in STIRAP and hence are neglected in
our considerations.

Let us now focus on a single four-level subsystem. Using
the standard dipole approximation, one can write an explicit
form of the Hamiltonian of the system, which, within the
rotating-wave approximation (RWA) [see Fig. 1(b)], takes the

form

H = h̄

⎛
⎜⎜⎜⎜⎝

δ 0 Cie1�p(t ) Cie2�p(t )

0 δ Cf e1�S (t ) Cf e2�S (t )

C∗
ie1

�p(t ) C∗
f e1

�S (t ) 0 0

C∗
ie2

�p(t ) C∗
f e2

�S (t ) 0 �

⎞
⎟⎟⎟⎟⎠.

(2)

Here δ is the one-photon detuning, � is the frequency splitting
of the excited levels, and Cxy denotes the coupling constant
between the states |x̃〉 and |ỹ〉 given in the rotated basis (see the
Appendix). In the considerations, light beams satisfy the two-
photon resonance condition (ωS − ωp = �E/h̄, where ωS and
ωp are the carrier frequencies of the Stokes and pump beams,
respectively), and �S (t ) [�p(t )] is the slowly varying Rabi
frequency of the Stokes (pump) beam (for more details see
the Appendix).

In general, the diagonalization of a four-level system leads
to eigenstates that are nontrivial superpositions of all four
unperturbed states. However, there are two cases in which
the STIRAP-generated dark state is similar to the dark state
of conventional three-level STIRAP [30]. The first case (I)
occurs when the couplings of both excited states to the cor-
responding ground states are equal up to the sign, i.e., Cie1 =
±Cie2 and Cf e1 = ±Cf e2 . The second case (II) is associated
with the situation where the ground states are coupled equally
to the corresponding excited states, i.e., Cie1 = ±Cf e1 and
Cie2 = ±Cf e2 . Due to the Clebsch-Gordan coefficients, these
conditions can be achieved in 87Rb only for the same circular
polarization of both beams. If these conditions are met, the
four-level dark state is given by the standard formula [15]

|δ〉 = cos ϑ (t )|ĩ〉 − sin ϑ (t )| f̃ 〉, (3)

where ϑ is the mixing angle determined by

tan ϑ (t ) = �p(t )

a�S (t )
, (4)

and a = (Cie1/Cf e1 )∗. The corresponding eigenenergy of the
dark state is equal to h̄δ, where δ is one-photon detuning. In
the rotated basis, the energies of the excited states |ẽ1〉 and
|ẽ2〉 are zero and h̄�, respectively. The coupling between the
ground and excited states modifies the eigenstates and signif-
icantly shifts the eigenenergies. The coupling of each excited
state with both ground states leads to avoided crossings at δ =
0 and �. The linear dependence of the dark state on δ results
in a level crossing of the dark state with one of the eigenstates,
provided by the lack of coupling between the ground levels.
The crossing occurs between zero and �, 0 < δ < � (see
Fig. 2). In the two cases I and II described above, the crossing
positions take different values. Specifically, when both excited
states are equally strong coupled to the ground states (case
I) both avoided crossings have the same widths and the level
crossing occurs exactly in the middle between the two avoided
crossings δ(I) = �/2 [Fig. 2(a)]. However, in the other case,
the avoided crossings have unequal widths due to unequal
coupling strengths, and the position of the level crossing is
given by δ(II) = �|Cie1 |2/(|Cie1 |2 + |Cie2 |2). These two cases
are shown in Fig. 2.
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FIG. 2. Eigenenergies of a system as functions of the one-photon
detuning δ for equal pump and Stokes Rabi frequencies, �S (t ) =
�p(t ). Couplings are equal for both ground (a) and both excited
(b) states. Solid lines denote the eigenvalues of the Hamiltonian
(2). The thick blue line corresponds to the dark state, whereas
the dashed gray lines correspond to the bare energies of states
|ĩ〉, | f̃ 〉, |ẽ1〉, and |ẽ2〉. The dashed black line indicates the intersec-
tion of the curves.

