
Available online at www.sciencedirect.com

p
i
t
l
D
r
d

f
e
T
t
a
o
b

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 411 (2023) 116073
www.elsevier.com/locate/cma

Automatic stabilization of finite-element simulations using neural
networks and hierarchical matrices

Tomasz Służaleca, Mateusz Dobijaa, Anna Paszyńskaa, Ignacio Mugab, Marcin Łośc,
Maciej Paszyńskic,∗

a Jagiellonian University, Kraków, Poland
b Pontificia Universidad Católica of Valparaíso, Chile

c AGH University, Kraków, Poland

Received 26 January 2023; received in revised form 15 April 2023; accepted 15 April 2023
Available online 3 May 2023

Abstract

Petrov–Galerkin formulations with optimal test functions allow for the stabilization of finite element simulations. In
articular, given a discrete trial space, the optimal test space induces a numerical scheme delivering the best approximation
n terms of a problem-dependent energy norm. This ideal approach has two shortcomings: first, we need to explicitly know
he set of optimal test functions; and second, the optimal test functions may have large supports inducing expensive dense
inear systems. A concise proposal on how to overcome these shortcomings has been raised during the last decade by the
iscontinuous Petrov–Galerkin (DPG) methodology. However, DPG has also some limitations and difficulties: the method

equires ultraweak variational formulations, obtained through a hybridization process, which is not trivial to implement at the
iscrete level.

Our motivation is to offer a simpler alternative for the case of parametric PDEs, which can be used with any variational
ormulation. Indeed, parametric families of PDEs are an example where it is worth investing some (offline) computational
ffort to obtain stabilized linear systems that can be solved efficiently in an online stage, for a given range of parameters.
herefore, as a remedy for the first shortcoming, we explicitly compute (offline) a function mapping any PDE parameter, to

he matrix of coefficients of optimal test functions (in some basis expansion) associated with that PDE parameter. Next, as
remedy for the second shortcoming, we use the low-rank approximation to hierarchically compress the (non-square) matrix

f coefficients of optimal test functions. In order to accelerate this process, we train a neural network to learn a critical
ottleneck of the compression algorithm (for a given set of PDE parameters). When solving online the resulting (compressed)

Petrov–Galerkin formulation, we employ a GMRES iterative solver with inexpensive matrix–vector multiplications thanks to
the low-rank features of the compressed matrix. We perform experiments showing that the full online procedure is as fast as
an (unstable) Galerkin approach. We illustrate our findings by means of 2D–3D Eriksson–Johnson problems, together with 2D
Helmholtz equation.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Keywords: Petrov–Galerkin method; Optimal test functions; Parametric PDEs; Automatic stabilization; Neural networks; Hierarchical matrices

∗ Corresponding author.
E-mail address: maciej.paszynski@agh.edu.pl (M. Paszyński).
https://doi.org/10.1016/j.cma.2023.116073
0045-7825/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.
org/licenses/by/4.0/).

http://www.elsevier.com/locate/cma
https://doi.org/10.1016/j.cma.2023.116073
http://www.elsevier.com/locate/cma
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2023.116073&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:maciej.paszynski@agh.edu.pl
https://doi.org/10.1016/j.cma.2023.116073
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

T. Służalec, M. Dobija, A. Paszyńska et al. Computer Methods in Applied Mechanics and Engineering 411 (2023) 116073

m

o
a
G
o
s

F
I
s
s
p
t

1. Introduction

Unstable finite-element simulations solved with the Galerkin method (where we employ the same trial and test
space) often generate incorrect numerical results with oscillations or spurious behavior. Examples of such problems
are the advection-dominated diffusion equation [1] and the Helmholtz equation [2].

Petrov–Galerkin formulations1with optimal test functions [3] allow for automatic stabilization of the discretiza-
tion of challenging PDEs. This particular Petrov–Galerkin approach is equivalent to the residual minimization (RM)
method, whose applications include advection–diffusion [4,5], Navier–Stokes [6], or space–time formulations [7].
The optimal test functions in general may not be even polynomials, but they are approximated in an enriched
polynomial (compatible) test space. In practise, for a fixed trial space, RM allows for stabilization by enriching
such a discrete test space.2 Alternatively, having in hand the explicit formulas for the approximated optimal test
functions expanded in the enriched discrete test space, one could use the Petrov–Galerkin formulation to solve the
same problem in a different manner, recovering the same discrete solution.

This last scenario has two shortcomings. The first problem is that the computation of optimal test functions is
expensive. It requires solving a large system of linear equations3 with multiple right-hand sides (one right-hand side
per each basis function of the trial space). The second problem is that the optimal test functions can have global
supports, and thus the Petrov–Galerkin method with optimal test functions can generate a dense matrix, expensive
to solve. A concise proposal on how to overcome these shortcomings has been raised during the last decade
by the Discontinuous Petrov–Galerkin (DPG) methodology [10–12]. However, DPG has also some limitations
and difficulties. Namely, the method requires ultraweak variational formulations, obtained through a hybridization
process, which is not trivial to implement at the discrete level.

Our motivation is to offer a simpler alternative to the aforementioned shortcomings, for the particular case of
parametric PDEs, which can be used with any variational formulation. Indeed, parametric families of PDEs are an
example where it is worth investing some (offline) computational effort, to obtain stabilized linear systems that can
be solved efficiently in an online stage, for a given range of parameters. Therefore, in the context of a parametric
family of PDEs, and as a remedy for the first shortcoming, we explicitly compute (offline) a function mapping any
PDE parameter, to the matrix of coefficients of optimal test functions (expanded in the basis of the enriched discrete
test space) associated with that PDE parameter. We emphasize that this last procedure is independent of particular
right-hand side sources and/or prescribed boundary data of the PDE family.

The obtained matrix W of optimal test functions coefficients is dense. The Petrov–Galerkin method induces a
linear system of the form BTW x = (LTW)T , where L is a right-hand side vector and B is the matrix associated with
the bilinear form of the underlying PDE. To avoid dense matrix computations, we compress W using the approach
of hierarchical matrices [13,14]. Having the matrix W compressed into a hierarchical matrix H, we employ the
GMRES method [15], which involves computations of the residual R := BTH x − (LTH)T and the hierarchical

atrix enables matrix–vector multiplication of H x and LTH in a quasi-linear computational cost.
However, compressing the matrix W for each PDE-parameter is an expensive procedure. Thus, with the help

f an artificial neural network, we train (offline) the critical bottleneck of the compression algorithm. We obtain
stabilized method with the additional quasi-linear cost resulting from matrix–vector multiplications within the
MRES solver. From our numerical results with the Eriksson–Johnson and Helmholtz model problems, this cost
f stabilization4 is of the same order as the cost of the solution of the original Galerkin problem without the
tabilization.

The hierarchical matrices have been used for preconditioning of multi-grid solvers in context of higher-order
EM in [16]. They have been also employed to speed up the isogeometric boundary method computations [17].
n this paper we employ GMRES solver with the hierarchical matrix working like a preconditioner to stabilize the
olution. There are alternative preconditioners for GMRES employed to solve the Helmholtz problem. In [18] the
hifted-Laplace preconditioner for the GMRES solver is employed. The paper [19] extends this Helmholtz problem
reconditioner into the complex shifted Laplacian combined with deflation techniques. It has been also shown that
he refined isogeometric analysis can improve the computational cost of iterative and multi-grid solvers [20]. The

1 i.e., trial and test spaces are not equal, although they share the same dimension.
2 Contrary to standard stabilization methods like SUPG [8,9], there are no special stabilization terms modifying the weak formulation.
3 As large as the dimension of the enriched discrete test space.
4 i.e., the cost of compression of the hierarchical matrix and the cost of GMRES with hierarchical matrix multiplication by a vector.
2

T. Służalec, M. Dobija, A. Paszyńska et al. Computer Methods in Applied Mechanics and Engineering 411 (2023) 116073
Fig. 1. Discrete spaces Uh (left) and Vh (right).

application of direct solvers [21–23] possibly combined with refined isogeometric analysis [24] for the Petrov–
Galerkin formulation with optimal test functions is limited due to the density of the matrix of coefficients of the
optimal test functions. However, after the hierarchical compression of the matrix, it may be possible to invert the
system using a direct method with a quasi-linear computational cost [25] due to the properties of the hierarchical
matrices. This, however, requires further investigation and is not a subject of this paper.

