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1 Introduction

The primordial gravitational waves (GWs) might encode rich information about the very
early universe, which may help distinguish between different scenarios of the primordial
universe, including inflation and its alternatives. Chirality is a distinct characteristic of
GWs, which could be manifested in parity-violating theories of gravity. Recently, it is found
that the polarization data of Planck and WMAP [1–3] may be a hint of parity-violating
physics in the cosmic microwave background, though further confirmations are required.
The explorations of parity-violating primordial GWs have aroused a lot of interest, see
e.g. [4–39], see also [40–47].

In single-field slow-roll inflation models where inflaton is non-minimally coupled to
a parity-violating term, such as the gravitational Chern-Simons (gCS) term [48, 49], the
effect of parity-violation should be suppressed by the slow-roll condition. However, in the
modifications or alternatives to the single field slow-roll inflation, the slow-roll condition
could be violated at least for some moment. As a result, the effect of parity-violation
could be enhanced due to the dynamical coupling of the scalar field to the parity-violating
term, see e.g. [50] for the enhanced parity-violating GWs caused by violation of the null
energy condition (NEC) [51] during inflation. Therefore, observations of a parity-violating
GW background might provide us with a new way to identify physics beyond single-field
slow-roll inflation.

Bouncing cosmology as a possible solution to the initial cosmological singularity prob-
lem of inflation and the Big Bang cosmology has attracted a lot of interest [52–79]. In
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the bouncing scenario, the universe originates from a contracting phase and enters an ex-
panding phase after going through a non-singular bounce, where the NEC is violated. One
important issue is the ghost and gradient instabilities in the bouncing phase, which is a
generic feature in a large class of theories [80–82]. To acquire a healthy bouncing model,
new physics effective at bouncing phase is introduced [83–100].

In principle we may explore the new physics by studying their phenomenological pre-
dictions. Unfortunately, the signals from the new physics, which is generically effective only
in the bouncing phase, are suppressed by the short duration of the bounce. For example,
in [95], it is found that the new physics at the bouncing phase has negligible contribution to
the power spectrum. Consequently, in many studies of non-singular cosmology [101–108],
the signals from the bouncing phase are small, the main phenomenological contribution
comes from the contraction phase, so it’s difficult to probe the new physics in bouncing
phase.1 Specifically, in previous literature addressing the parity-violation effect in bounc-
ing cosmology [10], the bouncing phase is directly replaced by a simple junction condition
so there is only a contraction and an expansion in their scenario.

It is then interesting to study if the parity-violation effect could be generated in bounc-
ing cosmology, especially during the bouncing phase. Intuitively, the derivative of the scalar
field is non-trivial around the bouncing phase, which may be able to amplify the effect of
parity-violation, as long as the scalar field is non-minimally coupled to a parity-violating
term. Additionally, the effective sound horizon of the primordial GW mode could also
be nontrivial during the bouncing phase,2 especially when chirality of the GW mode is
considered. Therefore, we expect the non-trivial parity-violation signals to come from the
bouncing phase.

In this paper, we investigate the parity-violation effect in a toy bouncing model, where
the source term is taken to be a gCS action coupled to the scalar field. We are especially
interested in the following question: which phase, the contraction or the bouncing phase,
contributes to the enhancement of the parity-violation effect dominantly? As we will see
in section 3.3, the bouncing phase can generate non-trivial parity-violation signals, while
the contraction phase has negligible effect. Moreover, the enhancement is sensitive to the
detailed physics during the bouncing phase, so in principle, we can probe the new physics
during bouncing through parity-violation. Therefore, our result is twofold: we can not
only explain the possibly observed parity-violation signal in the framework of bouncing
cosmology, but also provide a possible way to probe new physics at the bouncing phase by
studying their imprint on parity-violation signals.

The paper is organized as follows. In section 2 we briefly introduce our model. After
the basic formalism for tensor perturbation in 3.1, we numerically evaluate the dynamics
of tensor perturbation in section 3.2 and the parity-violation signal in section 3.3. We
comment on some conceptual issues about our result in section 3.4 and explain our numer-
ical result in a semi-analytical way in section 3.5. From the semi-analytical argument, we
find that our numerical result should be qualitatively valid for a large variety of bouncing

1Some counterexamples comes from the quantum bounce models [109–111]. However, this is beyond our
scope since we consider purely classical bouncing cosmology.