The adiabaticity of the standard three-level STIRAP is
guaranteed by global and local adiabatic conditions [19,41].
The presence of the fourth state modifies the eigenstates of the
system, so that the standard adiabatic conditions are no longer
valid. In the Appendix, we derived a modification of LAC,
taking into account the existence of the additional excited
state. The condition takes the form

min
y �=δ

| Ey − h̄δ| � h̄|a| |�p(t )�̇S (t ) − �S (t )�̇p(t )|
�2

p(t ) + |a|2�2
S (t )

, (5)

where y indicates all eigenstates except the dark state. The
condition states that the Stokes and pump pulse smoothness
and their overlap are upper bounded by the minimal separation
between the dark state and the closest-lying eigenstate. Since
in the considered case there is a level crossing, the left-hand
side of Eq. (5) is equal to zero. This implies that regardless of
pulse smoothness, LAC is not fulfilled, leading to a significant
deterioration of the population-transfer efficiency at δ(I) or
δ(II).

It should be finally stressed that although identical results
can be achieved for σ−-polarized light (polarization π is out-
side our interest due to the existence of a forbidden transition
between the magnetic sublevels of mF = 0 of the states of the
same total angular momentum, F = F ′), the approach does
not work for different pump- and Stokes-beam polarizations.
In this case, there is no eigenstate that has a vanishing overlap
with any of the excited states. Thereby, the excited states
are always partially populated, which, through spontaneous
emission, compromises the coherence of the transfer. Yet, it
can be shown that even in this case there is an eigenstate
which, asymptotically in time, behaves like the STIRAP dark
state [30]. That is, for t → −∞ it behaves like |i〉, and for
t → ∞ it transforms to | f 〉.

III. RESULTS AND DISCUSSION

In this section, we investigate the transfer of population
between two hyperfine ground states of 87Rb. While in the
rotating frame the states are degenerate, they can still be
individually addressed by the Stokes and pump beams. The
excited states |e1〉 (F ′ = 1) and |e2〉 (F ′ = 2) are separated by

� = 140	, where 	 is the relaxation rate of the excited state.
Each of the states is characterized by an additional magnetic-
sublevel structure. For the simulations, we assume the equal
population of all sublevels of the F = 1 state (the state |i〉) and
no population in the F = 2 state (the state | f 〉), or in any of the
excited states. The system interacts with two Gaussian-shaped
light pulses, �S,p(t ) = �0 exp[(t − τS,p)2/(2T 2)], where τS,p

are the delays of the Stokes and pump pulses, respectively, �0

is the amplitude of the pulses, and T is their duration. The
arbitrarily chosen pulse duration is T = 300 1

	
for both pulses

(T = TS = Tp) and the separation of the pulses is 200 1
	

. In
our analysis, we consider the same circular polarization of the
Stokes and pump beams (σ+ polarization). Evolution of such
a 16-level system is calculated by the numerical solution of
the master equation [42,43].

Figure 3 presents the efficiency of population transfer in
three subsystems specified in the previous section, i.e., two
four-state subsystems (first involving the mF = −1 ground-
state sublevels and second the mF = 0 sublevels), and the
three-level subsystem, accounting for the mF = 1 sublevels.
Transfer efficiency is defined as the ratio of the final popula-
tion of the state | f̃ 〉 to the initial population of the state |ĩ〉. The
color maps show the efficiency as a function of one-photon
detuning δ and the Rabi-frequency amplitude �0. Regard-
less of the subsystem, failure of STIRAP can be observed
at low Rabi-pulse amplitudes. This stems from the violation
of the global adiabatic condition (light power is too weak to
generate a strong superposition of ground and excited levels)
[19]. For a higher Rabi frequency, only a single maximum is
observed in the three-level system in the transfer efficiency
measured versus the one-photon detuning. At the same time,
in the four-level subsystems, where an additional excited level
is present, two maxima are observed at the zero and 140	