The idea of performing a double discretization has been already investigated in the context of the surrogate
matrix technique [26], which its main goal is to decrease the computational cost by reducing the finite element
assembly process, to the evaluation of a small set of functions which can be locally approximated by polynomials.
Applications include linear elasticity and nonlinear diffusion problems [27]; isogeometric analysis for the Stokes
flow problem [28]; Helmholtz equation, linear elastodynamics and non-linear hyperelastic wave propagation
problems [29]. The surrogate matrix technique is another interesting approach, alternative to hierarchical matrices.
The question whether this method can be applied for compression of the matrix of coefficients of the optimal test
functions is an interesting open problem that may be investigated in a future work.

1.1. One-dimensional illustration of stabilization

Let us illustrate how we stabilize difficult computational problems by means of a one-dimensional example for
the advection-dominated diffusion model.

Given 0 < ϵ ≤ 1, consider the following differential equation:{
−ϵu′′ + u′ = 0 in (0, 1) ;

−ϵu′(0)+ u(0) = 1 and u(1) = 0.
(1)

In weak-form, Eq. (1) translates into find u ∈ H 1
0)(0, 1) := {v ∈ H 1(0, 1) : v(1) = 0} such that:

ϵ

∫ 1

0
u′v′ +

∫ 1

0
u′v + u(0)v(0) = v(0) , ∀v ∈ H 1

0)(0, 1). (2)

We define discrete spaces Uh and Vh as depicted in Fig. 1. Given a regular mesh, Uh will be the space of piecewise
linear and continuous functions; while Vh will be the space of piecewise quadratics and continuous functions. From
one side, we discretize formulation (2) using a standard Galerkin method where trial and test spaces are equal
to Vh . On the other side, we discretize (2) by means of a residual minimization (RM) technique that uses Uh
as the trial space, and Vh as the test space. In the residual minimization method we solve a saddle-point problem.
Fig. 2 compares the discrete solutions delivered by these two methods for different values of ϵ, and different meshes
parametrized by the number of elements n. We observe a superior performance of the residual minimization method,
even though the approximation (trial) space used is poorer than that of the Galerkin method.

1.2. Outline of the paper

The structure of the paper is the following. Section 2 contains all the theoretical ingredients needed to understand
our approach. Namely, Petrov–Galerkin formulations with optimal test functions (Section 2.1); optimal test functions
for an affine family of PDEs (Section 2.2); the hierarchical compression of the optimal test functions matrix of
coefficients (Section 2.3); the fast hierarchical matrix–vector multiplication and related fast implementation of

the GMRES solver (Section 2.4); and the neural networks acceleration of the hierarchical matrix compression

3

T. Służalec, M. Dobija, A. Paszyńska et al. Computer Methods in Applied Mechanics and Engineering 411 (2023) 116073
Fig. 2. Comparing the exact solution with the Galerkin method (where trial and test are quadratic B-splines with C0 separators) and the
residual minimization method (with linear B-splines for trial and quadratic B-splines with C0 separators for test).

(Section 2.5). Next, in Section 3 we apply our automatic stabilization procedure to well-known unstable parametric
model problems. First, for the two-dimensional Eriksson–Johnson model problem (Section 3.1); and next, for a
two-dimensional Helmholtz equation (Section 3.2). We write our conclusions in Section 4. All the pseudo-code
algorithms needed to follow our methodology have been shifted to Appendix A.

2. Theoretical ingredients

2.1. Petrov–Galerkin formulations with optimal test functions

Let U and V be Hilbert spaces. We consider a general PDE variational formulation, which is to find u ∈ U such
that

b(u, v) = ℓ(v) , ∀v ∈ V , (3)

where b : U × V → R is a continuous bilinear form, and ℓ : V → R is a continuous linear functional (i.e., ℓ ∈ V ′,
the dual space of V).

The dual space V ′ has a norm inherited by the norm of V . Indeed, if (·, ·)V denotes the inner-product of the
Hilbert space V , then these norms are given by the following expressions:

V ∋ v ↦→ ∥v∥V :=
√

(v, v)V and V ′ ∋ f ↦→ ∥ f ∥V ′ := sup f (v).

∥v∥V=1

4

T. Służalec, M. Dobija, A. Paszyńska et al. Computer Methods in Applied Mechanics and Engineering 411 (2023) 116073

s

I

T

m

P
n
e
M
w
k
s
O

i

I
P

I
w

e

We will assume well-posedness of problem (3), which translates into the well-known inf-sup conditions (see,
e.g., [30, Theorem 2.6]):

∃γ > 0 such that ∥b(w, ·)∥V ′ ≥ γ ∥w∥U , ∀w ∈ U ; (4a)

{v ∈ V : b(w, v) = 0 ,∀w ∈ U } = {0}. (4b)

Notice that the continuity assumption on the bilinear form b(·, ·), also implies the existence of a constant M ≥ γ

uch that:

∥b(w, ·)∥V ′ ≤ M∥w∥U , ∀w ∈ U. (5)

Given a discrete finite-element space Uh ⊂ U , a natural candidate to approximate the solution u ∈ U to
problem (3) is the residual minimizer

uh = argmin
wh∈Uh

∥b(wh, ·)− ℓ(·)∥V ′ . (6)

ndeed, combining (4a), (6), and (5), the residual minimizer automatically satisfies the quasi-optimality property:

γ ∥uh − u∥U ≤ ∥b(uh, ·)− ℓ(·)∥V ′ = inf
wh∈Uh

∥b(wh, ·)− ℓ(·)∥V ′ ≤ M inf
wh∈Uh

∥wh − u∥U .

hus, the residual minimizer inherits stability properties from the continuous problem.
It is well-known (see, e.g., [31]) that the saddle-point formulation of residual minimization (6) becomes the

ixed problem that aims to find uh ∈ Uh , and a residual representative r ∈ V , such that:

(r, v)V − b(uh, v) = −ℓ(v), ∀v ∈ V, (7a)

b(wh, r) = 0, ∀wh ∈ Uh . (7b)

Although it seems harmless, the mixed problem (7) is still infinite-dimensional in the test space V . To obtain a
computable version of it, we introduce a discrete test space Vh ∈ V that turns (7) into a fully discrete problem that
aims to find uh ∈ Uh ,5, and a discrete residual representative rh ∈ Vh , such that:

(rh, vh)V − b(uh, vh) = −ℓ(vh), ∀v ∈ Vh, (8a)

b(wh, rh) = 0, ∀wh ∈ Uh, (8b)

roblem (8) corresponds to the saddle-point formulation of a discrete-dual residual minimization, in which the dual
orm ∥ · ∥V ′ in (6) is replaced by the discrete-dual norm ∥ · ∥V ′h

. Well-posedness and stability of (8) has been
xtensively studied in [32] and depends on a Fortin compatibility condition between the discrete spaces Uh and Vh .
oreover, once this condition is fulfilled (and in order to gain stability), it is possible to enrich the test space Vh

ithout changing the trial space Uh . Obviously, this process will enlarge the linear system (8). Nevertheless, we
now that there is an equivalent linear system of the same size of the trial space, delivering the same uh ∈ Uh

olving (8). This is known as the Petrov–Galerkin method with optimal test functions, which we describe below.
ur goal will be to make this (generally impractical) method practical.6

Let us introduce now the concept of optimal test functions. For each wh ∈ Uh , the optimal test function T wh ∈ Vh

s defined as the Riesz representative of the functional b(wh, ·) ∈ V ′h , i.e.,

(T wh, vh)V = b(wh, vh) , ∀vh ∈ Vh . (9)

f we test Eq. (8a) with optimal test functions T wh , then using (9) and (8b), we arrive to the following
etrov–Galerkin system with optimal test functions:{

Find uh ∈ Uh such that
b(uh, T wh) = ℓ(T wh) , ∀wh ∈ Uh .

