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Abstract

We consider a long-run impulse control problem for a generic Markov process with
a multiplicative reward functional. We construct a solution to the associated Bellman
equation and provide a verification result. The argument is based on the probabilistic
properties of the underlying process combined with the Krein-Rutman theorem applied
to the specific non-linear operator. Also, it utilises the approximation of the problem
in the bounded domain and with the help of the dyadic time-grid.
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1 Introduction

Impulse control constitutes a versatile framework for controlling real-life stochastic
systems. In this type of control, a decision-maker determines intervention times and
instantaneous after-intervention states of the controlled process. By doing so, one
can affect a continuous time phenomenon in a discrete time manner. Consequently,
impulse control attracted considerable attention in the mathematical literature; see e.g.
[7, 13, 31] for classic contributions and [6, 14, 24, 26] for more recent results. In addi-
tion to generic mathematical properties, impulse control problems were studied with
reference to specific applications including i.a. controlling exchange rates, epidemics,
and portfolios with transaction costs; see e.g. [23, 30, 32] and references therein.
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When looking for an optimal impulse control strategy, one must decide on the
optimality criterion. Recently, considerable attention was paid to the so-called risk-
sensitive functional given, for any y € R, by

5 InElexp(y2)l, ¥ #0,

Y(Z) =
A y =0,

(1.1

where Z is a (random) payoff corresponding to a chosen control strategy; see [19] for
a seminal contribution. This functional with y = 0 corresponds to the usual linear
criterion and the case y < 0 is associated with risk-averse preferences; see [8] for
a comprehensive overview. Also, the functional with y > 0 could be linked to the
asymptotics of the power utility function; see [36] for details. Recent comprehensive
discussion on the long-run version with ©¥ could be found in [10]. We refer also to
[28] and references therein for a discussion on the connection between (1.1) and the
duality of the large deviations-based criteria.

In this paper we focus on the use of the functional ©¥ with y > 0. More specifically,
we consider the impulse control problem for some continuous time Markov process
and construct a solution to the associated Bellman equation which characterises an
optimal impulse control strategy. To do this, we study the family of impulse control
problems in bounded domains and then extend the analysis to the generic locally
compact state space. This idea was used in [2], where PDEs techniques were applied
to obtain the characterisation of the controlled diffusions in the risks-sensitive setting.
A similar approximation for the the average cost per unit time problem was considered
in [37].

The main contribution of this paper is a construction of a solution to the Bellman
equation associated with the problem, see Theorem 5.1 for details. It should be noted
that we get a bounded solution even though the state space could be unbounded and we
assume virtually no ergodicity conditions for the uncontrolled process. Also, note that
present results for y > 0 complement our recent findings on the impulse control with
the risk-averse preferences; see [29] for the dyadic case and [20] for the continuous
time framework. Nevertheless, it should be noted that the techniques for y < 0 and
y > 0 are substantially different and it is not possible to directly transform the results
in one framework to the other; see e.g. [21, 25] for further discussion.

The structure of this paper is as follows. In Sect. 2 we formally introduce the prob-
lem, discuss the assumptions and, in Theorem 2.3, provide a verification argument.
Next, in Sect. 3 we consider an auxiliary dyadic problem in a bounded domain and in
Theorem 3.1 we construct a solution to the corresponding Bellman equation. This is
used in Sect. 4 where we extend our analysis to the unbounded domain with the dyadic
time-grid; see Theorem 4.2 for the main result. Next, in Sect. 5 we finally construct a
solution to the Bellman equation for the original problem; see Theorem 5.1. Finally,
in Appendix A we discuss some properties of the optimal stopping problems that are
used in this paper.
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2 Preliminaries

Let X = (X;);>0 be a continuous time standard Feller—Markov process on a filtered
probability space (2, F, (F;), P). The process X takes values in a locally compact
separable metric space £ endowed with a metric p and the Borel o-field £. With any
x € E we associate a probability measure P, describing the evolution of the process
X starting in x; see Section 1.4 in [33] for details. Also, we use E,, x € E, and
Pi(x,A) ;=P [X; € Al,t > 0,x € E, A € &, for the corresponding expectation
operator and the transition probability, respectively. By Cp(E) we denote the family
of continuous bounded real-valued functions on E. Also, to ease the notation, by 7,
7y, and 7, we denote the families of stopping times, P, a.s. finite stopping times,
and P, a.s. bounded stopping times, respectively. Also, for any § > 0, by 7% c 7T,
7;8 C 7y, and 7;5 » C Zxp, we denote the respective subfamilies of dyadic stopping
times, i.e., those taking values in the set {0, §, 23, ...} U {oo}. Finally, note that in this
paper we follow the conventions N := {0, 1,2, ...} and R_ := (—o0, 0].

Throughout this paper we fix some compact set U C E and we assume that a
decision-maker is allowed to shift the controlled process to U. This is done with the
help of an impulse control strategy, i.e. a sequence V := (1;, &)2,, where (7;) is
an increasing sequence of stopping times and (&;) is a sequence of J,-measurable
after-impulse states with values in U. With any starting point x € E and a strategy
V we associate a probability measure P, ) for the controlled process Y. Under this
measure, the process starts at x and follows its usual (uncontrolled) dynamics up
to the time 7. Then, it is immediately shifted to &; and starts its evolution again,
etc. More formally, we consider a countable product of filtered spaces (2, F, (F7))
and a coordinate process (X ¢ tz’ ...). Then, we define the controlled process Y as
Y, = X;, t € [t;—1, 7;) with the convention 19 = 0. Under the measure P(, ) we get
Y., = §&;; we refer to Chapter V in [31] for the construction details; see also Appendix
in [12] and Section 2 in [34]. A strategy V = (7;, &;);2, is called admissible if for any
x € EwegetP v)[lim,_ o 7, = 00] = 1. The family of admissible impulse control
strategies is denoted by V. Also, note that, to simplify the notation, by ¥ - := X
i € N,, we denote the state of the process right before the ith impulse (yet poss1b1y,
after the jump).

In this paper we study the asymptotics of the impulse control problem given by

sup J(x,V), x€E, (2.1)
VeV

where, forany x € E and V € V, we set

J(x, V) _11m1nf—1nIE(x V) [exp (/ F(Ys )ds+21{,,<7}c( ,gi))},

= (2.2)
with f denoting the running reward function and c¢ being the shift-cost function,
respectively. Note that this could be seen as a long-run standardised version of the
functional (1.1) with y > 0 applied to the impulse control framework. Here, the
standardisation refers to the fact that we do not use directly the parameter y (apart
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from its sign). Also, the problem is of the long-run type, i.e. the utility is averaged
over time which improves the stability of the results.

The analysis in this paper is based on the approximation of the problem in a bounded
domain. Thus, we fix a sequence (B,)men Oof compact sets satisfying By, C By
and E = U,C;,o:o B,,. Also, we assume that U C Bj. Next, we assume the following
conditions.

(A1) (Reward/cost functions). The map f : E — R_ is a continuous and bounded.
Also, the map ¢ : E x U — R_ is continuous, bounded, and strictly non-
positive, and satisfies the triangle inequality, i.e. for some ¢y < 0, we have

O0>co>cx,&)>cx,n)+c(n, &), xeE, Enel. 2.3)

Also, we assume that c satisfies the uniform limit at infinity condition

lim sup |c(x,&) —c(y,8)| =0. 2.4)

IxlLlyll—=00 gcty
(A2) (Transition probability continuity). For any ¢ > 0, the transition probability

Py is continuous with respect to the total variation norm, i.e. for any sequence
(xn) C E converging to x € E, we have

lim sup |P(x,, A) — P;(x, A)| = 0.

n— o0 Ak

(A3) (Distance control). For any compact set I' C E, 1y > 0, and r¢p > 0, we have

lim Mr(tg,r) =0, lim Mr(t, rg) =0, 2.5)
r—o0 t—0

where Mr(t, r) := sup,cp Px[supsepo . (X5, Xo) = rl 2,7 > 0.
(A4) (Recurrence of open sets). For any m € N, x € B,,, § > 0, and any open set
O C B,,, we have

P, [U{’il{X,-g S O}] =1.
Also, we assume that for any x € E, § > 0, and m € N, we have
Pyltp, <oo]l=1 (2.6)

where g, = dinf{k € N: Xy5 ¢ B, }.