detunings. Each of them corresponds to STIRAP involving
different excited states. Interestingly, however, the transfer
efficiency drops almost to zero for a specific detuning be-
tween the two maxima. This is clearly visible in the cross
sections shown in Figs. 3(b) and 3(e). The positions of the
minima at δ = 70	 [Fig. 3(b)] and δ = 35	 [Fig. 3(e)] are
determined by violation of LAC and agree well with the dis-
cussion presented in Sec. II. Moreover, for the case presented
in Fig. 3(e), one can see that the efficiency plateau is not
symmetric with respect to the 0 < δ < � region. Specifically,
the plateau extends further toward positive detunings due to
the stronger avoided crossing at δ = � than at δ = 0 (case
II). Another interesting feature visible in the maps includes
the dark blue vertical stripes shown in Figs. 3(d) and 3(g).
The stripes indicate the transfer efficiency higher than unity.
Although this excess may appear at first sight to be wrong, it is
a result of additional repopulation of the level via spontaneous
emission from different excited states (incoherent pumping).
In fact, this process is present when LAC is violated, and a
non-negligible population arises in the excited states. At the
same time, the sublevel of mF = −1 is repopulated only by
itself [42], so there is no excess of the population relative to
the initial-state population.

For a better understanding of the detuning dependences,
Figs. 3(c), 3(f), and 3(i) show the energy difference be-
tween the dark state and other eigenstates. As shown, one of
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FIG. 3. Efficiency of population transfer from the mF = −1 (a)–(c), mF = 0 (d)–(f), and mF = +1 (g)–(i) sublevels of the F = 1 state of
the full manifold of states of the 87Rb D1 line. (a), (d), (g) Efficiency of the population transfer vs Rabi-frequency amplitude �0 and one-photon
detuning δ in the natural-linewidth units. (b), (e), (h) Cross sections through the maps at Rabi-frequency amplitude 10	, marked by a dashed
line. (c), (f), (i) Energy separation Ei − h̄δ (solid black, dotted red, and dash-dotted blue lines) as a function of the one-photon detuning δ.
Vertical dashed lines indicate the positions of the minimum transfer efficiency, and the energy gap is given in arbitrary units.

the eigenstates (dotted red line) crosses with the dark state
(dashed orange line) at 70	 [Fig. 3(c)] and 35	 [Fig. 3(f)].
This clearly demonstrates the relationship between the reduc-
tion in transfer efficiency and the violation of LAC [Eq. (5)].

Reduction of the efficiency of population transfer in a spe-
cific subsystem for given detunings can be used for control
over the population transfer, even when resonant pulses are
used. Specifically, by tuning the light, one can effectively
“turn off” the transfer from the specific. For example, using
the σ+-polarized light of δ = δ(I) (δ = δ(II)) enables one to
block the transfer from the mF = −1 (mF = 0) magnetic sub-
level. In the same manner, σ−-polarized light allows one to
“block” the transfer from the mF = 1 sublevel. So far, this
kind of control and selectivity in the transfer has required the
use of a magnetic field, which splits the Zeeman sublevels so
strongly that they can be independently addressed [38–40].
With our technique, the transfer is controlled even if the mag-
netic sublevels are degenerate.

The dependence of population-transfer efficiency on the
one-photon detuning δ plays an important role in room-
temperature atomic vapors. In such systems, the Doppler
broadening of the transition is about two orders of mag-
nitude larger than the excited-state relaxation rate (natural
width). In turn, the overall efficiency of STIRAP is affected
by atoms that are Doppler tuned to δ(I) or δ(II). Figure 4
presents the transfer efficiency to the mF = −1 sublevel ver-
sus one-photon detuning δ and rubidium-vapor temperature.
As shown above for δ = δ(II), the efficiency suffers from the
LAC violation at low temperature and no transfer is observed.
However, the efficiency of the transfer increases with temper-
ature [see Fig. 4(b)], which limits the control over the system.
On the other hand, the maximum transfer efficiency (effi-
ciencies integrated over the velocity distribution) decreases
with temperature. For instance, the efficiency for the room-
temperature vapor, interacting with the light of Rabi amplitude
10	 and zero detuning (δ = 0), decreases from 99.9 to 93.5%
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FIG. 4. (a) Population transfer calculated for a subsystem of
mF = −1 as a function of the one-photon detuning δ and temperature
at peak Rabi frequency 10	. (b) Population of the final state at
δ = δ(II) vs temperature (the position is denoted by the black, dashed
line).