(10)

n order to explicit a matrix expression for (10), let us set Uh := span{w1, . . . , wn} and Vh := span{v1, . . . , vm},
ith m > n. Consider the matrix B linked to the bilinear form b(·, ·) such that its (i, j)-entry is Bi j = b(w j , vi).

5 Notice the abuse of notation. This new uh ∈ Uh solution of (8) does not equals the exact residual minimizer solution of (6) or
quivalently (7).

6 We emphasize that DPG is another methodology focused on the same goal; see [10].
5

T. Służalec, M. Dobija, A. Paszyńska et al. Computer Methods in Applied Mechanics and Engineering 411 (2023) 116073

o
t
P

w
w
a
s

2

w
c

w
d

T

T
w

2

m

f

Analogously, we consider the Gram matrix G linked to the inner product (·, ·)V such that Gki = (vk, vi)V . The
ptimal test space is defined as V opt

h := span{T w1, . . . , T wn}. Thus, using (9), we observe that the matrix containing
he coefficients of optimal test functions when expanded in the basis of Vh is W := G−1B.7 Moreover, the
etrov–Galerkin system (10) becomes

BTW x = (LTW)T , (11)

here the vector x contains the coefficients of the expansion of uh in the basis of Uh ; LT
:= [ℓ(v1) . . . ℓ(vm)]; and

e have used the fact that GT
= G. Therefore, if we aim to solve the Petrov–Galerkin linear system (11) iteratively,

n optimized matrix–vector multiplication to perform W x and LTW becomes critical. Section 2.3 is devoted to
tudy the hierarchical compression of W, which allows for fast vector–matrix multiplications.

.2. Optimal test functions for an affine family of parametric PDEs

Assume we want to solve parametric PDEs in variational form, i.e.,

Find uµ ∈ U such that bµ(uµ, v) = ℓµ(v), ∀v ∈ V,

here for each set of parameters µ ∈ P ⊂ Rd , the bilinear form bµ(·, ·) is continuous and inf-sup stable, with
onstants that may depend on µ. Moreover, assume that bµ(·, ·) has the following affine decomposition:

bµ(·, ·) = b0(·, ·)+
d∑

k=1

θk(µ)bk(·, ·),

here θk : P → R and bk : U × V → R are accessible and easy to compute. When trial and test spaces are
iscretized, the bilinear form bµ(·, ·) induces a matrix of the form:

Bµ = B0 +

d∑
k=1

θk(µ)Bk .

hus, the matrix of coefficients of optimal test functions Wµ := G−1Bµ becomes in this case:

Wµ = G−1B0 +

d∑
k=1

θk(µ)G−1Bk . (12)

he upcoming Eq. (17) shows the particular form that expression (12) gets for the Eriksson–Johnson model problem,
here knowing G−1B0 and G−1B1 implies the knowledge of Wϵ for any ϵ > 0.

.3. Hierarchical compression of the optimal test functions matrix of coefficients

Hierarchical matrices were introduced by Hackbusch [13]. The main idea of the hierarchical compression of a
atrix is to store the matrix in a tree-like structure, where:

• the root node corresponds to the whole matrix;
• the root node has some number of sons (in our approach 4 sons) corresponding to submatrices of the main

matrix;
• each node can have sons (in our approach 4 sons) corresponding to submatrices (blocks), or it can be a leaf

representing the corresponding matrix (block);
• each leaf stores its associated matrix in the SVD compressed form or as a zero matrix;
• at each node, the decision about storing the block in SVD form, or either dividing the block into submatrices,

depends on an admissibility condition of the block.

Exemplary hierarchical compression of the matrix in a form of a tree is presented in Fig. 3; while the algorithm
or compression of the matrix into the hierarchical matrix format is presented in Algorithm 1.

7 In DPG, G−1 is available with low computational effort (G is block-diagonal), at the price of working with a hybrid version of the
bilinear form b(·, ·), which introduces new variables on the skeleton of the underlying finite element mesh.
6

T. Służalec, M. Dobija, A. Paszyńska et al. Computer Methods in Applied Mechanics and Engineering 411 (2023) 116073

d

w
a
T
s
w
o
c
p

2

s

T

Fig. 3. Hierarchical compression of a matrix.

Fig. 4. Reduced singular value decomposition.

The admissibility condition controls the process of creation of the tree, it allows us to decide if the matrix should
be divided (or not) into submatrices. In our case, the admissibility condition is established using the following
criteria:

1. The size of the matrix: if the matrix is bigger than a pre-defined maximal admissible size l >> 1, then the
matrix should be divided into submatrices;

2. The first r singular values: if the r + 1 singular value is greater than a pre-defined threshold δ > 0, then the
matrix should be divided into submatrices.

In the leaves of the tree, we perform a reduced Singular Value Decomposition (rSVD). A reduced singular value
ecomposition of a (n × m)-matrix8 M of rank k is a factorization of the form

M = UDVT ,

ith unitary matrices U ∈ Rn×k and V ∈ Rm×k , and a diagonal matrix D ∈ Rk×k where the diagonal entries
re D11 ≥ D22 ≥ · · · ≥ Dkk > 0. (see Fig. 4). The diagonal entries of D are called the singular values of M.
he computational complexity of the reduced SVD is O((m + n)k2). The threshold δ in the reduced SVD plays
imilar role as the required accuracy of convergence of the iterative solver. For example, if we require solutions
ith accuracy up to 6 digits, like for the Eriksson–Johnson problem with ϵ = 10−6, we need to select δ having
rder 10−7. The fact that we compress the hierarchical matrix during the offline training means that we can start
omputations of the reduced SVD from large blocks related to patches of elements, arbitrarily selected for a given
roblem.

.4. Matrix–vector multiplication with H-matrices and GMRES solver speedup

The computational cost of matrix–vector multiplication using a compressed H-matrix of rank r and s right-hand
ide vectors is O((m + n)rs). This is illustrated in Fig. 5(a).

The multiplication of a matrix compressed into SVD blocks is performed recursively as illustrated in Fig. 5(b).
he resulting computational cost of the multiplication is again O((m + n)rs).

8 Notice that we are abusing the notation and n, m are not necessarily the dimensions of the discrete trial and test spaces.
7

T. Służalec, M. Dobija, A. Paszyńska et al. Computer Methods in Applied Mechanics and Engineering 411 (2023) 116073

O
a

T

v
u

2

r
b
t

Fig. 5. (a) The complexity of matrix–vector multiplication with compressed H-matrix of arbitrary dimension n × m and s vectors is
((m+n)rs). (b) We can also partition the matrix–vector multiplication into four blocks of arbitrary dimensions n1×m1, n1×m2, n2×m1,

nd n2 ×m2, where n = n1 + n2, m = m1 +m2. We also partition vectors into m1 and m2 rows. When multiplying such the four different

SVD compressed blocks by a vector, we can employ the Binet matrix–vector multiplication algorithm
[

C2 ∗ (C1 ∗ X1)+ D2 ∗ (D1 ∗ X2)
E2 ∗ (E1 ∗ X1)+ F2 ∗ (F1 ∗ X2)

]
.

he resulting computational cost is O((m + n)rs).

The GMRES algorithm employed for computing the solution includes multiplications of the problem matrix by
ectors (see line 1, line 4, and line 5 in Algorithm 9). These matrix–vector multiplications have a linear cost when
sing the H-matrix.

