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1. Introduction

Topological solitons are ubiquitous in many areas of theoreti-
cal physics reaching from particle theory to nuclear physics, con-
densed matter or cosmology. A thorough understanding both of 
their individual properties and their dynamics in multisoliton pro-
cesses is, therefore, of utmost importance both for classical and 
quantized solitons. On the other hand, topological solitons typically 
are solutions of rather complicated, nonlinear field theories, and 
exact analytical expressions are available only in rare occasions, 
which considerably complicates their analysis. One important tool 
in their study is, therefore, a systematic construction of analytical 
field configurations which provide an accurate approximation both 
for static solitons and for the field configurations which may ap-
pear in dynamical processes like soliton scattering.

It turns out that instantons [1], that is, localized, finite action 
solutions of a field theory in an Euclidean space-time, are partic-
ularly useful in this context. They provide a systematic approach 
for the understanding of properties of topological solitons in vari-
ous physically important models. One of the best examples is the 
Skyrme model, which is an effective theory of quantum chromo-
dynamics in the non-perturbative, low energy regime. This model 
admits topological excitations, called Skyrmions, which are identi-
fied with baryons and atomic nuclei. It was shown by Atiyah and 
Manton that Skyrmions can be well approximated by the holon-
omy of the SU (2) instantons in (4 + 0) space [2]. This is important 
not only because one gets a relatively simple method to gener-
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ate and study Skyrmions [3,4], but it is also a way which defines 
a truncated, finite dimensional configuration space, i.e., a moduli 
space, in a natural manner, provided by the instanton moduli space 
(the space of parameters on which a general instanton solution 
may depend). This finite dimensional subspace is a crucial ingredi-
ent both for a simplified study of scattering processes and in the 
quantization of skyrmions [5–7]. Furthermore, the instanton ap-
proach allowed for the investigation of dense skyrmionic matter 
both in the crystal [8–10] and inhomogeneous phases [11] as well 
as nucleon-nucleon forces [12]. It was also used to construct topo-
logical solutions of different types like vortices [13] and sphalerons 
[14]. More importantly, a similar construction of skyrmions from 
instantons becomes realized in some holographic models, such 
as the Sakai-Sugimoto [15] or the Sutcliffe [16] models, where 
Skyrme solitons appear in the boundary theories coupled to an 
(infinite) tower of vector mesons.

While applied with success in various areas, the instanton ap-
proximation did not work too well in models with massive fields. 
This is an obvious consequence of the power-like localization of 
instantons, which is typical for massless fields.

However, it has recently been shown how to extend this frame-
work also for Skyrmions with massive pions [17], where instantons 
are replaced by the so-called constrained instantons, namely, topo-
logically non-trivial Euclidean configurations whose size has been 
fixed by an additional constraint in the original action. The effect 
of such constraint is an exponential decay in the radial direction, 
which agrees with the solutions of the massive Skyrme model.

In the present paper, we test the instanton approach for a much 
simpler model, which is the φ4 theory in (1+1) dimensions. There-
fore we use C P 1 instantons. However, our aim is to model one of 
the most difficult and subtle features of this theory, i.e., the kink-
antikink collisions. This goes much beyond the usual application 
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by 
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of instantons to model static properties of solitons like, e.g., their 
energies and shapes (geometry).

2. Instanton approximation

2.1. C P 1 instanton and kink profile

We begin with a short summary of the instanton approximation 
to kinks in (1+1) dimensions proposed by Sutcliffe [18–20]. The 
obvious choice is to use the C P 1 model in (2+0) dimensions, which 
supports self-dual instantons. They are finite action solutions of the 
following model

S =
∫

d2xTr(Dμ Z)†(Dμ Z), (1)

defined on the Euclidean space xμ = (x1, x2). Here Dμ = ∂μ − Aμ , 
Aμ = Z †∂μ Z and Z is a two component complex field obey-
ing a constraint Z † Z = 1. The constraint can be resolved via the 
parametrization

Z = 1√
1 + |w|2

(
1
w

)
, (2)

where w is a complex field. In instanton solutions the complex 
field w is a rational function of z = x1 + x2. Then, the topological 
charge of the instanton equals the degree of the rational map w(z). 
For example, the charge one instanton is given by

w = λ(z − z0) (3)

where z0 is its position and λ its scale, which appear as a 
consequence of the translational and conformal symmetry. Anti-
instantons can be obtained by complex conjugation.