Before we proceed, let us comment on these assumptions.

Assumption (A1) states typical reward/cost functions conditions. In particular, the
non-positivity assumption for f is merely a technical normalisation. Indeed, for a
generic f € Cp(E) we may set f(-) := f(-) — ||f|| < 0 to get

I, vy=1l @ V)= |fl. xeE VeV,
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where J/ denotes the version of the functional J from (2.2) corresponding to the
running reward function f. Next, the conditions for ¢ are standard requirements for the
shift-cost functions in the impulse control setting. In particular, inequality (2.3) implies
that a decision maker considering an impulse from x to n followed by an immediate
impulse from 7 to & should directly shift the process from x to &. This condition is
used in Theorem 3.1. Also, (2.4) states that, at infinity, the cost function is almost
constant. This is used to extract a (globally) uniformly convergent subsequence of a
specific function sequence; see the proofs of Theorem 4.2 and Theorem 5.1. Finally,
note that all the assumptions regarding the shift-cost functions are satisfied e.g. for
c of the form c¢(x, &) = h(p(x,&)) +co, x € E, & € U, where ¢cyp < 0, the map
h: R — R_ is continuous, bounded, non-increasing and superadditive (i.e. satisfying
h(x +y) = h(x) + h(y), x,y € R), and p denotes the underlying metric on E. For
example, we may set 2(x) := —min(x, K), x € R, for some constant K > 0.

Assumption (A2) states that the transition probabilities P; (x, -) are continuous with
respect to the total variation norm. Note that this directly implies that the transition
semi-group associated to X is strong Feller, i.e. forany ¢ > 0and abounded measurable
map h: E — R, the map x — E,[h(X,)] is continuous and bounded.

Assumption (A3) quantifies distance control properties of the underlying process.
It states that, for a fixed time horizon, the process with a high probability stays close to
its starting point and, with a fixed radius, with a high probability it does not leave the
corresponding ball with a sufficiently short time horizon. Note that these properties
are automatically satisfied if the transition semi-group is Cop-Feller; see Proposition
2.1 in [26] and Proposition 6.4 in [5] for details.

Assumption (A4) states a form of the recurrence property of the process X. It
requires that the process visits a sufficiently rich family of sets with unit probability.

It should be noted that the process-related Assumptions (A2)—(A4) are satisfied e.g
for non-degenerate ergodic diffusions. Here, the non-degeneracy refers to the existence
of a continuous and bounded density p; with respect to some measure v; such that the
transition probability satisfies

Pi(x, A) =f pi(x, y)vi(dy), t>0,x€eE, Act.
A

This directly implies (A2). Next, using Theorem 6.7.2 from [1] we get that diffusions
(and, more generally, solutions to stochastic differential equations driven by Lévy
processes) are Co-Feller, which combined with Proposition 2.1 in [26] and Proposition
6.4 in [5] shows that (A3) is satisfied. Finally, the ergodicity guarantees (A4).

To solve (2.1), we show the existence of a solution to the impulse control Bellman
equation, i.e. a function w € Cp(E) and a constant A € R satisfying

w(x) = sup InE, |:exp </T(f(XS) — A)ds + Mw(Xr)>i| , xeE, 2.7
0

TE']},},

where the operator M is given by

Mh(x) ;= sup(c(x,&) +h()), heCy(E), x € E;

EeU
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note that in (2.7), the uncontrolled Markov process is considered.
We start with a simple observation giving a lower bound for the constant X
from (2.7). To do this, we define the semi-group type by

1 ' .
r(f) := lim —Insup E, [efO f(X‘)d’] . (2.8)
t—>00 t

xeE

We refer to e.g. Proposition 1 in [35] and the discussion following Formula (10.2.2)
in [18] for further properties of 7 (f).

Lemma 2.1 Let (w, A) be a solution to (2.7). Then, we get A > r(f).

Proof From (2.7), for any T > 0, we get
w(x) > InEy [efOT(f(XS)_A)dHMw(XT)] .
Thus, using the boundedness of w and M w, we get

T
Jwll = sup InE, [elo /XD yagupy.

xeE

Consequently, dividing both hand-sides by 7" and letting T — oo, we get0 > r(f—2),
which concludes the proof. O

Let us now link a solution to (2.7) with the optimal value and an optimal strategy
for (2.1). To ease the notation, we recursively define the strategy V= = (7, E,) o, for
i € N\{0} by

(2.9)

% c=inf{r > fi_1: w(X)) = Mw(XH)),

& arg maxg (c(Xéi, &) + w(é)) L3 <00y T 6012200}
where 7p := 0 and & € U is some fixed point. First, we show that Visa proper
strategy.

Proposition 2.2 The strategy 1% given by (2.9) is admissible.

Proof To ease the notation, we define N(0, T') := Z?i] Iz <7y, T = 0. We fix some
T > 0and x € E, and show that we get

P, [N, T) = 00] = 0. (2.10)

Recalling (2.9), on the event A := {lim; o T; < 400}, foranyn € N, n > 1, we
getw(X}) = Mw(X%?) =c(Xf, X'TEH) + w(er'H). Also, recalling that c(x, §) <

co <0, x €e E;¢§ € U,foranyn € N, n > 1, we have w(X’;H)—w(X'f’) =

—c(X ;l , X ;’ 'H) > —co > 0. Using this observation and Assumption (A3), we estimate
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the distance between consecutive impulses which will be used to prove (2.10). More
specifically, for any k, m € N, k, m > 1, we get

k+m—2
n+l n+l1 k+m k+1
n=k

k+m—1
=wXEh+ Y wXE —wX)) - wxg™
n=k+1
k+m—1
= ) XEh —wX})) = ~m —Deo; (2.11)
n=k+1 ! "

it should be noted that the specific values for k and m will be determined later. Using the
continuity of w we may find K' > Osuchthatsup, .y (w(x)—w(y)) < K.Letm € N
be big enough to get —(m — 1)3 > K. Thus, noting that Xlrf,:’:,l’ X];:’I e U, we
have (w(X];:’:il) - w(X];k"'l)) < K < —(m — 1)3. Consequently, recalling (2.11),
on A, we get
k+m—2
Yy —w; ) = —m - D3 2.12)
n=k
Recalling the compactness of U and the continuity of w we may find r > 0 such

that for any x € U and y € E satisfying p(x, y) < r we get lw(x) — w(y)| < —%0.
Let us now consider the family of events

k+m—2
._ +1 +1
By = ﬂk XL X <), keN k=1, (2.13)
n=,

and note that, for any k € N, k > 1, on By N A we have Zﬁi’,:’_z(w(xg“) -
w(X’Tf‘:ll)) < —(m — 1)3. Thus, recalling (2.12), for any k € N, k > 1, we get
IE”(XO ‘;)[Bk N A] = 0 and, in particular, we have

P, o [BiN{N(,T) = o00}] =0. (2.14)

(x0,V)

Let us now show that lim sup;_, o, IP(XO ‘;)[B,ﬁ N{N(0, T) = oo}] = 0. Noting that
{N(@,T) =00} ={limjoo?; < T},foranyto > Oand k € N, k > 1, we get

P, 0 [BE NN (O, T) = c0}]

k+m—2

+1 yn+l A A NS

<Piy0) [( Uk XL XEED = rf 0 g — 0 < t0}> N{lim % < T}]
n=

k+m—2
+ Pt [( U {P(X;’nﬂ, X?:J) >} N {Tug1 — Tn > to}> N {l,l_i)IIC}o 7 < T}}
n=k
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tel0,10]

k+m—2
P, v>[ U {sup p(XPHL X34 = r} 0 {lim & < T}}

k+m—2
+P, 0 [ Ut = > 010 (fim 7 = T}] @.15)
n=

Using Assumption (A3), for any ¢ > 0, we may find #yp > 0, such that

sup IE”X|: sup p(Xo, X1) zri| < (2.16)

xeU t€[0,1] m—1

Thus, using the strong Markov property and noting that X ;’H e U, forany k € N,
k> 1, we get

/\

k+m—2
]P(xo V) U { sup P(Xn+l X"—H) >rin { hm 5, <T)}
' nei  L€l0.10]

k+m—2
< > P [{ sup p(XEL XY = ry N (d, < T}]
n=k

k+m—2
Z ]P’(XO V) |:{Tn < T}]P)Xn+l [ sup p(Xo, X7) > rﬂ <e. (2.17)

n—k ™ tel0,10]

Recalling that ¢ > 0 was arbitrary, for any k € N, k > 1, we get

k+m—2

. n+1 n+1 . A _

Pt [ Uk {tES[IOJI:O],O(X XPE) Z 0 {lim 7 < T}:| =0. (2.18)
n=

Now, to ease the notation, let Cx := e {Tnt1 — T > fo} N {limi oo & < T},
k € N, k > 1, and note that Cx4| C Ck, k € N, k > 1. We show that

Jim P o) (Gl =0.

