

SORTING OF REAL NUMBERS INTO A LINKED LIST ON THE PRAM MODEL

A Thesis in

Computer Science

Presented to Faculty of University of
Missouri - Kansas City in partial fulfillment of

requirements for the degree

MASTER OF SCIENCE

By

Pruthvi Kasani

B. Tech in Computer Engineering
Indian Institute of Information Technology, Chennai, India, 2015

Kansas City, Missouri, United States of America

2022

Ó2022

PRUTHVI KASANI

ALL RIGHTS RESERVED

iii

SORTING OF REAL NUMBERS INTO A LINKED LIST ON THE PRAM MODEL

Pruthvi Kasani, Candidate for the Master of Science Degree

University of Missouri – Kansas City

ABSTRACT

We study the sorting of real numbers into a linked list on the PRAM (Parallel Random

Access Machine) model. The research work consists of two parts. First part talks about the

various techniques involved in sorting the real numbers on the linked list in terms of number

of processors and time complexity. We have examined on how to sort the real numbers in the

linked list using n3, n2 processors which has the time complexity of constant time and

O(loglogn) time respectively. We have done good research in that area to come up with an

algorithm to sort n real numbers into the linked list using n2 processors in constant time. In

second part, we talk about the time processor trade off for sorting the real numbers in the linked

list.

iv

APPROVAL PAGE

The faculty listed below, appointed by Dean of School of Computing and Engineering,

must examine the thesis titled as “Sorting of Real Numbers into a Linked List on the PRAM

Model” presented by Pruthvi Kasani, candidate for the Master of Science degree, and certify

that in their opinion it is worthy of acceptance.

Supervisory Committee

Yijie Han, Ph. D., Chair

School of Computing and Engineering

Deb Chatterjee, Ph. D.

School of Computing and Engineering

Sejun Song, Ph. D.

School of Computing and Engineering

v

CONTENTS

ABSTRACT .. iii

Chapter

1. INTRODUCTION ... 1

2. METHODOLOGY .. 4

3. THEOREM .. 8

4. CONCLUSIONS ... 9

REFERENCES .. 10

VITA .. 12

1

CHAPTER 1

INTRODUCTION

 In this thesis report, we study parallel sorting of real numbers into a linked list. The

computation model we used for our algorithm is the PRAM (Parallel Random Access Machine)

[12]. There are EREW (Exclusive Read Exclusive Write) PRAM, the CREW (Concurrent Read

Exclusive Write) PRAM and the CRCW (Concurrent Read Concurrent Write) PRAM [12].

Each of these sub models differentiates themselves on how the memory is shared among all the

processors in PRAM.

 On the EREW PRAM, at any step no more than one processor can either read or write on a

memory cell. On the CREW PRAM, one or more processors can simultaneously read a memory

cell in a step but no more than one processor can write a memory cell in a step.

 Whereas in CRCW PRAM, multiple processors can read or write on a memory cell in a step.

Since CRCW allows multiple processors to read or write on a single memory cell, there are

some arbitrary schemes designed to perform the actions. On the Priority CRCW PRAM, the

processor having the highest priority wins the write on the memory cell among the processors

writing to the memory cell. The priority can be the index of the processor. On the Arbitrary

CRCW PRAM an arbitrary processor wins among the processors to write on the memory cell.

On the Common CRCW PRAM when multiple processors write the same memory cell in one

step, they must write the same value and that value is written into the memory cell. Among all

the CRCW PRAM, Priority CRCW is the strongest model, Arbitrary CRCW PRAM is weaker

than the Priority CRCW PRAM, and Common CRCW PRAM is the weakest among the three.

In this report, we would use the Common CRCW PRAM. Because our algorithm runs on the

Common CRCW PRAM and thus they could run on the Arbitrary and Priority CRCW PRAM.

2

 Let Tp be the time complexity of a parallel algorithm using p processors. Let T1 be the time

complexity of the best serial algorithm for the same problem. Then pTp ≥T1. When pTp=T1 then

this parallel algorithm is an optimal parallel algorithm.