Now, we define the U (1) abelian holonomy

U (x1) = exp

⎛
⎝ ∞∫

−∞
A2(x1, x2)dx2

⎞
⎠ , (4)

which can be further related to a static scalar field

U (x1) = eiπφ(x1). (5)

Hence, inserting the single instanton solution we arrive at the fol-
lowing field configuration (from now on, we suppress the lower 
index, x ≡ x1)

�(x;λ,a) = λ(x − a)√
1 + λ2(x − a)2

. (6)

So, this profile is independent of the Lagrangian of the scalar field. 
The only place where the actual kink model may affect the instan-
ton approximation, therefore, is the optimal value of λ.

2.2. φ4 theory

In the present work we apply this construction to the φ4 theory 
in (1+1) dimensions,

L =
∞∫

−∞

(
1

2
φ2

t − 1

2
φ2

x − 1

2
(1 − φ2)2

)
dx. (7)

This model supports a kink �K and antikink �K̄ interpolating be-
tween the two vacua φv = ∓1

�K = tanh(x − a), �K̄ = − tanh(x − a) (8)
2

They are stable, minimal energy solutions in the pertinent topo-
logical sectors. Here a is a moduli parameter denoting the center 
of the soliton. It arises due to the translational invariance of the 
action and is reflected in the existence of the zero mode.

The (anti)kink possesses also a massive mode, so-called shape 
mode

ηsh(x, t) =
√

3

2

sinh(x − a)

cosh2(x − a)
eiωsht (9)

which has a frequency ω2
sh = 3. Finally, there are scattering modes, 

i.e., radiation for ω2 > 4.
To approximate the static φ4 solitons, one inserts the single in-

stanton into the φ4 energy integral and minimizes it w.r.t. the scale 
parameter λ. The optimal value is λ0 = 2√

3
which leads to the en-

ergy E[λ0] =
√

3π
4 ≈ 1.36035. This should be compared with the 

static energy of the (anti)kink, which is E K (K̄ ) = 4
3 ≈ 1.33333. We 

remark that the observed 2% discrepancy can be made lower if one 
uses higher dimensional instantons [19].

2.3. Perturbative relativistic moduli space

Now, we want to go further and model the shape mode of 
the φ4 kink. This will be achieved by applying the recently de-
veloped perturbative Relativistic Moduli Space approach [21]. This 
is a version of the collective coordinate method which partially re-
produces the Lorentz invariance of the underlying field theory [22], 
[21].

In the collective coordinate model, we assume that for a given 
solitonic process the infinite dimensional space of all field config-
urations can be restricted to a finite dimensional set parametrized 
by some parameters, moduli, Xi

M[Xi] =
{
�(x; Xi); i = 1..N

}
. (10)

In the next step, we promote the moduli to time dependent vari-
ables. Inserting these configurations into the original Lagrangian 
and performing the spatial integration brings us to a mechanical 
like effective model

L[X] =
∞∫

−∞
L[�(x; Xi(t))]dx = 1

2
gij(X) Ẋ i Ẋ j − V (X) , (11)

where

gij(X) =
∞∫

−∞

∂�

∂ Xi

∂�

∂ X j
dx (12)

is the metric on M, while

V (X) =
∞∫

−∞

(
1

2

(
∂�

∂x

)2

+ 1

2
(1 − �2)2

)
dx (13)

is the effective potential which modifies the motion on the moduli 
space.