For the contradiction, assume that limy_ o ]P’(xo " [Ck] > 0. Consequently, we get
P9 [N Cx] > 0. Note that for any w € (2 Cx we have lim; o 7 (@) < T.
In particular, we may find ig € N such that forany n > ip we get 7,1 (@) — T, (@) < %0
This leads to the contradiction as from the fact that w € (;2; Cx we also get

(o ol o] o0
we (Ut — 2 > 10} € [ J 11 — 20 > 10},

k=1n=k n=igp

@ Springer



Applied Mathematics & Optimization (2023) 88:24 Page9of33 24

Consequently, we get limg_, oo ]P’(xo ") [Ck] = 0 and, in particular, we get

k+m—2
lim supIE”(xo";) |: U {(Ta1 — Ty > f0} N {il_i)n;o 7; < T}:| < kl_i)n;oIP(xo"A/) [Ck] = 0.

k—o00 n—k
Hence, recalling (2.15) and (2.18), we get

li,?l sup IP’(XO";) [B,g N{N@O,T) = oo}] =
— 00

Thus, recalling (2.14), for any k € N, k > 1, we obtain

Py [N, T) = c0] = P

o [Bf N{N(0,T) = o0}],

(x0,V)
and letting k — o0, we conclude the proof of (2.10). O

Now, we show the verification result linking (2.7) with the optimal value and an
optimal strategy for (2.1).

Theorem 2.3 Let (w, A) be a solution to (2.7) with & > r(f). Then, we get

A=sup J(x,V)= J(x,\}), x e E,
VeV

where the strategy Vis given by (2.9).

Proof The proof is based on the argument from Theorem 4.4 in [20] thus we show
only an outline. First, we show that A = J(x, V), x € E, where the strategy Vis
given by (2.9). Let us fix x € E. Then, combining the argument used in Lemma 7.1
in [5] and Proposition A.3, we get that the process

11 AT

(f(XD=hds+w(x} AT) T >0

is a IP’( ‘;)-martingale Noting that on the event {Tx+; < T} we get w(Xk“) =

Mw(Xk+1) = c(X]r‘kJrll §k+1) + w(§k+1) k € N, for any n € N we recurswely get

V™ = ]E(x"}) -e rlAT(f(YS) )»)ds+w(XT AT)]
E, ) i S () =hds gy <1y XL X2 )+ cryw (X )+ 2y w(xT)i|
]E(xﬁ) :efoanT(f(Ys)—)\)ds-i-zlr-lzl 1(fi<T,c(X§i ,Xé?']) o
xeﬂ@wMWWﬂMWWﬂ} (2.19)
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Recalling Proposition 2.2 we get T, — oo as n — oo. Thus, letting n — oo in (2.19)
and using Lebesgue’s dominated convergence theorem we get

0 _ [efoT(f(Ys)—x)derZ?il I <me XL XED Y2, 1<f,.1<r<f,.,w(xff>}

. V)

Thus, recalling the boundedness of w, taking the logarithm of both sides, dividing by
T, and letting T — 00 we obtain

T r(Y)ds+3"2 11, Xxi xitH!
k_llmlnf]E 5 [efo FAAsHR ) Vg <rje (X X, )]

(x.V)

Second, let us fix some x € E and an admissible strategy V = (&, r,-)?il €
V. We show that A > J(x, V). Using the argument from Lemma 7.1 in [5] and
Proposition A.3, we get that the process

Tl/\T

GOt e g

is a [P, v)-supermartingale. Noting that on the event {7;41 < T} we have

wXEHH) = Mw(XET) = (X5 &) +wEgn), ke,

Tk+1 Tk+1
for any n € N we recursively get

rl/\T

"™ >E vy | e (f (¥s)= )\)ds+w(XT1AT):|

T
> By |eh T (V) =R ds ey <) c(X}l,X$I)+l(r1<nw(X$1)+1m>nw(X]T):|
il X,
> By ”’AT(f(YV) =5+ Ly <1y (X5 X
jutl X,
Xezzr';l 1(Ti71<T§fi}w(XiT)+](Tn<T u’(x?’jl)] (2.20)

Recalling the admissibility of V, we get 7, — o0 as n — oo. Thus, letting n — oo
in (2.20) and using Fatou’s lemma, we get

ew(x) > ]E()C V) [ebe(f(Ys)—)L)dS+Z?ol 1({;<T)C(X-i[i3Xi?—1)+Z?il l(ri_]<T<rl-]w(XiT)i| .

Thus, taking the logarithm of both sides, dividing by 7', and letting T — oo, we get
A = liminf Ege yy | efo /00T L <ne XiH
T T ’ ’
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which concludes the proof. O

In the following sections we construct a solution to (2.7). In the construction we
approximate the underlying problem using the dyadic time-grid. Also, we consider a
version of the problem in the bounded domain.

3 Dyadic Impulse Control in a Bounded Set

In this section we consider a version of (2.1) with a dyadic-time-grid and obligatory
impulses when the process leaves some compact set. In this way, we construct a
solution to the bounded-domain dyadic counterpart of (2.7). More specifically, let us
fix some § > 0 and m € N. We show the existence of a map w§' € C»(By;) and a
constant A§' € R satisfying

TATBy, _am m
wgn (x) = sup In E)C |:€f0 (f (Xs)—Ag")ds+Mwg (XrAer):| , X€ Bm' (31)
re’Tx‘s’b

In fact, we start with the analysis of an associated one-step equation. More specifically,
we show the existence of a constant A" € R and a map wy' € Cp(B,,) satisfying

w§' (x) = max (ln Ex [ef(f(f(x“)**fs")d”‘!XseBm}“’S"(X‘S)“‘X#B'"’ng](xﬁ)] ,

M), x € B,
wy' (x) = Mw§'(x), x ¢ By; 3.2)

see Theorem 3.1 for details. Then, we link (3.2) with (3.1) in Theorem 3.4.

In the proof of Theorem 3.1 we use the Krein—Rutman theorem to get the existence
of a positive eigenvalue with a non-negative eigenfunction to the specific non-linear
operator associated with (3.2). This technique was primarily used in the context of
diffusions; see e.g. [3, 4, 9] and references therein. See also [38] for the use with
discrete time risk-sensitive Markov decision processes. It should be noted that, due to
the difficulty of the verification of the theorem assumptions (including the complete
continuity of a suitable operator), this approach is applied primarily in the compact
state space setting and the extension to a non-compact space requires some additional
arguments.

Theorem 3.1 There exists a constant \5' > 0 and a map w§' € Cp(Byy,) such that (3.2)
is satisfied and we get supg .y wg' (§) = 0.