compared to the cold atomic ensemble. This behavior may
be a problem in the applications of STIRAP in quantum-state
engineering with hot atomic vapors.

IV. CONCLUSIONS

In summary, we theoretically investigated coherent popu-
lation transfer between two long-lived ground states of 87Rb
excited at the D1 line. The transfer is based on the well-
established STIRAP method. With our analysis, we showed
that the 16-level system of rubidium can be decomposed into
three- and four-level independent subsystems. Among them,
of particular interest, was the four-level system. The efficiency
of the transfer between two ground states was investigated
with respect to parameters such as Stokes or probe-pulse
amplitude and one-photon detuning. With our analysis, we
demonstrated control over the transfer of population from
specific magnetic sublevels. Such a control is achieved by tun-
ing the light to the specific regions where the local adiabatic
condition is not fulfilled.

In contrast to the previous approaches [38–40], our tech-
nique enables population transfer from all magnetic sublevels
and selectively blocks a given transfer channel. This opens
interesting possibilities for tailoring complex quantum states,
e.g., to generate hyperfine coherences between specific mag-
netic sublevels. Moreover, as will be shown in the future
[44], it can be used to transfer quantum states between two
energy manifolds (ground-state hyperfine levels), preserving
both states’ populations and coherences. In this context, the

previous approaches covering application of additional mag-
netic fields or strong light beams not only complicate an
experimental setup but more importantly jeopardize such a
transfer (the coherences are randomized or destroyed). The
ability of more complex control over the quantum system may
be of particular interest for engineering and tomography of
long-lived quantum states in atomic vapors [45–48].
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APPENDIX

1. Hamiltonian of the system

We consider a four-level system with two hyperfine ground
levels and two hyperfine excited levels. The electric fields of
the Stokes and pump beams are given by

ES,p(t ) = εE0
S,p fS,p(t ) cos

(
ωS,pt

)
, (A1)

where E0
S (E0

p ) is the electric-field amplitude of the Stokes
(pump) light pulse, fS (t ) [ fp(t )] is the slowly varying Gaus-
sian envelope of the pulses with normalized amplitudes,
ωS (ωp) is the Stokes (pump) light frequency, and ε is the
light polarization vector that is identical for both beams. We
use the standard dipole approximation, with the interaction
term VE = −E · d, where d is the electric dipole moment. The
Hamiltonian can be converted to the rotating frame by using
a rotation generator given by diag(ωp, ωS, 0, 0). We assume
that both ground and both excited states are coupled with the
beams and two-photon resonance is fulfilled, i.e.,

ωS − ωp = �E

h̄
, (A2)

where �E is the energy difference between the initial and final
states. In this case, the off-diagonal elements of the Hamilto-
nian contain both stationary and oscillatory terms. In RWA we
neglect the terms oscillating at 2ωp, 2ωS , and ωp + ωS , which
allows us to write the Hamiltonian as

H = h̄C •

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

δ 0 �p(t ) �p(t )
0 δ �S (t ) �S (t )

�p(t ) �S (t ) 0 0
�p(t ) �S (t ) 0 �

⎞
⎟⎟⎠ +

⎡
⎢⎢⎣e−i(�E/h̄)t

⎛
⎜⎜⎝

0 0 0 0
0 0 �p(t ) �p(t )

�S (t ) 0 0 0
�S (t ) 0 0 0

⎞
⎟⎟⎠ + H.c.