The Relativistic Moduli Space framework is based on the inclu-
sion of the scale (Derrick) deformation, x → bx. Then, we build the 
moduli space as follows. We start with energy equivalent set of 
configurations �0(x; a). They can be single kink solution, φK (x −a)

or some other configurations which are meant to approximate the 
kink, as, e.g., the instanton motivated profile, �(x − a; λ0). Then, 
we include a deformation b, which rescales the spatial direction, 
x → bx. Hence, we arrive at the following set of configurations
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M[a,b] = {�0(b(x − a))} (14)

where we assumed the translational invariance of the problem. We 
remark that the �0(x; a, b = 1) should be an energy minimizer un-
der the Derrick deformation.

The resulting CCM possesses a stationary solution a(t) = vt +
a0, b = γ ≡ 1/

√
1 − v2, which describes a boosted static solution 

�0(x), [22], [21].
In our case, the Derrick deformation leads to the following fam-

ily of configurations

�(x;λ0,a,b) = λ0b(x − a)√
1 + λ2

0b2(x − a)2
. (15)

It is immediately seen that the Derrick deformation can be iden-
tified with deformation of the instanton scale parameter λ. There-
fore, configurations with b = 1 are the energy minima also with 
the scaling deformation included. In addition we can take λ as an 
equivalent scale moduli. Thus, the instanton motivated single kink 
moduli space reads

M[a, λ] = {�(x;a, λ); a ∈R, λ ∈R+} , (16)

where the positive sign of λ is fixed by the topology, i.e., by the 
boundary conditions imposed on �. Obviously, contrary to the 
flat direction a, changes of λ correspond to massive deformations 
which may cover the internal, vibrational modes. As we have al-
ready noticed, the corresponding collective model has a stationary 
solution

a(t) = vt + a0, λ = λ0γ ≡ λ0√
1 − v2

, (17)

which is just the Lorentz contraction of a boosted instanton ap-
proximated kink.

It was shown, however, that to study multi-kink collisions, an-
other version of the Relativistic Moduli Space approach is much 
more useful. This follows from the observation that for kink-
antikink collisions a finite dimensional set of configurations, based 
on a simple sum of a single kink and antikink, leads to the ap-
pearance of an essential singularity on the moduli space at a = 0, 
i.e., at the point where solitons are on top of each other and form 
a vacuum. (Strictly speaking, this only occurs for solitons related 
by the symmetry �K̄ (x) = −�K (x), which is the case in the φ4

model.)
To circumvent this issue, one can use the perturbative Relativis-

tic Moduli Space approach. This means that we expand the profile 
provided by the instanton approximation in small perturbations 
in the scale (Lorentz boost) parameter around the optimal value, 
λ = λ0 + ε

�0(x;a,b) = �0(b(x − a)) = �0((1 + ε)(x − a))

=
n∑

k=0

εk

k! (x − a)k�
(k)
0 (x − a) + o(εn) . (18)

Now, we treat each term in the expansion as an independent 
mode, the so-called Derrick mode

�0(x;a,C) = �0(x − a)

+
n∑

k=1

Ck

k! (x − a)k�
(k)
0 (x − a) . (19)

This provides an arbitrarily large set of collective coordinates 
Ci, i = 1..n, which are the amplitudes of the Derrick modes.

In the current work we take the simplest possibility and con-
sider only the first, lowest Derrick mode. (See Figs. 1, 2.) Hence, we 
3

Fig. 1. Kink profiles: φ4 kink (black), the instanton approximation (blue) and the 
constrained instanton approximation (orange).