2The bouncing phase is defined by dH/dt ≥ 0, where H is the Hubble parameter.
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models, although the numerics are taken in a toy bouncing model. We finally conclude
in section 4.

Throughout this paper, we take the sign of the metric to be (−,+,+,+). We will take
~ = 1, c = 1, M2

p = (8πG)−1 = 1, so that all quantities are in Planck units. The canonical
kinetic term is defined as X ≡ −∇µφ∇µφ/2, such that X = φ̇2/2 at the background level.

2 Model

2.1 Action

We take the action to be

S =
∫
d4x
√
−g

[
M2
p

2 R+ LH + LG + LHE

]
. (2.1)

The term LH is responsible for setting the background evolution, where we set

LH = M2
p f1(φ)X + f2(φ)X2 −M4

pV (φ) , (2.2)

which is eligible for the background dynamics. In the next section 2.2, we will use specific
coupling functions f1 and f2 to construct a cosmological bouncing model.

The LG term is the gravitational CS term, with

LG = f3(φ)
8 R ∧R = f3(φ)

8 εαβρσRαβµνR
µν

ρσ , (2.3)

and εαβρσ to be four-dimensional Levi-Civita symbol with ε0123 = −1/
√
−g.

Finally, the term LHE represents the action effective at some high energy scale.
Since there will be ghost or gradient instability problems in the generic bouncing mod-
els [80, 81, 104], such terms are obligated to eliminate such instabilities. We will discuss in
details of this term in section 2.3.

We mention that in (2.1) we scale the scalar field φ to be dimensionless so that the
coupling functions fi are dimensionless.

2.2 Bouncing background

It is well-known that the gCS term will not contribute to the background dynamics. We
shall assume that the correction term LHE also satisfies this criterion. Therefore, Fried-
mann’s equations are totally determined by the Einstein-Hilbert action and the LH term.
In a flat FLRW background

ds2 = −dt2 + a2(t)d~x2 , (2.4)

we have

3M2
pH

2 =
M2
p

2 f1φ̇
2 + 3

4f2φ̇
4 +M4

pV (φ) , (2.5)

−2M2
p Ḣ = M2

p f1φ̇
2 + f2φ̇

4 , (2.6)
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or in terms of the scalar field φ:
(
M2
p f1 + 3βφ̇2

)
φ̈+ 3Hφ̇

(
M2
p f1 + βφ̇2

)
+M4

p

dV

dφ
+
M2
p

2
df1
dφ

φ̇2 = 0 . (2.7)

Now we choose a similar ansatz as that from [90, 95]:

f1(φ) = 1− g

coshω1φ
, f2 = β ≡ const , V (φ) = − V0

coshωV φ
, (2.8)

where the background dynamics are well-studied. In the initial state of the universe where
φ̇ → 0 and φ → −∞, the universe undergoes an Ekpyrotic contraction [112] (also known
as the slow contraction, see e.g. [113])

φ ' − 1
ωV

ln ω
4
V V0t

2

ω2
V − 6

, a(t) = a−

(
t− tc
t− − tc

) 2
ω2

V . (2.9)

The Ekpyrotic phase makes us free from conceptual issues of bouncing cosmology [114], at
the cost of requiring ω2

V > 6. Note that we set t = 0 to be the bouncing point, i.e. the stage
where the scale factor is minimal, so need an integration constant tc to correctly describe
a. We also use the minus sign to denote the end of the Ekpyrotic phase, e.g. a− is the scale
factor at the end of the Ekpyrotic contraction.

When |φ| → 1, the hyperbolic function approaches 1, and if we take g > 1, the f1X

term inverses sign and NEC can be violated. The non-singular bounce phase starts when
the NEC is violated, and the universe transit from contraction to expansion. The dynamics
during the bouncing phase are generically complicated, but for a short bounce, i.e. bouncing
phase with short enough time, the following parameterization can be valid

H = γM2
p t , γ = const. > 0 → a = a0e

1
2γM

2
p t

2
, (2.10)

where we have set a0 = a(0), which is the scale factor at the bouncing point.
After the bouncing phase, the universe comes to an expansion phase, where the scale

factor behaves as

a(t) = a+

(
t− te
t+ − te

) 1
3
, H(t) = 1

3(t− te)
, (2.11)

where we similarly use the “+” sign to denote the end of the bouncing phase, and te is
another integration constant.