Proof The idea of the proof is to use the Krein-Rutman theorem to get an eigenvalue

and an eigenvector of a suitable operator. More specifically, we consider a cone of
non-negative continuous and bounded functions C;r (Byn) C Cp(By) and, for any
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he C,j (By), we define the operators

Mh(x) := sup EXOnE), x ek,

EeU

~ 8 ~

P(S’”h(x) =E, I:efo f(Xs)ds <1{X3€Bm}h(X8) + 1{X5¢Bm}Mh(X8)):| , X € By,

T"h(x) = max (P{'h(o, MPI'R(0) . x € B,
Now, we use the Krein-Rutman theorem to show that T(S’” admits a positive eigenvalue
and a non-negative eigenfunction; see Theorem 4.3 in [11] for details. We start with

verifying the assumptions. First, note that Ta’” is positively homogeneous, monotonic
increasing, and we have

Tsmll(x) > e*ISHfH*HCll]L(x)’ x € By,

where 1 denotes the function identically equal to 1 on By,. Also, using Assump-
tion (A2), we get that T§" transforms C;(Bm) into itself and it is continuous with

respect to the supremum norm. Let us now show that Tam is in fact completely con-
tinuous. To see this, let (h,),eny C C;r (By;) be a bounded (by some constant K > 0)
sequence; using the Arzela-Ascoli theorem we show that it is possible to find a con-
vergent subsequence of (Tsmh »)neN. Note that, for any n € N, we get

173" hall < VK,

hence (Tamhn) is uniformly bounded. Next, let us fix some ¢ > 0, x € B, and
(xx) C By, such that x; — x as k — 00. Also, to ease the notation, for any n € N, we
set H,(x) := 1{x53m}hn(x)+1{x¢3m}11;1hn(x),x € E,and note that H,, are measurable
functions bounded by 2K uniformly in n € N. Then, for any n, k € N, we get

~ ~ "8 §
T () = T < [B [0 7000 1, (X3 | = By [0 70900 1, () |
+ |MP§" Ry (x) — M P§"hy (x0). (3.3)

Also, using Assumption (A1), we may find k € N big enough such that, foranyn € N,
we obtain

(01 B () = WPy By ()] < VK sup o9 — e < 20 34
EelU
Next, note that for any u € (0, §) and n, k € N, we get

‘Ex I:e‘féS f(XA')dSHn(XS)] —Ey I:ef(f f(XS)dSH” (X‘S)]’

< ‘Ex [(ef(f FXds _ 3 f(Xs)ds) Hn(Xs)]‘
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8 8
T )]Exk [(efo fXods _ /i f(xx>ds> H,( Xa)]

By [l T, (5) | = By [l 190, x| @)

Also, using the inequality |e” — e*| < emax(y’2)|y —zl, ¥,z € R,wemay findu > 0
small enough such that, for any n, k € N, we get

By [(el0 /005 — el 1000 b, ) | < 2k VNl < 20 36)

S—u
Next, setting Fj/ (x) := E, [efo JXods g, (Xa_u)], n € N, x € E, and using the

Markov property combined with Assumption (A2), we may find k € N big enough
such that for any n € N, we get

By [l 7000 1, (X5 | = By [l 70900 b, () || = B LR (X1 = Bl (X

£
< 2K sup | Py (xg, A) — Py(x, A)| < -
Ae€ 6

Thus, recalling (3.5)—(3.6), we get that for k € N big enough and any n € N,
S S

E, [efo f(XS)dSH,,(Xg)] —Ey, [efﬂ f(XS)dSH,,(Xg)]‘ < 5. This combined

with (3.3)—(3.4) shows |7~"5mh,,(x) — Té’”h,, (xx)| < e for k € N big enough and any

n € N, which proves the equicontinuity of the family (Tamhn)nEN. Consequently,

using the Arzela-Ascoli theorem, we may find a uniformly (in x € B,) convergent
subsequence of (7§"h,)uen and the operator 7" is completely continuous. Thus,

we get

using the Krein-Rutman theorem we conclude that there exists a constant 5\3” > 0 and
a non-zero map hf' € C;' (B;;) such that

TR (x) = AR5 (x), x € By (3.7)

After a possible normalisation, we assume that sup; ., hg' (§) = 1.

Let us now show that 4§’ (x) > 0, x € By,. To see this, let us define D := eSIs1 le
§
and let O;, C By, be an open set such that

inf A% (x) > 0; 3.8)

xe0y

note that this set exists thanks to the continuity of /%' and the fact that 4f' is non-zero.
Next, using (3.7), we have

h§ (x) = DE, [Lix;eoh§ (X5) + Lixsenn0uhs (Xs)]. x € By,
Then, for any n € N, we inductively get
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hg' (x) = DEx[1{x,e0phy (Xs)]

Thus, letting n — oo and using Assumption (A4) combined with (3.8), we show
h§'(x) > 0 for any x € By,.

Next, we define wi' (x) := Inh{' (x),x € By, and A = %ln )NLg". Thus, from (3.7),
we get that the pair (wy', A§') satisfies

’famewgn (x) = eékg"ewg"(x)’ x € B, and sup wg"(S) = 0.
EeU

In fact, using (2.3) from Assumption (A1) and the argument from Theorem 3.1 in [20],
we have

u)g’ (x) = max (ln E, [ef(f(f(xs)—){;")dx'i‘l{xseB,n)wg”(Xs)+1(x5¢Bm)Mw§’(Xg)] ’

ng"(x)), X € By,.
Finally, we extend the definition of w§' to the full space E by setting
Wi (1) == Mw)'(x), x & By

note that the definition is correct since, at the right-hand side, we need to evaluate wg”
only at the points from U C By C B, and this map is already defined there. O

As we show now, Eq. (3.2) may be linked to a specific martingale characterisation.

Proposition 3.2 Ler (wy', A§') be a solution to (3.2). Then, for any x € By, we get
that the process

(né)Aer

Zgl’l(n) -— )0 (f(XS)_)L:gn)dS“"wgn(X(né)Aer)’

n>0,
is a Py-supermartingale. Also, the process
25 (m A (75'/8)), neN,

is a Py-martingale, where 75" := §inf{k € N: w{'(Xzs) = Mw§' (Xis)}.
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Proof To ease the notation, we show the proof only for § = 1; the general case
follows the same logic. Let us fix m,n € N and x € B,,. Then, using the fact
wi'(y) = Mw'(y), x ¢ By, and the inequality

1
eu;'ln(y) > Ey [efo (f(Xs)_)»'l”)dH‘l(XleB,,,}w’l"(Xl)"‘l(XlgéBm}Mw'ln(Xl):I .,y € Bn,

we have
"Bm _am m
E, [len(n + D|F] = 1{?8,,, 5n}€f0 (fX)=A"ds+wi (Xep )

+ lizp, >”}efél(‘f(x5')—)»'f’)ds 5

x Ex [efol(f(Xs)*)»'l")dSJr](xleBm;wi"(Xl)+1(X1¢Bm)wT(X1)]
n

nATg, _am m
= 1{er Sn}efo (fXs)=Ads+wi' (Xnncy,, )

nAT
+ 1{13 >n}ef0 o (f (Xs)=A{)ds X
m
X EX [efol(f(xs)_AT)dS‘Fl(XlEB,n)w’l?i(Xl)+l{X|éBm)qun(Xl)]
n

"ATBpy, m m
E efo (f(Xx)—)Ll )ds+w1 (Xn/\er) — Ziin (n)’

which shows the supermartingale property of (z}" (1)). Next, note that on the set {tp,, A
" > n} we get

1, .
e Xn) =y [efo (/(XS)_}‘rln)dsJ’_l{XlEBm)wlln(Xl)J'_l(XIéBm‘iMwlln(Xl)].

Thus, we have

"B Affn m m
N (f(Xp)—ATHds+wi" (X, 2m)
Ex[ZT((” +DA Tlm)|‘7:n] = ]{erAf’"<n}efO P B M1

1=

+ 1{TBmAf{n>n}€f(;l(f(xs)_x/f1)dsX

x Ex [efo] (f(X,r)*)»'l”)dSH(x1e3m1w{"(Xl)Jrl(xlgBm)Mw'l"(Xl)]
n

nATg,,

_h

/\fm
1 m m
Xg)—ATds+ X - N
(f(Xs) 1) S+wy ( nAer/\rf”) Zrln(n A T]m)’

which concludes the proof. O

Let us denote by Vs ,,, the family of impulse control strategies with impulse times
in the time-grid {0, §, 26, ...} and obligatory impulses when the controlled process
exits the set By, at some multiple of §. Using a martingale characterisation of (3.2),
we get that AY' is the optimal value of the impulse control problem with impulse
strategies from V; ,,; see Theorem 3.3 To show this result, we introduce a strategy
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V= (%, éi)?il € Vs, defined recursively, fori = 1,2, ..., by

T = 61' AN Tém’
G = 8inf(n = fi_1/8: n € N, wf (Xiy) = Muf (Xky)).
Tém = (Sinf{n > fi_]/(S: ne N, X;B ¢ Bm},

&= arg max(e(X% , &) + w§ ()15 <o) + E01 (7,200} (3.9)
eU

where 7y := 0 and & € U is some fixed point.