Fig. 2. Derrick modes compared to the true shape mode of the φ4 kink (black): 
the instanton approximation (blue) and the constrained instanton approximation 
(orange).

arrive at two dimensional instanton motivated moduli space with 
configurations of the following form

�(x;a, C) = λ0(x − a)√
1 + λ2

0(x − a)2
+ C

(x − a)

(1 + λ2
0(x − a)2)3/2

. (20)

It is important to notice that the CCM model arising from these 
configurations still possesses a stationary solution which approx-
imates the boosted kink. Indeed, inserting �(x; a, C) into the φ4

Lagrangian we find the following metric

gaa =
√

3π

4
+ π

8
C + 9

√
3π

256
C2, gCC = 3

√
3π

64
(21)

and the effective potential

V (C) =
√

3π

4
+ 39

√
3π

512
C2 + 27π

1024
C3 + 27

√
3π

16384
C4. (22)

The resulting equations of motion have a solution

ȧ = v, C̃ = C(v) (23)

where C̃ obeys an algebraic equation

v2

2
∂C gaa = ∂C V . (24)

Finally, we look closer at the first instanton motivated Derrick 
mode which after normalization reads

ηinst =
√

64

3
√

3π

(x − a)

(1 + λ2
0(x − a)2)3/2

, λ0 = 2√
3
. (25)

It is a massive excitation and therefore gives an approximation to 
the shape mode. It is a rather good approximation. Its frequency 
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is (ωinst)
2 = 13

4 = 3.25. It has also a very good overlap with the 
shape mode, 〈ηinst |ηsh〉 = ∫

ηshηinstdx = 0.97565.
Hence, we can summarize that the instanton approximation 

provides a quite good approximation to both static and station-
ary properties of a kink. Here we mean the mass of the kink and 
the properties of its normal mode.

One should also be aware that there is an important property 
of the kink which is not correctly reproduced by the instanton 
approximations, namely, the near vacuum regime. Indeed, the ap-
proximated kinks have very slowly decaying tails. Instead of the 
original exponential approach to the vacuum

�K = ±1 ∓ 2e−2x as x → ±∞, (26)

the instanton approximation leads to x−1 localized solitons. Hence, 
the approximated kinks interact much more stronger and at a 
much larger distance. As we will see below, this rather strongly 
affects the multi-kink dynamics.

3. Instanton-antiinstanton valley

In order to study multi-soliton solutions, one has to find multi-
instanton configurations in the corresponding topological (instan-
ton) charge sector. Such C P 1 multi-instantons are exactly known. 
They are given by holomorphic rational maps whose degree is the 
instanton charge. Then, for example, a kink-kink scattering may 
be approximated by a path in the two-instanton space, where the 
actual time evolution would arise from the pertinent collective co-
ordinate model [18,20].

There is, however, a problem if we want to study kink-antikink 
collisions. There are no C P 1 instantons in trivial charge sector. 
Technically it means that there are no nontrivial self-dual solu-
tions with zero topological charge. They may appear if we couple 
the C P 1 model with a background field, an impurity, in a very spe-
cific manner, the so-called BPS impurity models [23,24]. Here we 
will not follow this strategy but, rather, will use a more traditional 
instanton-antiinstanton (I Ī ) valley construction [25].

In this construction, one focuses on trajectories �v(xi; ξ) in 
functional space which asymptotically, for a parameter ξ → ∞, 
represent a pair of infinitely separated instanton and antiinstanton 
solutions of the action S0. For finite ξ , the configurations �v (xi; ξ)

are not extrema of the original action. Instead, �v(xi; ξ) are solu-
tions of a reduced theory which is the original S0 under a con-
straint that only variations orthogonal to the direction ξ are taken 
into account
δSred

δ�
[�v ] = ω�(xi; ξ)

∂�v

∂ξ
(27)

equipped with above mentioned boundary condition. In other 
words, we find a streamline in the functional space and the val-
ley configuration goes along this streamline.

Examples of such I Ī valleys are known [26–28]. For instance, a 
valley can have the following simple form [28]

w(z, z̄) = (ξ − 1/ξ)z̄

1 + |z|2 (28)

This is a concentric I Ī pair which can be transformed into a non-
concentric one by a conformal transformation.