We shall comment more on the expansion phase. Notice that, the factor aH from (2.11)
is proportional to (t − te)−

2
3 . Hence, for any wave mode that is initially sub-horizon at

t = t+, it will remain sub-horizon in the whole expansion phase. This is in contrast with our
general belief that, the primordial perturbation should leave the horizon in the expansion
phase (like inflation) and freeze in, and re-enter the horizon in a later stage to set the initial
condition for structure formation.

However, the parity-violation signal is highly dependent on the subsequent expansion
phase after the bounce. In this paper, we want to compare the induction of parity-violation
between the contraction phase and the bouncing phase, so we wish to get a result indepen-
dent of the subsequent expansion phase. Unfortunately, we do not have a precise way to
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Figure 1. The background dynamics with the specific parameters (2.13). The upper channel shows
the evolution of the Hubble parameter and background energy density, while the lower channel shows
the dynamics of the scalar field φ. The bouncing phase happens at around t = 0 where H quickly
transfers from negative to positive.

define when the bouncing phase ends, so it is hard to directly get the parity-violation status
at the end of the bouncing phase. The advantage of our expansion phase (2.11) is that the
wave mode of interests will always be in the sub-horizon region. Thus, their dynamics can
be approximately described by the harmonic oscillator equation u′′k + c2

Tk
2uk = 0, whose

general solution is simply
uk ' uk,+eikτ + uk,−e

−ikτ . (2.12)

The information of parity-violation status when bounce ends is encoded in the function
uk,±, and we see that the expansion phase only changes their relative phase. Thus, we
may alternatively get the physics of parity-violation at the end of the bouncing phase, by
tracing the statistical property of tensor perturbation during the expansion phase. We
shall elaborate more about this point in section 3.2.

We depict the background dynamics in figure 1, where we’ve adopted the following
parameters

g = 1.5 , β = 2 , V0 = 10−7 , ω1 = 10 , ωV =
√

10 . (2.13)

2.3 The effective action on high energy scale

As shown in figure 1, the background energy density at the bouncing phase is much higher
than the other phases. Hence, it is natural to introduce some actions effective only at
a high energy scale to eliminate the instability problem. In the context of effective field
theory (EFT) of non-singular cosmology [83, 84], certain EFT operators such as R(3)δg00

can help to evade the instabilities without altering the background dynamics.

– 5 –



J
H
E
P
0
4
(
2
0
2
3
)
0
9
5

However, when come to the realization of such EFT operators, the dynamics of ten-
sor perturbation are generally influenced by such high-energy correction. For example,
in [86, 90–92] where the EFT operator R(3)δg00 is written in a covariant form, there appears
a non-minimal coupling and the propagating speed of GWs is changed accordingly [115].

There are also other approaches for LHE to eliminate the instabili-
ties [87, 98, 100, 116–119], while generically changes either the background dynamics or
the propagation of gravitational waves. It would be hard to combine all these approaches
in a unified description.

In this paper, we will start with the simplest case where LHE has no influence on both
the background dynamic and propagation of gravitational waves (this is the case of the
EFT approach in [83]). The point is, we will use this case as fiducial to examine if the
bouncing phase contributes more to the parity-violation than the contraction phase. If
this is true, we would possibly have the opportunity to distinguish the above approaches
through the GW signals.

3 Tensor perturbation

3.1 Formalism

Now we come to the tensor mode. We’ve assumed that LHE doesn’t contribute to the
tensor mode, so the quadratic action for tensor perturbation is

S
(2)
T =

M2
p

8

∫
dτd3x

{
a2
[
γ′2ij − (∂γij)2

]
− g′3
M2
p

εijk
[
(∂iγjl)′(γlk)′ − ∂i∂lγjq∂lγ

q
k

]}
, (3.1)

where we’ve defined the conformal time τ ≡
∫
dt/a and a prime denotes differentiation

with respect to τ . Before proceeding, we see that the gCS term is suppressed by the factor
M2
p , so this term should be important at a high energy scale. Moreover, g′3 = aφ̇g3,φ, and

from figure 1 that φ̇ is non-trivial only during the bouncing phase. Thus, we can intuitively
guess that the gCS term should be important during the bouncing phase.