Theorem 3.3 Let (wy', A" be a solution to (3.2). Then, for any x € By, we get

| 1 P s+ g <nsye (Y, - 60
Ay = sup liminf —InEy vy |e 0 Lz e i .
VeVsm n—oo nd

Also, the strategy 1% defined in (3.9) is optimal.

Proof The proof follows the lines of the proof of Theorem 2.3 and is omitted for
brevity. O

Next, we link (3.2) with an infinite horizon optimal stopping problem under the
non-degeneracy assumption.

Theorem 3.4 Let (wy', 1Y) be a solution to (3.2) with 1§ > r(f). Then, we get that
(wy§', 13" satisfies (3.1).

Proof As in the proof of Proposition 3.2, we consider only § = 1; the general case

follows the same logic.
First, note that for any x € By, n € N,and 7 € ’];5, using Proposition 3.2 and

Doob’s optional stopping theorem, we have

nATATR
O S [ ol (f(xs)—x'l")ds+w'{’(X,mmgm)} .

Also, recalling the boundedness of w!", using Proposition A.2, and letting n — oo,
we get
TATR,,

O S [ o (f(xs)—x'l")dww'{’(Xmgm)} .

Next, noting that w{'(Xrazy, ) = Mw{'(Xrazp, ), and taking the supremum over

T e T2, we get

eV > sup E,

AN
[efor B (f (X =M+ MW (Xepey )]
teT?
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Second, using again Proposition 3.2, for any x € B;, and n € N, we get

nA fé" ATBpy

wl'(x) = InE, |:e 0 (f(XS)_M'n)deqn(X"Afgn”Bm)i| .

Using again the boundedness of w{* and Proposition A.2, and letting n — oo, we get
AT, Myl s 4w (X am
w'(x) = InE, |:efo (FXD=AD st (X ”Bm):| .

In fact, noting that w{’ (Xt nrp, ) = Muw (X2 nzp, )s WE obtain

5B (X ) — A Mw™ (X
W (x) = In [, [efo (P XD+ M K e, ) |

thus we get

ew;”(x) — wp Ex |:e'/;)r/\me (f(Xs)—)Lrln)dS-‘er’l"(XrAer):| .

teT?

Finally, using Proposition A.4, we have

equ(x) — Ex I:engBm (f(XX)—)JI")dS—I—Mw;'l(XrAme)i| ,

5
TETN,

which concludes the proof. O

Remark 3.5 In Theorem 3.4 we showed that, if Ag” > r(f), asolution to the one-step
equation (3.2) is uniquely characterised by the optimal stopping value function (3.1).
If Ag’ < r(f), the problem is degenerate and, in particular, we cannot use the uniform
integrability result from Proposition A.2. In fact, in this case it is even possible that
the one-step Bellman equation admits multiple solutions and the optimal stopping
characterisation does not hold; see e.g. Theorem 1.13 in [27] for details.

4 Dyadic Impulse Control

In this section we consider a dyadic full-domain version of (2.1). We construct a
solution to the associated Bellman equation which will be later used to find a solution
to (2.7). The argument uses a bounded domain approximation from Sect.3. More
specifically, throughout this section we fix some § > 0 and show the existence of
a function ws € Cp(E) and a constant As € R, which are a solution to the dyadic
Bellman equation of the form
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ws(x) = sup InE, [efor(f(X-‘)_)“‘)dHM“’B(X’)] , xX€E. 4.1

‘[E'Z}éb

In fact, we set
As = lim AY; 4.2)
m—00

note that this constant is well-defined as, from Theorem 3.3, recalling that B, C B, +1,

we get Y < Ag”“, m e N.

First, we state the lower bound for As.

Lemma 4.1 Let (ws, As) be a solution to (4.1). Then, we get As > r(f).

Proof The proof follows the lines of the proof of Lemma 2.1 and is omitted for brevity.
O

Next, we show the existence of a solution to (4.1) under the non-degeneracy assump-
tion As > r(f).

Theorem 4.2 Let A5 be given by (4.2) and assume that Ls > r(f). Then, there exists
ws € Cp(E) such that (4.1) is satisfied and we get supgc; ws(§) = 0.

Proof We start with some general comments and an outline of the argument. First, note
that from Theorem 3.1, for any m € N, we get a solution (wj’, A') to (3.2) satisfying
SUPg ¢/ wy'(§) = 0. Also, from the assumption A5 > r(f) we get Ay’ > r(f) for
m € N sufficiently big (for simplicity, we assume that Ag > r(f)). Thus, using
Theorem 3.4, we get that, for any m € N, the pair (w§', AY') satisfies (3.1).

Second, to construct a function ws, we use the Arzela-Ascoli theorem. More specif-
ically, recalling that supg ¢/ wy'(§) = 0 and using the fact that —||c|| < c¢(x,&) <0,
xeE,£eU,foranym € Nand x € E, we get

—llcll < Mw§' (x) < 0.
Also, note that, forany m € Nand x, y € E, we have

IMwy' (x) — Mwg' (y)| < sup |e(x, &) — c(y, §)I.
EecU

Consequently, the sequence (Mw}');en is uniformly bounded and equicontinuous.
Thus, using the Arzela-Ascoli theorem combined with a diagonal argument, we may
find a subsequence (for brevity still denoted by (Mwy'),,en) and a map ¢5 € Cp(E)
such that Mw§' (x) converges to ¢s(x) as m — oo uniformly in x from any compact
set. In fact, using (2.4) from Assumption (A1) and the argument from the first step of
the proof of Theorem 4.1 in [20], we get that the convergence is uniform in x € E.
Then, we define

ws(x) == sup InE, [efOT(f(x‘v)*)“‘)d”""“x’)] , xeE. 4.3)
re’]_’éb
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To complete the construction, we show that wy' converges to w; uniformly on compact
sets. Indeed, in this case we have

IMw§' (x) — Mws(x)| < ;uglwé”(é) —ws(€) =0, m— oo,
€

thus ¢5 = Mw;s and from (4.3) we get that (4.1) is satisfied. Also, recalling that from
Theorem 3.1 we get SUPg ey wg" (§) =0,m € N, we also get SUPg 7 Ws &) =0.
Finally, to show the convergence, we define the auxiliary functions

T/\TBm m
wgn,l(x) = sup InE, |:ef0 (f(Xs)—Ag )d‘?+¢76(Xr/\er)i| ., x€E, (4.4)
teT),
TATR, B )
wgn,Z(x) = Sup ln]Ex [ef() (f(Xv) )\5)(15+¢5(Xr/\13m)} , X € E (45)
re’]ff,b

We split the rest of the proof into three steps: (1) proof that |w§' (x) — wg"’l x)] —0
as m — oo uniformly in x € E; (2) proof that |w§"’1(x) - wg”’z(x)| — Qasm — 00

uniformly in x € E; (3) proof that |w§"’2(x) — ws(x)| = 0 as m — oo uniformly in
x from compact sets.

Step 1. We show |wf' (x) — w:s"’l(x)| — 0as m — oo uniformly in x € E. Note
that, for any x € E and m € N, we have

TAT
w:sn’l(x) < sup In <Ex [e o " (f(XS)_A?)dHMw?(X”me)} e||¢5ng7|)
fe??.b

= wy (x) + [lps — Mwy'||.
Similarly, we get ' (x) < w}"' (x) + g5 — Mw?||, thus

,1
sup [wy' (x) — wy (0)] < llgs — Mwy'|.
xeE

Recalling the fact that ¢; is a uniform limit of M wg" as m — 00, we conclude the
proof of this step.
Step 2. We show that |w§"’1 (x) — wg”’z(x)| — 0as m — oo uniformly in x € E.

