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(Received February 25, 1970)The helicity crossing relations between tħe two-body scattering channels and the three- -body decay channel are derived under the assumption that analytic properties of spinor amplitudes allow such a crossing. Each relation contains two or three crossing angles.
1. Crossing relationsThe crossing relations of the helicity amplitudes for the scattering reactions have been discussed by a number of authors (cf. Refs [1-13]). Ali these papers considered the scattering processes, including two-body reactions [1-12] and many-body production [13].In the present paper we discuss an important case of the crossing relations between the three-body decay and the two-body scattering channels.Among the works studying the crossing between the scattering channels, the most complete is the paper by Cohen-Tannoudji, Morel and Navelet [5]. It contains the rigorous derivation of the crossing relations, including the sign of the crossing πιatrix. The authors start from the relations between the helicity and spinor amplitudes and derive the crossing relations using the analyticity properties of the spinor amplitudes, proved by Bros, Epstein and Glaser [15].Here we discuss the crossing relations of the helicity amplitudes between the two-body scattering reactions in the channelss: 2, 3 -> 0, 1,t: 3, l→0,2,u: 1, 2→0,3and the three-body decay

d: 0→l,2,3in the case when m0 > m1 + zn2 + m3 (Fig. 1).
(217)
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Fig. 1. The channels for two-body scattering and three-body decay

Our argument is a simple generalization of the method of Cohen-Tannoudji et al. However, sińce the crossing properties of the spinor amplitudes were proved only for the two-body scattering reactions [15], we have to assume that corresponding spinor amplitudes are analytic in domains big enough to allow crossing to the <f-channel from the s-, t- and 
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(2-2)

w-channels. Under this assumption and using the methods of Ref. [5] we obtained the crossing relations between the d-channel and the s-, t- and n-channel helicity amplitudes (continued analytically to the d-channel physical region). They read

Our notation follows that of Ref. [5]. The summation goes over helicities λ'0, λ'1, λ'a and λ'a. The crossing angles are the functions of the Mandelstam invariants s, t and u. Their explicit form is given in the Appendix.It is possible to illustrate these angles geometrically on the diagram in the velocity space (Fig. 2) [14].In the following three Sections we give a sketch of the proof of the formula (1.1). As in Ref. [5] the proof consists of the three elements:1. Writing down the crossing relations for spinor amplitudes,2. Construction of the helicity amplitudes from the spinor amplitudes,3. Analytic continuation of the two-body helicity amplitudes and calculation of the crossing angles.In the Appendix we collect the values of the crossing angles.
2. Crossing relations for spinor amplitudesWe construct the spinor amplitudes for a three-body decay in the similar way as for the two-body scattering [6]

(1.1)

(2-1)Assuming that amplitudes ∙^a,a,,aza1 an<l (describing the two--body scattering) are analytic in domains big enough to allow crossing from the corresponding channels to the cZ-channel, amplitudę ^^jλl√ι1,√ι0 *s connected with these amplitudes. One has
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TABLE I0 12 3 ∙⅞ Ą ∑u

f f f f 1 1 1f f b b 1 1 1f b f b 1 1 1f b b f 1 1 1b f f b 0 10b f b f 0 1 1b b f f 0 0 1b b b b 0 0 0f - fermion, b - bosonIn these formulae factor (—l)r(27 = 0,1) arises from the change of order of the spinor indices in the spinor amplitudes and depends on the kind of particles involved in the reaction. This dependence is given in Table I.
3. Construction of helicity amplitudesOur definition of the two-body helicity amplitudes is taken from [5]. We folio w their method to define the three-body decay helicity amplitudes. Our definition consists of the folłowing elements:1. We define the helicity frames for one- and three-particle states being in- and out- •states in the d-channel,2. Using Lorentz transformations, which transform the standard frame (t, n1, n2, n3) into these frames, we express the helicity amplitudes in terms of the spinor amplitudes.The Lorentz transformation is completely defined by its action on three four-vectors. Therefore in the definition of the helicity frames we specialize only three basis vectors.Let pi and mi be the four-momentum and mass of the ś-th particie. For i = 0 ... 3 we define basis vectors 0 and 2 in the folłowing way:√A∙) = Pilmi parallel to pi and ⅝(P,) = wd orthogonal to the reaction piane. Here

wdμ = 2εμ,βoPιP2P⅛∣[φ(.s> t)]ιz2∙

(3-1)(3-2)
(Φ(s, t) = 0 is a boundary equation of the physical region. Inside this region Φ(s, t) > 0, we choose here, as one usually does, the positive determination for [Φ(s, t)]1/2.)The helicity four-vectors for three-particle state [16] are (i = 1, 2, 3)