We work in the Fourier space where

γij(τ, ~x) =
∑
s=L,R

∫
d3k

(2π3)γ
(s)
k (τ)p(s)

ij (~k)ei~k·~x , (3.2)

with the polarization tensor satisfying

p
(R)
ij pij(R) = p

(L)
ij p

ij(L) = 0 , p(R)
ij pij(L) = 2 , iklεqljp

(s)
ij = kλ(s)p

q(s)
i . (3.3)

The polarization mode is decided by the parameter λ, such that

λ(L) = −1 , λ(R) = 1 , λ(N) = 0 , (3.4)

and here for convenience, we’ve defined a new N mode to represent the non-parity-violation
case.
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Finally, the parity-violation is evaluated by the chiral parameter

∆χ ≡ P
(L)
T − P (R)

T

P
(L)
T + P

(R)
T

, (3.5)

where P (s)
T are the power spectrum of the corresponding polarization modes. Although

the difference P (L)
T − P (R)

T is of observational interest, the absolute value of P (s)
T is highly

dependent on the detailed bouncing models (for example, the tensor spectra index in our
model (2.8) is dependent on the model parameter ωV [95]). Thus for our purpose to compare
the parity-violation effect from a different phase, we shall concern with the parameter ∆χ.

3.2 Dynamics of tensor perturbation

The dynamical equation for the tensor mode γ(s)
k is

u
(s)′′

k +
(
k2 − z

(s)′′

T

z
(s)
T

)
u

(s)
k = 0 , (3.6)

where we define the Mukhanov-Sasaki variable

u
(s)
k ≡ z

(s)
T γ

(s)
k , z

(s)
T ≡

a

2

√
1− λ(s)k

a

g3,φφ′

aM2
p

, (3.7)

and the sound speed is set to be unity for all polarization modes. Notice that we require
the terms in the square root to be non-negative, otherwise, there will be ghost modes [120].

Initially, all the perturbation modes of observational interests are on sub-horizon scales,
where the k2 terms in (3.6) dominates. Thus, we can take the vacuum initial condition

u
(s)
k = e−ikτ√

2k
, τ → −∞ . (3.8)

We can combine the equations (3.6) and (3.8) to get the dynamics of γij .
Firstly, we evaluate the term z

(s)′′

T /z
(s)
T numerically, with a specific gCS coupling

f3(φ) = φ. Moreover, we notice that the result depends only on the physical wavenumber
k/a0 instead of k, as long as we rescale the term z

(s)′′

T /z
(s)
T by a factor a−2

0 . At this point,
we set a specific scale k/a0 = 10−2, the averaged magnitude of maximum value of φ̇ and H.

We depict the term z
(s)′′

T /z
(s)
T as a function of cosmic time in figure 2, with a rescale fac-

tor a−2
0 . Outside the bouncing phase, the L and R modes are almost identical; while during

the bouncing phase, the two polarization modes differ significantly, and the amplitude of
L/R mode is one order beyond the unpolarized mod N .

Now we come to the mode function u
(s)
k . As we explained at the ending part of

section 2.2, the modes initially on the sub-horizon scale at t = t+ will stay in the sub-
horizon region during the expansion phase. Their evolution can then be approximated as

u
(s)
k ' u

(s)
k,+e

ikτ + u
(s)
k,−e

−ikτ , (3.9)

so the amplitude of the mode function will oscillate during this phase.
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Figure 2. The function z(s)′′
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0 . The left figure shows the time evolution of the whole cosmological history, and the

right figure shows the dynamics near the bouncing point.
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Figure 3. The dynamics of |u(s)
k |/|u

(N)
k | as a function of cosmic time. We specify the dynamics

with three characterised scale, k/a0 = 10−4, 10−3 and 10−2, respectively.

