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A recent proposal of the Lund group suggesting a multiplicity measure for e+e~ anni
hilation is analyzed. It is shown that the results obtained for the multiplicity distributions 
in full phase space do not change if one removes a questionable assumption of exact loca
lization o f branching products in rapidity (thus avoiding troubles for small rapidity bins). 
The predicted asymptotic form of the distribution is shown to differ from the negative bi
nomial distribution.

PACS numbers: 15.65. +  i

In a recent paper of the Lund group [1] a measure of multiplicity in e+e~ annihilation 
events has been proposed. Generalizing the available phase space from 2-jet events to 
multigluon events one finds an infrared stable measure which is suggested to represent the 
hadronie multiplicity. Its probability distribution may be found from a differential equa
tion resulting from simple probabilistic considerations.

The authors present two results which may be obtained without solving numerically 
the differential equation:
a) For very large energies, the asymptotic formulae for average multiplicity and dispersion 
are found. They reproduce (with a minor modification) the QCD results for gluon multi
plicity [2] and the Malaza-Webber results for dispersion [3],
b) For small bins in rapidity, the scaled moments are shown to grow as negative powers 
of the bin size, suggesting the “ intermittent” behaviour of the type considered by Białas 
and Peschanski [4],

However, one should note that the power-like growth of moments obtained in Ref. 
[1] is in fact much too strong. The exponents for consecutive moments are negative in
tegers, whereas all the existing data suggest values smaller by almost two orders o f magni
tude [5]. Thus the model in the presented version is not realistic for small rapidity bins.
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In this note we trace the origin o f the unwanted result and show that it may be quite 
easily removed without losing the promising results for multiplicities in full phase space. 
We comment also on the asymptotic shape o f the multiplicity distributions.

Let us repeat first the main assumptions adopted in Ref. [1], Using for variables 
CM rapidity y and the logarithm of transverse momentum

k  =  In (kl/A 2) ( 1)

and denoting by L  the logarithmic energy measure

L  =  In (s//l2), (2)

we consider the approximate phase space for the gluon emission from a 33 colour dipole 
as a triangular region given by

2 |y |+  k < L ,  0. (3)

If one gluon is emitted with rapidity y 1 and transverse momentum logarithm k15 
the phase space for the second gluon is increased by an extra triangle o f the vertical and 
horizontal side length k, . For strong ordering o f gluons in transverse momenta the rapid
ity o f a  second gluon emitted from this extra part o f phase space is approximately equal 
to y t. Phase space available after the emission of further gluons will be similarly increased 
by adding new triangular surfaces.

Now one notes that without any gluon emission one expects hadronic production 
with flat rapidity distribution and average multiplicity proportional to L, the baseline of 
the original triangular phase space. For one gluon emission one can split the system into 
two 33 systems with energies given by

«1,2 =  yfs  fcTi  exp ( ± y i ) ,  (4)

thus the multiplicity should be proportional to

ln (s JA 2) +  ln (s2IA2) =  L + k u  (5)

the total baseline length of two triangles forming phase space. Thus in general one may 
expect that the hadronic multiplicity from a state with n gluons should be related to a 
measure

A =  L  +  ^  Kj, (6)
i

which is the total baseline length of the multi-triangle phase space.
To specify the predictions one needs the probability distribution o f A for given L, 

In Ref. [1] this is done by considering first analoguous distribution o f a piece o f baseline
length within a limited region A in rapidity. One assumes here that any two regions are
completely independent, i.e.

(7)
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This assumptions is very strong and seems to be a rough approximation, as it requires 
e.g. that all the “ later”  (softer) gluons emitted from the “earlier” (harder) gluon have 
exactly the same value o f rapidity. Moreover, this should also hold for the hadronization 
products o f these gluons.