⅝(p.) = λ(0 =
mipo-(po∙ pi)pi 

mi [(Po 'Pi)a - 54 ’ (3-3)
Po ~ Pi +Pz +Ps-
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For one-particle state (particie 0) we choose A(0) to be 

r,∣n∖-h((∖∙∖- mlPι~(Po'Pι)PoM - A(0) TOfl[(po ■ (3.4)
Using functions <5* ,ij∙, tf~ij, attij defined in Ref. [5] we can rewrite equations (3.3) and (3.4) to obtain

(3.4')

(3,3'>
Let ⅛P(i) be a Lorentz transformation such that

(3.5)
With each of these transformations one can connect the two-dimensional matrix L(i) such that (3-6)where p' = ⅛,(i)ρ.Using these matrices we express the decay helicity amplitudes in terms of spinor amplitudes (ε = zσ2)

‰,.√5> “■> = W(0‰λW(1)‰∕>W)‰×

× H1'(7'(3)ε)zjιAι^,^1,41^ l,A,(Pr> Pz> P& Po) • (3.7)
4. Analytic continuationFor the two-body scattering helicity amplitudes expressions similar to (3.7) can be easily constructed [5]. For instance in the s-channel¾v,(s, t, u) = PI’(Ls(0)e)4^(Ls(l)e)^iAiZy(Zs(2))J<A ×

×1^*(7'(3)) λ,λ,∙'^ii,λ1,λ,λ,(⅛ 91’ ?2’ 9β)∙ (4-1)



222As it was shown in [5] this expression is valid also after the analytic continuation is performed. From (3.7) and (4.1) and using explicit expressions for Ds(ε) we get for Λ¾lμ iς
(4-2)Index c denotes the crossed quantities (continued analytically to the d-channel physicalregion).Formulae connecting amplitudę Af^^^ are similar.

Fig. 3. Path of analytic continuation from the s-channel physical region to the d-channel physical region

with amplitudes and Λ4‰,jl,jl,
λOλHλ8a1 λq λ3J λ1z⅛

In these formulae Dl{Lcr~∖i)L{i)) (r = s, t, u) can be determined up to a sign by consi- dering the basis vectors of the associated helicity frames.We choose the following path connecting s- and <Z-channel physical regions (Fig. 3) s = (2n + l)a+2nae,φ,

t — —(n—X)a-nae ,ψ, (4-3)where 0 < φ < π,

a = y ("tθ + mf+τzt∣ + mf),
n — a big positive real number.This path connects the point s = (4n÷l)α, t = u = — (2n—l)α in 5+ with the point 

s = t - u = a in D. Such a path omits all the singularities of the amplitudes Af∣μ. λ.λ, and of the transformation matrices Ls(i) and therefore leads to the unique determination of the crossed amplitudes. One can verify that using such a path one ends with a positive determination of [Φ(s, t)] y* (assuming Φ-plane has a cut along the positive real axis). The functions iPij, Fij and δUij do not have left the cut planes, where they have been defined.Analogous paths can be constructed to join T+ and U+ with D.After the analytic continuation the s, i and u helicity frames are (index c denotes the crossed quantities):Basis vector 0: ic(ft) = —Pilmi f°r crθssed particles 
pi∣mi for uncrossed particles. (4.4)



223Basis vector 2:
nei(p^ = wcs = wcl = weu = — wd. (4.5)(Four-vectors m,j, w, and wu are defined as in Ref. [5]),Basis vector 3:

ns(Pi) = aJ(0> (r = s’ t, u) (4-6)where is obtained from the helicity four-vcctor hr(i) in the corresponding channel by changing pi∣mi for -pjmi for crossed particles in the definition of this four-vector.Transformations (r = s, t, u) can be proved [5] to be the real rotations,namely <~c-ιω WΛ = for crossed Particles (4.7)
r ∖ ) ∖ ) ∣Λ3(π) Λ2(Z<'r) f°r uncrossed particles.We calculate the crossing angles χt∙r(-π < χ1'r < π) from the following formulae cos χir = εihcr(i)h(ι),sin χ'ir = nelr(i)h(i), (4.8)—1 for crossed particles+ 1 for uncrossed particles.It can be easily seen from (3.6) that matrices L and —L correspond to the same Lorentz transformation Therefore the determination of the signs ηs, ηl and ηa of the crossing matrices is another problem and must be discussed separately. Using methods analogous as in Ref. [5] we find the signs ηs, ηt and ηu to be

η, = (-i)2j∙+2s∙,
ηt = (-l)2^∙+⅛, (4.9)
ηu = (-i)2l∙+2l∙.We redefine the angles χ'lr in order to tidy up the indices in the crossing matrix. Expres- sions for χri through the angles χir are given in the Appendix.This completes the proof of the formulae (1.1).