We depict the dynamics of |u(s)
k |/|u

(N)
k | for different k/a0 value in figure 3. As we

can see, for large scale such as k/a0 = 10−4, the mode quickly becomes super-horizon
during the bouncing phase, and |u(s)

k |/|u
(N)
k | approaches constant. For intemediate scale

like k = a0 = 10−3, the mode is sub-horizon but z(s)′′

T /z
(s)
T is still comparable to k2/a2

0, so
the dynamics is oscillatory but not strictly identical. For small scale like k/a0 = 10−2, the
oscillatory feature is strong.

Now we conclude that, for sufficiently large wave mode, physical quantities such as the
mode function (and hence the tensor perturbation γ and parameter ∆χ) at the end of the
bouncing phase, can be represented by their statistics property at the expansion phase,
since the expansion phase only add an oscillating feature to them.

One additional advantage of our treatment is that the horizon-cross condition should
in principle determined by the behavior of z(s)′′

T /z
(s)
T . While in the bouncing phase, this

term is highly non-trivial, it simplifies to a′′/a in the expansion phase and we have a simple
expression.

3.3 Parity violation signal

With the dynamics of the mode function, we can evaluate the corresponding tensor power
spectrum. Notice that the tensor spectrum depends also on z

(s)
T , which carries the infor-

mation on different polarization, so we should first evaluate γ(s)
k ≡ u

(s)
k /z

(s)
T .

However, in our case, the function z
(s)
T differs only slightly. As shown in figure 4,

z
(s)
T for L and R mode would have a maximum difference of order 10−2. Hence, we may
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simply take

P
(L)
T

P
(R)
T

= |γ
(L)
k |2

|γ(R)
k |2

= |u
(L)
k |2

|u(R)
k |2

|z(R)
T |2

|z(L)
T |2

'
|u(L)
k |2

|u(R)
k |2

→ ∆χ ' |u
(L)
k |2 − |u

(R)
k |2

|u(L)
k |2 + |u(R)

k |2
, (3.10)

with a loss of precision no more than O(10−2).
Now we can work out ∆χ. Since |u(s)

k | is oscillating, we expect ∆χ to be also oscillating,
as shown in figure 5. As stated in the last part in section 3.2, we will represent the parity-
violation state at the end of the bouncing phase, by the statistic property of uk (and hence
∆χ) during the expansion phase. Our strategy is, for each fixed k/a0, we take the value
of ∆χ’s amplitude A∆χ with a factor 1/

√
2, i.e. A∆χ/

√
2, to represent the corresponding

∆χ at the end of the bouncing phase, ∆χb. Then, we can depict the dependence of ∆χb
on the physical wavenumber k/a0, in figure 6.

We see from figure 6 that, the parity-violation can be induced at the bouncing phase,
and for large k/a0, there are chances that the parameter ∆χ be large enough (i.e. of order
10−2) to generate detectable parity-violation signals.

3.4 Comment on the resulting signal

Before proceeding, we shall comment on the result from section 3.3, and clarify some
potentially confusing points.

Firstly, we stress again that the signal obtained in the last section is in fact the rep-
resentation of the signal at the end of the bouncing phase. In order to confront the result
of observations, we need to design a more realistic expansion phase. Then, it is possible
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Figure 6. The parameter ∆χ as a function of physical wavenumber k/a0. Notice that for smaller
k/a0, the behavior of u(s)

k would differ more from (3.9), so ∆χ would also receive more influence
from the expansion phase. Thus we shall treat the data from smaller k/a0 with less confidentiality.

that a large parity-violation signal at t = t+ is suppressed by the subsequent expansion
phase. Thus at the current stage, what we can conclude is that parity-violation feature
can be produced at the bouncing phase where the energy scale is the highest in bouncing
cosmology, and it could potentially be detectable.

Besides, we see in figure 6 that ∆χ is proportional to k/a0, which seems to be in contrast
with the result from [50], where parity-violation signals are also generated by some NEC-
violation phase, but ∆χ is non-trivial only in selected wavelengths (see also [10, 11]), while
our result seems to be valid for a wide range of wavelengths. This is because the scenario
considered in [50] is in an inflation background. The NEC violation happens between two
inflation phases, and thus the NEC violation phase is in correspondence to a specific range
of wavenumber a−H− < k < a+H+, where the ± sign stands for the beginning and end
of the NEC violation phase, so k± = a±H± stands for the wave mode that exactly crosses
the Hubble horizon at t = t±. However, in our case, the bouncing point is characterized by
H(0) = 0, where all modes are inside the “Hubble horizon” 1/H → ∞. Thus, we expect
all modes “feel” the parity-violation physics during the bouncing phase.