In the present work, we take the simplest choice relevant for 
kink-antikink collisions and assume the valley in a form which 
leads to the simple kink-antikink superposition [26]. We do not 
know an exact form of the corresponding I Ī configurations but this 
is not needed for our computations.

After this reasoning we propose the instanton motivated kink-
antikink moduli space to be a sum of single soliton cases. Specifi-
cally, the relevant configurations are
4

Fig. 3. Kink-antikink collision in the φ4 model.

�K K̄ (x;a, C) = (29)

= λ0(x + a)√
1 + λ2

0(x + a)2
− λ0(x − a)√

1 + λ2
0(x − a)2

− 1

+ C

(
x + a

(1 + λ2
0(x + a)2)3/2

− x − a

(1 + λ2
0(x − a)2)3/2

)
,

where we keep only the first Derrick mode (symmetrically ex-
cited). However, there is still a problem, since the moduli space 
metric of the resulting CCM (11) has a singularity at a = 0. Indeed, 
gCC = gaC = 0 at this point. Fortunately, this is an apparent sin-
gularity which can be removed by a suitable choice of the moduli 
space coordinates. Here, it is enough to change C → C

tanh(a)
, see 

[29] and [21] for details. This finally brings us to the following set 
of configurations

�K K̄ (x;a, C) = (30)

= λ0(x + a)√
1 + λ2

0(x + a)2
− λ0(x − a)√

1 + λ2
0(x − a)2

− 1

+ C

tanh(a)

(
x + a

(1 + λ2
0(x + a)2)3/2

− x − a

(1 + λ2
0(x − a)2)3/2

)
.

The final step is to identify the appropriate initial conditions 
which would correspond to kink-antikink scattering in the original 
φ4 theory. Obviously, for a large initial separation, a(t = 0) = a0 �
1 the configurations represent free solitons. Thus, the initial condi-
tions can be read of from the single kink sector. Specifically, they 
read

a(0) = a0, ȧ(0) = v, C(0) = C̃, Ċ(0) = 0, (31)

where C̃ obeys equation (24).
We start with presenting the results of kink-antikink scattering 

in the φ4 model, see Fig. 3. Here we show the time dependence 
of the field at the origin φ(x = 0, t) for different initial velocities 
of the colliding solitons v ∈ [0.1, 0.3]. One can easily recognize the 
bounce windows, where kink and antikink scatter back to infinity 
after a certain number of collisions, as well as the bion chimneys 
where the solitons do not have sufficient kinetic energy to over-
come the attraction and, therefore, annihilate via the formation of 
a bion i.e., an oscillating state which slowly decays to the vacuum 
via radiation. The actual behaviour strongly depends on the initial 
velocity and reveals a fractal like pattern. For v > vcrit ≈ 0.2598
we see only one-bounce scattering.

In Fig. 4 we show the value of the field at the origin found 
in the instanton motivated CCM based on configurations (30). We 
see bounce windows and bion chimneys, but the critical velocity 
is very large, more than twice as big as in the true collisions, 
vinst ≈ 0.57. This means that, although the static and stationary 
crit
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Fig. 4. Kink-antikink collision in a CCM based on the superposition of instanton and 
antiinstanton approximated configurations (30).

properties of single kink are quite well reproduced by the instan-
ton approximation, it is too little to cover dynamical features of 
the model as e.g., the effects of kink-antikink collisions.

An obvious source of this failure is the wrong asymptotic be-
haviour of the approximated kinks. They decay too slowly and feel 
each other much stronger than in the original field theory. There-
fore, it is not too surprising that the kinks need significantly bigger 
energy to overcome this stronger attraction. This energy can only 
come from the initial kinetic energy. As a consequence, we find a 
much larger critical velocity.

To improve the instanton description of kink-antikink collisions 
we have to modify the behaviour of the solitons in the near-
vacuum regime and equip the kink and antikink with exponential 
tails. This can be done by making use of the constrained instan-
tons.