Recalling that A" 1 A5, we get wg”‘l(x) > wg"’z(x) > —|l¢sll, x € E. Thus, using

the inequality |Iny —Inz| < —zl,y,z2> 0, we get

1
min(y,z) |y
m,1 m,2
0<wl'(x) —wi?(x) < el®lEws” @ W@y x e B, (4.6)

Then, noting that ¢s(-) < 0, for any m € N and x € E, we obtain

0.< e W _ 0 < gup (E [efo’”’*’”(f(mxs">ds+¢5<"’“3'")]
eT?,
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T/\'[B
_E, |:ef0 ”’<f(Xs>—As)ds+¢a<XmBm)D

< sup By [l /008 (oM om0 @)
reTﬁb

Also, recalling that Ag <Ay <is,meN, forany x € Eand T > 0, we get

0< sup E, [efOr FXs)ds <e_’xgﬂf — e“f)]

€Ty

< sup E, [(l{ffn + 1{T>T}) oo f(Xo)ds (e—xg"r _ ef)\‘{gr)il
t€lip

< sup TR, [(e—)\g’z, _ e—m)] + sup E, I:efof(f(XS)—Ag)ds] . @48
t<T =T
€T el

Recalling Ag > r(f) and using Lemma A.1, for any ¢ > 0, we may find 7 > 0, such
that

0 <sup sup E; [efo’(f(Xs)—Ag)ds] <e
xeE >T
‘EG'Z}'},

Also, using the inequality |¢* — 7| < eMax(X.y) |y yl, x, y > 0, we obtain

sup E, [(e—)\glr _ e—Aar):I < sup E, [emax(—)\g’r,—)\gr)r(}\a _ )Lgn)]

t<T t<T

< ™I (s — 2. 4.9)

Thus, for fixed T > 0, we find m > 0, such that e“”g”'TT()Lg — A?) < ¢. Hence,
recalling (4.6)—(4.8), for any x € E and T', m big enough, we get

0 <wi'(x) — w2 (x) < el®log,

Recalling that ¢ > 0 was arbitrary, we conclude the proof of this step.
Step 3. We show that |w§”‘2(x) — ws(x)| — 0 as m — oo uniformly in x from

compact sets. First, we show that wg"’z(x) < ws(x) forany m € Nand x € E. Let
e>0and7t), € Tx‘s » be an g-optimal stopping time for wg"’z(x). Then, we get
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> wg"’z(x) —&.

ws(x) > 1nE |:ef0r’””3m (f(xs)As)ds+¢a(xf,€ntm):|
- X

As ¢ > (0 was arbitrary, we get wg"’z(x) < ws(x), m € N, x € E. In fact, using

a similar argument, for any x € E, we may show that the map m wg"’z(x) is
non-decreasing.

Second, let ¢ > O and 7, € ’];‘3 ;, be an g-optimal stopping time for ws(x). Then,
we obtain

0 < ws(x) — w"?(x) < InE, [efo“(.f'(xx)—xs>ds+¢a<xrg>] +e

TeATR,,
_InE, [ejo (f(Xs)—)us)dS+¢a(XrgAzBm)i| @.10)

Noting that tp, 1 +00 as m — oo and using the quasi left-continuity of X combined
with Lemma A.2 and the boundedness of ¢s, we get

lim E, [e b <f<x5.)—xa>ds+¢a(xwfgm)] _E, [e e f(xs)_ka)dswa(xfg)] .

m— 00

Thus, using (4.10) and recalling that ¢ > 0 was arbitrary, we get lim,,_, oo wg”z(x) =
ws(x). Also, noting that by Propositions A.3 and A.4, the maps x — ws(x) and
X wg" "“(x) are continuous, and using the monotonicity of m wg"’z(x), from
Dini’s Theorem we get that wg"’z(x) converges to ws(x) uniformly in x from compact
sets, which concludes the proof. O

We conclude this section with a verification result related to (4.1).

Theorem 4.3 Let (ws, As) be a solution to (4.1) with As > r(f). Then, we get

né

1
As = sup lim inf—aln Ew,v) [6‘0
n

VGVS n—oo

)

FX)ds+372, 1(1,.<na,c(Y,,,s,v)}

where V° is a family of impulse control strategies with impulse times on the dyadic
time-grid {0, 6, 26, .. .}.

Proof The proof follows the lines of the proof of Theorem 2.3 and is omitted for
brevity. O

5 Existence of a Solution to the Bellman Equation

In this section we construct a solution (w, A) to (2.7), which together with Theorem 2.3
provides a solution to (2.1). The argument uses a dyadic approximation and the results
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from Sect.4. More specifically, we fix § > 0 and consider a family of dyadic time

steps 8k := 2‘3—,(, k € N. First, we specify the value of A. In fact, we define

A(8) := liminf As,, 5.1
k— 00

where A, is a constant given by (4.2), corresponding to 8. In Theorem 5.1, we show
that if A(8) > r(f), then there exists a solution to (2.7) with the constant A given by
A(8). Also, in this case A does not depend on é and the limit inferior could be replaced
by the usual limit.

Theorem 5.1 Let § > 0 and let 1(5) be given by (5.1). Assume that M(5) > r(f).
Then, there exists w € Cp(E) such that (2.7) is satisfied with ). = L(8). Also, A(8) =
limy_s o0 A5, and A(8) does not depend on 6 > 0, i.e. for any 61 > 0 and & > 0 such
that A(81) > r(f) and A(52) > r(f), we get A(81) = L(52).

Proof The argument is partially based on the one used in Theorem 4.2 and thus we
discuss only the main points. First, from the assumption A(§) > r(f) we get A5, >
r(f) for sufficiently big k € N; to simplify the notation, we assume Az, > r(f).
Hence, using Theorems 4.2, 4.3, and the fact Vo ¢ Vot we inductively show

Asp = sup J(x,V) < sup J(x,V) =245, keN, xeL.
VeV VeV

Thus, the sequence (As; )2 k, 1s non-decreasing and, consequently, convergent. Hence,
A(8) = limg_, o0 A5, . Second, using again Theorem 4.2, for any k € N, we find a map
ws, € Cp(E) satisfying

ws, (x) = sup InE, [efor(f(XS)_“k)d”Mw‘*k(Xf)] , XeE

weT),
and such that supg ¢ wg, (§) = 0. Thus, we obtain
—llcll < Mwg, (x) <0, keN, x€E,

and the family (Mws, )ken is uniformly bounded. Also, it is equicontinuous as we
have

|Mws, (x) — Mws, (y)| < sup [c(x,§) —c(y,8), x,y€E.

xeU

Thus, using the Arzela-Ascoli theorem, we may choose a subsequence (for brevity
still denoted by (Mwy, )), such that (Mws, ) converges uniformly on compact sets to
some map ¢. In fact, using (2.4) from Assumption (A1) and the argument from the
first step of the proof of Theorem 4.1 from [20], we get that M ws, (x) converges to
¢ (x) as k — oo uniformly in x € E. Next, let us define
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w(x) := sup InE, [efOr(f(X-‘)_}‘(a))de’(xf)] , X€EE. (5.2)
€Ty

In the following, we show that ws, converges to w uniformly in compact sets as
k — oo. Then, we get that Mws, converges to Mw, hence Mw = ¢ and (2.7) is
satisfied.

To show the convergence, we define

w;, (x) ;= sup InE, [efbr(f(xs)—ksk)ds+¢(Xr)] , keN, x€eE.
re’]_’é’l‘,

In the following, we show that |w(x) — u)gk (x)] — 0 and |w51k (x) — ws, (x)| — O as
k — oo uniformly in x from compact sets. In fact, to show the first convergence, we
note that

wy (x) < wg, (x) <wj (x), keN, x€E,
where

wgk (x) := sup InE, [efOI(-f(XS)_’\(‘S))dS‘H/’(XT)] , keN, xekE,
re}

w(%k (x) := Sl;P InE, I:efof(f(Xs)fAsk)derd)(Xr)iI . keN, xekE.
TE€lxp

Thus, to prove |w(x) — w;k (x)] — 0itis enough to show |w(x) — wgk (x)] — Oand
lw(x) — wgk(x)| — 0ask — oo.

For transparency, we split the rest of the proof into three parts: (1) proof that
lw(x) — wgk (x)] = 0 as k — oo uniformly in x from compact sets; (2) proof that
lw(x) — wgk (x)] = 0 as k — oo uniformly in x € E; (3) proof that |w§k (x) —
ws, (x)| = 0 as k — oo uniformly in x € E; (4) proof that A(8) does not depend on
8.