When we have a TP time algorithm using P processors, then when we use p processors the

time can be expressed or translated as TPP/p+TP.

 A parallel algorithm for a problem of size n using polynomial number processors (i.e., nc

processors for a constant c) and running in polylog time (i.e., O(logcn) time for a constant c) is

regarded as belong to the NC class [3], where NC is Nick’s class.

 Researchers in parallel algorithm field are working to achieve NC algorithms and fast and

efficient parallel algorithms.

 In this report, we would study sorting real numbers into a linked list in constant time using

n2 processors. Previously it is known that n real numbers can be sorted into a linked list in

O(loglogn) (constant time) using n2 (n3) processors [5,7,8].

 It is known that sorting n real numbers into an array takes at least W(logn/loglogn) time on

the CRCW PRAM with polynomial number of processors [1]. It takes at least W(loglogn) time

if we are to sort them into a padded array [4]. However, if we are going to sort them into a linked

list, we show here that it could be done in constant time. Thus, the lower bound of

W(logn/loglogn) [1] and the lower bound of W(loglogn) [4] are really the lower bound for

arranging numbers in an array instead of the lower bound of “sorting” them.

There are results before for sorting integers into a linked list [2, 6]. It is known there that n

integers in {0, 1, …, m-1} could be sorted into a linked list in constant time using nlogm

processors. m here cannot be bounded by functions of n. Except our previous results for sorting

3

real numbers into a linked list [6,10,11], we do not know other results for parallel sorting real

numbers into a linked list and we do not know previous results of sorting real numbers in

constant time.

In the later part of the research report, our algorithm is a time processor tradeoff for sorting

real numbers into the linked list. We show that we can spent a little more time but reduce the

number of processors to less than n2

4

CHAPTER 2

METHODOLOGY

Sorting of N Real numbers into Linked List

We assume that the n input real numbers are distinct. This can be achieved by replacing

every real number a by a pair (a, i) where i is the index of the number a in the input array.

Firstly, let us discuss about the algorithm on how to sort the real numbers in linked list using

constant time using n3 processors. Let us say, A[0.....n-1] be the input array of n real numbers

and we have n3 processors to achieve constant time. Assign n processors to each element of the

array to compare it with the other elements in the array. It will write as 1 for the elements that

it greater than the given element and 0 for the elements, if it is less than it. For example, we

have the given input array elements as 4,2,5,1,6,3,9. Let us pick an element 5 from the array.

As said above, it marks 1 to the elements greater than 5 and 0 for the ones lesser than 5. So, the

output is 0,0,0,0,1,0,1. We use the n2 processors to the elements marked as 1 and find the

smallest number among them (i.e., 6) in constant time [10,11] and link it to the element 5. So,

here we have 6 and 9 out of which 6 is the minimum. So, 6 is linked to 5. This process is

executed in parallel to all the elements in the array, and we get the final sorted linked list of

elements. This algorithm can be done in constant time using n3 processors.

Now, let us show the algorithm on sorting the real numbers into a linked list using n2

processors in O(loglogn) time on the Common CRCW PRAM. This algorithm is like the above

algorithm where we assign n processors to compare a number to the rest of the elements in the

array. Now, we need to compute the minimum of n numbers using n processors. This could be

5

done in O(loglogn) time [10,11]. Let us say A[0....n-1] be the input array of n real numbers. As

above, the comparison task of comparing one element A[i] to other elements takes constant

time. Now, we need to find the minimum of elements in A that are larger than A[i]. Let us say

m is the smallest element. Now, for each element in A[i] we will copy it into a new array Ai.

This usually take constant time. We now compare A[i] with every element Ai[j] in Ai. If A[i] ≥

Ai[j] then we will do Ai[j] =MIN. Then we will find the smallest element Ai[k] in Ai. This takes

constant time using n1+e processors (or O(loglogn) time with n processors) for Ai [10.11]. For

all i=0, 1… n-1, this takes constant time with n2+e processors (or O(loglogn) time with n2

processors). Ai[k] is the smallest element larger than A[i]. Thus, we can make a link from A[k]

to A [i].