.5. Neural network learning the hierarchical matrices

The hierarchical matrix is obtained by constructing a tree with SVDs of different blocks of the full matrix. The
oot level corresponds to the entire matrix, and the children correspond to sub-blocks. Only the leaf nodes have
locks stored in the SVD decomposition format. The most expensive part of the compression algorithm is checking
he admissibility condition. In particular, checking if a given block has r singular values smaller than δ, and whether

we partition or run the SVD. The SVD data for the blocks of different sizes can be precomputed and stored in a
list, see Fig. 6. From the set P ⊂ Rd of PDE parameters, we can construct the neural network

P ∋ µ→ DNN(µ) = {Ui (µ),Di (µ),Vi (µ)}i=1,...,NB (13)

where DNN(µ) is the list of learned SVDs for all NB blocks of different dimensions. The associated loss functions
are defined as the mean square error (MSE) between the trainable data and the data from the dataset, i.e.,

MSE(Ui) :=
∑Nt

p=1

Ui (µp)− Ui (µp)
2

F / size(Ui);

MSE(Di) :=
∑Nt

p=1

Di (µp)− Di (µp)
2

2 / length(Di);

MSE(Vi) :=
∑Nt

p=1

Vi (µp)− Vi (µp)
2

F / size(Vi);

where {Ui (µp), Di (µp), Vi (µp)}p=1,...,Nt denotes the exact values of the SVDs of a given block, for a sample of Nt

training parameters {µp}
Nt
p=1; while ∥ · ∥2 and ∥ · ∥F denote the Euclidean and Frobenius norms, respectively. Notice

that each block i = 1, . . . , NB is trained in a separate way.
We emphasize that the training of the neural networks Ui (µ) and Vi (µ) works only if we partition the matrix

Wµ into blocks corresponding to the mesh dimensions.
Fig. 7 illustrates the changes of values of matrices {U, D, V} from the SVD of one block of the matrix Wϵ

computed from the two-dimensional Eriksson–Johnson problem. The horizontal axis denotes different values of ϵ

(from 10−7 to 100) and the vertical axis denotes the values of the coefficients of the matrices (as functions of ϵ).
In particular, we look at the entries of {U, D, V} from the first block of the third partition level (first block from

Fig. 12). We only plot the columns of U related with the first and last singular values of D under consideration, as

8

T. Służalec, M. Dobija, A. Paszyńska et al. Computer Methods in Applied Mechanics and Engineering 411 (2023) 116073

S
a
T
t
R

n

w
k
c

w
U
s
b

Fig. 6. Compression of reduced SVDs of matrices, starting from the root level, second level, third level, and the following levels.

well as the rows of V related to them. Neural networks are universal approximators, becoming a good choice to
approximate these kind of functions.

An illustration of the architecture of the neural network used to learn singular values is depicted in Fig. 8.
uch an architecture has been obtained heuristically. We assumed the number of layers varying from 3 to 5. We
lso randomly checked the number of neurons in the layers from the set {2, 4, 6, 8, 10, 12, 14, 24, 25, 26, 27, 28, 29

}.
hen, we checked the MSE error for training of one block of SVD of the matrix of coefficients of the optimal

est functions. The selected neural network architecture provides small MSE loss function value. We also compared
eLU activation function with tanh. The ReLU provided better approximation error.

The input values of ϵ are logarithmically scaled before we pass them into the neural network using
p.log10(np eps). We also scale them into [−1, 1] using MinMaxScaler(feature range(−1,1)).

3. Applications

3.1. Two-dimensional eriksson–johnson problem

Given Ω = (0, 1)2
⊂ R2 and β = (1, 0), we seek the solution of the advection–diffusion problem{

−ϵ ∆u + β · ∇u = 0 in Ω
u = sin(kπy)χ{x=0} over ∂Ω ,

(14)

here χ{x=0} denotes the characteristic function over the inflow boundary x = 0. In our examples, we consider
= 1, or k = 2, but it can be an arbitrary integer. The problem is driven by the inflow Dirichlet boundary

ondition and develops a boundary layer of width ϵ near the outflow x = 1, as shown in Fig. 9.
The weak form with a general Dirichlet boundary data g ∈ H

1
2 (∂Ω) will be to find uϵ

∈ H 1(Ω) such that⎧⎪⎪⎨⎪⎪⎩
ϵ

∫
Ω

∇uϵ
· ∇v +

∫
Ω

(β · ∇uϵ)v  
ϵ b1(uϵ ,v)+b0(uϵ ,v)=:bϵ (uϵ ,v)

= 0, ∀v ∈ H 1
0 (Ω),

uϵ
= g, over ∂Ω .

(15)

To simplify the discussion, we approximate the solution as tensor products of C1-continuous one-dimensional B-
splines basis functions {Bi;p(x)B j;p(y)}i, j of uniform order p in all directions. This discrete trial space U p

h ⊂ H 1(Ω)
ill be split as U p

h = U p
h,0 + U p

h,∂Ω , where U p
h,0 ⊂ H 1

0 (Ω) contains all the basis functions vanishing at ∂Ω ; and
p

h,∂Ω is the complementary subspace containing the basis functions associated with boundary nodes. Our discrete
olution will be uϵ

h = uϵ
h,0 + uϵ

h,g , where uϵ
h,0 ∈ U p

h,0 is unknown and uϵ
h,g ∈ U p

h,∂Ω is directly obtained using the

oundary data g.

9

T. Służalec, M. Dobija, A. Paszyńska et al. Computer Methods in Applied Mechanics and Engineering 411 (2023) 116073
Fig. 7. Some coefficients of matrices {U, D, V} from the SVD algorithm executed from the first block of the matrix Wϵ at the third partition
level. We only plot the columns of U related with the first and last singular values of D, as well as the rows of V related to them.

Fig. 8. The architecture of the neural network learning the singular values for blocks of the matrix. The input to the neural network is the
ϵ parameter.
10

T. Służalec, M. Dobija, A. Paszyńska et al. Computer Methods in Applied Mechanics and Engineering 411 (2023) 116073

w
T

t

d
t

Fig. 9. Boundary layer of Eriksson–Johnson problem for ϵ = 0.01.

Fig. 10. The entire matrix Wϵ of the coefficients of the optimal test functions as the input of the first hierarchical level.

We build the test space using the same polynomial order p but with C0 separators inserted between elements,
hich makes the test space larger than the trial space. This discrete test space will be denoted by V p

h,0 ⊂ H 1
0 (Ω).

he discrete residual minimization problem will be to find uϵ
h,0 ∈ U p

h,0 and rh ∈ V p
h,0 such that

(∇rh,∇vh)L2(Ω) − bϵ(uϵ
h,0, vh) = −bϵ(uϵ

h,g, vh) , ∀vh ∈ V p
h,0 , (16a)

bϵ(wh, rh) = 0 , ∀wh ∈ U p
h,0 . (16b)

The reduced matrix system associated with (16) takes the form:

BT
ϵ Wϵx = (LTWϵ)T , where Wϵ = G−1Bϵ = ϵ G−1B1 +G−1B0. (17)

We train a neural network {U(ϵ),D(ϵ),V(ϵ)} for the SVD of the entire matrix Wϵ (see Fig. 10), as well as
he SVD decompositions {Ui j (ϵ),Di j (ϵ),Vi j (ϵ)}i=1,..., j2 of sub-matrices obtained by j × j partitions of Wϵ , for
j = 2, 4, 8, 16. The successful training requires that the partitions of the matrix corresponds with the mesh
imensions. Fig. 11 shows a 2 × 2 partition; while Fig. 12 shows a 4 × 4 partition. The white parts correspond to
he boundary nodes, where we have enforced the boundary conditions.

For the training of SVDs we employ the following training set of epsilons

{1, [9, 8, 7, 6, 5, 4, 3, 2, 1] · 10−1,

[9, 8, 7, 6, 5, 4, 3, 2, 1] · 10−2,

[9, 8, 7, 6, 5, 4, 3, 2, 1] · 10−3,

[9, 8, 7, 6, 5, 4, 3, 2, 1] · 10−4,
−5
[9, 8, 7, 6, 5, 4, 3, 2, 1] · 10 ,

11

T. Służalec, M. Dobija, A. Paszyńska et al. Computer Methods in Applied Mechanics and Engineering 411 (2023) 116073
Fig. 11. The four blocks of the matrix Wϵ of the coefficients of the optimal test functions as the input of the second hierarchical level.

Fig. 12. The sixteen blocks of the matrix Wϵ of the coefficients of the optimal test functions as the input of the third hierarchical level.

[9, 8, 7, 6, 5, 4, 3, 2, 1] · 10−6,

[9, 8, 7, 6, 5, 4, 3] · 10−7}
Output from the neural network are the approximated coefficients of the SVD. We partitioned the data set for
training and testing data: odd epsilons are used for training, while even epsilons are used for testing. The examples

of convergence of the training procedures are presented in Figs. 13–14.