4. Constrained instanton

In order to impose an exponential decay on the (constrained) 
instanton configurations, we may modify the original instanton La-
grangian by including a mass term in the action

Sm = 1

2

∫
d2x[∂μna∂μna + m2(1 − n3)]. (32)

Here we use the O (3) formulation of the model, where instead of 
the complex field w we have a unit three component iso-vector 
n = (n1, n2, n3)

w = n1 + in2

1 − n3
. (33)

It will be also useful to introduce polar coordinates in the base 
manifold, {r, θ}, so that an axially symmetric configuration can be 
easily written in terms of a radial function f (r) as

w(r, θ) = sin f eiθ

1 − cos f
. (34)

For instance, the single-instanton solution centered at the origin is 
given by cos f (r) = (λ2 − r2)/(λ2 + r2).

The massive O (3) model does not support topologically non-
trivial euclidean action minimizers. However, it can still provide 
very useful so-called constrained instanton configurations [30,31].

The equation of motion in the large r limit simplifies to the 
modified Bessel equation,

f ′′ + 1

r
f ′ −

(
1

r2
+ m2

)
f = 0 (35)

so that solutions vanishing at infinity must satisfy

f ∼ K1(mr) for r → ∞. (36)
5

On the other hand, we want our constrained instanton configura-
tion to behave as the pure C P 1 instanton for small distances from 
its center,

f ∼ arccos
λ2 − r2

λ2 + r2
for r ∼ 0. (37)

A simple function that achieves both conditions is

fc(r) = arccos

(
λ2 − r2

λ2 + r2

)
mrK1(mr) (38)

This function depends on two parameters λ and m, which for the 
moment we leave as free parameters.

Now, we compute the holonomy of A2 generated by the con-
strained instanton profile and find

�c(x;λ,m)

= 1

π

∫
dt

x

x2 + t2
cos2

(
m

2

√
x2 + t2 K1

(
m

√
x2 + t2

)

× arccos

(
2
(
x2 + t2

)
λ2 + x2 + t2

− 1

))
(39)

Then, we insert the approximated kink profile into the energy 
integral of the φ4 model and find the optimal values of the param-
eters. They are λ0 = 1.4076 and m0 = 0.5870. This guarantees that 
the scale perturbation will not provide a lower energy configura-
tion. Note that for the constrained instanton we have to perform 
such a two parameter minimization because for such an ansatz 
the scaling deformation is not simply equivalent to a redefinition 
of λ. Instead, it affects terms where λ is absent. This is due to the 
explicit conformal symmetry breaking implied by the inclusion of 
the mass term. We also remark that these values of the ansatz pa-
rameters give a very good approximation of the true kink energy. 
Namely E = 1.3337. One can also observe that the optimal value of 
the mass parameter m0 is not too different from the exponentially 
decaying tail of the kink, for which m = 1.

Of course, the reason why we have to consider scale deforma-
tions is clear from the previous analysis. We need Derrick modes to 
perturbatively approximate the Lorentz boost of a static kink con-
figuration and, therefore, to correctly define the initial conditions 
in the CCM.

Thus, the simplest perturbative relativistic moduli space de-
scribing single-kink sector is built out of the following configu-
rations

�c(x − a;λ0,m0) + C(x − a)∂x�
c(x − a;λ0,m0), (40)

where we contain only the first Derrick mode (for simplicity, we 
show it without normalizing to one)

ηc = (x − a)∂x�
c(x − a;λ0,m0). (41)

Here, a is the position of the kink and C is the amplitude of 
the first Derick mode. The constant velocity motion of the kink 
is found as a stationary solution of the resulting CCM, ȧ = v , 
C = C̃(v) obeying eq. (24).

The construction of the kink-antikink moduli space is also 
straightforward. It is based on the superposition of the kink and 
antikink configuration with the previously discussed regularization. 
Hence,

�c
K K̄

= �c(x + a;λ0,m0) − �c(x − a;λ0,m0)

+ C

tanh(a)

(
(x + a)∂x�

c(x + a;λ0,m0)

− (x − a)∂x�
c(x − a;λ0,m0)

)
(42)
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Fig. 5. Kink-antikink collision in a CCM based on the superposition of constrained 
instanton and antiinstanton approximated configurations (42).