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭, (A3)

where h̄� is the energy difference between the excited states, δ is the one-photon detuning, and �S (t ) [�p(t )] is the slowly
varying Rabi frequency of the Stokes (pump) beam given by �S,p(t ) = E0

S,p fS,p(t )/(2h̄)〈1/2‖d̂‖1/2〉, with the reduced matrix
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element 〈1/2‖d̂‖1/2〉 defined as in Ref. [49]. Note that the reduced matrix element is expressed by the quantum number J , which
is convenient when the excitation of alkali-metal atoms is considered on the D1 line. C is the coupling-constant matrix

C =

⎛
⎜⎜⎜⎜⎝

0 0 C1mF ,1mF ′ C1mF ,2mF ′

0 0 C2mF ,1mF ′ C2mF ,2mF ′

C∗
1mF ,1mF ′ C∗

2mF ,1mF ′ 0 0

C∗
1mF ,2mF ′ C∗

2mF ,2mF ′ 0 0

⎞
⎟⎟⎟⎟⎠ (A4)

with • representing the elementwise or Hadamard product ([A • B]i j = Ai jBi j). The coupling-constant matrix elements CFmF F ′mF ′
are given by

CFmF ,F ′mF ′ = (−1)3/2+I+F ′√
(2F + 1)〈F ′mF ′ |1qFmF 〉

{
1/2 F I

F ′ 1/2 1

}
, (A5)

where q is the index of light polarization in the spherical basis and I is the nuclear quantum number. Since the RWA Hamiltonian
(A3) contains the term oscillating at the frequency �E/h̄, to simplify the description of STIRAP evolution, it is necessary to
consider a regime where the term effectively averages to zero. To ensure that, the oscillation period, Tosc = h̄/�E , needs to be
much shorter than the slowly varying envelope characteristic times TS,p:

TS,p � h̄

�E
, (A6)

which is manifested in Eq. (1) in the main text. Under such conditions, the RWA Hamiltonian (A3) takes the form

H = h̄

⎛
⎜⎜⎜⎜⎝

δ 0 C1mF ,1mF ′ �p(t ) C1mF ,2mF ′ �p(t )

0 δ C2mF ,1mF ′ �S (t ) C2mF ,2mF ′ �S (t )

C∗
1mF ,1mF ′ �p(t ) C∗

2mF ,1mF ′ �S (t ) 0 0

C∗
1mF ,2mF ′ �p(t ) C∗

2mF ,2mF ′ �S (t ) 0 �

⎞
⎟⎟⎟⎟⎠ (A7)

where the Stokes (pump) beam interacts only with the final
(initial) state.

2. 87Rb

In the main paper, we consider 87Rb atoms coupled with
σ+-polarized light, resonant at the D1 line. For such a system,
one can distinguish only two classes of Hamiltonians, I and II.
In case I, the Hamiltonian is given by

H(I) = h̄

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

δ 0 −�p(t )

2
√

6
−�p(t )

2
√

6

0 δ �S (t )
2
√

2
�S (t )
2
√

2

−�p(t )

2
√

6
�S (t )
2
√

2
0 0

−�p(t )

2
√

6
�S (t )
2
√

2
0 �

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (A8)

One of the eigenstates of the Hamiltonian H(I) is a dark state of
the form |δ(t )〉 ∝ √

3�S (t )|ĩ〉 + �p(t )| f̃ 〉, with the eigenen-
ergy equal to h̄δ. The eigenenergies of other eigenstates are
given by the roots of the Hamiltonian characteristic equation.
It can be shown that if δ(I) = �/2, there exists time t0 at
which �p(t0) = �s(t0), and one of the other eigenenergies is
also equal to h̄�/2, meaning that the dark state crosses with
another eigenstate. The same applies to any case for which
Cie1 = ±Cie2 and Cf e1 = ±Cf e2 .