12

T. Służalec, M. Dobija, A. Paszyńska et al. Computer Methods in Applied Mechanics and Engineering 411 (2023) 116073

n

Fig. 13. Eriksson–Johnson problem. Training of the SVD matrices {U,D,V} related with the full matrix Wϵ .

Fig. 14. Eriksson–Johnson problem. Training of the SVD matrices {U,D,V} related with the first block at the second hierarchical level.

In an online stage, for a given diffusion coefficient ϵ, we perform the compression of the matrix Wϵ into the
hierarchical matrix Hϵ using Algorithm 6, where the admissibility condition is now provided by the trained neural
network. The compressed hierarchical matrices are illustrated in Fig. 15.

Having the compressed matrix Hϵ , we employ the GMRES algorithm [15] for solving the linear system (17).
To avoid the computation with a dense BT

ϵ Hϵ matrix, we note that the GMRES method involves computations of
the residual R = BT

ϵ Hϵ x − (LTHϵ)T and the hierarchical matrix Hϵ enables matrix–vector multiplications of Hϵ x
and LTHϵ in a quasi-linear computational cost.

In Table 1 we summarize the computational costs of our solver for two different values of the ϵ parameter,
−1 −6
amely ϵ = 10 and ϵ = 10 . The computational trial mesh was a tensor product of quadratic B-splines with

13

T. Służalec, M. Dobija, A. Paszyńska et al. Computer Methods in Applied Mechanics and Engineering 411 (2023) 116073

2

G

Table 1
Computational costs of the stabilized Eriksson–Johnson solver using neural networks, hierarchical matrices and GMRES solver.

ϵ Compress Compress Hϵ ∗ x BT
∗Hϵ x # iter Total

Wϵ flops Wϵ flops flops flops GMRES flops
with DNN without DNN H-matrix

0.1 14,334 158,946 41,163 9,152 90 3,728,166
10−6 31,880 117,922 33,100 9,002 76 3,232,392

Table 2
Computational costs of Galerkin method for the Eriksson–Johnson problem using GMRES solver.

ϵ # iter GMRES Galerkin Flops per iteration Total flops

0.1 89 17,536 1,560,704
10−6 65 17,536 1,139,840

Table 3
Execution times for (second column) stabilized Eriksson–Johnson problem using GMRES solver using hierarchical
matrices and (third column) Eriksson–Johnson solver without matrix compression, as well as (fourth column)
GMRES for Galerkin.

ϵ # GMRES Petrov–Galerkin GMRES Petrov–Galerkin GMRES Galerkin
compressed Hϵ time no compression time time

0.1 7.65 s 150 s 3.96 s
10−6 1.77 s 109 s 0.77 s

Fig. 15. Matrix of the coefficients of the optimal test functions compressed by using recursive SVD algorithm for ϵ = 10−1 and ϵ = 10−6.
The compression algorithm removes singular values smaller than δ = 10−7, and employs 5 levels of hierarchy.

6 elements along x-axis and quadratic B-splines with 10 elements along y-axis. As we can read from the second
and third columns, the DNN speeds up the compression process of the matrix of optimal test function’s coefficients
around ten times. We employ the GMRES solver that computes the residual. The cost of multiplication of the Hϵ ∗x
and the cost of multiplication of BT

∗Hϵx is included in the fourth and fifth column in Table 1. The total cost of the
MRES with hierarchical matrices augmented by DNN compression is equal to the compression cost of Hϵ with

DNN, plus the number of iterations times the multiplication cost of Hϵ ∗ x plus the multiplication cost of BT
∗Hϵx .

The total cost is presented in the last column of Table 1.
For comparisons, we run the GMRES algorithm on the Galerkin method. The comparison is summarized in

Table 2. The number of iterations, the cost per iteration, and the total cost are presented there. We can observe that
the cost of the stabilized solution is two times larger than the cost of the Galerkin solution, in terms of floating-
point operations and execution time. We are comparing here the costs of the solution obtained from the stable
Petrov–Galerkin method, with the cost of the solution from the unstable Galerkin method.

We present in Table 3 the execution times of the GMRES solver using Petrov–Galerkin formulation with
hierarchical matrix compression and without the compression. Additionally, we present the execution time of the
14

T. Służalec, M. Dobija, A. Paszyńska et al. Computer Methods in Applied Mechanics and Engineering 411 (2023) 116073

u

Fig. 16. Case inflow data g = sin (πy). Comparison of exact solutions (first and third column) and solutions obtained from GMRES solver

sing H-matrix (second and four column) for ϵ = 10−6 (first row) and ϵ = 10−1 (second row). Iterative solver executed with accuracy
10−10.

Fig. 17. Case inflow data g = sin(2πy). Solutions obtained from the Petrov–Galerkin formulation with ϵ = 10−6 and ϵ = 10−1.

GMRES for Galerkin method. For the comparison we use Octave implementation of GMRES algorithm with and
without hierarchical matrix compression.

Numerical results comparing with the exact solution are depicted in Fig. 16 for inflow data g = sin(πy), and
Fig. 17 for inflow data g = sin(2πy). Moreover, the Euclidean distance between discrete solutions of compressed
and uncompressed methodologies is equal to 7.22 · 10−10 for ϵ = 10−1, and it is equal to 1.45 · 10−5 for ϵ = 10−6.
Notice that these errors are induced by the hierarchical matrix compression error, as well as the approximation error
of those matrix entries performed by the neural network. We emphasize that the error of the hierarchical matrix
compression involves the difference between Hϵ and Wϵ ; while the error of the trained neural network concerns
the difference between Hϵ and the neural network approximation of it. Detailed perturbation analysis on how these
matrix errors translate to the discrete solutions will be the subject of another paper.

3.2. Helmholtz Problem

Given Ω = (0, 1)2
⊂ R2 and κ ∈ [1, 10], we seek the solution of the Helmholtz problem{

∆u + κ2u = f in Ω
u = g over ∂Ω ,

(18)

with right-hand sides f and g such that the exact solution is u(x, y) = sin(κπx) sin(κπy).
We employ 20 × 20 finite elements mesh. The trial space is constructed from quadratic B-splines. The test space

0
is obtained with quadratic B-splines with C separators (equivalent to Lagrange polynomials). The dependence of

15

T. Służalec, M. Dobija, A. Paszyńska et al. Computer Methods in Applied Mechanics and Engineering 411 (2023) 116073
Fig. 18. Helmholtz problem. Training of the neural network for the SVD matrices for one block.

Table 4
Computational costs of the stabilized Helmholtz solver using neural networks, hierarchical matrices and GMRES
solver.

κ Compress Compress Hκ ∗ x A ∗Hκ x # iter Total
Wκ flops Wκ flops flops flops GMRES flops
with DNN without DNN H-matrix

1 0 129,788 47,649 8,901 10 565,500
10 0 129,788 47,649 8,877 31 1,752,306

the coefficients of the optimal test functions on κ for the Helmholtz problem has the affine structure described in
Section 2.2, thus we can offline construct the function

P ∋ κ →Wκ , (19)

where Wκ is the matrix of the coefficients of the optimal test functions. We fix the trial and test spaces used for
approximation of the solution and stabilization of the Petrov–Galerkin formulation. Next, we consider blocks of
different size of matrix Wκ , and we train the SVD for these different blocks as a function of κ , i.e.,

P ∋ κ → DNN(κ) = {Ui (κ),Di (κ),Vi (κ)}i=1,...,NB . (20)

The convergence of the training procedure is presented in Fig. 18. Knowing Di (κ) a priori for a given κ allows
us to construct the structure of the hierarchical matrix, and we obtain the Ui (κ) and Vi (κ) from the neural networks.
Fig. 20 depicts the exemplary resulting hierarchical matrices. The hierarchical matrix compression of Wκ (for a given
κ) is obtained from the neural network. It has been computed offline, and the online cost is just the evaluation of
the neural network.

Table 4 summarizes the computational costs of our solver for two values of κ = {1, 10}. The computational
mesh was a tensor product of quadratic B-splines with 10 elements along each of the axes.