Let us show now that it is exactly assumption (7) which leads to the power-like in
crease o f scaled moments for decreasing length of rapidity interval A. Let us first con
sider two lowest moments

If =  j  kP(k)dk, If =  J  k2P(k)dk. (8)
Dividing the region A into two o f length A' =  A/2 we find easily

If =  2 l f ,  ¿ 1 =  2 4 + 2 / 7 -  (9)

and for scaled moment we get

F i =  4 4 2 =  (T2+l)/2. (10)

Inverting this relation we find

F j ' - l  = 2 ( F i - l )  (11)

and repeating this division n times we may write for <5 =  2 ~nA

F \  =  2 \ F j - l )  +  l. (12)

Thus for large n (small 8) we find

In F s2 =  -  In (8/A) + In (F^ - 1 ) + 0(81 A). (13)

Similarly, considering the third moments

If =  J k3P(k)dk, F i  =  If/If3 (14)

we find for small 8

In F 3 =  -  2 In (8/A) +  In (F | -  3 F |+ 2 ) +  0(81 A) (15)

and in general, for the i-th scaled moment we find

In F \ =  — (i —1) In (8IA) +  ci+0(8jA ). (16)

As already noted, this behaviour is in strong disagreement with data from various
multiparticle production processes [5] (including e~e [6]), which seem to show indeed for 
the rapidity bin length 8 between 1 and 0.1 the linear behaviour

In F f =  -a ;ln <5+/?i (17)

but the slopes a, are much smaller than j-1 (by almost two orders of magnitude). This
confirms our doubts concerning the validity o f assumption (7). On tyhe other hand, this
assumption seems to be in Ref. [1] a starting point for the subsequent derivation o f the
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differential equation for P(k, L). Thus a question arises: can One derive the equation for 
P(k,L) without assuming (7)?

To answer this, let us recall the derivation presented in Ref. [1]. One considers the 
change in probability PA(k, I) (where A is a small bin around rapidity y  and / denotes 
the maximal value o f >c allowed for given L  and y) induced by changing I to /+£ . This 
change allows for the emission o f an extra gluon from the phase space region k  e  ( I ,  l + e ) ,  

y e (y ,y + A ) .  Since in the leading log approximation the gluon emission probability den
sity is a0/fc, we find

PA(k, l +  s) =  (e M o/l) J dk'PA(k\ l)dk"P{k", /)d( , (1 -  eAa0l l)P Jk , 1), (18)

where P(k", I) corresponds to the phase space sector open by the extra gluon of k  — I, 
equivalent to an isolated 33 system with L =  I.

Subtracting PA(k, I) from both sides and taking the limit e -*  0, A -*  0 and Laplace 
transforms we find then the equation we are looking for

d 2 ^
ln P(ß, L) =  [Piß, L) -i]oc0/L, (IS)

d ls

where

P(ß, L ) =  |  dke~ /ßP (L  L). (20)
0

The boundary conditions supplementing (19) are

P(ß, 0) =  1, dldL[_P(ß, L )]t=0 =  - ß .  (21)

One should note the disappearance of interval A from the formulae. This is possible be
cause assumption (7) implies the simple multiplication rule for Laplace transforms P jß )  
analoguous to (20), and additivity o f ln P Jß ). Thus we can define the ratio

R(ß, I) =  lim [ln PÄ(ß)]/A (22)
4 - 0

by which we can express both P(ß,L ) and PA(ß)
_  L / 2  L

ln P{ß, L) =  f  dyR(ß, I — L  —2|y|) =  J  dlR(ß, I) (23)
- L / 2  0

ln PA(ß) =  $dyR[ß, /(>-)]. (24)
A

Thus we can write

lim lP A(ß, l + s ) - P A(ß, /)]/eA =  dR(ß, l)ldl =  d2 ln P(ß, l)/dl2. •(25)
4 — 0,e — 0

However, the key element o f the derivation was only the assumption that creating
an extra gluon opens a new sector o f phase space, approximately independent o f the
existing one. The rapidity localization of this gluon and of its hadronization products 
is irrelevant if we want to derive the equation for the full phase space.
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Thus instead of considering a small bin in rapidity we may start directly from full 
phase space, calculating the change in probability P (l, L) induced by a small change in L. 
We find