Actually, the result displayed in figure 6 is consistent with that obtained in the bounce-
inflation scenario [10], where the effect of parity-violation measured by ∆χ is proportional
to k/H∗ for the GW modes which exit horizon during the contracting and bouncing phases
(i.e., before the inflationary phase), though the bouncing phase is assumed to be negligibly
short in [10].

Finally, one may naturally ask, if ∆χ is proportional to k/a0 as that in figure 6, then
shouldn’t ∆χ be of higher order like O(1), and resulting in an unreasonably large parity-
violation signal? The problem is, we have to cut off at some k for at least two reasons.
Firstly, to avoid the appearance of ghosts, we require z(s)

T to be real, so∣∣∣∣∣ka φ̇

M2
p

∣∣∣∣∣ < 1 → k

a0
< max

(
φ̇

M2
p

)
, (3.11)

and we have to cut off smaller scales. Besides, the effective description of our universe as a
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homogeneous and isotropic ideal fluid breaks down for a sufficiently small scale, i.e. large
enough k. This means that the value of a0 cannot be arbitrary. Instead, it should have a
proper value such that the parity-violation happens at the correct scale, and the value of
k/a0 always satisfies the condition (3.11) for reasonable k.

We shall further mention that, in our toy model, the wave mode displayed in figure 6
is in the sub-horizon region. However, in a realistic model, the tensor mode will experience
a decaying when evolving toward the horizon during the expansion phase. Smaller scales
would exit the horizon at a later time, and they would experience more decaying. Thus,
although ∆χ is approximately proportional to k/a0 at the end of the bouncing phase, it
is possible that smaller scales receive more suppression in the following expansion phase,
and the parity-violation effect is important only in some intermediate scales.

3.5 Semi-analytic investigation

Although we numerically verified the existence of parity-violation signals from the bouncing
phase, we wish to briefly explain the result analytically. Fortunately, the duration of
the bouncing phase is small from figure 1, so we may adopt the parametrization (2.10).
Moreover, in cosmic time, we have

z
(s)′′

T

z
(s)
T

= a2
[
z̈

(s)
T

z
(s)
T

+H
ż

(s)
T

z
(s)
T

]
, z

(s)
T = a

2

√√√√1− λ(s)k

a

φ̇

M2
p

' a

2 − λ
(s)k

4
φ̇

M2
p

, (3.12)

and we may write the expression in the following

z
(s)′′

T

z
(s)
T

' a2

 ä+Hȧ

2z(s)
T

− λ(s)k

4
φ̈H +

...
φ

M2
p z

(s)
T

 . (3.13)

The term ä+Hȧ is suppressed by a factor t2, while the Hφ̈ term suppressed by a factor t,
we concern on the term

...
φ . Now φ̇ is a δ-like function, so we expect φ̈ to have a positive

peak at t < 0 and a negative peak at t > 0. Subsequently,
...
φ should first have a positive

peak at t < 0, then a negative peak at t > 0, and finally followed by a second positive
peak. We illustrate this point by depicting both φ̈ and z(L)′′

T /z
(L)
T in figure 7 and see that

they have exactly the same feature.
We conclude that, the feature of z(s)′′

T /z
(s)
T comes from that of

...
φ , which is further

decided by the δ-function-like behavior of φ̇. The mode function receives a non-trivial
enhancement,

To intuitively understand how the peaks of z(s)′′

T /z
(s)
T affect the tensor mode, we may

approximately take each peak as a δ-like function. For simplicity, we take the realization
of these peaks to be a linear function(

z
(s)′′

T /z
(s)
T

)
peak
' b|t− tc| , tp− < tc < tp+ , b > 0 , t ∈ (tp−, tp+) , (3.14)

so for each region, the dynamical equation for the mode function becomes (for convenience
let’s temporarily take tc = 0, and also t ' τ during the bouncing phase since a is almost a
constant)

u
(s)′′

k +
(
k2 ± bt

)
u

(s)
k = 0 , (3.15)
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Figure 7. We compare the dynamics of
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T during the bouncing phase and find the

same feature from both of them.
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Figure 8. Airy function.

whose general solution is the Airy function

u
(s)
k = c1Ai

(
−k2 ∓ bt
|b|

2
3

)
+ c2Bi

(
−k2 ∓ bt
|b|

2
3

)
. (3.16)

In figure 8 we depict the behavior of the Airy function. When the argument is negative,
both Airy functions oscillate. When the argument is positive, one branch increases while
the other shrinks. Thus, the amplitude of u(s)

k will be enhanced in the positive-argument
region.