We employ the GMRES solver that computes the residual. The cost of multiplication of the Hκ ∗ x and the
cost of multiplication of BT

∗ Hκ x is included in the fourth and fifth column in Table 4. The total cost of the
GMRES with hierarchical matrices augmented by DNN compression is equal to the number of iterations times
the multiplication cost of Hκ ∗ x plus multiplication cost of BT

∗ Hκ x . The total cost is presented in the last
column of Table 4.

We present in Table 5 the cost of the GMRES algorithm executed on the Galerkin method. We present the number
of iterations, the cost per iteration, and the total cost. We can see that the number of floating-point operations to
obtain the stabilized solution is 4 times larger than the number of floating-point operations to obtain the Galerkin
solution. Namely, for κ = 1, we have 144,440 flops of Galerkin method versus 565,500 flops of Petrov–Galerkin
method. For κ = 10, we have 447,764 flops of Galerkin method versus 1,752,306 flops of Petrov–Galerkin method.
The comparison of the solution obtained with the Petrov–Galerkin formulation with the optimal test functions
generated by DNN and the exact solution is presented in Fig. 19.

We also show in Table 6 the execution times of the GMRES solver for the Helmholtz problem stabilized with
Petrov–Galerkin formulation using hierarchical matrix compression, without the hierarchical matrix compression,
and the execution time of the GMRES with the Galerkin formulation (resulting in incorrect solution). We employ
the Octave implementation of GMRES algorithm with and without hierarchical matrix compression. The Euclidean
distance between discrete solutions of compressed and uncompressed methodologies is equal to 4 ·10−14 for κ = 1,
and it is equal to 3.84 · 10−13 for κ = 8.
16

T. Służalec, M. Dobija, A. Paszyńska et al. Computer Methods in Applied Mechanics and Engineering 411 (2023) 116073

w

s

Fig. 19. The solutions obtained for the Helmholtz problem for κ = 1, 2, 4, 8. The solution obtained from the Petrov–Galerkin formulation
ith the optimal test functions provided by the neural network (first row). The exact solution (second row).

Fig. 20. The hierarchical matrices for κ = 1 (left panel) and κ = 10 (right panel). The compression algorithm removes the singular values
maller than δ = 10−7 and employs 5 levels of hierarchy.

Table 5
Computational costs of Galerkin method for the Helmholtz problem using GMRES
solver.

ϵ # iter GMRES Galerkin Flops per iteration Total flops

1 10 14,444 144,440
10 31 14,444 447,764

3.3. Generalization of the Eriksson–Johnson problem into 3D

We have generalized the Eriksson–Johnson problem into three-dimensions. Given Ω = (0, 1)3
⊂ R3 and

β = (1, 0, 0), we seek the solution of the advection–diffusion problem{
−ϵ ∆u + β · ∇u = 0 in Ω

(21)
u = sin(kπy) sin(kπ z)χ{x=0} over ∂Ω ,

17

T. Służalec, M. Dobija, A. Paszyńska et al. Computer Methods in Applied Mechanics and Engineering 411 (2023) 116073
Table 6
Execution times for (second column) stabilized Helmholtz problem using GMRES solver with
hierarchical matrices and (third) GMRES solver without matrix compression, as well as (fourth
column) GMRES for Galerkin method.

κ # GMRES Petrov–Galerkin GMRES Petrov–Galerkin GMRES Galerkin
compressed Hϵ time no compression time time

1 6.5 s 22 s 1.62 s
10 9.2 s 48 s 2.34 s

Fig. 21. Solutions to the generalized 3D Eriksson–Johnson problem (21), for ϵ = 0.1 (left panel) and ϵ = 10−3 (right panel)..

Fig. 22. Eriksson–Johnson problem generalized into 3D. Hierarchical matrix of coefficients of the optimal test functions, for ϵ = 10−1 and
ϵ = 10−3. Compression with δ = 10−6 and 5 levels of hierarchy.

where χ{x=0} denotes the characteristic function over the inflow boundary x = 0. The associated weak form will be
the same as in (15).

We illustrate the solution in Fig. 21. We employ 26 intervals along x axis, and 10 intervals along y and z axis.
We use quadratic B-splines for trial and cubic B-splines for test.

Fig. 22 illustrates the hierarchical matrix of coefficients of the optimal test functions compressed with δ = 10−6

and 5 levels of hierarchy. We have performed the training for the following set of ϵ:

{1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1,

0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01,

0.009, 0.008, 0.007, 0.006, 0.005, 0.004, 0.003, 0.002, 0.001}.

The odd values of ϵ are used for the training, while the even values are employed for validation. The examples of
convergence of the training as expressed by the MSE value for some SVD blocks are illustrated in Figs. 23–24.
18

T. Służalec, M. Dobija, A. Paszyńska et al. Computer Methods in Applied Mechanics and Engineering 411 (2023) 116073

t
s
c
i

Fig. 23. Eriksson–Johnson problem generalized into 3D. Training of the neural network the SVD matrices for the first one of the 2 × 2
blocks. The MSE for entries of {U,D,V} computed for the validation set.

Fig. 24. Eriksson–Johnson problem generalized into 3D. Training of the neural network the SVD matrices for the first one of the 4 × 4
blocks. The MSE for entries of {U,D,V} computed for the validation set.

Table 7
Computational costs of the stabilized 3D extension of Eriksson–Johnson solver using neural networks, hierarchical
matrices and GMRES solver.

ϵ GMRES GMRES GMRES GMRES GMRES GMRES
Petrov- Galerkin Petrov- Galerkin Petrov- Galerkin
Galerkin flops Galerkin # iter Galerkin time
flops # iter time

0.1 2,337,300 385,815 100 85 160 s 11 s
0.001 2,789,836 462,978 119 102 164 s 12 s

In Table 7 we present general comparison of the number of floating-point operations, number of iterations and
otal execution times for GMRES solver for Galerkin formulation (resulting in incorrect solution), GMRES solver
tabilized with Petrov–Galerkin formulation with hierarchical matrix compression, and without hierarchical matrix
ompression. The Euclidean distance between discrete solutions of compressed and uncompressed methodologies
s equal to 8.88 · 10−4 for ϵ = 0.1, and it is equal to 1.31 · 10−4 for ϵ = 0.001.
19

T. Służalec, M. Dobija, A. Paszyńska et al. Computer Methods in Applied Mechanics and Engineering 411 (2023) 116073

p
m
a
m
d

d
e
a

D

h

D

A

U
a
t

A

A

R

4. Conclusions

We have employed the Petrov–Galerkin formulation with optimal test functions for the stabilization of the
discretization of challenging PDEs. We have focused on advection-dominated diffusion and Helmholtz problems.
During the offline phase, we explicitly compute the matrix of coefficients of optimal test functions for any PDE

arameter. We have also trained neural networks to compute for each PDE parameter the bottleneck of hierarchical
atrix compression. During the online phase, we rapidly compute the matrix compression using the neural networks,

nd we perform the GMRES iterative solver on the reduced Petrov–Galerkin linear system, where vector–matrix
ultiplications are done in a quasi-linear computational cost, due to the hierarchical structure of the low-rank

ecomposition used.
As future work, we plan to extend this idea to time-dependent problems, starting with a non-stationary advection-

ominated diffusion problem [5]. We also plan to implement the method for time-dependent Navier–Stokes
quations [4]. Additionally, we want to experiment with more complex parametric PDEs, where the parameters
re piecewise constant through the domain, by means of a domain decomposition technique.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
ave appeared to influence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgments

Maciej Paszyński was supported by the program “Excellence initiative – research university” for the AGH
niversity of Science and Technology. Ignacio Muga was supported by the European Union’s Horizon 2020 research

nd innovation programme under the Marie Sklodowska-Curie grant agreement No. 777778 (MATHROCKS); and
he Chilean National Agency for Research & Development through the Fondecyt Project #1230091.

ppendix A. Algorithms

.1. Recursive hierarchical compression of the matrix

equire: tmin, tmax, smin, smax ∈ N (row and column index ranges),
1 ≤ tmin ≤ tmax ≤ n, 1 ≤ smin ≤ smax ≤ m where n × m is the size of the matrix to be compressed
if Admissible(tmin, tmax, smin, smax, r, δ) then

v = CompressMatrix(tmin, tmax, smin, smax, r)
else

// Create a new node with four sons corresponding to four //quarters of the matrix
create new node v