P{X, L  +  s) =  J P(/.\ L )P (X ', L)eQ(l)dld/.'dA '<5(2 - X '- X ’ ')
L

+  [ 1 -  f  ee(/)d/]P(A, L). (26)
o

Here g ( l )  is the probability density for emitting a gluon with k  =  I. Taking the Laplace 
transforms and subtracting P (ß ,L ) we find

Piß, L  +  e) — P{ß, L) =  Piß, L ) [ J  Piß, l)e( l )d l-  J  Q(l)dqe, (27)
0 0

and in the limit e 0
L

d[ln P(ß, L )]/dL =  J  e(D<W|7(A 0 - 1 ] ,  (28)
o

or

d2[ln P(ß, L)-]ldL2 =  QiL) [Piß, D  - 1]. (29)

As already noted, for large L  we take g(L) =  a0/L. Thus we have recovered Eq. (19) without 
any corrections.

We have shown that to obtain the probability distribution for the multiplicity measure 
in full phase space we do not need the questionable assumption of the exact rapidity loca
lization of all the branching and hadronization products o f an initial hard gluon. It would 
be very interesting to assume a more realistic distribution for the rapidity spread in the 
consecutive branching processes and to see if there is a chance o f reproducing experi
mental data for small rapidity bins. This problem is, however, unlikely to be solved ana
lytically and we will not consider it here.

Before concluding, let us comment shortly on the asymptotic properties o f the so
lutions o f Eq. (19). We may easily calculate the moments o f X distribution using

=  J  dXXPiX, L) =  d‘[Piß, L ) ] /d (- j8)V o -  (30)
o

Thus expanding P(ß, L ) and its logarithm into powers o f ß we find first the equation con
sidered in Ref. [1]

d2[ —I(L)]/dL2 =  a0[-X (L )]/L  (31)

which has a solution

a01(L) =  I  ia0L)J+ ll [ j !(/ + 1 ) !]  =  / x(2 (32)

with well-known asymptotic behaviour for large L

a0I(L ) =  (a0L )1/4 exp [2 j x 0L  (1 - 0( l/L ))]/ ,/47r. (33)
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Further terms o f the expansion allow to calculate asymptotic values o f scaled moments

F 2 =  4/3, F 3 =  9/4, F 4 =  208/45 (34)

the first o f which was already quoted in Ref. [1], Here we may note that the values o f F3 
and F a do not agree with those we could deduce from F 2 if the distribution would be ne
gative binomial (NBD). Indeed, for NBD we have

* ' ; =  rfd + .Z /fc). (35)
7 =  0

and for k — 1/3 corresponding »o F 2 =  4/3 we find F 3 =  20/9, F4 =  40/9.
We shall note here that the differences are numerically very small, suggesting that 

N BD fit may be quite successful. This agrees with observation made in Ref. [1] from nu
merical studies o f solutions for finite energies. Nevertheless, choosing more sensitive 
parameters, as e.g. the scaled Mueller correlation coefficients

f 2 =  F 2 —1, f 3 =  F 3 — 3f2 — l, h  =  / W / a  —3/ 22 —6/2 —1, (36)

we find 11 % difference for f 3 and 23 % difference forf A. Thus, although our results confirm 
the possibility o f goqd NBD fits to data up to the asymptotic energies, we find that the 
asymptotic distiibution predicted by the model of Ref. [1] is significantly different from 
NBD.

To summarize, we have reanalysed the predictions for multiplicity distributions in 
e+e~ collisions derived from a proposal to relate the hadronie multiplicity to a simple 
measure on partonic states. We find that the unrealistic (and leading to wrong predictions) 
assumption of the exact localization in rapidity o f the branching and hadronization prod
ucts of a hard gluon may be removed. This does not affect the predictions for the multi
plicity distributions in full phase space. We show also that the asymptotic form of multi
plicity distribution obtained is not NBD, although the differences in lowest moments are 
not big. We conclude that the model looks very promising and deserves further studies 
which should allow, in particular, to formulate reliable predictions also for multiplicity 
distribution in small rapidity bins.
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