Note that the parametrization in (3.14) is rough, so at the current stage, we cannot go
further without the detailed expression of the peaks. Thus we can only conclude that the
peaks in z(s)′′

T /z
(s)
T enhance the amplitude of tensor perturbation, and different polarization

modes receive different enhancement due to the microscopic physics in the bouncing phase,
which causes the parity-violation.

Nextly, we shall intuitively explain why ∆χ has a linear dependence on k/a0. For
this purpose, we plot in figure 9. For large k/a0, the three peak value of z(s)′′

T /z
(s)
T is

approximately linearly dependent on k/a0, so we expect the enhancement of u(s)
k also

depends on k/a0 linearly. For smaller k/a0 when the peak value of L and R modes are
comparable to that of N mode, the second peak destroys the linear relationship, so we
expect the linear dependence of ∆χ on k/a0 is ruined. Thus, the fitted function ∆χ in
figure 6 is a little convex instead of perfectly straight.
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Figure 9. The evolution of z(s)′′

T /z
(s)
T for different physical wavenumber k/a0.

Finally, we emphasize how generic our result should be. The suppression of parity-
violation signals during the contraction phase comes from the smallness of φ̇. Although
the dynamics of φ̇ relies on the details of the contraction phase, for mainstream bouncing
models like matter bounce [121] (contraction phase dominated by a stiff matter and small
φ̇ like that in [63, 122]) and Ekpyrotic bounce (the case described by our model where
φ̇ = −2/ωV t), |φ̇| is always small for large |t|. Alternatively, a large φ̇ would correspond to
a higher energy scale, so the parity-violation effect is suppressed in the contraction phase
because of the low energy scale. Notice that the contraction phase will always have a lower
energy scale compared to the bouncing phase as long as we consider a classical bounce
model where the contraction phase happens with an initially classic configuration. Hence,
the smallness of the parity-violation signal in the contraction phase should be valid at least
for many bouncing models.

We shall point out that, the above argument doesn’t imply that the contraction phase
is not important. In our paper, we concern on the parameter ∆χ, which labels the relative
parity-violation signals and is not sensetive to the tensor spectrum P

(s)
T . However, in real

observations, what we observe is P (s)
T ∆χ, which is highly dependent on P

(s)
T , and thus

the corresponding contraction phase. In this paper, we wish to carry a relatively model-
independent search, so we choose the parameter ∆χ, and find that it would be suppressed
in generic contraction phase. If one wish to get an explicit parity-violation signals and
confront it with observations, one must work in a specific contraction phase, since different
contraction phase predicts different input P (s)

T .
For example, it is shown in [123] that in Ekpyrotic models, the scalar-induced gravi-

tational waves (SIGWs) is the dominant contribution for primordial gravitational waves.
Therefore, even if we get a parity-violation effect from the vaccum gravitational waves,
we must take into account the parity-violation contribution from the SIGWs. There are
discussions about parity-violation contribution from the SIGWs in inflationary cosmology
(see e.g. [124] where it is found that the parity-violation in this case is negligible). However,
to our best knowledge, there is little literatures addressing the similar issue in bouncing
scenarios, which is worthy investigating in following-up works.

We may understand the smallness of φ̇ in the contraction phase by alternative ar-
guments. One common mechanism for NEC violation is ghost condensation [125], where
the kinetic Lagrangian L(X) has a non-trivial stationary point at X 6= 0 with a negative
vacuum expectation (VEV). The contraction phase corresponds to the configuration of the
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false vacuum X = 0, while the bouncing phase corresponds to the true vacuum. Thus,
a small φ̇ is expected in this mechanism. Moreover, if the bouncing phase has a short
duration, we also expect φ̇ to have a sharp peak, whose magnitude is related to the VEV
of the kinetic Lagrangian.