 Now we show our new algorithm which allows to sort n real numbers into a linked list in

constant time with n2 processors. We divide the input numbers into √𝑛 groups. So, now each

group has √𝑛 numbers. Assign n3/2 processors for each group. So now the total number of

processors to do this will be √𝑛 x n3/2 processors which is n2 processors. We already know that

building a sorted linked list with n3/2 processors of √𝑛 numbers take constant time. Now we

have √𝑛	 groups with sorted linked lists. Since we have √𝑛	 groups there will be O(n) pairs of

groups in total. Let us assign n processors for every pair of groups. So, we require n processors

x O(n) pairs which is O(n2) processors total. So, for every number in the group, we can use √𝑛

processors. So, we require n processors for each group. Now, let us say we have a number A in

Group 1. It finds the smallest number B larger than it in Group 2 by comparing with every

number in group 2 and using the sorted linked list already built for group 2. This process is

repeated for all the pairs of groups like Group 1, Group 3 and Group 1, Group 4 etc. We find

√𝑛 − 1 smallest numbers larger than A. In general, if we do it in parallel each number find

6

√𝑛 − 1 smallest numbers larger than it. Each number then uses n processors to find the

minimum among these √𝑛 − 1 smallest numbers in constant time [10,11]. So, in total the

proposed algorithm uses n2 processors to sort the n real numbers in a linked list in constant time.

Time Process Trade off for Sorting Real Numbers in Linked List

Finally, let us discuss about the algorithm which is used to sort the real numbers in the linked

list using less then n2 processors. Divide n numbers into n/t groups with t numbers in each group.

First sort the t numbers in each group into a linked list in constant time using (n/t)t2 processors.

Now for about every m nodes (between m and 2m nodes), we build a supernode. Initially we

have n/t linked lists. Each linked list has t nodes. Combine about every consecutive m nodes to

form a supernode. We have t nodes in linked list so we have O(t/m) super nodes. This can be

down in O(n/p+log(c)nlogt) time [13][11], where log(1)n=logn and log(c)n=loglog(c-1)n. The t/m

supernodes for each sorted link of t nodes forms a sorted supernode linked list. Two supernode

sorted linked lists with t/m nodes each can be merged into one lined list in constant time using

(t/m)2 processors. Let us say supernode s in one supernode linked list is to be inserted between

supernode s1 and supernode s2 of the other supernode linked list. Then s uses O(m) processors

to compare it with every nodes in s1 and s2 to find the exact position it needs to be inserted. Now

merge every pair of about m nodes using m2 processors in constant time.

 Therefore, there are (n/t)2 pairs of linked lists. For every pair, we use (t/m)2 processors to

merge supernode linked lists. So, we use (n/m)2 processors for merging the supernodes. For

each supernode s we used nm/t processors (m processors for each of the n/t pairs) for comparing

it with the nodes in other supernodes. Because we have n/m supernodes, therefore the process

used is n^2/t processors. For merging the m nodes in one supernode list with m nodes in other

7

supernodes list we used (n/t)2(t/m)m=(n/m)(n/t)m=n2/t processors and logm time. If we let m2=t

then we used n2/t processors and logt time.

 The two extremes are t=1 which we use n2 processors and sort real numbers into a linked list

in constant time and when t=n where we use n processors and sort real numbers into a linked

list in logn time.

8

CHAPTER 3

THEOREM

Theorem 1. n real numbers can be sorted into a linked list in O(logt) time with n2/t

processors, where t can range from constant up to n.

We have been able to optimize the existing algorithms with lesser number processors and

with relaxed time. Earlier, we had algorithms like sorting of n real numbers into a linked list in

constant time using n3 and sorting of n real numbers in O(loglogn) time using n2 processors [8].