Step 1. We show that |w(x) — wgk (x)] = 0 as k — oo as k — oo uniformly in x

from compact sets. First, note that we have wgk (x) < w(x),k € N, x € E. Next, for
any x € E and ¢ > 0, let 7, € 7, be an e-optimal stopping time for w(x) and let tak
be its 7;8’;] approximation given by

o0
k. S .
f = 1€ T>7 _E . _
o 1nf{ €T 8} 1 512 <r, < }8 =

Then, we get
0 < w(x) — wy, (x)
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ot
<E, [e o (f(xs)fx(a))dsm(x,g)] —E, [e 0 (f(Xs>—k<5))ds+¢(XI§)] Te

Also, using Proposition A.2 and letting k — oo, we have

fk
lim E, |:e o' (Xf)‘“‘”)d”q’(xrf)} —F, [e 0“‘<f(xs)—x(a))ds+¢(xrg)] .

k—o00

Consequently, recalling that ¢ > 0 was arbitrary, we obtain limy_, o waok (x) = wx)

for any x € E. Next, noting that Tak ’Z;S’}:rl, k € N, we get w(S (x) < wakﬂ(x),
k € N, x € E. This combined w1th Proposmons A3, A4, and D1n1 s theorem, we
get that the convergence of wgk to w is uniform on compact sets, which concludes the
proof of this step.

Step 2. We show that |w(x) — wgk(x)| — 0 as k — oo uniformly in x € E.
First, note that —||¢|| < w(x) < wgk (x), k € N, x € E. Thus, using the inequality

[Iny —Inz| < —zl, ¥,z >0, we get

1
min(y,z)Iy
2
0< wgk(x) —w(x) < el (ewé'k(x) — ™), keN, x€E.

Also, recalling that ¢ (-) < 0, for any k € N and x € E, we obtain

0< A BRTIC) < sup E, [efof f(Xy)ds (e—xskr _ eﬂ(&)r)]'

1’57;,1;

Thus, repeating the argument from the second step of the proof of Theorem 4.2, we
get wgk (x) = w(x) as k — oo uniformly in x € E, which concludes the proof of
this step.

Step 3. We show that |w§k (x) — wg (x)| = 0as k — oo uniformly inx € E. In
fact, recalling that [[Mws, — ¢|| — 0 as k — oo, the argument follows the lines of
the one used in the first step of the proof of Theorem 4.2. This concludes the proof of
this step.

Step 4. We show that A(6) does not depend on & as long as A(§) > r(f). More
specifically, let §; > O and §, > O be such that A(61) > r(f) and A(62) > r(f). Then,
using Steps 1-3, we may construct w® € C,(E) and w?? € C,(E) such that the pairs
(w%, A(81)) and (w®2, 1(8,)) satisfy (2.7). Then, using Theorem 2.3, for any x € E,
we get

A(81) = sup J(x, V) = A(82),
VeV

which concludes the proof. O

Remark 5.2 By the inspection of the proof we get that the statement of Theorem 5.1

holds true if we replace the dyadic sequence of time steps §y = 2w k € N, by any
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. §
sequence (8;) converging to zero, as long as we have 7;62 CTH, x€eE keN.
Note that this condition guarantees the monotonic convergence of A5, and wgk.
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Appendix A: Properties of Optimal Stopping Problems

In this section we discuss some properties of the optimal stopping problems that are
used in this paper. Throughout this section we consider g, G € Cp(E) and assume
G(-) <0andr(g) < 0,wherer(g)isthe semi-group type given by (2.8) corresponding
to the map g. We start with a useful result related to the asymptotic behaviour of the
running cost function g.

Lemma A.1 Let a be such that r(g) < a < 0. Then,

(1) The map x +— U§ “1(x) := E, [fooo efot(g(xf)*“)dsdt] is continuous and
bounded.
(2) We get

lim sup sup E, [efof g(Xs)dx] =0.
T—-00yeE t>T
€Ty

Proof For transparency, we prove the claims point by point.
PROOF OF (1). First, we show the boundedness of x — U§ “1(x). Let & <
a —r(g). Using the definition of (g — a) we may find 7y > 0, such that for any ¢ > #(

we get sup, g Ey [efot(g(xf)’“)ds] < ¢!r(®=a+8) Then, using Fubini’s theorem and

noting that r(g) —a + ¢ < 0, for any xo € E, we get

o 1
0< Ug_ﬂl(xo) < / sup E, [efo(g(Xs)—a)ds] dr
0

xeE
In) " d o0 " d
— / sup I, [efo(g(xx)—a) S]dt + / sup [e,/o(g<xx)—a> S]dt
0 xeE ty x€E
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1o o0
5/ e’(llg“—“>dt+f @+ gy oo,
0 fo

which concludes the proof of the boundedness of x U(‘)g ().
For the continuity, note that using Assumption (A2) and repeating the argument

used in Lemma 4 in Section IL.5 of [17], we get that x > E, efé(g(xf)_“)dsdt] is
continuous for any ¢ > 0. Also, as in the proof of the boundedness, we may show

1
0 < supE, [efo <g(xs>—a)ds] < IS oo+ @O
xeE

and the upper bound is integrable (with respect to ¢). Thus, using Lebesgue’s dom-
inated convergence theorem, we get the continuity of the map x — Ug ) =

Jo  Ey [ef(; (g(Xs)_“)dS] dt, which concludes the proof of this step.

PROOF OF (2). Noting that Ug_al(x) > fol e~ !Ugl=9qs x e E, we may find
d > 0, such that U§ “1(x) > d > 0, x € E. Thus, recalling thata < 0, we get

0< sup E, I:efoI g(Xs)ds]
>T
e,

IA

sup E, [efoT <g(X~f)”)dfe“ng‘”l(Xf)l}
>T d

teTy

eaT

IA

sup B [l g —ads s=ay Xr)]
d >T -
€T,

aT r 00
% WpE, / . (§+T(8(Xs)—a)dsdt:|
0

d >T
teTy

eaT - oo
- sup EX / efo (g(Xs)—Cl)det}
d =T LJT

€7,

eaT oo eaT
<—E, U efo(gm)—a)dwr] = — I =0, T — oo,
0

d
which concludes the proof. O
Using Lemma A.1 we get the uniform integrability of a suitable family of random
variables. This result is extensively used throughout the paper as it simplifies numerous

limiting arguments.

Proposition A.2 For any x € E, the family {efOT g(XS)dS},eq; is Py-uniformly inte-
grable.
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Proof Let us fix some x € E and, for any 7 € 7, and n € N, define the event
AT == {[y §(X,)ds = n}. Note that for any T > 0, we get

sup Ex[]Aze.fOT g(Xs)dS] < sup Ex[lAﬁefOr g(X,r)dS] + sup IE)C[IA;@/Or g(X,;)dS]

te7, t<T >T
reTy teT,
T o
< sup eTHgll]px [AZ] + sup Ex[ef() g(Xs)dS]‘
<T >T
= reT,

Next, for any ¢ > 0, using Lemma A.1, we may find 7 > 0 big enough to get

sup Ex[eforg(xf)ds] <.
>T

el

Also, noting that for t < T, we get A}, C {T'||g|| = n}, forany n > T||g||, we also
get

sup P,[A;]1=0.
<T
teTy

Consequently, recalling that ¢ > 0 was arbitrary, we obtain

lim sup I['E,([A;efor g(Xods) —

n—>00 L o

which concludes the proof. O

Next, we consider an optimal stopping problem of the form

u(x) := sup InkE, [exp <fT g(X5)ds + G(Xt))i| , x€E; (A.1)
0

€T p
note that here the non-positivity assumption for G is only a normalisation as for a

generic G we may set G(-) = G(-) — ||G|| toget G(-) <O0.
The properties of the map (A.1) are summarised in the following proposition.

Proposition A.3 Let the map u be given by (A.1). Then, x +— u(x) is continuous and
bounded. Also, we get

u(x) = sup InE, |:exp <fr g(Xo)ds + G(Xr))i| , X€E. (A2)
€7, 0

Moreover, the process

2(t) = eho 8XDHUXD) 45
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is a supermartingale and the process z(t A T), t > 0, is a martingale, where
T:=inf{t > 0:u(X,) < G(X))}. (A3)

Proof For transparency, we split the proof into two steps: (1) proof of the continuity
of x — u(x) and identity (A.2); (2) proof of the martingale properties of the process
Z.