AppendChild(v,CreateTree(tmin, tnewmax, smin, snewmax))
AppendChild(v,CreateTree(tmin, tnewmax, snewmax + 1, smax))
AppendChild(v,CreateTree(tnewmax + 1, tmax, smin, snewmax))
AppendChild(v,CreateTree(tnewmax + 1, tmax, snewmax + 1, smax))

end if
RETURN v

Algorithm 1: Recursive hierarchical compression of the matrix: CreateTree(r, δ) where r is the rank used for
the compression, and δ is the threshold for the singular values.
20

T. Służalec, M. Dobija, A. Paszyńska et al. Computer Methods in Applied Mechanics and Engineering 411 (2023) 116073

A

R

A.2. Checking of the admissibility condition

Require: tmin, tmax, smin, smax - range of indexes of block, δ compression threshold, r maximum rank
if block (tmin, tmax, smin, smax) consist of zeros then

return true;
end if
[U,D,V]← reducedSVD(tmin, tmax, smin, smax, r + 1); σ ← diag(D);
if σ (r + 1) < δ then

return true;
end if
return false;

Algorithm 2: Checking of the admissibility condition: result = Admissible(tmin, tmax, smin, smax, r, δ)

A.3. Matrix–vector multiplication

Require: node v representing compressed matrix H(v) ∈Mm×n , X ∈Mn×c vectors to multiply
if v.nr sons == 0 then

if v.rank == 0 then
return zeros(si ze(A).rows)

end if
return v.U ∗ (v.V ∗ X)

end if
rows = si ze(X).rows
X1 = X (1 : rows

2 , ∗)
X2 = X (rows

2 + 1 : si ze(A).rows, ∗)
C2 = v.son(1).U ;C1 = v.son(1).V
D2 = v.son(2).U ; D1 = v.son(2).V
E2 = v.son(3).U ; E1 = v.son(3).V
F2 = v.son(4).U ; F1 = v.son(4).V

return
[

C2 ∗ (C1 ∗ X1)+ D2 ∗ (D1 ∗ X2)
E2 ∗ (E1 ∗ X1)+ F2 ∗ (F1 ∗ X2)

]
Algorithm 3: Matrix–vector multiplication: Y = matrix vector mult(v, X)

.4. rSVD compression of a block

equire: tmin, tmax, smin, smax - range of indexes of block, δ compression threshold, r maximum rank
if block (tmin, tmax, smin, smax) consist of zeros then

create new node v; v.rank ← 0; v.si ze← si ze(tmin, tmax, smin, smax); return v;

end if
[U,D,V]← reducedSVD(tmin, tmax, smin, smax, r); σ ← diag(D);
rank ← rank(D)
create new node v; v.rank ← rank;
v.singularvalues ← σ (1 : rank);
v.U ← U (∗, 1 : rank);
v.V ← D(1 : rank, 1 : rank) ∗ V (1 : rank, ∗);
v.sons ← ∅; v.si ze← si ze(tmin, tmax, smin, smax);
return v;

Algorithm 4: rSVD compression of a block: node = CompressMatrix(t , t , s , s , r)
min max min max

21

T. Służalec, M. Dobija, A. Paszyńska et al. Computer Methods in Applied Mechanics and Engineering 411 (2023) 116073

A

R

i

A.5. Pseudo-code of the GMRES algorithm

Require: A matrix, b right-hand-side vector, x0 starting point
Compute r0 = b − Ax0
Compute v1 =

r0
∥r0∥

for j = 1, 2, ..., k
Compute hi, j =

(
Av j , vi

)
for i = 1, 2, ..., j

Compute v̂ j+1 = Av j −
∑

i=1,..., j hi, jvi

Compute h j+1, j = ∥v̂ j+1∥2
Compute v j+1 = v̂ j+1/h j+1, j

end for
Form solution xk = x0 + Vk yk where Vk = [v1...vk], and yk minimizes J (y) = ∥βe1 − Ĥk y∥ where

Ĥ =

⎡⎢⎢⎢⎢⎢⎢⎣

h1,1 h1,2 · · · h1,k

h2,1 h2,2 · · · h2,k

0
. . .

. . .
...

...
. . . hk,k−1 hk,k

0 · · · 0 hk+1,k

⎤⎥⎥⎥⎥⎥⎥⎦
Algorithm 5: Pseudo-code of the GMRES algorithm

.6. Recursive hierarchical compression of the matrix augmented by neural network

equire: tmin, tmax, smin, smax,∈ N (row and column index ranges), r rank of the blocks, δ accuracy of
compression, µ PDE parameter
1 ≤ tmin ≤ tmax ≤ n, 1 ≤ smin ≤ smax ≤ m where n × m is the size of the matrix to be compressed
i = block index for (tmin, tmax, smin, smax)
if Di (µ)[r + 1] < δ (asking NN for block singularvalues) then

if block (tmin, tmax, smin, smax) consist of zeros then
create new node v; v.rank ← 0; v.si ze← si ze(tmin, tmax, smin, smax, s, t); return v;

end if
[Ui (µ),Di (µ),Vi (µ)](asking NN for SVD);σ ← diag(Di (µ));
rank ← rank(Di (µ))
create new node v; v.rank ← rank;
v.singularvalues ← σ (1 : rank);
v.U ← Ui (µ)(∗, 1 : rank);
v.V ← Di (µ)(1 : rank, 1 : rank) ∗ Vi (µ)(1 : rank, ∗);
v.sons ← ∅; v.si ze← si ze(tmin, tmax, smin, smax);
return v;

else
// Create a new node with four sons corresponding to four //quarters of the matrix
create new node v
AppendChild(v,CreateTreeNN(tmin, tnewmax, smin, snewmax, r, δ, µ))
AppendChild(v,CreateTreeNN(tmin, tnewmax, snewmax + 1, smax, r, δ, µ))
AppendChild(v,CreateTreeNN(tnewmax + 1, tmax, smin, snewmax, r, δ, µ))
AppendChild(v,CreateTreeNN(tnewmax + 1, tmax, snewmax + 1, smax, r, δ, µ))

end if
RETURN v

Algorithm 6: Recursive hierarchical compression of the matrix augmented by neural network:
CreateTreeNN(1,rowsof(A),1,columnsof(A),r, δ, µ) where r is the rank used for the compression, and δ

s the threshold for the r singular values, µ is the PDE parameter.
22

T. Służalec, M. Dobija, A. Paszyńska et al. Computer Methods in Applied Mechanics and Engineering 411 (2023) 116073
References
[1] K.W. Morton, Numerical Solution of Convection-Diffusion Problems, CRC Press, 2019.
[2] O.G. Ernst, M.J. Gander, Why it is difficult to solve Helmholtz problems with classical iterative methods, Numer. Anal. Multiscale

Probl. (2012) 325–363.
[3] L. Demkowicz, J. Gopalakrishnan, A class of discontinuous Petrov–Galerkin methods. II. Optimal test functions, Numer. Methods Part.

Differ. Equ. 27 (1) (2011) 70–105.
[4] V.M. Calo, M. Łoś, Q. Deng, I. Muga, M. Paszyński, Isogeometric residual minimization method (iGRM) with direction splitting

preconditioner for stationary advection-dominated diffusion problems, Comput. Methods Appl. Mech. Engrg. 373 (2021) 113214.
[5] M. Łoś, J. Munoz-Matute, I. Muga, M. Paszyński, Isogeometric residual minimization method (iGRM) with direction splitting for

non-stationary advection–diffusion problems, Comput. Math. Appl. 79 (2) (2020) 213–229.
[6] M. Łoś, I. Muga, J. Munoz-Matute, M. Paszyński, Isogeometric residual minimization (iGRM) for non-stationary Stokes and

Navier–Stokes problems, Comput. Math. Appl. 95 (2021) 200–214.
[7] R. Stevenson, J. Westerdiep, Minimal residual space–time discretizations of parabolic equations: Asymmetric spatial operators, Comput.