This gives rise to a CCM which we solve with the previously spec-
ified initial conditions (31).

Solving the equations arising from this CCM,

Ẍ i = −�i
jk Ẋ j Ẋk − gij ∂V

∂ X j
, (43)

requires calculating many integrals numerically, especially because 
even the instanton profile is given by a slowly converging integral. 
Here, the Christoffel symbols and the gradient are functions of the 
position on the moduli space and are given by two dimensional 
integrals (over t and x). In our earlier attempts, we calculated all 
the integrals (12), (13) at each time step. However, this approach 
resulted in many artefacts and substantial, but acceptable compu-
tation times. Here, calculating integrals at each time step would 
be much more time-consuming. Therefore we applied a different 
strategy. Prior to solving the effective equation, all elements of 
�i

jk(X) and ∂ i V (X) were calculated on a grid and two dimensional 
splines were used to approximate the rhs of the effective equa-
tions. This reduced the computation time of the full scan shown 
in Fig. 5 down to a couple of minutes (in Julia programming lan-
guage).

In Fig. 5, we plot the results of kink-antikink collisions in the 
CCM derived above. Again we see bounce windows and bion chim-
neys, but now in very good agreement with the full field theory. 
Especially the critical velocity improves significantly. Now it reads 
vc

crit = 0.2864, which is only 10% bigger than the true value. Note 
that in the usual instanton approximation the difference is about 
120%. The improvement is spectacular and indicates a high impor-
tance of the correct localization, that is, the correct approach to 
the vacuum of the approximated soliton.

We remark that the results of the constrained instanton based 
CCM are quite similar to computations where the exact kink and 
the shape [32] or Derrick mode [21] were used. One can verify that 
the corresponding scans of the collisions are qualitatively similar, 
while the critical velocities read vcrit = 0.282 and vcrit = 0.2853, 
respectively.

5. Conclusions

In the present paper we show that the constrained instanton 
approximation combined with the instanton-antiinstanton valley 
construction and the perturbative relativistic moduli space ap-
proach can quite accurately describe such a delicate phenomenon 
as kink-antikink collisions in the φ4 model. This is a very nontriv-
ial result, as the kink-antikink collisions lead to a chaotic system 
with a fractal structure in the final state formation.

Our results provide clear evidence that the (constrained) instan-
ton approximation gives a universal tool allowing for the analysis 
(and/or approximation) of both individual soliton properties and 
6

soliton collisions. Of course, we cannot expect that this approx-
imation will be competitive with more specific, taylor-made ap-
proaches whenever such a specific treatment can be found like, 
e.g., the moduli space approach based on a superposition of true 
single soliton solutions combined with single kink normal modes 
[32], single kink Derrick modes [21] or even multi-kink internal 
modes [33]. This is because the instantons provide a limited set 
of configurations which is basically independent of the theory we 
want to approximate. The only place where this theory affects the 
instanton approximation is via the optimal values of the parame-
ters. However, in many cases as for example the Skyrme model, a 
good, i.e., physically motivated choice for a moduli space and the 
related CCM is difficult to find, and precisely in these situations 
the instanton approximation can be a very useful tool.

Therefore, the main result is the demonstration that the con-
strained instanton approximation can be applied to much more 
complicated phenomena or properties than the usually considered 
shapes and masses of static solitons. Specifically, dynamical prop-
erties which involve the internal modes seem to be quite well 
captured.

This can also be very important for the application of instan-
tons to the analysis of the semiclassical version of solitonic mod-
els, where normal modes are the crucial ingredients [34]. See also 
[35–37] for recent developments. Especially, in higher dimensions 
the instanton approach can provide a simple but trustworthy ap-
proach.
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