The case II Hamiltonian is given by

H(II) = h̄

2
√

6

⎛
⎜⎜⎜⎜⎝

δ 0 −�p(t ) −√
3�p(t )

0 δ �S (t )
√

3�S (t )

−�p(t ) �S (t ) 0 0

−√
3�p(t )

√
3�S (t ) 0 �

⎞
⎟⎟⎟⎟⎠.

(A9)

In this case, the dark state is given by |δ(t )〉 ∝ �S (t )|ĩ〉 +
�p(t )| f̃ 〉, and the level crossing occurs at δ(II) = �/4. For the
general case of class II, i.e., Cie1 = ±Cf e1 and Cie2 = ±Cf e2 ,
the crossing appears at δ(II) = �|Cie1 |2/(|Cie1 |2 + |Cie2 |2).

3. Local adiabatic condition

The LAC follows the adiabatic theorem [50], for which
the necessary condition is that the eigenstates remain distinct
from each other. The probability of a nonadiabatic transition
from the dark state |δ(t )〉 to an orthogonal eigenstate |y(t )〉 is
upper bounded by

P|δ〉→|y〉 � max
t

∣∣∣∣∣ 〈y(t )| d
dt [|δ(t )〉]

Ey(t )/h̄ − δ

∣∣∣∣∣
2

, (A10)

where Ey(t ) is the energy of the state |y(t )〉 and δ is the energy
of the dark state. Importantly, if the above-mentioned energy
separation is small, the evolution of the system must be slow
enough so that the rate of change of the eigenstate in time is
also small [see the derivative in the nominator in Eq. (A10)].
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We are interested in the probability of transition of the
system from the dark state |δ〉 to an entire subspace Qδ

orthogonal to the dark state. In general, finding the formula
for all eigenstates in a four-level system is complicated. More-
over, the inability to find a compact form of the state |y〉
limits the usability of the formula (A10). Nevertheless, the
probability that the system transits from the dark to any other
state can be upper bounded by the overlap of d

dt [|δ(t )〉] with
the entire Qδ subspace and dividing the result by the distance
of the dark state to the closest eigenstate. This gives rise to

P|δ〉→Qδ
� max

t

( ∣∣PQδ

(
d
dt |δ(t )〉)∣∣2

miny |Ey(t )/h̄ − δ|2
)

, (A11)

where PQδ
is the projection onto Qδ . It is convenient to extend

the subspace Qδ by a set of vectors {|ẽ1〉, |ẽ2〉, |δ̄〉}:

|δ̄(t )〉 = sin ϑ (t )|ĩ〉 + cos ϑ (t )| f̃ 〉. (A12)

Note that |δ̄(t )〉 is orthogonal to |δ(t )〉 [given by Eq. (3)]. The
derivative d

dt [|δ(t )〉] is proportional to |δ̄(t )〉. Since the dark
state |δ〉 has no overlap with the excited states |ẽ1〉 and |ẽ2〉,
the only nonvanishing contribution to the projection in the
nominator of Eq. (A11) comes from the state |δ̄(t )〉, thus

P|δ〉→Qδ
� max

t

∣∣∣∣∣∣∣
|a| |�p(t )�̇S (t )−�S (t )�̇p(t )|

�2
p(t )+|a|2�2

S (t )

miny |Ey(t )/h̄ − δ|

∣∣∣∣∣∣∣
2

. (A13)

One would like to keep the probability small, P|δ〉→Qδ
�

1, during the entire STIRAP process. P|δ〉→Qδ
is of the same

order of magnitude as the right-hand side of Eq. (A13) [50],
thus it has to be much smaller than 1. This translates into the
condition

miny �=δ

∣∣Ey/h̄ − δ
∣∣ � |a| |�p(t )�̇S (t ) − �S (t )�̇p(t )|

�2
p(t ) + |a|2�2

S (t )
,

(A14)

which was used in the main text [Eq. (5)].
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