Math. Appl. 101 (2021) 107–118.
[8] V.M. Calo, Residual-Based Multiscale Turbulence Modeling: Finite Volume Simulations of Bypass Transition, Stanford University,

2005.
[9] T.J.R. Hughes, L.P. Franca, M. Mallet, A new finite element formulation for computational fluid dynamics: VI. Convergence analysis

of the generalized supg formulation for linear time-dependent multidimensional advectivediffusive systems, Comput. Methods Appl.
Mech. Eng. 63 (1) (1987) 97–112.

[10] L. Demkowicz, J. Gopalakrishnan, An Overview of the Discontinuous Petrov Galerkin Method, Springer International Publishing, 2014.
[11] L. Demkowicz, J. Gopalakrishnan, I. Muga, J. Zitelli, Wavenumber explicit analysis of a DPG method for the multidimensional

Helmholtz equation, Comput. Methods Appl. Mech. Eng. 213-216 (2012) 126–138.
[12] L. Demkowicz, N. Heuer, Robust DPG method for convection-dominated diffusion problems, SIAM J. Numer. Anal. 51 (5) (2013)

2514–2537.
[13] W. Hackbusch, Hierarchical Matrices: Algorithms and Analysis, Springer, 2015.
[14] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. Part I: Introduction to h-matrices, Computing (1999) 89–108.
[15] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, 2003.
[16] S. Le Borne, Hierarchical preconditioners for high-order FEM, in: T. Dickopf, J.M. Gander, L. Halpern, R. Krause, L.F. Pavarino (Eds.),

Domain Decomposition Methods in Science and Engineering XXII, Springer International Publishing, Cham, 2016, pp. 559–566.
[17] J. Zechner, B. Marussig, G. Beer, F. Thomas-Peter, Isogeometric boundary element method with hierarchical matrices, 2014, pp. 1–10,

arXiv:1406.2817.
[18] G.C. Diwan, M.S. Mohamed, Iterative solution of Helmholtz problem with high-order isogeometric analysis and finite element method

at midrange frequencies, Comput. Methods Appl. Mech. Engrg. 363 (2020) 112855.
[19] V. Dwarka, R. Tielen, M. Möller, C. Vuik, Towards accuracy and scalability: Combining isogeometric analysis with deflation to obtain

scalable convergence for the Helmholtz equation, Comput. Methods Appl. Mech. Engrg. 377 (2021) 113694.
[20] D. Garcia, D. Pardo, L. Dalcin, V.M. Calo, Refined isogeometric analysis for a preconditioned conjugate gradient solver, Comput.

Methods Appl. Mech. Engrg. 335 (2018) 490–509.
[21] P.R. Amestoy, I.S. Duff, J.-Y. L’Excellent, Multifrontal parallel distributed symmetric and unsymmetric solvers, Comput. Methods Appl.

Mech. Engrg. 184 (2–4) (2000) 501–520.
[22] P.R. Amestoy, I.S. Duff, J.-Y. L’Excellent, J. Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling,

SIAM J. Matrix Anal. Appl. 23 (1) (2001) 15–41.
[23] P.R. Amestoy, A. Guermouche, J.-Y. L’Excellent, S. Pralet, Hybrid scheduling for the parallel solution of linear systems, Parallel

Comput. 32 (2) (2006) 136–156.
[24] D. Garcia, D. Pardo, L. Dalcin, M. Paszyński, N. Collier, V.M. Calo, The value of continuity: Refined isogeometric analysis and

fast direct solvers, Comput. Methods Appl. Mech. Engrg. 316 (2017) 586–605, Special Issue on Isogeometric Analysis: Progress and
Challenges.

[25] G. Chavez, G. Turkiyyah, D.E. Keyes, A direct elliptic solver based on hierarchically low-rank Schur complements, in: C.-O. Lee,
X.-C. Cai, D.E. Keyes, H.H. Kim, A. Klawonn, E.-J. Park, O.B. Widlund (Eds.), Domain Decomposition Methods in Science and
Engineering XXIII, Springer International Publishing, Cham, 2017, pp. 135–143.

[26] S. Bauer, M. Mohr, U. Rüde, J. Weismüller, M. Wittmann, B. Wohlmuth, A two-scale approach for efficient on-the-fly operator
assembly in massively parallel high performance multigrid codes, Appl. Numer. Math. 122 (2017) 14–38.

[27] D. Drzisga, B. Keith, B. Wohlmuth, The surrogate matrix methodology: A priori error estimation, SIAM J. Sci. Comput. 41 (6) (2019)
A3806–A3838.

[28] D. Drzisga, B. Keith, B. Wohlmuth, The surrogate matrix methodology: Accelerating isogeometric analysis of waves, Comput. Methods
Appl. Mech. Engrg. 372 (2020) 113322.

[29] D. Drzisga, B. Keith, B. Wohlmuth, The surrogate matrix methodology: Low-cost assembly for isogeometric analysis, Comput. Methods
Appl. Mech. Engrg. 361 (2020) 112776.

[30] A. Ern, J.-L. Guermond, Theory and Practice of Finite Elements, Vol. 159, Springer, 2013.
[31] J. Chan, J.A. Evans, W. Qiu, A dual Petrov–Galerkin finite element method for the convection–diffusion equation, Comput. Math.

Appl. 68 (11) (2014) 1513–1529.
[32] I. Muga, K.G. van Der Zee, Discretization of linear problems in Banach spaces: Residual minimization, nonlinear Petrov–Galerkin,

and monotone mixed methods, SIAM J. Numer. Anal. 58 (6) (2020) 3406–3426.
23

http://refhub.elsevier.com/S0045-7825(23)00197-4/sb1
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb2
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb2
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb2
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb3
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb3
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb3
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb4
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb4
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb4
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb5
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb5
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb5
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb6
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb6
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb6
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb7
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb7
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb7
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb8
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb8
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb8
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb9
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb9
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb9
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb9
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb9
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb10
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb11
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb11
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb11
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb12
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb12
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb12
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb13
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb14
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb15
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb16
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb16
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb16
http://arxiv.org/abs/1406.281
http://arxiv.org/abs/1406.281
http://arxiv.org/abs/1406.281
http://arxiv.org/abs/1406.281
http://arxiv.org/abs/1406.281
http://arxiv.org/abs/1406.281
http://arxiv.org/abs/1406.281
http://arxiv.org/abs/1406.281
http://arxiv.org/abs/1406.281
http://arxiv.org/abs/1406.281
http://arxiv.org/abs/1406.281
http://arxiv.org/abs/1406.281
http://arxiv.org/abs/1406.281
http://arxiv.org/abs/1406.281
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb18
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb18
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb18
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb19
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb19
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb19
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb20
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb20
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb20
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb21
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb21
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb21
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb22
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb22
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb22
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb23
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb23
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb23
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb24
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb24
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb24
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb24
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb24
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb25
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb25
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb25
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb25
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb25
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb26
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb26
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb26
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb27
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb27
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb27
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb28
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb28
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb28
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb29
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb29
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb29
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb30
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb31
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb31
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb31
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb32
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb32
http://refhub.elsevier.com/S0045-7825(23)00197-4/sb32

	Automatic stabilization of finite-element simulations using neural networks and hierarchical matrices
	Introduction
	One-dimensional illustration of stabilization
	Outline of the paper

	Theoretical ingredients
	Petrov–Galerkin formulations with optimal test functions
	Optimal test functions for an affine family of parametric PDEs
	Hierarchical compression of the optimal test functions matrix of coefficients
	Matrix–vector multiplication with H-matrices and GMRES solver speedup
	Neural network learning the hierarchical matrices

	Applications
	Two-dimensional Eriksson–Johnson problem
	Helmholtz problem
	Generalization of the Eriksson–Johnson problem into 3D

	Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix A. Algorithms
	Recursive hierarchical compression of the matrix
	Checking of the admissibility condition
	Matrix–vector multiplication
	rSVD compression of a block
	Pseudo-code of the GMRES algorithm
	Recursive hierarchical compression of the matrix augmented by neural network

	References