We also came up with an algorithm to sort the n real numbers in linked list using less than n2

processors [8].

9

CHAPTER 4

CONCLUSIONS

We discussed about sorting n real numbers into a linked list using n2 processors in constant

time. This algorithm is more effective than the ones that require n3 processors to sort into a

linked list in constant time and n2 processors to sort into a linked list in O(loglogn) time. We

have followed the approach to assign the processors by dividing the given input into groups.

The most interesting part of this algorithm is that we were able to sort the n real numbers in the

linked list by decreasing the number of processors from n3 to n2 and by achieving this in constant

time.

It looks to us that reducing the number of processors further while still achieving constant

time is not trivial. A plausible way of doing this is to convert real numbers into integers while

using advantage integers bring to sorting. We have not been achieved further results along this

direction.

10

REFERENCES

[1]. P. Beame, J. Hastad, “Optimal bounds for decision problems on the CRCW PRAM” , Proc.
1987 ACM Symp. On Theory of Computing (STOC’1987), 83-93(1987).

[2]. P.C.P. Bhatt, K. Diks, T. Hagerup, V.C. Prasad, T. Radzik, S. Saxena, “Improved
deterministic parallel integer sorting”, Information and Computation, 94, 29-47(1991).

[3]. S. A. Cook, “Towards a Complexity Theory of Synchronous Parallel Computation”, L’
Enseignement Mathématique, 27, 99-124(1981).

[4]. T. Goldberg, U. Zwick, “Optimal deterministic approximate parallel prefix sums and their
applications”, Proc. 3rd. Israel Symp. On Theory and Computing Systems, 220-228(1995).

[5]. N. Goyal, “An Arbitrary CRCW PRAM Algorithm for Sorting Integers into the Linked List
and Chaining on a Trie. Master’s Thesis”, University of Missouri at Kansas City, 2020.

[6]. T. Hagerup. “Towards optimal parallel bucket sorting”, Information and Computation. 75,
39-51(1987).

[7]. Y. Han, N. Goyal, H. Koganti, “Sort Integers into a Linked List”, Computer and Information
Science. Vol. 13, No.1, 51-57(2020).

[8]. Y. Han, P. Kasani, “Sorting real numbers into a linked list on the PRAM model”, Proc. of
the 2021 Int. Conf. on List Science, Engineering and Technology, 45-49(2021).

[9]. Y. Han, T. Sreevalli, “Parallel merging and sorting on linked list”, International Journal of
Computer and Information Technology (IJCIT). Vol. 10, No. 2, (March 2021), to appear.

[10]. Y. Han, “Uniform linked list contraction”, Paper 2002.05034 in arXiv.org.

[11]. R. Anderson, G. Miller, “Deterministic parallel list ranking”, Algorithmica, Vol. 6, 859-
868(1991).

11

[12]. R. M. Karp, V. Ramachandran, “Parallel algorithms for shared-memory machines”, In
Handbook of Theoretical Computer Science (Vol. A): Algorithms and Complexity, J. van
Leeuwen, Ed., New York, NY: Elsevier, 869-941(1991).

[13]. C. P. Kruskal, “Searching, merging, and sorting in parallel computation”, IEEE Trans.
Comput., C-32, 942-946(1983).

[14]. L. G. Valiant, “Parallelism in comparison problems”. SIAM J. on Computing, Vol. 4. No.
3, 348-355(1975).

12

VITA

Pruthvi Kasani was born in Vijayawada, Andhra Pradesh, India on August 6th 1997. He

attended elementary school named as Nirmala High School and graduated as the top scorer of

that academic year 2013. Later, he got admitted into one of the top colleges in the nation and

finished his bachelor’s from “Indian Institute of Information Technology, Chennai”. In the

year 2015, he was placed in a MNC called ADP and worked for a year and half. During Jan

2021, he entered University of Missouri Kansas City to complete his Master of Science Degree

in Computer Science in May 2022.