In view of the above argument, we see that a short duration of the bouncing phase can
lead to both the sharp peak of φ̇, and the vanishing of terms other than

...
φ in (3.13). This is

generically required by the ghost-free condition for the scalar mode, i.e. the coefficient of φ̈
in (2.7) does not cross 0. One popular way to evade the scalar ghost is to let the bouncing
phase be short enough, such that bouncing ends before the coefficient approaches 0 [60].
In this case, the duration is severely constrained.

In conclusion, we find that certain characteristics of our toy model, i.e. φ̇ small in the
contraction phase, one single sharp peak for φ̇ in the bouncing phase, and short duration
of bouncing phase, are generic in many bouncing models. We then expect our conclusion
to be also valid for these bouncing models.

4 Conclusion and outlook

We investigate the possible parity-violation signals in bouncing cosmology, by a coupling
between the gCS term and the scalar field which triggers the bounce. Through numerical
studies of a toy bouncing model, we find that the parity-violation signals are enhanced
during the bouncing phase. Moreover, we study the numerical result in a semi-analytical
way and find that our result obtained in the toy model can be generalized in a wild range
of the bouncing models.

The significance of our result is twofold. On the one hand, we provide a possible
mechanism for the generation of parity-violation signals in the framework of bouncing
cosmology, enabling us to explain parity-violation physics in the GW background. On
the other hand, since the parity-violation signals come from the bouncing phase, where
the energy scale is the highest and new physics is believed to exist, our result provides
a possible way to explore the new physics through parity-violation signals. To our best
knowledge, our result is distinctive from many other phenomenological approaches, where
the imprint from the bouncing phase is minimized.

The current work is a preliminary check on parity-violation physics in bouncing cos-
mology. There are a lot of following-up works to be finished in the future.

Firstly, since the tensor spectrum is dependent on the physics of the contraction phase
and expansion phase, it is important to construct a realistic bouncing model to predict
the parity-violation signals in the real world and confront them with observations. For
example, for the contraction phase, we may take either an Ekpyrotic contraction or a
matter contraction; for the expansion phase, we may take either an inflating as those
bounce-inflation models or an expansion dominated by radiation, such that the standard
cosmology begins exactly when the bouncing phase ends. Furthermore, the physical scale
at which the effect of parity-violation appears depends on the scale of the bounce and a
complete construction of the evolution of the universe. For example, in a bouncing model
with an Ekpyrotic contraction phase, the tensor spectrum is generically blue, so the parity-
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violation becomes observable only on very small scales. There will be negligible effects on
CMB scales since the amplitude of tensor spectrum is exponentially suppressed. On the
other hand, in a matter bounce scenario [121], we expect the parity-violation effect appears
on a wide range of scales, since the tensor spectrum is nearly scale-invariant. Since the
physical scale where parity-violation effect takes place is highly relevant for observations,
the issue should also be addressed in future studies in order to confront the observations.

Secondly, we shall study physics with the high energy correction LHE specified. In this
paper, we study the specific case where LHE has negligible impact on both the background
dynamics and the propagation of gravitational waves. To probe the physics of LHE , we shall
choose a specific form of LHE , study their effect at both background and perturbative levels,
and get their possible unique imprints. We shall mention that, the physics of EFT during
an NEC violation phase is speculative to some extent. For example, one may claim that
quantum corrections can automatically remove the instabilities during the bouncing period,
and thus no need for higher-derivative EFT operators. Also, the current EFT formalism for
non-singular cosmology may not have a proper UV completion, or a reasonable quantum-
gravity correspondance. Therefore, investigation with a concrete realization of the EFT
theory in bouncing phase is also theoretically important, as this approach may remove
puzzles about the EFT formalism.

Finally, there are issues beyond our current framework. For example, we are working
with a classical bounce. What would happen if we have a quantum bounce? Besides, there
could also be parity-violation signals from the coupling between the E mode and B mode.
It’s interesting to ask if our results hold in this scenario. Last but not least, it’s interesting
to consider alternative parity-violation mechanism [23, 26, 27, 39]. These questions are
interesting to address and are open for the following study.
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