Step 1. We show that the map x +> u(x) is continuous and the identity (A.2) holds.
Forany T > 0 and x € E, let us define

i(x) ;= sup InEE, [exp (fr g(X5)ds + G(Xt)>i| ; (A4
€7, 0

ur(x) := sup InE, |:exp </t g(X5)ds + G(Xf)>i| . (A.5)
<T 0

Using Assumption (A3) and following the proof of Proposition 10 and Proposition
11 in [21], we get that the map (T, x) + ur(x) is jointly continuous and bounded;
see also Remark 12 therein. We show that u7(x) — #(x) as T — oo uniformly in
x € E. Noting that

=Gl =ur(x) =u(x), T =0, x¢€kE,

and using the inequality | In y—In z| < mw—d,y, z > 0,toshowur(x) — @ (x)

as T — oo uniformly in x € E it is enough to show 7™ — M as T — oo
uniformly in x € E. Then, using Lemma A.1, for any ¢ > 0, we may find 7 > 0 such
that for any x € E, we obtain

0< eﬁ(X) — T < sup E, efor 8(X5)ds+G(Xz) _ efomr g(Xs)dS-‘rG(XmT)]
el

IA

leaT) (ef(,’ g(X)ds+G(Xo) _ fng(Xs>ds+G<XT>)]
el
(

sup E, [ 1 IZT}efozg(X.v)derG(X,):I
€7,

IA

IA

[
sup E, |
[
[

sup E, elo g(XS)dS] <e.
>T

el

Thus, letting ¢ — 0, we get ¢“T™) — ™) a5 T — oo uniformly in x € E
and consequently ur(x) — u(x) as T — oo uniformly in x € E. Thus, from the
continuity of x — ur(x), T > 0, we get that the map x — #(x) is continuous.

Now, we show that u = #. First, we show that limy_, oo u7(x) = u(x), where
AT

u(x) = SUp; <7 liminf7_ o InE, [e 0 g(x»?)d“JrG(X”T)], x € E.Forany T > 0
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and x € E, we get

TAS
ur(x) = sup liminf InE, [efO g(X")dHG(X”S)] <u(x),
<T S—00

thus we get limy_, oo u7 (x) < i (x). Also, forany x € E, 7 € T;,and T > 0, we get

TAT
ln]Ex I:e./()/\ g(Xs)ds‘l’G(XfAT)] < MT(.X).

Thus, letting 7 — oo and taking supremum over T € 7, we get limy_, oo ur(x) =
u(x), x € E. Also, using the argument from Lemma 2.2 from [22] we get i = u.
Thus, we get u(x) = limp_oour(x) = ii(x), x € E, hence the map x +— u(x) is
continuous. Also, we get (A.2).

Step 2. We show the martingale properties of z. First, we focus on the stopping time
7. Let us define

ri=inf{r > 0:u7_(X,) < G(Xp)}.

Using the argument from Proposition 11 in [21] we get that t7 is an optimal stopping
time for ur. Also, noting that the map 7 +— ur(x), x € E, is increasing, we get
that 7 — 77 is also increasing, thus we may define 7 := lim7_, o, 77. We show that
T=T1.

Let A := {T < oo}. First, we show that T = 7 on A. On the event A, we get
uUr—;(X¢p) = G(Xy;). Thus, letting 7 — oo, we get u(Xz) = G(X3), hence we
get T < 7. Also, noting that ug(x) < u(x),x € E, S > 0, on the set {T < T} we get
ur—+(Xz) < u(Xz) < G(X3), hence

7 < 1. (A.6)

Thus, recalling that T < T < oo and letting T — o0 in (A.6), we get T < t, which
shows T = 7 on A.

Now, we show that T = 7 on A¢. Let w € A° and suppose that 7 (w) < oo. Then,
we may find 7 > 0 such that 7 (w) < T. Also, for any S > T we get

Us_3(w) (X3(0) (@) < u(X3) (@) < G(Xz) ().

Thus, we get 75(w) < T(w) for any § > T. Consequently, letting S — oo we get
T(w) < oo, which contradicts the choice of w € A°. Consequently, on A we have
T=00="1.

Finally, we show the martingale properties. Let us define the processes

zr (1) == emeT gXs)dstur—iar(Xinr) T 4>

(1) = oo gXdsHuX) 45
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Using standard argument we get that for any 7 > 0, the process z7(¢), t > 0, is a
supermartingale and z7 (¢ A 77), t > 0, is a martingale; see e.g. [15, 16] for details.
Also, recalling that from the first step we get ur (x) — u(x) as T — oo uniformly
inx € E, forany t > 0, we get that z7(r) — z(¢t) and z7(t A T7) — z(t A T) as
T — oo. Consequently, using Lebesgue’s dominated convergence theorem, we get
that the process z(¢) is a supermartingale and z(¢ A T), t > 0, is a martingale, which
concludes the proof. O

Next, we consider an optimal stopping problem in a compact set and dyadic time-
grid. More specifically, let § > 0, let B C E be compact and assume that P,[tp <
o] = 1, x € B, where tp := dinf{n € N: X,5 ¢ B}. Within this framework, we
consider an optimal stopping problem of the form

TATB
up(x) = sup InE, |:exp </ g(Xs)ds + G(X,MB))1| , xekE. (A.7)
€T’ 0

The properties of (A.7) are summarised in the following proposition.

Proposition A.4 Let up be given by (A.7). Then, we get

up(x) = sup InkE;, |:exp </ ’ g(X5)ds + G(X,MB)>:| , xekE. (A.8)
0

e),
Also, the map x +— up(x) is continuous and bounded. Moreover, the process

ZS(”) = ef()ms g(XS)‘H'i(XmS)’ nelN

is a supermartingale and the process z(n A T/8), n € N, is a martingale, where
T:=8inf{n e N: up(Xps) < G(Xps)}. (A9)

Proof To ease the notation, let us define

TATB
ip(x):= sup InE, [exp </ g(X5)ds + G(XrMB))i| , X€EE,
0

8
teT?,

TATR
u'p(x) = suplS InE, [exp (/0 g(X)ds + G(XM,B))] , neN xekE,
teT

T<n$

and note that we get u’}g(x) < uap(x) < up(x), x € E. Next, note that using
the boundedness of G and Proposition A.2, by Lebesgue’s dominated convergence
theorem, we obtain

‘EETn_)OO

TA(nS)ATR
up(x) = sup lim InE, | exp / g(Xs)ds + G(Xoamsyney) | |, x € E.
0
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Also, foranyn e N, x € E,and 7 € T3 we get
TA(mS)ATR
M’;g(x) > InE, | exp /(; g(Xy)ds + G(Xams)ay) , Xx€E.

Thus, letting n — oo and taking the supremum with respect to T € 79, we get
lim, o 'y (x) = up(x), x € E. Consequently, we have

Jim wp(x) = ip(x) =up(x), x ek,

which concludes the proof of (A.8).

Let us now show the continuity of the map x — up(x) and the martingale charac-
terisation. To see this, note that using a standard argument one may show that, for any
n € Nand x € B, we get

u%(x) =Gx),x € B,

n+l ) n 3§
&5 = max (e | E, [I{XaeB}efo BN+ (X) 4 1y pelo g(Xs>d‘v+G(Xs)] ’

and, forany n € Nand x ¢ B, we get uls(x) = G(x); see e.g. Section 2.2 in [33] for
details. Thus, letting n — oo, for x € B, we have

5 . 3 .
¢B® = max(e9W | R, [1{X5€B}ef0 SXdsup(Xs) | 1y pieho g(X.v)dA+G(X5)] ,

while for x ¢ B, we get up(x) = G(x). Also, using Assumption (A2), we get that
the process X is strong Feller. Thus, repeating the argument used in Lemma 4 from
Chapter I1.5 in [17], we get that, for any bounded and measurable functionz: E — R,
the map

5
EsxE, [e/o g(XJ)dSh(x,)]

is continuous and bounded. Applying this observation to h(x) = 1{¢ B}e“B(x) and
h(x) := 1{xgpe®™, x € E, we get the continuity of x — upg(x). Also, using the
argument from Proposition 3.2 we get that z5(n), n € N is a supermartingale and
z(n A T/8), n € N, is a martingale, which concludes the proof. O
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