APPENDIXIn the formulae for the crossing matrices obtained from (4.2) we get expressions of the form ds(χ‰λ.λ, d∖l'}-λ'-λ and ^s(z )λ,-ζ∙ In order to rearrange the helicity indices in these expressions we redefine the crossing angles, using identities such as
ds{π-χ‰ = (-l),+⅛H')-w (A-l)¾')n = (-1∕'"W)-λ'-λ∙Angles χζ∙ can be expressed through the angles γiτ (Tab. II).
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Angles χ' expressed through the angles χ'r

TABLE II
r

i 0 1 2 3
s π-χ' x' ~π~X'
t π-χ' X' -π-χ'
u π-∕ -π-%, -π-χ'

The analytic expressions for cos χ' and sin χ' are given in Table ΠI. TABLE IIIThe analytic expressions for cos χ' and sin χτ∣

r i cos χ' sin χrf

s

0 1 0
1 1 0
2 [5÷m∣-m2∣ψ2m≈ [ττι≡+ m≡-tt$∙⅝3∙^^oa 2t7⅛[Φ]⅛∙^23∙^^βa3 [s+τ7l∣-77$ [u+τ7l∣-77l≡]+277l≈ [τ7⅛÷ 777∣-77lJ—77$*⅝3 t^03 2ττ⅛ [Φ]⅛•^23®03

t

0 [s+ 77l|— 771J j [«+ 77»J— 77$ — 2zzjg[zτt≡ + 771 jj- 77»J— 77$∙^01"^^02 2ττι0[Φ]⅛,^01∙^^021 [s+77i21-7n≡] [t+ πt↑-ml]+2ml [w∣+m∣-ro∣-ro∣] 2ττ≈1 [Φ] ⅛*^θi,^βι ,^01∙^^312 1 0
3 [«+?ng—77$ [u+τn∣-77L≡] + 2τ77≈ [t7$|-TT^—77ł|—77$‰3,^31 2ττ⅛ [Φ]½®03-^31

u

0 [s+ m2g- 77$ [u+ m„— ml\ —2ττ⅛ [ττι≡+ ττι∣- m[— mf]

c^01 ^03

2τ7l0 [Φ] ⅛01 ‰31 [s+ 771≡- m*]  [u+ m|— 77$+2t7$tt$|- 77»* — ττι≡- 7$ ■5^01 ^12 2τn1 [Φ]⅛,^01 ^^122 [t+ tt$— m%] [u+mt-τn≡] + 2τn∣ [ττιj+ 77»J—m%-mf] 
^~(J2 ^12 2ττ⅛ [ΦJ¼∙^^02 ^123 1 0

The author would like to thank Dr A. Kotański for suggesting this investigation and many helpful discussions. He is alsó grateful to Drs A. Białas and K. Zalewski for critical reading of the manuscript and valuable comments.



225
REFERENCES[1] T. L. Trueman, G. C. Wick, Ann. Phys., 26, 322 (1964).[2] J. Bjarneboe, and Z. Koba, Nuclear Phys., B7, 53 (1968).[3] I. J. Muzinich, J. Math. Phys., 5, 1481 (1964).[4] R. C. Brunet, R. W. Childers, Phys. Rev., 150, 1280 (1966).[5] G. Cohen-Tannoudji, A. Morel, H. Navelet, Ann. Phys., 46, 239 (1968).[6] M. S. Marinov, V. I. Roginsky, Nuclear Phys., 49, 251 (1963).[7] G. Immirzi, Nuovo Cimento, 58, 619 (1968).[8] A. Chakrabarti, preprint Ecole Polyt. A118.ll 68/16 (1968).[9] Y. Hara, preprint Tokyo University TUEP-68-3 (1968).[10] A. Białas, B. E. Y. Svensson, Nuovo Cimento, 42, 672 (1966).[11] B. E. Y. Svensson, Ark. Fys. 33, 93 (1966).[12] E. L. Surkov, Yadernaya Fizika, 1, 1113 (1965).[13] A. Gapella, Nuovo Cimento, 56A, 701 (1968).[14] G. C. Wick, Ann. Phys., 18, 65 (1962).[15] J. Bros, H. Epstein, V. Glaser, Commun. Math. Phys., 1, 240 (1968).[16] P. Moussa, R. Stora, in Methods in Subnuclear Physics, Vol. II, p. 265-340, Gordon and Breach, N. Y. 1968.


